From b7d355b054ef58ace8710b1b73d4994b4de7b098 Mon Sep 17 00:00:00 2001 From: Prabhath C Date: Wed, 12 Nov 2025 16:34:10 +0100 Subject: [PATCH 1/4] Add plot wrt reference paper --- hackathon/elastic_constants/MD/C11_data.txt | 15 + hackathon/elastic_constants/MD/C12_data.txt | 15 + hackathon/elastic_constants/MD/C44_data.txt | 15 + .../elastic_constants/MD/MD_12-11-25.ipynb | 1876 +++++++++++++++++ hackathon/elastic_constants/MD/main.ipynb | 218 -- 5 files changed, 1921 insertions(+), 218 deletions(-) create mode 100644 hackathon/elastic_constants/MD/C11_data.txt create mode 100644 hackathon/elastic_constants/MD/C12_data.txt create mode 100644 hackathon/elastic_constants/MD/C44_data.txt create mode 100644 hackathon/elastic_constants/MD/MD_12-11-25.ipynb delete mode 100644 hackathon/elastic_constants/MD/main.ipynb diff --git a/hackathon/elastic_constants/MD/C11_data.txt b/hackathon/elastic_constants/MD/C11_data.txt new file mode 100644 index 0000000..8533942 --- /dev/null +++ b/hackathon/elastic_constants/MD/C11_data.txt @@ -0,0 +1,15 @@ +2.8544243577545387 170.3201024327785 +78.02093244529021 169.78233034571065 +147.47859181731684 168.348271446863 +220.74215033301618 166.73495518565943 +277.8306374881066 164.58386683738797 +355.8515699333968 162.43277848911654 +454.80494766888677 158.3098591549296 +538.5347288296862 154.90396927016647 +601.3320647002854 151.85659411011525 +671.7411988582303 148.27144686299619 +734.5385347288297 145.22407170294497 +823.9771646051381 140.7426376440461 +890.5803996194102 137.15749039692702 +955.2806850618458 132.49679897567222 +998.0970504281638 129.62868117797697 diff --git a/hackathon/elastic_constants/MD/C12_data.txt b/hackathon/elastic_constants/MD/C12_data.txt new file mode 100644 index 0000000..e9ebe39 --- /dev/null +++ b/hackathon/elastic_constants/MD/C12_data.txt @@ -0,0 +1,15 @@ +1.9029495718363592 122.63764404609476 +75.16650808753568 122.81690140845072 +163.6536631779258 121.74135723431499 +266.4129400570885 120.84507042253523 +347.2882968601332 118.87323943661974 +436.7269267364415 117.4391805377721 +516.6508087535681 115.28809218950066 +597.5261655566128 113.31626120358516 +677.4500475737393 111.34443021766967 +764.9857278782113 108.11779769526251 +863.9391056137013 104.89116517285534 +932.4452901998097 102.56081946222793 +996.1941008563274 99.87195902688862 +818.2683158896289 106.68373879641487 +901.9980970504282 103.99487836107556 diff --git a/hackathon/elastic_constants/MD/C44_data.txt b/hackathon/elastic_constants/MD/C44_data.txt new file mode 100644 index 0000000..49869bd --- /dev/null +++ b/hackathon/elastic_constants/MD/C44_data.txt @@ -0,0 +1,15 @@ +0.9514747859181796 75.8514724711908 +84.68125594671744 75.31370038412294 +129.40057088487157 74.41741357234316 +177.92578496669842 73.8796414852753 +252.1408182683159 72.44558258642768 +336.8220742150333 70.8322663252241 +429.11512844909606 68.8604353393086 +513.7963843958134 66.70934699103715 +599.4291151284492 64.73751600512166 +655.5661274976214 63.48271446862998 +709.8001902949572 61.8693982074264 +764.9857278782113 60.6145966709347 +822.0742150333017 58.82202304737518 +905.8039961941008 56.49167733674777 +999.0485252140818 53.98207426376442 diff --git a/hackathon/elastic_constants/MD/MD_12-11-25.ipynb b/hackathon/elastic_constants/MD/MD_12-11-25.ipynb new file mode 100644 index 0000000..95519f7 --- /dev/null +++ b/hackathon/elastic_constants/MD/MD_12-11-25.ipynb @@ -0,0 +1,1876 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "4a26f12c-f1c4-4262-b978-8afec1537ae1", + "metadata": {}, + "source": [ + "# Temperature dependent elastic constants\n", + "\n", + "## Background\n", + "\n", + "$$C_{ijkl} = \\frac{1}{V} \\frac{\\partial^2 U}{\\partial \\varepsilon_{ij}\\partial \\varepsilon_{kl}}$$\n", + "\n", + "$$U(T) = \\frac{V}{2}C_{ijkl}(T)\\varepsilon_{ij}\\varepsilon_{kl}$$\n", + "\n", + "$$\\sigma_{ij} = C_{ijkl}{\\varepsilon_{kl}}$$\n", + "\n", + "### How to get $U$ or $\\sigma$\n", + "\n", + "- MD\n", + "- Quasi-Harmonic\n", + "\n", + "## Tasks\n", + "\n", + "- Get $a_0$ from potential\n", + "- Lattice parameter (as a function of T)\n", + " - MD\n", + " - NVT\n", + " - NPT\n", + " - QH\n", + "- Calculate $U$ or $\\sigma$ for various $\\varepsilon$\n", + " - MD: Equilibriate and average with LAMMPS\n", + " - QH: Get strains from Yuriy's tool and run phonopy\n", + "- Fit\n", + "\n", + "## Teams\n", + "\n", + "- MD: Erik, Han, (Raynol), Prabhath, Jan, Sriram\n", + "- QH: Raynol, (Sam), Bharathi, Ahmed, Haitham\n", + "- Fit & Yuriy: Sam\n", + "- Literature" + ] + }, + { + "cell_type": "markdown", + "id": "37118728", + "metadata": {}, + "source": [ + "# Implementation" + ] + }, + { + "cell_type": "markdown", + "id": "e0b4e2eb", + "metadata": {}, + "source": [ + "* https://atomistics.readthedocs.io/en/latest/bulk_modulus_with_gpaw.html#elastic-matrix\n", + "* https://github.com/pyiron/atomistics/blob/main/tests/test_elastic_lammpslib_functional.py\n", + "* https://github.com/pyiron/pyiron_workflow_atomistics/blob/interstitials/pyiron_workflow_atomistics/dataclass_storage.py\n", + "* https://github.com/ligerzero-ai/pyiron_workflow_lammps/blob/main/pyiron_workflow_lammps/engine.py#L21" + ] + }, + { + "cell_type": "markdown", + "id": "ad9d71eb", + "metadata": {}, + "source": [ + "## Reference" + ] + }, + { + "cell_type": "markdown", + "id": "fee4e526", + "metadata": {}, + "source": [ + "We compare our values with the paper - [M. Krief, et. al., Physical Review E, 103, 063307, 2021](https://journals.aps.org/pre/abstract/10.1103/PhysRevE.103.063307#s4)\n", + "\n", + "Potential used: Copper [Mishin potential](https://www.ctcms.nist.gov/potentials/entry/2001--Mishin-Y-Mehl-M-J-Papaconstantopoulos-D-A-et-al--Cu-1/)" + ] + }, + { + "cell_type": "markdown", + "id": "0f95f937", + "metadata": {}, + "source": [ + "## Imports" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "ab2a0224", + "metadata": {}, + "outputs": [], + "source": [ + "from ase.build import bulk\n", + "from ase.atoms import Atoms" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "314284cf", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/cmmc/ptmp/pyironhb/pyiron_latest_env/lib/python3.12/site-packages/atomistics/calculators/__init__.py:63: UserWarning: calc_static_with_qe(), evaluate_with_qe() and optimize_positions_and_volume_with_qe() are not available as the import of the module named 'pwtools' failed.\n", + " raise_warning(module_list=quantum_espresso_function, import_error=e)\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from __future__ import annotations\n", + "\n", + "from atomistics.workflows.elastic.workflow import (\n", + " get_tasks_for_elastic_matrix,\n", + " analyse_results_for_elastic_matrix\n", + ")\n", + "\n", + "from atomistics.calculators import (\n", + " evaluate_with_lammpslib, \n", + " get_potential_by_name, \n", + " calc_molecular_dynamics_npt_with_lammpslib, \n", + " calc_molecular_dynamics_nvt_with_lammpslib\n", + ")\n", + "\n", + "from atomistics.calculators.lammps.libcalculator import (\n", + " calc_static_with_lammpslib, \n", + " calc_molecular_dynamics_langevin_with_lammpslib\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "4c2e5072", + "metadata": {}, + "outputs": [], + "source": [ + "from pyiron_base import Project, job" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "d0c85625", + "metadata": {}, + "outputs": [], + "source": [ + "pr = Project(\"Finite_Temperature_Elastic_Constants\")" + ] + }, + { + "cell_type": "markdown", + "id": "0640a5d2", + "metadata": {}, + "source": [ + "## Create bulk sample with a guessed lattice constant" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "4ce06b81", + "metadata": {}, + "outputs": [], + "source": [ + "unit_cell = bulk('Cu', 'fcc', a=3.6514, cubic=True) # 4 atoms" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "1007230a", + "metadata": {}, + "outputs": [], + "source": [ + "repeated_unit_cell = unit_cell.repeat(5) # 500 atoms" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "b07fbd51", + "metadata": {}, + "outputs": [], + "source": [ + "potential_name_str = \"2001--Mishin-Y--Cu-1--LAMMPS--ipr1\"\n", + "\n", + "potential_df = get_potential_by_name(\n", + " potential_name=potential_name_str\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "b02f41d3", + "metadata": {}, + "source": [ + "## 0K Relaxed Structure" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "92ee7631", + "metadata": {}, + "outputs": [], + "source": [ + "def get_relaxed_structure_at_0K(\n", + " structure: Atoms, \n", + " potential: str, \n", + " lmp_optimizer_kwargs : dict = None\n", + " ) -> Atoms:\n", + " \n", + " df_pot_selected = get_potential_by_name(\n", + " potential_name=potential\n", + " )\n", + " \n", + " result_dict = evaluate_with_lammpslib(\n", + " task_dict={\"optimize_positions_and_volume\": structure},\n", + " potential_dataframe=df_pot_selected,\n", + " lmp_optimizer_kwargs=lmp_optimizer_kwargs\n", + " )\n", + " \n", + " structure_relaxed = result_dict['structure_with_optimized_positions_and_volume']\n", + "\n", + " return structure_relaxed" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "2c46da55", + "metadata": {}, + "outputs": [], + "source": [ + "lmp_optimizer_kwargs={\n", + " 'min_style':'cg',\n", + " 'ionic_force_tolerance':1e-8,\n", + " 'pressure':np.zeros(6) # add anisotropy\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "f3dcce5a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Atoms(symbols='Cu4', pbc=True, cell=[3.61500008107858, 3.61500008107858, 3.6150000810785805])" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "relaxed_unit_cell = get_relaxed_structure_at_0K(\n", + " unit_cell, # 4 atoms\n", + " potential_name_str, \n", + " lmp_optimizer_kwargs\n", + ")\n", + "\n", + "relaxed_unit_cell # 4 atoms" + ] + }, + { + "cell_type": "markdown", + "id": "115a15d0", + "metadata": {}, + "source": [ + "## 0K Lattice Constant" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "6ce6b4ba-ed90-4d53-a502-549e2980a481", + "metadata": {}, + "outputs": [], + "source": [ + "def get_lattice_constant_at_0K(\n", + " structure: Atoms, \n", + " potential: str, \n", + " lmp_optimizer_kwargs : dict = None\n", + " ) -> float:\n", + "\n", + " structure_relaxed = get_relaxed_structure_at_0K(\n", + " structure=structure, \n", + " potential=potential,\n", + " lmp_optimizer_kwargs=lmp_optimizer_kwargs\n", + " )\n", + " \n", + " a_0 = structure_relaxed.get_volume()**(1/3)\n", + "\n", + " return a_0 # Angstrom" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "e49c9a2b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "np.float64(3.61500008107858)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a_0 = get_lattice_constant_at_0K(\n", + " structure=unit_cell, \n", + " potential=potential_name_str,\n", + " lmp_optimizer_kwargs=lmp_optimizer_kwargs)\n", + "\n", + "a_0 # Angstrom" + ] + }, + { + "cell_type": "markdown", + "id": "00afafda", + "metadata": {}, + "source": [ + "We get the same lattice constant at 0K as the reference paper!" + ] + }, + { + "cell_type": "markdown", + "id": "487ad8a1", + "metadata": {}, + "source": [ + "## 0K Elastic Constants" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "6da5fde2", + "metadata": {}, + "outputs": [], + "source": [ + "def get_strain_tensor_cubic(\n", + " structure : Atoms, \n", + " strain : float = 0.005\n", + " ) -> dict:\n", + "\n", + " deformation_gradient_dict = {\n", + " 'C11': np.eye(3,3) + np.array([[ strain, 0, 0], \n", + " [ 0, 0, 0],\n", + " [ 0, 0, 0]]),\n", + " 'C12': np.eye(3,3) + np.array([[ strain, 0, 0], \n", + " [ 0, strain, 0], \n", + " [ 0, 0, 0]]),\n", + " 'C44': np.eye(3,3) + np.array([[ 0, 0, 0], \n", + " [ 0, 0, strain], \n", + " [ 0, strain, 0]])\n", + " }\n", + "\n", + " return deformation_gradient_dict" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "66091ecb", + "metadata": {}, + "outputs": [], + "source": [ + "def get_elastic_constants_from_stress_tensor(\n", + " tensor_dict : dict, \n", + " strain : float\n", + " ) -> list[float]:\n", + "\n", + " elastic_constants_list = []\n", + "\n", + " for constant_str, diff in tensor_dict.items():\n", + " if constant_str == 'C11':\n", + " constant = diff[0, 0] / strain\n", + " elastic_constants_list.append(abs(constant))\n", + "\n", + " elif constant_str == 'C12':\n", + " sigma33 = diff[2, 2]\n", + " constant = (sigma33/ strain) / 2\n", + " elastic_constants_list.append(abs(constant))\n", + "\n", + " elif constant_str == 'C44':\n", + " sigma23 = diff[2, 1]\n", + " constant = sigma23 / (2 * strain)\n", + " elastic_constants_list.append(abs(constant))\n", + "\n", + " return elastic_constants_list" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "fdd3131b", + "metadata": {}, + "outputs": [], + "source": [ + "def get_stress_tensor_at_0K(\n", + " structure : Atoms, \n", + " potential_dataframe : pd.DataFrame, \n", + " deformation_gradient : np.array\n", + " ):\n", + " \n", + " structure_strained = structure.copy()\n", + " relaxed_cell = np.array(structure_strained.get_cell().tolist())\n", + "\n", + " strained_cell = deformation_gradient@relaxed_cell\n", + " structure_strained.set_cell(\n", + " strained_cell, \n", + " scale_atoms=True\n", + " )\n", + " \n", + " relaxed_dict = calc_static_with_lammpslib(\n", + " structure=structure, \n", + " potential_dataframe=potential_dataframe\n", + " )\n", + " strained_dict = calc_static_with_lammpslib(\n", + " structure=structure_strained,\n", + " potential_dataframe=potential_dataframe\n", + " )\n", + "\n", + " relaxed_dict['stress_GPa'] = relaxed_dict['stress'] / 10**4\n", + " strained_dict['stress_GPa'] = strained_dict['stress'] / 10**4\n", + "\n", + " stress_diff = strained_dict['stress_GPa'] - relaxed_dict['stress_GPa']\n", + " \n", + " return stress_diff, relaxed_dict, strained_dict" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "a1655241", + "metadata": {}, + "outputs": [], + "source": [ + "def calculate_elastic_constants_at_0K(\n", + " structure : Atoms, \n", + " potential_name : str,\n", + " strain : float = 0.005\n", + " ):\n", + "\n", + " df_pot_selected = get_potential_by_name(\n", + " potential_name=potential_name\n", + " )\n", + "\n", + " deformation_gradient_dict = get_strain_tensor_cubic(\n", + " structure=structure, \n", + " strain=strain\n", + " )\n", + " \n", + " tensor_dict = {}\n", + " for constant_str, deformation_gradient in deformation_gradient_dict.items():\n", + " diff, relaxed_dict, strained_dict = get_stress_tensor_at_0K(\n", + " structure=structure,\n", + " potential_dataframe=df_pot_selected,\n", + " deformation_gradient=deformation_gradient\n", + " )\n", + " \n", + " tensor_dict[constant_str] = diff\n", + " tensor_dict[f'relaxed_dict_{constant_str}'] = relaxed_dict\n", + " tensor_dict[f'strained_dict_{constant_str}'] = strained_dict\n", + " \n", + " elastic_constants_list = get_elastic_constants_from_stress_tensor(\n", + " tensor_dict=tensor_dict, \n", + " strain=strain\n", + " )\n", + "\n", + " return elastic_constants_list, tensor_dict" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "id": "3c644be9", + "metadata": {}, + "outputs": [], + "source": [ + "elastic_constants_0K, tensor_dict_0K = calculate_elastic_constants_at_0K(\n", + " structure=relaxed_unit_cell, \n", + " potential_name=potential_name_str,\n", + " strain=0.005\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "1d4d9117", + "metadata": {}, + "source": [ + "## Reference function to fit elastic constants (Jan + Yury)'s" + ] + }, + { + "cell_type": "markdown", + "id": "921512df", + "metadata": {}, + "source": [ + "Requires only `relaxed_unit_cell` and `potential_name_str` from previous cells" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "abfe2e9f", + "metadata": {}, + "outputs": [], + "source": [ + "def fit_elastic_constants(\n", + " structure: Atoms, \n", + " potential: str, \n", + " strains, \n", + " stresses=None, \n", + " energies=None):\n", + "\n", + " task_dict, sym_dict = get_tasks_for_elastic_matrix(\n", + " structure=structure,\n", + " eps_range=0.005,\n", + " num_of_point=5,\n", + " zero_strain_job_name=\"s_e_0\",\n", + " sqrt_eta=True\n", + " )\n", + "\n", + " potential_df = get_potential_by_name(\n", + " potential_name=potential\n", + " )\n", + "\n", + " result_dict = evaluate_with_lammpslib(\n", + " task_dict=task_dict,\n", + " potential_dataframe=potential_df,\n", + " )\n", + " \n", + " elastic_dict, sym_dict = analyse_results_for_elastic_matrix(\n", + " output_dict=result_dict,\n", + " sym_dict=sym_dict,\n", + " fit_order=2,\n", + " zero_strain_job_name=\"s_e_0\",\n", + " )\n", + "\n", + " return elastic_dict" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "07218d2f", + "metadata": {}, + "outputs": [], + "source": [ + "elastic_dict = fit_elastic_constants(\n", + " structure=relaxed_unit_cell,\n", + " potential=potential_name_str,\n", + " strains=None\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "2b379a68", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[169.74837327, 123.55258251, 123.55258251, 0. ,\n", + " 0. , 0. ],\n", + " [123.55258251, 169.74837327, 123.55258251, 0. ,\n", + " 0. , 0. ],\n", + " [123.55258251, 123.55258251, 169.74837327, 0. ,\n", + " 0. , 0. ],\n", + " [ 0. , 0. , 0. , 76.24914297,\n", + " 0. , 0. ],\n", + " [ 0. , 0. , 0. , 0. ,\n", + " 76.24914297, 0. ],\n", + " [ 0. , 0. , 0. , 0. ,\n", + " 0. , 76.24914297]])" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "elastic_dict['elastic_matrix']" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "9d40a4ab", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([169.7, 123.6, 76.2])" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "elastic_constants_list_reference = [\n", + " elastic_dict['elastic_matrix'][0,0], \n", + " elastic_dict['elastic_matrix'][0,1], \n", + " elastic_dict['elastic_matrix'][3,3]\n", + " ]\n", + "\n", + "np.round(elastic_constants_list_reference, 1) # GPa" + ] + }, + { + "cell_type": "markdown", + "id": "21e47c80", + "metadata": {}, + "source": [ + "In comparison with the [reference paper](https://journals.aps.org/pre/abstract/10.1103/PhysRevE.103.063307#s4 \"M. Krief, et. al., Physical Review E, 103, 063307, 2021\"),\n", + "\n", + "$C_{11}$=169.9GPa, $C_{12}$=122.6GPa, and $C_{44}$=76.2GPa" + ] + }, + { + "cell_type": "markdown", + "id": "3bfb90c7", + "metadata": {}, + "source": [ + "## Finite Temperature equlibiration\n", + "* First run NPT to relax volume\n", + "* Then equilibriate the cell by running NVT" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "d35b8305", + "metadata": {}, + "outputs": [], + "source": [ + "def equilibriate_structure_at_finite_temperature(\n", + " structure : Atoms, \n", + " potential : str, \n", + " temperature : float = 500,\n", + " run : int = 100000,\n", + " thermo : int = 100,\n", + " seed : int = 4928459, \n", + " cell_scale_value : int = 5,\n", + " thermostat : str = 'langevin'\n", + " ) -> Atoms:\n", + "\n", + " df_pot_selected = get_potential_by_name(\n", + " potential_name=potential\n", + " )\n", + " \n", + " structure_repeated = structure.repeat(cell_scale_value)\n", + "\n", + " npt_dict = calc_molecular_dynamics_npt_with_lammpslib(\n", + " structure=structure_repeated,\n", + " potential_dataframe=df_pot_selected,\n", + " Tstart=temperature,\n", + " Tstop=temperature,\n", + " run=run,\n", + " thermo=thermo,\n", + " seed=seed\n", + " )\n", + " \n", + " npt_lattice_constant = (np.mean(npt_dict['volume'][20:]/len(structure_repeated))*len(structure))**(1/3)\n", + " \n", + " # FIXME: Make it for a generic element - something might be wrong here. Need to check error propagation\n", + " # structure_npt = bulk('Cu', a=npt_lattice_constant, cubic=True)\n", + " # structure_repeated_npt = structure_npt.repeat(cell_scale_value)\n", + " \n", + " structure_repeated_npt = structure.copy()\n", + " structure_repeated_npt.set_cell(\n", + " [[npt_lattice_constant,0,0], \n", + " [0,npt_lattice_constant,0], \n", + " [0,0,npt_lattice_constant]],\n", + " scale_atoms = True\n", + " )\n", + " structure_repeated_npt = structure_repeated_npt.repeat(cell_scale_value)\n", + "\n", + " if thermostat == 'nose-hoover':\n", + " nvt_dict = calc_molecular_dynamics_nvt_with_lammpslib(\n", + " structure=structure_repeated_npt,\n", + " potential_dataframe=df_pot_selected,\n", + " Tstart=temperature,\n", + " Tstop=temperature,\n", + " run=run,\n", + " thermo=thermo,\n", + " seed=seed\n", + " )\n", + " \n", + " elif thermostat == 'langevin':\n", + " nvt_dict = calc_molecular_dynamics_langevin_with_lammpslib(\n", + " structure=structure_repeated_npt,\n", + " potential_dataframe=df_pot_selected,\n", + " Tstart=temperature,\n", + " Tstop=temperature,\n", + " run=run,\n", + " thermo=thermo,\n", + " seed=seed\n", + " )\n", + " \n", + " structure_repeated_nvt = structure_repeated_npt.copy()\n", + " structure_repeated_nvt.set_cell(\n", + " nvt_dict['cell'][-1]\n", + " )\n", + " structure_repeated_nvt.set_positions(\n", + " nvt_dict['positions'][-1]\n", + " )\n", + " structure_repeated_nvt.set_velocities(\n", + " nvt_dict['velocities'][-1]\n", + " )\n", + "\n", + " return structure_repeated_nvt" + ] + }, + { + "cell_type": "markdown", + "id": "fa0d5d7d", + "metadata": {}, + "source": [ + "## Temperature-dependent Elastic Constants" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "61bd9d33", + "metadata": {}, + "outputs": [], + "source": [ + "def get_stress_tensor_at_finite_temperature(\n", + " structure : Atoms, \n", + " potential_dataframe : pd.DataFrame, \n", + " deformation_gradient : np.array, \n", + " temperature : float,\n", + " run : int, \n", + " thermo : int,\n", + " seed : int,\n", + " thermostat : str\n", + " ):\n", + " \n", + " structure_strained = structure.copy()\n", + " relaxed_cell = np.array(structure_strained.get_cell().tolist())\n", + "\n", + " strained_cell = deformation_gradient@relaxed_cell\n", + " structure_strained.set_cell(\n", + " strained_cell, \n", + " scale_atoms=True\n", + " )\n", + " \n", + " if thermostat == 'nose-hoover':\n", + " relaxed_dict = calc_molecular_dynamics_nvt_with_lammpslib(\n", + " structure=structure, \n", + " potential_dataframe=potential_dataframe,\n", + " Tstart=temperature,\n", + " Tstop=temperature,\n", + " run=run,\n", + " thermo=thermo,\n", + " seed=seed,\n", + " disable_initial_velocity=True\n", + " )\n", + " strained_dict = calc_molecular_dynamics_nvt_with_lammpslib(\n", + " structure=structure_strained, \n", + " potential_dataframe=potential_dataframe,\n", + " Tstart=temperature,\n", + " Tstop=temperature,\n", + " run=run,\n", + " thermo=thermo,\n", + " seed=seed,\n", + " disable_initial_velocity=True\n", + " )\n", + " \n", + " elif thermostat == 'langevin':\n", + " relaxed_dict = calc_molecular_dynamics_langevin_with_lammpslib(\n", + " structure=structure, \n", + " potential_dataframe=potential_dataframe,\n", + " Tstart=temperature,\n", + " Tstop=temperature,\n", + " run=run,\n", + " thermo=thermo,\n", + " seed=seed,\n", + " disable_initial_velocity=True\n", + " )\n", + " strained_dict = calc_molecular_dynamics_langevin_with_lammpslib(\n", + " structure=structure_strained, \n", + " potential_dataframe=potential_dataframe,\n", + " Tstart=temperature,\n", + " Tstop=temperature,\n", + " run=run,\n", + " thermo=thermo,\n", + " seed=seed,\n", + " disable_initial_velocity=True\n", + " )\n", + "\n", + " relaxed_dict['pressure_GPa'] = relaxed_dict['pressure'] / 10**4\n", + " strained_dict['pressure_GPa'] = strained_dict['pressure'] / 10**4\n", + "\n", + " stress_diff = -np.mean(strained_dict['pressure_GPa'][20:] - relaxed_dict['pressure_GPa'][20:], axis=0)\n", + "\n", + " return stress_diff, relaxed_dict, strained_dict" + ] + }, + { + "cell_type": "markdown", + "id": "20cfbe45", + "metadata": {}, + "source": [ + "Implement [Mean Measure value](https://github.com/pyiron/pyiron_atomistics/blob/c469a6ecbb787291dcc957f348cf74446fdc7ddc/pyiron_atomistics/lammps/control.py#L704) from pyiron_atomistics maybe?" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "9f46351a", + "metadata": {}, + "outputs": [], + "source": [ + "def calculate_elastic_constants_at_finite_temperature(\n", + " structure : Atoms, # change to unit cell\n", + " cell_scale_value : int,\n", + " potential_name : str, \n", + " temperature : float = 0, \n", + " strain : float = 0.005,\n", + " run : int = 10000,\n", + " thermo : int = 100, \n", + " seed : int = 42, \n", + " thermostat : str = 'langevin'\n", + " ):\n", + "\n", + " df_pot_selected = get_potential_by_name(\n", + " potential_name=potential_name\n", + " )\n", + "\n", + " equilibriated_structure = equilibriate_structure_at_finite_temperature(\n", + " structure=structure,\n", + " potential=potential_name_str, \n", + " temperature=temperature, \n", + " seed=seed,\n", + " cell_scale_value=cell_scale_value\n", + " )\n", + " \n", + " deformation_gradient_dict = get_strain_tensor_cubic(\n", + " structure=equilibriated_structure, \n", + " strain=strain\n", + " )\n", + " \n", + " tensor_dict = {}\n", + " for constant_str, deformation_gradient in deformation_gradient_dict.items():\n", + " diff, relaxed_dict, strained_dict = get_stress_tensor_at_finite_temperature(\n", + " structure=equilibriated_structure, \n", + " potential_dataframe=df_pot_selected,\n", + " deformation_gradient=deformation_gradient,\n", + " temperature=temperature,\n", + " run=run,\n", + " thermo=thermo,\n", + " seed=seed,\n", + " thermostat=thermostat\n", + " )\n", + " \n", + " tensor_dict[constant_str] = diff\n", + " tensor_dict[f'relaxed_dict_{constant_str}'] = relaxed_dict\n", + " tensor_dict[f'strained_dict_{constant_str}'] = strained_dict\n", + " \n", + " elastic_constants_list = get_elastic_constants_from_stress_tensor(\n", + " tensor_dict=tensor_dict, \n", + " strain=strain\n", + " )\n", + "\n", + " return {\"elastic_constants\": elastic_constants_list, \"tensor_dict\": tensor_dict}" + ] + }, + { + "cell_type": "markdown", + "id": "7436663f", + "metadata": {}, + "source": [ + "# Check against reference" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "id": "0328b1eb", + "metadata": {}, + "outputs": [], + "source": [ + "input_params_scale = {\n", + " \"cell_scale_value\" : [5],\n", + " \"run\" : [10000],\n", + " \"temperature\" : [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000],\n", + " \"strain\" : [0.005],\n", + " \"seed\": [1234],\n", + " \"thermostat\" : [\"langevin\"]\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "id": "64a69658", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'cell_scale_value': 5, 'run': 10000, 'temperature': 100, 'strain': 0.005, 'seed': 1234, 'thermostat': 'langevin'}\n", + "{'cell_scale_value': 5, 'run': 10000, 'temperature': 200, 'strain': 0.005, 'seed': 1234, 'thermostat': 'langevin'}\n", + "{'cell_scale_value': 5, 'run': 10000, 'temperature': 300, 'strain': 0.005, 'seed': 1234, 'thermostat': 'langevin'}\n", + "{'cell_scale_value': 5, 'run': 10000, 'temperature': 400, 'strain': 0.005, 'seed': 1234, 'thermostat': 'langevin'}\n", + "{'cell_scale_value': 5, 'run': 10000, 'temperature': 500, 'strain': 0.005, 'seed': 1234, 'thermostat': 'langevin'}\n", + "{'cell_scale_value': 5, 'run': 10000, 'temperature': 600, 'strain': 0.005, 'seed': 1234, 'thermostat': 'langevin'}\n", + "{'cell_scale_value': 5, 'run': 10000, 'temperature': 700, 'strain': 0.005, 'seed': 1234, 'thermostat': 'langevin'}\n", + "{'cell_scale_value': 5, 'run': 10000, 'temperature': 800, 'strain': 0.005, 'seed': 1234, 'thermostat': 'langevin'}\n", + "{'cell_scale_value': 5, 'run': 10000, 'temperature': 900, 'strain': 0.005, 'seed': 1234, 'thermostat': 'langevin'}\n", + "{'cell_scale_value': 5, 'run': 10000, 'temperature': 1000, 'strain': 0.005, 'seed': 1234, 'thermostat': 'langevin'}\n" + ] + } + ], + "source": [ + "from itertools import product\n", + "keys = input_params_scale.keys()\n", + "values = input_params_scale.values()\n", + "\n", + "for combo in product(*values):\n", + " params = dict(zip(keys, combo))\n", + " print(params)" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "id": "f17dd89b", + "metadata": {}, + "outputs": [], + "source": [ + "def calculate_elastic_constants_for_different_temperatures(\n", + " structure: Atoms, \n", + " potential_name_str: str, \n", + " input_params: dict, \n", + " project: Project):\n", + "\n", + " from itertools import product\n", + " from pyiron_base import job\n", + " \n", + " keys = input_params.keys()\n", + " values = input_params.values()\n", + "\n", + " for combo in product(*values):\n", + " params = dict(zip(keys, combo))\n", + " print(params)\n", + "\n", + " conv_job = job(calculate_elastic_constants_at_finite_temperature)\n", + " conv_out = conv_job(\n", + " structure = structure,\n", + " potential_name = potential_name_str,\n", + " pyiron_project = project,\n", + " **params\n", + " )\n", + "\n", + " conv_out.server.queue = \"cmmg\"\n", + " conv_out.server.cores = 1\n", + " conv_out.server.run_time = 7200\n", + "\n", + " conv_future = conv_out.pull()" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "id": "23dda212", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'cell_scale_value': 5, 'run': 10000, 'temperature': 100, 'strain': 0.005, 'seed': 1234, 'thermostat': 'langevin'}\n", + "The job calculate_elastic_constants_at_finite_temperature_4d1ca38d098c7ac9eaa28b8d1c67a536 was saved and received the ID: 30480319\n", + "Queue system id: 18741866\n", + "{'cell_scale_value': 5, 'run': 10000, 'temperature': 200, 'strain': 0.005, 'seed': 1234, 'thermostat': 'langevin'}\n", + "{'cell_scale_value': 5, 'run': 10000, 'temperature': 300, 'strain': 0.005, 'seed': 1234, 'thermostat': 'langevin'}\n", + "The job calculate_elastic_constants_at_finite_temperature_6263e476629e3eb057601256f46d42d1 was saved and received the ID: 30480320\n", + "Queue system id: 18741867\n", + "{'cell_scale_value': 5, 'run': 10000, 'temperature': 400, 'strain': 0.005, 'seed': 1234, 'thermostat': 'langevin'}\n", + "{'cell_scale_value': 5, 'run': 10000, 'temperature': 500, 'strain': 0.005, 'seed': 1234, 'thermostat': 'langevin'}\n", + "The job calculate_elastic_constants_at_finite_temperature_5e099398a7e7a93073461b41f516a4bc was saved and received the ID: 30480321\n", + "Queue system id: 18741868\n", + "{'cell_scale_value': 5, 'run': 10000, 'temperature': 600, 'strain': 0.005, 'seed': 1234, 'thermostat': 'langevin'}\n", + "{'cell_scale_value': 5, 'run': 10000, 'temperature': 700, 'strain': 0.005, 'seed': 1234, 'thermostat': 'langevin'}\n", + "The job calculate_elastic_constants_at_finite_temperature_cc3531c24a9881532a4120c6f43fcb2a was saved and received the ID: 30480322\n", + "Queue system id: 18741869\n", + "{'cell_scale_value': 5, 'run': 10000, 'temperature': 800, 'strain': 0.005, 'seed': 1234, 'thermostat': 'langevin'}\n", + "{'cell_scale_value': 5, 'run': 10000, 'temperature': 900, 'strain': 0.005, 'seed': 1234, 'thermostat': 'langevin'}\n", + "The job calculate_elastic_constants_at_finite_temperature_c74383e28897e7bc65197e9c0db7bea1 was saved and received the ID: 30480323\n", + "Queue system id: 18741870\n", + "{'cell_scale_value': 5, 'run': 10000, 'temperature': 1000, 'strain': 0.005, 'seed': 1234, 'thermostat': 'langevin'}\n" + ] + } + ], + "source": [ + "calculate_elastic_constants_for_different_temperatures(\n", + " structure=relaxed_unit_cell,\n", + " potential_name_str=potential_name_str,\n", + " input_params = input_params_scale,\n", + " project = pr\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "id": "1031075b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idstatuschemicalformulajobsubjobprojectpathprojecttimestarttimestoptotalcputimecomputerhamiltonhamversionparentidmasterid
430479971finishedNonecalculate_elastic_constants_at_finite_temperature_1dc7686706b9806d39f6ffe02c17f020/calculate_elastic_constants_at_finite_temperature_1dc7686706b9806d39f6ffe02c17f020/cmmc/u/pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Finite_Temperature_Elastic_Constants/2025-11-12 14:16:42.052497NaTNaNpchilaka@cmti001#1#cmmgPythonFunctionContainerJob0.4NoneNone
030479972finishedNonecalculate_elastic_constants_at_finite_temperature_dea276d94f08befd2db7d99262416a33/calculate_elastic_constants_at_finite_temperature_dea276d94f08befd2db7d99262416a33/cmmc/u/pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Finite_Temperature_Elastic_Constants/2025-11-12 14:16:42.196748NaTNaNpchilaka@cmti001#1#cmmgPythonFunctionContainerJob0.4NoneNone
130479973finishedNonecalculate_elastic_constants_at_finite_temperature_32b77a35b226b68cc8da4c8b5fab2c74/calculate_elastic_constants_at_finite_temperature_32b77a35b226b68cc8da4c8b5fab2c74/cmmc/u/pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Finite_Temperature_Elastic_Constants/2025-11-12 14:16:42.329182NaTNaNpchilaka@cmti001#1#cmmgPythonFunctionContainerJob0.4NoneNone
330479974finishedNonecalculate_elastic_constants_at_finite_temperature_6b526eadaf0aafd5b6b9dce4b335f8be/calculate_elastic_constants_at_finite_temperature_6b526eadaf0aafd5b6b9dce4b335f8be/cmmc/u/pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Finite_Temperature_Elastic_Constants/2025-11-12 14:16:42.464779NaTNaNpchilaka@cmti001#1#cmmgPythonFunctionContainerJob0.4NoneNone
230479975finishedNonecalculate_elastic_constants_at_finite_temperature_cbf95a4067027755f47915e68c5c5c0a/calculate_elastic_constants_at_finite_temperature_cbf95a4067027755f47915e68c5c5c0a/cmmc/u/pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Finite_Temperature_Elastic_Constants/2025-11-12 14:16:42.596115NaTNaNpchilaka@cmti001#1#cmmgPythonFunctionContainerJob0.4NoneNone
530480319finishedNonecalculate_elastic_constants_at_finite_temperature_4d1ca38d098c7ac9eaa28b8d1c67a536/calculate_elastic_constants_at_finite_temperature_4d1ca38d098c7ac9eaa28b8d1c67a536/cmmc/u/pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Finite_Temperature_Elastic_Constants/2025-11-12 15:09:34.033985NaTNaNpchilaka@cmti001#1#cmmgPythonFunctionContainerJob0.4NoneNone
730480320finishedNonecalculate_elastic_constants_at_finite_temperature_6263e476629e3eb057601256f46d42d1/calculate_elastic_constants_at_finite_temperature_6263e476629e3eb057601256f46d42d1/cmmc/u/pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Finite_Temperature_Elastic_Constants/2025-11-12 15:09:34.313996NaTNaNpchilaka@cmti001#1#cmmgPythonFunctionContainerJob0.4NoneNone
830480321finishedNonecalculate_elastic_constants_at_finite_temperature_5e099398a7e7a93073461b41f516a4bc/calculate_elastic_constants_at_finite_temperature_5e099398a7e7a93073461b41f516a4bc/cmmc/u/pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Finite_Temperature_Elastic_Constants/2025-11-12 15:09:34.563028NaTNaNpchilaka@cmti001#1#cmmgPythonFunctionContainerJob0.4NoneNone
930480322finishedNonecalculate_elastic_constants_at_finite_temperature_cc3531c24a9881532a4120c6f43fcb2a/calculate_elastic_constants_at_finite_temperature_cc3531c24a9881532a4120c6f43fcb2a/cmmc/u/pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Finite_Temperature_Elastic_Constants/2025-11-12 15:09:34.840409NaTNaNpchilaka@cmti001#1#cmmgPythonFunctionContainerJob0.4NoneNone
1030480323finishedNonecalculate_elastic_constants_at_finite_temperature_c74383e28897e7bc65197e9c0db7bea1/calculate_elastic_constants_at_finite_temperature_c74383e28897e7bc65197e9c0db7bea1/cmmc/u/pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Finite_Temperature_Elastic_Constants/2025-11-12 15:09:35.156877NaTNaNpchilaka@cmti001#1#cmmgPythonFunctionContainerJob0.4NoneNone
630480338finishedNoneFinite_temp_pyiron_table/Finite_temp_pyiron_table/cmmc/u/pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Finite_Temperature_Elastic_Constants/2025-11-12 15:16:25.5682322025-11-12 15:16:29.5476983.0pchilaka@cmti001#1TableJob0.1NoneNone
\n", + "
" + ], + "text/plain": [ + " id status chemicalformula \\\n", + "4 30479971 finished None \n", + "0 30479972 finished None \n", + "1 30479973 finished None \n", + "3 30479974 finished None \n", + "2 30479975 finished None \n", + "5 30480319 finished None \n", + "7 30480320 finished None \n", + "8 30480321 finished None \n", + "9 30480322 finished None \n", + "10 30480323 finished None \n", + "6 30480338 finished None \n", + "\n", + " job \\\n", + "4 calculate_elastic_constants_at_finite_temperature_1dc7686706b9806d39f6ffe02c17f020 \n", + "0 calculate_elastic_constants_at_finite_temperature_dea276d94f08befd2db7d99262416a33 \n", + "1 calculate_elastic_constants_at_finite_temperature_32b77a35b226b68cc8da4c8b5fab2c74 \n", + "3 calculate_elastic_constants_at_finite_temperature_6b526eadaf0aafd5b6b9dce4b335f8be \n", + "2 calculate_elastic_constants_at_finite_temperature_cbf95a4067027755f47915e68c5c5c0a \n", + "5 calculate_elastic_constants_at_finite_temperature_4d1ca38d098c7ac9eaa28b8d1c67a536 \n", + "7 calculate_elastic_constants_at_finite_temperature_6263e476629e3eb057601256f46d42d1 \n", + "8 calculate_elastic_constants_at_finite_temperature_5e099398a7e7a93073461b41f516a4bc \n", + "9 calculate_elastic_constants_at_finite_temperature_cc3531c24a9881532a4120c6f43fcb2a \n", + "10 calculate_elastic_constants_at_finite_temperature_c74383e28897e7bc65197e9c0db7bea1 \n", + "6 Finite_temp_pyiron_table \n", + "\n", + " subjob \\\n", + "4 /calculate_elastic_constants_at_finite_temperature_1dc7686706b9806d39f6ffe02c17f020 \n", + "0 /calculate_elastic_constants_at_finite_temperature_dea276d94f08befd2db7d99262416a33 \n", + "1 /calculate_elastic_constants_at_finite_temperature_32b77a35b226b68cc8da4c8b5fab2c74 \n", + "3 /calculate_elastic_constants_at_finite_temperature_6b526eadaf0aafd5b6b9dce4b335f8be \n", + "2 /calculate_elastic_constants_at_finite_temperature_cbf95a4067027755f47915e68c5c5c0a \n", + "5 /calculate_elastic_constants_at_finite_temperature_4d1ca38d098c7ac9eaa28b8d1c67a536 \n", + "7 /calculate_elastic_constants_at_finite_temperature_6263e476629e3eb057601256f46d42d1 \n", + "8 /calculate_elastic_constants_at_finite_temperature_5e099398a7e7a93073461b41f516a4bc \n", + "9 /calculate_elastic_constants_at_finite_temperature_cc3531c24a9881532a4120c6f43fcb2a \n", + "10 /calculate_elastic_constants_at_finite_temperature_c74383e28897e7bc65197e9c0db7bea1 \n", + "6 /Finite_temp_pyiron_table \n", + "\n", + " projectpath \\\n", + "4 /cmmc/u/ \n", + "0 /cmmc/u/ \n", + "1 /cmmc/u/ \n", + "3 /cmmc/u/ \n", + "2 /cmmc/u/ \n", + "5 /cmmc/u/ \n", + "7 /cmmc/u/ \n", + "8 /cmmc/u/ \n", + "9 /cmmc/u/ \n", + "10 /cmmc/u/ \n", + "6 /cmmc/u/ \n", + "\n", + " project \\\n", + "4 pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Finite_Temperature_Elastic_Constants/ \n", + "0 pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Finite_Temperature_Elastic_Constants/ \n", + "1 pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Finite_Temperature_Elastic_Constants/ \n", + "3 pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Finite_Temperature_Elastic_Constants/ \n", + "2 pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Finite_Temperature_Elastic_Constants/ \n", + "5 pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Finite_Temperature_Elastic_Constants/ \n", + "7 pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Finite_Temperature_Elastic_Constants/ \n", + "8 pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Finite_Temperature_Elastic_Constants/ \n", + "9 pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Finite_Temperature_Elastic_Constants/ \n", + "10 pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Finite_Temperature_Elastic_Constants/ \n", + "6 pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Finite_Temperature_Elastic_Constants/ \n", + "\n", + " timestart timestop totalcputime \\\n", + "4 2025-11-12 14:16:42.052497 NaT NaN \n", + "0 2025-11-12 14:16:42.196748 NaT NaN \n", + "1 2025-11-12 14:16:42.329182 NaT NaN \n", + "3 2025-11-12 14:16:42.464779 NaT NaN \n", + "2 2025-11-12 14:16:42.596115 NaT NaN \n", + "5 2025-11-12 15:09:34.033985 NaT NaN \n", + "7 2025-11-12 15:09:34.313996 NaT NaN \n", + "8 2025-11-12 15:09:34.563028 NaT NaN \n", + "9 2025-11-12 15:09:34.840409 NaT NaN \n", + "10 2025-11-12 15:09:35.156877 NaT NaN \n", + "6 2025-11-12 15:16:25.568232 2025-11-12 15:16:29.547698 3.0 \n", + "\n", + " computer hamilton hamversion parentid \\\n", + "4 pchilaka@cmti001#1#cmmg PythonFunctionContainerJob 0.4 None \n", + "0 pchilaka@cmti001#1#cmmg PythonFunctionContainerJob 0.4 None \n", + "1 pchilaka@cmti001#1#cmmg PythonFunctionContainerJob 0.4 None \n", + "3 pchilaka@cmti001#1#cmmg PythonFunctionContainerJob 0.4 None \n", + "2 pchilaka@cmti001#1#cmmg PythonFunctionContainerJob 0.4 None \n", + "5 pchilaka@cmti001#1#cmmg PythonFunctionContainerJob 0.4 None \n", + "7 pchilaka@cmti001#1#cmmg PythonFunctionContainerJob 0.4 None \n", + "8 pchilaka@cmti001#1#cmmg PythonFunctionContainerJob 0.4 None \n", + "9 pchilaka@cmti001#1#cmmg PythonFunctionContainerJob 0.4 None \n", + "10 pchilaka@cmti001#1#cmmg PythonFunctionContainerJob 0.4 None \n", + "6 pchilaka@cmti001#1 TableJob 0.1 None \n", + "\n", + " masterid \n", + "4 None \n", + "0 None \n", + "1 None \n", + "3 None \n", + "2 None \n", + "5 None \n", + "7 None \n", + "8 None \n", + "9 None \n", + "10 None \n", + "6 None " + ] + }, + "execution_count": 69, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pr.job_table()" + ] + }, + { + "cell_type": "markdown", + "id": "b22947ea", + "metadata": {}, + "source": [ + "## Pyiron table" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "id": "7e422ab5", + "metadata": {}, + "outputs": [], + "source": [ + "def db_filter_function(job_table):\n", + " return (job_table.status == \"finished\") & (job_table.hamilton == \"PythonFunctionContainerJob\")\n", + "\n", + "def job_filter_function(job):\n", + " return (job.status == \"finished\") & (\"calculate\" in job.name)\n", + "\n", + "def get_input_structure(job):\n", + " return job.project_hdf5['input']['data']['structure']\n", + "\n", + "def get_cell_scale_value(job):\n", + " return job.project_hdf5['input']['data']['cell_scale_value']\n", + "\n", + "def get_potential_name(job):\n", + " return job.project_hdf5['input']['data']['potential_name']\n", + "\n", + "def get_temperature(job):\n", + " return job.project_hdf5['input']['data']['temperature']\n", + "\n", + "def get_strain(job):\n", + " return job.project_hdf5['input']['data']['strain']\n", + "\n", + "def get_run(job):\n", + " return job.project_hdf5['input']['data']['run']\n", + "\n", + "def get_thermo(job):\n", + " return job.project_hdf5['input']['data']['thermo']\n", + "\n", + "def get_seed(job):\n", + " return job.project_hdf5['input']['data']['seed']\n", + "\n", + "def get_thermostat(job):\n", + " return job.project_hdf5['input']['data']['thermostat']\n", + "\n", + "def get_C11(job):\n", + " return job.project_hdf5['storage']['output__index_1']['result__index_0']['elastic_constants'][0]\n", + "\n", + "def get_C12(job):\n", + " return job.project_hdf5['storage']['output__index_1']['result__index_0']['elastic_constants'][1]\n", + "\n", + "def get_C44(job):\n", + " return job.project_hdf5['storage']['output__index_1']['result__index_0']['elastic_constants'][2]" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "id": "cb4cafc7", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The job Finite_temp_pyiron_table was saved and received the ID: 30480398\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "62f0c7a484204a52b6b8e8efed205182", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Loading and filtering jobs: 0%| | 0/11 [00:00\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
job_idinput_structurecell_scale_valuepotential_nametemperaturestrainrunthermoseedthermostatC11C12C44
030479971(Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999...52001--Mishin-Y--Cu-1--LAMMPS--ipr12000.005100001001234langevin166.499913120.15790073.149605
130479972(Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999...52001--Mishin-Y--Cu-1--LAMMPS--ipr14000.005100001001234langevin164.102596116.54224968.639205
230479973(Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999...52001--Mishin-Y--Cu-1--LAMMPS--ipr16000.005100001001234langevin143.781964112.06834964.963847
330479974(Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999...52001--Mishin-Y--Cu-1--LAMMPS--ipr18000.005100001001234langevin143.734238105.28595562.535042
430479975(Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999...52001--Mishin-Y--Cu-1--LAMMPS--ipr110000.005100001001234langevin115.46285997.68659053.758778
530480319(Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999...52001--Mishin-Y--Cu-1--LAMMPS--ipr11000.005100001001234langevin167.824332121.19581475.120171
630480320(Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999...52001--Mishin-Y--Cu-1--LAMMPS--ipr13000.005100001001234langevin156.984013118.29782771.395388
730480321(Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999...52001--Mishin-Y--Cu-1--LAMMPS--ipr15000.005100001001234langevin153.618039113.52286467.826620
830480322(Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999...52001--Mishin-Y--Cu-1--LAMMPS--ipr17000.005100001001234langevin141.910620103.85062864.396160
930480323(Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999...52001--Mishin-Y--Cu-1--LAMMPS--ipr19000.005100001001234langevin130.922053102.49434759.796365
\n", + "" + ], + "text/plain": [ + " job_id \\\n", + "0 30479971 \n", + "1 30479972 \n", + "2 30479973 \n", + "3 30479974 \n", + "4 30479975 \n", + "5 30480319 \n", + "6 30480320 \n", + "7 30480321 \n", + "8 30480322 \n", + "9 30480323 \n", + "\n", + " input_structure \\\n", + "0 (Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999... \n", + "1 (Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999... \n", + "2 (Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999... \n", + "3 (Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999... \n", + "4 (Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999... \n", + "5 (Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999... \n", + "6 (Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999... \n", + "7 (Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999... \n", + "8 (Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999... \n", + "9 (Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999... \n", + "\n", + " cell_scale_value potential_name temperature strain \\\n", + "0 5 2001--Mishin-Y--Cu-1--LAMMPS--ipr1 200 0.005 \n", + "1 5 2001--Mishin-Y--Cu-1--LAMMPS--ipr1 400 0.005 \n", + "2 5 2001--Mishin-Y--Cu-1--LAMMPS--ipr1 600 0.005 \n", + "3 5 2001--Mishin-Y--Cu-1--LAMMPS--ipr1 800 0.005 \n", + "4 5 2001--Mishin-Y--Cu-1--LAMMPS--ipr1 1000 0.005 \n", + "5 5 2001--Mishin-Y--Cu-1--LAMMPS--ipr1 100 0.005 \n", + "6 5 2001--Mishin-Y--Cu-1--LAMMPS--ipr1 300 0.005 \n", + "7 5 2001--Mishin-Y--Cu-1--LAMMPS--ipr1 500 0.005 \n", + "8 5 2001--Mishin-Y--Cu-1--LAMMPS--ipr1 700 0.005 \n", + "9 5 2001--Mishin-Y--Cu-1--LAMMPS--ipr1 900 0.005 \n", + "\n", + " run thermo seed thermostat C11 C12 C44 \n", + "0 10000 100 1234 langevin 166.499913 120.157900 73.149605 \n", + "1 10000 100 1234 langevin 164.102596 116.542249 68.639205 \n", + "2 10000 100 1234 langevin 143.781964 112.068349 64.963847 \n", + "3 10000 100 1234 langevin 143.734238 105.285955 62.535042 \n", + "4 10000 100 1234 langevin 115.462859 97.686590 53.758778 \n", + "5 10000 100 1234 langevin 167.824332 121.195814 75.120171 \n", + "6 10000 100 1234 langevin 156.984013 118.297827 71.395388 \n", + "7 10000 100 1234 langevin 153.618039 113.522864 67.826620 \n", + "8 10000 100 1234 langevin 141.910620 103.850628 64.396160 \n", + "9 10000 100 1234 langevin 130.922053 102.494347 59.796365 " + ] + }, + "execution_count": 73, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "calculations_df" + ] + }, + { + "cell_type": "markdown", + "id": "779a1924", + "metadata": {}, + "source": [ + "## Plot with respect to the reference" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "id": "f3ae9494", + "metadata": {}, + "outputs": [], + "source": [ + "C11_ref_df = pd.read_csv('./C11_data.txt', delimiter=' ', header=None, names=['Temperature', 'C11']).sort_values(by='Temperature')\n", + "C44_ref_df = pd.read_csv('./C44_data.txt', delimiter=' ', header=None, names=['Temperature', 'C44']).sort_values(by='Temperature')\n", + "C12_ref_df = pd.read_csv('./C12_data.txt', delimiter=' ', header=None, names=['Temperature', 'C12']).sort_values(by='Temperature')" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "id": "70f453a8", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArQAAAG4CAYAAAC0FHQ8AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAbqdJREFUeJzt3Qd8k+X6//GLPZW9NwqCgAMUkIMCIqCiuCceQUVRHAwXqPgTt+gfVHChHkERcOI6gqAiqOBBQZAlW0QEUfae+b++d3hCmiZpS9M2T/t5v163SZO0pH1s8839XPd15wsEAgEDAAAAfCp/Tj8BAAAAIDMItAAAAPA1Ai0AAAB8jUALAAAAXyPQAgAAwNcItAAAAPA1Ai0AAAB8jUALAAAAXyPQAgAAwNcItAAAAPC1pAi006ZNs/PPP9+qVq1q+fLls48++ijF/du3b7fbbrvNqlevbsWKFbOGDRvaSy+9lOIxe/bssdtvv93Kly9vJUqUsC5dutgff/yRzd8JAAAA8mSg3bFjh5144ok2fPjwqPf37dvXJk6caKNHj7ZFixa5jxVeP/7449Bj+vTpY+PHj7dx48bZd99950LweeedZwcOHMjG7wQAAADZLV8gEAhYEtEMrYLphRdeGLqtcePGdsUVV9jAgQNDtzVr1szOPfdce+SRR2zLli1WoUIFe+utt9zj5M8//7QaNWrY559/bp06dcqR7wUAAABZr6D5QOvWre2TTz6x66+/3pUlfPPNN7ZkyRJ77rnn3P2zZs2yffv2WceOHUOfo8cpCE+fPj1moFWZgobn4MGDtnHjRitXrpwL1gAAIPlpbm7btm3utT9//qQ4+Yxs5otA+/zzz9uNN97oamgLFizo/md97bXXXNCVdevWWeHCha1MmTIpPq9SpUruvlieeOIJGzRoUJY/fwAAkPVWr17tsgLyHt8E2h9++MHN0taqVcstIuvVq5dVqVLFzjrrrLjv2OLNtA4YMMD69esX+lilCzVr1nSzv2XLlk3494H004z7lClTrF27dlaoUCF+dDmM45E8OBbJg2ORPHR2tX79+nbUUUfl9FNBDkn6QLtr1y677777XF1t586d3W0nnHCCzZkzx5555hkXaCtXrmx79+61TZs2pZilXb9+vbVq1Srm1y5SpIgbkRRmVXaAnH2hKF68uDsOBNqcx/FIHhyL5MGxSD6UC+Zd+f3wB0MjsiamQIECrubVWyCm0DN58uTQ/WvXrrX58+fHDbQAAADwv6SYoVWLrWXLloU+XrlypZuB1UypSgDatGljd999t+tBq5KDqVOn2ptvvmlDhgxxjy9VqpTdcMMNduedd7oZPX3eXXfdZU2aNIlbkgAAAAD/S4pA+9NPP7laSY9X19qtWzcbOXKk6y2reteuXbu6OhmF2scee8xuvvnm0OcMHTrULRi7/PLLXZlC+/bt3edqJhcAAAC5V1IE2rZt27oFXLGoRvaNN96I+zWKFi1qw4YNcwMAACCSNltSGSP8QR2s0tuGLSkCLQAAQFbRpJnaeG7evJkfso8ozNapU8cF27QQaAEAQK7mhdmKFSu6Djp0Q0h+WvivXV+1yF/rqdI6ZgRaAACQq8sMvDBLS05/qVChggu1+/fvT7OFZ9K37QIAADhSXs2sZmbhL16pgd6UpIVACwAAcj3KDHL3MSPQAgAAwNcItAAAAPA1Ai0AAABsw4YNbvHcb7/9lpBWaTfddJPbvVWlA9oB9tJLLw3t8ppoBFoAAIAkN2vWLLvyyiutatWqbjOpY445xq6//npbsmRJwv6NJ554ws4//3yrXbt2pr/WxIkT3Y6tn332mWu91bhxY3vwwQfdTq9bt261RCPQAgAAJLHXXnvNWrRoYaVKlbIPP/zQFi9ebK+++qpt3LjRXn/99YT8G7t27XJfq0ePHnEft3fv3nR9veXLl1uVKlWsVatWbsfXggUL2gknnODC8ttvv22JRh9aAACAJPXdd99Zz549bfjw4XbLLbeEbq9Vq5adeeaZLtQmwoQJE1zoPO2001Lc3rZtWze7qhZab775pjVq1MimTp3qSgqefvppe/nll90MbP369W3gwIGurKB79+42atQo9/kqN9Bz9coYunTpYmPHjk3xvSQCgRYAAOQpCmM7d+7M9n/3SHYp69evn7Vp0yZmAFSNaiJMmzbNTjnllKj3KZzq3//+++/dz04eeOABN1v80ksvWb169dznX3PNNW4zhOeee86VRIwYMcJ+/PFHK1CgQOhrNW/e3JU27Nmzx4oUKWKJQqAFAAB5isJsyZIls/3f3b59u5UoUSLdj1+0aJELhO+//37cx1100UX2zTffWPv27VM8Ntbt0WgGVfW50Rx77LE2ePDg0Mc7duxwi7u+/vrr0Ixu3bp13WzyK6+8YmPGjLGjjjrKBVmVG4SrVq2aC7Pajlgzt4lCDS0AAEASmj17trts1qxZ3MfdcccdrhwgvbfHqqHVYrNoImduFy5caLt377YOHTq4Nwbe0L+l2tl4ihUr5i4TPUPODC0AAMhTdOpfs6U58e9mhBf60ppNbteunZuJTe/t0ZQvX942bdoU9b7IWeWDBw+6y//+979uxjVcWmUEXs2vShMSiUALAADyFNWxZuTUf07RYiz59ttvXflAtFlVb8Yzs04++WQbPXp0uh57/PHHu+D6+++/u/rejJg/f75Vr17dBehEItACAAAkIdWnduzY0Xr16uVmlPWxZkdVV6vuAlqQ5YXezOrUqZMNGDDAzdKWKVMm7mNVH3vXXXdZ37593fNp3bq16y07ffp0N5vcrVu3mJ+rcK7vKdEItFFcfvnl7mBpqIeaThF4Q++E0vOxLvPnp0QZAAAcuU8++cSGDh3qFmWtWLHCzYxqkZY2QNBMaaI0adLE1cq+++67rk1YWh555BG3q5g6Fuh5lS5d2po2bWr33XdfzM9R3e348ePtiy++sEQj0EahVXuJoOLq9Abg9Hys6XlN0x999NEJeX4AACC5KcD279/fjaw2cOBAN/N64403hiblYtXgqmxDi840ounTp48b4bRxgzaIaNmyZcKfO4E22g+lYEHbv3+/u66eapqpVWG2hupVvOvRPlYrivB3IhqxiqyPlJ6Pgm34qFGjRoqP9U4po73uAACA/3Tq1Ml1RFA7LWUAzYKeeuqpMW+P5dxzz7WlS5famjVrXK5ItEKFCtmwYcMsKxBo0wi0qg/RFHp6HThwwIXY9Abg8I/j3af/Gf/++28Xjrdt2+Z602nEohndeIFXo1y5coReAAB87osYp/CP5NR+7969LavcdNNNWfa1CbQJpibCWjmZVasnFWz1zmn16tX2xx9/pBjq/abt5zZv3uxC8JIlS9yIdxojrdCrthrUAgMAgGRGoPUZBWXtl6wRTqcIIm8L17VrV7dC0gu/f/31lyuPUAiO1wRZpwfUYy4y7NasWTM0mOkFAAA5iUCbS6gMIa29oMNLJxRm//zzz1SzvBre7K+2pdu3b5/bDk8jFi1cCw+4kUMBONbuIwAAAJlFoE3HAqzcSOUGderUcSMWhVmVMEQGXjVSVujVpUKvan0XL17sRiyVKlWKG3pV2qBFbJppVjj3diGZO3euK3nQcahXr16W/CwAAIC/EWijmDBhgmuNlddDlMoNvMAZi2Z6vZAbbaxatcoFXpU4aKgZdDSawa1cuXJoJlgL826++WYbMWKE7d27192meuC8fDwAAEB0BNoYzYVVF4r0zfQec8wxbkQTCATcvs2xAq+GZoHVGSK8rEFdJoYPH57ia6l3Xd26daPO8Kq5dFp7XQMAgNyJQIsspTICvTnQ0D7R0WgGVp0bvvzyy1BLD3WLOPHEE+3nn392oVjUsmzWrFluRPt3GjRoYM2aNXNDu52cdNJJhFwAAPIAAm0eqfVN5lrgwoULu1peBdHw2x588EG76qqrXMmCjB071nV5iJzh1ZZ7quX1evOOHj06RchVuPWCLiEXAIDch0CbS6i2VDWm0bod5JZaYLUli7XJhepzNXP7008/hWZxNevrhdy33nrLPU4LzLyZXC/oKuRmVd9gAACQ9Qi0uUhuCK1HSl0UtGWfhkeztl649YKuWpUtXLjQjciQGzmTS8gFAMAfCLTItWUT6prQuXNnNzxagOaFXC/o6jYv5L755puhkNuwYcNUM7naUjgvoY0aAMAPCLRIyrIJ9aFVycC0adMS2oe2SpUqdt5557kRGXK9WVxdanZ3wYIFboSHXHVTULjVgjU9H5VBqP5XLc5ym/Dd57R5hmqYzzjjjFBNM23UACB32bBhg5vMmTlzptWuXTtTX0sLunv27Gnvv/++W9StRd6PPvqotWrVym32lGgEWiQVL7RqUwcFWgXHrA6L0UKuShMiyxUUcufPn+9GOHVkUKhV+PNCrnepLYMVhHPj7nNp3Q8ASBy9Dj399NNuokftMLUtfZs2bax///6hyYfMeuKJJ+z888/PdJiViRMn2siRI+2bb75xLTfLly/vFnu3a9fOevTo4fr9JxKBFoiiatWqbugX23unGR5yVZ6gGUyNnTt32rJly9yI1qf32GOPjRp2VferTgwAAMTz2muvuc2GbrjhBvvwww/dRMzy5cvt+eeft9dff92eeuqpTP8AdfZNX+vzzz+P+zi12lQnorTo+el5akbWc8IJJ7iw/Pbbb9stt9xiiUSgBdJBwVPvhjW6dOkSut0Lujr9rqGA613ql1k7qXmlC5G8MopoYbdMmTIcFwCAfffdd+7UvTYbCg+BtWrVsjPPPNPN1iZql1Tt0nnaaaeluL1t27bWuHFjF2JVgteoUSObOnWqe/3TjPHLL7/sSvf02jVw4EC79NJLrXv37jZq1KjQ66eeq7d5kl5DVcJGoAWSNOjqNEo47XamPrnhQde7rl9snbKfPXu2G5G0EYX+OESGXQ26LwBAJmnDnp07s//HqIXFGTwzp3pTlRbECoBly5ZNyFNTKYMWQUejcKp///vvvw9tdvTAAw+42eKXXnrJvTbp86+55hqrUKGCPffcc24HUW1fry3vVZrnad68uStt0ISPzmImCjO0QBbRO13VDWmcffbZKe7TL7I2hIic1dWlZnxVmD9jxgw3IqkUIjzoetf17yTyjwMA5FoKszmxXfr27WYZ6HuuPuoKhFpYFc9FF13kalXbt28feuzq1avt3//+t61fv969Hmn29LLLLov5NTTRoteXaFQ6N3jw4NDHO3bssCFDhtjXX38dmtHVa5Bmk1955RUbM2aMOwupIKuOQ+E0AaTXQK1L0cxtohBogRyg4KmVpBqRtm/f7upxo4VdBV0FXg398QqnxWeqTdIWwy1btnR/ZNSRoWjRonlu9zkAyA28M3jhO2lGc8cdd9j1118fOs0vCrHPPvusazmpUKuNidSrPdZZPtXQxnq9iJy51TqS3bt3W4cOHVLV18ba5t6jrjmi9SeJRKAFkkzJkiXdHyCNSKqVigy53qWCsGZ9NT744AP3eHWI0B8XhVsv5NasWTNdi9Gyo40aAOQInfrXbGlO/LsZ4IU+vS7E065du1STHFqQpSEVK1Z0pQl6DYkVaNWFQO21oon8HL0myH//+1834xourTOFXs2vShMSiUAL+Ij+ILVo0cKNcKpp0va/Oj2l/oFeuYLeletjDdU0if7AKdh6IVfv/L13zMnQRg0Aspze1Ptgy3MtxpJvv/3WlRVEm1WN9fc7nNpPKoSqlWQsmvwYPXq0pYd6siu4ap2I6nszQq0vq1ev7gJ0IhFogVxAM66qU9LwFqcp5Komygu3GnPnznWrUVXIryEKqJoNDp/FVV0TLcUAIGfp73HHjh2tV69e7iycPlYwVV2tugtoQZYXemNRqdq1117rWn/F06lTJxswYICbpU2r047O0t11113Wt29f93xat25tW7dutenTp7vZ5G7dusX8XIVzfU+JlhQd33UaU/0+VYysF9GPPvoo1WM086RWD6VKlXI/SL3w6p2BRwXGt99+u0v8mhrXY//4449s/k6A5KHfJW34cPXVV9uwYcPcO/QtW7a43zf1LLzwwgtdL1zNvuqPo/oZ6rH6HP0uXnzxxa4li/74eLuDAQCy1yeffGK9e/d2i7J0lkz5R2fcFAo1UxrPnj173Myugmp4P9homjRp4mpl33333XQ9r0ceecRtlKCOBVoPokD86aefuteQWFR3O378eLvxxhst0ZJihlar5XSQrrvuOrvkkktS3a9+nkr/aig8aNAgF2oVcMOLl/v06eN+kOPGjXMtj+68806385Oa4Ie3iwDysuLFi9vpp5/uhjeLu2rVqhSzuHPmzHGrT/VHR8NbXKAFZ5MnT3Z/FDVLoI+ZxQWArKVT+9oNTCMjAoGA6werXrXqdpAe6oSgmVcFTm+Xy8jaXI/+/msxmkY0ymUa4bRxg0rmFMpzZaA955xz3Ijl/vvvdyvzwltGqD2ER7NO+iG99dZbdtZZZ7nbVAeiWpEvv/zSvWsAEP0PkoKpxlVXXeVu02ys3giGh1wFXG83tBdeeME9TrO74bW4emevwAwAyF6dOnVyHRE0Qaj6VE1GaHb2nXfecbtzeWe+lZM0ExuLspYWGmvNRLx62yOlEjedMcwKSRFo41FthlbR3XPPPe6A/fzzz246W9PnOmUqevHVadPwmgydMlVdieo5YgVaHWwNj+o/RF9LAznH+/lzHLKfZmO9hWd6d613+eqcoPorrbhVeYJmcbUITX8kvT+U+jz94VS4VeNsXep3lVncxOJ3I3lwLJJHXn+t+OKLL6Le7nUjyAiVN2SVm266Kcu+dtIHWq3SViH0k08+aY8++qir/Zs4caKr75syZYpbXafZI23JFlnErBkk3ReL6j5UwhBJX5eZpuSgU9xIDl6Zgt4gehtDLF682H799Vd3qYUE3s5nL774onusyoOOO+44a9CgQWgDCDZ/SAx+N5IHxyLnJbqnKfwn6QOt9+7iggsucKvpRCuyNfOqFX7x2kVoZine7JBmebWlXPgMrabYtUpcdbjI2XfbepFQ02baRCX/8dDvmhZp/u9//3Pjhx9+cLO4Kgfy2oaJ6tm9WVxvFljlQ8ziJu5YIPtwLJKHVvIjb0v6QKuuBTqVGbmSTyvqtMWaqFWRdqeIbDWh2d14q/o0UxRttkgvErxQJAeOhX+Oh7ZG1OjatWtoNatma8NrcbXDmcqGNNRuxmv47bUL01AtbqzG30jfsUD24ljkPH4XkPSBVqUEp556qjulGU47GHl7AKsxvP5n1qzF5Zdf7m5Tr0017w1fSAYg+6gLid5Qem8qNYurvcU1e+sFXAVevfFUWxoNbxZXixa8WVxdqlzBW3ELAEBSBlpv73rPypUr3elK7YqkbTrvvvtuu+KKK+yMM85w5QCqoVWLLq+VhOr01NJLrbpUKqDPU9sJvSh6XQ+A7KRVotoyNlJe3jJWZQX6fdbw3nhqFlezteGzuFpdq99/DZUVeb/jXomCt+gs0bvMAAD8KykCrRq+e7sbiVfXqp0mRo4c6ZoC64VNi7jU70yLTLRXvXrTeoYOHepKE/RCqbZD7du3d59LD1rkRJjVjGIsOruQV0NttFlcr9TAo1nc8FpcdTFRLe6kSZPc8BxzzDEpZnHVy1pndAAAeU9SBNq2bdu605HxXH/99W7Ee2FUb7Os6m8GpFe0mdmM3J/XaWGmxqWXXhpaeDNv3rwUIVclSNpwRePtt992j1M9vPYiDw+5bOELAHlDUgRaAIhF9fFNmzZ145ZbbnG3aQGoOid4AVeXGzdudNc1PN6CMy/gqh5fZR8AgNyFQAvAd9TNRP1wvU1TdIZHs7VeuPXahkUuOFMdrzqmhIdcfUxpEgD4G4EWgO8pqHptw6655hp3m2rpteAsvFRh1apVtmDBAje0XbaULFnStQoLD7lqBQgA8A8CLYBcqVixYinahol2DgwPuNrGV11W1DHF65oi6sQQHnBVm6uvBwC5fYOKhg0bupKu2rVrZ+pr6cxZz5497f3333dlYppg0I6v+pscvqlVohBogQRLq0aTGs6co5lX7TqoIQcOHLBFixalKFXQ7K12PdN499133ePUQUVdFMJDrmaD2eEMQHZRx5enn37apk2b5tYMVKtWze2W2r9//7iddTJC3aTOP//8TIdZUYtVdZvSZIF2hFSrxQcffNB1terRo4cdffTRlkgEWiDB1JJLrbnoQ+uPnsCNGzd2Q39gvS2w1UowfCb3r7/+ci8mGi+88IJ7nHpeq0PLmWee6YbaCRJwAWSF1157zW6++WbXc//DDz+0KlWquHUDzz//vCufeuqppzL9b6hMS1/r888/j/s47cyanhaJen56nuFnybT1ucKyutN4i3wThUALZAH6zPq3J7BmDbyQ6p0202xt+CyudjjTqTn1w9aQqlWrhj5Pw9vJEAAy47vvvnOn7ocPH54iBOpvjP7WaLY2ESZMmODORoX3BRe9cdebfoXYN9980xo1amRTp051fxs1Y6x9ArQ7q/7WDhw40LVc7N69u40aNcp9vt7o67n+9ttv7uMuXbrY2LFjCbQAkJ09gb0/xhrasdCbodAs7pQpU+zrr7+277//3v78808bPXq0G6JTbF641Sk2FpoByUOt73fuzP5/t3hx/U3J2Oeo3lSlBbFmNLU7aiKolEELZKNRONW/r7913r4BDzzwgJstfumll9zEgD5fi3IrVKhgzz33nNv8ZsSIEW6tQngnGe30qNKGPXv2uP7hicIMLQBkkGYqvAVn999/v9vCV9v2fvXVVy7gakHFihUr3NCpQlF7MIVb7WKoFye1HgOQMxRmS5bM/n93+3azEiXS/3jV+CsQamFVWnbu3OkWdF122WX2zDPPpHl7JM2g6kxTNFozMHjw4NDHO3bssCFDhri/d96Mrt7Eazb5lVdesTFjxriyLgXZyDfzqv1VmNUi3USeySLQAkAmaadCzcJ6W3hr5vfbb791f+w11BN34cKFbui0oWZ9tVGEN4OrbbzVPgwAwqm8SZo1a5bmD+axxx5zi1bTe3u0Glr9LYsmcuZWf8v0Rr5Dhw4pbtfZK3WFicfrGKOgnUgEWgBIMM1MnHvuuW6I6m1Vc+bN4P7666+hRWaqQVPdml5wNHurgKsuCok8FQcg9al/zZbmxL+bEV7oS+sN79KlS93fFXUomD9/fpq3R6MuBGqvFU2JiGnlgwcPusv//ve/bsY1XFp/u7yaX5UmJBKBFgCymDoiXHzxxW6I6m29+luFXG34oNo0jYcfftjNkmjW1pvB1eyMQi+AxFAda0ZO/ecULcYSnfG56KKLos6qasbzrrvucm+Op0+fnuL+WLdHo5lVbw1AWlRCpeCqBbMqocoIBevq1au7AJ1I/IUEkGsla09g1al17drVDVm5cmVo9lZDbcK+/PJLN7znqRcNhdvTTz89NDsCIHdTfWrHjh2tV69ebhMYfazff9XVqruAFmSpPVb9+vXdCA+uH3/8cdTbY9FW4gMGDHCztGnV+OtvksJy37593fPRG3C1PNS/o9nkbt26xfxchXN9T4lGoAWQa/mlJ3CdOnVcH1wNrSDWQhAv3Gomd/PmzfbZZ5+54bUW04uPhmrYtLMZgNzpk08+saFDh7pFWVpoqplRLdJSGYFmStXTddy4cfbee++50Ltv3z73N0Kzt9Fu1+YG0TRp0sTVympDGbUJS8sjjzxiFStWdB0L9LxKly7t1gbcd999MT9Hdbfjx4+3L774whItX8DrvwD37qJUqVL2zz//uFOEyDn6xVNzZ9UgFipUiEORwzgeOUe7mc2dOzc0g6vZDa0wDqdNHTTjoXCrnpHsRpc9+L1IHqpT1ynsLVu2pNqBSiFKZ0H0xjHWoqfcYuTIke6UfmQ3g1i3R9LrrmZe9dj8+fMn/PlpYxrNHE+aNCldj8/IsWOGFgCSmNreaNZD4+6773ZhVrsD6VIhVy3CFi9e7MawYcNCjdEVbjU040L9LYD00CSSFpKtWbPGatSoYYmmCSr9ncoKBFoA8FkPXJ1m1AvPo48+6soRNHM7efJkN+uhU3+axdXQqUWdBlTtrTeDq16RAHKn7t27Z+j2aHr37m1Z5aabbsqyr02gBQAfU2AN76CgQOuFWwVdBV7t5qMhCrReuFXQ1ecDgN8lvkACAJBjFFi1oOODDz6wv//+23744QfXCkzdEVR6oMCr1dGXXHKJWyug8gTN5GqHH9WEAoAfEWgBIJfyNmwYOHCg22ddDc21Yvr22293C8nUbkeBV6uVFXgVcC+44AK3m5lqclkzDMAvKDkAgDxC3Q/U6kdD1BRdvW5VnqBLrRRX4NUQtQNTaYJKFLSLGd1fACQrAi0A5FEKrNdff70bmq39+eefXf2thkoQFHhff/11N/Lly+c6LXj1t61atWJ7XgBJg0ALAHA9J7XFrkb//v1dWzB1StDsrQKu+lLOmjXLDTVSL168uNu9TOFWs7faojMr+lYCQHoQaAEAqZQoUcLOPvtsN+TPP/90ZQneDK62550wYYIboqb27dq1c50TNLQLm2Z1ASA7EGgBAGmqWrWqXXvttW5osdi8efNC4VYzudphUVtsaki1atVcsNXsrS6zokk7AHgItACADNHM6wknnODGnXfeaXv37rUff/zR9b3V7mUzZsxwOw299dZbboj2nvdmbzWTqz3gASBRCLQAgEzvXvavf/3LDbUI27lzp02fPt0FXA2F3WXLlrkxYsQI9zmqufUCrmpx2eABQGYQaAEACaUFY2eddZYbsmXLFleW4AXcuXPnukVmGs8//3xoQZoXcBWMVcMLIHtt2LDBGjZsaDNnzrTatWtn6b916aWXum4p/fr1S8jXY0kqACBLlSpVys477zwbMmSIzZkzx9avX+9qbW+++WarX7++axmmWdynnnrKOnXqZGXKlLEzzjjDHnroIbchxJ49ezhCyPPUYeTKK6909exFixa1Y445xrXcW7JkScJ+Nupgoj7V4WG2e/fursxIv6+RevXq5e7TYyIfr1GoUCGrVKmS64byn//8x/2ue7RD4WOPPWZbt25NyHMn0AIAslWFChXc7MxLL73kdiRbvXq1vfnmm+6FUIvHtAWvZnQHDRrkyhEUcNX/VoFXwffAgQMcMeQpr732mtv1T28OP/zwQ/d78+qrr7rd/9QnOhF27drlvlaPHj1S3affy3HjxrnHeHbv3m1jx451/awjqTvK2rVr7bfffnOdUFQ337t3b/fGdv/+/e4xqsFXcH777bcT8vwpOQAA5Kjq1avbv//9bzfUQWHFihWh8gQNzeh6HRVEL+oKul4XhUaNGtEiDLmWNjnp2bOn25L6lltuCd1eq1Yt9zugUJsICp7aLvu0005LdZ82VdHvpcJ0165d3W26rqBbt27dVI8vUqSIVa5cOdTxRJ/fsmVL9/s6cuTIUGju0qWLC8Xh39eRItACgA8sXbrUtm3bFjplpzpU1Z5qO1v1fM0tdJpSp1I1brzxRhdwFyxYEAq333zzjavJDd+iVy+cqtf1NnnQCyiQVb+DkbL6d1A1pnoDFyv0lS1bNiH/jsp7TjnllJj3X3fddfbGG2+EAq1KCFTyoN/J9FD4PvHEE10Q9gJt8+bNXZmDyooUgjODQAsAPnghVa2pFCtWzM1oqMbUO/2nGrrcFGojA646ImjccccdrtxAW/R6LcL0Irxu3TobPXq0G6JFLV7AVRA4+uijE/qc8sqbC0T/HYwmq34HFy1a5Mps3n///biPu+iii1yw1Bu68MfGuj0alQeoPjcWnUEZMGCAe5x+L7///ntXhpDeQCsNGjSwX375JfSx3nwqzOp3WDPOmUGgBYAkF21WKCP35yYFChRws0ga99xzj6vjU4sw7WKm8dNPP7kQoDFs2DD3eNUeegFX17VQ5Ujl5TcXeVlO/Q7Onj3bXaoLSDx33HGHmy0dNWpUum6PRv8Pa7FZLNoNsHPnzu5r6cyJruu2jNDnhe8gqN8hUau/zGJRGADAt/QCrFOZjz/+uGs1pB3LNBOlFdnazEEzugq8Dz/8sJ1++unu9KwWpjz77LOulEEvsBnBmwtkJy/olSxZMu7j2rVr584QpPf2aBRON23aFPcxCseqgVWo1fWM0hvNOnXqhD726n+1UDSzCLQAgFxDgfWSSy5xHRQ0m7py5Uq3GvyKK65wL9jbt2+3//73v9a3b19XxqBTrDqVqi4L2t0MSCb6f1TU9SOa8K4DmXXyySfbwoUL4z5G3Qu0M6CGWuxlhMqEtGW2fj896kWtRaEZnemNhpIDAECuXVSjtkBagKKhmlfV76lbgsoTYtXfqjRBJQpZUX8LZIQ6Dqhlnfq96s2YPvb6Nr/88svujZsXejNLAVU1spqlVau8aFTCo1lW73osXl2szpD89ddfNnHiRLf4S2dHrr322tDjFNT1/SUCgRYAkGsX1YTTwq2TTjrJjbvvvjtu/a12MPPqb72Aq+tAdlM3j6FDh9rgwYNd6yx1A1A5jTZAOP744xP27zRp0sTVpr/77ruuTVgs6XmTpwBbpUoV1wZM4VjdDfQ71a1bN/d7KPr9Gz9+vH3xxRcJef4EWgBIcmnVwKW3Ri4nJWPtqVd/69Xgqp5vypQpoYC7bNkyF3g1tMmD6hgVhj0Zrb+Ff+Xk76ACbP/+/d3IagMHDrS77rrLtczzgqdqZuP56KOPUnysx6f1OaJNHPQmUf1pE4FACwBJTjOXmsH0WkWp1lOny2kVlTX1t16Nn9oTeeFWLcK04ExN7j2aYdLiMm/nI7+8uUDmfgcjJUO7tk6dOrmOCDt27HA1qZr5PPXUU2PeHsu5557rzqbob4w2TchK6jaiTiSJQqAFAB/wXjC1LaxebHQKLzPtp5Dx+lv1m1W41Slg1TCqTjC8B6c2g9BuTtTf5k45HVrj+SLGafsjOZ2vLWqzw0033ZTQr0eXAwAA0nqxzJ/frQJX7a0WsmzevNmFBc3mqu5QvTWXL1/u6gS1nadme1u3bm0PPfSQm9XVGxEAWScpAq1Onam4We1T9Echsh4jnAqV9Rid5gmnd8q33367a/1QokQJ9wfljz/+yIZnDwDIa1R/qx6favmlGtto/W+1k5Jqb73+t3qdU+BVbS6AXBhoVduh02c6VROPgu7//ve/qFuz9enTx9WGaBs2vRtWewu1h9AfFQBAzsoNC9sy2//2s88+c6dzdepaQ9e1GjyRvUSBvCopamjPOeccN+JRzdhtt93mTvFou7VwW7Zscavl3nrrLVe7JOopqIJm1TvFav6rWV0Nz9atW92lTg1xeihneT9/jkNy4HgkD78eC9Wjqh2Wgl0kdQ/Q/X77nuIdC+1RrxZFGl79rRaWTZo0yU26aJZWs7Ua2v6zbdu27rVKQ7W4OLJjgbwrKQJtWvTHQKd1VLvUqFGjVPfPmjXL/c8c3pxXs7hqNqxTQbECrZr86nRQJLVtKV68eIK/CxwJNUBH8uB4JI/cdiwWL15suf1YqGeohhbDaIMHvXZpBfqGDRtswoQJbnivX02bNrVmzZq517zChQtn8XeQe7aIRd7li0D71FNPuea8d9xxR9T7tRuFfuEjd7aoVKmSuy8W7YjRr1+/FDO0mtVVXVS5cuUS+B0go/QGRS8SamjOSu6cx/FIHhyL3HEsLr300lAvW23/qbOPGqq7/fPPP91QiYImV7zZW207WqdOnSz6bvxNbwqQtyV9oNU72Oeee869i9VisIzQH4p4n6NmxRqR9IeJEJUcOBbJheORPDgWuedYaDZWQ5MsmlhRqZxmaz///HMXbHWpIccdd5zrFaoyvTPOOCPqa1hexGs2kmJRWDxqj7J+/XqrWbOmm6XVWLVqld15552u5koqV65se/fudfsPh9PnaZYWAAA/0LaiF198sVtQpk49qr1VeZzCq7biVWmGtkFViZ0WoqmjjxaiaRMIIC9L+kCr2lnVGs2ZMyc0VF+kelqvYbDqjPTuLLyOae3ate40TqtWrXLw2QMAcGR0hvGEE05wW55OnTrVtQZ777337Prrr7cqVaq4utFPP/3UevXq5UoRVJ+ryR7N8IYveAbygqQoOdCq1/C+fGp3ouCqd5+amY2sZ1V41aysTr1IqVKl7IYbbnC/yHqsPk97ETdp0iTU9QAAAD8rXbq0q73VUEmdZm+9xWRaAK0uEhpDhgxx/djbt28fKk/QaymQmyVFoP3pp5/cQiyPt1BL7U5GjhyZrq+hUzAqR7j88stdTz/9IutzdYoGAIDcNnt70kknuaHaW+1cprOUXsDVgmht0ashmr1VsFXA1Q5mdE5AbpMUgVYrOPVuM72i1Qpp15Zhw4a5AQBAXpu9veyyy9zw+t56C8tmzJhhCxcudOP//b//585kXnPNNa50QSUNQHi3iIYNG9rMmTND65Syis40qCw0vNtUrq6hBQAA6Zc/f347+eST7b777nObOKj29p133nFnPStWrOhCi7oHaYfOU045xS0q0wwvkr/r05VXXunWEWkSTxtw6E3JkiVLEvZvaAGitmgOD7Pdu3d3ZwS0rXMk1W/rPj0m8vEaKhHV4ny1tvvPf/7j3mx5HnzwQXvsscdCm1plFoEWAIBcTD3aVY6nMjyvDZhmxxQ2FJIUSrTIrGvXrm43s/DQgeTw2muvWYsWLdyaoQ8//NB1u1AnjI0bN7qdUhNB5Zr6Wj169Eh1n3r0jxs3LsU2zbt377axY8dGrc9Wz2QtztcZdZ0pUFmptno+77zzbP/+/e4xOjug4Pz222/nnpIDAACQ9bSuxNtuXjO3ChMKMfPmzbMxY8a4UatWLbvuuuvcTJuu45ClS822bUv94zjqKLN69bLsx6RZ9p49e9rw4cPtlltuCd2uY3PmmWe6UJsICp5ai3Taaaeluk99klesWOHCtN74iK4r6NatWzfV49UfWYv3vW2g9fktW7YMrW/yQrPazikUh39fR4oZWgAA8qDy5cu7WTPV2/74448uVGgGUL3eH3roIdcKTP1uNTOn2TjL62G2fn31CU09dLvuzyKqMW3Tpk3M0KfOTokwbdo0V4ISi97kvPHGG6GPVUKgkof0UvhWmYuCsKd58+auXjcRbeYItAAA5GGqdVSQefHFF91pYs3aaiZNi7XVOeGqq65yJQm33Xab27UzT4o2M5uR+4+Q2rDpzcatt94a93EXXXSRKy3xtlSW1atXu0X36nCh0/vqYRyPygNUnxtvXwDNFutxetOjbZq1uDAjGjRokGJhv2ZvFWbVlSOzCLQAAMApVqyYXX311W5zBp1i1sIdnVbWorEXXnjBbWSkBWfqKKTFZcha3hsI/dzjueOOO+zNN99McZvKB5599lnX3ULHs2/fvrZjx46YX0P1sVpsFm9Gv3PnzjZq1Cg3U6vrui0j9CZJb6DC/38TbRKSWQRaAACQikoOBg0a5DY7mjRpklthr9pIbXykAKXZvCuuuMLt2nngwAF+glnAC3olS5aM+7h27drZUarlDaNZdfUpFnW3UGlCvHpbhdNNmzbF/XdUYqAaWIXajJQbhM846/8rj/d8KlSoYJlFoAUAAHEXkqntkhbvqEuCFidplnbv3r327rvvuhXtCimazdWsLhKncePG7vLbb7+Nen9414G0NrBS9wrNtseiY6rZ3Hh0rHXcNTp16mQZ8fXXX7vFh5dccknotvnz51v16tUzPNMbDYEWAACki2b5VM+pU+Eat99+u6vdVL3mI4884nqjavHP6NGjE3IaOa9TxwEtzFNrtbfeesuWLVvm+s6qzvn000+35cuXp/k1NmzYYNdee62NGDEi7uMUUBcsWBB3llZvbrwtluPtxOrVxa5Zs8b9f/L444/bBRdc4Np26bl4FNT1/SUCgRYAAGSYZvSef/55N2urjRsUTFQfOWXKFLeASKe81Yxfq9gzshtoUoo4nZ/h+zNB2xerG8XgwYNdlwC1v9LGGPp5a8FXPHv27HELxrQ9snbliqdJkyZucaBm3eM5+uij3Yhn4sSJ7virz6xmdfX/hP5f+fjjj0NBWJ0zxo8fbzfeeKMlAn1oAQDAEdNCIm3coPH777+HFg2p9vaVV15xQ6fOVXOpVfGJqJfMduozqx25cqAPreqW+/fv70ZGBAIB10tYM+Z6g5EeAwcOtLvuusuFTO04J6qZjeejjz5K8bEen9bniPofa7MIBfREYIYWAAAkhHaNUijSqXHVTCrAKvCqVlL9VLWQTDOGH3zwgf962yq0Nm2aemRhmE2vTp062WWXXeZ2gVNNqlp9qa2WZs4VOLU4TEM1rPGce+65bhMHlQpkNe1Up24ZicIMLQAAedDSpUttW5QZR62Wr5fJkKbZPa2811Bo0eYMasSvoKWApaFNHLRASKFXGwd4M4LIuC+++CLq7UeyjbHKG7LDTTfdlNCvR6AFACAPhtn62uEqBi08ymyo9ZQuXdrV0mpoplYLxrSo6Y8//nAhV0MN9rWBg7ZVVZ1oeK9SID14OwQAQB4TbWY2I/cfKdXSPvnkk26nqW+++cbVairw6hT3M8884xaaaXHSE0884R4DpBeBFgAAZCuVF6jMQK2k1N7pww8/dOUHWgCl1lH33XefWyGv1lRaVBZvQwDA/T/FjwEAAOQUhVgtFHv//fdduH3ttddc7a3KDr777jtXqlC5cmXXx1QtpdK7mQDyFgItAABICio/uOGGG1yHBLUAe/rpp11N7b59+1w/Vm21W6lSJbvuuuvsyy+/ZMtdhBBoAQBA0lH7KfVEnTNnjltMps0B1BZM9b3qc6rteLWVq9qBzZ07N6efLnIYgRYAgDxGrbkyc392a9Sokds+VZs1TJs2zfVK1Za7a9eutaFDh1r79u1z+ikih9G2CwCAPEYtudSaK6v60GblYjItFNPQVqoTJkxwLcA+++wzamvzOAItAAB5ULKG1vQqXLiwWyimsXr1aleOgLyLkgMAAOBrxYsXz+mngBxGoAUAAIBt2LDBKlasaL/99luW/zQuvfRSGzJkSMK+HoEWAAAgyc2aNcuuvPJKq1q1qhUtWtSOOeYYu/76610tdKJoh7bzzz/fbWrh6d69u+sJrH7AkXr16uXu02MiH69RqFAh12ZNHSm0xfHBgwdDj3vwwQftscces61btybkuRNoAQAAkpg2m2jRooWVKlXK7aq2ePFie/XVV90Oaq+//npC/g1tWKGv1aNHj1T3qT3auHHjUiy82717t40dOzZq7fLZZ5/tOlBoplcL97RRRu/eve28886z/fv3u8eccMIJLjhrUV8isCgMAAAgDUuXmkVpCmHqcJaV6+u0W5ralA0fPtxuueWW0O21atWyM888M2HbAk+YMMEKFixop512Wqr7mjZtaitWrHBhumvXru42XVfQrVu3btTd37S7m1SrVs19fsuWLV17NfUQ9kJzly5dXCgO/76OFDO0AAAAaYTZ+vXNmjVLPXS77s8q2jiiTZs2MUNf2bJlE/LvqL/vKaecEvN+7c72xhtvhD5WCYFKHtJL4Vu7vikIe5o3b24zZ860PXv2WGYRaAEAAOKINjObkfuP1KJFi+zHH3+0W2+9Nc3H7ty5083aane19NweSeUBqs+N5d///rebLdbjVq1aZd9//71dc801GfhuzBo0aJBiwZlmbxVm161bZ5lFyQEAAEASmj17trtspqngNDz22GOuzja9t0dSfawWm8VSvnx569y5s40aNcoCgYC7rtsyQp+nxWKeYsWKhUJ3ZjFDCwAAkIS8oFeyZMm4j1u6dKn9+uuvdu6556br9mgUTjdt2hT3MSoxUA2sQm1Gyg3CZ5zr1KkT+tir/61QoYJlFoEWAAAgCTVu3Nhdfvvtt1Hv97oO3HXXXa7lVqRYt0dz8skn28KFC+M+Rt0L9u7d60anTp0sI77++mubN2+eXXLJJaHb5s+fb9WrV8/wTG80BFoAAIAkpI4DHTt2dP1e33rrLVu2bJnrO6tWV6effrotX77cPv74Y6tfv74b4WLdHosC6oIFC+LO0hYoUMDNsmroeixeXeyaNWtc2cTjjz/utihW265rr7029DgFdX1/iUANLQAAQBxqzZWZ+zPjk08+saFDh9rgwYNd6yy1xDr22GPdBgjHH3+8C7fjxo2z9957z7Zv32779u2zo48+2s3eRrtdGxpE06RJE9fl4N1333VtwmLR10jLxIkTrUqVKq4NWJkyZVx3g+eff966detm+fPnD/WxHT9+vH3xxReWCPkCqtCFo90q1LT4n3/+sXLlyvFTyUH6xfv8889d3Y92GkHO4ngkD45F8uBYJNeWrTptvWXLllSBS8Fp5cqVrnYz3qKnZO1DmxEjR450p/GfeeaZdN0eSa+7KlPQY73gmVVeeOEFN4s8adKkmI/JyLFjhhYAACANyRJas9K5557rFpKpVECbJmQlTVYNGzYsYV+PQJuVtGfxgQPBoa3ejuT6oS3iTO84S5c2K1PGrEQJs7C2FwAAAN27d8/Q7dFoi9rscNNNNyX06xFooyhwxhnBwKihoucjDaVZVc1RsODhcOtdhl+Pd1+pUsHPBwAAyCVINlHkT6NtRUKoNkVhWUMBM9512brVTCsPFZg1/vknOI6ECn4yGoS9SzVBZnYYAAAkEQJtFPu1CGnfvuAHw4drr7b0Bc/0Xtc4klCoGV81WVaw1di8+fDlkiXaDiT256pMYceO4HVVtWusXp3x51C4cOwAHH6pJtCxhp6Lvg4AAEACEGijCChweoH2tNPMmja1pKAQrDCoUb16yvu0PV68QDttmnpymG3ZkjIMRwbjaJfedZVR7N1rtn59cGSG3jTECb0FihWzxn//bfn/979gmUSsYBz+cfHiwZlvAACQpyRFoJ02bZo9/fTTNmvWLFu7dq3rS3bhhReG2qI88MADrpWE+q+prdZZZ51lTz75pFWtWjVFE1+1mhg7dqzrvda+fXt78cUX3Q4UCAuR2o3jSHbk0Ozw9u3pD7+aDdbjveF9vGdP8OvpDYP3+CgUS4/RlU8/zdjzDA+5kYE3PaE4cqg8g7ZhAOB7dCnN3ccsKQLtjh07XNPd6667LsWWaN4+xtplYuDAge4x2sGiT58+1qVLF/vpp59Cj9Ntn376qWsirB6yd955p9uRQiE53m4WyMDssMKdRmZaeSjIRoZdL/CqyV/fvu5hBwoWtOUXXGDHfPSRFdDMsGixnhesI4f3P72+jsZffyXu+9YbJ+09Xbdu8DJ86D7+/wKApOX1MleeKKZ1IPANbbEr6clxSRFozznnHDei0Yzs5MmTU9ymvmXNmze333//3WrWrOkaKb/++utuWzjN3sro0aNdD7Uvv/wyw/sNIwvpD4tqbDUiqWzikIOFCtmif//b6nz+uRU4tFe1DR0avfxDYXb37uhBN3KGOCP362vqa69ZExzffZf631YtcK1aKUNuePAtW5ZFdACQgxSGSpcubesPlcoVL17c8rG4OekdPHjQ/v77b3e8tOOYLwJtRinA6n9G/Q8qmoVVaUL4fsAqR2jcuLFNnz49ZqBVmYJG+E5hsq9YMdvn/c+uukyvnjbZe97Ge+ep+5P9+wj7HvZFXKb5PXitzKIF5SOlbhIbN1q+VavMVq60fL/9ZvlWrjTT5W+/ma1aZfn07lEzyxpRBDSjXaeOBWrXtoACri7Drrv/v3xAv1/hl+BYgN+LZJLW36bKlSu7Sy/Uwh+0W5kmLtPzBiTptr7Vkw6voY22DVrr1q2tQYMGbhZWxowZ48oVwsOpKOBqu7RXXnkl6td66KGHbNCgQalu19fTOwIgrgMHrNiGDVb8r7+sxPr17tIbJf76y4rGqA9O8f9z6dK2s1Il21mxou2oXNlduo8rVbJd5csHFygCAOJSOcHVV18ddevblH+2D/DG3EcKFy6c7i14C/rtHdiVV17ppqG14CstyurxUv2AAQOsX79+KWZoVabQrl07V4frO8uXB0+VR9LipmPcEqvkNndusE720Mzs5P/8xzpcf70V8koO1KnhxBPNF5Yvt33qE7xuneVbs8YN+/NPy7d+veX7++/gjO+WLVZ082Y3yi5enOpLuDBbs6ab0U0xs3toxtcqVsy2cgb97qn0p0OHDqF6NOQMjkXy4Fgkjw0bNqS7/IB1NblTugPtJ598kuEvrhe/RBVg6w/H5ZdfbitXrrSvv/46xTswnUpQ4bAWjJVRH9RDdGqhVatWMb9mkSJF3IikF2xfvmirX66f6V2YF14PUZgNBVrd74fjovKDhg1j36+ewdoUXDO4KmHQWLHi8HWvrEFnHBR89XE0Ooug+l2dSlO4DR8VKqT8WL8vCQi/vv3dyIU4FsmDY5Hz+LuEdAfaWCUAsWhmdOnSpVZXC2QSFGb19aZMmZJq9rRZs2buf2bNIOlxovZf8+fPt8GDB2f630c2Ub1pZu5PFtq0Ij33e7uxRVvopnrhtWtThtzw0PvHH8FNNhYtCo60aPFatKAbKwCzEhgA4CMZKjlYt26dVdSLXToclYHwsX37dlu2bFnoY83Czpkzx8qWLesWd1166aWudddnn33m6l/0PET3q75CnRBuuOEG16pLYVe3qydtkyZNQl0P4AOatdTspQKfAp1O06vMQDOz+v9J9+cV+p6rVQuO1q1T36/FaL//7hamhTa6CB8qa/Cu6+epxysEa6SHylTCwm6B8uWt4datll+/p1WqpAzB6mvMrC0AwA+Btlu3bhkqH7jmmmviFmaHUz9Z1a16vLpW/ZtauOWVO5x00kkpPk+ztW3btnXXhw4d6to6aIbW21hh5MiR1Mr4jRdatWJVgVY1s4Sl6DOuxx4bHGlRyUZ4wA2/HhmC1b9X4ddrXaZZ4UMbXdTXlQ8+iP5vqD1ZrNneyNtpZQYAyKlA+8Ybb2ToC7/00kvpfqxCabxmC+lpxFC0aFHXn1YDQBi9Ea1ZMzjSot81zegq4M6aZXbllaGNLn47+2yrM2GC5fc2ulDpj+qANZu+cWNw/Ppr2v+GdmdTENebF43w65Uq0bcXAJBhvupyACCLaeGYzqxoHOrL7G10Mb9HD6v51VeW31ukN2lScAZdoTatsgdveNsiq6OFRrRSBy/ghgddjWzs6gAAyEOBduHChW63Lm9rMo+2pQXyrNyyuC091FpMNbQaxx+f9uPVuUGbUqgW19uQwruuemCVOcyZExzRfm7Rwq6uE3aBPEmLxbdt2xbaGAl51xEF2hUrVthFF11k8+bNc90MvJIAr+erFm4BeVb44rZIeW1xWyS1yTvuuOCIdKhNWcywq5/nzz8HR6yfa7RSBtXuMrML5MowW79+/VDZIfK2Iwq0vXv3djtwffnll64t18yZM11TY3UZeOaZZxL/LAG/ycuhNTNhV72Uo/VT9sJuZNDVULcHhd3Zs4MjksonYtXsamaZsAv4kmZmgUwF2hkzZrjNDSpUqOC2JNPQdrRPPPGE3XHHHfZztBkUAMiqsKtuDJFBV9cVdnUqMlbYLVUqdRmDemdrRza1J0vnlosAAB8GWpUUlNTiDdMER3n7888/7bjjjrNatWrZ4ihbeALwIb/UAivsame2aLuz7d4dDLvhQdcLu6tXm23ZEuzmoBHt62onNi/ghg/dFrYrIQDAh4G2cePG9ssvv7hygxYtWrjduLTBwYgRIxKyMxiAJJAbNrpQXZ36GFevHhxh/a5dL1+VG3hh17tUaYNmdjXzq+9fIxrN7kaGXO967drstgYAyR5oH3jgAduh1jtm9uijj9p5551np59+utul65133kn0cwSQU/y+0YUC6qFFI1EprF5wQerb9+8P7qoWueWw97E2oNDsbqyODFK5cuzZXYVrdYgAAORcoO3UqVPoumZk1b5r48aNVqZMmVCnAwDIcWktGol1f8GCwVlWjfBZXc/OncH2Y+EhNzz0qm5XW3RrTJ8e/etro4tos7sadGYA0nRUspQ9wX+BdufOnXb33XfbRx99ZPv27bOzzjrLnn/+eVdHW1bbWQJAXlC8eLDvbrTeu2pjqF3TImd1vetqQabe3brt0NbCUXdTizazq0vN7gKwevXq2ZIlS0J9aNtFe/OJPCNDgfb//u//bOTIkda1a1fX823s2LF2yy232HvvvZd1zxAA/ERnqbQtsMYpp6S+X/XIf/4ZvZRBl7pPJV3z5wdHBBV8nF2qlBWoUcOsWrVgyNW/E17OoBlgII+EWlHrUORtGfqr9+GHH9rrr79uVx7a3/2aa66xf/3rX67rQQHqwQAgbVpU5y1SO+OM1PdrMZpmccND7rx5ZhMnhh5SRPW7GlECb6icwZvR1WX4dZ1NozQMQF4OtKtXr3aLvzzNmze3ggULurZdNTRbAADIHLUL00K28MVs6qF7KNDuK1rUvn/8cWvdv78V9LYdb9XK7J9/gnW9aZUzaKOJ8BKG8MCrmmF2XAKQ2wOtZmLVnivFFyhY0PZrRTAAJBu/9NLNiHz5bEvduhYIPys2bJhZ06apyxm8YOtdX7s2uGBt7tzgiMYrY4gWeNlsAkBuCLSBQMC6d+9uRTSDcMju3bvt5ptvthJaxBBWmgAASdVLN5Jfeukmspxh167gLG6swLt9e7A9m8Z336X+fP3t1yxuZBmDd12zvwCQ7IG2W7duqW5THS0AJK3cFlozo1ix2LuqqTuDFtZEhlzvurfZhHaDjLUjZMWKZiefbNasWXDGWEMBmJpdAMkUaN94442seyYAgJyj0Fm+fHA0b576fm2uoc0mYgVe1fCuX2/2xRfB4SldOhhsw0PusccGZ5MBIEHo7QIAyS4ZaoG1Q5zXE7d9+9T3q6xj4UKzn382mzUruJBN3Rk2bzb7+uvgCH++msn1Aq7GccfRbgxA9gTaXbt22VdffeW2upUBAwbYHp2COkStux555BHXoxYAkAW1wFr4pRrXadOCs5zJUgus59GiRXB41HFhwYLDAVdDi9H0fej5a4SXQ5x0UsqQ26iRv7ZaBuCPQPvmm2/aZ599Fgq0w4cPt0aNGlkx/SEys19//dWqVq1qffv2zZpnCwB5lRdadepfgfbEE5M/7KkrjmZiNTzqivPrrylDrmZ1tZnEjBnBEf75J5xwOOCqbKFxY1qLAchcoH377bdThdUxY8ZYXa1wNbPRo0fbCy+8QKAFAESnjR8USjW8hcYHDpgtW5Yy5Gpo84iffgqO8M/XzG14yFXoDeu0AyDvyVCg1Z7J9cOafau0IH9YYb82Wrj11lsT+wwBALmbeuqqhlbj6qsPd13QgrPwgKvAq04MXh9db6GyXocaNEi5+EzlC7QRA/KMDAXaLVu2uI0UPH///XeK+w8ePJiiphYAgCPuunDMMcFx2WWHQ+7q1alD7rp1wQVpGqNHpyzTCA+5Kn3Q1r8A8nagrV69us2fP9+O07voKH755Rf3GAAAsiTk1qwZHBdeePh27YAWGXIVfJcuDY533jn8WPXFVcBVuFU/XoVehebixTlgQF4JtOeee649+OCD1rlz51SdDNQBYdCgQe4+AACyjbbk1WtP+OuPziBqsVl4yFUJg3ZK0/jgg9Rb/ircaqhPrnddYffQwmcAuSTQ3nffffbuu++6GdrbbrvN1dPmy5fPdTdQx4P9+/e7xwAAkKMqVDDr2DE4PJs2mc2Zc7izglqhaQZXvXK9LX+/+Sb119KZx8igq1GjRrZ+SwASFGgrVapk06dPt1tuucX69+9vAdUzubNA+axDhw724osvuscAAJB0ypQxa9cuOMJpoZmCrToteGUK3nWFXe2QpjFlSopPK6jXvnLlrECTJimDroKvZnbpyQ4k705hderUsYkTJ9rGjRttmX7hTb+7x1pZCu0BAH5UrlxwtGyZ8nZN2ijsRgu6S5davi1brLi2/FXQjQi7rt5XM7gKuKrVPfXU4JbC6hTEtr9AzgVaLfhq3LhxqE2XAqzadMWyYMECV5oQ3hUBAADfUCgtXz44wsOuAu3WrbZv0yabMWuWtdq92wpqBleL09Rx4dD99vvvwfHVV4c/V63ETjnlcMDVpUoa9G8BOGLpTpsnn3yyrVu3ziqoLikdTjvtNJszZ05o0wUAAHxPYdXrx16smG0aO9YCV12lldHB21SXq5IDzdx6s7rqmfvjj8GFaQq6X38dHJ7KlVMGXA3OegJZE2hVLztw4EArns7WJnu1hzcAALnJtm1p36/ZVk3+aLRqlXLbX/XKnTkzGHB1OW9ecFb300+Dw6MaXC/g6lJtxmgtBmQ+0J5xxhm2ePHi9D7czdAWo9UJAACHXnELBrfp1ejRI3jbzp3BzgtewNWlZnWXLw+OsWMP76am7YLDZ3K1BXChQvx0gYwE2m+itTIBACC9FNSizXAedVRw8VRepFlXzeKGz+SqvdhPP6WcyVV9rrfl72uvBR+nLgr6uWmziGhDXR2ozUUewYotAED21p5Go9rTvBpqIymIdugQHB71yA2fxdXYsiVYsqARjd4oRIbcOnUOXy9dmsCLXINACwBIjtpTxKadzDS8LX8PHgzufKayBG/3s/Chulz9TOMFXnVcCA+6LVqYtWljVrUqRwK+Q6AFACC9NOuZmfsTRS001U1BIxp1XVDLsJUrowfev/4Kdlz45ZfgCKdwq9nhtm2DQ1sLA0mOQAsAQHqpLELlEZr91CypSgGmTQsGzGSqBdai7OOOC45oFGJPPDH6fQrBI0YEh+hreOFWM7gEXPg90C5dutT+85//2L333mulVXsDAEBe44XWffuCgVbB0G/dBtRCLJ6uXc0WLTL7+WczdTjSeOWV1AFXQ310AT8F2ieffNI2bdoUNczu3r3bVqxYYccff3winx8AAMhu/fqZNW1qtnmz2bffBrf2VbcjtRiLDLgNGpi1bq1+ncFuDWzvi2QPtFOnTrXXvHYhEYoWLWo333yznX322Xbfffcl6vkBAHKDZKk9RcZoAuv884PDaymmgKtw6wXcX38NDi8fqEuDwq0XcNU3t2RJfvJInkC7Zs0aO0a7l8TQs2dPGzZsGIEWABC79jRSMtWeIj6F1S5dgkM2bjT77juz6dPNZswIthVT6P388+AQ1RdrMwkv4Oqybl1ahiHnAm3ZsmVt7dq1VqNGjaj3N2/e3JYtW5ao5wYAyE0IrblP2bIpA662vdfmDwq3XshVtwXN5Gq89FLwcRUrpgy4p5wSXMgGHKH8GXmwtr8dOXJk7C+WP7/t2bMnw09i2rRpdv7551vVqlUtX7589tFHH6W4PxAI2EMPPeTu13a6bdu2tQULFqR4jP7d22+/3cqXL28lSpSwLl262B9//JHh5wIAQK6XVSUghQsHt+W94w6zcePMVq0y02vxe+8F63Jbtgw+Zv16s48/Nrv3XoWLYE9clSb07m32zjvBEBwIHNlzQJ6UoRnau+66y1q2bGknnXSS3XTTTanunzFjhtXVaYQM2rFjh5144ol23XXX2SWXXJLq/sGDB9uQIUNcmK5fv749+uij1qFDB1u8eLEddeiXrk+fPvbpp5/auHHjrFy5cnbnnXfaeeedZ7NmzbIC2gMbAABkfwmINoS49NLgkN27zWbPPjyLq6GNILwd0J5//vDnhc/innyyWZEiHEFkPtA2a9bMXnrpJbf467333rNbb73VmjZtaiVLlrRvv/3WtfPqrXdXGXTOOee4EY1mZ5999lm7//777eKLL3a3jRo1yipVqmRjxoxxdbtbtmyx119/3d566y0766yz3GNGjx7tSiO+/PJL69SpU4afEwAAuVpOlYAULRoMqRp33hmcidVMbniZgsoT1BLt/feDQxRmmzU7HHA16ImLI91YoUePHtagQQPr16+fC5gqEfCCZ8eOHa1v376WSCtXrrR169a5r+0pUqSItWnTxqZPn+4CrWZh9+3bl+IxKk9o3Lixe0ysQKsyhfASia3aNcW1FtznBnKO9/PnOCQHjkfy4FgkD46FZd0s7o4dlm/WLMs3Y4bl++GH4Niw4fCM7iGB2rUt0LKlHbjiikQ+G+SVncJat25tM2fOtF9//dVmz55tO3fudOFR5QiJpjArmpENp49X6R3doccULlzYymj1ZcRjvM+P5oknnrBBgwalun3KlClWvHjxBH0HyIzJkyfzA0wiHI/kwbFIHhyLLNSkSXD06GEl1q61sr/+amUWL3aXR//+u+X77Tc3FlSokJXPArl961vN1GpkB28m2KMZ4cjbIqX1mAEDBriZ5vAZWpUptGvXztXhImdnPvQioVrpQn7bgScX4ngkD45F8uBY5Kz9W7davpkz3extw4suMhs2LIefEXwbaLND5UNb6mmmtUpYrcz69etDs7Z6zN69e90uZuGztHpMK9XaxKDSBY1IClCEqOTAsUguHI/kwbFIHhyLHKKJp2OP1elYK6QdzZCnZahtV06oU6eOC6zhp3QUXrVrmRdWtVhNf1DCH6N+ufPnz48baAEAgE8tXRrcZlcLxWIsLEfekRQztNu3b0+xIYMWgs2ZM8dt5FCzZk3Xkuvxxx+3evXquaHrqnG9+uqr3eNLlSplN9xwg2vVpVIBfZ5ajDVp0iTU9QAAAOQi0VqOIc9KikD7008/ubpVj1fX2q1bN9d79p577rFdu3ZZr169XFlBixYtbNKkSaEetDJ06FArWLCgXX755e6x7du3d59LD1oAAIDcLSkCrXb+0gKuWLSwSzuFacRStGhRGzZsmBsAAADIO5K+hhYAAACIh0ALAAAAXyPQAgAA/wlbRwMkRQ0tAABAhtSrZ7ZkSbDbgbauD1tcjryHQAsAAPwbamXDhpx+JshhlBwAAADA1wi0AAAA8DUCLQAAAHyNQAsAAABfI9ACAADA1wi0AAAA8DUCLQAAAHyNQAsAAABfI9ACAADA1wi0AAAA8DUCLQAAAHyNQAsAAABfI9ACAADA1wi0AAAA8DUCLQAAAHyNQAsAAABfI9ACAADA1wi0AAAA8DUCLQAAAHyNQAsAAABfI9ACAADA1wi0AAAA8DUCLQAAAHyNQAsAAABfI9ACAADA1wi0AAAA8DUCLQAAAHyNQAsAAABfI9ACAADA1wi0AAAA8DUCLQAAAHyNQAsAAABfI9ACAADA1wi0AAAA8DUCLQAAAHyNQAsAAABfI9ACAADA13wTaPfv328PPPCA1alTx4oVK2Z169a1hx9+2A4ePBh6TCAQsIceesiqVq3qHtO2bVtbsGBBjj5vAAAAZC3fBNqnnnrKXn75ZRs+fLgtWrTIBg8ebE8//bQNGzYs9BjdNmTIEPeYH3/80SpXrmwdOnSwbdu25ehzBwAAQNbxTaCdMWOGXXDBBda5c2erXbu2XXrppdaxY0f76aefQrOzzz77rN1///128cUXW+PGjW3UqFG2c+dOGzNmTE4/fQAAAGSRguYTrVu3djO0S5Yssfr169vcuXPtu+++cyFWVq5caevWrXMh11OkSBFr06aNTZ8+3Xr27Jnqa+7Zs8cNz9atW93lvn373EDO8X7+HIfkwPFIHhyL5MGxSB68VsA3gfbee++1LVu2WIMGDaxAgQJ24MABe+yxx+yqq65y9yvMSqVKlVJ8nj5etWpV1K/5xBNP2KBBg1LdPmXKFCtevHiWfB/ImMmTJ/MjSyIcj+TBsUgeHIucp7OxyNt8E2jfeecdGz16tCsfaNSokc2ZM8f69OnjFoB169Yt9Lh8+fKl+DyVIkTe5hkwYID169cvxQxtjRo1rF27dlauXLks/G6QnnfbepFQDXShQoX4geUwjkfy4FgkD45F8tiwYUNOPwXkMN8E2rvvvtv69+9vV155pfu4SZMmbuZVs6wKtFoA5s3UVqlSJfR569evTzVrG16SoBFJAYoQlRw4FsmF45E8OBbJg2OR83jNRn4/nU7Inz/l01Xpgde2S+28FGrDT/3s3bvXpk6daq1atcr25wsAAIDs4ZsZ2vPPP9/VzNasWdOVHPz888+uRdf111/v7ldZgUoQHn/8catXr54buq5a2Kuvvjqnnz4AAADyeqBVv9mBAwdar169XBmBamfVueDBBx8MPeaee+6xXbt2ucds2rTJWrRoYZMmTbKjjjoqR587AAAAso5vAq1CqVp0eW26otEsrXYK08iMefPMjj5a/6ZZvXqZ+lIAAADIYr4JtNnpnHPMdu8OXl+yhFALAACQzHyzKCynsGsuAABAcmOGNooDBw73rV271uyvv8yKFQuOZG6JunRp9ABO6QQAAMjNCLRR7Nt3+Mdy3nkp7ytQwKxo0cMBVyOrPy5cWPXBaYfZ+vVj30/pBAAAyK0ItFEFQte078KePYfvOXDAbMeO4MguCrPhIVfXS5Uyq1rVrFo1s+rVzfbvj/81KJ0AAAC5FYE2iqJF94cWhU2fbnbSScFQu2tXcLGYLr2R1sdH8jnex4FDuVqX3n3hZs9O/4EeNszslFOCAdgLwRUrBmecAQAA/IxAmwbVn2qDMm92NLsoxO7dGzskb95stmbN4bFwodkPP8T+eiNHBkc4hVntEqxw6wVdzfqWLh2cAQ4f3m0lSqRd/gAAAJCdCLRRTJiQ831oFRpV7qCRHpqtbdYs9v1XXBEMyH/8EQzA69YFyyf0sUZ6KQTrZxMr8MYa3v26LF487YVth3Y0trlzg28oWNgGAABiIdBG0aSJWblylqvcc49Z06aHP1bNrbo3eAFXQ9cVdLdsCQ7NAnvXNRSANTZtCo4jpUDszQZ7dcC6VIi//fbgY1QnPG6c2RlnHC61YGEbAACIhkCbS6S1u2/k/QULHi4zSG8JxM6dKQNuZOCNHNHu18zr1q3BsWhR7H9v9+5C1q1bJ9u9+/D/os88E5yFDg/DFSoEZ3ABAEDeRaDNJVQaoRnMrOpDq9lT1c9qKEgeCYViBVn19v3zz+CssC69oef/yy+HH79lS9EUnz9iROqvqWCuOuDwmd5o1zUrTO0vAAC5E4E2F8mpet/0UqD0amobNIhfB1y06D574onv7N57T7e9e4P/m15ySbDbhBeAVTKh0onVq4MjHtXtxgu93sjOhX8AACAxCLRI2vBbp85WK1DgcE/g++5LWQe8b18w1HoBN3zGN/y66n1VLrFsWXDEo0VrkSE3clSunPZiPXZtAwAg+xBo4VvahlgtxzTiUZiNVubgXfcuvXZoGmqDFk/58ilDrlf2oKFZ48sui/25LG4DACCxCLTw7cK29FK5wTHHBEda9b3hNb2RwwvFKnv455/gCK/5Ta9Ro8xatky5sI0NLgAAOHIEWiTlwjZ1Q9DM6bRp2dOHNry+t2HD+MFXJQzxgu9vvwVLIWJ57LGUHyvMqowh2mxv+FArOTo6AACQGoEWScULraqPVaA98cRgaUGyUPAtWzY4Gjc+sk0u1Ft3x47DC9vU29frBRxP4cLBhWw1apjVrBm8jBxlytDNAQCQ9xBogWw2dOjhxW0Ks+vXx5/x1dBjtNPbypXBEa+8wgu3sUJvyZLZ9q0CAJAtCLRADlK5gUoMNOLN6irMqobXa1EWbfz9d3AB3OLFwRGvk0N4wI0Mvlpkl94tlwEASAYEWsAHi9tUblCrVnDEoi4N2r44Xuj1dnDTmDcv9teqWPFwCYM6OlSsmN8KF65q//yTz4XvOnXi1xoDAJCdCLSAz3Zti0WbQuhrx/v6ek4Ktr//Hjv0KhirxEHjsAJmdmqKr6WFbAq2sWZ62ZYYAJBdCLRAHtq1TYH6+OODI1YXh40bg8F2yhSzfv2CtxcocNCOO26jLVpUzgKBfO62deuCY8aM2LPKKl/QrLJaptWte7h9mq5r9jc7sMkFAOR+BFoAKbo4qD2YhlqneQoXPmCPP/69XXXVubZrV6FQP10tQos2y6t6X9X9rlgRHArHkRRow4NueOBVN4dE9OZVmK1fP/b9bHIBALkDgRbAEVHbsvCtiMOp7Zq6M6i0QX15FWqXLw8OXdfMrvr5/vRTcESb3a1dO/WsrnepIJ0e0co+MnI/AMAfCLQAEk69g71FbKefnvp+9eFV+7HwkOtdVwDW7K5mTzWiUf1utDIGXWpBm2aaAQB5B4EWQLYrUSI4wxttcwr15lW3hshZXe+6OjR49bvffx/9a3vhVtcBALkfgRZAtrUfSw/Vznqzu+3apb5fpQqRIde7rvpdzf6qJVm8tmSeN94Ifp4CsIZ69DK7CwD+Q6AFkGb7MS0Q09a806aZ5c+fte3H0qLFZKecEhyR9uwxW7XqcMhVB4a33479tYYPDw6Pvi/V7nqB2rvuXaoVGYEXAJIPgRZATF5o1SIvBdoTTwzWxyYr7XCmrgZeZ4OOHeMH2i5dgjusKQCr767Ce7zZXfX6jQy74de16YQCPwAgexFoAeRaGdnkQtsGe10ZNMurEX5dXRu06cSvvwZHNOrOoE0los3uaqgvb8GCmeun67VTmzs352fLASBZEGgB5GrpDXtqBdagQXBEo84LqtGNFnh1qYVseoxX1xurPlg9dmMFXu22plnmeP10NUs8dqzZGWcEA7af+umyyQWArEKgBYB00Oyr1yIsmv37g7O4sQKvZn8VeHWp8e230b+OyhYiyxlU8uH3frpscgEgKxFoASARf0wLBmdYNaJRqcBff8UOvLpU2YN2WdOItaXwrl0F7c4729iePYe3Uvv66+DXVwAuXz45F66xyQWArESgBYBsoHpXzb5qnHZa6vsDAbMNG1KHXI1Fi4IznEH5bPny0ik+9+67D18vWjQYqr0ShshL1fFqthkAchMCLQAkAc2qanZVI7Il2ezZZs2aBa8XKbLP7rxzlj399Km2b19wlrZJk2AY1szu7t3xd1nTv6NQHS/0liqVnLO8ABALgRYAfDbT27z5X1aw4MFQoB050qxp02AfXrVX06yu6nQjLzUUeFXrq/HDD9H/DXVO8MKtaniPO86sYcPggjnN8Ob1sEvHCSD5EGgBIJfs2qYOCd6uZ9GorEF9d+MF3n/+Cda7zp8fHJFKljzcDcILubrUYrm8UMqQWzpOALkNgRYA8siubZpZrVgxOE49NfpjtHWw2pN5IVctyBYvDtbxLltmtn272U8/BUfkojiFWi/gemFX4+ijc24r5URjcRuQnAi0AOAD2bVrW4kSsfvxen12tbGEAq6Gt9GEgq6Cr8bHH6f8vKpVgwG3a9dgyYLKGOrUOdyRgc0hAGQWgRYAkC4qKfBmXy+6KGUpg0K2F3DDL9etO1yzG0kzt+GlC6rV9frvli1LrS6A9CPQAgAyRbOsmnnV6NAh5X2bNx+exQ0Puprp3brVbObM4IhWq+t1Xog21KlBJRcAQKAFAGSp0qXNWrYMjnDqyKCa3PCgqwVXqt3VBhQqYVi4MDiiUblFjRqxA6/uywuL1AD4cIZ2zZo1du+999qECRNs165dVr9+fXv99det2aEGjYFAwAYNGmQjRoywTZs2WYsWLeyFF16wRo0a5fRTBwCEUUcG/WmO9udZHQO8hWnRxh9/BGuJV6wIjnj9dmMFXg3NAmdUblncFt5+LBI1zfAj3wRaBdR//etf1q5dOxdoK1asaMuXL7fSevt/yODBg23IkCE2cuRIF3YfffRR69Chgy1evNiO8tNfGQDIw9QOS62xvPZYkfbvD9bkxgq8GuH9dmNtI1ytmtnxxx8O1hr6WBtLZHXHiWRqPxYN7cfgN74JtE899ZTVqFHD3njjjdBttbVU9hDNzj777LN2//3328UXX+xuGzVqlFWqVMnGjBljPXv2zJHnDQBILLUIU32txumnx++3G2uotldhVGPy5NRBNzLkhgfd7Oo4kZVoP4bcxjeB9pNPPrFOnTrZZZddZlOnTrVq1apZr1697MYbb3T3r1y50tatW2cdO3YMfU6RIkWsTZs2Nn369KiBds+ePW54tmqFgvsjtc8N5Bzv589xSA4cj+TBsUifMmWC46STot8fXKyW71Cdbj5btEjX89maNRrBoDppUsrPqV49YMcfHxwNGwasfv0DtnNnQV/+ndLssmbC493vp2/Lj8cAiZUvoKlNHyhatKi77Nevnwu1M2fOtD59+tgrr7xi1157rQutKklQnW1VNT085KabbrJVq1bZF198keprPvTQQ67mNpJmdIsXL57F3xEAINls317Q/vjjKPv996Nt9WpdHuUuN26Mnf7Kl99pNWpsc6NmzeDQ9WLF9mfrc8/Ldu7caVdffbVt2bLFjlY/OOQ5vgm0hQsXtlNOOcUFV88dd9xhP/74o82YMSMUaP/880+ropUAh2gGd/Xq1TZx4sR0zdCqrGHt2rVWrly5bPiuEO/d9uTJk10NdCG/ncvLhTgeyYNjkTM2bVI3Bs3kBmd0NRYsUJ/d2L3DatQ4PKOroV679eoFXI/dnDZ3bnDL3lhUF6xSCr/YsGGDe+0n0OZdvik50P+ox6uIKUzDhg3tgw8+cNcrV67sLlV2EB5o169f7+poo1FJgkYkBShCVHLgWCQXjkfy4FhkL2/L4DZtUr65ePfdiVa9ekdbvLigC7gaKmNYu1adGvK5EXmCUPMl3qI31eN61489NrhTW3bQIjZ1k4h3v5/mEnjNhm8CrWZf1a0g3JIlS6yWeq+YtlGs40KtZvVOPvlkd9vevXtdva0WlAEAkGglS+6zVq0CKYKubNwYDLZeyNVQ5wC1HNuwIdh5IVr3BW1O4QXc8KE10IkMmLmp/Rjgq0Dbt29fa9WqlT3++ON2+eWXuxpa9ZvVkHz58rmaWt1fr149N3RdtbCqqwEAILuorKB16+AIt2NHcEMJhdvwofkalTUo8Gp8/XXqzg5166ac0fWGlo1kdNe08PZjkfzUfgzwXaA99dRTbfz48TZgwAB7+OGH3Yys2nR17do19Jh77rnHbbig7gfexgqTJk2iBy0AICmopEC1qdHqUzVzq5CpHrGRgVflAd71//435edpDXNk0PU+jrcchNCK3MQ3gVbOO+88N2LRLK06F2gAAOAnCp+nnRYckS20tEFEZMjV0E5pO3cGF3lpRJspjlbCkJ31ukB28FWgBQAgr1E5gWprNc48M+V9ar/622/Rw65KF1TL+8MPwRGrXjdydrdOHX8tCAOEQAsAgE8peCqQanTuHL9eN7yUQeUNsep1CxQw03pr7+tqNte7nujFaUCiEGgBAMiD9brRanV1m0oYVMqgEdlyTGFXoTYy6Oo6YRc5iUALAEAerNfVaNky5e3aakk9dBVsvaFZXu9Si9OWLw+OSOrEEC/s6n4gq/C/FwAAcPLlC7YB04jsravFaV7Y9UKud90Lu971VGGjYLA2NzLo6lLlDYRdZBaBFgAApGtxWrVqwdG2bfRODJFB17vcvfvw7RMmRA+70WZ20wq7+nrqpbt1KwcwryPQAgCAhHViiBV2o5UxqHQhPOxG0gK0WGF3716zhg2DjytalAOY1xFoAQBAtoTddu1Sh901a1IHXS/s7tlzeMFaqgATlmD27s3gVmnIdQi0AAAgx8JujRrBEdljV2FXbcWi1ex6YffwYwtk+3NHciHQAgCApAy7NWsGR/v2Ke87cMBs4kTtIBr8uECBA+425F3M0QMAAF9RP9wqVQ5/XKjQwZx8OkgCBFoAAAD4GoEWAAD4zlFH5fQzQDKhhhYAAPiO2nep+4HXhzaygwLyFgItAADwbaiVDRty+pkgp1FyAAAAAF8j0AIAAMDXCLQAAADwNQItAAAAfI1ACwAAAF8j0AIAAMDXCLQAAADwNQItAAAAfI1ACwAAAF8j0AIAAMDXCLQAAADwNQItAAAAfI1ACwAAAF8j0AIAAMDXCLQAAADwNQItAAAAfI1ACwAAAF8j0AIAAMDXCLQAAADwNQItAAAAfI1ACwAAAF8j0AIAAMDXCLQAAADwNQItAAAAfI1ACwAAAF8j0AIAAMDXCLQAAADwNV8G2ieeeMLy5ctnffr0Cd0WCATsoYcesqpVq1qxYsWsbdu2tmDBghx9ngAAAMh6vgu0P/74o40YMcJOOOGEFLcPHjzYhgwZYsOHD3ePqVy5snXo0MG2bduWY88VAAAAWa+g+cj27duta9eu9uqrr9qjjz6aYnb22Weftfvvv98uvvhid9uoUaOsUqVKNmbMGOvZs2fUr7dnzx43PFu2bHGXGzduzPLvBfHt27fPdu7caRs2bLBChQrx48phHI/kwbFIHhyL5OG9bisPIG/yVaC99dZbrXPnznbWWWelCLQrV660devWWceOHUO3FSlSxNq0aWPTp0+PGWhVujBo0KBUt9evXz+LvgMAAJBVNAlSqlQpfsB5kG8C7bhx42z27NmunCCSwqxoRjacPl61alXMrzlgwADr169f6OPNmzdbrVq17Pfff+cXIodt3brVatSoYatXr7ajjz46p59OnsfxSB4ci+TBsUgeOsNas2ZNK1u2bE4/FeQQXwRahZrevXvbpEmTrGjRojEfp4Vi4XTqIfK2cJrF1Yikd3eEqOSg48CxSB4cj+TBsUgeHIvkkT+/75YGIUF8ceRnzZpl69evt2bNmlnBggXdmDp1qj3//PPuujcz683UevQ5kbO2AAAAyF18EWjbt29v8+bNszlz5oTGKaec4haI6XrdunVdV4PJkyeHPmfv3r0u9LZq1SpHnzsAAACyli9KDo466ihr3LhxittKlChh5cqVC92unrSPP/641atXzw1dL168uF199dXp/ndUfvB///d/UcsQkL04FsmF45E8OBbJg2ORPDgWyBfwaY8LbZxw0kknuXZdom9DHQteeeUV27Rpk7Vo0cJeeOGFVEEYAAAAuYtvAy0AAADgmxpaAAAAIBYCLQAAAHyNQAsAAABfI9ACAADA1wi0YV588UWrU6eO241Mmzh8++23OXdkcqEnnnjCTj31VNeGrWLFinbhhRfa4sWLUzxGaxQfeughq1q1qhUrVsx1s1iwYEGKx+zZs8duv/12K1++vGvf1qVLF/vjjz+y+bvJfcdGu+qp/Z2HY5F91qxZY9dcc41rRah2g+rgog1lOBbZb//+/fbAAw+41wL9DVKf84cfftgOHjzI8chi06ZNs/PPP9/9/dffo48++ijF/Yn6m6ROSP/+97/drqAaur558+as/vaQ1dTlAIHAuHHjAoUKFQq8+uqrgYULFwZ69+4dKFGiRGDVqlX8eBKkU6dOgTfeeCMwf/78wJw5cwKdO3cO1KxZM7B9+/bQY5588snAUUcdFfjggw8C8+bNC1xxxRWBKlWqBLZu3Rp6zM033xyoVq1aYPLkyYHZs2cH2rVrFzjxxBMD+/fv51gdgZkzZwZq164dOOGEE9z/9xyL7LVx48ZArVq1At27dw/873//C6xcuTLw5ZdfBpYtW8axyAGPPvpooFy5coHPPvvMHYv33nsvULJkycCzzz7L8chin3/+eeD+++93f/8VT8aPH5/i/kS9Ppx99tmBxo0bB6ZPn+6Grp933nlZ/e0hixFoD2nevLn7RQjXoEGDQP/+/bP6GORZ69evd3+0pk6d6j4+ePBgoHLlyu6Plmf37t2BUqVKBV5++WX38ebNm90bD70B8axZsyaQP3/+wMSJE3Pgu/C3bdu2BerVq+f++Ldp0yYUaDkW2efee+8NtG7dOub9HIvspTfa119/fYrbLr744sA111zD8chGkYE2Ub8HmrDS1/7hhx9Cj5kxY4a77ddff82m7w5ZgZKDQ9vk6vRex44dU8xe6+Pp06dn+Sx5XrVlyxZ3WbZsWXe5cuVKW7duXYrjoN1f2rRpEzoOOk779u1L8RidftIGGhyrjLv11lutc+fOdtZZZ6W4nWORfT755BO3lfdll13mSnFOPvlke/XVVzkWOaR169b21Vdf2ZIlS9zHc+fOte+++87OPfdc9zG/GzkjUT/3GTNmuDIDbb7kadmypbuN1xB/88XWt1ntn3/+sQMHDlilSpVS3K6P9QuExNMb8H79+rkXD283N+9nHe04rFq1KvSYwoULW5kyZThWmTRu3DibPXu2/fjjj6nu41hknxUrVthLL73kfh/uu+8+mzlzpt1xxx3uxfraa6/lWGSze++9173ZbtCggRUoUMC9Njz22GN21VVXufv53cgZifq561JvHCPpNl7v/Y1AG0ZF6JGhK/I2JMZtt91mv/zyi5v5SMRx4FhlzOrVq6137942adIktwgyFo5F1tNiI83QPv744+5jzdBqoYtCrgItxyJ7vfPOOzZ69GgbM2aMNWrUyObMmeMWS2qmr1u3bhyPHJaIv0nRHs9riP9RcmDmVkPqnXjku7P169enejeIzNMKVJ1mnTJlilWvXj10e+XKld1lvOOgx6hERKtUOVZHTqfm9HNVN4+CBQu6MXXqVHv++efdde/nzbHIelWqVLHjjz8+xW0NGza033//3V3n9yJ73X333da/f3+78sorrUmTJm4FfN++fV0nEI5HzknU74Ee89dff6X6+n///Tev9z5HoDVzpyj0wj558uQUPxx93KpVq5w6NrmO3gFrZvbDDz+0r7/+2rXFCaeP9ccm/Djoj5OClnccdJwKFSqU4jFr1661+fPnc6wyoH379jZv3jw3++QNzRJ27drVXVerIo5F9vjXv/6Vqn2d6jdr1arlrvN7kb127txp+fOnfGnUhIfXtovjkTMS9XM/7bTTXEmJSns8//vf/9xtvN77XJYsNfNx267XX3/drYLs06ePa9v122+/5fRTyzVuueUWtyL1m2++CaxduzY0du7cGXqMVrDqMR9++KFry3LVVVdFbctSvXp119pIbVnOPPNM2nYlQHiXA45F9rZNK1iwYOCxxx4LLF26NPD2228HihcvHhg9ejTHIgd069bNtX3y2nbpb1H58uUD99xzD8cjG7qu/Pzzz24ongwZMsRd99pnJur1QW271KZQ3Q00mjRpQtuuXIBAG+aFF15w/SALFy4caNq0aaidFBL0P5tZ1KHetOGtWf7v//7PtWcpUqRI4IwzznB/uMLt2rUrcNtttwXKli0bKFasmPtD9Pvvv3OYEhxoORbZ59NPP3W9MPX/vNoFjhgxIsX9HIvso3Ck3wP1yC5atGigbt26rjfqnj17OB5ZbMqUKVFfI/QmI5G/Bxs2bAh07drV9bTV0PVNmzZl9beHLJZP/8npWWIAAADgSFFDCwAAAF8j0AIAAMDXCLQAAADwNQItAAAAfI1ACwAAAF8j0AIAAMDXCLQAAADwNQItAAAAfI1ACwAAAF8j0ALI1dq2bWv58uVzY86cORn63O7du4c+96OPPsqy5wgAyBwCLQDfmDhxYihgxhoTJkxI9Xk33nijrV271ho3bpwirF544YUpHvf+++9b0aJFbfDgwe7j5557zn0eACC5FczpJwAA6dWmTZsUAVMBtWfPnnb77beHbitfvnyqzytevLhVrlw57td+7bXX7NZbb7UXXnjBevTo4W4rVaqUGwCA5EagBeAbxYoVc0PWrFljGzZssNatW6cZVtOiGdkHH3zQxowZY5dcckmCni0AILsQaAH40s8//+wumzVrlqmv079/fzcr+9lnn9lZZ52VoGcHAMhOBFoAvjR79myrVq2aVaxY8Yi/huptP/74Y/vqq6/szDPPTOjzAwBkHxaFAfBtoG3atGmmvsYJJ5xgtWvXduUG27ZtS9hzAwBkLwItAN8G2syWG2iGd+rUqW6h2dlnn02oBQCfItAC8B0tBlu9enWmZ2ilZs2aLtSuX7/eOnbsaFu3bk3IcwQAZB8CLQDfmTVrlrtMRKCV6tWr2zfffOOCskLtli1bEvJ1AQDZg0ALwJcdDrQYTCUDieKVH2zevNk6dOjgLgEA/pAvEAgEcvpJAEBWbn170kkn2bPPPnvEX0M7kI0fPz7VzmIAgOTADC2AXO/FF1+0kiVL2rx58zL0eTfffLP7PABAcmOGFkCuph3Fdu3aFVoAVrhw4XR/rhaKeYvEqlSpYiVKlMiy5wkAOHIEWgAAAPgaJQcAAADwNQItAAAAfI1ACwAAAF8j0AIAAMDXCLQAAADwNQItAAAAfI1ACwAAAF8j0AIAAMDXCLQAAAAwP/v/vXHxh1iNWiEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Reference\n", + "plt.plot(C11_ref_df['Temperature'], C11_ref_df['C11'], color='black', label=\"$C_{11}$ (ref)\")\n", + "plt.plot(C12_ref_df['Temperature'], C12_ref_df['C12'], color='red', label=\"$C_{12}$ (ref)\")\n", + "plt.plot(C44_ref_df['Temperature'], C44_ref_df['C44'], color='blue', label=\"$C_{44}$ (ref)\")\n", + "\n", + "# Calculated values\n", + "plt.scatter(np.concatenate([[0], calculations_df['temperature']]), np.concatenate([[elastic_constants_0K[0]], calculations_df['C11']]), color='black', marker='s', s=13, label=\"$C_{11}$ (MD)\")\n", + "plt.scatter(np.concatenate([[0], calculations_df['temperature']]), np.concatenate([[elastic_constants_0K[1]], calculations_df['C12']]), color='red', marker='s', s=13, label=\"$C_{12}$ (MD)\")\n", + "plt.scatter(np.concatenate([[0], calculations_df['temperature']]), np.concatenate([[elastic_constants_0K[2]], calculations_df['C44']]), color='blue', marker='s', s=13, label=\"$C_{44}$ (MD)\")\n", + "\n", + "plt.legend(loc='upper left', bbox_to_anchor=(1, 1))\n", + "plt.xlim([0, 1000])\n", + "plt.ylim([40, 180])\n", + "plt.grid()\n", + "plt.xlabel(\"$T$ [K]\")\n", + "plt.ylabel(\"$C$ [GPa]\")\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "pyiron-latest", + "language": "python", + "name": "pyiron-latest" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/hackathon/elastic_constants/MD/main.ipynb b/hackathon/elastic_constants/MD/main.ipynb deleted file mode 100644 index 9c7f3f6..0000000 --- a/hackathon/elastic_constants/MD/main.ipynb +++ /dev/null @@ -1,218 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "4a26f12c-f1c4-4262-b978-8afec1537ae1", - "metadata": {}, - "source": [ - "# Temperature dependent elastic constants\n", - "\n", - "## Background\n", - "\n", - "$$C_{ijkl} = \\frac{1}{V} \\frac{\\partial^2 U}{\\partial \\varepsilon_{ij}\\partial \\varepsilon_{kl}}$$\n", - "\n", - "$$U(T) = \\frac{V}{2}C_{ijkl}(T)\\varepsilon_{ij}\\varepsilon_{kl}$$\n", - "\n", - "$$\\sigma_{ij} = C_{ijkl}{\\varepsilon_{kl}}$$\n", - "\n", - "### How to get $U$ or $\\sigma$\n", - "\n", - "- MD\n", - "- Quasi-Harmonic\n", - "\n", - "## Tasks\n", - "\n", - "- Get $a_0$ from potential\n", - "- Lattice parameter (as a function of T)\n", - " - MD\n", - " - NVT\n", - " - NPT\n", - " - QH\n", - "- Calculate $U$ or $\\sigma$ for various $\\varepsilon$\n", - " - MD: Equilibriate and average with LAMMPS\n", - " - QH: Get strains from Yuriy's tool and run phonopy\n", - "- Fit\n", - "\n", - "## Teams\n", - "\n", - "- MD: Erik, Han, (Raynol), Prabhath, Jan\n", - "- QH: Raynol, (Sam), Bharathi, Ahmed, Haitham\n", - "- Fit & Yuriy: Sam\n", - "- Literature" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "6ce6b4ba-ed90-4d53-a502-549e2980a481", - "metadata": {}, - "outputs": [], - "source": [ - "def get_minimum_lattice_constant(structure: \"ase.atoms.Atoms\", engine) -> float:\n", - " ...\n", - " return a_0" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "567a21f6-e0ab-46b1-970e-e780fd506e18", - "metadata": {}, - "outputs": [], - "source": [ - "def get_lattice_constant_with_QH(\n", - " structure: \"ase.atoms.Atoms\",\n", - " temperature: list[float] | float,\n", - " engine,\n", - " **kwargs,\n", - ") -> list[float] | float:\n", - " ...\n", - " return a_0" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "21d46f96-f98e-4162-851f-a394cad338cd", - "metadata": {}, - "outputs": [], - "source": [ - "def get_lattice_constant_with_MD_NPT(\n", - " structure: \"ase.atoms.Atoms\",\n", - " temperature: list[float] | float,\n", - " engine,\n", - " **kwargs,\n", - ") -> list[float] | float:\n", - " ...\n", - " return a_0" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "f4746ba6-a30d-4185-991a-bd44ba18f345", - "metadata": {}, - "outputs": [], - "source": [ - "def get_lattice_constant_with_MD_NVT(\n", - " structure: \"ase.atoms.Atoms\",\n", - " temperature: list[float] | float,\n", - " engine,\n", - " **kwargs,\n", - ") -> list[float] | float:\n", - " ...\n", - " return a_0" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "c827ae3e-dfb2-4f01-ad77-0ffc849f5478", - "metadata": {}, - "outputs": [], - "source": [ - "def get_deformations(structure) -> list[list[float, float, float, float, float, float]]:\n", - " ...\n", - " return epsilon" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "ccbad139-2a35-48a3-a40b-1807a78e2c8a", - "metadata": {}, - "outputs": [], - "source": [ - "# distribute get_stress_with_MD\n", - "\n", - "def get_stress_with_MD(\n", - " structure, temperature, strains: list[float, float, float, float, float, float], engine\n", - "):\n", - " ...\n", - " return sigma\n", - "\n", - "def get_energy_with_MD(structure, temperature, strains, engine):\n", - " ...\n", - " return energy\n", - "\n", - "def get_stress_with_QH(structure, temperature, strains, engine):\n", - " ...\n", - " return sigma\n", - "\n", - "def get_energy_with_QH(structure, temperature, strains, engine):\n", - " ...\n", - " return energy" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "a6b97eff-c327-4c7e-b280-16777d3f3c7d", - "metadata": {}, - "outputs": [], - "source": [ - "def fit_elastic_constants(structure, strains, stresses=None, energies=None):\n", - " ...\n", - " return C" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "e2b61396-042c-42a6-9320-1860442aff58", - "metadata": {}, - "outputs": [], - "source": [ - "def get_bulk_structure(\n", - " name: str,\n", - " crystalstructure=None,\n", - " a=None,\n", - " b=None,\n", - " c=None,\n", - " alpha=None,\n", - " covera=None,\n", - " u=None,\n", - " orthorhombic=False,\n", - " cubic=False,\n", - " basis=None,\n", - "):\n", - " from ase.build import bulk\n", - " equil_struct = bulk(\n", - " name=name,\n", - " crystalstructure=crystalstructure,\n", - " a=a,\n", - " b=b,\n", - " c=c,\n", - " alpha=alpha,\n", - " covera=covera,\n", - " u=u,\n", - " orthorhombic=orthorhombic,\n", - " cubic=cubic,\n", - " basis=basis,\n", - " )\n", - " return equil_struct" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "pyiron/latest (python3.11)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.6" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} From 0dfc2358eb0e4125ff6d7ed155a1113c19217746 Mon Sep 17 00:00:00 2001 From: Prabhath C Date: Wed, 12 Nov 2025 16:38:07 +0100 Subject: [PATCH 2/4] Minor modifications --- hackathon/elastic_constants/MD/MD_05-11-25.ipynb | 8 ++++++++ hackathon/elastic_constants/README.md | 5 ----- 2 files changed, 8 insertions(+), 5 deletions(-) delete mode 100644 hackathon/elastic_constants/README.md diff --git a/hackathon/elastic_constants/MD/MD_05-11-25.ipynb b/hackathon/elastic_constants/MD/MD_05-11-25.ipynb index 66adc29..b5b4360 100644 --- a/hackathon/elastic_constants/MD/MD_05-11-25.ipynb +++ b/hackathon/elastic_constants/MD/MD_05-11-25.ipynb @@ -803,6 +803,14 @@ " return stress_diff, relaxed_dict, strained_dict" ] }, + { + "cell_type": "markdown", + "id": "20cfbe45", + "metadata": {}, + "source": [ + "Implement [Mean Measure value](https://github.com/pyiron/pyiron_atomistics/blob/c469a6ecbb787291dcc957f348cf74446fdc7ddc/pyiron_atomistics/lammps/control.py#L704) from pyiron_atomistics maybe?" + ] + }, { "cell_type": "code", "execution_count": null, diff --git a/hackathon/elastic_constants/README.md b/hackathon/elastic_constants/README.md deleted file mode 100644 index 0c52c25..0000000 --- a/hackathon/elastic_constants/README.md +++ /dev/null @@ -1,5 +0,0 @@ -# Temperature dependent elastic constants - -## Definition - -$$C_{ijkl} = \frac{1}{V} \frac{\partial^2 U}{\partial \varepsilon_{ij}\partial \varepsilon_{kl}}$$ From cdefcef67f9c51210639f7224a769e5bd986275a Mon Sep 17 00:00:00 2001 From: Prabhath C Date: Thu, 13 Nov 2025 09:55:05 +0100 Subject: [PATCH 3/4] Convergence over number of atoms and MD steps --- .../MD/MD_12-11-25_convergence.ipynb | 2847 +++++++++++++++++ 1 file changed, 2847 insertions(+) create mode 100644 hackathon/elastic_constants/MD/MD_12-11-25_convergence.ipynb diff --git a/hackathon/elastic_constants/MD/MD_12-11-25_convergence.ipynb b/hackathon/elastic_constants/MD/MD_12-11-25_convergence.ipynb new file mode 100644 index 0000000..51ff8c3 --- /dev/null +++ b/hackathon/elastic_constants/MD/MD_12-11-25_convergence.ipynb @@ -0,0 +1,2847 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "4a26f12c-f1c4-4262-b978-8afec1537ae1", + "metadata": {}, + "source": [ + "# Temperature dependent elastic constants\n", + "\n", + "## Background\n", + "\n", + "$$C_{ijkl} = \\frac{1}{V} \\frac{\\partial^2 U}{\\partial \\varepsilon_{ij}\\partial \\varepsilon_{kl}}$$\n", + "\n", + "$$U(T) = \\frac{V}{2}C_{ijkl}(T)\\varepsilon_{ij}\\varepsilon_{kl}$$\n", + "\n", + "$$\\sigma_{ij} = C_{ijkl}{\\varepsilon_{kl}}$$\n", + "\n", + "### How to get $U$ or $\\sigma$\n", + "\n", + "- MD\n", + "- Quasi-Harmonic\n", + "\n", + "## Tasks\n", + "\n", + "- Get $a_0$ from potential\n", + "- Lattice parameter (as a function of T)\n", + " - MD\n", + " - NVT\n", + " - NPT\n", + " - QH\n", + "- Calculate $U$ or $\\sigma$ for various $\\varepsilon$\n", + " - MD: Equilibriate and average with LAMMPS\n", + " - QH: Get strains from Yuriy's tool and run phonopy\n", + "- Fit\n", + "\n", + "## Teams\n", + "\n", + "- MD: Erik, Han, (Raynol), Prabhath, Jan, Sriram\n", + "- QH: Raynol, (Sam), Bharathi, Ahmed, Haitham\n", + "- Fit & Yuriy: Sam\n", + "- Literature" + ] + }, + { + "cell_type": "markdown", + "id": "37118728", + "metadata": {}, + "source": [ + "# Implementation" + ] + }, + { + "cell_type": "markdown", + "id": "e0b4e2eb", + "metadata": {}, + "source": [ + "* https://atomistics.readthedocs.io/en/latest/bulk_modulus_with_gpaw.html#elastic-matrix\n", + "* https://github.com/pyiron/atomistics/blob/main/tests/test_elastic_lammpslib_functional.py\n", + "* https://github.com/pyiron/pyiron_workflow_atomistics/blob/interstitials/pyiron_workflow_atomistics/dataclass_storage.py\n", + "* https://github.com/ligerzero-ai/pyiron_workflow_lammps/blob/main/pyiron_workflow_lammps/engine.py#L21" + ] + }, + { + "cell_type": "markdown", + "id": "ad9d71eb", + "metadata": {}, + "source": [ + "## Reference" + ] + }, + { + "cell_type": "markdown", + "id": "fee4e526", + "metadata": {}, + "source": [ + "We compare our values with the paper - [M. Krief, et. al., Physical Review E, 103, 063307, 2021](https://journals.aps.org/pre/abstract/10.1103/PhysRevE.103.063307#s4)\n", + "\n", + "Potential used: Copper [Mishin potential](https://www.ctcms.nist.gov/potentials/entry/2001--Mishin-Y-Mehl-M-J-Papaconstantopoulos-D-A-et-al--Cu-1/)" + ] + }, + { + "cell_type": "markdown", + "id": "0f95f937", + "metadata": {}, + "source": [ + "## Imports" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "ab2a0224", + "metadata": {}, + "outputs": [], + "source": [ + "from ase.build import bulk\n", + "from ase.atoms import Atoms" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "314284cf", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/cmmc/ptmp/pyironhb/pyiron_latest_env/lib/python3.12/site-packages/atomistics/calculators/__init__.py:63: UserWarning: calc_static_with_qe(), evaluate_with_qe() and optimize_positions_and_volume_with_qe() are not available as the import of the module named 'pwtools' failed.\n", + " raise_warning(module_list=quantum_espresso_function, import_error=e)\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from __future__ import annotations\n", + "\n", + "from atomistics.workflows.elastic.workflow import (\n", + " get_tasks_for_elastic_matrix,\n", + " analyse_results_for_elastic_matrix\n", + ")\n", + "\n", + "from atomistics.calculators import (\n", + " evaluate_with_lammpslib, \n", + " get_potential_by_name, \n", + " calc_molecular_dynamics_npt_with_lammpslib, \n", + " calc_molecular_dynamics_nvt_with_lammpslib\n", + ")\n", + "\n", + "from atomistics.calculators.lammps.libcalculator import (\n", + " calc_static_with_lammpslib, \n", + " calc_molecular_dynamics_langevin_with_lammpslib\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "4c2e5072", + "metadata": {}, + "outputs": [], + "source": [ + "from pyiron_base import Project, job" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "d0c85625", + "metadata": {}, + "outputs": [], + "source": [ + "pr = Project(\"Convergence_Studies_MD_Elastic_Constants\")" + ] + }, + { + "cell_type": "markdown", + "id": "0640a5d2", + "metadata": {}, + "source": [ + "## Create bulk sample with a guessed lattice constant" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "4ce06b81", + "metadata": {}, + "outputs": [], + "source": [ + "unit_cell = bulk('Cu', 'fcc', a=3.6514, cubic=True) # 4 atoms" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "1007230a", + "metadata": {}, + "outputs": [], + "source": [ + "repeated_unit_cell = unit_cell.repeat(5) # 500 atoms" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "b07fbd51", + "metadata": {}, + "outputs": [], + "source": [ + "potential_name_str = \"2001--Mishin-Y--Cu-1--LAMMPS--ipr1\"\n", + "\n", + "potential_df = get_potential_by_name(\n", + " potential_name=potential_name_str\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "b02f41d3", + "metadata": {}, + "source": [ + "## 0K Relaxed Structure" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "92ee7631", + "metadata": {}, + "outputs": [], + "source": [ + "def get_relaxed_structure_at_0K(\n", + " structure: Atoms, \n", + " potential: str, \n", + " lmp_optimizer_kwargs : dict = None\n", + " ) -> Atoms:\n", + " \n", + " df_pot_selected = get_potential_by_name(\n", + " potential_name=potential\n", + " )\n", + " \n", + " result_dict = evaluate_with_lammpslib(\n", + " task_dict={\"optimize_positions_and_volume\": structure},\n", + " potential_dataframe=df_pot_selected,\n", + " lmp_optimizer_kwargs=lmp_optimizer_kwargs\n", + " )\n", + " \n", + " structure_relaxed = result_dict['structure_with_optimized_positions_and_volume']\n", + "\n", + " return structure_relaxed" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "2c46da55", + "metadata": {}, + "outputs": [], + "source": [ + "lmp_optimizer_kwargs={\n", + " 'min_style':'cg',\n", + " 'ionic_force_tolerance':1e-8,\n", + " 'pressure':np.zeros(6) # add anisotropy\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "f3dcce5a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Atoms(symbols='Cu4', pbc=True, cell=[3.61500008107858, 3.61500008107858, 3.6150000810785805])" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "relaxed_unit_cell = get_relaxed_structure_at_0K(\n", + " unit_cell, # 4 atoms\n", + " potential_name_str, \n", + " lmp_optimizer_kwargs\n", + ")\n", + "\n", + "relaxed_unit_cell # 4 atoms" + ] + }, + { + "cell_type": "markdown", + "id": "115a15d0", + "metadata": {}, + "source": [ + "## 0K Lattice Constant" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "6ce6b4ba-ed90-4d53-a502-549e2980a481", + "metadata": {}, + "outputs": [], + "source": [ + "def get_lattice_constant_at_0K(\n", + " structure: Atoms, \n", + " potential: str, \n", + " lmp_optimizer_kwargs : dict = None\n", + " ) -> float:\n", + "\n", + " structure_relaxed = get_relaxed_structure_at_0K(\n", + " structure=structure, \n", + " potential=potential,\n", + " lmp_optimizer_kwargs=lmp_optimizer_kwargs\n", + " )\n", + " \n", + " a_0 = structure_relaxed.get_volume()**(1/3)\n", + "\n", + " return a_0 # Angstrom" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "e49c9a2b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "np.float64(3.61500008107858)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a_0 = get_lattice_constant_at_0K(\n", + " structure=unit_cell, \n", + " potential=potential_name_str,\n", + " lmp_optimizer_kwargs=lmp_optimizer_kwargs)\n", + "\n", + "a_0 # Angstrom" + ] + }, + { + "cell_type": "markdown", + "id": "00afafda", + "metadata": {}, + "source": [ + "We get the same lattice constant at 0K as the reference paper!" + ] + }, + { + "cell_type": "markdown", + "id": "487ad8a1", + "metadata": {}, + "source": [ + "## 0K Elastic Constants" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "6da5fde2", + "metadata": {}, + "outputs": [], + "source": [ + "def get_strain_tensor_cubic(\n", + " structure : Atoms, \n", + " strain : float = 0.005\n", + " ) -> dict:\n", + "\n", + " deformation_gradient_dict = {\n", + " 'C11': np.eye(3,3) + np.array([[ strain, 0, 0], \n", + " [ 0, 0, 0],\n", + " [ 0, 0, 0]]),\n", + " 'C12': np.eye(3,3) + np.array([[ strain, 0, 0], \n", + " [ 0, strain, 0], \n", + " [ 0, 0, 0]]),\n", + " 'C44': np.eye(3,3) + np.array([[ 0, 0, 0], \n", + " [ 0, 0, strain], \n", + " [ 0, strain, 0]])\n", + " }\n", + "\n", + " return deformation_gradient_dict" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "66091ecb", + "metadata": {}, + "outputs": [], + "source": [ + "def get_elastic_constants_from_stress_tensor(\n", + " tensor_dict : dict, \n", + " strain : float\n", + " ) -> list[float]:\n", + "\n", + " elastic_constants_list = []\n", + "\n", + " for constant_str, diff in tensor_dict.items():\n", + " if constant_str == 'C11':\n", + " constant = diff[0, 0] / strain\n", + " elastic_constants_list.append(abs(constant))\n", + "\n", + " elif constant_str == 'C12':\n", + " sigma33 = diff[2, 2]\n", + " constant = (sigma33/ strain) / 2\n", + " elastic_constants_list.append(abs(constant))\n", + "\n", + " elif constant_str == 'C44':\n", + " sigma23 = diff[2, 1]\n", + " constant = sigma23 / (2 * strain)\n", + " elastic_constants_list.append(abs(constant))\n", + "\n", + " return elastic_constants_list" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "fdd3131b", + "metadata": {}, + "outputs": [], + "source": [ + "def get_stress_tensor_at_0K(\n", + " structure : Atoms, \n", + " potential_dataframe : pd.DataFrame, \n", + " deformation_gradient : np.array\n", + " ):\n", + " \n", + " structure_strained = structure.copy()\n", + " relaxed_cell = np.array(structure_strained.get_cell().tolist())\n", + "\n", + " strained_cell = deformation_gradient@relaxed_cell\n", + " structure_strained.set_cell(\n", + " strained_cell, \n", + " scale_atoms=True\n", + " )\n", + " \n", + " relaxed_dict = calc_static_with_lammpslib(\n", + " structure=structure, \n", + " potential_dataframe=potential_dataframe\n", + " )\n", + " strained_dict = calc_static_with_lammpslib(\n", + " structure=structure_strained,\n", + " potential_dataframe=potential_dataframe\n", + " )\n", + "\n", + " relaxed_dict['stress_GPa'] = relaxed_dict['stress'] / 10**4\n", + " strained_dict['stress_GPa'] = strained_dict['stress'] / 10**4\n", + "\n", + " stress_diff = strained_dict['stress_GPa'] - relaxed_dict['stress_GPa']\n", + " \n", + " return stress_diff, relaxed_dict, strained_dict" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "a1655241", + "metadata": {}, + "outputs": [], + "source": [ + "def calculate_elastic_constants_at_0K(\n", + " structure : Atoms, \n", + " potential_name : str,\n", + " strain : float = 0.005\n", + " ):\n", + "\n", + " df_pot_selected = get_potential_by_name(\n", + " potential_name=potential_name\n", + " )\n", + "\n", + " deformation_gradient_dict = get_strain_tensor_cubic(\n", + " structure=structure, \n", + " strain=strain\n", + " )\n", + " \n", + " tensor_dict = {}\n", + " for constant_str, deformation_gradient in deformation_gradient_dict.items():\n", + " diff, relaxed_dict, strained_dict = get_stress_tensor_at_0K(\n", + " structure=structure,\n", + " potential_dataframe=df_pot_selected,\n", + " deformation_gradient=deformation_gradient\n", + " )\n", + " \n", + " tensor_dict[constant_str] = diff\n", + " tensor_dict[f'relaxed_dict_{constant_str}'] = relaxed_dict\n", + " tensor_dict[f'strained_dict_{constant_str}'] = strained_dict\n", + " \n", + " elastic_constants_list = get_elastic_constants_from_stress_tensor(\n", + " tensor_dict=tensor_dict, \n", + " strain=strain\n", + " )\n", + "\n", + " return elastic_constants_list, tensor_dict" + ] + }, + { + "cell_type": "markdown", + "id": "1d4d9117", + "metadata": {}, + "source": [ + "## Reference function to fit elastic constants (Jan + Yury)'s" + ] + }, + { + "cell_type": "markdown", + "id": "921512df", + "metadata": {}, + "source": [ + "Requires only `relaxed_unit_cell` and `potential_name_str` from previous cells" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "abfe2e9f", + "metadata": {}, + "outputs": [], + "source": [ + "def fit_elastic_constants(\n", + " structure: Atoms, \n", + " potential: str, \n", + " strains, \n", + " stresses=None, \n", + " energies=None):\n", + "\n", + " task_dict, sym_dict = get_tasks_for_elastic_matrix(\n", + " structure=structure,\n", + " eps_range=0.005,\n", + " num_of_point=5,\n", + " zero_strain_job_name=\"s_e_0\",\n", + " sqrt_eta=True\n", + " )\n", + "\n", + " potential_df = get_potential_by_name(\n", + " potential_name=potential\n", + " )\n", + "\n", + " result_dict = evaluate_with_lammpslib(\n", + " task_dict=task_dict,\n", + " potential_dataframe=potential_df,\n", + " )\n", + " \n", + " elastic_dict, sym_dict = analyse_results_for_elastic_matrix(\n", + " output_dict=result_dict,\n", + " sym_dict=sym_dict,\n", + " fit_order=2,\n", + " zero_strain_job_name=\"s_e_0\",\n", + " )\n", + "\n", + " return elastic_dict" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "07218d2f", + "metadata": {}, + "outputs": [], + "source": [ + "elastic_dict = fit_elastic_constants(\n", + " structure=relaxed_unit_cell,\n", + " potential=potential_name_str,\n", + " strains=None\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "2b379a68", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[169.74837327, 123.55258251, 123.55258251, 0. ,\n", + " 0. , 0. ],\n", + " [123.55258251, 169.74837327, 123.55258251, 0. ,\n", + " 0. , 0. ],\n", + " [123.55258251, 123.55258251, 169.74837327, 0. ,\n", + " 0. , 0. ],\n", + " [ 0. , 0. , 0. , 76.24914297,\n", + " 0. , 0. ],\n", + " [ 0. , 0. , 0. , 0. ,\n", + " 76.24914297, 0. ],\n", + " [ 0. , 0. , 0. , 0. ,\n", + " 0. , 76.24914297]])" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "elastic_dict['elastic_matrix']" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "9d40a4ab", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([169.7, 123.6, 76.2])" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "elastic_constants_list_reference = [\n", + " elastic_dict['elastic_matrix'][0,0], \n", + " elastic_dict['elastic_matrix'][0,1], \n", + " elastic_dict['elastic_matrix'][3,3]\n", + " ]\n", + "\n", + "np.round(elastic_constants_list_reference, 1) # GPa" + ] + }, + { + "cell_type": "markdown", + "id": "21e47c80", + "metadata": {}, + "source": [ + "In comparison with the [reference paper](https://journals.aps.org/pre/abstract/10.1103/PhysRevE.103.063307#s4 \"M. Krief, et. al., Physical Review E, 103, 063307, 2021\"),\n", + "\n", + "$C_{11}$=169.9GPa, $C_{12}$=122.6GPa, and $C_{44}$=76.2GPa" + ] + }, + { + "cell_type": "markdown", + "id": "3bfb90c7", + "metadata": {}, + "source": [ + "## Finite Temperature equlibiration\n", + "* First run NPT to relax volume\n", + "* Then equilibriate the cell by running NVT" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "d35b8305", + "metadata": {}, + "outputs": [], + "source": [ + "def equilibriate_structure_at_finite_temperature(\n", + " structure : Atoms, \n", + " potential : str, \n", + " temperature : float = 500,\n", + " run : int = 100000,\n", + " thermo : int = 100,\n", + " seed : int = 4928459, \n", + " cell_scale_value : int = 5,\n", + " thermostat : str = 'langevin'\n", + " ) -> Atoms:\n", + "\n", + " df_pot_selected = get_potential_by_name(\n", + " potential_name=potential\n", + " )\n", + " \n", + " structure_repeated = structure.repeat(cell_scale_value)\n", + "\n", + " npt_dict = calc_molecular_dynamics_npt_with_lammpslib(\n", + " structure=structure_repeated,\n", + " potential_dataframe=df_pot_selected,\n", + " Tstart=temperature,\n", + " Tstop=temperature,\n", + " run=run,\n", + " thermo=thermo,\n", + " seed=seed\n", + " )\n", + " \n", + " npt_lattice_constant = (np.mean(npt_dict['volume'][20:]/len(structure_repeated))*len(structure))**(1/3)\n", + " \n", + " # FIXME: Make it for a generic element - something might be wrong here. Need to check error propagation\n", + " # structure_npt = bulk('Cu', a=npt_lattice_constant, cubic=True)\n", + " # structure_repeated_npt = structure_npt.repeat(cell_scale_value)\n", + " \n", + " structure_repeated_npt = structure.copy()\n", + " structure_repeated_npt.set_cell(\n", + " [[npt_lattice_constant,0,0], \n", + " [0,npt_lattice_constant,0], \n", + " [0,0,npt_lattice_constant]],\n", + " scale_atoms = True\n", + " )\n", + " structure_repeated_npt = structure_repeated_npt.repeat(cell_scale_value)\n", + "\n", + " if thermostat == 'nose-hoover':\n", + " nvt_dict = calc_molecular_dynamics_nvt_with_lammpslib(\n", + " structure=structure_repeated_npt,\n", + " potential_dataframe=df_pot_selected,\n", + " Tstart=temperature,\n", + " Tstop=temperature,\n", + " run=run,\n", + " thermo=thermo,\n", + " seed=seed\n", + " )\n", + " \n", + " elif thermostat == 'langevin':\n", + " nvt_dict = calc_molecular_dynamics_langevin_with_lammpslib(\n", + " structure=structure_repeated_npt,\n", + " potential_dataframe=df_pot_selected,\n", + " Tstart=temperature,\n", + " Tstop=temperature,\n", + " run=run,\n", + " thermo=thermo,\n", + " seed=seed\n", + " )\n", + " \n", + " structure_repeated_nvt = structure_repeated_npt.copy()\n", + " structure_repeated_nvt.set_cell(\n", + " nvt_dict['cell'][-1]\n", + " )\n", + " structure_repeated_nvt.set_positions(\n", + " nvt_dict['positions'][-1]\n", + " )\n", + " structure_repeated_nvt.set_velocities(\n", + " nvt_dict['velocities'][-1]\n", + " )\n", + "\n", + " return structure_repeated_nvt" + ] + }, + { + "cell_type": "markdown", + "id": "fa0d5d7d", + "metadata": {}, + "source": [ + "## Temperature-dependent Elastic Constants" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "61bd9d33", + "metadata": {}, + "outputs": [], + "source": [ + "def get_stress_tensor_at_finite_temperature(\n", + " structure : Atoms, \n", + " potential_dataframe : pd.DataFrame, \n", + " deformation_gradient : np.array, \n", + " temperature : float,\n", + " run : int, \n", + " thermo : int,\n", + " seed : int,\n", + " thermostat : str\n", + " ):\n", + " \n", + " structure_strained = structure.copy()\n", + " relaxed_cell = np.array(structure_strained.get_cell().tolist())\n", + "\n", + " strained_cell = deformation_gradient@relaxed_cell\n", + " structure_strained.set_cell(\n", + " strained_cell, \n", + " scale_atoms=True\n", + " )\n", + " \n", + " if thermostat == 'nose-hoover':\n", + " relaxed_dict = calc_molecular_dynamics_nvt_with_lammpslib(\n", + " structure=structure, \n", + " potential_dataframe=potential_dataframe,\n", + " Tstart=temperature,\n", + " Tstop=temperature,\n", + " run=run,\n", + " thermo=thermo,\n", + " seed=seed,\n", + " disable_initial_velocity=True\n", + " )\n", + " strained_dict = calc_molecular_dynamics_nvt_with_lammpslib(\n", + " structure=structure_strained, \n", + " potential_dataframe=potential_dataframe,\n", + " Tstart=temperature,\n", + " Tstop=temperature,\n", + " run=run,\n", + " thermo=thermo,\n", + " seed=seed,\n", + " disable_initial_velocity=True\n", + " )\n", + " \n", + " elif thermostat == 'langevin':\n", + " relaxed_dict = calc_molecular_dynamics_langevin_with_lammpslib(\n", + " structure=structure, \n", + " potential_dataframe=potential_dataframe,\n", + " Tstart=temperature,\n", + " Tstop=temperature,\n", + " run=run,\n", + " thermo=thermo,\n", + " seed=seed,\n", + " disable_initial_velocity=True\n", + " )\n", + " strained_dict = calc_molecular_dynamics_langevin_with_lammpslib(\n", + " structure=structure_strained, \n", + " potential_dataframe=potential_dataframe,\n", + " Tstart=temperature,\n", + " Tstop=temperature,\n", + " run=run,\n", + " thermo=thermo,\n", + " seed=seed,\n", + " disable_initial_velocity=True\n", + " )\n", + "\n", + " relaxed_dict['pressure_GPa'] = relaxed_dict['pressure'] / 10**4\n", + " strained_dict['pressure_GPa'] = strained_dict['pressure'] / 10**4\n", + "\n", + " stress_diff = -np.mean(strained_dict['pressure_GPa'][20:] - relaxed_dict['pressure_GPa'][20:], axis=0)\n", + "\n", + " return stress_diff, relaxed_dict, strained_dict" + ] + }, + { + "cell_type": "markdown", + "id": "20cfbe45", + "metadata": {}, + "source": [ + "Implement [Mean Measure value](https://github.com/pyiron/pyiron_atomistics/blob/c469a6ecbb787291dcc957f348cf74446fdc7ddc/pyiron_atomistics/lammps/control.py#L704) from pyiron_atomistics maybe?" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "9f46351a", + "metadata": {}, + "outputs": [], + "source": [ + "def calculate_elastic_constants_at_finite_temperature(\n", + " structure : Atoms, # change to unit cell\n", + " cell_scale_value : int,\n", + " potential_name : str, \n", + " temperature : float = 0, \n", + " strain : float = 0.005,\n", + " run : int = 10000,\n", + " thermo : int = 100, \n", + " seed : int = 42, \n", + " thermostat : str = 'langevin'\n", + " ):\n", + "\n", + " df_pot_selected = get_potential_by_name(\n", + " potential_name=potential_name\n", + " )\n", + "\n", + " equilibriated_structure = equilibriate_structure_at_finite_temperature(\n", + " structure=structure,\n", + " potential=potential_name_str, \n", + " temperature=temperature, \n", + " seed=seed,\n", + " cell_scale_value=cell_scale_value\n", + " )\n", + " \n", + " deformation_gradient_dict = get_strain_tensor_cubic(\n", + " structure=equilibriated_structure, \n", + " strain=strain\n", + " )\n", + " \n", + " tensor_dict = {}\n", + " for constant_str, deformation_gradient in deformation_gradient_dict.items():\n", + " diff, relaxed_dict, strained_dict = get_stress_tensor_at_finite_temperature(\n", + " structure=equilibriated_structure, \n", + " potential_dataframe=df_pot_selected,\n", + " deformation_gradient=deformation_gradient,\n", + " temperature=temperature,\n", + " run=run,\n", + " thermo=thermo,\n", + " seed=seed,\n", + " thermostat=thermostat\n", + " )\n", + " \n", + " tensor_dict[constant_str] = diff\n", + " tensor_dict[f'relaxed_dict_{constant_str}'] = relaxed_dict\n", + " tensor_dict[f'strained_dict_{constant_str}'] = strained_dict\n", + " \n", + " elastic_constants_list = get_elastic_constants_from_stress_tensor(\n", + " tensor_dict=tensor_dict, \n", + " strain=strain\n", + " )\n", + "\n", + " return {\"elastic_constants\": elastic_constants_list, \"tensor_dict\": tensor_dict}" + ] + }, + { + "cell_type": "markdown", + "id": "7436663f", + "metadata": {}, + "source": [ + "# Convergence studies" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "0328b1eb", + "metadata": {}, + "outputs": [], + "source": [ + "input_params_scale = {\n", + " \"cell_scale_value\" : [3, 5, 7, 9],\n", + " \"run\" : [5000, 10000, 20000, 30000, 40000, 50000],\n", + " \"temperature\" : [500],\n", + " \"strain\" : [0.005],\n", + " \"seed\": [1357],\n", + " \"thermostat\" : [\"langevin\"]\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "64a69658", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'cell_scale_value': 3, 'run': 5000, 'temperature': 500, 'strain': 0.005, 'seed': 1357, 'thermostat': 'langevin'}\n", + "{'cell_scale_value': 3, 'run': 10000, 'temperature': 500, 'strain': 0.005, 'seed': 1357, 'thermostat': 'langevin'}\n", + "{'cell_scale_value': 3, 'run': 20000, 'temperature': 500, 'strain': 0.005, 'seed': 1357, 'thermostat': 'langevin'}\n", + "{'cell_scale_value': 3, 'run': 30000, 'temperature': 500, 'strain': 0.005, 'seed': 1357, 'thermostat': 'langevin'}\n", + "{'cell_scale_value': 3, 'run': 40000, 'temperature': 500, 'strain': 0.005, 'seed': 1357, 'thermostat': 'langevin'}\n", + "{'cell_scale_value': 3, 'run': 50000, 'temperature': 500, 'strain': 0.005, 'seed': 1357, 'thermostat': 'langevin'}\n", + "{'cell_scale_value': 5, 'run': 5000, 'temperature': 500, 'strain': 0.005, 'seed': 1357, 'thermostat': 'langevin'}\n", + "{'cell_scale_value': 5, 'run': 10000, 'temperature': 500, 'strain': 0.005, 'seed': 1357, 'thermostat': 'langevin'}\n", + "{'cell_scale_value': 5, 'run': 20000, 'temperature': 500, 'strain': 0.005, 'seed': 1357, 'thermostat': 'langevin'}\n", + "{'cell_scale_value': 5, 'run': 30000, 'temperature': 500, 'strain': 0.005, 'seed': 1357, 'thermostat': 'langevin'}\n", + "{'cell_scale_value': 5, 'run': 40000, 'temperature': 500, 'strain': 0.005, 'seed': 1357, 'thermostat': 'langevin'}\n", + "{'cell_scale_value': 5, 'run': 50000, 'temperature': 500, 'strain': 0.005, 'seed': 1357, 'thermostat': 'langevin'}\n", + "{'cell_scale_value': 7, 'run': 5000, 'temperature': 500, 'strain': 0.005, 'seed': 1357, 'thermostat': 'langevin'}\n", + "{'cell_scale_value': 7, 'run': 10000, 'temperature': 500, 'strain': 0.005, 'seed': 1357, 'thermostat': 'langevin'}\n", + "{'cell_scale_value': 7, 'run': 20000, 'temperature': 500, 'strain': 0.005, 'seed': 1357, 'thermostat': 'langevin'}\n", + "{'cell_scale_value': 7, 'run': 30000, 'temperature': 500, 'strain': 0.005, 'seed': 1357, 'thermostat': 'langevin'}\n", + "{'cell_scale_value': 7, 'run': 40000, 'temperature': 500, 'strain': 0.005, 'seed': 1357, 'thermostat': 'langevin'}\n", + "{'cell_scale_value': 7, 'run': 50000, 'temperature': 500, 'strain': 0.005, 'seed': 1357, 'thermostat': 'langevin'}\n", + "{'cell_scale_value': 9, 'run': 5000, 'temperature': 500, 'strain': 0.005, 'seed': 1357, 'thermostat': 'langevin'}\n", + "{'cell_scale_value': 9, 'run': 10000, 'temperature': 500, 'strain': 0.005, 'seed': 1357, 'thermostat': 'langevin'}\n", + "{'cell_scale_value': 9, 'run': 20000, 'temperature': 500, 'strain': 0.005, 'seed': 1357, 'thermostat': 'langevin'}\n", + "{'cell_scale_value': 9, 'run': 30000, 'temperature': 500, 'strain': 0.005, 'seed': 1357, 'thermostat': 'langevin'}\n", + "{'cell_scale_value': 9, 'run': 40000, 'temperature': 500, 'strain': 0.005, 'seed': 1357, 'thermostat': 'langevin'}\n", + "{'cell_scale_value': 9, 'run': 50000, 'temperature': 500, 'strain': 0.005, 'seed': 1357, 'thermostat': 'langevin'}\n" + ] + } + ], + "source": [ + "from itertools import product\n", + "keys = input_params_scale.keys()\n", + "values = input_params_scale.values()\n", + "\n", + "for combo in product(*values):\n", + " params = dict(zip(keys, combo))\n", + " print(params)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "f17dd89b", + "metadata": {}, + "outputs": [], + "source": [ + "def calculate_elastic_constants_for_different_temperatures(\n", + " structure: Atoms, \n", + " potential_name_str: str, \n", + " input_params: dict, \n", + " project: Project):\n", + "\n", + " from itertools import product\n", + " from pyiron_base import job\n", + " \n", + " keys = input_params.keys()\n", + " values = input_params.values()\n", + "\n", + " for combo in product(*values):\n", + " params = dict(zip(keys, combo))\n", + "\n", + " try:\n", + " conv_job = job(calculate_elastic_constants_at_finite_temperature)\n", + " conv_out = conv_job(\n", + " structure = structure,\n", + " potential_name = potential_name_str,\n", + " pyiron_project = project,\n", + " **params\n", + " )\n", + "\n", + " conv_out.server.queue = \"cmmg\"\n", + " conv_out.server.cores = 1\n", + " conv_out.server.run_time = 18000\n", + "\n", + " conv_future = conv_out.pull()\n", + "\n", + " except:\n", + " continue" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "23dda212", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The job calculate_elastic_constants_at_finite_temperature_72ff066aa993f4453687b0734f383adf was saved and received the ID: 30482531\n", + "Queue system id: 18743929\n", + "The job calculate_elastic_constants_at_finite_temperature_df74203a63d29e428c2fafa2bf6886cc was saved and received the ID: 30482532\n", + "Queue system id: 18743930\n", + "The job calculate_elastic_constants_at_finite_temperature_4eb5155d0b575e0d96a5f28ab15d7c76 was saved and received the ID: 30482533\n", + "Queue system id: 18743931\n", + "The job calculate_elastic_constants_at_finite_temperature_21e3030ff212e788df4ef87c8665f1e5 was saved and received the ID: 30482534\n", + "Queue system id: 18743932\n", + "The job calculate_elastic_constants_at_finite_temperature_c5fc7f7177992b98730e8a4b7f8f27c3 was saved and received the ID: 30482535\n", + "Queue system id: 18743933\n", + "The job calculate_elastic_constants_at_finite_temperature_c6126b1dd976089e04a37ad0b78a09cd was saved and received the ID: 30482536\n", + "Queue system id: 18743934\n", + "The job calculate_elastic_constants_at_finite_temperature_f2e5ccf86e25a6d725d2c64daf1ac670 was saved and received the ID: 30482537\n", + "Queue system id: 18743935\n", + "The job calculate_elastic_constants_at_finite_temperature_640b524d9b31b47f34566ac8eb65b6b7 was saved and received the ID: 30482538\n", + "Queue system id: 18743936\n", + "The job calculate_elastic_constants_at_finite_temperature_f66b8a39fde3eeec3f0f41a5e030df3a was saved and received the ID: 30482539\n", + "Queue system id: 18743937\n", + "The job calculate_elastic_constants_at_finite_temperature_56fad748d2d370f982152576a05c69b7 was saved and received the ID: 30482540\n", + "Queue system id: 18743938\n", + "The job calculate_elastic_constants_at_finite_temperature_18bc9d9476685c0b6932cea4c1678300 was saved and received the ID: 30482541\n", + "Queue system id: 18743939\n", + "The job calculate_elastic_constants_at_finite_temperature_c51fa714990bfffbc02eec4bb1787848 was saved and received the ID: 30482542\n", + "Queue system id: 18743940\n", + "The job calculate_elastic_constants_at_finite_temperature_dc7618c82fef7670d9a691b13e8d0902 was saved and received the ID: 30482543\n", + "Queue system id: 18743941\n", + "The job calculate_elastic_constants_at_finite_temperature_250b79a598679eb0bda1fd7d0b6b4d74 was saved and received the ID: 30482544\n", + "Queue system id: 18743942\n", + "The job calculate_elastic_constants_at_finite_temperature_a11b300150da0328fd4d91da54aa0a73 was saved and received the ID: 30482545\n", + "Queue system id: 18743943\n", + "The job calculate_elastic_constants_at_finite_temperature_ddee294765cb94613b91df43cb0e3a23 was saved and received the ID: 30482546\n", + "Queue system id: 18743944\n", + "The job calculate_elastic_constants_at_finite_temperature_a712d2a3acb76c888e0711d30abd0552 was saved and received the ID: 30482547\n", + "Queue system id: 18743945\n", + "The job calculate_elastic_constants_at_finite_temperature_5c4c98d7a82f8aae43384acb438fab6f was saved and received the ID: 30482548\n", + "Queue system id: 18743946\n", + "The job calculate_elastic_constants_at_finite_temperature_927b45e0deb667499ef8caf06d118391 was saved and received the ID: 30482549\n", + "Queue system id: 18743947\n", + "The job calculate_elastic_constants_at_finite_temperature_9116f3035ae80ab4c9c15aae7e203866 was saved and received the ID: 30482550\n", + "Queue system id: 18743948\n", + "The job calculate_elastic_constants_at_finite_temperature_3b238f05770cd5fb3ed05c39f384b6fe was saved and received the ID: 30482551\n", + "Queue system id: 18743949\n", + "The job calculate_elastic_constants_at_finite_temperature_4c5b86181be4732ed1a15ee576fa615a was saved and received the ID: 30482552\n", + "Queue system id: 18743950\n", + "The job calculate_elastic_constants_at_finite_temperature_4b0ae2231f697ea0b1b3f3a435436170 was saved and received the ID: 30482553\n", + "Queue system id: 18743951\n", + "The job calculate_elastic_constants_at_finite_temperature_25b3f24f82188ac15933804153141ae8 was saved and received the ID: 30482554\n", + "Queue system id: 18743952\n" + ] + } + ], + "source": [ + "calculate_elastic_constants_for_different_temperatures(\n", + " structure=relaxed_unit_cell,\n", + " potential_name_str=potential_name_str,\n", + " input_params = input_params_scale,\n", + " project = pr\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "1031075b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idstatuschemicalformulajobsubjobprojectpathprojecttimestarttimestoptotalcputimecomputerhamiltonhamversionparentidmasterid
1030482531finishedNonecalculate_elastic_constants_at_finite_temperature_72ff066aa993f4453687b0734f383adf/calculate_elastic_constants_at_finite_temperature_72ff066aa993f4453687b0734f383adf/cmmc/u/pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/2025-11-12 16:30:35.031432NoneNonepchilaka@cmti001#1#cmmgPythonFunctionContainerJob0.4NoneNone
1130482532finishedNonecalculate_elastic_constants_at_finite_temperature_df74203a63d29e428c2fafa2bf6886cc/calculate_elastic_constants_at_finite_temperature_df74203a63d29e428c2fafa2bf6886cc/cmmc/u/pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/2025-11-12 16:30:35.255590NoneNonepchilaka@cmti001#1#cmmgPythonFunctionContainerJob0.4NoneNone
030482533finishedNonecalculate_elastic_constants_at_finite_temperature_4eb5155d0b575e0d96a5f28ab15d7c76/calculate_elastic_constants_at_finite_temperature_4eb5155d0b575e0d96a5f28ab15d7c76/cmmc/u/pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/2025-11-12 16:30:35.417709NoneNonepchilaka@cmti001#1#cmmgPythonFunctionContainerJob0.4NoneNone
130482534finishedNonecalculate_elastic_constants_at_finite_temperature_21e3030ff212e788df4ef87c8665f1e5/calculate_elastic_constants_at_finite_temperature_21e3030ff212e788df4ef87c8665f1e5/cmmc/u/pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/2025-11-12 16:30:35.593344NoneNonepchilaka@cmti001#1#cmmgPythonFunctionContainerJob0.4NoneNone
330482535finishedNonecalculate_elastic_constants_at_finite_temperature_c5fc7f7177992b98730e8a4b7f8f27c3/calculate_elastic_constants_at_finite_temperature_c5fc7f7177992b98730e8a4b7f8f27c3/cmmc/u/pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/2025-11-12 16:30:35.754474NoneNonepchilaka@cmti001#1#cmmgPythonFunctionContainerJob0.4NoneNone
530482536finishedNonecalculate_elastic_constants_at_finite_temperature_c6126b1dd976089e04a37ad0b78a09cd/calculate_elastic_constants_at_finite_temperature_c6126b1dd976089e04a37ad0b78a09cd/cmmc/u/pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/2025-11-12 16:30:35.920647NoneNonepchilaka@cmti001#1#cmmgPythonFunctionContainerJob0.4NoneNone
630482537finishedNonecalculate_elastic_constants_at_finite_temperature_f2e5ccf86e25a6d725d2c64daf1ac670/calculate_elastic_constants_at_finite_temperature_f2e5ccf86e25a6d725d2c64daf1ac670/cmmc/u/pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/2025-11-12 16:30:36.078920NoneNonepchilaka@cmti001#1#cmmgPythonFunctionContainerJob0.4NoneNone
230482538finishedNonecalculate_elastic_constants_at_finite_temperature_640b524d9b31b47f34566ac8eb65b6b7/calculate_elastic_constants_at_finite_temperature_640b524d9b31b47f34566ac8eb65b6b7/cmmc/u/pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/2025-11-12 16:30:36.234573NoneNonepchilaka@cmti001#1#cmmgPythonFunctionContainerJob0.4NoneNone
730482539finishedNonecalculate_elastic_constants_at_finite_temperature_f66b8a39fde3eeec3f0f41a5e030df3a/calculate_elastic_constants_at_finite_temperature_f66b8a39fde3eeec3f0f41a5e030df3a/cmmc/u/pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/2025-11-12 16:30:36.397845NoneNonepchilaka@cmti001#1#cmmgPythonFunctionContainerJob0.4NoneNone
930482540finishedNonecalculate_elastic_constants_at_finite_temperature_56fad748d2d370f982152576a05c69b7/calculate_elastic_constants_at_finite_temperature_56fad748d2d370f982152576a05c69b7/cmmc/u/pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/2025-11-12 16:30:36.555420NoneNonepchilaka@cmti001#1#cmmgPythonFunctionContainerJob0.4NoneNone
430482541finishedNonecalculate_elastic_constants_at_finite_temperature_18bc9d9476685c0b6932cea4c1678300/calculate_elastic_constants_at_finite_temperature_18bc9d9476685c0b6932cea4c1678300/cmmc/u/pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/2025-11-12 16:30:36.731449NoneNonepchilaka@cmti001#1#cmmgPythonFunctionContainerJob0.4NoneNone
1230482542finishedNonecalculate_elastic_constants_at_finite_temperature_c51fa714990bfffbc02eec4bb1787848/calculate_elastic_constants_at_finite_temperature_c51fa714990bfffbc02eec4bb1787848/cmmc/u/pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/2025-11-12 16:30:36.884156NoneNonepchilaka@cmti001#1#cmmgPythonFunctionContainerJob0.4NoneNone
830482543finishedNonecalculate_elastic_constants_at_finite_temperature_dc7618c82fef7670d9a691b13e8d0902/calculate_elastic_constants_at_finite_temperature_dc7618c82fef7670d9a691b13e8d0902/cmmc/u/pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/2025-11-12 16:30:37.039841NoneNonepchilaka@cmti001#1#cmmgPythonFunctionContainerJob0.4NoneNone
1330482544finishedNonecalculate_elastic_constants_at_finite_temperature_250b79a598679eb0bda1fd7d0b6b4d74/calculate_elastic_constants_at_finite_temperature_250b79a598679eb0bda1fd7d0b6b4d74/cmmc/u/pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/2025-11-12 16:30:37.216665NoneNonepchilaka@cmti001#1#cmmgPythonFunctionContainerJob0.4NoneNone
1430482545finishedNonecalculate_elastic_constants_at_finite_temperature_a11b300150da0328fd4d91da54aa0a73/calculate_elastic_constants_at_finite_temperature_a11b300150da0328fd4d91da54aa0a73/cmmc/u/pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/2025-11-12 16:30:37.372020NoneNonepchilaka@cmti001#1#cmmgPythonFunctionContainerJob0.4NoneNone
1530482546finishedNonecalculate_elastic_constants_at_finite_temperature_ddee294765cb94613b91df43cb0e3a23/calculate_elastic_constants_at_finite_temperature_ddee294765cb94613b91df43cb0e3a23/cmmc/u/pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/2025-11-12 16:30:37.517870NoneNonepchilaka@cmti001#1#cmmgPythonFunctionContainerJob0.4NoneNone
1830482547finishedNonecalculate_elastic_constants_at_finite_temperature_a712d2a3acb76c888e0711d30abd0552/calculate_elastic_constants_at_finite_temperature_a712d2a3acb76c888e0711d30abd0552/cmmc/u/pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/2025-11-12 16:30:37.674201NoneNonepchilaka@cmti001#1#cmmgPythonFunctionContainerJob0.4NoneNone
1730482548finishedNonecalculate_elastic_constants_at_finite_temperature_5c4c98d7a82f8aae43384acb438fab6f/calculate_elastic_constants_at_finite_temperature_5c4c98d7a82f8aae43384acb438fab6f/cmmc/u/pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/2025-11-12 16:30:37.828750NoneNonepchilaka@cmti001#1#cmmgPythonFunctionContainerJob0.4NoneNone
1630482549finishedNonecalculate_elastic_constants_at_finite_temperature_927b45e0deb667499ef8caf06d118391/calculate_elastic_constants_at_finite_temperature_927b45e0deb667499ef8caf06d118391/cmmc/u/pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/2025-11-12 16:30:37.990118NoneNonepchilaka@cmti001#1#cmmgPythonFunctionContainerJob0.4NoneNone
2330482550finishedNonecalculate_elastic_constants_at_finite_temperature_9116f3035ae80ab4c9c15aae7e203866/calculate_elastic_constants_at_finite_temperature_9116f3035ae80ab4c9c15aae7e203866/cmmc/u/pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/2025-11-12 16:30:38.186799NoneNonepchilaka@cmti001#1#cmmgPythonFunctionContainerJob0.4NoneNone
2030482551finishedNonecalculate_elastic_constants_at_finite_temperature_3b238f05770cd5fb3ed05c39f384b6fe/calculate_elastic_constants_at_finite_temperature_3b238f05770cd5fb3ed05c39f384b6fe/cmmc/u/pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/2025-11-12 16:30:38.338872NoneNonepchilaka@cmti001#1#cmmgPythonFunctionContainerJob0.4NoneNone
1930482552finishedNonecalculate_elastic_constants_at_finite_temperature_4c5b86181be4732ed1a15ee576fa615a/calculate_elastic_constants_at_finite_temperature_4c5b86181be4732ed1a15ee576fa615a/cmmc/u/pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/2025-11-12 16:30:38.514603NoneNonepchilaka@cmti001#1#cmmgPythonFunctionContainerJob0.4NoneNone
2230482553finishedNonecalculate_elastic_constants_at_finite_temperature_4b0ae2231f697ea0b1b3f3a435436170/calculate_elastic_constants_at_finite_temperature_4b0ae2231f697ea0b1b3f3a435436170/cmmc/u/pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/2025-11-12 16:30:38.673582NoneNonepchilaka@cmti001#1#cmmgPythonFunctionContainerJob0.4NoneNone
2130482554finishedNonecalculate_elastic_constants_at_finite_temperature_25b3f24f82188ac15933804153141ae8/calculate_elastic_constants_at_finite_temperature_25b3f24f82188ac15933804153141ae8/cmmc/u/pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/2025-11-12 16:30:38.830444NoneNonepchilaka@cmti001#1#cmmgPythonFunctionContainerJob0.4NoneNone
\n", + "
" + ], + "text/plain": [ + " id status chemicalformula \\\n", + "10 30482531 finished None \n", + "11 30482532 finished None \n", + "0 30482533 finished None \n", + "1 30482534 finished None \n", + "3 30482535 finished None \n", + "5 30482536 finished None \n", + "6 30482537 finished None \n", + "2 30482538 finished None \n", + "7 30482539 finished None \n", + "9 30482540 finished None \n", + "4 30482541 finished None \n", + "12 30482542 finished None \n", + "8 30482543 finished None \n", + "13 30482544 finished None \n", + "14 30482545 finished None \n", + "15 30482546 finished None \n", + "18 30482547 finished None \n", + "17 30482548 finished None \n", + "16 30482549 finished None \n", + "23 30482550 finished None \n", + "20 30482551 finished None \n", + "19 30482552 finished None \n", + "22 30482553 finished None \n", + "21 30482554 finished None \n", + "\n", + " job \\\n", + "10 calculate_elastic_constants_at_finite_temperature_72ff066aa993f4453687b0734f383adf \n", + "11 calculate_elastic_constants_at_finite_temperature_df74203a63d29e428c2fafa2bf6886cc \n", + "0 calculate_elastic_constants_at_finite_temperature_4eb5155d0b575e0d96a5f28ab15d7c76 \n", + "1 calculate_elastic_constants_at_finite_temperature_21e3030ff212e788df4ef87c8665f1e5 \n", + "3 calculate_elastic_constants_at_finite_temperature_c5fc7f7177992b98730e8a4b7f8f27c3 \n", + "5 calculate_elastic_constants_at_finite_temperature_c6126b1dd976089e04a37ad0b78a09cd \n", + "6 calculate_elastic_constants_at_finite_temperature_f2e5ccf86e25a6d725d2c64daf1ac670 \n", + "2 calculate_elastic_constants_at_finite_temperature_640b524d9b31b47f34566ac8eb65b6b7 \n", + "7 calculate_elastic_constants_at_finite_temperature_f66b8a39fde3eeec3f0f41a5e030df3a \n", + "9 calculate_elastic_constants_at_finite_temperature_56fad748d2d370f982152576a05c69b7 \n", + "4 calculate_elastic_constants_at_finite_temperature_18bc9d9476685c0b6932cea4c1678300 \n", + "12 calculate_elastic_constants_at_finite_temperature_c51fa714990bfffbc02eec4bb1787848 \n", + "8 calculate_elastic_constants_at_finite_temperature_dc7618c82fef7670d9a691b13e8d0902 \n", + "13 calculate_elastic_constants_at_finite_temperature_250b79a598679eb0bda1fd7d0b6b4d74 \n", + "14 calculate_elastic_constants_at_finite_temperature_a11b300150da0328fd4d91da54aa0a73 \n", + "15 calculate_elastic_constants_at_finite_temperature_ddee294765cb94613b91df43cb0e3a23 \n", + "18 calculate_elastic_constants_at_finite_temperature_a712d2a3acb76c888e0711d30abd0552 \n", + "17 calculate_elastic_constants_at_finite_temperature_5c4c98d7a82f8aae43384acb438fab6f \n", + "16 calculate_elastic_constants_at_finite_temperature_927b45e0deb667499ef8caf06d118391 \n", + "23 calculate_elastic_constants_at_finite_temperature_9116f3035ae80ab4c9c15aae7e203866 \n", + "20 calculate_elastic_constants_at_finite_temperature_3b238f05770cd5fb3ed05c39f384b6fe \n", + "19 calculate_elastic_constants_at_finite_temperature_4c5b86181be4732ed1a15ee576fa615a \n", + "22 calculate_elastic_constants_at_finite_temperature_4b0ae2231f697ea0b1b3f3a435436170 \n", + "21 calculate_elastic_constants_at_finite_temperature_25b3f24f82188ac15933804153141ae8 \n", + "\n", + " subjob \\\n", + "10 /calculate_elastic_constants_at_finite_temperature_72ff066aa993f4453687b0734f383adf \n", + "11 /calculate_elastic_constants_at_finite_temperature_df74203a63d29e428c2fafa2bf6886cc \n", + "0 /calculate_elastic_constants_at_finite_temperature_4eb5155d0b575e0d96a5f28ab15d7c76 \n", + "1 /calculate_elastic_constants_at_finite_temperature_21e3030ff212e788df4ef87c8665f1e5 \n", + "3 /calculate_elastic_constants_at_finite_temperature_c5fc7f7177992b98730e8a4b7f8f27c3 \n", + "5 /calculate_elastic_constants_at_finite_temperature_c6126b1dd976089e04a37ad0b78a09cd \n", + "6 /calculate_elastic_constants_at_finite_temperature_f2e5ccf86e25a6d725d2c64daf1ac670 \n", + "2 /calculate_elastic_constants_at_finite_temperature_640b524d9b31b47f34566ac8eb65b6b7 \n", + "7 /calculate_elastic_constants_at_finite_temperature_f66b8a39fde3eeec3f0f41a5e030df3a \n", + "9 /calculate_elastic_constants_at_finite_temperature_56fad748d2d370f982152576a05c69b7 \n", + "4 /calculate_elastic_constants_at_finite_temperature_18bc9d9476685c0b6932cea4c1678300 \n", + "12 /calculate_elastic_constants_at_finite_temperature_c51fa714990bfffbc02eec4bb1787848 \n", + "8 /calculate_elastic_constants_at_finite_temperature_dc7618c82fef7670d9a691b13e8d0902 \n", + "13 /calculate_elastic_constants_at_finite_temperature_250b79a598679eb0bda1fd7d0b6b4d74 \n", + "14 /calculate_elastic_constants_at_finite_temperature_a11b300150da0328fd4d91da54aa0a73 \n", + "15 /calculate_elastic_constants_at_finite_temperature_ddee294765cb94613b91df43cb0e3a23 \n", + "18 /calculate_elastic_constants_at_finite_temperature_a712d2a3acb76c888e0711d30abd0552 \n", + "17 /calculate_elastic_constants_at_finite_temperature_5c4c98d7a82f8aae43384acb438fab6f \n", + "16 /calculate_elastic_constants_at_finite_temperature_927b45e0deb667499ef8caf06d118391 \n", + "23 /calculate_elastic_constants_at_finite_temperature_9116f3035ae80ab4c9c15aae7e203866 \n", + "20 /calculate_elastic_constants_at_finite_temperature_3b238f05770cd5fb3ed05c39f384b6fe \n", + "19 /calculate_elastic_constants_at_finite_temperature_4c5b86181be4732ed1a15ee576fa615a \n", + "22 /calculate_elastic_constants_at_finite_temperature_4b0ae2231f697ea0b1b3f3a435436170 \n", + "21 /calculate_elastic_constants_at_finite_temperature_25b3f24f82188ac15933804153141ae8 \n", + "\n", + " projectpath \\\n", + "10 /cmmc/u/ \n", + "11 /cmmc/u/ \n", + "0 /cmmc/u/ \n", + "1 /cmmc/u/ \n", + "3 /cmmc/u/ \n", + "5 /cmmc/u/ \n", + "6 /cmmc/u/ \n", + "2 /cmmc/u/ \n", + "7 /cmmc/u/ \n", + "9 /cmmc/u/ \n", + "4 /cmmc/u/ \n", + "12 /cmmc/u/ \n", + "8 /cmmc/u/ \n", + "13 /cmmc/u/ \n", + "14 /cmmc/u/ \n", + "15 /cmmc/u/ \n", + "18 /cmmc/u/ \n", + "17 /cmmc/u/ \n", + "16 /cmmc/u/ \n", + "23 /cmmc/u/ \n", + "20 /cmmc/u/ \n", + "19 /cmmc/u/ \n", + "22 /cmmc/u/ \n", + "21 /cmmc/u/ \n", + "\n", + " project \\\n", + "10 pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/ \n", + "11 pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/ \n", + "0 pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/ \n", + "1 pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/ \n", + "3 pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/ \n", + "5 pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/ \n", + "6 pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/ \n", + "2 pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/ \n", + "7 pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/ \n", + "9 pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/ \n", + "4 pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/ \n", + "12 pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/ \n", + "8 pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/ \n", + "13 pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/ \n", + "14 pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/ \n", + "15 pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/ \n", + "18 pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/ \n", + "17 pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/ \n", + "16 pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/ \n", + "23 pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/ \n", + "20 pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/ \n", + "19 pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/ \n", + "22 pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/ \n", + "21 pchilaka/1_Work/1_My_Notebooks/5_Hackathons/hackathon/hackathon/elastic_constants/MD/Convergence_Studies_MD_Elastic_Constants/ \n", + "\n", + " timestart timestop totalcputime computer \\\n", + "10 2025-11-12 16:30:35.031432 None None pchilaka@cmti001#1#cmmg \n", + "11 2025-11-12 16:30:35.255590 None None pchilaka@cmti001#1#cmmg \n", + "0 2025-11-12 16:30:35.417709 None None pchilaka@cmti001#1#cmmg \n", + "1 2025-11-12 16:30:35.593344 None None pchilaka@cmti001#1#cmmg \n", + "3 2025-11-12 16:30:35.754474 None None pchilaka@cmti001#1#cmmg \n", + "5 2025-11-12 16:30:35.920647 None None pchilaka@cmti001#1#cmmg \n", + "6 2025-11-12 16:30:36.078920 None None pchilaka@cmti001#1#cmmg \n", + "2 2025-11-12 16:30:36.234573 None None pchilaka@cmti001#1#cmmg \n", + "7 2025-11-12 16:30:36.397845 None None pchilaka@cmti001#1#cmmg \n", + "9 2025-11-12 16:30:36.555420 None None pchilaka@cmti001#1#cmmg \n", + "4 2025-11-12 16:30:36.731449 None None pchilaka@cmti001#1#cmmg \n", + "12 2025-11-12 16:30:36.884156 None None pchilaka@cmti001#1#cmmg \n", + "8 2025-11-12 16:30:37.039841 None None pchilaka@cmti001#1#cmmg \n", + "13 2025-11-12 16:30:37.216665 None None pchilaka@cmti001#1#cmmg \n", + "14 2025-11-12 16:30:37.372020 None None pchilaka@cmti001#1#cmmg \n", + "15 2025-11-12 16:30:37.517870 None None pchilaka@cmti001#1#cmmg \n", + "18 2025-11-12 16:30:37.674201 None None pchilaka@cmti001#1#cmmg \n", + "17 2025-11-12 16:30:37.828750 None None pchilaka@cmti001#1#cmmg \n", + "16 2025-11-12 16:30:37.990118 None None pchilaka@cmti001#1#cmmg \n", + "23 2025-11-12 16:30:38.186799 None None pchilaka@cmti001#1#cmmg \n", + "20 2025-11-12 16:30:38.338872 None None pchilaka@cmti001#1#cmmg \n", + "19 2025-11-12 16:30:38.514603 None None pchilaka@cmti001#1#cmmg \n", + "22 2025-11-12 16:30:38.673582 None None pchilaka@cmti001#1#cmmg \n", + "21 2025-11-12 16:30:38.830444 None None pchilaka@cmti001#1#cmmg \n", + "\n", + " hamilton hamversion parentid masterid \n", + "10 PythonFunctionContainerJob 0.4 None None \n", + "11 PythonFunctionContainerJob 0.4 None None \n", + "0 PythonFunctionContainerJob 0.4 None None \n", + "1 PythonFunctionContainerJob 0.4 None None \n", + "3 PythonFunctionContainerJob 0.4 None None \n", + "5 PythonFunctionContainerJob 0.4 None None \n", + "6 PythonFunctionContainerJob 0.4 None None \n", + "2 PythonFunctionContainerJob 0.4 None None \n", + "7 PythonFunctionContainerJob 0.4 None None \n", + "9 PythonFunctionContainerJob 0.4 None None \n", + "4 PythonFunctionContainerJob 0.4 None None \n", + "12 PythonFunctionContainerJob 0.4 None None \n", + "8 PythonFunctionContainerJob 0.4 None None \n", + "13 PythonFunctionContainerJob 0.4 None None \n", + "14 PythonFunctionContainerJob 0.4 None None \n", + "15 PythonFunctionContainerJob 0.4 None None \n", + "18 PythonFunctionContainerJob 0.4 None None \n", + "17 PythonFunctionContainerJob 0.4 None None \n", + "16 PythonFunctionContainerJob 0.4 None None \n", + "23 PythonFunctionContainerJob 0.4 None None \n", + "20 PythonFunctionContainerJob 0.4 None None \n", + "19 PythonFunctionContainerJob 0.4 None None \n", + "22 PythonFunctionContainerJob 0.4 None None \n", + "21 PythonFunctionContainerJob 0.4 None None " + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pr.job_table()" + ] + }, + { + "cell_type": "markdown", + "id": "b22947ea", + "metadata": {}, + "source": [ + "## Pyiron table" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "7e422ab5", + "metadata": {}, + "outputs": [], + "source": [ + "def db_filter_function(job_table):\n", + " return (job_table.status == \"finished\") & (job_table.hamilton == \"PythonFunctionContainerJob\")\n", + "\n", + "def job_filter_function(job):\n", + " return (job.status == \"finished\") & (\"calculate\" in job.name)\n", + "\n", + "def get_input_structure(job):\n", + " return job.project_hdf5['input']['data']['structure']\n", + "\n", + "def get_natoms_input(job):\n", + " return len(get_input_structure(job))\n", + "\n", + "def get_cell_scale_value(job):\n", + " return job.project_hdf5['input']['data']['cell_scale_value']\n", + "\n", + "def get_natoms_output(job):\n", + " cell_scale_value = get_cell_scale_value(job)\n", + " n_atoms_unit_cell = len(get_input_structure(job))\n", + " return (cell_scale_value ** 3) * n_atoms_unit_cell\n", + "\n", + "def get_potential_name(job):\n", + " return job.project_hdf5['input']['data']['potential_name']\n", + "\n", + "def get_temperature(job):\n", + " return job.project_hdf5['input']['data']['temperature']\n", + "\n", + "def get_strain(job):\n", + " return job.project_hdf5['input']['data']['strain']\n", + "\n", + "def get_run(job):\n", + " return job.project_hdf5['input']['data']['run']\n", + "\n", + "def get_thermo(job):\n", + " return job.project_hdf5['input']['data']['thermo']\n", + "\n", + "def get_seed(job):\n", + " return job.project_hdf5['input']['data']['seed']\n", + "\n", + "def get_thermostat(job):\n", + " return job.project_hdf5['input']['data']['thermostat']\n", + "\n", + "def get_C11(job):\n", + " return job.project_hdf5['storage']['output__index_1']['result__index_0']['elastic_constants'][0]\n", + "\n", + "def get_C12(job):\n", + " return job.project_hdf5['storage']['output__index_1']['result__index_0']['elastic_constants'][1]\n", + "\n", + "def get_C44(job):\n", + " return job.project_hdf5['storage']['output__index_1']['result__index_0']['elastic_constants'][2]" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "cb4cafc7", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The job Convergence_pyiron_table was saved and received the ID: 30497543\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "236269d0b533416eb24ef9952c84955e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Loading and filtering jobs: 0%| | 0/25 [00:00\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
job_idinput_structurenatoms_inputcell_scale_valuenatoms_outputpotential_nametemperaturestrainrunthermoseedthermostatC11C12C44
030482531(Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999...431082001--Mishin-Y--Cu-1--LAMMPS--ipr15000.00550001001357langevin154.995992114.55364970.480720
130482532(Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999...431082001--Mishin-Y--Cu-1--LAMMPS--ipr15000.005100001001357langevin168.320647111.51566671.162038
230482533(Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999...431082001--Mishin-Y--Cu-1--LAMMPS--ipr15000.005200001001357langevin155.957072110.42044469.468960
330482534(Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999...431082001--Mishin-Y--Cu-1--LAMMPS--ipr15000.005300001001357langevin153.914441115.19562369.045834
430482535(Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999...431082001--Mishin-Y--Cu-1--LAMMPS--ipr15000.005400001001357langevin152.826177114.19425768.296661
530482536(Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999...431082001--Mishin-Y--Cu-1--LAMMPS--ipr15000.005500001001357langevin153.097088114.79741868.130248
630482537(Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999...455002001--Mishin-Y--Cu-1--LAMMPS--ipr15000.00550001001357langevin155.970829106.68153068.912903
730482538(Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999...455002001--Mishin-Y--Cu-1--LAMMPS--ipr15000.005100001001357langevin162.813220113.01896968.152770
830482539(Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999...455002001--Mishin-Y--Cu-1--LAMMPS--ipr15000.005200001001357langevin157.063124115.46479167.302322
930482540(Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999...455002001--Mishin-Y--Cu-1--LAMMPS--ipr15000.005300001001357langevin154.738155113.75795467.300007
1030482541(Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999...455002001--Mishin-Y--Cu-1--LAMMPS--ipr15000.005400001001357langevin153.544811113.48806467.245387
1130482542(Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999...455002001--Mishin-Y--Cu-1--LAMMPS--ipr15000.005500001001357langevin154.471282113.98592066.947857
1230482543(Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999...4713722001--Mishin-Y--Cu-1--LAMMPS--ipr15000.00550001001357langevin153.662770113.98971767.948396
1330482544(Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999...4713722001--Mishin-Y--Cu-1--LAMMPS--ipr15000.005100001001357langevin153.377526113.47372268.150703
1430482545(Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999...4713722001--Mishin-Y--Cu-1--LAMMPS--ipr15000.005200001001357langevin153.635111113.38386467.187620
1530482546(Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999...4713722001--Mishin-Y--Cu-1--LAMMPS--ipr15000.005300001001357langevin154.481233113.49196366.809030
1630482547(Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999...4713722001--Mishin-Y--Cu-1--LAMMPS--ipr15000.005400001001357langevin153.440220113.31974066.809134
1730482548(Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999...4713722001--Mishin-Y--Cu-1--LAMMPS--ipr15000.005500001001357langevin153.774966113.58949667.196256
1830482549(Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999...4929162001--Mishin-Y--Cu-1--LAMMPS--ipr15000.00550001001357langevin160.346619113.93670967.982129
1930482550(Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999...4929162001--Mishin-Y--Cu-1--LAMMPS--ipr15000.005100001001357langevin155.027161114.68555467.696762
2030482551(Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999...4929162001--Mishin-Y--Cu-1--LAMMPS--ipr15000.005200001001357langevin155.287126114.81157867.525672
2130482552(Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999...4929162001--Mishin-Y--Cu-1--LAMMPS--ipr15000.005300001001357langevin156.263694114.67532967.397498
2230482553(Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999...4929162001--Mishin-Y--Cu-1--LAMMPS--ipr15000.005400001001357langevin155.606608114.75232267.446059
2330482554(Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999...4929162001--Mishin-Y--Cu-1--LAMMPS--ipr15000.005500001001357langevin155.181254114.63234667.317222
\n", + "" + ], + "text/plain": [ + " job_id \\\n", + "0 30482531 \n", + "1 30482532 \n", + "2 30482533 \n", + "3 30482534 \n", + "4 30482535 \n", + "5 30482536 \n", + "6 30482537 \n", + "7 30482538 \n", + "8 30482539 \n", + "9 30482540 \n", + "10 30482541 \n", + "11 30482542 \n", + "12 30482543 \n", + "13 30482544 \n", + "14 30482545 \n", + "15 30482546 \n", + "16 30482547 \n", + "17 30482548 \n", + "18 30482549 \n", + "19 30482550 \n", + "20 30482551 \n", + "21 30482552 \n", + "22 30482553 \n", + "23 30482554 \n", + "\n", + " input_structure \\\n", + "0 (Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999... \n", + "1 (Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999... \n", + "2 (Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999... \n", + "3 (Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999... \n", + "4 (Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999... \n", + "5 (Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999... \n", + "6 (Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999... \n", + "7 (Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999... \n", + "8 (Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999... \n", + "9 (Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999... \n", + "10 (Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999... \n", + "11 (Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999... \n", + "12 (Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999... \n", + "13 (Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999... \n", + "14 (Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999... \n", + "15 (Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999... \n", + "16 (Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999... \n", + "17 (Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999... \n", + "18 (Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999... \n", + "19 (Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999... \n", + "20 (Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999... \n", + "21 (Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999... \n", + "22 (Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999... \n", + "23 (Atom('Cu', [np.float64(0.018199959460699095), np.float64(0.018199959460699095), np.float64(0.018199959460699095)], index=0), Atom('Cu', [np.float64(0.01819995946069909), np.float64(1.825699999999... \n", + "\n", + " natoms_input cell_scale_value natoms_output \\\n", + "0 4 3 108 \n", + "1 4 3 108 \n", + "2 4 3 108 \n", + "3 4 3 108 \n", + "4 4 3 108 \n", + "5 4 3 108 \n", + "6 4 5 500 \n", + "7 4 5 500 \n", + "8 4 5 500 \n", + "9 4 5 500 \n", + "10 4 5 500 \n", + "11 4 5 500 \n", + "12 4 7 1372 \n", + "13 4 7 1372 \n", + "14 4 7 1372 \n", + "15 4 7 1372 \n", + "16 4 7 1372 \n", + "17 4 7 1372 \n", + "18 4 9 2916 \n", + "19 4 9 2916 \n", + "20 4 9 2916 \n", + "21 4 9 2916 \n", + "22 4 9 2916 \n", + "23 4 9 2916 \n", + "\n", + " potential_name temperature strain run thermo \\\n", + "0 2001--Mishin-Y--Cu-1--LAMMPS--ipr1 500 0.005 5000 100 \n", + "1 2001--Mishin-Y--Cu-1--LAMMPS--ipr1 500 0.005 10000 100 \n", + "2 2001--Mishin-Y--Cu-1--LAMMPS--ipr1 500 0.005 20000 100 \n", + "3 2001--Mishin-Y--Cu-1--LAMMPS--ipr1 500 0.005 30000 100 \n", + "4 2001--Mishin-Y--Cu-1--LAMMPS--ipr1 500 0.005 40000 100 \n", + "5 2001--Mishin-Y--Cu-1--LAMMPS--ipr1 500 0.005 50000 100 \n", + "6 2001--Mishin-Y--Cu-1--LAMMPS--ipr1 500 0.005 5000 100 \n", + "7 2001--Mishin-Y--Cu-1--LAMMPS--ipr1 500 0.005 10000 100 \n", + "8 2001--Mishin-Y--Cu-1--LAMMPS--ipr1 500 0.005 20000 100 \n", + "9 2001--Mishin-Y--Cu-1--LAMMPS--ipr1 500 0.005 30000 100 \n", + "10 2001--Mishin-Y--Cu-1--LAMMPS--ipr1 500 0.005 40000 100 \n", + "11 2001--Mishin-Y--Cu-1--LAMMPS--ipr1 500 0.005 50000 100 \n", + "12 2001--Mishin-Y--Cu-1--LAMMPS--ipr1 500 0.005 5000 100 \n", + "13 2001--Mishin-Y--Cu-1--LAMMPS--ipr1 500 0.005 10000 100 \n", + "14 2001--Mishin-Y--Cu-1--LAMMPS--ipr1 500 0.005 20000 100 \n", + "15 2001--Mishin-Y--Cu-1--LAMMPS--ipr1 500 0.005 30000 100 \n", + "16 2001--Mishin-Y--Cu-1--LAMMPS--ipr1 500 0.005 40000 100 \n", + "17 2001--Mishin-Y--Cu-1--LAMMPS--ipr1 500 0.005 50000 100 \n", + "18 2001--Mishin-Y--Cu-1--LAMMPS--ipr1 500 0.005 5000 100 \n", + "19 2001--Mishin-Y--Cu-1--LAMMPS--ipr1 500 0.005 10000 100 \n", + "20 2001--Mishin-Y--Cu-1--LAMMPS--ipr1 500 0.005 20000 100 \n", + "21 2001--Mishin-Y--Cu-1--LAMMPS--ipr1 500 0.005 30000 100 \n", + "22 2001--Mishin-Y--Cu-1--LAMMPS--ipr1 500 0.005 40000 100 \n", + "23 2001--Mishin-Y--Cu-1--LAMMPS--ipr1 500 0.005 50000 100 \n", + "\n", + " seed thermostat C11 C12 C44 \n", + "0 1357 langevin 154.995992 114.553649 70.480720 \n", + "1 1357 langevin 168.320647 111.515666 71.162038 \n", + "2 1357 langevin 155.957072 110.420444 69.468960 \n", + "3 1357 langevin 153.914441 115.195623 69.045834 \n", + "4 1357 langevin 152.826177 114.194257 68.296661 \n", + "5 1357 langevin 153.097088 114.797418 68.130248 \n", + "6 1357 langevin 155.970829 106.681530 68.912903 \n", + "7 1357 langevin 162.813220 113.018969 68.152770 \n", + "8 1357 langevin 157.063124 115.464791 67.302322 \n", + "9 1357 langevin 154.738155 113.757954 67.300007 \n", + "10 1357 langevin 153.544811 113.488064 67.245387 \n", + "11 1357 langevin 154.471282 113.985920 66.947857 \n", + "12 1357 langevin 153.662770 113.989717 67.948396 \n", + "13 1357 langevin 153.377526 113.473722 68.150703 \n", + "14 1357 langevin 153.635111 113.383864 67.187620 \n", + "15 1357 langevin 154.481233 113.491963 66.809030 \n", + "16 1357 langevin 153.440220 113.319740 66.809134 \n", + "17 1357 langevin 153.774966 113.589496 67.196256 \n", + "18 1357 langevin 160.346619 113.936709 67.982129 \n", + "19 1357 langevin 155.027161 114.685554 67.696762 \n", + "20 1357 langevin 155.287126 114.811578 67.525672 \n", + "21 1357 langevin 156.263694 114.675329 67.397498 \n", + "22 1357 langevin 155.606608 114.752322 67.446059 \n", + "23 1357 langevin 155.181254 114.632346 67.317222 " + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "calculations_df" + ] + }, + { + "cell_type": "markdown", + "id": "7d740c31", + "metadata": {}, + "source": [ + "## Plots" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "b2082d6c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
natoms_outputrunElasticConstantValue
01085000C11154.995992
110810000C11168.320647
210820000C11155.957072
310830000C11153.914441
410840000C11152.826177
...............
67291610000C4467.696762
68291620000C4467.525672
69291630000C4467.397498
70291640000C4467.446059
71291650000C4467.317222
\n", + "

72 rows × 4 columns

\n", + "
" + ], + "text/plain": [ + " natoms_output run ElasticConstant Value\n", + "0 108 5000 C11 154.995992\n", + "1 108 10000 C11 168.320647\n", + "2 108 20000 C11 155.957072\n", + "3 108 30000 C11 153.914441\n", + "4 108 40000 C11 152.826177\n", + ".. ... ... ... ...\n", + "67 2916 10000 C44 67.696762\n", + "68 2916 20000 C44 67.525672\n", + "69 2916 30000 C44 67.397498\n", + "70 2916 40000 C44 67.446059\n", + "71 2916 50000 C44 67.317222\n", + "\n", + "[72 rows x 4 columns]" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# melt the DataFrame\n", + "calculations_df_long = calculations_df.melt(\n", + " id_vars=['natoms_output', 'run'], # columns to keep\n", + " value_vars=['C11', 'C12', 'C44'], # columns to go \"long\"\n", + " var_name='ElasticConstant', \n", + " value_name='Value'\n", + ")\n", + "\n", + "calculations_df_long" + ] + }, + { + "cell_type": "markdown", + "id": "cf4b5796", + "metadata": {}, + "source": [ + "### MD time steps on x-axis" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "390b4ccb", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGwCAYAAABIC3rIAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVQBJREFUeJzt3QeYU1XaB/B/+iTTGwwI0kSkq6AguoKCFEWk7FqXBUURpQpY0F1BPxVw1y5i2wV1VSyAuqgUpYk0pQgCIlXawAxMY3rK/Z73zCY7JQMzOJMy9/97nssk954kJ7kkeXPOe84xaJqmgYiIiEjHjMGuABEREVGwMSAiIiIi3WNARERERLrHgIiIiIh0jwERERER6R4DIiIiItI9BkRERESke2bdvwJV5PF4cOzYMURHR8NgMPBlIyIiCgMy3eLp06fRsGFDGI2VtwMxIKoiCYYaN25cU+eHiIiIAujw4cNo1KhRpccZEFWRtAx5X9CYmJiaOTtERERUq3JyclSDhvd7vDIMiKrI200mwRADIiIiovBytnSXoCZVz549Gx06dPAFGVdccQW+/vrrMv1+06ZNU/1+drsdPXr0wI4dO8rcR1FREcaOHYukpCRERkZiwIABOHLkSJkymZmZGDp0KGJjY9Uml7OysgL2PImIiCi0BTUgkr68GTNm4Mcff1Tbtddei5tuuskX9Dz77LN4/vnn8eqrr+KHH35ASkoKrrvuOpUc5TVhwgQsXLgQ8+bNw5o1a5Cbm4v+/fvD7Xb7ytx+++3YunUrFi9erDa5LEERERERkaKFmPj4eO3tt9/WPB6PlpKSos2YMcN3rLCwUIuNjdVef/11dT0rK0uzWCzavHnzfGWOHj2qGY1GbfHixer6zp07NXma69ev95VZt26d2vfLL79UuV7Z2dnqNvKXiIiIwkNVv79DJodIWnQ++eQT5OXlqa6zAwcO4Pjx4+jdu7evjM1mQ/fu3bF27Vrce++92LRpE5xOZ5ky0r3Wrl07VaZPnz5Yt26d6ibr0qWLr0zXrl3VPinTqlUrv/WRrjjZSidlEemRvDflfUbhz2KxwGQyBbsaRCEp6AHR9u3bVQBUWFiIqKgo1f3Vpk0bFayI+vXrlykv13/77Td1WQImq9WK+Pj4CmXkmLdMvXr1Kjyu7POW8Wf69Ol44oknauQ5EoUjyeGT9wjz7eqWuLg4lX7A+dSIQiwgkhYayemRD9358+dj2LBhWLVqle94+TetfEif7Y1cvoy/8me7nylTpmDixIkVhu0R6YU3GJIfDw6Hg1+gYU4+8/Lz85GWlqauN2jQINhVIgopQQ+IpIXnggsuUJc7d+6skqdfeuklPPzww74P5dJvXHkze1uN5FdOcXGxGkVWupVIynTr1s1X5sSJExUeNz09vULrU2nSPScbkV67ybzBUGJiYrCrQzVERut6PyPl3LL7jCiE1zKTXzGSu9OsWTMVzCxbtsx3TIIfaT3yBjudOnVSfeKly6SmpuLnn3/2lZHuuOzsbGzcuNFXZsOGDWqftwwRleXNGZKWIapbvOeUeWFEIdRC9Oijj6Jfv36qK0qG0svQ+ZUrV6qh8dKdJUPqn3nmGbRs2VJtclnezDKMXkhi9IgRIzBp0iT1KzYhIQGTJ09G+/bt0atXL1WmdevW6Nu3L+655x688cYbat/IkSPV0PzKEqqJqATzTOoenlOiEAyIpCtL5gOSVh0JbmSSRgmGZK4h8dBDD6GgoAD333+/6haTkWJLly4tM/32Cy+8ALPZjJtvvlmV7dmzJ+bOnVumKfj999/HuHHjfKPRZPJGmdso6IrzkeE0wenWEG0zw2F0ApaSJu2w4ixAltOEIpcHkVYzokxh+jzqCmcBct1m5BW7YTMbEWdxARa29ASNxw2PwQi3R0b+AhZJXZT8RS4SHRzOQrgNZmQUuKBpQILDDLNWzPdIsMhJcBbgVLEJLo+GWLsFESgOyneIQcbeB/xRw5AkVUvQJl1tNbF0h/vkPngOfIeFhZ3w+oZTmPvHRjjv0OfAJUNhiq44Ki5UuTMOATs/w+rI3vjbkmN4a0hjXHh0YcnziGXSZsDPR84JYMs7ONh4MO769DAe6l4ffTyrYWjVF6aEplW+Hxn1KVNfSNd1RERErda5LtPcLqAwC25LFA5mORFpNaK+zQmDyQqDfOAHISjS9bmVYOjgGhSaovHwWqP60fDStTZE5h+F6YJrAGtksGuoL5oG94ldcJ3YhbePt8CiXTmYO6QBkg8vBTreCmNkYkC/vxkQ1fALWhWezEPIOL4FWSYT3I5kaLYYmE4fhcFViFhbLJKTWgORSQh1npxUZKRuRpZBgyciHh57Ikx5qTAU5yHWFIGk+h1giAqf4C7s5abD/eUkZLbtj8zIRLijGsJYmAVjwSnAZEFsclskx1S+0nNNfmlKt4xMoTFw4EDUlqZNm6puddlCkscNLf8UXCYz3AYTNAmC5Penp1heIZjMEbCYAz9wQ7cBkdsF98HvkVmQhiybA67oxiogNeccBjQPYhMuQHJcMyAI50Sv3Ol7kJn+M7LMFrijGsBjtsNy+jDgdiLWUQ/JiS0Be9lpdWrz+zvoo8z0qECzIMMehyGrxlQ49mnvdxHhseHMa/KGhnyXseR5rBhV4dinvf4Fm8uM39+WRlWV47bA0+x6ZFkdGLy6YpAw/4ZPkFxDL+fw4cPxzjvvVNgvk6FKt3dNki5wCXrKz4ckI1Jl/cKqksbwt956C//85z/V8kDS1S4jXP/85z+rvMKaTiD3wACP2QE3XNiXW7K+4sbvN+KugXdh7d61uOT8i2EJwOtE/2UyI9/REFkoxKA1kyu8LJ9ePw+JRmvojTSqwwoNdmTaYzF49fgKxz7t8284tAgEss2O5z4IvtznQoHNfwtQepEJ6YWBb0Y/F1tPGZFrivV7LNMdgSP5jLcD6XihCX8/0BTuqBS/x/NdNft4MlhB8v9Kbx9++CECJTk5uVpBjOQrSsAg6yWuWLFCzX/2t7/9DZ9//rnKTaxpLg/wW46mWoYqO06Bk1PgxMSlWXBG+W8lPZ7rQWa+tN5RoLy1NR+Fdv/T3xzPNyCzKLAZPQyIgsBhNcFUScxjNRlgNIZHQGQxGWGupK7yPExh8jzqCpPBgAuTbKq52Z+aTleRebpkaozSW/lZ471kXrELL7xQBTDNmzdXgUjpYd8//fQTrrnmGjVgQpq0ZUoNWfBZRp3eeeedqqlbuuFkmzZtmq/L7MUXX/Tdh7SMSEuPzC8mXUGyhM+iRYvUsY8//lgNrpCATUa3XnbZZer2EhwtX75cPbbweDx48skn1cLT8vwuvvjiMi1eBw8eVHVYsGCBuo08n44dO6olgrxkJv0bb7wR9ZMT0b5ZCjp17IzVy1bj6KGjqnVIdLugG6IjHKqlTchjXHXVVWoWaRkxK6Ng9+3bV+XHPdPrRCXkczUx0iLtdn5fEvksMzLRPaCibOYzfhcG+huEAVEQXNfYDVt+qt9jcYZ81LcUIhx0jC+Cvahk1tvyotzZOD8iP+B10rOGtgIMcS6CSXKG/HCYgjd+QgId6dLZuXOnmnhVuq5khKjXHXfcoYIQ6QaTNQofeeQRNceYzBUmQY8ESd5WKJlaozwJZGQKD1ny59///rd6nBkzZvhGm0owJNNsSABUngQPkl8gpG7PPfcc/vGPf2Dbtm2qC1BGpe7Zs6fMbR577DFVD2llkkDvtttug8tV0gQ3evRoNZfaypUr8NPG7/HUU4/DEelAynkpeGFOyXNetH4RDhzarx5PyBqOMjO+PP9vv/0WRqMRgwYNUs+rKo9b1ddJz6IsRkztgpKcIT+S7RriI/iVGEhDWxth/W93cnmJlmIkWQO7hiL7NILAbDTCAP9fTvIDxW4Jjzel1VR5PUueBxeRDCR5vd3mwM0/I60vsv5g+ZYgaf0p769//avvsrTMyNxhH330kZpaQxw6dAgPPvggLrroInVd5h3zkmBF6i4tUJX55ptv1OSru3btUoGCkJYoLwloqjLvmARC8hxuvfVWdX3mzJmqe02CjVmzZvnKSbBxww03qMuy5mHbtm2xd+9eVX95LkOGDEHH9u2hFZ1G4xZNsS/3aMlziS8JvBKSEtTzifjv0GIpX5rkOclM0hLYSUtXVR63Kq+T3p3xMyugNSFRWQ+DkI8rmTYkkBgQBYEp7jzEGjUs6Ps+clwm5BZ7UC9S5sIoQnxk/RrJqg8EY0wK4gxuLOj7b+R5LMgqdCPZYYIVxYhz1A+LkXJ1iiMBhitGI7YgDR/1+xjpeS7E2Ewl80KZbYhz1Oz5kK6b2bNnl9knk6P68+mnn6qgQr68c3NzVatG6dEe0jpy991347333lOTqv7pT39CixYtqlwXaTGRFiZvMFReVdZAlJEox44dw5VXXllmv1yXLr3SZM40L+/SQrIchgQmMufZfffdp/KSevW8FgMGDkDb9u3g9Gg45Cj5NdwspilMpv99/Er3mASS69evx8mTJ30tQxJclQ6IzvS4dBZGI0wp7RCbHY35189Der6mfpbWc8gPVDfiI1NU4jUFjimhCWLNRizo9wEyi40ocHpQP8oMk6cY8ZILaQvs8CKe/SCR4c/JUQ3hkjmp3BoiLMaSIbnG8Ggd8kqOPg/JkQ3U8yh2e2Azm2BC+D2PusIYmYBkexwSYUDTOLf6RWyWOKAWzoeM8PKuQ3gm8iUvLS7SoiFdUNKSIbPSS9eUl+S7yAz0X375Jb7++mtMnTpVlZFuo+qs0VUZCZSk9agqqrKgtHTnlS/vDWIksJPnKc9FgqLpM2aq5zp69BjYzCUJ1tIyZDH+7z4k50hm7JeuxIYNG6r7kkBIliuq6uNSFRiNSI5rimSDAU2cbkhIFGExy4vIz6wgSY5pjOSo81DsgZq81G41Be188FsrmIxGmE1G9R9AfbiFaxDx3+fhsJpLEqnD9XnUFUajSiCV8yHnJdjn4/vvv0eTJk1U/oss4CzdYZJ47C9oeeCBB1QQMXjwYMyZM8e3ALQsNnsm0nJy5MgR/Prrr36PS7Alx2REWXkS8HjnJ5FgZM2aNWWOS16SLAFUHRLcjBo1SiVBS/egBDpyTiL+u2B06edz6tQpFaxJt6LMtC+PJTPzV1dVXif63+gCm8VUEgwJfmYFl9EIq7nku9B7PSjVCMqjElHYk8Th48ePl9mku6c8aUWSrh9p8ZGuoZdffllN2uglS+6MGTNGjZSSQEkCKEku9gYhknMk3WySbCz3n59fMVm/e/fuuPrqq1Uujiz2LBMPSkuTd4SYLO1zyy23qCTk6dOnqxFs8liSByVddJInJCSPSfKGJL9p9+7dKrlbuuPGj684T0plZGj/kiVLVB02b96sRrF5n4sEhvLjRx43PT1dPS8ZmScjy958803VpSjlpQuxuqryOhHRGcjSHXR22dnZ0t2s/hLVdQUFBdrOnTvVX3+GDRum3g/lt1atWqnjcnnhwoW+8g8++KCWmJioRUVFabfccov2wgsvaLGxsepYUVGRduutt2qNGzfWrFar1rBhQ23MmDFlHnvUqFHq9nK/U6dOVfuaNGmi7sfr1KlT2p133qnKRUREaO3atdMWLVrkO+52u7XZs2drl112meZwOLSYmBitU6dO2ksvvaTl5+f7yjzxxBPaeeedp1ksFq1jx47a119/7buPAwcOqDps2bLFty8zM1PtW7FihboudW/RooVms9m05ORkbejQodrJkyd95Z988kktJSVFMxgM6nUUy5Yt01q3bq1u06FDB23lypVlXsOqPG5lr1N1zy2RXr+/uXRHkNYyIwplul3eQQd4bklvcqr4/c0uMyIiItI9BkRERESkewyIiIiISPcYEBEREZHuMSAiIiIi3WNARERERLrHgIiIiIh0jwERERER6R4DIiIiItI9BkRERFUga7WNHTsWzZs3h81mUwu4yir1snaYkLXIevTooWbClfXKsrKyKtzH008/jW7dusHhcCAuLo6vO1EIYUBERGElO78Y+9JyseVQJval56rrte3gwYPo1KmTWnj12Wefxfbt29XCsddccw1Gjx6tyshiqn379sWjjz5a6f0UFxfjT3/6E+67775arzMRVY+5muWJiILmWFYBHp6/Dd/tOenbd3XLJMwY0gEN4+y19rj333+/avXZuHEjIiMjffvbtm2Lu+66y7fKvVi5cmWl9/PEE0+ov3Pnzq21uhLRuWELERGFBWkJKh8MidV7TuKR+dtqraUoIyNDtQZJS1DpYMiLXV9EdQMDIiIKCydziysEQ6WDIjleG/bu3QtN03DRRRfVyv0TUWhgQEREYSGn0HnG46fPcvxcSTAkpMuMiOouBkREFBZiIixnPB59luPnqmXLlioY2rVrV63cPxGFBgZERBQWkqKsKoHaH9kvx2tDQkIC+vTpg1mzZiEvL6/CcX/D64ko/DAgIqKwEOuwqtFk5YMiuT5zSAd1vLa89tprcLvduPzyyzF//nzs2bNHtRi9/PLLuOKKK3zzFG3dulXlHAkZmi/XJSnb69ChQ2qf/JX7k8uy5ebm1lrdiahqOOyeiMKGDK1/5bZLVAK15AxJN5m0DNVmMCSaNWuGzZs3q4kVJ02ahNTUVCQnJ6u5iWbPnq3KvP76675h9eLqq69Wf+fMmYPhw4ery48//jjeeecdX5lLLrlE/V2xYoWa1JGIgsegeTMG6YxycnIQGxuL7OxsNRMtUV1WWFiIAwcOqEAgIiIi2NWhGsRzS3qTU8Xvb3aZERERke4xICIiIiLdY0BEREREuseAiIiIiHSPARERERHpHgMiIiIi0j0GRERERKR7DIiIiIhI9xgQERERke4xICIiIiLdY0BERFQFsnjr2LFj0bx5c9hsNjRu3Bg33ngjvv32W3X8zTffVOuRydIABoMBWVlZZW5/8OBBjBgxQi2HYrfb0aJFC0ydOhXFxcV8/YlCABd3JaLwkpsORCVXfr0WSDBz5ZVXIi4uDs8++yw6dOgAp9OJJUuWYPTo0fjll1+Qn5+Pvn37qm3KlCkV7kPKeDwevPHGG7jgggvw888/45577kFeXh7+8Y9/1Gr9iejsuLhrFXFxV9KTkF0ANGM/sPBeYNAbQELzkusLRgKD3yy5Xkuuv/56bNu2Dbt370ZkZGSZY9ISJIGS18qVK3HNNdcgMzOzzH5//v73v2P27NnYv38/oPdzS1RLuLgrEdUt0hIkwc/hjcDc/sCB70r+HvmhJEiS47UgIyMDixcvVi1B5YMhcbag50xk9e2EhITfWUMiqgnMISKi8CDdYtISFHMekHMUeKd/yV+5Li1GtdRttnfvXmiahosuuqhG73ffvn145ZVXMGrUqBq9XyI6NwyIiCh8SLeYBD+lebvPaokEQ0ISpWvKsWPHVK7Rn/70J9x99901dr9EdO4YEBFR+PDmEJUm12V/LWnZsqUKhnbt2lVjwZDkGF1xxRVqZBoRhYagBkTTp0/HZZddhujoaNSrVw8DBw5USYulDR8+XH0Yld66du1apkxRUZEaDpuUlKT6+AcMGIAjR46UKSMJjkOHDkVsbKza5HL5YbFEFAY5RN5usmGL/td9Vos5RJLj06dPH8yaNUuNCCuvOp8jR48eVUPzL730UsyZMwdGI3+TEoWKoL4bV61apRIV169fj2XLlsHlcqF3794VPnSkaTk1NdW3ffXVV2WOT5gwAQsXLsS8efOwZs0a5Obmon///nC73b4yt99+O7Zu3aqSI2WTyxIUEVGY5RA1vhwYvgho9oeSv40uq9UcIvHaa6+pz5PLL78c8+fPx549e1SL0csvv6xaerzzFMnniuQcie3bt6vrkpTtbRmSYEjmL5Jh9unp6eo2shFRCNBCSFpamnTWa6tWrfLtGzZsmHbTTTdVepusrCzNYrFo8+bN8+07evSoZjQatcWLF6vrO3fuVPe7fv16X5l169apfb/88kuV6padna3Ky1+iuq6goEC9b+RvyDmddubrteTYsWPa6NGjtSZNmmhWq1U777zztAEDBmgrVqxQx6dOnao+I8pvc+bMUcflr7/jgf4YDulzS1QLqvr9HVLttTIEVZQfhirzekiX2oUXXqgmMktLS/Md27Rpk5ogTVqWvBo2bIh27dph7dq16vq6detUN1mXLl18ZaTbTfZ5y5Qn3XAyd0HpjYhCQPmWoFqelNGrQYMGePXVV9UkjfL5IN3yn3/+uWr1EdOmTVMJ2OU36fYX8tffcW/SNhEFV8gERPKhMHHiRFx11VUqmPHq168f3n//fSxfvhzPPfccfvjhB1x77bXqA0lIc7PVakV8fHyZ+6tfv76vKVr+SkBVnuyrrLla8pu8+UaySTM3ERER1U0hs3THmDFj1EywkgNU2i233OK7LIFS586d0aRJE3z55ZcYPHjwGQOs0sNk/Q2ZLV+mNJl6XwI0L2khYlBERERUN4VEC5GMEPviiy+wYsUKNGrU6KzN1hIQSVKjSElJUYsjyiiy0qRbTVqJvGVOnDhR4b4kqdFbpjxZvFEWaSy9ERERUd0U1IBIWmikZWjBggWqS0zW1jmbU6dO4fDhwyowEp06dYLFYlGj1LxkJJosnNitWzd1XUaBSH7Sxo0bfWU2bNig9nnLEBERkX4FtctMhtx/8MEHKjFR5iLy5vNIzo7dblfD5yVRcciQISoAkmTGRx99VM03NGjQIF/ZESNGYNKkSUhMTFQJ2ZMnT0b79u3Rq1cvVaZ169Zq6L4kZMtK02LkyJFqaH6rVq2C+AoQERER9B4QySrPwjtKw0smLJMRGSaTSc3l8e6776rJzyQokhleP/roIxVAeb3wwgswm824+eabUVBQgJ49e2Lu3Lnq9l6SmD1u3DjfaDSZvFFGjBAREREZZOw9X4azk6RqaY2SbjbmE1FdV1hYiAMHDqhu7IiIiGBXh2oQzy3pTU4Vv79DIqmaiIiIKJgYEBEREZHuMSAiIiIi3WNARERUBTIKVuZMa968uZqnTCZqvfHGG/Htt9+WKSdpmTLDvkz6+tlnn/m9L5lp/+KLL1ZlZAFYIgq+kJmpmogoVMmUH1deeSXi4uLw7LPPokOHDmoNxSVLlqjpQ3755Rdf2RdffLHSGfC9HnroIbXm4k8//RSA2hNRVTAgIqKwkZ6fjuyikkWgS4u1xSLZUXuLvN5///0qyJHJXSMjI33727Zti7vuust3XQKc559/Xq256J08tryvv/4aS5cuxfz589VlIgoNDIiIKGxIMDToi5JJWUtbOGBhrQVEGRkZWLx4MZ5++ukywZCXtBqJ/Px83HbbbWp+M1kuyB9ZQkgmiJWuNIfDUSv1JaJzwxwiIqIz2Lt3r8oLuuiii874Oj3wwANqKaCbbrrJ73G5D5lwdtSoUWqRaiIKLWwhIiI6A+/ctWfKC5LFqWU9xi1btlRa5pVXXlETxE2ZMoWvN1EIYgsREdEZtGzZUgVDu3btqrSMBEP79u1T3WeyjJBsQtZh9C5NJGXWr1+vRqjJ8QsuuEDtl9aiYcOG8RwQBRlbiIiIzkAWjO7Tpw9mzZql1kMsn0ck6yw+8sgjuPvuu8vslwWmZZ1FGZovXn75ZTz11FO+48eOHVP3K2szdunSheeAKMgYEBFR2JDRZJJA7W9/bXrttddUftDll1+OJ598Ug27d7lcWLZsmVqkWlqP/CVSn3/++Wo9OO/l0qKiotTfFi1aoFGjRrVafyI6OwZERBQ2ZCRZbQ6vr4wENZs3b1YjzSZNmoTU1FQkJyejU6dOKiAiovDHgIiIqApkXiEZUi9bdZKxK9O0adOzliGiwGFSNREREekeAyIiIiLSPQZEREREpHsMiIiIiEj3GBARUaWY9Fv38JwS+ceAiIgqsFgsvgVLqW7xnlPvOSaiEhx2T0QVmEwmtQxFWlqaui4rs59pLS8Kj5YhCYbknMq5lXNMRP/DgIiI/PLOvOwNiqhukGDI36zaRHrHgIiI/JIWIZmMsF69enA6nXyV6gDpJmPLEJF/DIiI6IzkC5RfokRU1zGpmoiIiHSPARERERHpHgMiIiIi0j0GRERERKR7DIiIiIhI9xgQERERke4xICIiIiLdY0BEREREuseAiIiIiHSPARERERHpHgMiIiIi0j0GRERERKR7DIiIiIhI9xgQERERke4xICIiIiLdY0BEREREuseAiIiIiHSPARERERHpHgMiIiIi0j0GRERERKR7DIiIiIhI9xgQERERke4xICIiIiLdY0BEREREuseAiIiIiHQvqAHR9OnTcdlllyE6Ohr16tXDwIEDsXv37jJlNE3DtGnT0LBhQ9jtdvTo0QM7duwoU6aoqAhjx45FUlISIiMjMWDAABw5cqRMmczMTAwdOhSxsbFqk8tZWVkBeZ5EREQU2oIaEK1atQqjR4/G+vXrsWzZMrhcLvTu3Rt5eXm+Ms8++yyef/55vPrqq/jhhx+QkpKC6667DqdPn/aVmTBhAhYuXIh58+ZhzZo1yM3NRf/+/eF2u31lbr/9dmzduhWLFy9Wm1yWoIiIiIhIWmBCRlpamiaNQqtWrVLXPR6PlpKSos2YMcNXprCwUIuNjdVef/11dT0rK0uzWCzavHnzfGWOHj2qGY1GbfHixer6zp071f2uX7/eV2bdunVq3y+//FKlumVnZ6vy8peIiIjCQ1W/v6vdQnT48OEy3VEbN25ULTRvvvnm7w4vs7Oz1d+EhAT198CBAzh+/LhqNfKy2Wzo3r071q5dq65v2rQJTqezTBnpXmvXrp2vzLp161Q3WZcuXXxlunbtqvZ5y5Qn3XA5OTllNiIiIqqbqh0QSdfTihUr1GUJVqT7SoKiRx99FE8++eQ5V0RyhSZOnIirrrpKBTPe+xf169cvU1aue4/JX6vVivj4+DOWkRyl8mSft4y//CZvvpFsjRs3PufnRkRERHUsIPr5559x+eWXq8sff/yxryXmgw8+wNy5c8+5ImPGjMG2bdvw4YcfVjhmMBgqBE/l95VXvoy/8me6nylTpqgWK+8mLWNERERUN1U7IJLuKem2Et98840a0SUuuugipKamnlMlZITYF198oVqeGjVq5NsvCdSifCtOWlqar9VIyhQXF6tRZGcqc+LEiQqPm56eXqH1yUueY0xMTJmNiIiI6qZqB0Rt27bF66+/ju+++06NDOvbt6/af+zYMSQmJlbrvqSFRlqGFixYgOXLl6NZs2Zljst1CWbkcbwk+JHRad26dVPXO3XqBIvFUqaMBGbSkuUtc8UVV6hWHuna89qwYYPa5y1DRERE+mWu7g1mzpyJQYMG4e9//zuGDRuGjh07qv3SwuPtSqsqGXIvXW2ff/65movI2xIkOTsy55B0Z0nC9jPPPIOWLVuqTS47HA6Vy+QtO2LECEyaNEkFZJKQPXnyZLRv3x69evVSZVq3bq0Ct3vuuQdvvPGG2jdy5Eg1NL9Vq1bVfQmIiIiojjHIULPq3kjm95FRV6UTmQ8ePKgCFX/Jy5U+eCX5O3PmzMHw4cPVZaneE088oQIZ6RaTkWKzZs3yJV6LwsJCPPjggyq4KigoQM+ePfHaa6+VSYTOyMjAuHHjVOAmpKtP5jaKi4urUl3l+UrwJa1K7D4jIiIKD1X9/j6ngEiPGBARERHV3e/vaneZnTp1Co8//rhKgJbEZY/HU+a4tMQQERERhZNqB0R//vOfsW/fPpW3IyO0zjb8nYiIiKjOBUSyVphs3mRqIiIiIt0Nu5f5hiRxmYiIiEi3AZGM3nrsscfUXECST8T1voiIiEh3XWYyTF0yta+99lq/y2DIkHwiIiKiOh0Q3XHHHWoxVZnzh0nVREREpMuASJbE2LJlC2d4JiIiIv3mEHXu3JkrvxMREZG+W4hkZfrx48erpTJkvTBZWLW0Dh061GT9iIiIiGpdtZfuMBorNipJMnVdT6rm0h1EREThp9aW7jhw4MDvrRsRERFRSKl2QNSkSZPaqQkRERFRuAREQtYye/HFF7Fr1y7VTda6dWuVV9SiRYuaryERERFRqI0yW7JkCdq0aYONGzeqBOp27dphw4YNaNu2LZYtW1Y7tSQiIiIKpaTqSy65BH369MGMGTPK7H/kkUewdOlSbN68GXURk6qJiIjq7vd3tVuIpJtsxIgRFfbfdddd2LlzZ/VrSkRERBRk1Q6IkpOTsXXr1gr7ZV+9evVqql5EREREoZtUfc8992DkyJHYv38/unXrppKq16xZg5kzZ2LSpEm1U0siIiKiUMohkuIywuy5557DsWPH1L6GDRuqmavHjRunAqS6iDlEREREdff7u9oBUWmnT59Wf6Ojo1HXMSAiIiIKP7WWVH3ttdciKyvLFwh5gyF5QDlGREREFG6qHRCtXLkSxcXFFfYXFhbiu+++q6l6EREREYVeUvW2bdt8l2V4/fHjx33XZUHXxYsX47zzzqv5GhIRERGFSkB08cUXq4Rp2fx1jdntdrzyyis1XT8iIiKi0AmIZJV7yb9u3ry5WrZD5iPyslqtag4ik8lUW/UkIiIiCn5A5F3l3uPx1F5tiIiIiMJltXtvHtGhQ4cqJFgPGDCgJupFREREFLoBkcxQPWjQIGzfvl3lE3mnMfJOyCgJ1kRERER1etj9+PHj0axZM5w4cQIOhwM7duzA6tWr0blzZzUkn4iIiKjOtxCtW7cOy5cvV0nVRqNRbVdddRWmT5+ulu7YsmVL7dSUiIiIKFRaiKRLLCoqSl1OSkryrWcmSde7d++u+RoSERERhVoLUbt27dQkjTL8vkuXLnj22WfVsPs333xT7SMiIiKq8wHRX//6V+Tl5anLTz31FPr3748//OEPSExMxEcffVQbdSQiIiKqVb9rtXuvjIwMxMfH+0aa1UVc7Z6IiKjufn+f8zxEpSUkJNTE3RARERGFR1I1ERERUV3DgIiIiIh0jwERERER6V6VAqJLL70UmZmZ6vKTTz6J/Px83b9wREREpLOAaNeuXb6h9k888QRyc3Nru15EREREAVOlUWYXX3wx7rzzTrVEh4zS/8c//uGbrbq8xx9/vKbrSERERBT8eYhkSY6pU6di37592Lx5M9q0aQOzuWIsJfMQyfG6iPMQERER1d3v72pPzCiLuR4/fhz16tWDnjAgIiIiCj+1NjGjx+P5vXUjIiIiCinnNFO1dJ29+OKLKtlauslat26N8ePHo0WLFjVfQyIiIqJQm4doyZIlKodo48aN6NChA9q1a4cNGzagbdu2WLZsWe3UkoiIiKgWVTuH6JJLLkGfPn0wY8aMMvsfeeQRLF26lEnVREREFHY5RNVuIZJushEjRlTYf9ddd2Hnzp3VrykRERFRkFU7IEpOTsbWrVsr7Jd91R15tnr1atx4441o2LChykX67LPPyhwfPny42l9669q1a5kyRUVFGDt2LJKSkhAZGYkBAwbgyJEjZcrILNtDhw5VEaJscjkrK6tadSUiIqK6q9pJ1ffccw9GjhyJ/fv3o1u3bipIWbNmDWbOnIlJkyZV675k9uuOHTuqSR+HDBnit0zfvn0xZ84c33Wr1Vrm+IQJE/Cf//wH8+bNQ2JioqpD//79sWnTJphMJlXm9ttvV0HS4sWL1XWpvwRFcjsiIiKiaucQSXEZYfbcc8/h2LFjap+08Dz44IMYN26cCpDOhdxu4cKFGDhwYJkWImnJKd9y5CX9gdJi9d577+GWW25R+6ROjRs3xldffaVynaSLT5LA169fjy5duqgycvmKK67AL7/8glatWvm9b2l5kq10H6Tc79n6IImIiEgHOUQSuDzwwAOqxUXuXDa5LMPuzzUYOpOVK1eqrrgLL7xQtU6lpaX5jkkrkNPpRO/evX37JDiTkW9r165V19etW6deCG8wJKTbTfZ5y/gzffp0XxebbBIMERERUd1U7YCotOjoaLXVln79+uH999/H8uXLVYvUDz/8gGuvvdbXciMzZksXWnx8fJnb1a9fXx3zlvGX2yT7vGX8mTJlii/gk+3w4cM1/vyIiIgojCdmDBRvN5iQVp/OnTujSZMm+PLLLzF48OAzduuVbq3y13JVvkx5NptNbURERFT3/a4WokBr0KCBCoj27NmjrqekpKC4uFiNIitNutWklchb5sSJExXuKz093VeGiIiI9C2sAqJTp06prisJjESnTp1gsVjKzJCdmpqKn3/+WY2AE5I8LV1eMrO2l8ysLfu8ZYiIiEjfqhUQSQLzNddcg19//bVGHjw3N1fNX+Sd1+jAgQPq8qFDh9SxyZMnq6TogwcPquRqmbNI5hsaNGiQKi/JzjJJpAy1//bbb7Flyxb8+c9/Rvv27dGrVy9VRtZZk6H7kpAto8tkk8syNL+yEWZERESkL9XKIZLWGGl9qanRZD/++KMKsLwmTpyo/g4bNgyzZ8/G9u3b8e6776qh99IqJGU/+uijMoncL7zwAsxmM26++WYUFBSgZ8+emDt3rm8OIiGJ2TIlgHc0mkze+Oqrr9bIcyAiIiIdzkMkrTESGJVfy6yuq+o8BkRERBR+39/VHmUmScxvv/22ytuRUV+yXEZpzz///LnVmIiIiChIqh0QSZfZpZdeqi6XzyWqjYkZiYiIiEIuIFqxYkXt1ISIiIgo3CZm3Lt3L/bt24err74adrv9rBMdUjmuYrgKspHqjESRy4MYuxnJxlwYIpPC66XyeODOP4XjzkgUOD2IsplQz5wHY7g9jzpEyzuFNHckThe6EGE2ooE1DyZ7PGAK6XlY6668k8h0RyCjCDAbDWhgyYfVZgdsUcGumT7lZyDfBZwotqnvrXo2F6JMLoCfWcFRnAdnUR5SiyNR7NYQbzci0ZgflPNhPJe5gGQkl6wtdv3116t5f8Tdd99d7dXudctVDPfhjdAWPYCjRw5i9Pub4T6+C/j4L3BlHkJYBUOp22CYfzcyTxzCyHd/RFH6fhg/ugPuk/uCXTtdcmcchOGj2+FM+xX3vrcJaam/AZ/dB/fRzYDbFezq6Y47OxWez8fCfeRHTFu4FRt37oV79fNw71oEFOUGu3q648nLgHvtLLi2L8Ana3bi7W9/hmv3ErhXzoQ792Swq6c/xflw710B97InsWPvfjz8yRZ4jv0Ez/yRcGWVLB4f0qPM/vKXv6iZoCWxWub4+emnn9C8eXMsXbpULfq6Y8cO1EU1OcrMk30MGYfXIssaAc0aBY89CabThwGPG3FGKxIbdIIhMhGhzpN7EhmHViPLbIVmjoAnKgWm00fUF2+cBiQ06sqWogDS8k7C8O/BOHnlGGRFRMMd0xjGvBMwOAskwQ+xKZcgObphIKukb4U58HwzDRlNuyLLFgl3dCMYinNhLCyZWT82uQ2S45sHu5b64XbDvWMhMo0eZFkdcEfWBwxGmHJLftTHRjdCcnIbwGwNdk11w5O2GxlpP6nz4bHFQouIhSnnsKythVhLNJJTOgL2uNAdZSaBz5IlS9CoUaMy+1u2bInffvvt3GqrM8cLTTgd3wR//OauCsc+6fshPJ5IVFyONvSkF5mQFd8Mf1z6lwrHPunzPjxOe1g8j7pCusm0a55HriENg75/qMLxT274FMm1txYzlZPljkBu23tR6DmIQWsmV3h9Pr7+YyTzVQsYFww4GtsJxdpvGLxqbMXz0e8jxMAErmAZOMdcUciLbYw/Lh9Z4djH/ebB5LYjIZS7zPLy8uBwOCrsP3nyJBdDraIVBwqRo9n9Hjua61G5H+Fg10knMpz+Y+oTBUC6dNRTwGTlO3HfsgK4Y8r+WPEqcFWrMZh+pwKnG4M/OAx3zPl+j2fku/kaB1BesRuTv0qF0+H/Z9qx0y7khslnb13x759ykG/y32JzONulzhlCOSCSJGqZPdpLEqk9Hg/+/ve/l5l1mirXPDkSURb/x5IdJlhN4bHEXHK0DbE2/3VNtJvgsPxvtnCqfXaLCX/tngRjfrrf4xYjBz0EktFowOPXpsBQkOH3uN0aHu/zusJmNmBg2ziYXAV+j8dFmGA185wE0sWNYmA3+g966kWa1SCEQKp2l5kEPj169FDLbsgkjQ899JDKG8rIyMD3339fO7WsYy6Lz8fBjMN+j9mLTqJBtPyCqdgKF2paRRbg4En/z8NWkIrGidIhwJE0gdLQmoeGP07BwW53+z8nJrYQBVI9SyH65H+B3wo7+D0ebfYEtD56F2E04JZ6h3Aw138rUIyxiOckwK6rn4sD2f6/QyLdWahvkeDVf29Kbah2ONymTRts27YNl19+Oa677jrVhTZ48GC1sGqLFi1qp5Z1jNHqgGarJLHLEQ+zPRbhwGy1QYuI93/QnghzBIOhgJ6PiBgYrhxT6XFOixFYhohYGNsOlKYi/wWMnAYhoEwmGOq3rTxp2mIHzMwgCiSDPU4NLPJL3j8B/i6s9igzvarptczST6ciqygLhR4jil0eRFoMkNbaOHsCkirp4w5FJ3NTkVmUhSK3Uc2nZLcYID0BcRHxSJJRHBRYzkKkF57CycLTyHdqqgsgwuiBwWBEnCMRSXbODxVQmob000eRUZyL3GINJqMBkWZNjfqLdyTxfARBes4RZBWfRq4TkC+/KIsBBmiIj0zm+QgCeX9kFeUg322Ay60hymqAyaAhzp6EJEdyQL+/zykgyszMxD//+U/s2rVL/eqU4fd33nknEhICmQ8eWFzclYiIqO5+f1e7y2zVqlVo1qwZXn75ZRUYSe6QXJZ9coyIiIgo3FS7hahdu3bo1q0bZs+eDZOpZBSR2+3G/fffr5KqZfHXuogtREREROGn1lqIZP0yWaLDGwwJuTxx4kR1jIiIiCjcVDsguvTSS1XuUHmy7+KLL66pehEREREFTJXGfcowe69x48Zh/PjxarX7rl27qn3r16/HrFmzMGPGjNqrKREREVEwc4iMRqMaTXa2olJG8onqIuYQERERhZ8aXdz1wIEDNVk3IiIiopBSpYCoSZMmtV8TIiIioiA5p7njjx49qobYp6WlqYVdS5McIyIiIqI6HRDNmTMHo0aNgtVqRWJiYpn1keQyAyIiIiKq8xMzNm7cWAVEU6ZMUcnWesGkaiIiovBTaxMz5ufn49Zbb9VVMERERER1W7WjmhEjRuCTTz6pndoQERERhUOXmcwz1L9/fxQUFKB9+/awWCxljj///POoi9hlRkREpPN5iEp75plnsGTJErRq1UpdL59UTURERBRuqh0QSQvQv/71LwwfPrx2akREREQU6jlENpsNV155Ze3UhoiIiCgcAiJZ2PWVV16pndoQERERhUOX2caNG7F8+XIsWrQIbdu2rZBUvWDBgpqsHxEREVHoBURxcXEYPHhw7dSGiIiIKFyW7iAiIiKqSzjdNBEREeletVuImjVrdsb5hvbv36/7F5WIiIjqeEA0YcKEMtedTie2bNmCxYsX48EHH6zJuhERERGFZkAkw+79mTVrFn788ceaqBMRERFReOYQ9evXD/Pnz6+puyMiIiIKv4Do008/RUJCQk3dHREREVHodpldcsklZZKqNU3D8ePHkZ6ejtdee62m60dEREQUegHRwIEDy1w3Go1ITk5Gjx49cNFFF9Vk3YiIiIgCwqBJEw+dVU5ODmJjY5GdnY2YmBi+YkRERHXo+5sTMxIREZHuVbnLTLrGzjQho5DjLpdL9y8qERER1dGAaOHChZUeW7t2LV555RWVYE1ERERUZwOim266qcK+X375BVOmTMF//vMf3HHHHfi///u/mq4fERERUa07pxyiY8eO4Z577kGHDh1UF9nWrVvxzjvv4Pzzz6/5GhIRERGFUkAkGdoPP/wwLrjgAuzYsQPffvutah1q165d7dWQiIiIKFQComeffRbNmzfHokWL8OGHH6q8oT/84Q+/68FXr16NG2+8EQ0bNlQJ2Z999lmZ45KTNG3aNHXcbreruY4kECutqKgIY8eORVJSEiIjIzFgwAAcOXKkTJnMzEwMHTpUDbuTTS5nZWX9rroTERGRDuchklFmEpT06tULJpOp0nILFiyo8oN//fXX+P7773HppZdiyJAhKnG79MSPM2fOxNNPP425c+fiwgsvxFNPPaWCqN27dyM6OlqVue+++1QrlZRJTEzEpEmTkJGRgU2bNvnqKeusSZD05ptvqusjR45E06ZN1e2qivMQERERhZ+qfn9XOSAaPnz4WYfdizlz5lSvpt6KGAxlAiKplrQMTZgwQXXTeVuD6tevrwKle++9Vz05mSX7vffewy233OLLb2rcuDG++uor9OnTB7t27UKbNm2wfv16dOnSRZWRy1dccYVKCm/VqpXf+shjyVb6BZX75cSMREREdS8gqvIoM2mBCaQDBw6oNdJ69+7t22ez2dC9e3fVXScBkbQCOZ3OMmUkiJKcJikjAdG6devUC+ENhkTXrl3VPilTWUA0ffp0PPHEE7X8LImIiCgUhOxM1RIMCWkRKk2ue4/JX6vVivj4+DOWqVevXoX7l33eMv7IdAISTXq3w4cP18jzIiIiojqwuGugle+mk660s3XdlS/jr/zZ7kdao2QjIiKiui9kW4hSUlLU3/KtOGlpab5WIylTXFysRpGdqcyJEycq3H96enqF1iciIiLSp5ANiJo1a6aCmWXLlvn2SfCzatUqdOvWTV3v1KkTLBZLmTKpqan4+eeffWUkeVq6vDZu3Ogrs2HDBrXPW4aIiIj0LahdZrm5udi7d2+ZRGqZ9TohIUHNei0jzJ555hm0bNlSbXLZ4XDg9ttvV+UlMXrEiBFqqL0MuZfbTZ48Ge3bt1fTA4jWrVujb9++ambtN954wzfsvn///pUmVBMREZG+BDUg+vHHH3HNNdf4rk+cOFH9HTZsmBrV9tBDD6GgoAD333+/6haTkWJLly71zUEkXnjhBZjNZtx8882qbM+ePdVtS8+V9P7772PcuHG+0WgyeeOrr74a0OdKREREoavK8xDpHSdmJCIiqrvf3yGbQ0REREQUKAyIiIiISPcYEBEREZHuMSAiIiIi3WNARERERLrHgIiIiIh0jwERERER6R4DIiIiItI9BkRERESkewyIiIiISPcYEBEREZHuMSAiIiIi3WNARERERLrHgIiIiIh0jwERERER6R4DIiIiItI9BkRERESkewyIiIiISPcYEBEREZHuMSAiIiIi3WNARERERLrHgIiIiIh0jwERERER6R4DIiIiItI9BkRERESkewyIiIiISPcYEBEREZHuMSAiIiIi3WNARERERLrHgIiIiIh0jwERERER6R4DIiIiItI9BkRERESkewyIiIiISPcYEBEREZHuMSAiIiIi3WNARERERLrHgIiIiIh0jwERERER6R4DIiIiItI9BkRERESkewyIiIiISPcYEBEREZHuMSAiIiIi3WNARERERLrHgIiIiIh0jwERERER6Z5Z969AMLldKHAbUOR0IzLCDAs8gCkMT4nbhUKPAYXFbjhsZliNHsAYhs+jrvC44NQMyCt0w2Y1wi4/e8Lx/1Vd4XbBYzAhp9AJs8mIKDkVPB9BPR8wyvlwQQMQa7eU7OM5CR63C3kuwOn2INpmhilI34Uh3UI0bdo0GAyGMltKSorvuKZpqkzDhg1ht9vRo0cP7Nixo8x9FBUVYezYsUhKSkJkZCQGDBiAI0eOINjcmYfg/HUpFqzfjTvn/oBjRw7Cvf1TePJOIZy4s4/BveMzfLd9L/7yr43Yc+AA3D99BM/ptGBXTZfcuenq9f/tt98wbM5GLNm0B65dX8KdFfz/87pUdBruX5cg8/h+jH5/M15ZugNFv22AO213sGumT24X3Ec3I//oDjz+2XY8Mn8bco/ugvvQesBVHOza6ZL75D4U7/8O/1q5C/e+twknUw/Cs+s/0AqyAl4XgyZRRYiSYOfTTz/FN99849tnMpmQnJysLs+cORNPP/005s6diwsvvBBPPfUUVq9ejd27dyM6OlqVue+++/Cf//xHlUlMTMSkSZOQkZGBTZs2qfuqqpycHMTGxiI7OxsxMTG/63m5Mw8jM+0nZBkAd1QDuM0OWPKPw1Cch1hHMpITWgKOBIQ6T04qTp3YhmzNCbcjGW5rDMwFJ2EsykasNQbJSa2BqJJzRQGQdxLuFTOQ2fRyZETVh8tRDyZnLkx5JwCzDbFJrZEc04inIlCKcuHetQiZZiOy7HEojmoEo+aE+fQRwGBEbFIbJMc14fkIZDB0bAsyc35Dls0BZ/T5arfl9GFAcyM2oRWSY5sAZivPSYC4T+1HZtp2ZJlMcEU3gsdkhSX3GAyuQsRGN0JyXDPAHvu7H6eq398h345uNpvLtAp5SRz34osv4rHHHsPgwYPVvnfeeQf169fHBx98gHvvvVc9+X/+859477330KtXL1Xm3//+Nxo3bqyCrD59+iAYnJoRmVYHBq8eX+HY/OvmINJlgAOhr8gNZFrtGLJycoVj83u+BYcLiAxKzfQpz2WAO+p8ZFkdGLJqTIXj82/4BAxPA6dYM6HImowsSwEGrZnk53x8xPMRSCYzioyRyLJFYtD3D1U8H/0+RJLRBENAK6VvTpiRaXNg8HcTKxyb3/tdRGlG2ANYn5DuMhN79uxRXWLNmjXDrbfeiv3796v9Bw4cwPHjx9G7d29fWZvNhu7du2Pt2rXqurQCOZ3OMmXkvtq1a+crUxnpapOosvRWU74+6EGhvb7fY6dcNqQVh8cvlK0ZFhRYE/0ey0EUDhfaAl4nPTtWZMXcvG6qtc6ffFfAq6Rrp4qAh390qF++/mQUhGzjfJ10utCJR78rgjO6sd/jJ/I1ZBbwTRJIc7c5URzZ0O+xtCITMooC22YT0gFRly5d8O6772LJkiV46623VADUrVs3nDp1Sl0W0iJUmlz3HpO/VqsV8fHxlZapzPTp01UTm3eTVqWa4jnD56B0YIbLx6SqayU9rh5NU8cpkCcEKHRqgIG/cUPmfLg8kplQ2WEKMNcZPnxLjvC9E0guzVPp94QWhHdJSAdE/fr1w5AhQ9C+fXvV5fXll1/6usa8JNG6NPmCLr+vvKqUmTJliupy826HDx9GTbm+mRERhf6TjhMtxahncyIcXJzogsOZ6fdYrCEfje1MUgykBhFO3Ju4BaY8//+3HCHfQV63JEQAL17pKskZ8iNRDf+jQImOsGBmD3tJzpAfKQ4D4u18kwTSiA4RsOWn+j1WL8KDBBsDokrJKDEJjqQbzZtXVL6lJy0tzddqJGWKi4uRmZlZaZnKSPebJF+V3mqK1eCBwe0/WDC6CxFpciMcRJg0GN1FlT6PKLP8OqZAkdc76tS2So8bDWyTCCQbnIjM/a2kKdUPg8b3R0C5XYhwZgOVvO4GzQ2Dh11mgWRFMQwe/w0ARncx7IbANg6E9Cgzf3k9LVq0wMiRI/G3v/1N5QM98MADeOihkgQ5CX7q1aunRp95k6plRJokUt98882qTGpqKho1aoSvvvqqWknVNTnKTKTnHEZWfjpy3DZkFbrRMNoMizsfsVHnITm6AcJFes4RZOUdRz7sOJnvQkqUBTZ3HmKjGyI5+rxgV0933KfTkJGXinSjBamnXUiwmxBlKAQsDsRHJiPJnhTsKupLYY56r2cYDOp8RJiNSLS51Txd8ZH1keTg+QgodzHSsw8h01WItHxNZrtBSqRRBULxUQ2QFFkvsPUhyPnIKsxAZrEZuU6P+i40uQoQH90QSVE1811YJ0aZTZ48GTfeeCPOP/981aojw+rliQ0bNkx1eU2YMAHPPPMMWrZsqTa57HA4cPvtt6vbywswYsQINdRehtwnJCSo+/R2wQVTckxjJDvqI9dlRLHbjSibBVa4wm7IpwzjTnbUQ57biEbRbkTazIgwuMPuedQVpuh6SLbHIQYm1He4EGExItKk8XwES0QMks0tkWAwI8leMjFjrEUDTBbmegWDyYrkmCZINpqQXOhSKSpxDktJK4WJn1nBkBx7PpIjU5DjNKiJGWPsFli04HwXhnRAJBMo3nbbbTh58qRq6enatSvWr1+PJk1K5u6QlqGCggLcf//9qltMkrCXLl3qm4NIvPDCC2rovrQQSdmePXuqOYmqMwdRrTFbS2at9Z2GMH1Dmq2INEMFQyVC4LXVM7MVMr7PFsXzEBLMVvWOSIziqMuQYLaoP/GOUp+3DIaCy2xFTJloJDjfhWHVZRZMNd1lRkRERKHz/c1hDkRERKR7DIiIiIhI9xgQERERke4xICIiIiLdY0BEREREuseAiIiIiHSPARERERHpHgMiIiIi0j0GRERERKR7DIiIiIhI9xgQERERke4xICIiIiLdY0BEREREuseAiIiIiHSPARERERHpHgMiIiIi0j0GRERERKR7DIiIiIhI9xgQERERke4xICIiIiLdY0BEREREuseAiIiIiHSPARERERHpHgMiIiIi0j0GRERERKR7DIiIiIhI9xgQERERke4xICIiIiLdY0BEREREuseAiIiIiHSPARERERHpHgMiIiIi0j0GRERERKR7DIiIiIhI9xgQERERke6Zdf8KBFNxPjKcJjjdGqJtZjiMTsBiD79T4ixAltOEIpcHkVYzokxh+jzqCmcBct1m5BW7YTMbEWdxARZHsGulX858FBlsyMp3wmQ0IMnmAUxWwGgKds30yVkIt8GMjAIXNA1IcJhh1or5HgkWOQnOApwqNsHl0RBrtyACxUH5DmELUZC4T+6D86eP8c3mX3Hbm+txMvUg3Oteg/t0GsKJO+MQ3Bvewpbd+zHktbU4fPgA3N+/And2arCrpkvunBNwr30FJ479hptfX4fvt++F68d34c44GOyq6ZInPxPurfOQm7oXI9/9EW8v34HCX5fDnbod8LiDXT19BkMH16Dw0CY88fl2PPzpVuQf2Q73nuVAcV6wa6c/mgb3iV0o2vU15n2/C8P/tRHZx/fD88O/4Mk7FfDqGDRNwjM6m5ycHMTGxiI7OxsxMTG/6wXzZB5CxvEtyDKZ4HYkQ7PFwHT6KAyuQsTaYpGc1BqITAr5k+LJSUVG6mZkGTR4IuLhsSfClJcKQ3EeYk0RSKrfAYaoesGupn7kpsP95SRktu2PzMhEuKMawliYBWPBKcBkQWxyWyTHNAp2LfWjMAfuze8hMyYZWfYYOKMbw+guVu91GIyITW6D5Limwa6lfrhdcB/8HpkFaciyOeCKbgwYDDDnHAY0D2ITLkByXDPAbAt2TXXDnb4Hmek/I8tsgTuqATxmOyynDwNuJ2Id9ZCc2BKwxwfs+5tdZkFQoFmQYY/DkFVjKhz7tPe7iPDYEI3Ql+8yljyPFaMqHPu0179gc5nx+0JHqo4ctwWeZtcjy+rA4NUTKhyff8MnSOZLGjCFsKGwXmdkaScxaM2Dfs7HxzwfgWQyI9/REFkoxKA1kysc/vT6eUg0WtltEkCFBjsy7bEYvHp8hWOf9vk3HFoEIgNYH3aZBcGX+1wosPlvAUovMiG90IBwsPWUEbmmWL/HMt0ROJLPeDuQjhea8PcDTeGOSvF7PN8V0OroXmahB/cuc8IV09jva3Ey36P71yiQcgqcmLg0C84o/62kx3M9yMwv5jkJoLe25qPQXt/vseP5BmQWBbYDiwFREDisJpgqiXmsJgOMxvAIiCwmI8yV1FWehySQUuCYDAZcmGRTzc3+GHg6Akpe72bxFhgqyRUy8dM3oORzNTHSAgP8B6LyWWbkmySgomzmM34XBvoji2/JILiusRu2fP9Jx3GGfNS3FCIcdIwvgr3IfxJ4lDsb50fkB7xOetbQVoAhzkUwSc6QHw4T0wUDKdHmxl/bnCjJGfIjIYIRaiBFWYyY2gUlOUN+JNs1xEfwKzGQhrY2wpp7xO+xREsxkqz+f9zVFvZpBIHZaIQB/r+c5AeK3RIeb0rrGX7iljwPDisOJHm93Wd4Rxv46zegLNLiECbvZb0442dWQGtCorIeBiEfVzJtSCBxlFkQRpmJ9JwjyCrIQI7LhNxiD+pFylwYRYiPrI+kqAYIF+mnjyIr/yTyPBZkFbqR7DDBimLEOeojOTp8nkdd4cnLwKmCNKR7NKTnuRBjM5XMC2W2Id6RhCR76I9erFOK89V7JMPjwok8l/pCTrRp0n+D+Mh6PB+B5vEgPfs3ZLrykZ6vqZ+l9RzyA9WN+MgUJDk47CDQ0nMOI6swC5nFRhQ4PagfZYbJU4z4qBQkRfrPL6qt728GRDX8glaLxwOXzEnl1hBhMcrJUB+UYee/z6PY7YHNbIIJYfo86gqPBx4YUOhyqy9gs/wI4/kI6vmQ17+g2K3y6qzy1uD5CB75nDUYUOR0Q0KiCIvZd44oSDweFHsAt0eD3Wqq8fPBYffhwGhUfZZmb89SuHZp+J6H9z9wmD6PusJoVMmBDit7xEPCfz/Y1Qc9Bd9/P2dtpbv0GQwFl9FY8kOh1PWgVCMoj0pEREQUQhgQERERke4xICIiIiLd01VA9Nprr6FZs2aIiIhAp06d8N133wW7SkRERBQCdBMQffTRR5gwYQIee+wxbNmyBX/4wx/Qr18/HDp0KNhVIyIioiDTzbD7Ll264NJLL8Xs2bN9+1q3bo2BAwdi+vTpwRl2T0RERLWqqt/fumghKi4uxqZNm9C7d+8y++X62rVr/d6mqKhIvYilNyIiIqqbdBEQnTx5Em63G/Xrl531Uq4fP37c722k1UgiSu/WuLH/FauJiIgo/OkiIKpsLSfpLaxsfacpU6ao5jXvdviw/wUBiYiIKPzpYirbpKQkmEymCq1BaWlpFVqNvGw2m9qIiIio7tNFQGS1WtUw+2XLlmHQoEG+/XL9pptuqtJ9eHPPmUtEREQUPrzf22cbQ6aLgEhMnDgRQ4cORefOnXHFFVfgzTffVEPuR40aVaXbnz59Wv1lLhEREVH4ke9xyQmG3gOiW265BadOncKTTz6J1NRUtGvXDl999RWaNGlSpds3bNhQ5RFFR0dXmnek9whcgkV5jTgtQWjgOQktPB+hhedDP+dD0zQVDMn3+JnoZh4iql2cpyn08JyEFp6P0MLzEVpyQmCuP12NMiMiIiLyhwERERER6R4DIqoRMkXB1KlTOVVBCOE5CS08H6GF5yO02ELgO4Q5RERERKR7bCEiIiIi3WNARERERLrHgIiIiIh0jwERERER6R4DIh1bvXo1brzxRjV7p8y+/dlnn5U5LnN2Tps2TR232+3o0aMHduzYUaZMUVERxo4dqxbQjYyMxIABA3DkyJEyZTIzM9WyKTLplmxyOSsrq0wZWUZF6iL3Ifc1btw4FBcXQy+mT5+Oyy67TM2EXq9ePQwcOBC7d+8uU4bnI7Bmz56NDh06qEniZJMlf77++muejxB6z8jn1oQJE3z7+B4JnGnTpqnXv/SWkpIS3udCZqomffrqq6+0xx57TJs/f77MVq4tXLiwzPEZM2Zo0dHR6vj27du1W265RWvQoIGWk5PjKzNq1CjtvPPO05YtW6Zt3rxZu+aaa7SOHTtqLpfLV6Zv375au3bttLVr16pNLvfv3993XMrKPrmt3IfcV8OGDbUxY8ZoetGnTx9tzpw52s8//6xt3bpVu+GGG7Tzzz9fy83N9ZXh+QisL774Qvvyyy+13bt3q+3RRx/VLBaLOkc8H8G1ceNGrWnTplqHDh208ePH+/bzPRI4U6dO1dq2baulpqb6trS0tLA+FwyIqOQ/QrmAyOPxaCkpKeo/tVdhYaEWGxurvf766+p6VlaW+oKYN2+er8zRo0c1o9GoLV68WF3fuXOnuu/169f7yqxbt07t++WXX3yBmdxGbuv14YcfajabTcvOztblGZIPFnmNVq1apa7zfISG+Ph47e233+b5CKLTp09rLVu2VF983bt39wVEfI8EPiDq2LGj32Phei7YZUZ+HThwAMePH0fv3r19+2TCrO7du2Pt2rXq+qZNm+B0OsuUkeZRWTjXW2bdunWqmbNLly6+Ml27dlX7SpeR25ReeK9Pnz6qOVUeQ49kPR+RkJCg/vJ8BJfb7ca8efOQl5enus54PoJn9OjRuOGGG9CrV68y+3lOAm/Pnj3qc7tZs2a49dZbsX///rA+F7pZ7Z6qR/4zi/r165fZL9d/++03Xxmr1Yr4+PgKZby3l7+SE1Oe7CtdpvzjyH3KfXvL6Ik02E2cOBFXXXWVeqMLno/g2L59uwqACgsLERUVhYULF6JNmza+D2O+PwJLgtLNmzfjhx9+qHCM75HA6tKlC959911ceOGFOHHiBJ566il069ZN5QmF67lgQERnJIly5b+sy+8rr3wZf+XPpYxejBkzBtu2bcOaNWsqHOP5CKxWrVph69atKolz/vz5GDZsGFatWsXzEQSHDx/G+PHjsXTpUkRERFRaju+RwOjXr5/vcvv27dUPhxYtWuCdd95RrTjheC7YZUZ+eUcLlI+w09LSfNG4lJFMfhkFcKYy8uuhvPT09DJlyj+O3Kc0p5aP/Os6GXHxxRdfYMWKFWjUqJFvP89HcMivzAsuuACdO3dWo5o6duyIl156iecjCKT7Qz5bOnXqBLPZrDYJTl9++WV12ftZwc+s4IiMjFSBkXSjhevnFQMi8kv6hOU/2rJly3z75D+vfABJs6iQDyaLxVKmTGpqKn7++WdfGfnVIPkwGzdu9JXZsGGD2le6jNxGbuslvwKlz1keQw/k14y0DC1YsADLly9Xr39pPB+hc54kN4HnI/B69uypujClxc67SaB6xx13qMvNmzfnZ1YQFRUVYdeuXWjQoEH4vj+qlYJNdW60xpYtW9Qm/xWef/55dfm3335Tx2WEgIwKWLBggRo2edttt/kdNtmoUSPtm2++UUMer732Wr/DJmV4rIwOkK19+/Z+h0327NlT3Yfcl9ynnobd33fffeq1XrlyZZlhrPn5+b4yPB+BNWXKFG316tXagQMHtG3btqlh9zKaZenSpTwfIaL0KDPB90jgTJo0SX1e7d+/X40Ck890GWZ/8ODBsD0XDIh0bMWKFSoQKr8NGzbMN3RShlbK8EkZwnj11Ver/9ilFRQUqP94CQkJmt1uV/9RDx06VKbMqVOntDvuuEO9WWSTy5mZmWXKSBAmc+/Ifch9yX3KME298HceZJO5ibx4PgLrrrvu0po0aaJZrVYtOTlZfeB6gyGej9AMiPgeCZxb/juvkAydl3l/Bg8erO3YsSOsz4VB/jn3RjIiIiKi8MccIiIiItI9BkRERESkewyIiIiISPcYEBEREZHuMSAiIiIi3WNARERERLrHgIiIiIh0jwERERER6R4DIiIKewcPHlQrW8uaVkRE54IBERH9bsOHD1cByahRoyocu//++9UxKVO+vGyywKOsSn3dddfhX//6Fzwez1kfa+DAgWX2NW7cWC3u2K5du5A6mz169MCECROCXQ0iqgIGRERUIyQomTdvHgoKCnz7CgsL8eGHH+L888+vUL5v374qiJHWna+//hrXXHMNxo8fj/79+8PlclXrsU0mk1pd22w218hzISL9YUBERDXi0ksvVYHPggULfPvksgRKl1xySYXyNptNBTHnnXeeuu2jjz6Kzz//XAVHc+fO9fsY06ZNwzvvvKPKeVuYVq5cWaHLTPbJ9SVLlqjHttvtuPbaa5GWlqbuv3Xr1oiJicFtt92G/Px83/3L0o7PPvssmjdvrm7TsWNHfPrpp2d83q+99hpatmyJiIgI1dL1xz/+0deStWrVKrz00ku+uko9xc6dO3H99dcjKipK3Wbo0KE4efJkmZalMWPGqC0uLg6JiYn461//qup3tsclonPDgIiIasydd96JOXPm+K5LF9hdd91V5dtL0CJBSOmgqrTJkyfj5ptv9rUuydatW7dK708CqFdffRVr167F4cOH1W1ffPFFfPDBB/jyyy+xbNkyvPLKK77yEnRI/WfPno0dO3bggQcewJ///GcV2Pjz448/Yty4cXjyySexe/duLF68GFdffbU6JoHQFVdcgXvuucdXV2/XXvfu3XHxxRer28ttTpw4oepWmgR+0uK1YcMGvPzyy3jhhRfw9ttvn/VxiejcsH2ZiGqMtHRMmTLF12Lz/fffq240abGpqosuugjbtm3ze0xaVKTlpqioSLUunc1TTz2FK6+8Ul0eMWKEqtu+fftUC5CQVpUVK1bg4YcfRl5eHp5//nksX75cBTJCyq1ZswZvvPGGCmLKO3ToECIjI1U3X3R0NJo0aeJrDYuNjYXVaoXD4ShTVwm2pEXsmWeeKRM4SrD066+/4sILL1T75LoEQfI6tmrVCtu3b1fXJcA60+MS0blhQERENSYpKQk33HCDat2Q7h25LPuqQ24nQUBN6NChg++ydCtJcOINhrz7Nm7c6OvGkpwnSe4urbi4uNJgQ8pKMCL3Ka1Wsg0aNEg9TmU2bdqkgjAJ7sqTYM0bEHXt2rXM6yBB2nPPPQe3231Oj0tEZ8aAiIhqlHSRSe6LmDVrVrVvv2vXLjRr1qxG6iIj2Ly8I9pKk33eUW3ev9KVJnlN5fOd/JHWmc2bN6sWsKVLl+Lxxx9X3XQ//PCDyv3xRx7nxhtvxMyZMysca9CgQZWe17k8LhGdGQMiIqpR0lohrSqiT58+1bqtdFdJ15Dk7lRGuqGklaSmtWnTRgU+0h3lr3usMpLn06tXL7VNnTpVBSTyPAYPHuy3rtJdNn/+fDRt2vSMo+LWr19f4bokUcuIurM9LhFVHwMiIqpR8oUtrTzey5WRPKDjx4+rgEGSiiUxePr06Sov5i9/+Uult5NAQkaPSTKxjL6SXJ2aIK0ukrQtwZi04lx11VXIyclRCdnSvTVs2LAKt1m0aBH279+vEprj4+Px1VdfqdtKzo+3rpIULTlVch8JCQkYPXo03nrrLTXC7cEHH1Rdinv37lW5VrLf+5pJEvjEiRNx7733qtYgSf6WLrOqPC4RVR8DIiKqcTKk/WwkAJIuImnpkC91GV0mo6kk8DAaKx8AK0nF0lXUuXNn5ObmqnwcCTxqwv/93/+hXr16KjCTgENaXbxTAvgjx2VEnHRXSf6RtODIvEtt27ZVxyXAkucjrU8yP9OBAwdUXSXZXBK5pQVNAkPJB5KWtdLPW4JCuc3ll1+ugqSxY8di5MiRVXpcIqo+g1Z6YgsiIgo6mYdIhuXLFAFEFBich4iIiIh0jwERERER6R67zIiIiEj32EJEREREuseAiIiIiHSPARERERHpHgMiIiIi0j0GRERERKR7DIiIiIhI9xgQERERke4xICIiIiLo3f8D6nhFWIl06nQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import seaborn as sns\n", + "\n", + "sns.scatterplot(\n", + " data=calculations_df_long,\n", + " x='run',\n", + " y='natoms_output',\n", + " hue='ElasticConstant', # Differentiates C11, C12, C44\n", + " style='ElasticConstant', # Optional: different styles for each\n", + ")\n", + "plt.xlabel('MD time steps')\n", + "plt.ylabel('Number of atoms')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "3cc25e5c", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACEAAAAHqCAYAAAAOWqmnAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAtmVJREFUeJzs3Qd4VFX6x/FfekhIQgoQei8CoQiKgooIAipFwQXLIiruWkEELKx/XHBVlFWxICIriqIuFoqiqBQpAooUEVGk92IoISE9JPN/zslmTEgxJJNkknw/z3PNzD333jlzEzkz977nfT0cDodDAAAAAAAAAAAAAAAA5ZhnWXcAAAAAAAAAAAAAAACguAiAAAAAAAAAAAAAAAAA5R4BEAAAAAAAAAAAAAAAoNwjAAIAAAAAAAAAAAAAAJR7BEAAAAAAAAAAAAAAAIByjwAIAAAAAAAAAAAAAABQ7hEAAQAAAAAAAAAAAAAAyj0CIAAAAAAAAAAAAAAAQLlHAAQAAAAAAAAAAAAAACj3CIAAAAAAAAAAAAAAAADlHgEQgBuYNWuWqlWrpspgwoQJat++fbk+j8nJybr99tsVFRUlb29vXX/99Xlut3LlSnXs2FH+/v5q3Lixpk+fnmubl156SS1atFCVKlVUr149PfTQQ/b4AAD3wBhdvs7jvn375OHhkWv56quvznuMnjt3rlq1aiU/Pz/7c/78+SXefwBA/hiTXcOdvjevXr1aXbt2VXh4uP1O3LJlS02ZMiXHNldeeWWeY/t1113n3GbSpEm66KKLFBQUpBo1atjX2r59e4m/RwBAJsbo8nUeV6xYoQEDBqhWrVoKDAy01+rff//9XNu99tpruuCCC+wYba5fv/vuuznaf/nlFw0aNEgNGza0Y7O5zp2Xw4cP669//asd7wMCAuzrbdy4scTeHwAY3pwGADg/6enp9oPfyJEj7c2RvOzdu1fXXnut/va3v+m9997TmjVrdN9996l69er2g6FhPlg+9thjeuutt9SlSxft2LHDXiAyzr3oAwAACm/p0qVq3bq183lYWNh5jdHfffedhgwZon/961+64YYbbPDD4MGD7Y2azp0786sAAMAF35vNTZcHHnhAbdu2tY/NOHv33Xfbx3//+9/tNvPmzVNqaqpzn5MnT6pdu3b6y1/+kiOw8f7777dBEGfPntXjjz+uXr166ddff7XHAgAAf1i7dq0dex999FHVrFlTX3zxhW677TYFBwerX79+dpvXX39d48aN03/+8x87vv7www/2O3RoaKhzm8TERDuhwIzJZlJfXmJiYmywY/fu3fXll1/aQMXdu3dXmsmgAMqQA0CxdOvWzTFixAjHww8/7AgNDXXUrFnT8c9//jPHNi+88IKjTZs2joCAAEfdunUd9957r+PMmTO2bfny5Q7zv2L2JWv/U6dOOYYOHeqoVq2ao0qVKo4+ffo4duzY4Tzu22+/7QgJCXEsXLjQ0bx5c7vNoEGDHPHx8Y5Zs2Y5GjRoYPd94IEHHGfPnnXu99prrzmaNm3q8PPzc9SoUcPuUxjJycn2vVavXt3u27VrV8cPP/yQqz/ZzZ8/376nrPZz36tZZ5jH06ZNs+/R39/f0bBhQ8dHH33kPE7WeYqJiXGu+/HHH+26vXv3FngeS9KwYcMcAwYMyLX+kUcecbRs2TLHurvvvttxySWXOJ/ff//9jquuuirHNqNHj3ZcdtllJdhjAKg8GKMr3xhtXs8c37x+fgozRg8ePNi+3+x69+7tuOmmm0qg1wBQ8TEmV74xuTDfm/Nyww03OP7617/m2z5lyhRHUFCQve6Rn+joaPveVq5cWaT+AkBlwhhducfoLNdee63jjjvucD6/9NJLHWPHjs2xzYMPPmjvB+TF3IcwY/S5Hn30Ua51AygTlMAAXOCdd96xswrWrVunyZMn68knn9SSJUuc7Z6ennrllVe0detWu+0333yjRx55xLaZmf8mPZSJsDx69Khdxo4da9tMNoANGzbos88+szMRzWcpM2MxLS3NeWwTaWmOPWfOHJve2aSwGjhwoBYtWmSX2bNna8aMGfrkk0/s9uZ4ZgaG6aNJCWn2ueKKKwr1Pk2fzcwN8x42bdqkpk2bqnfv3jp16lSh9jczKceMGWNnZGa9V7Muy/jx4+3My59++smmxbr55pu1bdu2Qh27oPN4rm+//VZVq1YtcHnmmWdUHOb3ZWacZGfOlTn/Wb+/yy67zKb7MhG0xp49e+zvLHsqTwBA8TBGV84xun///nZmiZlpkvUZ6HzG6Py2MTNlAABFw5hcOcfk8/Hjjz/asbZbt275bjNz5kzddNNNBWZ2iI2NzZUBCgCQP8ZoxmgzdmYfN1NSUmzJyOxMZidzHTv7vYk/Y+5rdOrUyWaJMN/RO3ToYLNKAECJK5u4C6BiRcmeO2P/oosustGN+THRn+Hh4QVGl5pMD+Z/0TVr1jjXnThxwmZ5yIoezYo63bVrV44ZjCbTRFaGiawZi2a9MXfuXEdwcLAjLi7uvN6nmV3h4+PjeP/9953rUlNTHbVr13ZMnjy5UFGyholcbdeuXa7jm23uueeeHOs6d+5ss2UUJko2v9fPS2JiomPnzp0FLidPnizWTJZmzZo5nn766RzrzO/S9PfIkSPOda+88oo9r97e3rYt6/0CAIqPMbryjdHHjx93vPjii45169Y51q9f7xg/frzD09PTMXv27PMao8/9zGOY576+vn/6HgAAuTEmV74x+XwyQNSpU8eOsWbMfvLJJ/Pdzozv5r2Yn/nJyMhw9OvXj9mmAFBIjNGVe4w2Pv74YzsOb9261blu3LhxjsjISMeGDRvs2Gq+X5tM0ude2/6zDBAmi7RZzPE2bdrkmD59us2Q8c477xS6fwBQFN4lH2IBVHymZlZ2tWrVUnR0tPP58uXL7cwIU38yLi7O1qRMTk5WQkJCvrMWzAwOb2/vHHWmw8PD1aJFixyzOwICAtSkSRPnc1O3q2HDhnY2RvZ1Wf25+uqr1aBBA1ufq0+fPnYxta3NcQpianOZ6E4zkzKLj4+PLr744kLPNvkzl156aa7nmzdvlquZaFWTvaKkeXh45Hie+Vn4j/UmW8fTTz+tadOm2d/zrl279OCDD9q/HzOrBwBQfIzRlWuMjoiIyFF71Mw0MTVHTYYuM0u2sGN0ftucuw4AUHiMyZVrTD4fJttEfHy8vv/+ez322GP2dU1mi7yyP7Rp08Zeh8jPAw88oC1btmj16tUl3GsAqDgYoyvvGG2uT5ss1CYrg8k+lcVcmz527JguueQS+13Y3F8w25nv1l5eXoU+fkZGhv1enpU1ymSA+OWXX/T666/rtttuc8l7AIC8UAIDcAETCJCduThuBndj//79tmyF+ZJuykeYkgevvfaabSsoXVTWhfi81me/+J7XaxfUn6CgIFu+4r///a+90f7EE0+oXbt2On36dIHvMa8bA+f2x5T6OLff55MSKy/Zj529H8U5dmmk8oyMjLQfErMzQSgmqMUEsmR9kBw6dKjuuusuRUVF2UAU87qTJk1y/r4AAMXDGM0YbS7Y7Ny587zG6Py2MRd9AACMyfnhe3PRNGrUyH4n/tvf/mYDGSdMmJBrG1P+05T+NN+f8zNixAibattMQqlbty7/qwJAIfG9uXJ+b165cqX69eunF198MVcwggmyeOutt+z4u2/fPh04cMBOujT3FszEg8Iy9x9atWqVY90FF1xgjwcAJYkACKCEmXrSJuPDCy+8YC/AN2/eXEeOHMmxja+vr9LT03OsMx8MzH7r1q1zrjt58qR27NhhPyQUh7nA37NnTxuxaWZGmA8x33zzTYH7mKhS08/ssyjMhzTz/rL6U716dZ05c8ZmtshybpRrXu81i5ntce7zli1bOo9tmBqlRTl2dibq1Oxb0HLPPfeoOEyE75IlS3KsW7x4sX3trC8V5gNk1offLCaC1nwQzi8ABgDgOozRlWOMNvXEzUWX8xmj89vG1E4HALgeY3LlGJMLw3wXNnXHz/XRRx/Z9dkzOmXfx2R+mDdvnr22YQIqAACuwRhdMcdok/nhuuuu07PPPqu///3v+W5nviOboEJzzdoEIvbt2zfX9eyCmGzS27dvz7HO3N8wGaoBoCRRAgMoYaY8hQlkePXVV21E5Zo1azR9+vQc25joSZPucdmyZTYbgylH0axZMw0YMMDOgHjjjTdsdKVJBVmnTh27vqg+//xz7dmzR1dccYVCQ0O1aNEim23AlNYoiCnVce+99+rhhx9WWFiY6tevbwMozE384cOH221MGQfT93/84x925sUPP/ygWbNm5Xqve/futR/EzIcn8778/Pxs28cff2w/wF122WV6//337f4mxWVWAEa9evXsTJCnnnrKzuQ0QSV/dh7zKu3hijRhppxJamqqTp06ZYM+sj6wtm/f3v40HzKnTp2q0aNH29/hd999Z9+LybyRJSvC1qT+yiqBYbJC9O/f/7xSiQEAioYxuuKN0e+88469QGPGVnNRZuHChXrllVf03HPPObcpzBhtSlKZz0pmP/O569NPP9XSpUtJpw0AJYQxueKNyYX53myyY5prC1k3h8yEi+eff95eTziXeY/XX3+9M1tTdvfff78++OADO16bc5WVxSkkJMS+DwBA0TFGV7wxOiv4wXzvHTRokHPcNAEY5rp/VpCC6b+5Zm3KSppr2Fu3brXfubOYMd6M9VmPDx8+bM+LyUCR1T+T2clMJDAZKQYPHmyPOWPGDLsAQIlyACiWbt26OR588MEc6wYMGOAYNmyY8/mLL77oqFWrlqNKlSqO3r17O959910zvd8RExPj3Oaee+5xhIeH2/X//Oc/7bpTp045hg4d6ggJCXHuu2PHDuc+b7/9tm3Lzuzbrl27HOtMX0yfjG+//db2OTQ01B6zbdu2jg8//LBQ7zUpKckxYsQIR0REhMPPz8/RtWtXxw8//JBjm/nz5zuaNm3q8Pf3d/Tt29cxY8YM+56yJCcnOwYNGuSoVq2aXW/eg2Eev/baa46rr77aHrtBgwaO//73vzmOvXr1akdUVJQ99uWXX+74+OOP7X579+4t8DyWBNM/8xrnLtmtWLHC0aFDB4evr6+jYcOGjtdffz1He1pammPChAmOJk2a2PdUr149x3333Zfj7wIAUHSM0ZVvjJ41a5bjggsucAQEBDiCgoIcHTt2dMyePTvXdn82RhvmPbRo0cLh4+PjaNmypWPu3Lkl0mcAqAwYkyvfmFyY782vvPKKo3Xr1nbcDg4OtmPztGnTHOnp6TmOs337drvf4sWL83ydvF4j+3kDAOSPMbryjdHmXkFe46b5W8jy66+/Otq3b2/vH5gx2txb+O2333Icx/T7z45jLFy40NGmTRt7Xsx3a3NOAaCkeZj/lGyIBQAUrh7a/Pnz7YwOAADgPhijAQBwD4zJAAC4J8ZoAHAvhS/WAwAAAAAAAAAAAAAA4KYIgABgHThwwNbnym8x7QAAoPQxRgMA4B4YkwEAcE+M0QCA7CiBAcA6e/as9u3bl+/ZaNiwoby9vTlbAACUMsZoAADcA2MyAADuiTEaAJAdARAAAAAAAAAAAAAAAKDcowQGAAAAAAAAAAAAAAAo9wiAAAAAAAAAAAAAAAAA5R4BEJIcDofi4uLsTwAA4D4YowEAcE+M0QAAuC/GaQAAUJkRACHpzJkzCgkJsT8BAID7YIwGAMA9MUYDAOC+GKcBAEBlRgAEAAAAAAAAAAAAAAAo9wiAAAAAAAAAAAAAAAAA5R4BEAAAAAAAAAAAAAAAoNwjAAIAAAAAAAAAAAAAAJR7BEAAAAAAAAAAAAAAAIByjwAIAAAAAAAAAAAAAABQ7hEAAQAAAAAAAAAAAAAAyj0CIAAAAAAAAAAAAAAAQLlHAAQAAAAAAAAAAAAAACj3CIAAAAAAAAAAAAAAAADlHgEQAAAAAAAAAAAAAACg3CMAAgAAAAAAAAAAAAAAlHsEQAAAAAAAAAAAAAAAgHLPu6w7gLIVfSZZCSnp8vHyUHhVX1Xx4U8CAAB3EJuUqtjENDkkVavio5AA37LuEgAAAMq5tPR0RcelKjU9Q1V8PFUz2F8eHh5l3S0Abio9w6HouGQln82Qn7enagb5ycuLOZUAAMC9cbe7kjqTnKYN+2L05Oe/au+JBPl6eeqGDrX1YM/mql2tSll3DwCASisjw6Fdx+P1z0+36rs9p+y6zo3C9OSA1mpaI0henlygBgAAwPkzNzHfXrtP767dp4TUdNUM9tOYXi3U84KaCgsk2BZATifjUzT/x8N6bfkuxSSmKaSKj+6+orH+0qmeqgf5cboAAIDbIlyzktp04LTumLXeBj8YJvL/ww2HNPyd9fYLMQAAKBsHYxI1cNpaZ/CDsW7vKd0wba0Onkrk1wIAAIDzdjoxVeM/3arXV+y2wQ/G73EpeuSTLfp082GdTc/grAIusGrVKvXr10+1a9e22VUWLFiQa5tt27apf//+CgkJUVBQkC655BIdOHDA2Z6SkqIRI0YoIiJCgYGBdttDhw6V6u8nKfWs3vx2r576YpsNfjBik9I0+evtevWbnUpIOVuq/QEAADgfBEBUQsfPJOvJhb/m2bbt6Bnt+V9QBAAAKF3mwvNH6w8qPo+LSYmp6Zr9/X6lns28YA0AAAAU1vEzKfr6l9/zbJuyZIcNhgDKw/elI6eTtOd4vP3pjoE7CQkJateunaZOnZpn++7du3XZZZepZcuWWrFihX766SeNHz9e/v7+zm1GjRql+fPna86cOVq9erXi4+PVt29fpaeX3nfB4/EpenP1njzb3l93QCfi+TcDAAC4L0pgVELmBsru4/H5tq/bc1KXNA4v1T4BAAApPvmsVu48nu+pWLPrhM4kN1F4VS9OFwCgQjBBf0dPJ+mzn47o99hk9WxVU1F1Q1QrhNKMlZG5mXksLllbDp7WkdhktatbTQ3CA1Qj+I8bgyiagia7xCWftaVSJf6/c5XUsxny9WbemSuZG+4fbzio11fuVlzSWQX7e+tvlzfWTRebcgzu82/ENddcY5f8PP7447r22ms1efJk57rGjRs7H8fGxmrmzJmaPXu2evbsade99957qlevnpYuXarevXurNMQkpCkt3ZFnW3qGQyfjU9UgPLBU+gIAAHC+CICohLy9PFXFx0tJaXlHDUeGuM+XBgAAKhNzkTSiav61VE1tZi6kAgAqCpM+e+FPRzRu3s/OdR9tPKSG4QF6/65LVCfU/W7Gmps+v8cl68DJRJ1MSFGzmkGqXtVPoYG+Zd21ChH88OPB07pt5g85rle0jAzSzNsvUp1q7vf3UJ6EBvgU2O7HzfpiS0lL1+HTSZq36ZC2HTujC+uHqm/bWvZv11yLQ9Elppy15Vtmrt6bI3DnhSU7FB2fosf6tFSgn/tf5s7IyNAXX3yhRx55xAYy/Pjjj2rUqJHGjRun66+/3m6zceNGpaWlqVevXs79TDmNNm3aaO3atfkGQJiyGWbJEhcXV6y++vsUHHRfxZegfAAA4L749F0JVa/qa6Oj8+Lt6UH2BwAAykiAn7f+fsUfs3/OdW+3JgryL/jiNQAA5UX0mWT9Y/4fwQ9Z9p1M1MvLdtj64+4W/LDl0Gld8/K3uuk/3+v+D35Urymr9MjcLYqOSy7r7pV7JvPDHW+vzzVZ47djZzRp0TbqzRdT3dAAG0ybl65NwhVWQBAuChfA88O+U/bfhKnLd2vZtmj9++vt6vPSt9p6pHg3opFZjuGdtfvyPBUflKNyDNHR0bacxbPPPqs+ffpo8eLFuuGGGzRw4ECtXLnSbnPs2DH5+voqNDQ0x741a9a0bfmZNGmSQkJCnIvJGFEc4VV91bxm1TzbTGaecAL/AACAGyMAohLy9fbS3Vc00YX1q+VY7+PloRm3dVQkqSUBACgzF0QG695uuYMg7rqskVrXCS6TPgEAUBJWbj8uR97ZtbXgxyM6lZDqVif+aGyS/vrmOsUmmVIBf1jy6+96e80+pZVibfaKaMfvZ2xJlLx8ufWYTrrZ30N5Y671vH37RQo6Z5a8uZE5aVBbhVQhyLY4os+k6IEPftTZjJz/qJmAnpH//ZEgqWI6nZiW69xmD05zt/GioAwQxoABA/TQQw+pffv2euyxx9S3b19Nnz69wH0dDoc8PDzybTdZJEz5jKzl4MGDxeqryUz4+q0dVSMoZ3CUCXz4z9BOlCYCAABuzf1zg6FEmDIXbwztpEMxiVq/75RN2dmxYZhqBvnJ709SnAEAgJJjUmjfc2UTDepYT2t2nZBDDnVtEmEvMHFhGgBQkZwbSJBdanqG8rnXVWa2HDythNS8gxze/W6fhl7aQLUp01Bkx8/kP4Pb3OBMPUuASXF4enqoTZ0QfTnqcm09HKv9JxMVVSdEjWtUZSKMC5jSOPn9m3bgVKJOJaZyw7gY/H0KnsNnSv2WBxEREfL29larVq1yrL/gggu0evVq+zgyMlKpqamKiYnJkQXCZI/o0qVLvsf28/Oziys1qVFVnz7QVduPnbFLs5pV1TIymLEOAAC4PQIgKrHqQX526VA/Z0o1AABQtkKq+NqlaY28U44CAFARXN68uqYs3ZlnW9u6IW5Xz33/qcR820xgROrZzJm9KJrWtUPybTPXLtzt76E88vL0sKUwzALXSksv+P//s+luFtFVzoRX9bPlGHb8Hp+rrUn1QFuuoTwwpS0uuugibd++Pcf6HTt2qEGDBvZxx44d5ePjoyVLlmjw4MF23dGjR7V161ZNnjy51PtcK6SKXa5sUaPUXxsAAKCo+PYIAAAAAABKXf3QAF3aOEzf7TmV6ybthH6tFeZm9cXb1c1ZRvLc8gLlZQayu6oV4q9LGofp+3P+HozH+rRUzSD/MukXUBjmBrGvl6fNXnMuk8XN3f49K29sOYa/dtQt//lev8el5AiOemNoR1V3o38f4uPjtWvXLufzvXv3avPmzQoLC1P9+vX18MMPa8iQIbriiivUvXt3ffXVV1q4cKFWrFhhtw8JCdHw4cM1ZswYhYeH2/3Gjh2rqKgo9ezZswzfGQAAQPlRcP4wAABQKa1atUr9+vVT7dq1bZ3RBQsW5Npm27Zt6t+/v71AExQUpEsuuUQHDhxwtqekpGjEiBE2zWdgYKDd9tChQ6X8TgAAgLuKCPLTSzd10MO9Wyiiqq8NfOjSJFwL7uuqVrWD5W4aV6+qhuF5z5x/pE8L1Qh2berxyjjD+6UhHXTbpQ2c6e5NUMTLQ9qrxwU1bAkHwF2Zf8PG9GqeZ9uE/q1tyVkUT5PqVe34MHv4xXqibyu9c+dF+uz+rmpaI8itTu2GDRvUoUMHuxijR4+2j5944gn7/IYbbtD06dNtNgcT1PDmm29q7ty5uuyyy5zHmDJliq6//nqbAaJr164KCAiwQRJeXgTaAQAAFIaHw+Go9DnY4uLi7M2b2NhYBQe730UWAABK25dffqk1a9bowgsv1KBBgzR//nx7ASbL7t27dfHFF9uZKTfffLMdR01AhEnnWaNGZmrMe++9116kmTVrlp25YmawnDp1Shs3biz0hRvGaAAA3JMrx+j0DIdOnElRhsOhAF8vhQS470zpg6cS9X8LtmrVzuMyV1OqBfhobK8Wui6qlkKZ4e0SKWfT7d9DarpDVXy9bHYNoDw4nZiqTQdOa8qSHTpwKtGWbDD/PlxQO1jB/j5l3T1UMnyXBgAAlRkBEHwgBACg4A8LHh65AiBuuukmW5d09uzZee5jboZUr17dtpv0nsaRI0dUr149LVq0SL179y7UWeeiDQAA7qkyj9FxSWk6mZBqb9Sbm5pmZreXFwk2AWSK+d+/D/4+XqrmxgFdqNgq8zgNAADAN3QAAHBeMjIy9MUXX6h58+Y2kMFkfOjcuXOOMhkmy0NaWpp69erlXGfKabRp00Zr167ljAMAgHIruIqPGkUEqmVksGpXq0LwA4AcTDaYyJAqBD8AAAAAZYQACAAAcF6io6MVHx+vZ599Vn369NHixYttHdOBAwdq5cqVdptjx47J19dXoaGhOfatWbOmbctPSkqKnamSfQEAAAAAAAAAACgM70JtBQAAkC0DhDFgwAA99NBD9nH79u1tZofp06erW7du+Z4rh8NhS2rkZ9KkSZo4cSLnGgAAAAAAAJWKKaF0Jvms/Lw9FeTvU9bdAYByiwwQAADgvERERMjb21utWrXKsf6CCy7QgQMH7OPIyEilpqYqJiYmV/YIkwUiP+PGjbM1SrOWgwcP8tsBAAAAAABAhZV2NkO7o+M18bNfddOM73XPexu1ZtcJxSSklnXXAKBcIgACAACcF1Pa4qKLLtL27dtzrN+xY4caNGhgH3fs2FE+Pj5asmSJs/3o0aPaunWrunTpku+x/fz8FBwcnGMBAAAAAAAAKqpfjsbp2le+1Qc/HNCu6Hit2XVSt765Tm+v2aszyWll3T0AKHcogQEAAHKJj4/Xrl27nM/37t2rzZs3KywsTPXr19fDDz+sIUOG6IorrlD37t311VdfaeHChVqxYoXdPiQkRMOHD9eYMWMUHh5u9xs7dqyioqLUs2dPzjgAAAAAAAAqvZPxKRo3b4tSzmaWnM3u1eW7dMOFdSmH4QJp6RmKjktW3P9KjIQH+iokwLfS//0BFRUBEAAAIJcNGzbYwIYso0ePtj+HDRumWbNm6YYbbtD06dM1adIkjRw5Ui1atNDcuXN12WWXOfeZMmWKLZUxePBgJSUlqUePHnZfLy8vzjgAAAAAAEA5czoxVUlp6fLx9FREkF9Zd6dCiE1K07ajZ/JsczikzQdj1CgisNT7VZGcSkjV/B8P66UlO3Qm5axdd0njME0e1Fb1wzm3QEXk4XCYf0Irt7i4ODtT1dQaJ9U2AADugzEaAAD3xBgNAID7qszjdFxSmhJT0+Xv46lqzO52mfjkNP127Iye++o3/XokTrWqVdHIHk3VtUmEwqsSCFEce47H66oXVubb/vJN7TWgfZ1ivUZlZm6BfrThoB6d+3OutnphVfTx3V0UGeJfJn2rSE7Ep+hwTJJ+2HtKYVV9dVHDUNUI8pe/DxPhUDbIAAEAAIBK+QX4ZEKqnU0RGuAjby/Psu4SAAAAAKCIziSnafuxM3ph8Xbt+D1e9cMC9NDVzdW2bgiBEC74/rxm90ndPXujc92u6HiN/O9m/e3yxjYQIsjfh7/dIqoW4KOoOiH6+XBsrjZPD6ld3Wqc22L4PS5ZLyzekWfbwVNJ2n08ngAIF5zjhz78UWt3n3Ku8/b00NRbLlS3FtVVhSAIlAGu9AIAAKBSORabpFlr9+mmGd/rL9PX6pVlO3UoJrGsuwUAAAAAKIKz6Rla/lu0bpz+nb7bc8oGu/948LRue+sHfbLxkJJSM1Peo2iOxSVr/IKteba9uXqPTsancmqLISzQT88OisrzJvGjfVqqOqVGiiU5LUPRZ1Lybd9y6HTxXqCSS0vP0Ozv9uUIfjDOZjh0/web9Htscpn1DZUbARAAAACoVMEPd76zQRMX/mpnrOw7mahXvtmlG1//jiAIAAAAACiHzM3NJz77Jc+2yV9t1wlu0BdLbFJavjeQTVbFndFnivcCUIuaQfrywct1T7fGalc3RH1aR2revV1008X1FehHIvfi8PX2VNUCzmGjiED+AotZ+uKdtfvzbEvPcGj59mjOL8oE/3ICAACg0tiwL8bWK81rRstH6w9qZI9mlMMAAAAAgHIkJjFVpxPT8mxLTc/Q0dgk1QsLKPV+VRTengXPo63iy22mYp9jL081jAjUmF4tlJByVn4+nqriw3l1hepBvrq9S0NNXb4rV1uQn7fa1AlxyetUVibI4UxK/ll2jp5OKtX+AFnIAAEAAIBKISk1XR9tOJhv+4LNR+yFMwAAAABA+eHp4VFgu48Xt0GKIzTAR61rB+fZZso2NAwnuMRVzN9qtQBfgh9cyMfLS7d1aaDr2kbmWB8e6Kv3/9ZZtUOquPLlKp0AX698/30wujaLKNX+AFkIIQMAAJUiHdue4/Gau+mwPD2kQRfWtSnuwqv6lXXXUIrMNTEzqyI/Pl4FXzQDAAAAALifsEBf1Q2tokMxuWcaB1fxVs1g/zLpV0Vhrp28MLidBr/xneKS/pjp7eXpoam3dFCNYK6twL3VCPLX09dH6aGeLbT/ZIJCqvioTrUq9t8GT3OhEEUWFuin8X1b6aYZ3+dqaxwRqBY18w+OAEoSARAAAKBCO34mWePm/ayl2/6oOfffHw6qb9ta+me/1qoexBf1ysLfx0tDL2mgb37Lu/7gzRfXV3ggfw8AAAAAUJ6Ym5iv3NRBN//ne6WczXCu9/b00Ks3dVANvvcXW4uaQfpixOVavj1aa3adVLMaVTXwwjqqXa2KfL28iv8CQAkzmTXM0rRGVc61i0XVDtHs4Rdrwme/aPfxBDvBqF/b2rakS2QIAWgoGx4Oh8OhSi4uLk4hISGKjY1VcDDRSAAAVKQx+vMtR/TABz/m2TZzWCf1uKBmMXuJ8uT4mRQ9MneLlp8TBNEyMkhv33GRapH6EAAKhe/RAAC4r8o4Tp9Nz7AZIBZsPqzNB06rRWSQBneqpzqhVWwwPFwnI8PBrHkAeV5zi085a4PPwqv6KsCXOfgoO/z1AQCACis2MVVvrd6bb/vM1XvVuXG4qvrxkaiyMBk/Jg+K0tbDcXrnu31KS8+wF8U6NwonKh0AAAAAyilT7rBhRKAe7NFMqWcz5OPlyU36EkLJAAD5XXMj0y7cRf5FkEvBqlWr1K9fP9WuXVseHh5asGBBrm22bdum/v3724jVoKAgXXLJJTpw4ICzPSUlRSNGjFBERIQCAwPttocOHSrldwIAANzR2QyHElPT821PSDmr9PQ/0mOicqge5K/uLWvo9b9eqBlDO2lA+zoEP7iYSTJ34kyKouOSlXo2//8HAQAAAMCVzH0GPx8vbtIDAFCJlWkAREJCgtq1a6epU6fm2b57925ddtllatmypVasWKGffvpJ48ePl7//HzVjRo0apfnz52vOnDlavXq14uPj1bdvX6Wnc6EVAIDKrloVH/VpHZlv+3VtaynI36dU+wT3UcXHW4Fk/3C532OT9e53+zVkxve6YdpaPffVbzpwKtEGRQDlxenEVB0/YwJ4CJIDAAAAAAAoTzwcbnIl0kRmmkCG66+/3rnupptuko+Pj2bPnp3nPqaGWfXq1W37kCFD7LojR46oXr16WrRokXr37l2o166MNdEAACgPXDFGHzyVqBumrdGJ+NQc62sG+2nevV1UJzTARb0F8Htcsu57f5M27o/JcTJCA3y04P6uahAeyEmCWzOZS9bvO6U3Vu2xQRBXNK+uO7s2Ur2wAHl5epR199wK36MBAHBfjNMAAKAyK9MMEAXJyMjQF198oebNm9tAhho1aqhz5845ymRs3LhRaWlp6tWrl3OdKafRpk0brV27Nt9jm7IZ5kNg9gUAAFRM5qaVCXS45eL6qurnrSA/bw29pL4+uYfgB8DVfj0Slyv4wYhJTNOMlXuUQjkMuLFTCal6ZtE23fv+Jm0+eFr7TibabCbXvfKtdh+PL+vuAQAAAAAAoDwHQERHR9tyFs8++6z69OmjxYsX64YbbtDAgQO1cuVKu82xY8fk6+ur0NDQHPvWrFnTtuVn0qRJdjZp1mIyRgAAgIqrfnignujXSktGX6HFo6/Q//VtZQMjALhORoZDn2w8mG/7F1uPKiYhjVMOt3X0dJLm/Xg41/qE1HQ99cU2xSXx9wsAAAAAAODuvOXGGSCMAQMG6KGHHrKP27dvbzM7TJ8+Xd26dct3X1PVw5TUyM+4ceM0evRo53OTAYIgCAAAKjZ/Hy/VCqlS1t0AKjQ/b69823y9PEUBAdeIjkvWqcRUpZ3NUGigr2oE+cm3gHOPwln2W3S+bd/uPG4DIIKr+HA6AQAAAAAA3JjbBkBERETI29tbrVq1yrH+ggsu0OrVq+3jyMhIpaamKiYmJkcWCJM9okuXLvke28/Pzy4AAAAAXMPT00M3X1w/zxn0xk0X1VN4VV9OdzGzbPx27Izu/2CT9p5IsOsCfL30SJ8Wur59HVUL4PwWh7dn/iE6toUIHgAAAAAAALfntiUwTGmLiy66SNu3b8+xfseOHWrQoIF93LFjR/n4+GjJkiXO9qNHj2rr1q0FBkAAAAAAcL3G1QM1sEOd3OsjAnXTxfXl7eW2Xz/KhSOnk3TTjO+cwQ9GYmq6Jnz2q9btPVWmfasIelxQM9+23q0jVS2A7A8AAAAAAADurkwzQMTHx2vXrl3O53v37tXmzZsVFham+vXr6+GHH9aQIUN0xRVXqHv37vrqq6+0cOFCrVixwm4fEhKi4cOHa8yYMQoPD7f7jR07VlFRUerZs2cZvjMAAACg8gmv6qd/XHeB/tKprmat3Wdvzg+8sI4uaRxOCRoXWLP7hOKSz+bZNvmr7epYP1QRQWS6K6rIEH/dfUVjvbFqT471YYG+NstGVT8CIAAAAAAAANxdmQZAbNiwwQY2ZBk9erT9OWzYMM2aNUs33HCDpk+frkmTJmnkyJFq0aKF5s6dq8suu8y5z5QpU2ypjMGDByspKUk9evSw+3p5UQMXAAAAKG0RVf3s0rFBmM5mZCjA122r7pU7Px44nW/bnhPxSk3PKNX+VDQhVXx0T7cmuuqCGnpr9V6djE/V1a1q6rqoWqobFlDW3QMAAAAAAEAheDgcDocqubi4OJtNIjY2VsHBwWXdHQAA8D+M0QDwh3e/26cnPv0lz1PSIDxAH99zqWoE+XPKXCA5LV1p6RkK9PWWp6cH5zQPjNEAALgvxmkAAFCZUYQXAAAAAMqBK5vXkL9P3l/hRvVsRvCDC/n7eCnI34fgBwAAAAAAgHKGAAgAAAAAKAdqV/PXB3ddoupV/ZzrfLw8NPKqpurWvEaZ9g0AAAAAAABwBxTkBQAAAIBywNvLUx3qV9NnI7rqxJlUJZ9NV81gf0VU9VWAL1/tAAAAAAAAAK6SAQAAAEA54eHhoVohVewCAAAAAAAAICcCIIASEp+cppMJqTp4KlEBft6KDPa3M/S8PD045wAAAAAAAAAAAADgYgRAACXgZHyKpq3YpbfX7FOGI3NdaICP/nNbJ7WvV82mLwYAAAAAAAAAAAAAuA53YQEXczgcWvLr75q5+o/gByMmMU23vrlOR2KTOecAAAAAAAAAAAAA4GIEQLhY6tl0O/v/THKaqw+NcuL4mRS9smxnnm0pZzO0cnt0qfcJAAAAAAAAAAAAACo6SmC4SHqGQwdPJWr29/u1eucJRQT56u4rmiiqTrBCA/1c9TIoB85mOArM8rD92JlS7Q8AAAAAAAAAAAAAVAYEQLjIzugzGjhtrRJT0+3z7b9La3ad1F2XNdKIHs0UUsXHVS8FN+fr5akm1atq9/H4PNs7NQwt9T4BAAAAAAAAAAAAQEVHCQwXiE1M1T8/3eoMfsjuzdV7FR2XfzYAVDwRQX56tE+LPNtCA3zUqWFYqfcJAAAAAAAAAAAAACo6AiBcIDb5rNbtjcm3fc3uE654GZQjFzcK09PXt1Gw/x9JVlpGBunDuy9V3dCAMu1bRSs9cyohRbFJaWXdFQAAAAAAAAAAAABljBIYpcBDHqXxMnAj1QJ8NfiierqyRXWdTkyTr7enQgN9FVHVr6y7VmEciknUgh8P64ufj6qKj7fuvKyhDTypEeRf1l0DAAAAAAAAAAAAUAYIgHCBkCreurRxmL7bcyrP9q5NI1zxMihnfLw8VSc0QHVCy7onFc/BU4ka+PpaHT+T4ly36YMYG3Dy7xvbqXoQgSYAAAAAAAAAAABAZUMJDBcIqeKrCf3bqKpf7niSe7s1UQ1uxgIuk3o2Q//5dk+O4IcsK7Yf167oM5xtlBumfAslXAAAAAAAAAAAAFyDDBAu0qxGVX0x8jJ9tP6gVu08oYiqvvr7FU3UMjJIwVV8XPUyQKV3KiFVn/10JN/z8NGGQ7qkcbg8PCg9U1wOh8PenPf08ODfMRc7GpuklduP68P1B+3f6l8vqW+zBdUMpoQLAAAAAAAAAABAUREA4SKenh5qEB6oh65urr9d3lg+3p4KzCMjBICSRdiDaxw9naQl237XvE2H5ePloWFdGurihmGqwQ364p/b2CTd/vYP2n4s3rlu04EYtasbojeGdlJkCEEQAAAAAAAAAAAARcEdehfz9vJUtUBfVx8WwP+EBfrohg519PaafXmekyEX1SP7QzEdOZ2km//zvfafTHSuW78vRl2ahOmlIR0IgihmVo0lv/6eI/ghy0+HYvX9npO6vkOd4rwEAAAAAAAAAABApeVZ1h0AgPPh6+2lO7s2UmQemQh6taqpJtWrckKLIT09Q59sPJQj+CHL2t2ntPVIHOe3GGISU23Zi/x88MMBnUlO4xwDAAAAAAAAAAAUAQEQAMqdemEBmntfFz1+3QW2bMCljcP1n6Ed9fQNUYoI8ivr7pVrJxNS9fHG/G/Qv79uv1LS0ku1TxWNw1FQWwGNAAAA/7Nq1Sr169dPtWvXttnPFixYkO+5ufvuu+02L730Uo71KSkpGjFihCIiIhQYGKj+/fvr0KFDnGMAAAAAAFCuEQABoFyqU62KhndtpHfuvFgzbuuoq1tHqjrBD8XnUXAz9+eLJzTAV4M71c23/eaL6yvI36eYrwIAACq6hIQEtWvXTlOnTi1wOxMYsW7dOhsoca5Ro0Zp/vz5mjNnjlavXq34+Hj17dtX6ekEuwIAAAAAgPKLAAgA5Zanp4eqBfhyw9iFwgJ8NbBD/jfob+lcX34+Xq58yUrFzL7s3SZSTWvkLtXSpnawujSJKJN+AQCA8uWaa67RU089pYEDB+a7zeHDh/XAAw/o/fffl49PzgDL2NhYzZw5Uy+88IJ69uypDh066L333tPPP/+spUuXlsI7AAAAAAAAKBkEQAAAnLy9PDXkonqqG1ol11m5qGGo2tYJ4WwVU62QKpp958X614DWalMnWG3rhmjyoLZ6c1gnRYb4c34BAECxZWRkaOjQoXr44YfVunXrXO0bN25UWlqaevXq5VxnskS0adNGa9eu5TcAAAAAAADKLe+y7gAAwL3UrlZFH919qRb9fFTzfzwsXy9P3dalgc1OUCOYG/SuUKtaFf31kgbq2662PBxStUBflxwXAADAeO655+Tt7a2RI0fmeUKOHTsmX19fhYaG5lhfs2ZN25aXlJQUu2SJi4vjZAMAAAAAALdDAAQAIM8giDu7NtLAC+vI0yOz1AhcXw4jlPMKAABczGR3ePnll7Vp0yb7eeN8OByOfPeZNGmSJk6c6KJeAgAAAAAAlAxKYAAA8h4gPD0UFuhH8AMAAEA58u233yo6Olr169e3WSDMsn//fo0ZM0YNGza020RGRio1NVUxMTE59jX7mSwQeRk3bpxiY2Ody8GDB0vl/QAAAAAAAJwPAiAAAAAAAKgghg4dqi1btmjz5s3OpXbt2nr44Yf19ddf2206duwoHx8fLVmyxLnf0aNHtXXrVnXp0iXP4/r5+Sk4ODjHAgAAAAAA4G4ogQEAAAAAQDkSHx+vXbt2OZ/v3bvXBjqEhYXZzA/h4eE5tjfBDibrQ4sWLezzkJAQDR8+3GaFMNua/caOHauoqCj17Nmz1N8PAAAAAACAqxAAAQAAAABAObJhwwZ1797d+Xz06NH257BhwzRr1qxCHWPKlCm2PMbgwYOVlJSkHj162H29vLxKrN8AAAAAAAAlzcPhcDhUycXFxdkZMKaOKWk8AQBwH4zRAAC4J8ZoAADcF+M0AACozDzLugMAAAAAAAAAAAAAAADFRQAEAAAAAAAAAAAAAAAo9wiAAAAAAAAAAAAAAAAA5R4BEAAAAAAAAAAAAAAAoNwjAAIAAAAAAAAAAAAAAJR7BEAAAAAAAAAAAAAAAIByjwAIAAAAAAAAAAAAAABQ7hEAAQAAAAAAAAAAAAAAyj0CIAAAAAAAAAAAAAAAQLlHAAQAAAAAAAAAAMW0atUq9evXT7Vr15aHh4cWLFiQ77Z333233eall17KsT4lJUUjRoxQRESEAgMD1b9/fx06dIjfDQAAQCERAAEAAAAAAAAAQDElJCSoXbt2mjp1aoHbmcCIdevW2UCJc40aNUrz58/XnDlztHr1asXHx6tv375KT0/n9wMAAFAI3oXZCAAAAAAAAAAA5O+aa66xS0EOHz6sBx54QF9//bWuu+66HG2xsbGaOXOmZs+erZ49e9p17733nurVq6elS5eqd+/enH4AAIA/QQYIAAAAAAAAAABKWEZGhoYOHaqHH35YrVu3ztW+ceNGpaWlqVevXs51JktEmzZttHbtWn4/AAAAhUAGCAAAAAAAAAAASthzzz0nb29vjRw5Ms/2Y8eOydfXV6GhoTnW16xZ07blJyUlxS5Z4uLiXNhrAACA8oUMEAAAAAAAAAAAlCCT3eHll1/WrFmz5OHhcV77OhyOAveZNGmSQkJCnIspmQEAAFBZEQABAAAAAAAAAEAJ+vbbbxUdHa369evbLBBm2b9/v8aMGaOGDRvabSIjI5WamqqYmJgc+5r9TBaI/IwbN06xsbHO5eDBg/wuAQBApUUABAAAyGXVqlXq16+frTVqZpksWLAg37N09913221eeumlHOtN+s0RI0YoIiJCgYGB6t+/vw4dOsTZBgAAAABUOkOHDtWWLVu0efNm52K+cz/88MP6+uuv7TYdO3aUj4+PlixZ4tzv6NGj2rp1q7p06ZLvsf38/BQcHJxjAQAAqKy8y7oDAADA/SQkJKhdu3a64447NGjQoHy3M4ER69atsxdtzjVq1CgtXLhQc+bMUXh4uJ3V0rdvX5v208vLq4TfAQAAAAAApSs+Pl67du1yPt+7d68NdAgLC7OZH8x34+xMsIPJ+tCiRQv73JSvGD58uP3+bLY1+40dO1ZRUVHq2bMnv04AAIBCIAACAADkcs0119ilIIcPH9YDDzxgZ6pcd911OdpMys2ZM2dq9uzZzos07733nq1DunTpUvXu3ZuzDgAAAACoUDZs2KDu3bs7n48ePdr+HDZsmGbNmlWoY0yZMsWWxxg8eLCSkpLUo0cPuy8TCQAAAAqHAAgAAHDeMjIybPpOk6qzdevWudpNloe0tDT16tXLuc5kiWjTpo3Wrl1LAAQAAAAAoMK58sor5XA4Cr39vn37cq3z9/fXq6++ahcAAACcPwIgAADAeXvuuefsjJSRI0fm2X7s2DH5+voqNDQ0x/qaNWvatvykpKTYJUtcXBy/HQAAAAAAAAAAUCieKqbsNykAAEDFZ7I7vPzyyzYFp4eHx3nta2bCFLTPpEmTbM3TrMWUzAAAAAAAAAAAACiRAAhT5/v2229XkyZN5OPjo4CAAAUFBalbt256+umndeTIkfM9JAAAKEe+/fZbRUdHq379+jYLhFn279+vMWPGqGHDhnabyMhIpaamKiYmJse+Zj+TBSI/48aNU2xsrHM5ePBgib8fAAAAAAAAAABQyQIgFixYoBYtWmjYsGHy9PS0Nb/nzZtnAyJmzpxpAyCWLl2qxo0b65577tHx48dLtucAAKBMDB06VFu2bNHmzZudS+3ate1nA/O5wOjYsaMNlFyyZIlzv6NHj2rr1q3q0qVLvsf28/NTcHBwjgUAAAAAAAAAAKAwvAu1laRnnnlGzz//vK677jobAHGuwYMH25+HDx+2abHfffddOxMUAACUP/Hx8dq1a5fz+d69e22gQ1hYmM38EB4enmN7E+xgsj6YYEnDlK8YPny4/SxgtjX7jR07VlFRUerZs2epvx8AAAAAAAAAAFDxFToA4ocffijUdnXq1NHkyZOL0ycAAFDGNmzYoO7duzufjx492v40maBmzZpVqGNMmTLFlscwQZJJSUnq0aOH3dfLy6vE+g0AAAAAAAAAACovD4fD4VAlFxcXZ2eqmlrjpNoGAMB9MEYDAOCeGKMBAHBfjNMAAKAyK3QGiHMdOnRIn332mQ4cOKDU1NQcbS+++KIr+gYAAAAAAAAAAAAAAFByARDLli1T//791ahRI23fvl1t2rTRvn37ZJJJXHjhhUU5JAAAAAAAAAAAAAAAQJF5FmWncePGacyYMdq6dav8/f01d+5cHTx4UN26ddNf/vKXovcGAAAAAAAAAAAAAACgtAIgtm3bpmHDhtnH3t7eSkpKUtWqVfXkk0/queeeK8ohAQAAAAAAAAAAAAAASjcAIjAwUCkpKfZx7dq1tXv3bmfbiRMnit4bAAAAAAAAAAAAAACAIvAuyk6XXHKJ1qxZo1atWum6666z5TB+/vlnzZs3z7YBAAAAAAAAAAAAAAC4fQaIF198UZ07d7aPJ0yYoKuvvloffvihGjRooJkzZxb6OKtWrVK/fv1sFgkPDw8tWLAg323vvvtuu81LL72UY73JRDFixAhFRETYzBT9+/fXoUOHivK2AAAAAAAAAAAAAABAZQmAOHPmjC15YYIMTLmLgIAATZs2TVu2bLEZIEwQRGElJCSoXbt2mjp1aoHbmcCIdevW2UCJc40aNUrz58/XnDlztHr1asXHx6tv375KT08/37cGAAAAAAAAAAAAAAAqQwkME+RwzTXX6NixY3I4HAoODtYnn3yinj17FunFzbHMUpDDhw/rgQce0Ndff23LbWQXGxtrM07Mnj3b2Yf33ntP9erV09KlS9W7d+8i9QsAAAAAAAAAAAAAAFTgDBCPPfaY6tevr2+//VYbNmxQt27dbHBCScnIyNDQoUP18MMPq3Xr1rnaN27cqLS0NPXq1cu5zmSJaNOmjdauXZvvcU3ZjLi4uBwLAAAAAAAAAAAAAACoJBkgTNDDokWL1KlTJ/v8rbfeUo0aNWzZiapVq7q8c88995y8vb01cuTIPNtNJgpfX1+FhobmWF+zZk3blp9JkyZp4sSJLu8vAAAAAAAAAAAAAAAoBxkgTpw4YTNAZAkPD1dAQICOHz/u8o6Z7A4vv/yyZs2aJQ8Pj/Pa15TnKGifcePG2fIZWcvBgwdd0GMAAAAAAAAAAAAAAFAuAiBMUMGZM2ecZSNM8MC561xVTsKU2YiOjrYBFyYLhFn279+vMWPGqGHDhnabyMhIpaamKiYmJse+Zj+TBSI/fn5+Cg4OzrEAAAAAAAAAAAAAAIBKUgLDZFZo3rx5rnUdOnRwPjYBEenp6cXu2NChQ9WzZ88c63r37m3X33HHHfZ5x44d5ePjoyVLlmjw4MF23dGjR7V161ZNnjy52H0AAAAAAAAAAAAAAAAVMABi+fLlLn3x+Ph47dq1y/l879692rx5s8LCwmzmB1NiIzsT7GCyPrRo0cI+DwkJ0fDhw21WCLOt2W/s2LGKiorKFTwBAAAAAAAAAAAAAAAqrvMKgOjWrZtLX3zDhg3q3r278/no0aPtz2HDhmnWrFmFOsaUKVNseQyTASIpKUk9evSw+3p5ebm0rwAAAAAAAAAAAAAAwH15OEzdiiL65ZdfcpS7MEEHrVu3VnkTFxdns0nExsYqODi4rLsDAAD+hzEaAAD3xBgNAID7YpwGAACVmef5bPztt9/qoosucj6/5JJL1KFDB7Vv394ubdu21dKlS0uinwAAAAAAAAAAAAAAAK4JgJg2bZqGDh2aY93y5cu1d+9e7dmzRw8++KBef/318zkkAAAAAAAAAAAAAABA6QZArF+/XhdffHGOdXXr1lWDBg3UsGFDGxzx3XffFb9XAAAAAAAAAAAAAAAAJRUAcfjwYdWqVcv5/J133lFkZKTzeVhYmE6ePHk+hwQAAAAAAAAAAAAAACjdAIigoCBb7iLLwIEDFRAQ4Hxu2oKDg4vfKwAAAAAAAAAAAAAAgJIKgOjcubPefffdfNtnzZpltwEAAAAAAAAAAAAAAChN3uez8ejRo9WzZ0+Fh4fr4YcfVo0aNez66OhoPffcc3rvvfe0ePHikuorAAAAAAAAAAAAAABA8QMgunfvrldffVUPPfSQXnzxRVvuwsPDQ7GxsfL29tZLL72kq6666nwOCQAAAAAAAAAAAAAAULoBEMZ9992nfv366ZNPPtHOnTvtumbNmunGG29UvXr1it8jAAAAAAAAAAAAAACAkg6AMEygg8kCAQAAAAAAAAAAAAAA4A48C7vhd999V+iDJiQk6JdffilqnwAAAAAAAAAAAAAAAEomAOK2227T1VdfrY8++kjx8fF5bvPrr7/qH//4h5o2bapNmzadX08AAAAAAAAAAAAAAABKugSGCW5444039MQTT+jWW29V8+bNVbt2bfn7+ysmJka//fabzfwwcOBALVmyRG3atClqnwAAAAAAAAAAAAAAAM6Lh8PhcJzfLrLZHb799lvt27dPSUlJioiIUIcOHdS9e3eFhYWpvImLi1NISIhiY2MVHBxc1t0BAAD/wxgNAIB7YowGAMB9MU4DAIDKrNAZILK78MIL7QIAAAAAAAAAAAAAAOAOPMu6AwAAAAAAAAAAAAAAAMVFAAQAAAAAAAAAAAAAACj3CIAAAAAAAAAAAAAAAADlHgEQAAAAAAAAAAAAAACg3Ct2AERycrJregIAAAAAAAAAAAAAAFCaARAZGRn617/+pTp16qhq1aras2ePXT9+/HjNnDmzqH0BAAAAAAAAAAAAAAAovQCIp556SrNmzdLkyZPl6+vrXB8VFaU333yzaD0BAAAAAAAAAAAAAAAozQCId999VzNmzNCtt94qLy8v5/q2bdvqt99+K2pfAAAAAAAAAAAAAAAASi8A4vDhw2ratGmepTHS0tKK1hMAAAAAAAAAAAAAAIDSDIBo3bq1vv3221zrP/74Y3Xo0KGofQEAAAAAAAAAAAAAACgS76Ls9M9//lNDhw61mSBM1od58+Zp+/bttjTG559/XrSeAAAAAAAAAAAAAAAAlGYGiH79+unDDz/UokWL5OHhoSeeeELbtm3TwoULdfXVVxe1LwAAAAAAAAAAAAAAAKWXAcLo3bu3XQAAAAAAAAAAAAAAAMplBggAAAAAAAAAAAAAAIBynwHC09PTlr7IT3p6enH6BAAAAAAAAAAAAAAAUPIZIObPn6958+Y5lw8//FCPPfaYatWqpRkzZhTlkAAAAAAAoBBWrVqlfv36qXbt2nZywoIFC5xtaWlpevTRRxUVFaXAwEC7zW233aYjR47kOEZKSopGjBihiIgIu13//v116NAhzj8AAAAAAKh8GSAGDBiQa92NN96o1q1b22CI4cOHu6JvAAAAAADgHAkJCWrXrp3uuOMODRo0KEdbYmKiNm3apPHjx9ttYmJiNGrUKBvgsGHDBud2Zt3ChQs1Z84chYeHa8yYMerbt682btwoLy8vzjkAAAAAACiXPBwOh8NVB9u9e7fatm1rL8aUJ3FxcQoJCVFsbKyCg4PLujsAAOB/GKMBACiYyQBhsjRef/31+W6zfv16XXzxxdq/f7/q169vv/tWr15ds2fP1pAhQ+w2JkNEvXr1tGjRIvXu3ftPTztjNAAA7otxGgAAVGZFKoGRl6SkJL366quqW7euqw4JAAAAAACKyQQ8mECJatWq2ecmy4MpldGrVy/nNqZURps2bbR27do8j2FKZpibKdkXAAAAAACAClECIzQ01F48yWKSSJw5c0YBAQF67733XNk/AAAAAABQRMnJyXrsscd0yy23ODMeHjt2TL6+vva7fXY1a9a0bXmZNGmSJk6cyO8BAAAAAABUvACIKVOm5AiA8PT0tOkzO3funOsCCgAAAAAAKH0my8NNN92kjIwMTZs27U+3N5Mbsn/Xz27cuHEaPXq087nJAGFKZgAAAAAAAJT7AIjbb7/d9T0BAAAAAAAuC34YPHiw9u7dq2+++caZ/cGIjIxUamqqYmJickxiiI6OVpcuXfI8np+fn10AAAAAAAAqRADEli1bCn3Qtm3bFrU/AAAAAADABcEPO3fu1PLlyxUeHp6jvWPHjvLx8dGSJUvsdsbRo0e1detWTZ48mXMPAAAAAAAqfgBE+/btbSpMkxKzIGab9PR0V/QNAAAAAACcIz4+Xrt27XI+N1keNm/erLCwMNWuXVs33nijNm3apM8//9x+Pz927JjdzrT7+voqJCREw4cP15gxY2xwhFk/duxYRUVFqWfPnpxvAAAAAABQ8QMgzAUVAAAAAABQtjZs2KDu3bs7n48ePdr+HDZsmCZMmKDPPvvMOZEhO5MN4sorr7SPp0yZIm9vb5sBIikpST169NCsWbPk5eVVqu8FAAAAAADAlTwcf5bSoRKIi4uzM2BiY2Nz1EUFAABlizEaAAD3xBgNAID7YpwGAACVWaEzQOTl119/1YEDB5Samppjff/+/YvbLwAAAAAAAAAAAAAAgJINgNizZ49uuOEG/fzzz/Lw8FBWEgnz2DA1RgEAAAAAAAAAAAAAAEqLZ1F2evDBB9WoUSP9/vvvCggI0C+//KJVq1apU6dOWrFihet7CQAAAAAAAAAAAAAA4OoMEN99952++eYbVa9eXZ6enna57LLLNGnSJI0cOVI//vhjUQ4LAAAAAAAAAAAAAABQehkgTImLqlWr2scRERE6cuSIfdygQQNt3769aD0BAAAAAAAAAKCcMlmS+/Xrp9q1a9ty0QsWLHC2paWl6dFHH1VUVJQCAwPtNrfddpvz2nqWlJQUjRgxwl53N9v1799fhw4dKoN3AwAAUIkCINq0aaMtW7bYx507d9bkyZO1Zs0aPfnkk2rcuLGr+wgAAAAAAAAAgFtLSEhQu3btNHXq1FxtiYmJ2rRpk8aPH29/zps3Tzt27LABDtmNGjVK8+fP15w5c7R69WrFx8erb9++dlIiAAAA/pyHw+Fw6Dx9/fXX9sPcwIEDtWfPHvsB7LffflN4eLg+/PBDXXXVVSpP4uLiFBISotjYWAUHB5d1dwAAwP8wRgMA4J4YowEAKJjJAGECGa6//vp8t1m/fr0uvvhi7d+/X/Xr17fXp03Z6dmzZ2vIkCF2G5Mhol69elq0aJF69+7NOA0AAODKDBDt27e30avmQ5kJfjBMxodff/1VJ06cUHR0dLkLfgAAAAAAAAAAoLSZgAcTKFGtWjX7fOPGjbZURq9evZzbmFIZJiPz2rVr8z2OKZthghOzLwAAoPjOLWlVEho2bKiXXnqpRF+jsjmvAAhT7uL//u//7IeuW265RcuWLXO2hYWF2T8CAAAAAAAAAACQv+TkZD322GP2OntWVuJjx47J19dXoaGhObatWbOmbcvPpEmTbIbjrMVkjAAAAH/u9ttvt/e3z1369Onj8tM3a9YsZ9DjuRmh/v73vxf6OKa4w4wZM+x9+6pVq9pjdurUyQZRmJJbpWHFihX2PJ0+fbrUzlOJBUC88cYb9oOWOanmp4lENVEpTz75pA4cOFCsjgAAAPexatUq9evXzwY9nhvlamajPProo4qKilJgYKDd5rbbbrNpOc+dgTJixAhFRETY7Uxd00OHDpXBuwEAAAAAwH2Y79U33XSTMjIyNG3atELd6Cho8uG4ceNsNoms5eDBgy7uMQAAFZcJdjh69GiO5b///W+pvb4pfxUQEFDo7YcOHapRo0ZpwIABWr58uTZv3qzx48fr008/1eLFi0u0r+XFeQVAGP7+/vbEfvPNN9q1a5d9PHPmTFsKw9Qg++ijj0qmpwAAoNQkJCSoXbt2tvTVuUwU6aZNm+yHKvNz3rx52rFjhw1wyM58CDP1TufMmaPVq1crPj5effv2VXp6Or9JAAAAAEClDX4YPHiw9u7dqyVLljizPxiRkZFKTU1VTExMjn1M6WmTBSI/fn5+9jjZFwAAUDhmHDVjcPbl3GxMWczEwObNm9uABXNv3FwjN2N7lp9++kndu3dXUFCQHY87duyoDRs22IwJd9xxh7P8lVkmTJiQZwkMk1XBZIQwY7+5L29KYX3++ee2zdyHf//9922Axj/+8Q9ddNFFdn8TDGHu3ZvXNkyQpUlgULduXfv+2rdvr6+++kpZ9u3bZ/tgru2bfcz7MfcDvvvuO+c2+/fvt5MkzbkwExxbt26tRYsW2X2zXse0meOYTBqGeY3LLrvMZnAIDw+39wN2795d6Nct6DyVaABEdo0aNdK//vUv21lzc8P8Am+++ebiHBIAALiBa665Rk899ZQGDhyYq82k0zQXacwFmxYtWuiSSy7Rq6++amuVZmWEMh9QTIDkCy+8oJ49e6pDhw5677339PPPP2vp0qVl8I4AAAAAAHCP4IedO3fa78bmxkB25iaJj4+P/c6dxcxC3bp1q7p06VIGPQYAANmZwAZTouHXX3/Vyy+/rP/85z+aMmWKs/3WW2+1QQemrIW5Xm7KXZmx3YzjJsjBBEVkZZkYO3ZsrpNrAhfMtfm1a9fa6+nmdZ599ll5eXnZdhP8YK7Jm4CHc5lgAXPt3jB9M9fmn3/+eW3ZssUmMTATGM1nkOwef/xx2w+TRcIEdpj7/GfPnrVt999/v83ybLJFm+v6zz33nC25YUptzZ07126zfft2+17M62VNrBw9erR9/8uWLZOnp6duuOEG+74K87qFPU9/xlvFZFJrvP322zZSw9vbW3/729+Ke0gAAFDOZEVkZtXmMh/uzIUdUy4riymVYaJVzYc384ErL+YDlVmyxMXFlULvAQAAAAAoPpP50GRNzmKyPJgL+2FhYfY78Y033mgzKZpZnCY7oikzbZh2X19fe9Ni+PDhGjNmjA2OMOvNRX9TgtJMLgAAAK5nxmVzY//cTA8mu8O5/u///s/52GReMGP2hx9+qEceecSuMxMEH374YbVs2dI+b9asmXN7M86ba+gmw0R+TIDkDz/8oG3bttnAAMNkmshiAhhMAMSfef755+17MCW3DBO8YO7pm+CC1157zbmd+Zxx3XXX2ccTJ060WR7MZxnTf/NeBg0aZD+HnNsP8xnFqFGjhvOegGG2z85MkjTbmEAOc2+gMK9bmPNUIgEQ5g2b6BazmOwPl19+ua1V9pe//EVVqlQpcmcAAED5k5ycbCNZb7nlFmeaTXMRx1y8OTdVmEnblXWBJy+TJk2yH3gAAAAAAChvTIbkrJTQhpkBaQwbNsymb/7ss8/sc5OGOjtzQ+LKK6+0j80sUjPR0GSKSEpKUo8ePex1+KyZnwAAwLXM2P3666/nWJd1g/9cn3zyiQ0iMDfrTeCjyVqQvfSUGfvvuusuzZ492wYvmnvnTZo0KXRfTOCkySCRFfxwLofDYYMDChIXF6cjR46oa9euOdab56ZER3Zt27Z1Pq5Vq5az9JYJRBg5cqTuvfdeLV682L4XE9yQffu8mHIXJnDk+++/14kTJ5yZH0xsQfYAiIJe1xXOqwTGBx98oKuvvtpGeLzxxhsaMmSIrfm9cuVK3XbbbQQ/AABQyZgsDyaK1HyQMcGQf+bPPqCNGzfOZpPIWg4ePOjiHgMAALeTkS7FHZViD0tJp8u6NwAAFJkJYjDfe89dTACDmSWaV5tZsoIfDFPr25SZPHnypBITE7Vw4UKbahoAAJSMwMBANW3aNMeSVwCEualvroWbEhUma8SPP/5oSzmkpqY6tzEBj7/88ovNbvDNN9+oVatWmj9/fqH78meJBkxghMkOURge51yHz+vavCnPce72WUELJpBjz549Gjp0qC2B0alTJ/sZpSD9+vWzn2FMaZB169bZxch+jv7sdUs9AOL222+3KUAWLFhgb0iYWZrmjwAAAFTe2qUmpaepT5o90tWkpzIfamJiYnLsY6I4TRaI/Pj5+dnjZF8AAEAFduaYtHqK9Mbl0stR0od/lY78KKUllXXPAAAAAABwWrNmjRo0aGCDHkwwgClvsX///jyDFB566CGbOWHgwIF6++237XqTMdmUwCqIyYxw6NAhm4AgLyYLs2n79NNPc7WZAAczqTA4ONiW3lq9enWOdlOa+oILLjiv36gJwrznnns0b948W+7DBDZkvRcj+/sxgQ8mOMOUCTEZrMxrnXt/oDAKc55cGgBhTriJUunbt688Pc9rVwAAUAGDH0zNMVOXzNQmza5jx442itMERmQ5evSotm7dqi5dupRBjwEAgNuJj5bm3iV98y8p4XhmJoh930pv9pCObZVbS0mQEk9K6Wll3RPg/CXFZAYfpcRz9lC+mCxBJ3dJhzdKJ3aRNQgAALhESkqKLducfTHlG85lkgKYUg5z5syxpR5eeeWVHNkdTOmqBx54QCtWrLCBESZgYv369c6gA5MNypTNWLZsmT2+yfR0rm7duumKK66w5SbMtXUz+fDLL7/UV199ZdvNNXlToeHmm2+2iQpM+S3zWiYjhSlTYcpqGQ8//LCee+45ffjhh9q+fbstYW3Kazz44IMqrFGjRunrr7+2fdi0aZPNaJH1XkwgiMncYF73+PHj9n2ZctjmPsGMGTNsiRCzfVY5sPNRmPP0Z7zPZ+MaNWqc9wsAAIDyx3zAMB9SspgPOeYDkkn9ZaJHb7zxRvuhx3zAMdGY5kOhYdpNhGZISIiGDx9uo0LNhx6zfuzYsYqKirIfxAAAABSzPzPg4VwmEOLLR6RbP5ECcwZZlrmEk9LvW6U1L2cGbTS5Sup4u1StgcREkeJzOKS4I9Lp/VL8cSmiqVS1phQY4YKDQ4mnMjOsrHxOij0k1WovXfmYFN5U8g3gBLlCWrIU/7t0NlnyCZCCIiWvP9L7ohjMvw2fj5Z2fPnHuqY9pX6vSCF1OLUAAKDITHBBrVq1cqxr0aKFfvvttxzrBgwYYDM7mCAHEzRhylyMHz/elr0wvLy8bBaE2267Tb///rsiIiJsBoiJEyfadjMx0GRTMAEMZrt//vOfzn2zmzt3rr2WboIcEhISbODFs88+a9tM0MEHH3xggwzeeustPfXUU/L29rbZKMzr9u7d2243cuRIxcXF2evzJiuzKcXx2Wef2e0Ky1z3v//++22CBJNVok+fPpoyZYptq1Onjn1fJrDijjvusK9tSn6Z4BDz2m3atLHn0ASJZC/1VRiFPU8F8XCYfBiVnPkDMDdqstKCAABQ2Zko1e7du+daP2zYMPtho1GjRnnuZyJMsz7QJCcn20hT84HMRL+atFfTpk07r9qljNEAALgnl4zRK56VVkzKv/3Bn6TQhnKrmcffPi+tPafmqV+QNHyJVOP8UoniHObylAkueW9gZnaQLI27S9dPk4Jrc8qKw2R7+P51aflTOdd7eEq3zpWaXsX5LS6TVePbKdKmWZkBEL5VpUsfkC4aLlVlUlmx//2df7e0I3PmYw5NekiDZkoBocV7jQqG79IAAKAyO68MEAAAoHIwQQwFxUgWJn7S399fr776ql0AAAByqVIt/5Pi5St5eLnfzc1zgx+MlDPSl49Kg98t+D2hYHGHpXcHZJYWyW7PcmnFc1KfZyXfKpzFokqIllY8k3u9I0NaOFK6a4kUlHPWG87zBv2Xj0m//pECWanx0spnpdQEqfvj/P0Wh8m4k1fwg7F7mZR4nAAIAAAAOHn+8RAAAAAAAKCUNL3a5O/Mu63tECnAzcoe7F1RQNtKKfl0afam4jmxM3fwQ5afPsi8gY+iO74jM9ghL7EHpcQYzm5xb9BnD37I7oc3pITfOb/FkRxXcHtSLOcXAAAAxQuAaNy4sa25ca7Tp0/bNgAAAAAAgAJVrSn1fSX3+rDGUrdH3W+29J8lwKLCaPGYm/D5SU/NLCmAojNZVQriyRypYmeIKejv12SIQNH5/0mpJf8Qzi4AAACcivTtZt++fUpPT8+1PiUlRYcPHy70cVatWqV+/fqpdu3a8vDw0IIFC5xtaWlpevTRRxUVFaXAwEC7zW233aYjR47kes0RI0YoIiLCbte/f38dOnSoKG8LAAAAAACUFr+qUpuB0v0/SFc8InUYKt30X2nYF1K1eu73e2h8Zf5tDS+XqlB/vlhqtMq/zZxbn8DiHb+yC28iefvn3VbjAqlKeGn3qGL5sxvwPgGl1ZOKKbC61KRH3m0NL5MC3SxjEAAAAMqU9/ls/Nlnnzkff/311woJ+ePDvQmIWLZsmRo2bFjo4yUkJKhdu3a64447NGjQoBxtiYmJ2rRpk8aPH2+3iYmJ0ahRo2yAw4YNG5zbmXULFy7UnDlzFB4erjFjxqhv377auHGjvLzcrF4oAAAAAADIGQRRvYV01ePuf1aCIqVL75e+ey3net+q0rWTpSrVyqpnFUNIPalmlPT7z7nbTIBMUK2y6FXFyrgy4DVp3l05s5WYG/PXvy5VrV6WvSv/qtbIzF5zak/utnqXcIO+uMy/r/1flRbcl7MckQl+uOENKSCs2C8BAACAisPD4Sh8jkbP/6XDM9kazt3Nx8fHBj+88MILNgDhvDvi4aH58+fr+uuvz3eb9evX6+KLL9b+/ftVv359xcbGqnr16po9e7aGDBlitzEZIurVq6dFixapd+/ehXrtuLg4G8xhjhcc/Ccp1QAAQKlhjAYAwD1V2jE68aR0dIu05qXMx427S53ulKrVlzyZhFFspw9KXz4q7ViUeZPeL1i6YqzU/lZuILtCSrx0er/0w5vSqV1S/S5Su5syg0+8zmuOFPJyfIc0e4AUly17bXhT6a9zpdDCTxhDARJPSQknpOTTmVk3TGYIgh/yVGnHaZQ8kxn8bKLk5Sd5/0l5JQAAysh5fbvJyMiwPxs1amSDEUzZidJkPrCZQIlq1TJnVZgsD6ZURq9evZzbmFIZbdq00dq1a/MNgDBlM8yS/QMhAAAAAABAgQLCpSbdpbqdpLOpmXXpvXw4aa5iSp+Y2dwJx6WzSZkBECbzBufYdRlXarbOzFiSnip5VzGznVx0cKh6c+muZdKpvVLMPimiWWZwlPkbhmuYYAcCHlCQ1AQpPlpKicvM0GSCZMxYjeJLPyvFHpA2zZYOfi+FNpY63yOFNcocX1B85rNl/DEpOU7yqZIZ/PlnJZZQeGd+l04fkA6uyxyb616UmWGMQB7XSTiZ+e+w+Xxp/v319uMvFGWmSOHde/fuVWlLTk7WY489pltuucUZtXrs2DH5+voqNDRnnc2aNWvatvxMmjRJEydOLPE+AwAAwE0lnc5cHOn/mz1G3WAAwHnwC5K4nlcy/IMyF5QcE1BCUEnJCK6duTTsWkIvACBfZ45Jy56UtsyRMtJNymmp+bXSdc9n/n+J4jm2RZp1rZSWlPl8/1pp83uZgYutrpd8/DnDxWGy22ycJa1+MfMGsvn7bdJD6jslM5gOxWOyM304VDq84Y915ub8zR9KDboSBFFcqYmZZey+fEw6simzxNqFt0ldRkohdYp9eKAoipzfbtmyZXaJjo52ZobI8tZbb8mVTJaHm266yb7OtGnT/nR7U57DZIrIz7hx4zR69OgcGSBM2QwAAABUcCad9okd0qJH/qgfXKu91PdFKTJK8iKFJwAAAACUuxI/SydKP32Q87vf9i+ktATpxrfJHlIcJqvG/Lv/CH7IbuFIqf6lUmiDYr2EKnt2jZ/+K33zr5x/v7uWSh8MkYYukIJqlmUPy7e0ZGnVCzmDH4yzKdJ/h0j3/0CpquL6fav0Vh/J8b97xWmJ0rrpmYFSt35MNiyUiSLluTPZE0zZCRMAceLECcXExORYXB38MHjwYJt1YsmSJTlqlkVGRio1NTXXa5qgDJMFIj9+fn72ONkXAAAAVAIm3eFbvf8IfjCObs78ombSFQMAAAAAMiWfkU7ulo78KJ3cJSXHuueZSYjOzPyQlz0rMksroegST2VOJMiLuYl8cidntzjij0qrns+7LfrXzOsYKDrz/7/JVpLf3+/BHzi7xf334avH/gh+ODdzzPHtnF+UnwCI6dOna9asWVq3bp0WLFig+fPn51hcHfywc+dOLV26VOHh4TnaO3bsKB8fHxsYkeXo0aPaunWrunTp4rJ+AAAAoAIwWct+WSAl5RGwa+pgf2tSTSaWRc8AAAAAwL3EHZU+GyFN7SjNuFKa2kmaf48Ud1huJzku75tv2TMYoBgcBTdnnOXsFoe5DpF8Ov/249s4v8VhrvecTc6//cxRzm9xpMZLhzfm377zj/u3cB/Hjh3TiBEj1LhxY5s0wFRJ6Nevn018YMyYMUNXXnmlTSBgKi6cPp3736inn37a3osPCAhQtWrVVCFKYJisC64IMIiPj9euXbucz02Wh82bNyssLEy1a9fWjTfeqE2bNunzzz9Xenq6/YUYpt3X11chISEaPny4xowZY4MjzPqxY8cqKipKPXv2LHb/AAAAUIGYFHy7l+bfvn+NlBIn+QaUZq8AAAAAwL2YTA9fPipt+/SckhKLMm8mDnxTCgiV2/CrWnB7QFhp9aRi8q8mVaufdyYCTy8pomVZ9Kri8PbPLMdp/t/Kizn3KDrfqlJoIykmn6yf9S7m7BaHh5fkGyilJuTdXpXyLQU5eCpRc9Yf0IFTSaofVkU3XVRf9cJK9rrkvn371LVrVxu0MHnyZLVt29YmJPj66691//3367ffflNiYqL69Oljl3HjxuUbK/CXv/xFl156qWbOnKkKEQBx11136YMPPtD48eOL9eIbNmxQ9+7dnc9Hjx5tfw4bNkwTJkzQZ599Zp+3b98+x37Lly+3kSfGlClT5O3tbTNFJCUlqUePHjY7hZeXV7H6BgAAgArGXFAIqp1/e2D1zG0AAAAAoDJLOCH9lnltPpddS6XE4+4VABFQXWrWS9q5OHdbZFTmdz0UXXAtqd8r0nsDc2fa6D5eCozg7BZH1RpS+79KG9/K3WbObXhTzm9xBNWUej8jzbk5d1utdlJoY85vcZh/XzveIX03NXebh4fU4hrObz4+2XhIj87dovSMP7LsvLFyj54d1FY3dqxbYuftvvvus1kdfvjhBwUGBjrXt27dWnfeead9PGrUKPtzxYpsJYTPMXHiRPvT3JN3R0UKgEhOTrbpL0xZChMZYspQZPfiiy8W6jgmiMFhIkfzUVBbFn9/f7366qt2AQAAAPLl7St1vjv/2rCXPcTMIKCyM6VyzhyRYg9LKbGZM4XMBZ0q7pfOEQAAoEQzQBR0bT6pgHT9ZaFKiNR3ijTv75mZ/bLUbCMNeS/zBjOKp/4l0t3fSquel47+KAXXlbo9LEW2+/MMHCiYTxWp2yNS7EFpV7ZyAUGR0q1zpeA6nMHiathVuukD6et/SDH7Mie/tL1JuvKxzAAJFO9a26X3S/tWS0c35wx+GPC6FBzJ2c0n88O5wQ/G2QyHHpu7RZ0bhZVIJohTp07pq6++suUrsgc/ZHHHUhalGgCxZcsWZ1aGrVu35mgzUSMAAACAWwprLPV6Wlryfzkv6Jlo9QaXlmXPKlb9xzPR0v61mY8bXpY5YyggvKx7BhQs/WzmxdwPhkiJJ/9Y3/5WqecELpwDAIDKwy+o4Hb/ELmdkLrSkNlS/HEp/lhmEKtZCH5w3U36yDbSgNcyv+eZsg0m8ASuYb4zD3xDio+WTu3NzPxggkxCCshiicIz/2a1vE6q0zGzVIOXT+a/D+bvGsUXXFu65UPp5C5p51KpqsnK0zsz+MGUIEEupuzFucEP2YMgTPvDvV1fXmjXrl02+UDLlhW/dFGRAiBMCQoAAACg3DGzuDvenpmCz9ygP5uSeYPe1CR0pxSu5VXyGemXudLnD+VMjdp6kHTNs1x8dAXzN3vmmHTsZyn5dOYFHPv3S13jYos7LL07IHft0s3vSxHNpS4jMmscAwAAVHTm5mvj7tKePO4D1OvsviUPTNC1WWpU/Bs7ZcYvMHNBCf79XsDZLSkmqwZK7tyaxVxjw586cCqpwPaDf9JeVI7/TQarDMkMihQAAQAAAJRbJj2nWcKblHVPKp7YA9LCB3OvN0ERjbtJHYeVRa8qjrSkzIvQH9+eGQiRPcCkzyRSdxbXge9zBz9kWfuy1HZw5swWAACAiq5KqDRgau6SEnU6SYPeJLsbAADFUD+s4Owj9f6kvaiaNWtmgx+2bdum66+/XhVZkQMg1q9fr48//lgHDhxQampqjrZ58+a5om8AAACVk0nZadLGbX4vsx59h1szZx+TuhPubtO7+beZG8gm8wZ/x0UXd0T68K9SRnruAJO6naTO90iensV4gUruxI782xJPSek5v/cCAABUaKakxODZUsLxzPJgJuOYLSvhptkfAAAoJ266qL7eWLnHlrs4l7enh20vCWFhYerdu7dee+01jRw5UoGBOTP6nD59WtWqVVNFUKSrY3PmzFHXrl3166+/av78+UpLS7OPv/nmG4WEUPcJAACgyEy9xy9GS2/3kX58T/rpA2nWddJnI6Uzv3Ni4b4yzkqxh/JvTziRuQ2KbtvC3MEP2QNMEvg3olhMEEl+qjXIrHMMAABQmQT+r5xEw66ZafkJfgAAoNjqhQXo2UFtbbBDdub5c4Pa2vaSMm3aNKWnp+viiy/W3LlztXPnTpsR4pVXXtGll15qtzl27Jg2b96sXbt22ec///yzfX7q1CnncUyCBLPO/DTHM4/NEh8fr3KbAeKZZ57RlClTdP/99ysoKEgvv/yyGjVqpLvvvlu1atVyfS8BAAAqi0PrpW2f5V6/40vpwE1S64qdngzlmKe31LyP9NvnebfXu0TyDSrtXlUsp/bk3xb/e/7BESicyCgpqJZ05mjuth5PUC8WAAAAAAC4xI0d66pzozDNWX9AB08l2bIXJvNDSQY/GOZ+/qZNm/T0009rzJgxOnr0qKpXr66OHTvq9ddft9tMnz5dEydOVJYrrrjC/nz77bd1++2328dPPPGE3nnnHec2HTp0sD+XL1+uK6+8UmXNw+Fw5M6v8SdMSoxffvlFDRs2VEREhH0zUVFRNkLkqquusierPImLi7OZK2JjYxUcHFzW3QEAAJV1jE45I/33Zmnft3m31+ss3fKRVKVipCJDBXT6oDSzp3TmWM71nl7S31ZItdqWVc8qhl/mSx9nftHMpfaF0l8/oR5zcZnyQ/PvyQxGM/xDpO7/J0XdmJn2GZV3jAYAoBxhnAYAAJWZd1FrhJw5c8Y+rlOnjrZu3WoDIExtkMTERFf3EQByMzPzjm2Vts6T/IOl9jdLIQ2kgFDOFoDyK/2slJqQf7tpY4Y33Fm1etIdX0pf/UPa+bXkyJBqtpGue1GKaF7WvSv/6l4kBdeW4o7kbuv1FMEPrhDeNDPQzJRsSU+R/KtlZn7w8nHJ4QEAAAAAAOCGARCXX365lixZYoMeBg8erAcffFDffPONXdejRw/X9xIAsjMX/c0M6aOb/1i3brp02UNSl5HMzkP5EB8tJcWYZEyZgTuB1cu6R3AHZqaxKXFxZFPe7a1vIPsD3F9YY2ngjMx/4zLOZv5dUyvYNULqSrd/IS16WNq9TDLJ/KrVl675t1SrnYteBDbTA9keAAAAAAAAKk8AxNSpU5WcnGwfjxs3Tj4+Plq9erUGDhyo8ePHq9JKS8qsvWsu9nr7Z17o5YYW4Frp6dKP7+cMfsiyeorUagAXrOHezqZKR36UPrtfOrEzc12NVtKA16TItpJXkYZmVBSenplBDt+/nrsGfdUaUtvBmaUEAHdnsjOZBSUTYHLjW1LiKSk9LfM8mwwFAAAAAAAAAOThcJhpQ5WbS2qiJRyX1r0hrX1FOpuSuc7cyLrxbSmiqUv7C1RqcUel/1yZu7Z4lo53Sv2mlHavKm5QV1aGAhPQRepn1zi+XZreNfOmVXYmcO7etVJ4Exe9UMVQaeuWxuyXvpsqbflIkkNqc6PUdaQU2rCsewYAQOUeowEAKAcYpwEAQGXmWZSdvLy8FB0dnWv9yZMnbVulY2px//yxtOrffwQ/GMe2SO/0lWIPl2XvgArGIaUm5N+cbNJtZ5RmhyoeExd3ao+06BFp2qXSG5dLyydJsYfKumflX1qytOaV3MEPxtlkacNbebeh8gltIPV6SrrvO+m+76U+zxD8AAAAAAAAAABASQRA5Jc0IiUlRb6+vqp0zEz0Vc/n03ZUOv5bafcIqLhMHfGmV+ffHmXSwxfpnzZkidkn/ecq6cd3peTTmRluVr8gvdufgK7iSjkjHV6ff/uB76TUeP4WkcnbTwqunbmYDCEAAAAAAAAAAKBA51Vo/JVXXrE/PTw89Oabb6pq1arOtvT0dK1atUotW7ZUpWNm7SaezL/9961S0x6l2SOg4vINlK4cJ+34SkpLzNlWo5VUu0NZ9axiSEuRvn/9f6UvznFyt7RvtdRuSFn0rGLw8ZeCameWwchLtfrc6AYAAAAAAAAAACiNAIgpU6Y4M0BMnz49R7kLk/mhYcOGdn2lnKHpXy1zpnReIlqUdo+Aii2ssfT3FdLyZzIDIXwDpI53SJ2GS8G1yrp35ZspIbL9i/zbf/5QatVP8gkozV5VHH5B0uVjpD3L826/9AHJp0pp9woAAAAAAAAAAKDyBUDs3bvX/uzevbvmzZun0NDQkupX+VI1UurygPTNU7nbAsKlyDZl0Sug4vLylqq3kAa8JiXHmrQ0UmB1ycunrHtW/nl4FnwD3jdI8jivoQPnMmNCjwnSN09KjozMdZ7eUu9JUkQzzhcAAAAAAAAAAEAReRZlp+XLl+cIfjDlLzZv3qyYmDxSpleWm7EXDsucgW5uHmap1kAatlAKqVuWvQMqLr+qUkgdKbg2wQ+uYgJJLvp7/u0X/03y9nXZy1VKVUIzz+OIjdLg2dKQ96UHNkgdbpX8Q8q6dwAAAAAAAAAAoII6duyYRowYocaNG8vPz0/16tVTv379tGzZMts+Y8YMXXnllQoODpaHh4dOn85ZAWHfvn0aPny4GjVqpCpVqqhJkyb65z//qdTUVLmLIk3jHTVqlKKiouybM8EPV1xxhb777jsFBATo888/tyel0qlaQ+r1L6nLCCk+WvKtKlWNkIJIxw+gHDHZNC7oJ22dKx38Pmdb+79K1VuWVc8qXvCOWUw5FwAAAAAAAAAAgBK2b98+de3aVdWqVdPkyZPVtm1bpaWl6euvv9b999+v3377TYmJierTp49dxo0bl+sYZpuMjAy98cYbatq0qbZu3aq//e1vSkhI0PPPP+8Wv0MPh8PhON+d6tSpo08//VSdOnXSggUL7AkxWSHeffdd+3PNmjUqT+Li4hQSEqLY2FgbzQIAld6ZY9LvW6XNH0je/lLH2zNv1gdGVPpTA8ZoAADA92gAANwZ17sBACgHYvZJm97N/BnaULrwtsyfJejaa6/Vli1btH37dgUGBuZoM5keTGBElhUrVqh79+62AkT29Xn597//rddff1179uxRuc0AcfLkSUVGRtrHixYt0l/+8hc1b97cZoR45ZVXXN1HAEBpC4rMXBpflZkVwiwAAAAAAAAAAAAoHjP59NMHJEf6H+vWvCz1f1Vqf0uJnN1Tp07pq6++0tNPP50r+MH4syCHgpgkA2FhYXIXnkXZqWbNmvr1119t+Qtzonr27GnXm5QYXl5eru4jSlLCCSlmvxR7SDrrPrVZALgJT0+CHwAAAAAAAAAAAFzBZHw4N/jByDgrfTYis70E7Nq1S6YwRMuWri11vnv3br366qu65557VK4DIO644w4NHjxYbdq0kYeHh66++mq7ft26dS4/aSghqfHS/rXSewOll9tKr10sLXtSijvCKQcAAAAAAAAAAAAAVzNlL84NfsgeBGHaS4DD4bA/zb19Vzly5Ij69Oljq0XcddddchdFKoExYcIEG/xw8OBB+4b8/PzsepP94bHHHnN1H1ESjvwovdPP/LVnPk9NkL57VTrwnXTzB1LVmpx3AAAAAAAAAAAAAHCVP8vwYDL3l4BmzZrZ4Idt27bp+uuvd0nwQ/fu3XXppZdqxowZcidFCoAwbrzxxlzrhg0bVtz+oDQkHJe+fPSP4IfsDm+QTu0lAAIAAAAAAAAAAAAAXCm04Z+0NyiR8x0WFqbevXvrtdde08iRIxUYGJij/fTp06pWrVqhjnX48GEb/NCxY0e9/fbb8jTl1CtCAMSyZcvsEh0drYyMjBxtb731liv6hpKSEi/9/kv+7XtWSvUv4fy7QlKslHpG8vCUAmtIXkX+Xw4AAAAAAAAAAABAeXbhbdKalzPLXZzL0zuzvYRMmzZNXbp00cUXX6wnn3xSbdu21dmzZ7VkyRK9/vrrNjvEsWPH7LJr1y67z88//6ygoCDVr1/fBlGYzA9XXnmlff7888/r+PHjzuNHRkbKHRTpbuzEiRPtSenUqZNq1arl0lohKAXmfx5vf+lsct7tVavzayiusynSiR3S4iekvSsk/xCp013SRXdKwbU5vwAAAAAAAAAAAEBlzADR/1XpsxE5gyDM/dv+U/88Q0QxNGrUSJs2bdLTTz+tMWPG6OjRo6pevbrN5GACIIzp06fbWIAsV1xxhf1pMj3cfvvtWrx4sQ2OMEvdunVzHN+RV/WBMuDhKEJPTNDD5MmTNXToUFUEcXFxCgkJUWxsrIKDg1XhpSVLX/9D2jAzd5vJVDBioxTWuCx6VnEc3SK9eZWUnpZzfe0O0s1zpCD3iIACAHdX6cZoAADKCcZoAADcF+M0AADlQMw+adO7Usz+zLIXJvNDCQY/VCZFygCRmppq02OgnPLxly4fLR34Xor+JWfww41vSVW5OV8sybHS4vG5gx+MIz9Kx7cTAAEAZSE+Wko6LZnEVVVCpUAyHgEAAAAAAAAAyoAJdujxBKfeXQIg7rrrLn3wwQcaP36863uE0hFSVxo6L7NMw+7lUlBNqenVUlAtyTeA30JxpJyR9q3Mv/23z6XG3TjHAFBa0lOlIz9Jnz0gHf8tc13NNpnpxCKjJK8ifRwCAAAAAAAAAABupkhX/JOTkzVjxgwtXbpUbdu2lY+PT472F1980VX9Q0kyZRjM0iizdgtcxGTS8AmUUuPzbq8SxqkGgNJOJTbr2sxAiCy/b5Xe7iPdu0YKb8rvAwAAAAAAAACAyhoAsWXLFrVv394+3rp1a442Dw+TVxqoxAIipI53SN+9mnd76xtKu0cAUHmdTZbWvpYz+CF72/q3pKsnSl45gzkBAAAAAAAAAEAlCYBYvny563sCVBTevtIl90p7lmfOMM6u9zNScO2y6hkAVD4p8dKhdfm3H/guc5uA0NLsFQAAAAAAAAAAKAHFLnp96NAhm/WhTp06rukRUBGE1JH++on0+y/StoWZWSGibpSC60j+wWXdOwCoPLz9pKDaUvS2vNuD60o+fqXdKwAAAAAAAAAAUAI8i7JTRkaGnnzySYWEhKhBgwaqX7++qlWrpn/961+2DYCkoFpS055Sv5elHuOlGhcQ/AAApc0vSLp8dP7tXUdIPgGl2SMAAAAAAAAAAOBOGSAef/xxzZw5U88++6y6du0qh8OhNWvWaMKECUpOTtbTTz/t+p4CAAAURc3WUo8npG+ekhz/C9T09JKu/pcU0ZxzCgAAAAAAAABABeHhMNEL56l27dqaPn26+vfvn2P9p59+qvvuu0+HDx9WeRIXF2ezWcTGxio4mPIEAABUuDE6JV5KiJaObjEff6RabaWqNSTfQFd2FwCASoPv0QAAuC/GaQAAUJkVKQPEqVOn1LJly1zrzTrTBgAA4Fb8qmYuYY3LuicAAAAAAAAAAKCEeBZlp3bt2mnq1Km51pt1pg0AAAAAAAAAAAAAALiPY8eOacSIEWrcuLH8/PxUr1499evXT8uWLcuxnSkicc0118jDw0MLFizI81gpKSlq37693Wbz5s0q1xkgJk+erOuuu05Lly7VpZdeat/U2rVrdfDgQS1atMj1vQQAAAAAAAAAAAAAAEWyb98+de3aVdWqVbP3+9u2bau0tDR9/fXXuv/++/Xbb785t33ppZdsDEBBHnnkEdWuXVs//fSTW/1GihQA0a1bN+3YsUOvvfaaPREmAmTgwIG677777JsEAAAAAAAAAAAAAAC5HTpzSPN2zrM/6wbV1cBmA+3PknTffffZoIYffvhBgYGBzvWtW7fWnXfe6XxuAhpefPFFrV+/XrVq1crzWF9++aUWL16suXPn2sflvgSGYQIdnn76afum5s2bp6eeeorgBwAAAAAAStiqVatsekrzvTyvVJRmksKECRNse5UqVXTllVfql19+yZWm0qS8jIiIsBc9+vfvr0OHDvG7AwAAAACghH2661P1nd9X//n5P/py35f2Z7/5/ez6knLq1Cl99dVXNtND9uCHLCYrhJGYmKibb75ZU6dOVWRkZJ7H+v333/W3v/1Ns2fPVkBAgNzNeQVA7Ny5077huLi4XG2xsbG65ZZbtGfPHlf2DwAAAAAAZJOQkKB27drZixF5MWkszUwN025ma5gLFldffbXOnDnj3GbUqFGaP3++5syZo9WrVys+Pl59+/ZVeno65xoAAAAAgBJiMj78c+0/le7I+f37rOOsJqydYNtLwq5du+yEiZYtWxa43UMPPaQuXbpowIABebabY9x+++2655571KlTJ7mj8wqA+Pe//6169eopODg4V1tISIhtM9sAAAAAAICScc0119gsjKYUZV4XIkydzscff9y2t2nTRu+8846dwfHBBx84JzDMnDlTL7zwgnr27KkOHTrovffe088//6ylS5fyawMAAAAAoISYshfnBj9kD4Iw7SXB4XDYnyaTZH4+++wzffPNN/a6Qn5effVVmyxh3Lhxclee55tm8y9/+Uu+7YMHD7YnBQAAAAAAlL69e/fq2LFj6tWrl3Odn5+funXrprVr19rnGzduVFpaWo5tTLkMEyyRtQ0AAAAAAHC9P8vwcCi+ZDJANGvWzAY/bNu2Ld9tzH3+3bt323IY3t7edjEGDRpky2tmbfP999/baw2mvWnTpna9yQYxbNgwuYPMXhfS/v37VaNGjXzbTe3QgwcPuqJfAAAAAADgPJngB6NmzZo51pvn5jt91ja+vr4KDQ3NtU3W/udKSUmxS5a8SmMCAAAAAICC1Q2qW3B71YLbiyosLEy9e/fWa6+9ppEjRyowMDBH++nTp/XYY4/prrvuyrE+KipKU6ZMUb9+/ezzV155xWalzHLkyBF73A8//FCdO3dWuQuAMGUuTNRHgwYN8q0dkld5DAAAAAAAUHrOTWlpUl0WlObyz7aZNGmSJk6c6NI+AgAAAABQ2QxsNlBvb33blrs4l7eHt20vKdOmTVOXLl108cUX68knn1Tbtm119uxZLVmyRK+//rrNDhEZGZlrv/r166tRo0bOx9lVrVrV/mzSpInq1i2Z4I0SLYFxxRVX2Loe+TERH5dffrkr+gUAAAAAAM5T1oWKczM5REdHO7NCmG1SU1MVExOT7zbnMrU9Y2NjnQvZHwEAAAAAKFoGiAldJthgh+zM84ldJ/5phojiaNSokTZt2qTu3btrzJgxthTm1VdfrWXLltkAiIrivDJAmAsel156qW688UY98sgjatGihV3/22+/afLkyfr666+pFwoAAAAAQBkxFzNMgIOZvdGhQwe7zgQ7rFy5Us8995x93rFjR/n4+NhtBg8ebNcdPXpUW7dutd/t82Jqe5oFAAAAAAAUz4CmA9SxZkfN2zlPh+IP2bIXJvNDSQY/ZKlVq5amTp1ql8Iw2SIL0rBhwz/dxq0DIMzFk08++UR33nmn5s+fn6MtPDxcH330kS688EJX9xEAAAAAAPxPfHy8LUGZZe/evdq8ebOt52lSUY4aNUrPPPOMmjVrZhfzOCAgQLfccouzvOXw4cPtbA/zXd7sN3bsWFvXs2fPnpxnAAAAAABKmAl2GHnhSM5zWQdAGH379tX+/fv11Vdf2QsuJqKjefPm6tWrl72gAgAAAAAASs6GDRtsusoso0ePtj+HDRumWbNm2YyNSUlJuu+++2yZi86dO2vx4sUKCgpy7jNlyhR5e3vbDBBm2x49eth9vby8+NUBAAAAAIByy8PhbjkpykBcXJydAWPqmAYHB5d1dwAAwP8wRgMA4J4YowEAcF+M0wAAoDLzLOsOAAAAAAAAAABQ3q1atUr9+vVT7dq15eHhoQULFuRoN3MRJ0yYYNurVKmiK6+8Ur/88kuObVJSUjRixAhFREQoMDBQ/fv316FDh0r5nQAAAJRfBEAAAAAAAAAAAFBMCQkJateunaZOnZpn++TJk/Xiiy/a9vXr1ysyMlJXX321zpw549xm1KhRmj9/vubMmaPVq1crPj7elqVOT0/n9wMAAFAIBEAAAIBcmLUCAAAAAMD5ueaaa/TUU09p4MCBudpM9oeXXnpJjz/+uG1v06aN3nnnHSUmJuqDDz6w25gSzTNnztQLL7ygnj17qkOHDnrvvff0888/a+nSpfw6AAAACoEACAAAkAuzVgAAAAAAcJ29e/fq2LFj6tWrl3Odn5+funXrprVr19rnGzduVFpaWo5tTLkMEyyRtU1eTNmMuLi4HAsAAEBl5V2UnRYtWiQvLy/17t07x/qvv/5aGRkZNtIVAACUX2Ysz288P3fWimFmrdSsWdPOWrn77ruds1Zmz55tZ60YZtZKvXr17KyVcz9DAAAAAABQkZngB8N8d87OPN+/f79zG19fX4WGhubaJmv/vEyaNEkTJ04skX4DAABUigwQjz32WJ41x8wNEdMGAAAqLmatAAAAAABQNB4eHrmuqZ+77lx/ts24cePsRISs5eDBg/x6AABApVWkAIidO3eqVatWuda3bNlSu3btckW/AABAOZy1ktVWnFkrISEhzsVkjAAAAAAAoLyLjIy0P8/9ThwdHe38fm22SU1NVUxMTL7b5MWU0ggODs6xAAAAVFZFCoAwNyT27NmTa70JfggMDHRFvwAAgJtj1goAAAAAAIXTqFEjG+CwZMkS5zoT7LBy5Up16dLFPu/YsaN8fHxybHP06FFt3brVuQ0AAAAK5q0i6N+/v0aNGqX58+erSZMmzuCHMWPG2DYAAFA5Zq3UqlXrT2etZM8CYbYp6KKNmbViFgAAAAAAypv4+PgcGZJNCcnNmzcrLCxM9evXt9fUn3nmGTVr1swu5nFAQIBuueUW58TD4cOH2+vs4eHhdr+xY8cqKipKPXv2LMN3BgAAUMEzQPz73/+2mR5MyQsTuWqWCy64wH4oe/75513fSwAA4DaYtQIAAAAAQG4bNmxQhw4d7GKMHj3aPn7iiSfs80ceecQGQdx3333q1KmTDh8+rMWLFysoKMh5jClTpuj666/X4MGD1bVrVxsgsXDhQnl5eXHKAQAACsHD4XA4VARmN5OK66efflKVKlXUtm1bXXHFFSqP4uLibHRtbGws9dEAADhn1oq5WPPiiy+qe/fuzlkrzz33nCZNmqS3337bOWtlxYoV2r59u/PCzb333qvPP/9cs2bNcs5aOXnypDZu3FjoCzeM0QAAuCfGaAAA3BfjNAAAqMyKVAIjq+53r1697AIAACrerBUT8JDFzFoxhg0bZgMazKyVpKQkO2vFlLno3LlznrNWvL297awVs22PHj3svsxaAQAAAAAAAAAAZZoB4pVXXtHf//53+fv728cFGTlyZKFefNWqVbachpkJevToUc2fP9+m98piujZx4kTNmDHDeXPltddeU+vWrZ3bpKSk2Bml//3vf503V6ZNm6a6deuqsIiIBQDAPTFGAwDgnhijAQBwX4zTAACgMit0Bggzi/PWW2+1ARDmcUGZIQobAJGQkKB27drpjjvu0KBBg3K1T5482abcNrNFmzdvrqeeekpXX311jvTapmaaqYE2Z84chYeHa8yYMerbt+95pdcGAAAAAAAAAAAAAACVJANESTOBE9kzQJhu1a5d2wY4PProo85sDzVr1rR1x++++27FxsaqevXqmj17toYMGWK3OXLkiOrVq6dFixapd+/ehXptImIBAHBPjNEAALgnxmgAANwX4zQAAKjMPIuy05NPPqnExMRc600JCtPmCnv37tWxY8fUq1cv5zo/Pz9169ZNa9eutc9Nloe0tLQc25igiTZt2ji3yYsJpDAfArMvAAAAAAAAAAAAAACgkgVATJw4UfHx8bnWm6AI0+YKJvjBMBkfsjPPs9rMT19fX4WGhua7TV4mTZqkkJAQ52IyRgAAAAAAAAAAAAAAgEoWAGHKU5iSFef66aefFBYWJlc693Xye+3z2WbcuHG2fEbWcvDgQZf1FwAAAAAAAAAAAAAAlD7v89nYZFowgQVmad68eY4gg/T0dJsV4p577nFJxyIjI+1Pk8mhVq1azvXR0dHOrBBmm9TUVMXExOTIAmG26dKlS77HNqU0zAIAAAAAAAAAAAAAACphAMRLL71ksyvceeedttSFKR+RxZSiaNiwoS699FKXdKxRo0Y2wGHJkiXq0KGDXWeCHVauXKnnnnvOPu/YsaN8fHzsNoMHD7brjh49qq1bt2ry5Mku6QcAAAAAAAAAAAAAAKhgARDDhg1zBid07dpV3t7ntXsuJmPErl27nM/37t2rzZs32zIa9evX16hRo/TMM8+oWbNmdjGPAwICdMstt9jtTQDG8OHDNWbMGIWHh9v9xo4dq6ioKPXs2bNYfQMAAAAAAAAAAAAAAOVHkSIYgoKCtG3bNhtoYHz66ad6++231apVK02YMMFmgyiMDRs2qHv37s7no0ePdgZazJo1S4888oiSkpJ033332TIXnTt31uLFi+3rZ5kyZYoNxDAZIMy2PXr0sPt6eXkV5a0BAAAAAAAAAAAAAIByyMNhalqcp4suukiPPfaYBg0apD179tjAh4EDB2r9+vW67rrrbKmM8iQuLs5mk4iNjVVwcHBZdwcAAPwPYzQAAO6JMRoAAPfFOA0AACozz6LstGPHDrVv394+/vjjj9WtWzd98MEHNvPC3LlzXd1HAAAAAAAAAAAAAAAA1wdAmKQRGRkZ9vHSpUt17bXX2sf16tXTiRMninJIAAAAAAAAAAAAAACA0g2A6NSpk5566inNnj1bK1eutGUvjL1796pmzZpF7w0AAAAAAAAAAAAAAEBpBUC89NJL2rRpkx544AE9/vjjatq0qV3/ySefqEuXLkU5JAAAAAAAAAAAAAAAQJF5F2Wntm3b6ueff861/t///re8vLyK3hsAAAAAAAAAAAAAAIDSCoDIj7+/vysPBwAAAAAAAAAAAAAAUHIBEOnp6ZoyZYo++ugjHThwQKmpqTnaT506VZTDAgAAAAAAAAAAAAAAFIlnUXaaOHGiXnzxRQ0ePFixsbEaPXq0Bg4cKE9PT02YMKFoPQEAAAAAAAAAAAAAACjNAIj3339f//nPfzR27Fh5e3vr5ptv1ptvvqknnnhC33//fVH7AgAAAAAAAAAAAAAAUHoBEMeOHVNUVJR9XLVqVZsFwujbt6+++OKLovUEAAAAAAAAAAAAAACgNAMg6tatq6NHj9rHTZs21eLFi+3j9evXy8/Pr6h9AQAAAAAAAAAAAAAAKL0AiBtuuEHLli2zjx988EGNHz9ezZo102233aY777yTXwUAAAAAAAAAAAAAAChV3kXZ6dlnn3U+vvHGG21GiLVr19psEP3793dl/wAAAAAAAAAAAAAAAEomAOJcl1xyiV0AAAAAAAAAAAAAAADcOgDis88+K/RByQIBAAAAAAAAAAAAAADcMgDi+uuvL9R2Hh4eSk9PL06fAAAAAAAAAAAAAAAASiYAIiMj4/yODAAAAAAAAAAAAAAAUEo8S+uFAAAAAAAAAAAAAAAA3CIA4tprr1VsbKzz+dNPP63Tp087n588eVKtWrVybQ8BAAAAAAAAAAAAAPj/9u4ESqrqXBTw30zNIDTgwKCiEBEjKBpNNIYIxqBGJA7XexU1ccigMUQ0V4PzFOebq0ZiYl40SmIcspwyaBRiDInijAOiARVEHBFFZhqh66193usODd0IVBVd1XzfWkVXnXOq6rD7dP11zv73v6GQCRAPPfRQVFdX1z2+8sor46OPPqp7vHz58pg6deq6vCQAAAAAAAAAwIZNgMjlcmt8DAAAAAAAAABQ8gkQAAAAAAAAAABlnwBRUVGR3VZdBgAAAAAAAADQlFqty8ZpyovjjjsuKisrs8dLly6Nk046KTp06JA9rq6uLs5eAgAAAAAAAAAUKgHi2GOPrff4mGOOWW2bb37zm+vykgAAAAAAAAAAGzYB4uabb87/HQEAAAAAAAAACqxFoV8QAAAAAAAAAGBDkwABAAAAAAAAAJQ9CRAAAAAAAAAAQNmTAAEAAAAAAAAAlD0JEAAAAAAAAABA2ZMAAQAAAAAAAACUPQkQAAAAAAAAAEDZkwABAAAAAAAAAJQ9CRAAAAAAAAAAQNmTAAEAAAAAAAAAlD0JEAAAAAAAAABA2ZMAAQAAAAAAAACUPQkQAAAAAAAAAEDZkwABAAAAAAAAAJQ9CRAAAAAAAAAAQNmTAAEAAAAAAAAAlD0JEAAAAAAAAABA2ZMAAQAAAAAAAACUPQkQAAAAAAAAAEDZkwABAAAAAAAAAJQ9CRAAAAAAAAAAQNmTAAEAAAAAAAAAlD0JEAAAAAAAAABA2ZMAAQAAAAAAAACUPQkQAAAAAAAAAEDZkwABAAAAzcjy5cvj3HPPjd69e0e7du2iT58+cfHFF0dNTU3dNrlcLi688MLo2bNnts2QIUNiypQpTbrfAAAAAPmSAAEAAADNyJVXXhk33HBD/OxnP4tXXnklrrrqqvif//mfGDNmTN02adnVV1+dbfP0009H9+7dY+jQobFgwYIm3XcAAACAfEiAAAAAgGbk8ccfj4MPPjiGDRsW2267bRx++OGx3377xTPPPFNX/eHaa6+Nc845Jw477LAYMGBAjB07NhYvXhy33XZbU+8+AAAAwHqTAAEAAADNyKBBg+Lhhx+OadOmZY9feOGFePTRR+PAAw/MHs+YMSPee++9LCmiVmVlZQwePDgmTpzY4GtWV1fH/Pnz690AAAAASk2rpt4BAAAAoHBGjx4d8+bNix122CFatmwZK1asiEsvvTRGjBiRrU/JD0m3bt3qPS89njlzZoOvefnll8dFF13k1wQAAACUNBUgAID1snz58jj33HOjd+/e0a5du+jTp09cfPHFUVNTU7dNKrF94YUXRs+ePbNthgwZElOmTNHiAFBEd955Z9x6663ZdBaTJk3Kprf4yU9+kv1cWUVFRb3HKW6vuqzWWWedlSVV1N5mzZrldwgA68h5NABA8akAAQCslyuvvDJuuOGGrDOlf//+2bzixx9/fFRVVcWoUaOyba666qq4+uqr45Zbbontt98+Lrnkkhg6dGhMnTo1OnbsqOUBoAjOOOOMOPPMM+PII4/MHu+0005ZZYdUxeHYY4+N7t2711WC6NGjR93zZs+evVpViJWnyEg3AGD9OY8GACg+FSAAgPXy+OOPx8EHHxzDhg2LbbfdNg4//PBsLvGUCFE7ivTaa6+Nc845Jw477LAYMGBAliyxePHibEQqAFAcKda2aFH/dD9NhVFbpSlVb0pJEOPHj69bv2zZspgwYULstddefi0AUCTOowEAik8CBACwXgYNGhQPP/xwTJs2LXv8wgsvxKOPPhoHHnhg9njGjBnZyNKUFFErjRwdPHhwTJw4UasDQJEMHz48Lr300rj//vvjjTfeiHvvvTeryHTooYdm69M0F6eeempcdtll2bqXXnopjjvuuGjfvn0cddRRfi8AUCTOowEAis8UGADAehk9enQ2B/gOO+yQjSpdsWJF1tkyYsSIbH1KfkhWLaWdHqcy3A2prq7ObrXmz5/vtwMA62jMmDFx3nnnxcknn5xNa9GzZ8848cQT4/zzz6/b5kc/+lEsWbIk22bu3Lmxxx57xLhx40xRBQBldh6dOJcGAPg3CRAAwHq5884749Zbb82ms+jfv388//zz2WjS1MmS5hevlUaZrixNjbHqslppbvKLLrrIbwQA8tCxY8dsGqp0a0yKxRdeeGF2AwDK9zw6cS4NAPBvpsAAANbLGWecEWeeeWYceeSRsdNOO8U3vvGNOO2007ILL0maW3zlESy10kjUVUez1DrrrLOy0TC1t1mzZvntAAAA0CwU4zw6cS4NAFAmCRDLly+Pc889N3r37h3t2rWLPn36xMUXXxw1NTX1sl/TiJWUJZu2GTJkSEyZMqVJ9xsANgaLFy+OFi3qf5VIJTxr43SK3+nizfjx4+vWL1u2LCZMmBB77bVXg69ZWVkZnTp1qncDAACA5qAY59GJc2kAgDKZAuPKK6+MG264IcaOHZuVBHvmmWfi+OOPj6qqqhg1alS2zVVXXRVXX3113HLLLbH99tvHJZdcEkOHDo2pU6eauxQAimj48OHZXKW9evXK4vRzzz2XxeQTTjghW5/Kc6ZSnpdddln07ds3u6X77du3j6OOOsrvBgAAgI2K82gAgOKryKUSCiXqoIMOykp73XTTTXXL/uM//iPrOPntb3+bVX9IlR9S58ro0aOz9dXV1dlzUvLEiSeeuFbvM3/+/CypIpXaNtIUANbOggUL4rzzzot77703K8eZYvKIESPi/PPPjzZt2mTbpFh90UUXxS9/+cuYO3du7LHHHnH99dfHgAEDxGgAKGPOowGgNM+jxWkAYGNX0gkQV1xxRVYBYty4cVl1hxdeeCH222+/uPbaa7MvhtOnT4/PfOYzMWnSpNh1113rnnfwwQdH586ds8oRDUlJEum28oWbrbfeWgIEAJQYnSsAUJrEaAAoXeI0ALAxK+kpMFJVh1SVYYcddsjmQluxYkVWajslPyTvvfde9jNVfFhZejxz5sxGX/fyyy/PsmgBAAAAAAAAgOahRZSwO++8M2699da47bbbsioPqaLDT37yk9UqO6Q5xleWilqsumxlZ511VpZYUXubNWtW0f4PAAAAAAAAAMBGXgHijDPOiDPPPDOOPPLI7PFOO+2UVXZIFRyOPfbY6N69e10liB49etQ9L82ftmpViJVVVlZmNwAAAAAAAACgeSjpChCLFy+OFi3q72KaCqOmpia737t37ywJYvz48XXrly1bFhMmTIi99tprg+8vAAAAAAAAANA0SroCxPDhw+PSSy+NXr16Rf/+/eO5556Lq6++Ok444YRsfZrm4tRTT43LLrss+vbtm93S/fbt28dRRx3V1LsPAAAAAAAAAGwgJZ0AMWbMmDjvvPPi5JNPzqa16NmzZ5x44olx/vnn123zox/9KJYsWZJtM3fu3Nhjjz1i3Lhx0bFjxybddwAAAAAAAABgw6nI5XK52MjNnz8/qqqqYt68edGpU6em3h0A4P8TowGgNInRAFC6xGkAYGPWoql3AAAAAAAAAAAgXxIgAAAAAAAAAICyJwECAAAAAAAAACh7EiAAAAAAAAAAgLInAQIAAAAAAAAAKHsSIAAAAAAAAACAsicBAgAAAAAAAAAoexIgAAAAAAAAAICyJwECAAAAAAAAACh7EiAAAAAAAAAAgLInAQIAAAAAAAAAKHsSIAAAAAAAAACAsicBAgAAAAAAAAAoexIgAAAAAAAAAICyJwECAAAAAAAAACh7EiAAAAAAAAAAgLInAQIAAAAAAAAAKHsSIAAAAAAAAACAsicBAgAAAAAAAAAoexIgAAAAAAAAAICyJwECAAAAAAAAACh7EiA2cp+s+CQ+WvJRLFy2sKl3BQAAAAAAAADWW6v1fyrlrCZXE28veDt+P+338djbj0VVZVWcMOCE6L9p/+jarmtT7x4AAAAAAAAArBMJEBupGfNmxNEPHB2LPllUt+yZ95+JI/odESN3HRmdKzs36f4BAAAAAAAAwLowBUYBLf5kccxaMCsmz5kcr859NeYsnhOlaMGyBXHV01fVS36odefUO+ODxR80yX4BAAAAAAAAwPpSAaJAPlzyYdw85eb43cu/i+W55dmyPlV94poh10Sfzn2ilMyvnh+Pv/N4o+v/+dY/o2+Xvht0nwCg2FKC37zqedn9NPXT5u031+gAAAAAANCMSIAogBU1K+KPr/8xxk4ZW2/59HnT41vjvhW3DbstenToEeWioqKiqXcBAAqmekV1TP5gcpw38bx4a8Fb2bJtOm0Tl3zpkui/af9o3bK11gYAAAAAgGbAFBgF8MGSD+Kml25qcN2cJXPitbmvRSnpVNkpBm05qNH1X97qyxt0fwCgmNL0VN8Z95265Idk5vyZccJDJ8RbC/+9DABgbXy05KPsPP+lOS9l3y+WLl+q4QAAAKBEqABRoJGltSW1G/Lax6+VVFJBxzYd4/TdT48XPngh5i+bX2/dMZ89JjZvpyR4IaTkl9TpNvHtidGlbZf40pZfytq2fev2BXl9AD5d9fLqrEJT7fRUK/uk5pO4/V+3xxm7n1FyVSBqcjXZlB1zq+dmj7tUdsmm7GhRIXcVgOZXUXH24tnZuVM6r05TSG7WdrOoalsVpWjGvBlx+oTTY9rcadnj1i1ax3H9j8vOpbu269rUuwcAAAAbPQkQBVDZsjI6tem0WjJBrc90/kzJHWi9q3rHnQfdGfe9dl/88+1/Rte2XePYHY+Nfl37ZfOik590Ae9HE34Uz85+tm5ZRVTEj7/04xi6zVBJEAWycNnCWPjJwqxt0zFcah2YQNNbtHxRTJ4zudH1KRlw8fLFUdWyqqSSNp59/9k457FzsmS6ZNO2m2YxZPduu0e71u2aehcBoCCW1yzP4vTIh0fWO5/ef9v9Y/TnR2fJf6XkvUXvxbce+lZWBXLlhMpfTf5Vdj5y1GePkqwIAAAATcwwwgJIo/pPGHBCg+tSh0XfLn2j1FRUVMRWHbeK7w38Xvyfof8n/nfw/8aePffMKhWQ/0W830/9fb3khyQXuTjvsfPi/cXva+ICtHEqOTv6n6PjgLsPiIP/cHBcM+ma7IIkwMratmwbW3bYstFG2XqTrbNExlKSRsCe/PDJdckPyYdLP4yRfxsZsxbOatJ9A4BCSudG3x333dUGEzz0xkNx16t3Zd/7S0k6B1k5+WFlKQkiJcIDQHOyaNmieHP+m/Hyhy9nU0mmwUgAAKVOAkQBtGzRMg7Z7pA4+rNHR8uKlnXLt+20bdy0/03Ro0OPKOV9TxUfTMtQOKmTKpVUb0hKgvjrzL8W8N02TumE68j7j4x/vPWPWJFbEYs+WRS/ffm32cXT9xdJMAH+LcW3b+30rUab5LgBx0XbVm1LpsmWrVgWv33lt9lnW0PTYtw8+WbzjBewrVPMSMlziz9ZXKiX5f9bvmK59i2ypcuXZhegc7mc446yNen9SbF0xdIG19368q31kgFLwdS5Uxtd99HSj7LYQv4WLFuQnfNN+2havLPwnfhkxSeaFcik6z+pM/6VD1/JfuqML66U2HfxExfH8PuGxxF/PiKG3zs8zn3s3JK+9paSJ99d+G42ZZUYAgAbL1NgFMim7TaNU3Y9JUuCmLt0bjbiNM3/uVm7zQr1FpSJmpqaRqdDSYwKyv9k9+fP/zyqV1Svtm7G/Bnx0pyXoluHbnm+C6kzJR2raR7mFhUtonPbzj7PKFvbdd4uzvzCmfGTZ35SN5I0zdd99h5nZ8mKpSRNx/GvD/+1xo6X1FlfSkkb5ShdCLtlyi3xx9f/mB0T+/baN6uK1atTL6XLCyAllaRk0LtfvTvrpB+81eAYuevI2Lrj1tGqhdOPfKVO1lfnvpp1Di/4ZEHst81+sc/W+0SPTUo36RoakzqvGpPOqdL0EqVkTdNbpmkx27Rss0H3p7nG6EueuCQeffvRbABBu1bt4ts7fTsO3/7wbJoRYOOVrlFc88w18cAbD2TJ4elaxdBeQ+OMz5/hOlCRktGufOrKGDdzXN2y9Ln88JsPZwl/V3z5iuhU2SlK7Xvyfa/eFze9dFP2PSLFkKN2OCqO2fEY17QK5MMlH2YVvN6Y/0Z0a98tttpkK39/RfjbS9d90rlz6nOi8LEk9S+0adEmq4ZuYDA0X65AFlD6sEy3dHGXjVf7Vu1j1813jec+eK7B9XtvtfcG36fmJGX3P/bOY42uf2DGA7FPr310YOUhfcl+6r2n4qLHL6obdZc6iS//8uWxQ9cddF4V6KT8rQVvZeWd00WbA7Y9IHpu0tM0REWSLsoc1vewrBM2jQKpiIrYtmrb7AJIqSUStGvZLtu3lz96ucH123TapuT2udyk0UDHP3h8vLPonXqx459v/TPuPOjO2LqT73H5SKPBThp/Urw+7/W6Zemi6T/f/n/t27uqd16vv7FLidZjJo3Jpgao9ez7z8avX/p13HLALdkUd+Rf5nn2ktkx/o3x2VQH6bt7v679Yov2W2jaIth5850bXZcuqKeBBaWkX5d+0aWyS8ytnrvauuMHHJ9Nj8n6+2DxBzHy4ZHx6sev1i1bsnxJjHluTJZccsxnj3EukqdUTeO9xe9l33umfzw9duu+W+yy+S6S6AokJdamRNCJ70zMKpjsvMXOsXu33bPKsGkqWgrbGZ+SIB6a+VAsq1kWl3zpkpLrjG8O1y3Gzxzf4Lr03T5VwC2lNk+J17+d8tu48aUb68WQlAyROjzToIhS2t9yPZc+7e+nxZQPp9QtS9990vTa23XZrkn3rTlY8smSbHDfdZOui8lzJmfJD9/d6buxV8+9soG25Gd+9fx4/N3H43+e/p8siadVRavseuwpu51S0hXcy0n6rE2DNSa8NSFLXE6DNVKiVIc2HZp619hImQIDCqyqbVWWfZ46NVeVLvqnC6isv9Sum7TepNH1Kbg21PasvdRBfMrfTqlXcjhldmcdhgv/3WHI+kntetmTl8XRDxwdv3n5N9ko9DSly7XPXhsfLflIsxZJGvmROga/vNWXY9BWg7L7pZhIUNmqMo7rf1yj69N0HrLT85OS6FZOfqiVRtL/7pXfKV+epxfnvFgv+WHli4+/evFX2U/WX4rDKyc/1EoXcNLF3erlq1fIYt2SQMe/OT6+ft/XY8zzY+KOqXfEyQ+fnE2z9u6idzVlEWzfZftGLzieutupsXn70koo6N6hezbNZUrOqJXOPY7sd2Qcut2h2RST5PcZt3Lyw8pSDElJSeTXOT9p9qQ4+L6D4/KnLo87p90ZP/rHj2LE/SOyc0Dykzrjp8yZEof+4dD48RM/ztr3nEfPif/803/Gax+/pnmL2Bn/yKxHsvUUPukkVXxoTKoYWmqVCdI1lob8efqfG0xeZN0GpF3x9BX1kh+SFJtP+utJJT0tSjmdS6eYnK5ZpAomKTaf9ehZ2XlJ6rwnP2mw3+kTTs/OnZPlueXx5xl/zpJvUxIu+UkJoN8b/73s8yBVBL3++evj4D8cnFVtSoMMoCnoJYQi6Nulb4w9YGzsuOmO2eNUUimV7PzlV39p9FieUoLDiB1GNLr+0L6H5vsWsbGf0KQpRho6yU3zM6eTxnRhh/X33OznssoPq7rntXviXx81PvUBG49eHXvFVXtflVUUWjmB47JBlxk9X4DOzYb+/la+eFpqF/LKyYqaFfHA9AcaXZ9GAbhwk5/7Z9zf6Lo/v+7CbiFGrJz/2PmrLU9JPTe+eKMEkyJIU9elhII9uu9Rt6xzZee48IsXxp499oxSk0ZwZ+d6Xxsbdw2/K37ztd/Enw75U4z63CgligugoQS6WqkjIMVx8vuMG/XIqNWmlkmjuM979Lz4eOnHmrcA7ZvOm1c9dlOHS+qcZf2ldlxjZ/wy3+ELrUPrNY/Y7dimY5SSdAykaiANSceOKYnzk5KMHnnzkQbXpQ7l1PlJfoOlUvJcQ9dc75p2V71Baqy7lOCQpsVtyLS50+LNBY1Py8enS1OVpwF+0z6ettq6ix+/OKuwCE3BFBhQBGlU8S5b7BI3fPWGbE6plhUts477NLKX/KRRVcM/Mzz+Puvv8fwHz9dbl+Zv33KTLTVxHhYvXxz/mtt4J/zzs5/PLv63a91OO6+H1PE3dsrYRten0Qrps8MI/41bKg331V5fjYGbD8xO0tLFmlR6PU3ZYW7x/KR4vKYqQukiX9qG9ZNGQXdq03hZ2fTZpkpT/qN3G12Xa3wda+fRtx9ttHPlD6//Ib6987ejRyvlUQstTSF59ZCrs5GZ6eJZ+hxJ5ZRLuZpCisumRSm8nh16NrouDSootSlRyk2agi9dn2jIC3NeyP4GO7ftvMH3q7lInVMpmaQh0+dNz6axMpf7+uvQas2d8Wv6js/6SdcxU4Lik+89udq6gZsNzNaXkk+LEY6R/KcYWVMS0pylOujzvV44c/7MRtenKTH6dO6T13ts7Ne73174dqPrX5j9QuzWbbcNuk/NSfqOc8+r9zS6PvXjmA6VpqACBBRRl7ZdsjLrPTbpIfmhgNLFxnSR9Kb9booj+h0R3x7w7bh7+N3ZnLBVlVWFfKuNTmXLyjXOe5a+rOiAza/jauEnC9dYYlIHFknrlq2j5yY9Y+AWA7OkmHTf317+UiLiUZ89qtH1x+x4jLk18xwZfXi/wxtdP6LfCBf+8/S13l9rdF2aX3NNCSh8uo+rGx/9nDrma2pUwSqWNCf3Np22yabESNNMlHLyA8WzbdW2jXaoHbLdIVkyKOtvTechyaqVIVg3nzbNV2Mj01k7KXlk9267N7iuFDvjm4N0fe3Hg34cu26xa73lAzYdEFcNviq75llK0v7stNlODa5LU1dJQMrPJm02ySpTNmbrTbbO8x02bq1arHmc8prank/XukXrNSZJpfMP1l+qXLKm70EpQQKaggQIoCyl+YC/0OMLce6e58ao3UbF9l23zy6ckv8Jbqqk0ZCKqIj/3P4/XZDOQ+qYGrLVkEbX79trX6MSoMi2q9ou+yxb1Rd7fDG+vOWXtX+eem3SK47rf9xqy3febOc46DMHqQCRb/t27NVgHEnx5eRdTlZBKE979dyr0XX9N+2vfaHIurXvFr8a+qvVqmsM2nJQnDjwRIMK8rSmkXep81gSXX6y5K1GKomlqe26VJZWZ3E5Xqu4dNClq3Vw79h1x7hy8JUl1xnfXKQBMj/d56dx38H3ZYOQ7vn6PXH9vtdnCfqlJh0DV3z5iizZYWWbtt00xnxljMpNeUpJiA2d5yVf6PaF7Dot+X3GNZbk1aqiVd0026z/8XtY38MaHQyYBh+x/tL3nF0236XR9V/eyrU2mkZFLpdrvHbRRmL+/PlRVVUV8+bNi06ddKACG7d5S+fFXa/eFT977md11QhSpvFlgy6LL235JVnHBSg9e8Sfj8jmMF31pPx3w35nGpdViNEUQ5rj+q2Fb8WfXv9TLFuxLIb1GZZ1ChgVVKD2rf443ln4Tta+qbLNgb0PjL5d+rooViBzFs/JShH/ZspvstG8+2y9TxyxwxHZxd5UhYM82nbJnPjhIz+M5z54rt7yNHXL2APGZhV5+DcxmmJ5f9H/m0s8zTe+daetY7O2m5maoUDlta959prsXG9V6VwvxWvVV9bf4k8Wxy9f/GX8+qVfr7burC+clSXgpipv5Cd9Lny45MMsZqfv7unzoWs71R8asrHG6dmLZ2dTCbz+8etZ8nCaNsDo7sJI0/zcPe3u7HMuTamUOuZThbpRnxsV3Tp0K9C7bLymfzw9jnvwuGxKqlVj9NBthmZTbpPf98vR/xgdz85+tm5ZqgqRkrpSpRsxOj8vzXkpjnngmFiRW1FveUpcTIl0kqRoChIgNuIvhABruniTLiy8Of/NrEzYlh23zLJlleDPX8o7TO16/fPXx/iZ47POqnTCeNLAk7I5sKlPjAZoPJEnXVxII3ZdrCnsRfPfT/193P6v27Nkxc9t8bk4fffTsyQeFx3FaCh3qeN43MxxcePkG7PPu+06bxc/3O2HMXDzgSoqFkA6h54wa0Lc8MIN8c6id6J3p95xyudOic93/7zpOtngnEtTDJ+s+CQ+WPJBdt0wTTGZBvO0b91eYxdIGkjwz7f+GY+981g2rcih2x8aPTv01MYF/B707qJ3Y8qcKVkS3Wc3/Wx0a9ctWrVc8xQkfLqly5dmiWc/eeYn8cz7z0TH1h2zgRpH9jtSghRNRgKEL4QANIF0slhbBSKVujOfX8NctAFgQ1teszwb4ZaSFlN8TnGa1YnRUJ7SZ1saPZ+q/VW2qDR6vgg+WPxB1r5pMEEaSABNQZyG8j4fSdMqqfBHuZlXPS+WLF+STaWdEqQkl9CUpDYBQBNIGfKy5AGg9LRq0Sq6tVfGF2ieUmeKMsTFpX0ByPd8BMpRGjxgAAGlokVT7wAAAAAAAAAAQL4kQAAAAAAAAAAAZU8CBAAAAAAAAABQ9iRAAAAAAAAAAABlTwIEAAAAAAAAAFD2JEAAAAAAAAAAAGVPAgQAAAAAAAAAUPYkQAAAAAAAAAAAZU8CBAAAAAAAAABQ9iRAAAAAAAAAAABlTwIEAAAAAAAAAFD2JEAAAAAAAAAAAGWvVVPvQCnI5XLZz/nz5zf1rgBA3jp27BgVFRXNoiXFaACaEzEaAEpTc4rRiXNpAJqT5hanKT4JEBGxYMGCrDG23nrrDdDkAFBc8+bNi06dOjWLZhajAWhOxGgAKE3NKUYnzqUBaE6aW5ym+CpytemgG7Gampp45513NtoMolT5IiV/zJo1yweI9i07jl/tW86Kdfw2p3gmRovRxSSGFJf21b7lTIz+dGK0GF2Of4No3w3B8VuebdyczqMTcVocKSafc8WlfbVvOXMuTalQASIiWrRoEVtttVVs7NIJgwsL2rdcOX61bzlz/DZOjHaM+Bssfz7jtG85c/w2Tox2jPgbLH8+47RvuXMMN06cdoz4Gyx/PuO0bzlz/NLUWjT1DgAAAAAAAAAA5EsCBAAAAAAAAABQ9iRAEJWVlXHBBRdkPyk87Vtc2lf7ljPHL44Rf4PNmc847VvOHL84RvwNNmc+47RvuXMM4xjxN9ic+YzTvuXM8UupqMjlcrmm3gkAAAAAAAAAgHyoAAEAAAAAAAAAlD0JEAAAAAAAAABA2ZMAAQAAAAAAAACUPQkQZegf//hHDB8+PHr27BkVFRVx33331Vufy+XiwgsvzNa3a9cuhgwZElOmTKm3TXV1dfzgBz+IzTbbLDp06BBf//rX46233qq3zdy5c+Mb3/hGVFVVZbd0/+OPP663zZtvvpntS3qN9FqnnHJKLFu2LMrZ5ZdfHp///OejY8eOscUWW8QhhxwSU6dOrbeNNl5/v/jFL2LnnXeOTp06ZbcvfvGL8Ze//EXbFulYTp8Rp556qvYtkPTZmtp05Vv37t21L3XE6OISo4tLjN6wxOnCEqNZG+J08YjRxSVGb1hidGGJ0awNMbp4xOjiE6c3HDG68MRpmq0cZeeBBx7InXPOObm77747l36F9957b731V1xxRa5jx47Z+smTJ+eOOOKIXI8ePXLz58+v2+akk07Kbbnllrnx48fnJk2alNtnn31yAwcOzC1fvrxumwMOOCA3YMCA3MSJE7Nbun/QQQfVrU/bpmXpuek10mv17NkzN3LkyFw523///XM333xz7qWXXso9//zzuWHDhuV69eqVW7hwYd022nj9/fGPf8zdf//9ualTp2a3s88+O9e6deusvbVt4Tz11FO5bbfdNrfzzjvnRo0aVbfcsZufCy64INe/f//cu+++W3ebPXu29qWOGF1cYnRxidEbjjhdeGI0a0OcLh4xurjE6A1HjC48MZq1IUYXjxhdfOL0hiFGF4c4TXMlAaLMrZoAUVNTk+vevXvWyVlr6dKluaqqqtwNN9yQPf7444+zDuc77rijbpu3334716JFi9yDDz6YPX755Zez137iiSfqtnn88cezZf/617/qvpim56Tn1rr99ttzlZWVuXnz5uWai9S5mf7fEyZMyB5r48Lr0qVL7sYbb9S2BbJgwYJc3759s6SkwYMH1yVAOHYL84UwJYs1RPuyKjG6+MTo4hOjC0+cLg4xmnUlTheXGF18YnThidHFIUazrsTo4hKjNwxxurDE6OIRp2muTIHRzMyYMSPee++92G+//eqWVVZWxuDBg2PixInZ42effTY++eSTetuk6TIGDBhQt83jjz+eTXuxxx571G2z5557ZstW3iY9Jz231v77759Nr5Heo7mYN29e9rNr167ZT21cOCtWrIg77rgjFi1alE2FoW0L4/vf/34MGzYsvvrVr9Zbrn0L49VXX80+93r37h1HHnlkTJ8+XfuyVvwNFp4YXTxidPGI08UjRpMPcbqwxOjiEaOLR4wuHjGafIjRhSVGF5c4XRxidHGJ0zRHrZp6ByislPyQdOvWrd7y9HjmzJl127Rp0ya6dOmy2ja1z08/t9hii9VePy1beZtV3ye9Znrt2m3KXUo6/uEPfxiDBg3Kkj0SbZy/yZMnZwkPS5cujU022STuvffe2HHHHeuSaxy/6y8llEyaNCmefvrp1dY5dvOXksJ+85vfxPbbbx/vv/9+XHLJJbHXXnvFlClTtC+fyt9gYYnRxSFGF5c4XTxiNPkSpwtHjC4OMbq4xOjiEaPJlxhdOGJ08YjTxSNGF5c4TXMlAaKZqqioWO3LzarLVrXqNg1tvz7blLORI0fGiy++GI8++uhq67Tx+uvXr188//zz8fHHH8fdd98dxx57bEyYMEHb5mnWrFkxatSoGDduXLRt27bR7Ry76+9rX/ta3f2ddtopS+T5zGc+E2PHjs2q5Ghf1oa/wcIQo4tDjC4ecbq4xGgKRZzOnxhdHGJ08YjRxSVGUyhidP7E6OIRp4tDjC4+cZrmyhQYzUz37t2zn6tWYJg9e3bdqPq0zbJly2Lu3Llr3CaNbl7VBx98UG+bVd8nvWaaXmPVEfzl6Ac/+EH88Y9/jEceeSS22mqruuXaOH+pSsh2220Xu+++e1x++eUxcODA+OlPf6pt85Smnkl/x7vttlu0atUqu6XEkuuuuy67X/t36fOhcDp06JAlQqQyYT4b+DSOkcIRo4tHjC4ecXrDEqNZV+J0YYjRxSNGF48YvWGJ0awrMbowxOjiEqeLQ4ze8MRpmgsJEM1MmpM+fSkcP3583bKU7JA6QVOZ9iR1jrZu3breNu+++2689NJLddukUc1pPrCnnnqqbpsnn3wyW7byNuk56bm10sjzysrK7D3KVapgkbJh77nnnvjb3/6WtenKtHFx2ry6ulrb5mnffffNyq2l6hq1t5RkcvTRR2f3+/Tp4/OhwNJx+8orr0SPHj0cv3wq8SN/YvSGJ0YXjji9YYnRrCtxOj9i9IYnRheOGL1hidGsKzE6P2J00xCnC0OM3vDEaZqNHGVnwYIFueeeey67pV/h1Vdfnd2fOXNmtv6KK67IVVVV5e65557c5MmTcyNGjMj16NEjN3/+/LrXOOmkk3JbbbVV7q9//Wtu0qRJua985Su5gQMH5pYvX163zQEHHJDbeeedc48//nh222mnnXIHHXRQ3fq07YABA3L77rtv9hrptdJrjhw5MlfOvve972Xt9/e//z337rvv1t0WL15ct402Xn9nnXVW7h//+EduxowZuRdffDF39tln51q0aJEbN26cti2CwYMH50aNGlX32LGbn//+7//OPhumT5+ee+KJJ7LPxI4dO+beeOMN7UtGjC4uMbq4xOgNT5wuHDGatSFOF48YXVxi9IYnRheOGM3aEKOLR4wuPnF6wxKjC0ucprmSAFGGHnnkkSzxYdXbsccem62vqanJXXDBBbnu3bvnKisrc3vvvXeWCLGyJUuWZIkKXbt2zbVr1y7rxHvzzTfrbfPhhx/mjj766KxzL93S/blz59bbJiVdDBs2LHuN9FrpNZcuXZorZw21bbrdfPPNddto4/V3wgkn5LbZZptcmzZtcptvvnmWQFOb/KBti/+F0LGbnyOOOCJLKGvdunWuZ8+eucMOOyw3ZcoU7UsdMbq4xOjiEqM3PHG6cMRo1oY4XTxidHGJ0RueGF04YjRrQ4wuHjG6+MTpDUuMLixxmuaqIv3T1FUoAAAAAAAAAADy0SKvZwMAAAAAAAAAlAAJEAAAAAAAAABA2ZMAAQAAAAAAAACUPQkQAAAAAAAAAEDZkwABAAAAAAAAAJQ9CRAAAAAAAAAAQNmTAAEAAAAAAAAAlD0JEAAAAAAAAABA2ZMAAayVN954IyoqKuL555/XYgBQQsRoAChNYjQAlC5xGqD5kgABZeK4447LEhBOOumk1dadfPLJ2bq0zarbp1vr1q2jW7duMXTo0Pj1r38dNTU1n/pehxxySL1lW2+9dbz77rsxYMCAKCVDhgyJU089tal3A4CNmBjdMDEagKYmRjdMjAagFIjTDROnAfInAQLKSEpCuOOOO2LJkiV1y5YuXRq333579OrVa7XtDzjggCxpIWWz/uUvf4l99tknRo0aFQcddFAsX758nd67ZcuW0b1792jVqlVB/i8A0JyI0QBQmsRoAChd4jQAxSABAsrI5z73uSzR4Z577qlblu6nL4q77rrrattXVlZmSQtbbrll9tyzzz47/vCHP2TJELfcckuD73HhhRfG2LFjs+1qK0j8/e9/X60kWFqWHj/00EPZe7dr1y6+8pWvxOzZs7PX/+xnPxudOnWKESNGxOLFi+teP5fLxVVXXRV9+vTJnjNw4MC466671vj//vnPfx59+/aNtm3bZpUsDj/88Los4QkTJsRPf/rTun1N+5m8/PLLceCBB8Ymm2ySPecb3/hGzJkzp14m7ciRI7Nb586dY9NNN41zzz03279Pe18AEKPFaADKg/No59EAlC5xWpwGKAYJEFBmjj/++Lj55pvrHqcpLU444YS1fn5KUkhJBysnUazs9NNPj//6r/+qqx6RbnvttVejr5cSJn72s5/FxIkTY9asWdlzr7322rjtttvi/vvvj/Hjx8eYMWPqtk9JBmn/f/GLX8SUKVPitNNOi2OOOSZLZGjIM888E6ecckpcfPHFMXXq1HjwwQdj7733ztalxIcvfvGL8Z3vfKduX2un6hg8eHDssssu2fPTc95///1s31aWEj1SRYsnn3wyrrvuurjmmmvixhtv/NT3BYCGiNFiNAClSYwWowEoXeK0OA1QaGrZQ5lJlQzOOuusuooMjz32WDYtRqrIsLZ22GGHePHFFxtclyompMoM1dXVWfWIT3PJJZfEl770pez+t771rWzfXn/99azCQ5KqJjzyyCMxevToWLRoUVx99dXxt7/9LUtcSNJ2jz76aPzyl7/MkhZW9eabb0aHDh2yaTs6duwY22yzTV21i6qqqmjTpk20b9++3r6m5IqUPXzZZZfVSxRJyRHTpk2L7bffPluWHqekh9SO/fr1i8mTJ2ePU0LFmt4XABoiRovRAJQmMVqMBqB0idPiNEChSYCAMrPZZpvFsGHDsuoFabqGdD8tWxfpeanTvxB23nnnuvtpmoiUjFCb/FC77KmnnqqblmLp0qUxdOjQeq+xbNmyRpML0rYp+SC9ZqpKkW6HHnpo9j6NefbZZ7Oki5TMsaqUnFGbALHnnnvWa4eUlPG///u/sWLFivV6XwA2bmK0GA1AaRKjxWgASpc4LU4DFJoECChDacqLkSNHZvevv/76dX7+K6+8Er179y7IvrRu3brufkomWPlx7bKamprsfu3PNDXGlltuWW+7ysrKBl8/VV+YNGlSVuFi3Lhxcf7552fTbjz99NPRuXPnBp+T3mf48OFx5ZVXrrauR48ea/X/Wp/3BQAxWowGoDSJ0WI0AKVLnBanAQpJAgSUoVSNIFVNSPbff/91em6afiJN9XDaaac1uk2aViJVQSi0HXfcMUt0SNNLNDTdRWNatWoVX/3qV7PbBRdckCUgpP/HYYcd1uC+pukv7r777th2222z5zbmiSeeWO1x3759o2XLlp/6vgDQEDFajAagNInRYjQApUucFqcBCkkCBJSh1EGfqjjU3m9MdXV1vPfee1mCwPvvvx8PPvhgXH755XHQQQfFN7/5zUaflxIHHnrooZg6dWpsuummUVVVVZD9TlUVTj/99Cz5IlVpGDRoUMyfPz8mTpyYTVdx7LHHrvacP//5zzF9+vTYe++9o0uXLvHAAw9kz+3Xr1/dvj755JPxxhtvZK/RtWvX+P73vx+/+tWvYsSIEXHGGWdkZdRee+21uOOOO7LltW02a9as+OEPfxgnnnhiVu1hzJgx2RQYa/O+ANAQMVqMBqA0idFiNAClS5wWpwEKSQIElKlOnTp96jYp4SFN+ZAqGaRO/IEDB8Z1112XJRq0aNGi0ed95zvfyaZ+2H333WPhwoXxyCOPZIkGhfDjH/84tthiiywRIyUYpKoKqWLD2Wef3eD2af0999yTTT+xdOnSrELD7bffHv3798/Wp4SK9P9J1SWWLFkSM2bMyPb1sccei9GjR2cVMlIiyDbbbJNlEq/8/05JIOk5X/jCF7Iv2T/4wQ/iu9/97lq9LwA0RowWowEoTWK0GA1A6RKnxWmAQqnI5XK5gr0aQJkYMmRI7LLLLnHttdc29a4AACsRowGgNInRAFC6xGmAf2t8CDgAAAAAAAAAQJmQAAEAAAAAAAAAlD1TYAAAAAAAAAAAZU8FCAAAAAAAAACg7EmAAAAAAAAAAADKngQIAAAAAAAAAKDsSYAAAAAAAAAAAMqeBAgAAAAAAAAAoOxJgAAAAAAAAAAAyp4ECAAAAAAAAACg7EmAAAAAAAAAAADKngQIAAAAAAAAACDK3f8FSOiNpDVw02QAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "g=sns.relplot(\n", + " data=calculations_df_long,\n", + " x='run',\n", + " y='Value',\n", + " row=None, # you could use row= instead if you want vertically stacked\n", + " col='natoms_output', # column facet per unique natoms_output\n", + " hue='ElasticConstant',\n", + " kind='scatter', # or kind='line' for lines\n", + " facet_kws={'sharey': False, 'sharex': True}\n", + ")\n", + "\n", + "g.set_axis_labels(\"MD time steps\", \"Elastic Constant Value (GPa)\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "a27692bc", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABFsAAAPdCAYAAABV7mdDAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3QdYleX7B/Cv7I0CAg5QFDfuhVtz79TUrEwblr+GZmV/zZxZasNMy3aOSjNnlnvvvbciKm4UFNn7f90PHjrgAUEOnPX9XNcbZ3F4OeRz3nO/9yiWnp6eDiIiIiIiIiIi0gsr/TwNEREREREREREx2EJEREREREREpGfMbCEiIiIiIiIi0iMGW4iIiIiIiIiI9IjBFiIiIiIiIiIiPWKwhYiIiIiIiIhIjxhsISIiIiIiIiLSIwZbiIiIiIiIiIj0iMEWIiIiIiIiIiI9YrCFiDK1bt0ac+fO5StCRGTEuFYTEZkGrteWjcEWMjkSDChevDjM1fDhw1G/fn3Y29ujTp06Oh9z4sQJtGrVCo6OjihTpgwmTZqE9PT0LI/5448/ULt2bTg5OaFUqVJ46aWXEBERoZd9XLp0qXrzcHd3h4uLC2rVqqX2ITIyUt1/8+ZNPPfcc6hSpQqsrKzwzjvvPPIcp06dQp8+fVC+fHkUK1YMM2bM0Mu+EZFx4FptHmv1Tz/9hBYtWqBEiRJqa9euHfbv36+X/SMi48D12vjXa227du2CjY1Njp8TxJ9//qmOr59++mm97B89GQZbiIyMLOwvv/wy+vfvr/P+Bw8eoH379ihdujQOHDiAWbNm4YsvvsD06dMzH7Nz5068+OKLeOWVV1RQY/Hixeqxr776aoH3b8yYMWrfGjZsiDVr1uDkyZP48ssvcezYMfz222/qMYmJiShZsqR6rLwp6RIXF4cKFSpg6tSp8PX1LfB+EREVJUtZq7du3YoBAwZgy5Yt2LNnD/z9/dGhQwdcv369wPtIRFQUzGG91oiKilL70bZt2xyf78qVK3j//fdVoJwMLJ2oCLVq1Sr97bffTh85cmR6iRIl0n18fNLHjx+f5TFffvllelBQULqTk1N62bJl0//3v/+lR0dHq/u2bNkiIeYsm+b7IyMj0wcOHJhevHjxdEdHx/ROnTqlnz9/PvN558yZk+7u7p7+zz//pFeuXFk9pk+fPukxMTHpc+fOTS9Xrpz63rfeeis9JSUl8/u+/fbb9MDAwHR7e/t0b29v9T1FQX6v2rVrP3L77Nmz1e+RkJCQeduUKVPSS5cunZ6Wlqauf/755+kVKlTI8n0zZ85Ur+fj/j7yOuVk37596jWfMWOGzvvv3bun8zmHDx+e68+V1/6rr77K9TFEVHS4VuedJa3VQt4fXV1d0+fNm/fYxxJR4eN6bVnrdf/+/dM/+uijHH8XWaObNWuW/vPPP6cPGjQovWfPnrnuHxUuZrZQkZs3bx6cnZ2xb98+fPbZZypFbsOGDZn3SyrzzJkzVVRXHrt582Z88MEH6r6mTZuqchM3NzeV/iybRG7F4MGDcfDgQaxcuVKdfZModpcuXZCcnJwlm0KeW1Lr1q5dq87Y9e7dG6tXr1abRI9//PFHLFmyRD1enm/YsGFqH8+dO6e+p2XLljn+bmFhYSr1L7dt6NChBXr95HeTNEcpM9Lo2LEjbty4gcuXL2e+TteuXVO/k7wOt2/fVr9T165dC/SzJX1Sfoc33nhD5/3mXN5FZGm4VnOt1kXeR+V91cPDo8j/nyQi3bheW8Z6PWfOHFy8eBHjx4/P8fnkM4tkLEoGDhmejaF3gCyP1CBqFolKlSrhm2++waZNm1T6ntCuGQ8ICMDHH3+M//3vf5g9ezbs7OxULaPUIGqXnly4cEEFWaSGURZDzeLl5+eHFStWoG/fvuo2OUD87rvvULFiRXX9mWeeUQEWWTBloatevTratGmj0qUlnU+CJxIY6tatG1xdXVGuXDnUrVs3x99N0g+PHj2a6+8vgaKCuHXrlupzos3HxyfzPnnN5DWQ319+h4SEBKSkpKBHjx4qLbIg5HWW0h9bW9sCPQ8RGT+u1VyrdRk1apTqZyC9W4jIOHC9Nv/1Wh4n6++OHTtUvxZd5HPQL7/88tjPIlR0GGwhg7whaJMGU+Hh4ZnXJdDx6aef4vTp06qGUhYzWdRiY2NV4EOXM2fOqIWncePGmbd5enqqpn9yn4Y0tNIEWjQLqSyuEmjRvk2zPxIAkgCLLIKdOnVSW69evdTz6CL7EBgYiMImwSZtmgZemtvltZOMnHHjxqnIvGQAjRw5UmXVyCL8pOTnZP/ZRGSeuFYXnLmt1ZKNunDhQpUV6uDgoPfnJ6Inw/XavNfr1NRU1cx84sSJqFy5ss7HREdH44UXXlBNzb28vJ54f0i/WEZERS575FYWmLS0tMyGTlL6ExQUpLpyHzp0CN9++626T7scKLvs3cJzWsB0/ezc9keyWQ4fPqwOLiUoJAusNBG8f/++wcqIJKNHouzaNMEhTRR+ypQpaNasmXoTkDdgeVOQzKBff/1VvTk8KVngJX0xt78FEZkHrtVcq7VJs0g5EbJ+/fpHPtgRkWFxvTbv9VoCKdLa4K233lIndmWTciFpoCuXpeWCPIeUPHXv3j3zMfPnz1eZ/3JZ7qeix8wWMiqykEgmi3Tglt4t4q+//sryGCklkgivNin/ke+TPjCaMiIZxXb+/HlUq1atQPskC5SkS8sm5U9SOymLmvR6MUQZUZMmTfDhhx8iKSlJvRZCDn7lZ2tSIKWmPnuKobW1da6BqbyQqLr0vJE3FxlRnZ0Eodi3hcj8ca22rLX6888/x+TJk7Fu3To0aNDgifeLiIoe12vTX6/ls4OMptYmj5fPI9I3RsqcZF+yP+ajjz5SgZqvv/5atVagosdgCxkVKfGRoInUP0pkVmoPv//++yyPkUUvJiZG9XnRzLqX3i89e/bEkCFD8MMPP6iMFE1dudz+pP7991+EhoaqprglSpRQTbEk60XKkwqrjCgkJET9fhJhj4+PzwzeSEBJ3gA0aYTSEFjeGKSGU842StaNJotHXjt5LaQ/jSbVUXrhNGrUSL1xPCkp05Jmxe+9954a+yklVfJ8ss/yd2revHnmG4Vmv+V3uXPnjrou+y+/h5A3NEnJ1FyW55PHSPZPUZRiEdGT41ptOWu1lA6NHTsWCxYsUO+/mrO/mmxNIjJuXK/NY72WrH9t3t7eqpxT+/bsj9EE1bPfTkWokKcdET12tKSMJJPRZBrTp09PL1WqlBrN3LFjx/T58+erkWjao8+GDh2a7unpqXP0s4xu03yvrtHP2nSNTdMek7Zjxw61zzKmWp6zVq1a6YsWLSrUv6r8vOzjrWW7dOlS5mOOHz+e3qJFCzWO2tfXN33ChAmZo+m0x9FVr15d7be8ns8//3z6tWvXCjSeTkNeg5YtW6rxn87Ozup1mTRpUpa/ka7fQUY8a8jvo+sxsg9EZFhcq/P2GlnCWi2XdT1G895LRIbF9dpy1mttOY1+1sbRz4ZXTP5TlMEdIjJerVu3VlF92YiIyDhxrSYiMg1cry0bG+QSEREREREREekRgy1ERERERERERHrEYAsRZZLyoTp16vAVISIyYlyriYhMA9dry8aeLUREREREREREesTMFiIiIiIiIiIiPWKw5QnJEKcHDx6or0REZLy4XhMRGT+u1URkbhhseULR0dFwd3dXX4mIyHhxvSYiMn5cq4nI3DDYQkRERERERERkLMGWxMRE/e0JEREREREREZGlBVvWrVunxldVrFgRtra2cHJygqurK1q1aoVPPvkEN27cKLw9JSIiIiIiIiIyl2DLihUrUKVKFQwaNAhWVlYYOXIkli1bpoIvv/zyiwq2bNy4ERUqVMDQoUNx586dwt9zIiIiIiIiIiIjVCw9D+N0GjVqhLFjx6Jr164q2JKT69ev4+uvv4aPjw/ee+89mDOZRCQNcqOiouDm5gZjFZ+UAmsrK0QnJMPVwRYpaWlwsrMx9G4RERUZU1mvyfzwPZjI/NZq/rsmIr0GW8g03xASk1Mxe+tFzNl9CQ/iU+DmaIOXmgbgjdYVYW9rbejdIyIqEqawXpP54Xswkfmt1fx3TUT5wRQHMyVR9++3heLrTRcyb5OAi+b6660qMMOFiIiI78FExGNrIjKWYMu1a9ewcuVKhIWFISkpKct906dP19e+UQFI6ZBktOgit7/ZJpCvLxERUSHgezCR+eG/ayIq9GDLpk2b0KNHDwQEBODcuXMICgrC5cuXIdVI9erVy/cOUOGQHi2SyaKL3C73e7rY8+UnIiLiezAR8diaiAw5+lmMHj1aNb89efIkHBwcsHTpUly9elVNJOrbt6++94+ekDTDlR4tusjtcj8RERHpH9+DicwP/10TUaEHW86cOaNGQAsbGxvEx8fDxcUFkyZNwrRp0/K9A1Q4UtPSVDNcXeR2mUpERERERfsePKhJeewMuYPFB6+qrGAiMg13YxLVv19deGxNRHoJtjg7OyMxMVFdLl26NC5evJh53927d/P7dFRIHO1s1NSht58KzMxwka/D21ZSt3P8MxERUeG9Bw9pUUHne/DLzQPwyaqzGLnkOJ7/eR8u343ln4HIyN2JTsTwP49gcNPyGNY2679r+Xf+Px5bE5E+gi3BwcHYtWuXuty1a1dVUvTJJ5/g5ZdfVveR8YiMTULNMu7YO7ot9ox+Sn1tVbkkxz4TUZHYvn07unfvrgLzxYoVw4oVK7Lcv2zZMnTs2BFeXl7q/qNHjz7yHK1bt1b3aW/PPvss/4Jk9Mb9fVK9B+//sB0OfdQOB8e0V5MAXext0K9BWTjYWmH3xQh0nLEd324JQXIqM06JjFFaWjreW3wMBy7fwwdLj+O1FhXUv2f5dy3H1kFl3LHi6HVD7yYRmUOwRaYNNW7cWF2eMGEC2rdvj0WLFqFcuXL45ZdfCmMf6Qkdu3Yfr/12CK/MO4jYxBQ0n7YF/X/cg/DoBL6mRFToYmNjUbt2bXzzzTc53t+sWTNMnTo11+cZMmQIbt68mbn98MMPhbTHRPo7C7786HX1HhwZm6ga0tvZWKmsUltrK7zeqiLWvdMSLSp5ITElDZ+vO4fus3biSNg9/gmIjMxPO0Kx/fwdFSD9v05V4eJgq/49y7/rjWfC8fpvhzDpn9O4FcXjayIqQLAlOjpalQ3J6GcpGXJycsLs2bNx/PhxdYZSAi76POup6REj04/c3d3h6uqqsmdk5LSQKUjZz3hqtsWLF+f4cyVIlP3xvr6+MDcnrz9QX/1LOCHQ2xUBXs5ITk3Hov1XDb1rRGQBOnfujMmTJ6N379467x84cCDGjRuHdu3a5fo88l4ja7Rmk/cDImO29tQtSDuW2n7FUbq4k87HlPN0xvyXG2F6v9oo4WSLs7ei0fu73Ziw8hRiEnVPEyTSh/Lly+s8dn7zzTfznHWoiwzNqF69Ouzt7dXX5cuXm/wf7HDYPRUMFeO710BlH9cs93erWQr1/IsjLikVn64+Y6C9JCKTD7ZIQKVq1aro1KkTunXrhsDAQGzcuLFQz3pKYKd58+bq527duhXHjh3D2LFj1RQk4efnl+Vsp2wTJ05UfWXkID83NWrUyPJ9J06cgLk5dSNKfa1Rxk19HRicEQxbsD8MKUxXJiIT8ccff6iDflm333//fRX4z430FXvw4EGWjagorTlxU33tEpT7iRz5INu7Xllseq81etcrowI0c3dfRvvp27Dx9O0i2luyNAcOHMhyDLxhwwZ1u2aqaF6zDrXt2bMH/fv3V0F0OV6Xr/369cO+fftgqqLikzFs4RGkpKWja61SeLah3yOPsbIqhkk9g1CsGLDy2A3sC40wyL4SkXHSPRtYh1GjRsHf319ljEiwQ4Iab731Fs6ePfvEP1wCIrkFRcaMGYMuXbrgs88+y7ytQoUKmZetra0fyUiRKLos9jIhKTcySckcs1m0nbqR8QGjRumMYEvnmr6Y9K8dbkYlYNPZcHSsYd6/PxGZvueffx4BAQFqvT558iRGjx6tDuQ1Hw50mTJlinqPIjLUxJK9Dz9wdalZKk/f4+Fsh+n96qBX3TIYs/wkwiLj8Or8g+hasxTGd68Ob7eMk0xE+lCyZMks1yWoUrFiRbRq1Updl0CJJoM8r2bMmKFaC8gaLeTrtm3b1O0LFy40uT+cTAr7cNkJXLsXDz8PR0zpXVMFR3WRni0DGvljwb4wjF95Cv++3Rw21vnu1EBEZijPK8HBgwcxa9YsNG3aFPXq1cOvv/6KCxcuICYmplB2LC0tDatWrULlypVVKqO3t7fqFaOr1Ejj0KFDKtXxlVdeeezzy75L+ZIcxEuzxdDQULM6Uyr14uHRiSrSXtU3I9hib2ON/g+j8r/vvWLgPSQiejzp1yJlRkFBQWqtXrJkicqqPHz4cI7fIwf5UVFRmdvVqyydpKKz7tQtpKVDNcf189BdQpSTFpVKql4uQ1tVhLVVMaw6cRNtp29TH+KkSSeRviUlJeH3339Xgy5yCibkNbOlQ4cOWW6T4/fdu3eb5LG1ZIHLvz8bq2KYNaAe3Bxsc338yA5V4O6YUQ74x76MdgdERHkOtkiPFsls0fD09FR19Hfu3CmUVzE8PFwFciTaLqVL69evR69evVTtv0TKdZEGvdWqVVMBodxI0Gb+/PlYt24dfvrpJ9y6dUt9T0RERK5nSqVPgGaTEiZTKCGSPi3O9v8lMD3XyF8FYHZcuIvQO4UTKCMiKiwS7Le1tVUB85xIvwA3N7csG1FRWXPiVr6yWrJztLPGqM5VsfKtZqhV1h3RCSn4cPkJPPvjXoSE832b9EtOYt6/fx+DBw8u0PPIsbSPj0+W2+S63G5qx9Znbz1QDW/FB52qoI5f8cd+TwlnO7zfsYq6/OX6c4iISSz0/SQiMwq2SLRb6uQ1kWc5W5j9Nn1GpCWzRfTs2RMjRoxAnTp1VCmT9Iv5/vvvH3l8fHw8FixYkKesFild6tOnD2rWrKnOmEoGjZg3b57ZnCnVlBAFlc7aSFLOsj1VxVtdZuSdiEzNqVOnkJycjFKlnuyDLFFhioxNwp7MEqKClerWKO2O5W80w9hu1eFkZ439lyPR5esdmLHxPBJTUvW0x5Rf8UkpSEpJUx+m5Wtckmk3M5YTlXJcLNneBZU9M0ZKcXLLljHGY2v5e7614IiaEta6Skm82vy/9gWPIyc0q5dyw4OElMymukRk2fLcs0UWTCnpyX5b3bp1syyoqan6OQCQZojSV0W6mWuTzJWdO3c+8nhJLY+Li8OLL76Y758lDXUl8PK4M6WymVxz3If9WrS90KSc6tmy+OBVvN+hijqLRkSkb5KdGBISknn90qVLqtTTw8NDZUpGRkaq6XI3btxQ9587l3Fwqpk6JE3SpTmu9O6S94TTp0/jvffeU+870ryRyBhLiFLT0tV7r0wbKigpJXqleQA61vDB2BUnseXcHczYeAH/Hr+pekg0LO+hl/2mvElMTsX320IxZ/clPIhPgZujDV5qGoA3WleEva3pHUtduXJFlWXK9KGCkjU7exaLZKlnz3Yx9mNryWiRDDJvV3t80be2aoCbn3+vk3rWwDPf78Gig1dVHxeZSEZElivPwZYtW7agKNnZ2aFhw4aZB98a58+f1zliWiLzMiI6e9OvvJCaURkx3aJFC5hfc9xHR6S2qlRSNfu6GhmPf47dQD8d3dWJiApKen21adMm8/q7776rvg4aNAhz587FypUr8dJLL2XeLz1ZxPjx4zFhwgT1PrBp0yZ8/fXXKnAjKeZdu3ZV90uDdCJjs1ozhegJS4hyUraEE34d3FAFWSb+c0p9GOz7/R4839gfH3SqqnpFUOFntEig5etN/52Yk4CL5vrrrSrAyS7Ph9VGYc6cOaonoqyrBdWkSRPVuFyy0TWkBcDjSvuNiUwT+vPAVVVuP6N/HXi55D8Q1KC8h2p0vfzIdYxbeQrL/9c0XwEbIjIveX5X0HQoL8qzniNHjlSThVq2bKkO2NeuXYt//vlHjYHWJs+xfft2rF69WufPadu2rer3ItOThIwO7d69u/oZEnWfPHmyKoGSDwDm4EFCMq5ExOWY2SKL/guNy2HKmrOYv/cy+jYoW6CmaEREurRu3VplPeZEegTk1idAgis59egiMjb3YpOw+2L+phDlh7xPd69dGi0qeWHqmrPqQ6GUA284fRsTe9RApyBfvpcXImsrK5XRoovc/mabQJgSKdeXYIsc+0omubbHZR0KySQvU6aM6rsihg8fro7Xp02bploA/P333yprRlc2ujG6EhGrpg+Jt9sEommg1xM/1+jOVbH+1C0cu3ofSw5d40lNIgtmVZC6+ePHj2ducv1JznpKOrimFEnOesrlcePGqesSIJH+LDL6Wcp8fv75ZyxduhTNmzfP8jwyGUkW/Oxd0DUkFV0a/Gpcu3YNAwYMQJUqVVTDXTl7unfvXp0ZM6bozMOsltLuDqphly59G/jBzsYKJ68/wLFrGSVHRERE9GTWn84oIapWyk01py8sxZ3sMLVPLSwcEowKXs5q8uD//jiM1347hJtR8YX2cy2VBIyPX72vRnpLJosucnt0QjJMiQRCJKAiU4iyk6xDOR7XZLxI1qFc1+6ZKN9782ZGJpeQDJY///xTBXBq1aqlshcXLVqkhlIYO+m98/bCI4hJTEHD8iUwrG2lAj2fjGof3i7jOaatPYuoeNP6f4OI9KdYem6nHbXs2LFDBUMOHDigrru6uqoeKZpvlzMuMt1HGs5aAsmEkc7p0tDL2CZd/LLzEj7+9zTaV/fBTy82yPFx7/51FMsOX0efemXxZb/aRbqPRERFxZjXazIfg37dj23n7+D9DpXx1lMF+7CWVwnJqfh2Swi+23oRKWnpcLG3wciOVfBCcDnVP4KenASu5BhJ+ttJw9Od/9cGwVM26Qy4SO+Wg2Paq5NYZHpr9eR/T+PnnZdUOd6a4S1QurijXgI4nb/ejot3YjG4aXlM6FFDL/tKRKYlz+8Ks2fPxsCBAx/p4yKlP6GhoSp98LvvviuMfSQ9NsfVNjA4I5Pnn+M3VPozERER5d/9uCTsCsnIoO1cCCVEOXGwtcZ7Hapg1bAWqOdfXJ2ZH7/yFJ75frcaX0v5I1OeVh2/qQJnzaZuVhNlLkfEqca4IbdjVDNcXeT2lIdTNMm0bD57WwVahDTE1UegRUjgTRNg+W3vFf57JLJQeQ62SEZLo0aNstxWtmxZVXpTvnx5FYjZs2dPYewj5dPpXJrjaqvjVxxBZdxU9H3xIcOP2yMiIjJF0jdFMkuq+rqiYkmXIv/5VXxdsWRoU3zcs4bKbjkSdh/dZu7EF+vOqewXevxJqgkrT6Hxp5vw5oLDKkMpLR1oVN4Dnz9TC/vHtEMtv+Jq6tDwtpVUJouQr3Jdbje15rgE3IpKwPuLj6uXQrJPJCNcn1pUKolONXxVeeH4v0/l2sOMiMxTnt8Zrl+/jlKl/jtbM2/evMwmWUKa2kZEZDSGI8ORg6oL4TF5ymyR0q8Xg8vjg6XH8fveMLzavAI7phMRERnJFKL8kOb3A5vIB0ZfjPv7JNafvo1vtoRg1Ymb+LRXTTSp6GmwfTPWbKS/j97AXwevZk5wFD5u9nimflk8U9/vkd47Mt5Zpg5JM1zp0eLqYKsyWkxx7LOlkwDIO4uOIDI2SR0vj+5StVB+zkfdqmHLuXDsuxSJf47fRI/apQvl5xCRiQdbpEeLlAxpmshKY1ltch9r4Q3v/O1o9Qbi4WyHUu4Oj328TDaYvOo0wiLjsP3CHbSu4l0k+0lEZMwjXmXyiPaHKZ61ppxI88udD0uIutT87ySUofi6O+DHFxtg7clbKuhy6W4sBvy0F/0alMWHXaqpBruWSo6PpNxLAizrT91GUmpG6Y+tdTGV1SDDA1pWKplrvxvNWuD5cCyw3ZPPmiAD+mZzCPaGRsLJzhqzBtSFvU3hBMxkbPsbrQPx1cbz+HTVGbSt6g1ne2ZBEVmKPP9rl27i8+fPV6M8dZGu46bQcdzcyXQhIVH6vIxzdrSzVgcX0lT3971XGGwhIosmvRm+3xaqRrlKI0wpE5B+DFImwLPXpMvG07eRnJqOyj4uCPR2NZoXSUZBNw30xGdrz6rs1b8OXsPms+EY170GutcqZVFjosMi4lS59NJD13AjKiHzdin76t/QDz3rlFEnqcgy7AuNwNebzqvLn/QKQoVCLv2TbKglh6/iamS8yjb7v06Fk0VDRCYcbJFJRDJpyNPTEyNHjoS3d0YGRHh4OKZNm4bff/8d69evL8x9pXw0x63+mBIibc839lfBlk1nw3E1Mg5+Hk58rYnIIjNaJNDy9aYLmbdJwEVzXQ6YmeFCxlhClBM3B1tMfromnq5TBqOXnVBlxsMWHsGyw9fwcc8gs36/j09KxZqTN1UWi2QwaLg52ODpumXQr4Ffnk9MkfmQgRDD/zyqevLINM5edcsWSSPrsV2rq/HsP+8IRd/6ZQs9wENExiHPuY9t2rTBrFmzMHPmTNW7pUSJEqpPi1z+5ptvMGPGDDz11FOFu7f0WKfy2BxXmyz4LSp5Qfp2LdgfxleZiCySlA5JRosucruNFcsFKKsHCcnYceGu0QZbNBqU98C/w5rj3faVYWdtha3n7qDDV9vVB7+Uh6U05kAakB4Ou6cCSw0/2Yh3/zqmAi0ST5HjHCkXkWa3k3oGIaiMOwMtFkb+/xi55BhuPUhAhZLOmNSz6MYxS5laq8olVRbcpH9Ps1kukYXIV9HgG2+8ge7du2PJkiW4cCHjTF+lSpXwzDPPwM/Pr7D2kfJRi6wZ9fi45rjZvRBcTh0wLjpwFe+0q1RotatERMZKerRIJosucrvcr+nTQCQ2ncno+xHo7YLKPsZTQqSLvK8Pa1tJBYU+XHYC+y9HYvKqM6pJ7JTeNVXwwVTdiU7E8iPXVKlUyMMhAcLPwxF96/uhT/2yKKOnkb5kuubsuoyNZ8LVWGYJvBVl7xTJoBrfvTo6ztiugp2bzoSjnZ6nHxGR8cn3KiNBlREjRhTO3lCBhN6JQUJyGpztrBHgmbWD/uNIwy5pqHszKgFrTtxSKbZERJZEmuFKjxZdARe5Xe4n0rbq+C31tUuQ4Rvj5pUEhv58LViV13y6+gxOXI9Cz2934dXmAXinXWXVy80UJKemYcvZcCw+lNGLRk44CQdbK3QJKoVnGpRFcIAnpyyScuJaFKasOaMuf9S1Wr4ywPVFMslfaV4B32+7qLJbmlfyUiVGRGS+8pQTvWfPnjw/YWxsLE6dOlWQfaIndPJhv5ZqpdzyfXBhY22F5xr5q8u/7b3CvwERWZzUtDTVDFcXuV2mEhFpSKaTTPETXWoZbwmRLnKM8Gwjf2x8rxW61iqlAhU/bA9FhxnbsP18xu9krC7cjlZBoiZTNqkeGBtO31b7X8evuBpxLWVC0/vXQdOKXgy0kBKTmIK3Fx5WJTwda/hgYHDGZFVDePupQDVeXKaA/rQ9lH8hIjOXp2DLiy++iPbt2+Ovv/5CTMx/6ZnaTp8+jQ8//BCBgYE4fPiwvveT8uCU1iSiJ9G/kR9srIrh0JV7mY12iYgshaOdjZo6NLxtJZXJIuSrXJfb2RyXtEk2RVJKmur9UMXIS4hy4u3qgG+fq4efX2yA0u4OalrKi7/ux4hFRxERkwhjCmwt3B+GXrN3of1X2/Hj9lDcjUmCl4sdXmtZARtGtMSKN5vhucb+qikwkXaflo+Wn8DliDhVSvZZn9oG7dUjpUsygl18uzUE1+7F8Y9FZOllRBJI+eGHHzBu3Dg8//zzqFy5MkqXLg0HBwfcu3cPZ8+eVRktvXv3xoYNGxAUFFT4e056aY6b/aBLRkX+e/ymGhMpNdxERJZExjvL1KE32wQiPDpBjYNNSU3n2Gd6xKrjD6cQBZn+GGXpHRFc0RNfrj+HubsvY/mR69h6Lhwfda2O3vXKGOT3S0tLx75LkVh88CpWn7ypyqSFtVUxtKnijX4NyqJNVW/YWrNxNeVsyaFrWHH0hvr/5utn68DdyfDBuB61S+OPfWHYfykSn6w6g+9eqG/oXSKiQlIsXUK++SBZKzt27MDly5cRHx8PLy8v1K1bV00rkulEluLBgwdwd3dHVFQU3NyeLJNEn+TPWHviejxISMG/bzd/4kZ3+0Ij0P/HvXC0tca+MW15hoiILHa9fn3+QRy4cg+Tnw4y6kkzZJiyhHofb1CZLauHtUD1J8woNUZHr97HqKXHcfZWtLrePNALn/QKQrl89oJ7Ujfux2PpoWuqF4uUWmj3mpEAi/SUk5NDZH70fWwtzZK7z9qJ+ORUjOxYRQXRjcWZmw/QdeYONYL691caq/4tRGR+8t0gt169emoj43LtXrwKtNhaFyvQRIRGAR6o7OOC87djsOzQNQxuprt/ARGRuStV3BGRp29j98W7DLaQzhKiAC9nVCtlmiVEOZHeJ/+83Rw/77iEGRvPY2fIXTUmWprnvtoioFAySRKSU1XvFQmw7LhwB5rTgC72NuheuxT6NvBDXb/iJp9BREVH/p96a8FhFWhpFuiJoa0qGtXLL/0VX2xSXmWSTfjnFNYMb8EsLSIzxNxLM6HpsSKBFhlp96TkQEbTOEwa5eYz8YmIyGw0C8w407g7JMLQu0JGZvXDEqLOQb5mGQCQgMr/WlfEundaqg+qiSlpmLb2LHp8swvHrt7X2885eT0K4/8+icafbsLbC4+o5rxy2BFcwQPT+9XG/jFtMaV3LdTzL2GWrzMVHinPkews6evzVf86qozI2IxoV1mVqkoGzrzdlw29O0RUCBhsMbt+LQVPu5QUXRkfffFOLPaE8kMGEVkmyfST4/PQu7G4GRVv6N0hIxGbmIIt58LVZXMvLyvv5axKHL7oWxvFnWxV6YM0qZ34zylVSvUk7sUmYe6uS+jy9Q50m7UT8/ZcQVR8Mkq5O6hJLdtGtsafrzVB73pl2ZSansjakzczJ2t+2a+O0ZadSf+Y/+tURV2esfECwh8kGHqXiEjPGGwxEwVtjqvN1cEWveqVUZd/5xhoIrJQ7o62qFm2uLrM7BbSkECLZHr4ezjp5QSHsZOMkmfql8Wmd1vh6TqlVY+JObsuo8P0bdh89nbm4+KTUlRplUwxkq9xSf8FY2Q0szTcffOPwyqLZcI/p3H65gPYWVuhW61SmP9yI+z8v6fwXocqRdYbhsyTTPf5YMlxdVmanbeqXBLGrG99P9Qu666Cl1PXnjX07hCRoXu2kHGXEenrwO+F4HJqItG6U7dx+0ECfNyM86wAEVFhalrRU5VN7L4YgT71y/LFJqw5cSszq8WSSls8Xewx49m66FWvLMYsP6F6xb089yBebh6gmo9+vy0Uc3ZfwoP4FDUy/aWmAapPhoxsllHNt7TO2suxSr8GfuhZpzSKO9kZ9Pci85GcmoZhC4+oHobSe+j9DhlZI8bMyqoYJvYMwtPf7sKyw9fxfGN/1C9nOQNHiMxdgTJbEhIKlu62fft2dO/eXY2RlgOWFStWPPKYM2fOoEePHqo7uaurK4KDgxEWFpZ5f+vWrdX3am/PPvvsY3/27NmzERAQoMZX169fX01YMlV3ohNx+0Ei5JhPGm7pQ1VfNzQq76HORsmBEhGRJWpW8WHflot32cOKEJ+Uqprjiq5mXkKUE8kUWD+iJV5rWUGV2TWp4IHZW0Lw9aYLKtAi5Ktcn701BGVLOKpAi5QhDW5aHquGNceqYS0wqGl5BlpIr77acB6Hw+7D1cEGswbUNZmGsxIYkklbYtzfp9SxNxGZh3yvQmlpafj4449RpkwZuLi4IDQ0VN0+duxY/PLLL/l6rtjYWNSuXRvffPONzvsvXryI5s2bo2rVqti6dSuOHTumfo4ESLQNGTIEN2/ezNx++OGHXH/uokWL8M4772DMmDE4cuQIWrRogc6dO2cJ4phiVotMRXC211+y0gtNMhrlSrBFzhYQEVma+uVKqFKHm1EJuHQ31tC7Q0ZQQiTTTSSAEFTG/EuIcuJkZ4MPu1RTQZPmgSUxb4/u5p5ye4tKJfHTwAbY92FbTOhRQy/lzlQw5cuXf+REpWxvvvmmul+GI0yYMEGdDHV0dFQnNk+dOpXrc86dO1fncxb0xGxutEvXElNSVdCiYkkXTOtTC34eTjAlH3SqqoJE0haAJzmJLDjYMnnyZLWgfvbZZ7Cz+y/1s2bNmvj555/z9VwS4JDn6927t877JRjSpUsX9bPq1q2LChUqoGvXrvD29s7yOCcnJ/j6+mZukgWTm+nTp+OVV17Bq6++imrVqmHGjBnw8/PDd999l+P3JCYm4sGDB1k2c+zXoq1TDV94udirrJmNp/+ryyYishSOdtaoV+5h35aLbBhu6VafuJmZ1WJJJUQ5kWza2KSUzIyW7OR26d3SvoYP7G2si3z/SLcDBw5kOUm5YcMGdXvfvn3VVznulmNlORkqj5Vj6/bt2yM6OjrXl9TNzS3L88qW/QSpviQmp6rStQafbED9yRvR8JONOHE9CsvfaGqSjavlePvd9pXV5S/Wn1ONpInIAoMt8+fPx48//ojnn38e1tb/vXHWqlULZ8/qr7GTZNCsWrUKlStXRseOHVWApXHjxjpLjf744w94eXmhRo0aeP/993N9M0hKSsKhQ4fQoUOHLLfL9d27d+f4fVOmTFFBHM0mwRljcVqPk4i0yQjpAY0yfs/5ezK6uhMRWZqmWqVEZLkSkv8rITLFD3OFxc3BVvVo0Xmfo41quk/GpWTJkllOUv7777+oWLEiWrVqpbJa5CSknPCUk6FBQUGYN28e4uLisGDBglyfVwKQ2s8rW26e9ESmZLTM3nrxkdK1WZtD8MvOS1maM5uSgcHlUMXHFffjklXAhYgsMNhy/fp1BAYG6gyOJCcn62u/EB4ejpiYGEydOhWdOnXC+vXr0atXL7Xwb9u2LfNxEvRZuHChKjOSEqOlS5fmmCkj7t69i9TUVPj4+GS5Xa7fupXR9E6X0aNHIyoqKnO7evUqzLU5rrYBjfxVTbaMgA4Jz/2MBhGROWoW6Km+7rkYgTTW0lssmaYTl5SKMsUdUassS2E0UtPSVDNcXeT2lDSWIRszOQn5+++/4+WXX1bBkkuXLqnjYe2Tkvb29ioQk9tJSSHH7eXKlUPZsmXRrVs3Vaqfmyc9kWltZaWaMesit9tYmUavluxsrK0wsWcNdXnB/jCcvJ5xfE9Epivfq5Fkj+hqJrt48WJV6qMvErwRPXv2xIgRI1CnTh2MGjVKLd7ff/99ln4t7dq1U5F3aYy7ZMkSbNy4EYcPH871+bOn/0okP7eUYHmjkfRI7c0YRCck43JEnLpcGHXQpYs7ol21jMCUTCciIrI0tcoWh7OdNe7FJePMLeMpIaWitTpzCpEvS4i0ONrZ4I3WFTG8baXMDBf5KtfldunvQsZLMsbv37+PwYMHq+uaE4/5PSkp/RWlzcDKlSvVSVApH2rWrBkuXLig9xOZcuybW+ma3G+qgit4onvt0khPl2a5JxngJ7K0YMv48ePx1ltvYdq0aSogsmzZMhXw+PTTTzFu3Di97ZiUBdnY2KB69epZbpceK7k1sq1Xrx5sbW1zXNzleaX8KfsbhmTSZH9jMQWaEqLS7g7wcC6c8YkDHzbKXXroGmITTTM1k4iK3uMmzsn7h5SJyros9x89ejTH55KAuPT5ymlyXWGSiRaNAjwys1vIMkuINp3J6F3WmSVEj7C3tcbrrSrg4Jj2OPRRO/VVrsvtZNxkuIWsrbJOF+SkpEwLfeGFF9TgCxk88ddff6lWALNmzdL7iUxXMy9d+7BLVTjZWavJSsuPXDf07hBRUQZb5MBZpvmsXr1aLboSYJHxzP/8849qnqUv0ny3YcOGOHcua83i+fPnVYpiTqRbupQzlSpVKsfnlVHPmmZgGnK9adOmMDWa5rjVC7G7v4w+lUlH0Ykp+PvojUL7OURkXh43cU7ulzOfUi76ONJDwJANSTV9W3aFsG+LJdp2/g5ik1LViY26fhkNkykryWCRXm+eLvbqKzNajN+VK1dUNrgMjNDQ9Fkp6ElJKysrdRyfW2bLkzL30rVS7o5466mMlg1T1pw16UwdIkv3RLmdciZStoKS2s6QkJDM61InKmc2PTw84O/vj5EjR6J///5o2bIl2rRpg7Vr16qgjvRn0YyGlua4MrFIzoyePn0a7733nipnkgN4jbZt26p+L5KRI959910MHDgQDRo0QJMmTVTDX8mWGTp0KEzNf5OICq+sycqqGJ5v7I/Jq85g/p7LqmkupzAQ0ePI2VLZciLrsLh8WffYWI1jx46pyRgyFSOnQHpha/qwb8v+S5FITk1T2S5kOdY8nEIkWS18/yNzMWfOHDWAQiZ9agQEBKiAi5yE1LQHkL4u0i9RstrzSjJh5JheppUWVuma+h12X1KlQ5LRIoEWud0cMqpeaR6AxQev4dLdWHy98QI+6pY105+ITINBC2kPHjyogigaEgQRgwYNUnWfEiCR/izSQGvYsGGoUqWKaoDbvHnzzCyVTZs24euvv1aBG2msJW8YUuqkPSlJgjLSGFdDAjgRERGYNGmSGksn/V4kUye3jBljpWmOG1SmcJv19a3vpzqjn70VjcNh91C/XEZKPRFRYZIJGAMGDFDZMY+bbKE94UI2jbxOuMhNNV83lHCyVX1bjl+7zzXQwkqINp7RTCHK2/+DRMZOWgFIsEWOuaVsX0OCie+8845qD1CpUiW1yWUnJyc899xzmY978cUXUaZMGXWMLiZOnKhKieTxsubOnDlTBVu+/fbbQi1de7NNoMr8kNIhyWgxh0CLkFHp47pXx0tzDmDu7svo39APlXxcDb1bRFTYwRZJC8ztrI5M+smr1q1bq8h3bqQ7umy6SHBFezJRTnSdNX3jjTfUZuoHgCHhMYWe2SLcnWzRo3Zp/HXwGn7bc4UfNIioSEiDdCnxlGbpeSUH/3Lgr+8MvyYVPVWT1N0hEVwDLcjOC3cRk5gCXzcpISph6N0h0gspH5Ksbl3H2B988AHi4+PVcfK9e/fQuHFjNRXU1fW/D/vyvfKZQEOa7L722muq/EgmC0lWjPTtatSoUaH9xTSlalK6Juzy3x3BqLWp4q2GVGw8cxsT/jmF319pzMw6InMPtixfvjzLdemPIqPd5s2bp/eDW8rd+dvRSElLV2dbS7k7FPrLNTC4vAq2yIeNj7olwuvhmxsRUWGQqRabN29+7PhQXRMuNJmSQs6y5nWkaG6aVPRS69+ui3fxdttKBX4+Mg2rM0uIfFXQjcgcyGjnnE54yknVCRMmqC0nmpJ+ja+++kptpF/julXH9gt3sCskAmtP3mKDbiJzD7boOrv4zDPPqJHQ0jj3lVde0de+UZ77tbgXSaS7Zll31PYrjmNX7+Ovg1fxRuuM5l1ERIVBAi1SBlq8eNaGpH369FHTLrIf7GtPuJBN35pVzOjbcvjKfZVZ6GAm6eqUs8SUVGw4nTGFqAunEBFREfP3dMLQlhUwc3MIPv73NFpX8YajHd97iEyF3vLtJMVQUhKp6Pu1FHYJkbaBwRl9bf7YG4bUtNxLwIiICmLUqFE4fvy4qvvXbELOnkqvgaImU9mklCQpNQ0HL98r8p9PRU+mT8kkPm9Xe9T3ZwkRERW9/7UORJnijrgRlYDZW/8bLEJEFhJskbrOWbNmoWzZsvp4OspvZkshN8fV1q1WKRR3ssX1+/HYei6jYSARkS7SuFw7SKKZOCe1/iIyMlJdl0ly4ty5c+q6ZuSoNMSVBubam5BpdTIxo6hJBqFmKtHuixwBbQlWHc/4f7FzEEuIiMgwJJPlo67V1OUftofiSkQs/xRE5hpsKVGihBrNrNnkujTM+vXXX/H5558Xzl7SIySr5MzNwh/7nJ2kzfdrkNH74Le9V/iXIaJcJ85Jk0TN+FDpoyKXx40bl9mTRa5rxo4+++yz6rpMoTNWTSt6qa+7LkYYeleokCWlpGHD6YxgC0uIiMiQOgX5olmgp1qXpJyIiMy0Z4ukb2v3B5FO5CVLllRlRBJ4oaIReicGCclpcLKzRoCnc5G+7M839seP20Ox7fwdFV0vV8Q/n4hMw+Mmzg0ePFht+fG4CXaFrenDvi0nrt3Hg4RkuDnYGnR/qPBII+QHCSko6WqPBuU9+FITkcGopsXda6Dz1zvUKPotZ8PRpqo3/yJE5hZsye+BMRVuCVG1Um5FPh1BgiutKpdUwZYF+8IwuktGaiMRkbkrXdxR9W65dDcW+0Ij0b66j6F3iQrJ6uMZU4g61fCFNacQEZGBVfJxxUvNyuOnHZcw8Z9TqqzV3obNcolMPtgiDQrzqlatWgXZHzLi5rjZG+VKsGXRwasY0b4yp3IQkcWQ7BYJtkjfFgZbzFNyahrWcwoRERmZYW0rYcXRG7gcEYdfdl7iZFAicwi21KlTR6WvPS59Wx6Tmpqqr32jPGS2BJUuuua42iR1UTqjS6PcVcdvok99NkcmIssgfVv+2BeG3SHs22Kudl+MQFR8Mrxc7NAogCVERGQcXB1sMbpzVbz71zHM2hSCXnXLoJS7o6F3i4gKEmyRCRJkPCTopQm2VDdQZoukVD/X2B+frzuH+XuvMNhCRBajycO+LeduR+NOdKLq6UHmWULUkSVERGRkJMAiAf9DV+7h09VnMWtARhN6IjLRaUTlypXL80aF79q9eHXGzda6GCr7uBrsJe/f0A921lY4dvU+jl+7b7D9ICIqSh7OdqpfltgTyuwWcywhWvdwClHXmqUMvTtERI9UEkzsUQMyr+SfYzewh9PxiMxn9LPG6dOnsXbtWjW6U3ujwqfJaqnk7Qo7myf+ExaYl4s9utT0VZd/5xhoIrIgzR5mt+y5eNfQu0J6tjc0AvfjklVQjSVERGSMgsq447lG/uryhJWnkJKaZuhdIiJ9TCMKDQ1Fr169cOLEiSx9XDTjoNmzpfCdNnBzXG0Dm5RTjbr+PnoDY7pUh7sTx6ASkfmTKRA/77yEXezbYnZWn/ivhMjG2nAnNIiIcvN+hypYdeKmKmn9be8VvNQsgC8YkZHJ91HE8OHDERAQgNu3b8PJyQmnTp3C9u3b0aBBA2zdurVw9pJ0N8ctY5jmuNrq+ZdQ6fSJKWlYfOiqoXeHiKhINArwVL2rwiLjcDUyjq+6mZCzw+tO3VaXWUJERMashLOdCriI6RvO425MoqF3iYgKGmzZs2cPJk2ahJIlS8LKykptzZs3x5QpUzBs2LD8Ph0VINhiDJktktEkY6CFNOtKS8t9YhURkTlwsbdB7bIZAW/Wy5uPfZciERmbhBJOtgiuwClERGTcBjTyV58HohNS8Nnas4beHSIqaLBFyoRcXFzUZS8vL9y4cUNdlua4586dy+/TUT5J1PrWgwTVFEvToNHQetYpDVd7G1y6G4td7F9ARBaiWaCX+rqb657ZkJR8wRIiIjIFkmE5qWcNdfmvg9dwJOyeoXeJiAoSbAkKCsLx48fV5caNG+Ozzz7Drl27VLZLhQoV8vt09IRZLQGeznC2z3fLnUIh+9Gnfll1+bc9Vwy9O0RERToCetfFiMz+ZWS6UtPSse5kxhSiLpxCREQmon45D/SuV0ZdHr/yFLPMiUw52PLRRx8hLS2j4/XkyZNx5coVtGjRAqtXr8bMmTPz9VzS66V79+4oXbq0KkdZsWLFI485c+YMevToAXd3d7i6uiI4OBhhYWHqvsjISLz99tuoUqWK6h/j7++vSpmiojIayOZkwoQJ6udpb76+GVN1jN0pTXNcI+jXou2F4IyO6BvP3MaN+/GG3h0ioiLpWWVvY4U70Ym4eCeGr7iJ23cpAhGxSSjuZJsZSCMiMgWjOldV5a3Hr0Xhr4PsoUhkcsGWOnXq4JtvvkGjRo3Qu3dvdZtkssgI6Lt37yI8PBxPPfVUvn54bGwsateurZ5Xl4sXL6p+MFWrVlXNd48dO4axY8fCwcFB3S8lTLJ98cUXajrS3Llz1TjqV1555bE/u0aNGrh582bmJt9vCoypX4u2QG9XNKngCWnZsnB/RjCMiMicOdhao2H5jL4enEpk+tacyMhq6VDdB7acQkREJsTb1QHvtKukLn+27hyi4pINvUtElJ9gi5QMSVaLZKE899xz2LRpU+Z9Hh4emaOf86Nz584qO0YTvMluzJgx6NKliypVqlu3rgrudO3aFd7e3pklTUuXLlXZMRUrVlTBnk8++QT//PMPUlJScv3ZNjY2KptFs0nDX1Nw6rrxjH3WNQZaLNx/FUkpGdlPRETmTJMBwb4tpl9CtOZhCVFnlhCRmStfvvwjGd6yvfnmm+p+KYuULHA55nd0dETr1q3V9NHHkWPy6tWrw97eXn1dvnx5Efw2pDGoaXkEeruoJt/TN7CPJpFJBVt++OEH3Lp1Cz/++KP62qFDB7VYS68WTVmPPkmp0qpVq1C5cmV07NhRBVgk4KOr1EiblBC5ubmpYEpuLly4oN5EZIz1s88+i9DQ0Fwfn5iYiAcPHmTZilp0QjIuR2SMGK1R2rjKiET76j7wdrVXTXzXnco4aCUisoQmuTKRSD6wk2k6cDlSvXe5OdigWcWMvymRuTpw4ECW7O4NGzao2/v27au+yknO6dOnq8xzeayclGzfvj2io6NznVbav39/DBw4UGWiy9d+/fph3759RfZ7WTrJyJvYI6NZ7m97r+DMzaL/rEJEBejZIuU7snhu3rwZISEh6vIvv/yiMk4kIPLXX39BX6QsKSYmBlOnTkWnTp2wfv169OrVS2XBbNu2Tef3RERE4OOPP8brr7+e63NL0Gb+/PlYt24dfvrpJxU8atq0qfr+nMhoa+kbo9n8/PxQ1M7czHiTK+XuAA9nOxjjIi8j6DSLPBGRuQsq7aamsT1ISMHph2WeZHrWPJxC1KGGL+xs8t3OjsikSDa3dnb3v//+qzLEW7VqpbJaZsyYobLL5ZhbssjnzZuHuLg4LFiwIMfnlO+RgMzo0aNV+b98bdu2rbrdmE9kmuMJgC41fVVZ//i/T7F5O5GBPfERhWSESGDj8uXL+PPPP3Hw4EEMGDBAbzumacLbs2dPjBgxQvWMGTVqFLp164bvv//+kcfLAi0lRpK2OH78+MeWL/Xp0wc1a9ZEu3btVAaNkDeTnMibhmTNaLarV68arjmuEWa1aEiwRcbQ7b8UiXO3cj4DQkRkDmysrdC4gmYq0V1D7w49gTStEiL5kEJkSZKSkvD777/j5ZdfVqVEly5dysxg15CyIAnE7N69O9fMFu3vEXIiNrfvMYYTmeZoTNfqcLC1wv7LkVh57Iahd4fIohXo9M2WLVswaNAgDB48GKmpqRgyZIjedszLy0uVAknwRFu1atUeKVuStEbJfnFxcVH1oba2tvn6Wc7OzirwIqVFOZE3GilP0t6KmrE2x9Xm6+6gmguK35ndQkQWoGlm35acsyPJeB28cg/h0YlwdbBB80DT6N9GpC9Snn///n11LC8k0CJ8fDKO5TTkuuY+XeS+/H6PMZzINEdlijvizdaB6vKnq88gJjH3PpZEZETBFgl0SJ8WKR2S9EAZ/Tx79mxV86kr4+RJ2dnZoWHDhjh3LmuDp/Pnz6NcuYxGrJqMFomky+NXrlyZOakoPySNUUZMlypVCsbspBE3x9U2MDjj77Ps8DUu8ERkMX1bDlyKZHNwE7T6YQmR9B1jCRFZGmkHIBnf0sdQW/bBF1Je9LhhGPn9HmM4kWmuhrSsAH8PJ9x+kIhZm3M+mUxERhJskTpNqcWUIIs0y5UmWBL4kP4pL774oupWnl/Sk+Xo0aNqE5K6KJc1mSsjR47EokWLVF8V6REjjbpk0tAbb7yRmdEigRYZIS1vFhJ4kQi6bJJpoyFBIe3x0u+//77ab/l50rjrmWeeUd8rWTrGKjElFSHhMepyjTLGW0akmc5RoaQzYpNSsfzwNUPvDhFRoars4wIvFzvEJ6fi6NX7fLVNroQoI9jSJci4T7gQ6ZucMN24cSNeffXVzNukh4vInpEivRSzZ65ok+/L7/dQ4XGwtca4bhnVAb/uvISLdzI+QxCRkQZbJL1QynQk3VDS/KTOMjAwI0XtSUmfFxnpLJt499131eVx48ap69IQV7JlpCu6lPn8/PPPaqxc8+bN1f2HDh1SwZITJ06ofZHMFM2mnYp48eJF3L37Xy39tWvXVH+ZKlWqqOZfkhWzd+/eLBkzxub8rRikpKWjuJMtSrvnP3unKMlZDE12izTKlTMbRETmSta8Jg8n2OwKYd8WU3Lk6j115tfF3gYtKnMKEVmWOXPmqGmf0vNQuyejBE40E4o0fV3kJKUMk8hJkyZNsnyPkOEWuX0PFa621bzRukpJJKemY+I/p3k8TmQAuc9H1iIBClmQ9al169aP/YcvDbtke9LvF9LEV5s09DU1mua4QaXdH5vGaQx61yuLz9aew/nbMapZrqaBJBGRufZt+efYDTUCekR7Q+8N5dWq4xln4ttV84a9jTVfOLIYMohCgi2S1S09EjXkGPOdd97Bp59+ikqVKqlNLjs5OeG5557LfJxktZcpU0adfBXDhw9Hy5YtMW3aNDXc4u+//1ZZMzt37jTI70cZf8vx3Wtgd8h2bD9/BxtO31YT14jICDNb9B1oIfNrjqvN3dEWT9ctoy5zDDQRmbtmDzNbJFMiLonNCE2uhKgmS4jIskggRMr2dZ3Q/OCDD1TARcr2GzRogOvXr6ssFVdX18zHyPdKv0YNyWCRk5kSwKlVqxbmzp2rWgE0bty4yH4nelSAlzNeaRGgLk/69zQSkv9rs0BERj6NiIrOyYeZLdVNJNgiXgj2V1/XnryF8OgEQ+8OEVGh8fNwVBMgJF37wOV7fKVNwNFr93EzKgHOdtZoWZlTiMiySM9DyQ6vXLmyzoyICRMmqGBKQkKCKiEKCgrK8pitW7eqgIo26YF49uxZVXYkgyekVJ8M7602gfB1c8C1e/H4YVuooXeHyKIw2GICUtPScfZmtLpco7RxN8fVJvtav1wJ1Wtm0X6O8yMi8yUfTpoFPhwBzb4tJmH18Yyz8m2r+ahmkkRE5sjZ3gZjulZTl2dvDcHVyDhD7xKRxWCwxQRcuhujplw42lqrdEBTommUu2B/GFJS0wy9O0REhabpw1Ki3Rcj+CobOTmjv+ZkRr8WlhARkbnrVqsUgit4IDElDZ+sOmPo3SGyGPkOtsjo54iIRw8k79+/r+6jwuvXIiVE1lbG3xxXW+eavvBwtlOp2pvOhht6d4ioCG3fvh3du3dH6dKlVeaHTLPTtmzZMnTs2BFeXl7q/qNHjz7yHK+//joqVqwIR0dHlCxZUjVelDR1Y22Sqyn7vB+XZOjdoVwcuxaF6/fj4WRnraZ1EBGZM1Ua1qOG+hyx9tQt7Lhwx9C7RGQR8h1skck+qamPNldKTExUDbRI/0ytOa42me7Qv6Gfuvz73iuG3h0iKkKxsbGoXbs2vvnmmxzvb9asGaZOnZrjc9SvX181XJT6/3Xr1qmMBOk1oOt9yNC83RwQ6O0CGZK3NzTS0LtDuVh9IqOE6Kmq3iwhIiKLUNXXLTPjfMLKU0hKYcY5kdGMfl65cmXmZTngdXf/r3eIHPRu2rQJ5cuX1/8eEk5ejzLZYIt4rpE/vt92ETsu3EXonRhUKOli6F0ioiLQuXNnteVk4MCBmUH8nLz22muZl+U9ZvLkySqAI98jGS/GpllFT4SEx2D3xbvoFMQRm8ZIAnaaYEtXTiEiIgsyon1l/HPsBi7eicXc3ZfwWkvjex8lsshgy9NPP52ZhjZo0KAs99na2qqD4C+//FL/e2jh5KDwv8wW02mOq83PwwlPVfFWZUR/7AvD2G7VDb1LRGSCJBNGslwCAgLg55eRMaeLZFrKpvHgQcYaWhSaVPTCvD1X2LfFiJ24HqWmckgftNZVvA29O0RERcbd0Rb/16kqPlh6HF9vvICedcrAx82BfwEiQ5cRpaWlqc3f3x/h4eGZ12WTg9pz586hW7duhbWfFktqyqPik2FjVQyVfEw3I+SFJhlpi4sPXkV8kvGl/xOR8Zo9ezZcXFzUtnbtWmzYsAF2dnY5Pn7KlCkq+1Kz5RaY0bcmFTxRrBhUdsvtBxx5b4xWaZUQOdpxChERWZZn6pdFbb/iiE1KxdQ1xtkDjchie7ZcunRJNTOkoqHJaqns46r6n5iqVpVKws/DEQ8SUlT6IhFRXj3//PM4cuQItm3bhkqVKqFfv35ISMg5kDF69GhERUVlblevFt3oeXcnWwQ9zEKUUiIywilEJziFiIgsl5VVMUzqUUOdGFh+5DoOXGaPMSKDlxFpk/4ssmkyXLT9+uuv+to3MvHmuNkX9hcal8OUNWcxf+9l9G1QVpWkERE9jiZDRQItwcHBKFGiBJYvX44BAwbofLy9vb3aDKVpoKcqVdkdEoFedcsabD9I93tqWGQcHGyt0KYqpxARkWWSzJb+Dfzw54GrGPf3Kfz7dnOTm3hKZJaZLRMnTlSTICTYcvfuXdy7dy/LRvp1ysSb42rr28APdjZWOHn9gRq7SUT0pNkJ2j1ZjE3TihnZn7svRqh9JeMrIWpTxRtOdk90vomIyCyM7FgFbg42OHPzARbs48RQosKQ7yON77//HnPnzs2cIkFFlNlSxjSb42rzcLZDt1qlsOzwdfy25wrq+BU39C4RUSGKiYlBSEhIljLUo0ePwsPDQ/X/ioyMRFhYGG7cyCgtlN5fwtfXV22hoaFYtGiRCvCXLFkS169fx7Rp0+Do6IguXboY7d+uYfkSsLUupnpuSRZFOU9nQ+8SZZYQZQRbunAKERFZOE8Xe7zXoQrGrzyFL9afR9dapdWxOhEZMLMlKSkJTZs21eMuUE4iYhJx60GCqqmsVsr0M1vEwOCMRrn/HL+ByNgkQ+8OERWigwcPom7dumoT7777rro8btw4dX3lypXqeteuXdX1Z599Vl2XoL5wcHDAjh07VGAlMDBQ9WpxdnbG7t274e1tvFNkJGOirl8JdXlXSIShd4ceOn3zAS5HxMHexko1xyUisnTPN/ZHVV9XNYzj83UZJzyIyIDBlldffRULFizQ4y7Q47JaAjyd4WJvHunOks0SVMYNSSlpajIREZmv1q1bq2yC7JtkR4rBgwfrvH/ChAnq/tKlS2P16tW4ffu2CvRLo9s//vgDVapUgbGTvi2CTXKNx+qHWS2tq5SEs5m8pxIRFYSNtRUm9qihLv95IAwnWOZPpFf5PtqQCRA//vgjNm7ciFq1asHW1jbL/dOnT9fn/lk0TbCluhn0a9GQpriS3fJ/S0/g931XMKRFBdU8l4jInEjflhkbL2DPxQikpaVznTMwCeKt5hQiIqJHNK7giZ51SuPvozcwbuVJLB3alO9ZRIbKbDl+/Djq1KkDKysrnDx5Uo3j1GxSi0/6c/KGpjmu6fdr0dajdhm4OtjgamQ8tl24Y+jdISIqlCw+R1trRMQm4Xx4NF9hAzt7KxqX7saqJu1tq/kYeneIiIzK6M7V4GRnjSNh97HsyHVD7w6R5Wa2bNmypXD2hB5x2kzGPmfnaGeNvvX98OuuS/h9zxU1FYKIyJzIh/qGAR7Yfv6O6ttS1de81nFTo2mM26pySbMpyyUi0hdfdwcMa1sJU9ecxdQ1Z9Chhg/cHLJWLxBREWS26NP27dvRvXt3VZcv5SUrVqx45DFnzpxBjx494O7uDldXVwQHB6vpFRoy/vPtt9+Gl5eXapwoj7127dpjf/bs2bMREBCgGjDWr19fNWE0JjGJKeosnDkGW8QLwf7q6+Zz4bgaGWfo3SEi0rtmFTP6tuy5eJevroFLiDQjn7vU9OXfgohIh5ebBaCClzPuxiRhxoYLfI2IDBVsOXDgAD744AM1OaJ3795ZtvyIjY1F7dq18c033+i8/+LFi2jevDmqVq2KrVu34tixYxg7dqwKkGi88847WL58Of7880/s3LlTjRrt1q0bUlNTc/y5MkpUvm/MmDGq/KlFixbo3LlzliCOocnMe1HK3UGNZjM3FUq6oEUlL6SnAwv2G8/rTkSkz74tYl9oJFJS0/jCGsj52zG4eCcWdtYsISIiyi0jc/zDZrnz9lzG+dssgSUq8mCLBDWaNWuG06dPqyBHcnKyurx582aVfZIfEuCYPHlyjkEaCYbIyM/PPvtMjQOtUKGCGhGqGfkZFRWFX375BV9++SXatWunHvP777/jxIkTqoFvTqSJ7yuvvKImK1WrVg0zZsyAn58fvvvuOxiLU9ejzDarReOFh2OgFx24isSUnINjRESmSJqbuzvaIjoxBScerulkuClELSt7MS2eCMD169fxwgsvwNPTE05OTqoX46FDhzJfG5kAJ9PiJPNc7u/UqRMuXMg900GmzEmWevZNBmuQ6ZBSy/bVfZCalo7xf59SmYFEVITBlk8//RRfffUV/v33X9jZ2eHrr79WpT79+vWDv39GaYg+pKWlYdWqVahcuTI6duyoAiyNGzfOUmokbwwS7OnQoUPmbfLGEBQUhN27d+t8XhkfKt+n/T1Cruf0PZpypQcPHmTZCtPJzElE5tUcV1vbqt4qcycyNglrHk6JICIyF9ZWxRBcwUNd3n0xwtC7A0sPtnQOKmXoXSEyuHv37qmTpjJNdM2aNeqEqZy0LF68uLpfPlw//fTTCA0Nxd9//60ywMuVK6dOakpGem7c3Nxw8+bNLJt2NjqZhnHdqqNaKVe83Lw8klLTEBGTiKSUNMQlpRh614jMP9gipT2SXSLs7e3VwiuR6xEjRqiR0PoSHh6uSoKmTp2qIurr169Hr169VBbMtm3b1GNu3bqlAj4lSpTI8r0+Pj7qPl3u3r2rSozkMXn9HjFlyhSVuaPZJBOmKMY+m3Nmi421FZ5rlBGg+23vFUPvDhGR3jULzCgl2s2+LQZx4XY0LoTHwNa6GNpV5xQiomnTpqlj2Dlz5qBRo0YoX7482rZti4oVK2b8m7lwAXv37lXZ3g0bNkSVKlVUn0M5Jl+4cGGuL6B8HvD19c2ykenx83DCX683wfFrUWj4yUbUn7wRDT7ZgB+2hSIxmZnoRIUabPHw8EB0dEYNX5kyZdT4Z3H//n3ExcXpNbNF9OzZUwVyJMVx1KhRqh/L999/n+v3SlReFvzcZL//cd8zevRoVbak2a5evYrCIiU1coAogsqYb2aL6N/IDzZWxXDoyj2cejjqmojIXDR92CT34OV7SOBBapFb/TBrsnmglyrpIrJ0K1euRIMGDdC3b1+VNS4l+D/99FOWTG6hnZFibW2tTm5Kb8TcSEBGsmDKli2rjtclKyY3RZ01TnkTn5SCn3dcwqzNIXgQn5HNIl+/3nQBs7deZIYLUWEGW6SZ7IYNG9RlKR0aPnw4hgwZggEDBqjIuL7IdCEbGxtUr149y+3SY0XTyFYi5lIWJCmR2bNismeuaD+vvGlkz2LJ7Xs0WTySHqm9FZYLt2OQkpaO4k62KO1u3umX3q4O6BSUcebj971slEtE5qViSRd4u9ojMSUNh8OyvldR0ZUQdanJEiIiIeVBkrVSqVIlrFu3DkOHDsWwYcMwf/58db8MpZCAiZxklONrOc6WLHM5bpayoJzI90nfFgnmSAaMBGukXCm3Xi9FnTVOeWNtZYU5uy/pvE9ut7Ey6DBbIpOS738tMjlIphAJWYjff/991UhLynukWa2+SARd0hfPnTuX5fbz58+rNwEhI5ul5lQT/BHyRiDZNk2bNs3xeeX7tL9HyPWcvqeoaTI8pITocRk65mDgw0a5K45cx4OEZEPvDhGR3sgarslu2R3Cvi1FKSQ8BuduR6vsyQ7VWc5ApMkcr1evnurBKFktr7/+ujppqhkSIcfVS5cuVcfbks0uDXJlIqgMtZCTlTkJDg5WTXdlyqicmP3rr79U38VZs2YZRdY45V10QnJmRkt2crvcT0R5Y4N8koVXw8rKSo2Alu1JSLphSEhI5vVLly7h6NGj6mdIs92RI0eif//+aNmyJdq0aYO1a9fin3/+UYu+kCi4TBV67733VEd1+T4J/tSsWVM18tKQjBvp9/LWW2+p6++++y4GDhyo0iibNGmies1ItoxE943Byeuafi3mXUKk0SjAA5V9XNR4zmWHrmFwswBD7xIRkd40DfTCiqM3HvZtqcJXtoiseZjVIn1z3J1YQkQkSpUqpTNrXAIsGnJSUo7HJQAimS0lS5ZUQyrkuDmv5DOCnDTNLbNFssZlI+Pi6mALN0cbnQEXud3RzhqzNl1A7/plUaa4o0H2kchsM1skqi0lN9lFRETkGvHW5eDBgyqqLpsmCCKXx40bp65LgET6s8joZwmg/Pzzz+rNoHnz5pnPIZORpGu6lDRJuqJE4CUgo70v0tRXGuNqSABHxj1PmjRJ9YLZvn07Vq9enZkxY0yZLZZy5leT3SKNcjlmjojMiSaz5di1KJ4RLEKrHgZburKEiCiTHCvnljWuTU5qSqBFAiZyzC59FPNKjuUkYCPBHTItqWlpeKmp7hOfg5qUx84Ld/HlhvNoMW0zXv/tIHaH3OWxO1EOiqXn85OtRKqlblOaamm7ceOG6mQeHx8PSyBNvORNSKL++uzfInPtg8avQ3xyKja+2wqB3i6wBJKSGPzpJsQmpWLBkMZoWjFjggcRkbGu1/nR6vMtuBIRh18HN8BTVTkVp7CF3onBU19uUyVEBz9qh+JOdoX+M4lMwYEDB1TZ/MSJE9WJyv3796syIsnyfv7559VjFi9erIIskmV+4sQJ1Z9Rsl20s19efPFFNShD+q4IeT4pJZJeMLLmzpw5E7/99ht27dqlph6ZylpNGWTqkDTDlR4tkuEiGS0SgHmjdUXsvxyJ2VsuYk/of6Wx8nllUJNy6FWvLFzs8104QWS28vyvQRZNTRaCZJi4uPwXBJBRypIdIs2xqGAu3Y1VgRZHW2sEeDlbVMpir3plVJPc3/deYbCFiMwuu0WCLbtCIhhsKQJrTmY0wW9S0ZOBFiItUtqzfPly1S9FMrwDAgJUtrcm0KLpfyjZ5tKTUTJTJLAyduzYLK+jlN/LCVgNmUr62muvqROyEjCRTHX5bJDXQAsZF3tba7zeqgLebBOoTojKcXpKWpq6vUWlkmo7fzsa8/dcxrLD11WPrLF/n8K0tefwTP2yGNiknGoQT2Tp8pzZIouxuHLlihrppl2mI01ny5cvrxZtqem0BIUVff/76HUM//Mo6vkXx7I3msGSnL31AJ1m7IC1VTHs+r+n4Gvmk5iIqGgYw9nSf47dwNsLj6BaKTesGd7CIPtgSbp8vQOnbz7A1N418Wwjf0PvDhGZyFpN+SfDLZYeuob5e66ok8YaLSp5qbKjNlW91bE9kSXKc2aLNK8V0qh22bJlKFGiRGHul8U6dcOymuNqq+rrhkblPVR64sL9YRjRvrKhd4mISC8kw0KcufkAETGJ8HRhU8jCcvlurAq0yMF9hxqcQkREVJjcHGzxUrOAjH4uIXdVtsums+HYceGu2sqWcFS9Gfs18EMJZ5Z0kmXJd4PcLVu2ZAm0SAmRNMC6d++evvfNIllac9zsXmiS0aBNgi3JqWmG3h0iIr3wcrFHVV9XdXlvaCRf1UK0+mRGY9wmFTzhwQN7IqIiYWVVDC0rl8TPgxpi+8g2eL1lBbg72uLavXhMWXMWwVM24YMlx3DyesZnHSJLkO9gyzvvvINffvklM9AiY5nr1asHPz+/zJHM9GSkokuT2RJUxvIyW0SnGr7wcrFDeHQiNpy+bejdISLSe3bLLjUCmgrL6odTiLpwChERkUH4eThhdJdq2Du6LT7rUwvVS7khMSUNfx28hm6zdqLPd7tV64SkFJ5YJfOW72CLdCivXbu2uiwjli9fvoyzZ8+qIMyYMWMKYx8txo2oBNyPS1bTEyr5WGZTKTsbKzzbMKO+/rc9Vwy9O0REetPs4ZS1PRf/m+BA+hUWEYeT1x9A2gN0qMGpT0REhuRoZ41+Df2walhzLBnaBN1rl1afcw5duad6VDaduhnTN5zH7QcJ/EORWcp3sCUiIgK+vhk10KtXr0bfvn1RuXJlvPLKK2o8HD25Uw/T6ir5uMLe5r8GxJZmQGN/daAsI+VCwqMNvTtERHrRqIKHWtukgeCN+/F8VQuxhCi4gqcq3SIiIsOTabYNyntg1oC62D3qKbzTrhJKutrjbkwiZm66gGZTN+PNBYex/1KkyvQnsthgi4+PD06fPq1KiNauXYt27dqp2+Pi4rJMKKL8O5nZHNcy+7VolCnuiLbVMs5IyihoIiJzaSJYq2xxdXk3s1sKxRqWEBERGTVvNwe8066ymjwqwZeG5UsgJS0dq47fRL8f9qDLzJ34c38Y4pNSDb2rREUfbHnppZfQr18/BAUFqShl+/bt1e379u1D1apVC75HFuz0w+a4QRYebBEvPmyUK6PkYhNTDL07RER60Swwo2/L7hD2bdG3q5FxOHYtSmUPdeQUIiIio28dIGVFi4c2VWVGzzb0g4OtlZraN2rZCTT+dCM+WXUaVyL+GydNZPbBlgkTJuDnn3/Ga6+9hl27dsHePiNNV7JaRo0aVRj7aHljny20OW723gYBXs6ITkzB30dvGHp3iIj0ounDvi2S2cJUaf1a87CEqFGAh0pPJyIi01CjtDum9qmlGuqO6VINfh6OeJCQgp92XELrL7bi5bkHsPVcONLSWGJEpsXmSb7pmWeeeeS2QYMG6WN/LFZkbBJuRiWgWDGgWilmtsj4uOcb+2PyqjOYv+cyBjTyU5lURESmrH65Eups3q0HCQi9G4uKJS2zGXphWH3ilvrKKURERKapuJMdhrSsgJebB2Db+XDM230F287fweaz4Wor7+mEgU3K45n6ZdVYaSKzDLZs2rRJbeHhEmHMOrLr119/1de+WZRTD0uIyns6w8X+if4sZqdvfT98sf4czt6KxuGwe6hfzsPQu0REVCAOttao719CNQCX7BYGW/Tj+v14HL16X52w6BSU0cSfiIhMk7VVMTxV1UdtoXdi8NveK1hy8BouR8Th439P48v15/B03TKq7UBVX56kJjMqI5o4cSI6dOiggi13797FvXv3smz0ZGRUpajOfi2Z3J1s0aN2aXWZY6CJyFywb0vhNcZtWN4D3q4OhfATiIjIECqUdMH47jWw98O2mPx0ECr7uCAuKRUL9oWh04wd6P/DHvUekJKaNQGAyCSDLd9//z3mzp2rGuKuWLECy5cvz7JRwTJbgkqzX4u2gcHlM9PDZTwcEZmO7du3o3v37ihdurQqA5T3DG3Lli1Dx44d4eXlpe4/evRolvsjIyPx9ttvo0qVKnBycoK/vz+GDRuGqKiM9dJUNXnYt0WyW1h/rh+rNVOImNVCRGSWnO1t8EJwOax7pyUWDglG5yBflQGz71Ik/vfHYbT4bAu+2XyBnxfItIMtSUlJaNq0aeHsjQU7zbHPOtUs647afsWRlJqGvw5eLeo/CxEVQGxsLGrXro1vvvkmx/ubNWuGqVOn6rz/xo0bavviiy9w4sQJFehfu3YtXnnlFZP+u9Qu667KRe/HJeP0zYysRnpyN+7H43BYRglR55ql+FISEZkxOTnTpKInvnuhPnZ80AZvtQmEp7Od6n35xfrzaDplM0YsOoojYffYiJ4MLt/NQV599VUsWLAAY8eOLZw9skAy2vjSw7FmNVhG9IiBweVw7Op9/LE3DK+3rKii2ERk/Dp37qy2nAwcOFB9vXz5ss77g4KCsHTp0szrFStWxCeffIIXXngBKSkpsLHR/RaWmJioNo0HD4wroGFjbaUm5kizvz0XIxDECXQFsvZkRmPcBuVKwMeNJURERJaidHFHvN+xCt5uG6gyHKWhrvTvWn7kutpqlXXHi03Ko1utUqpnGpHRB1sSEhLw448/YuPGjahVqxZsbbN2gp4+fbo+988iyDz59HTA180Bni4cV5mdLJCTV51WDRBl7Fvbaj4G+TsRkeFJCZGbm1uOgRYxZcoU1V/MmDWt6KmCLbsu3lWTF6jgJUSdg5jVQkRkiextrNGrblm1yQnaeXsu499jN3H8WhTeX3wMn64+g2cb+uH54HIoU9zR0LtLFiTfZUTHjx9HnTp1YGVlhZMnT+LIkSOZW/Z6e8qbk9cz+g8wq0U3iUT3a+CnLs/fc4X/WxFZqIiICHz88cd4/fXXc33c6NGjVVBGs129anwliE0f9m3ZfykSyWzq98RuRSXg4JWM5vyda3IKERGRpZP2A9P71cGe0U9hZMcqKO3ugMjYJMzeehEtpm3G678dxO6Qu1lKjOKTUpCUkoaImET1NS4pxaC/A1lwsGXLli05bps3b9Zr88TBgwer27W34ODgzPsl9Tz7/Zpt8eLFOf7cCRMmPPJ4X1/DHaSd0vRrYSp5jp5v7K++bjt/B1cellwRkeWQUqCuXbuievXqGD9+fK6Ptbe3V9kv2puxqerrCg9nOzVRQc7C0ZNZezIjq6Wef3GUcufZSiIiyiDVAm+2CcT2D9rg+xfqq4zStHRg3anbeO7nfWj/1Xb8ffQ6EpJT8f22UDT4ZAPqT96ovv6wLRSJyal8Kanogy3arl27huvXrxda80TRqVMn3Lx5M3NbvXp15n1+fn5Z7pNNUsednZ1z7RMgatSokeX7pPmiwYMt7NeSo3KezmhVuaS6/Me+sKL60xCREYiOjlbvBS4uLmrqXfbyVVNkZVUMTSp4qsu7L0YYendMlkyqE13YGJeIiHLok9YpyBcLhgRjw4iWqhekk501QsJj1Ndvt4Tg600X8CA+I5tFvsp1yYRhhgsVebAlLS0NkyZNgru7O8qVK6dGcRYvXlyldst9+SEBkcmTJ6N37965nqGUrBPN5uHhkXmftbV1lvtkkwPx/v37q4Py3Ei9v/b3lSyZ8UE+J9JsUc6sam/6IKlqF8Kj1WUGW3Ini6OQqUQShSYi8ydrbYcOHWBnZ4eVK1fCwcF8GqA2DcwItuwKuWvoXTFJ4Q8ScOBKpLrMKUREeScnSqXRuKenJ5ycnFR7gEOHDmXef/v2bZVdLpnncr8Euy9cuPDY55WG5pJ9KMfu8lWOyYmMSSUfV3z8dBD2ftgWU3oFoXlgSdXfRZc5uy/BxqpAeQlE+Q+2jBkzRmWiyKhO6dNy+PBhfPrpp5g1a1ahTCjaunUrvL29UblyZQwZMgTh4eE5PlbeKKRvTF7GgsqbhryJBAQE4Nlnn0VoaGiuj5eGixJg0mySVaMP529HIzk1He6OtmzY9Bhtqnqr10jGpf57PCN1nIiMV0xMjFqTNf28Ll26pC6HhWVkp0VGRqrrp0+fVtfPnTunrt+6dSszo0UCLZIF+csvv6jAi9wnW2qq6QdcNX1bjoTdR3yS6f8+RW3tqVuquXwdv+J8/yTKo3v37qFZs2YqQ3DNmjVq/f3yyy/ViVMhfSyefvppdVz8999/q2N9Obnarl07tRbnZM+ePepkp0yZO3bsmPrar18/7Nu3j38bMjpuDrYY0LgcYpNSMjNaspPboxOSi3zfyLwUS9fuDpQHEqD4/vvv0aNHjyy3y4L8xhtvPHFZkfRNkQi4LPAaixYtUhkqssjLQboEc2TcpwRVJGqenfx8Cc5oDtxzIm8ucXFxKoAj0XvJrjl79ixOnTqlovx5HSUqARfNZIwntehAGP5v6QlVRyjpbZQ7SfX7fN051fzq7zeb8eUiMmKyHrdp0+aR2wcNGoS5c+eq7aWXXnrkfunJIr21cvp+Ie8J5cuXz9N+yHotQfKCrtf6Jm+/zaZuxo2oBPz2SiO0qJR7hiVl1f+HPdh3KRJjulTjRCeiPBo1ahR27dqFHTt26Lz//PnzqFKlihqCISX3QoLbcuJz2rRpePXVV3V+nwRaZK2VY2wNyYgpUaIEFi5caNJrNZkvqTCQHi26Ai5ujjY4OKY97GyY3UJPLt//98iZyKpVqz5yu9wm9+mTLNzSEDEoKEg10pUFXN4EVq1a9chj4+PjsWDBgjxltUj5Up8+fVCzZk0Vqdc837x584q84aKmX0sQm+PmSf+GfrC1LqYaSh6/xqaSRMasdevWKqCQfZMgi5A0dV33S6Alt++XLa+BFmMmJxmaPMxuYd+W/AmPTsD+y5oSIk4hIsorKcds0KAB+vbtqwIodevWxU8//ZR5v+bEonbJppTtSynnzp07c81skUxEbR07dsTu3buLvESfKK9S09LwUtMAnfcNalIeBy9HcjAHFW2wJaeGtnKb3FeYSpUqpbJcdNWNLlmyRGWrvPjii/l+XmmoK4GXvNSj6hub4+aPl4t9ZiPE3/dyDDQRmbZmD/u2yBhKyjuZJiF5ubXLuqNsCSe+dER5JOVB3333HSpVqoR169Zh6NChGDZsGObPn5958lSOtUePHq1KjpKSklTrACnflIESOZH7fXx8stwm1zVloUVZok+UV452NnijdUUMb1tJZbII+SrXX2oWgLF/n0K3mTuxiu0L6All/F+VD5999pnKNtm4cSOaNGmizsxJ1Prq1atZJgUVhoiICPVzJOiSndTzS2nT4xrd5hRZP3PmDFq0aIGilJqWjjM3OYnoSRrl/n30htrGdKkOdyfTn0xCRJZJ07flxPUoRMUnq/5d9HirHx74cgoRUf7IMAvJbJF+i0IyW6SMXgIwcsJSerlIo1vJFJehFJLVIlngj5vyKeQzgTbJQsx+mzYJ6Lz77ruPlOgTFSV7W2u83qqCGhMtPVpcHWyRkpaGmIQUlHCyxcU7MXhzwWHsDS2HMV2rwcHWmn8gKrzMllatWqlSnl69euH+/fuqdEimCUljw/wGK3Jrnij3vf/++yot8fLly6p2X0qJvLy81M/WFhISgu3bt+dYR9q2bdss2TjyvNu2bVM/Txp3PfPMM2qBlz4CRelyRCziklLhaGuNAK/cpyfRf+qXK4Gqvq5ITEnD4kNX+dIQkcnydXdAhZLOSEsH9oVyBHRe3I1JxL5LGa8Vgy1E+SMnLGVSkLZq1aplNi4X9evXV8fjcpwv2Sxr165VJzxlqESOa5mv7yNZLDLUInu2S1GU6BPll5OdjerN4ulir77KdW83Byx8LRj/a11RPea3vVfQ57vduHQ350bRRNk9UccfaZL7ySefqMj3smXLVINZuS2/Dh48qCLqsgmJbsvlcePGqUj6iRMn0LNnT9XIVgIh8lWCL66urlme59dff0WZMmUeqRXVuHjxIu7e/S9F+9q1axgwYIBqACaBIqlD3bt3r0qbLEonr0epr9VKucLaKufIP2UlZ0lebJLRr+GPfWFIk08pREQmShqkC/ZtyZt1p26p4FTNMu7w82AJEVF+yCQiOUGqTU6i6joGltIeyRiXMns5Zpdj8pxItvuGDRuy3LZ+/Xo0bdqUfyAyWbbWVvi/TlUx96WG8HC2U+0fus/aiX+O3TD0rpG5lRHJQitBkB9++OGRyLN0Df/f//6ngi4VKlTI8w/XND/MidSS5oWkQmrSIXWRzBhtf/75J4zB6YfNcWuUdjf0rpicnnVKY8rqMyq6vOviXU7xICKT1ayiF37fG4bdF9m3JS9Wn2AJEdGTGjFihAqAyHGzjGbev38/fvzxR7VpLF68WAVZ/P391YnP4cOHq2mh2ic1peRITnRK3xUhj2nZsqWaWCRBGZlSKi0HcmuqS2QqWlfxxuphLTBs4RHVnP3thUewNzQCY7tVZ1kR6Sez5fPPP1d1lLpS/DRNreQxlHdsjvvknO1t0Kd+WXX5tz1slEtEpiu4giekrcHdmCRExGZMAiHdImISsTc0YwpRF04hIsq3hg0bYvny5Wocs0z7/PjjjzFjxgw8//zzmY+R0qGBAweqZrnSPFcuZx/fLGVH2g1zJYAjJzPnzJmDWrVqqalzixYtQuPGjflXIrMp+10wpDHebFNRvWdLdn2v2bsReifG0LtGRqxYem6pJVpkwf3tt9/UIq3LoUOH8Nxzzz2SmmiupMeLBJkkq+dJakzlZa/38Qbci0vGP281R82yzG7Jr5DwaLSbvh1SgbXz/55C6eKO+X4OIjJ/BV2vi4JMI6rjXxzRqiGfnWrOJzXjlNXC/WEYvewEapR2w6phRdvUnogKlyms1URi+/k7GLHoKCJik+BsZ41Pe9dEzzpl+OLQk2e2XLlyBd7e3jneL41rZVIQ5c3NqAQVaLGxKobKvmyO+yQCvV3RpIKnqt2XA3AiIlOUmJyq0pGDp2xC4083ocEnG/DDtlB1O2XFEiIiIjK0lpVLYvXwFmgc4IHYpFQM//MoRi87jgS+b9OTBlsk0iyNZnMiE4EYhc5/c9xKPq6wt+EIsSc1sElGQ7eF+68iKSXtiZ+HiMgQ4pNSMHvrRczcHIIH8SnqNvn69aYL6va4pIzbCLgXm5TZRJhTiIiIyJB83Bzwx6uNMeypQFVWJJ9Fnv52F0LCWVZETxBskaZXs2bNyvH+mTNn5nv0syVjvxb9aF/dB96u9moUqEyoICIyJdZWVpiz+5LO++R2G6snGhpoltafvoXUtHRUK+WGAC9nQ+8OERFZOBtrK7zboQp+e7kxvFzscPZWNHp8sxPLj1wz9K6RkcjzUdzo0aOxZs0aPPPMM6pzudRTyrZv3z706dNHTQ6Sx1DeMNiiv5FsAxr5q8tslEtEpiY6ITkzoyU7uV3upwyrT2QE1LsE+fIlISIio9G8kpeaViTtDeKSUjFi0TH835LjiE9iObCly3OwpW7duliyZAm2b9+OJk2awMPDQ23SfXzHjh3466+/UK9evcLdWzNy+kZGGRHHPhecBFsq+7hgSMsAVUok0yrkK9PvicjYuTrYws1RdyNcuV3uJ+B+XBJ2hWSMxu5SqxRfEiIiMirebg74/dXGGN62kiorWnRQU1YUbehdIwPK16iDbt26qUa5a9euVT1aZKJO5cqV0aFDBzg5ORXeXpqZyNgk3IhKUJerlXI19O6YxSi2xUOb4ucdoXhv8TF1Nlg+pLzUNABvtK4Ie1v2xCEi45SalqbWKunRkt2gJuXVxIPb0Ql4rpE/isnRm4Vaf/o2UtLSUdXXFRVLsqk8EREZH2urYhjRvrJqnDvsz6M4dzsa3WftwuSng9CnfllD7x4ZQL7nSjo6OqJXr16FszcW4tTDrBapOedZS/00mPxlZyhmbQ7JvE3TYFK83qoCR6gSkVFytLNRQWFNjxbtYPFLzcqjz3d7cPFODDaevo1pfWqpM2eWaM2Jm+pr5yBmtRARkXFrGuiF1cObq/HQu0Ii1MngPaERmNSzBj+TWBh23jNgv5bqpd0M8ePNssHk3N2Xdd7HBpNEZOwk+06CwgfHtMehj9qpr3LdzcEWzzX2h52NFbacu4OOM7ZnBh0sSVR8MnY+LCHqWov9WoiIyPh5uzpg/suN8W77yrAqBiw5dA09v9mF87dZVmRJGGwxADbHLdoGkw/YYJKIjJyTnY0Kqni62Kuvct3KqhheaR6Af99ujhql3XAvLhn/++Mw3v3rqEWtaxtO30ZyarrqzRXozdJbIiIynbKiYW0r4Y9Xg1HS1R4XwmPUtKK/Dl5V7TjI/DHYYsAyIjbHLZoGk0521hi5+JjqfZCWxoWNiExLZR9XLH+jGd5sU1GdHVt2+Do6z9iBPRcjYAlYQkRERKasSUVPrBneAi0qeSEhOQ0fLDmO9/46hthE3SeLyXww2FLE5B/Vpbux6rKcqST9NZjURRpM7rxwF4sPXcOLv+5Hqy+24NstIQh/kNGgmIjIFEi2y8iOVbF4aBP4ezjh+v14PPfzXnyy6jQSks13tKRk8Oy4oCkhYr8WIiIyTV4u9pj3UiOM7Fgl48TJkesqy+XcLZYVmbN8B1tWr16NdevWPXK73LZmzRp97ZfZOnPzASRrzNfNQf2jI/01mJRRa5oMF/kq199qE4hK3q4Y3LQ83BxscDUyHp+vO4cmUzfj9d8OYuu5cGa7EJHJqF/OQ50dG9DIT72X/LTjkqoB12RMmptNZ24jKTUNFUs6o5I3pxAREZHpkvLgN9sEYuGQYPi42ePinVgVcFl0IIxlRWYq38GWUaNGITX10bNoUncm91Hu2K+laBtMyu0BJZ0xoUcN7PuwHb7sWxsNypVAalo61p26jcFzDqDFZ1vwzeYLuM1sFyIyAc72NpjSuxZ+GdQAXi52arTk09/uwndbL6q1zZysOn5Lfe1as5RFj74mIiLz0biCJ1YPa4GWlUsiMSUN/7f0hJpcxLIi85PvYMuFCxdQvXr1R26vWrUqQkL+G71Lj+vXwhKiomgwqc3RzlrNuF/yv6ZYP6KlGqvq7mir0vG/WH8eTaduxmvzD2LLuXCz+8BCROanbTUfrHunJTpU91ENZKetPYtnf9yDsIg4mEvz8+0X7qjLXVhCREREZkQ+r8wd3BAfdKqiGumuOHoD3WftVFUQZMHBFnd3d4SGhj5yuwRanJ2d9bVfZismMQUeznaoXtrd0LsCS284Ob67ZLu0xVf9a6NReQ8VYFl/+jZemnMALT/bgpmbLuBWFHu7EJFxH6z9MLA+Pn+mFlzsbXDg8j10/nq7WaQkbz4bjqSUNFTwckYVH04hIiIi8ysreqN1IP58LVi1mAi9G6syVRfsM/33cMpQLD2ff8nXXnsNe/fuxfLly1GxYsXMQEufPn3QsGFD/Pzzz7AEDx48UIGnqKgouLk9PkslPikF1lZWqlTF08VOdaKWoAsZj5DwaCzcfxVLD1/D/biMsarSwOqpqj54rrEfWlX2VpFnIjLv9dpUXY2MU9MN9l+OVNfbVfPB1D41TbY/mGQaSgBcem+937GKoXeHiAqZpazVRLpExibhvb+OYsu5jIzO7rVL49NeQWrqKllQZsvnn3+uMlikbCggIEBt1apVg6enJ7744ot8Pdf27dvRvXt3lC5dWtVir1ixIsv9gwcPVrdrb8HBwVke07p160ce8+yzzz72Z8+ePVvtu4ODA+rXr48dO3agsCQmp+L7baFo8MkG1R8keMomzNt9Wd1OxiPQ2xVju1XH3tFt8fWzddAowANSTbTxzG28PPcgWkzbjBkbz+NmVLyhd5WI6BF+Hk5Y+FowRneuCjtrK7V2dfxqOzacvm2SWaBbzz8sIarJKURERGTe5CT8L4MaqvdwObn7z7Eb6GHGDfAtRb4zW4R8y4YNG3Ds2DE4OjqiVq1aaNmyZb5/uEwv2rVrF+rVq6cyYyRb5umnn84SbLl9+zbmzJmTeZudnR08PDyyBFsqV66MSZMmZd4m+ySR8ZwsWrQIAwcOVAGXZs2a4YcfflAZOadPn4a/v79eo++S0SKBlq83XXjkPpmWI01cs/cWIeMREh6DP/eHqWyXe1myXbwxoJE/WlUuCRtrTlAnMmaWeLZUar6l2d7ZhyMl+zfww9ju1VWpkSlYeewGhi08gvKeTtjyfsZJFSIyb5a4VhPpcuhKJN5ecAQ3ohJUH0o5GfxCY3++F1pKsKUwyIGUrmDL/fv3H8l40SbBljp16mDGjBl5/lmNGzdWAZ7vvvsu8zbJzpGfPWXKFJ3fk5iYqDbtNwQ/P7/HviFIvblktDyIT3nkPhlPLFNz5B8RGbeE5FSsO3ULC/eHYW9oRoq+KOXugH4N/NC/oR9KF3c06D4SkW6WegCfmJKK6evP48cdoWpMtJ+HI6b3q4OG5f87YWGshv52CGtP3cIbrSvig05VDb07RFQELHWtJtLlXmwS3l98DJvOhqvrXWuVwtTeNVlWZGLy9Cl/5syZSEhIyLyc26ZvW7duhbe3t8peGTJkCMLDM/6H0/bHH3/Ay8sLNWrUwPvvv4/o6IwzebokJSXh0KFD6NChQ5bb5fru3btz/D4JwsgbgGaTQEtepynoCrQIuV3uJ+PnYGuNnnXK4M/XmmDTe63wWssKKt3vZlSCylpqPm0zXp57QKXrp6SmGXp3iYzC40pFly1bho4dO6r1W+4/evToI8/x448/qqC6HHjLYyQAT3ljb2ON0V2q4c8hwShT3BFXI+PR74c9amqRnAgwVjL6UqbCCZYQEenf9evX8cILL6gWAE5OTuqkpRwba8TExOCtt95C2bJlVba4nJDUPkGpy9y5cx8p65dN8/mBiPKnhLMdfh7UAGO6VIONVTGsOn4T3WbtxMnrLCsyJXnKJ/7qq6/w/PPPq/4mcjknsqgOGzZMbzvXuXNn9O3bF+XKlcOlS5cwduxYPPXUU+oNwd4+o+Gf7Jf0XvH19cXJkycxevRoVd4kZU663L17F6mpqfDx8clyu1y/detWjvsiz/vuu+8+ktnyONLUSDJYcspsYdMj01OxpAs+7FIN73WojPWnbqtsl90XI9TkDNl83OxVyn6/hn4oW8LJ0LtLZDCxsbGoXbs2XnrpJVUqqut+KeWUdV6C6brExcWhU6dOapN1mPKvcQVPrH2nBSb+cxpLDl3Dd1svYuu5O5jRvw6q+BrflB8JtCSmpMHfwwk1SvPsNpE+3bt3T627bdq0UeX8ckLz4sWLKF68eOZjRowYgS1btuD3339H+fLlsX79erzxxhsqcN6zZ88cn1uC4ufOnctym3x2IKInI5+th7SsgPrlS6iyoisRceg9ezc+6lYNA4PLsazIXIItEujQdbmw9e/fP/NyUFAQGjRooAIvq1atQu/evdXt2gfo8phKlSqpxx0+fFiVCuUke/23VFPlVhMuwR1NgCc/UtPS8FLTAJ09W+T2lLQ02OW/TzEZyVlj6RQu26W7saq3y+JD13D7QSJmbg7BrC0hqqfLc438VY8X9nYhSyMBc9lyIr2zxOXLl3N8zDvvvJOZ5ZhXuso+LZ0E9r/oW1tNKPpw+QnV06X7rJ34oFMVvNwsQI2fNBarT9zMzGphrxYi/Zo2bZo6WajdD1ECKtr27NmDQYMGqaxCzSRS6W948ODBXIMt8u9VTn7mFddqoryp518Cq4Y1x/uLj6vm9+P+PoW9oRGY2qcW3DityKjl+1O+NKKVM43ZxcfHZ2lSWxhKlSqlgi0XLjwauNCQAIutrW2Oj5F0dWtr60eyWKQ8KXu2iz442tmomnNphiuZLEK+ynW5nc1xzUOAl7NK198z+il881xdNAv0VD0S5Ozxa78dQtOpm/Hl+nNqNCsRFa4nLfu0BJ2CfFWWS9uq3khKTcPkVWfw3M97ce2ecaxNcUkp2HJWM4Uo7x/aiChvVq5cqU5KSkahZLXUrVsXP/30U5bHNG/eXD1Oyo3kZKRkuZw/f16VfeZGyo/kOF3Kj7p164YjR47k+niu1UR5V9zJDj+9WB8fda0GW+tiWH3iFrrN3Inj11hebVbBlokTJ6rFNDsJwMh9hSkiIgJXr15VQZecnDp1CsnJyTk+RqYZyajn7GVGcr1p06YoDPa21mrqkDTDPfRRO/VVrsvtZH7ZLt1qlcYfrwZj6/utMbRVRXi52CE8OhGzNoeg5edbMOjX/Vh78haS2duFqFBIuZE0WNRs8r5B//F2dVB14FN614STnbVq+t15xg4sPXRNfbAyJAlQxyenomwJR9Qsk/NUQSJ6MqGhoar/imSCr1u3DkOHDlUtAObPn5/5GOnBWL16dRU0keNmKeOUCZ4ShMlJ1apVVd8WCdIsXLhQlQ9JuVJuJ0i5VhPlj2SPvdqiAhYPbareJ8Mi49Dnu92Yu+uSwd+/Sbd8z4DMqdxG+qRoj2TOCwnahISEZClRkgaJ8jyyTZgwQdX5S+BE0sw//PBDlZnSq1cv9XipMZXmuF26dFG3y+jm9957T0XpZYHXaNu2rfoeafYlpPeKpK9LZL9JkyaqAWNYWJh6wyksmgwWT5eMUiSWDpm/8l7OGNW5Kt5tX1ml/Elvlx0X7mLb+TtqK+lqj34NyuLZhv7w82BvFyJ9edKyT0si7+Myvr5pRU81Ivpw2H28t/iYWqs+6VVTNQA3hFUPS4i6soSIqFCkpaWp499PP/1UXZdjZjlRKQGYF198MTPYsnfvXhU4kUwVaXYuPVvkeLxdu3Y6nzc4OFhtGnIcLtnms2bNynGABtdqoidTx684Vr3dAiOXHMP607cx4Z/T6sTJtGdqwd3Rli+rKQZbSpQokdlZXCYDaQdcpOGsBE7yG6yQ2k9p0KWhaUArdaKy6J84cUJF2mX6hCzw8thFixbB1TWjoZ9E2zdt2oSvv/5a/XxJFe/atSvGjx+vSoU0JCgjjXG1e8FIloyUPd28eVP1elm9erV6QyHSNxntLb0HZLsSEYs/D1zF4oNXcSc6Ed9uuYjZWy+ieaCX6u3SrroPbK3Zw4eIikY5T2f89XoT/LA9FF9tOI81J2/h4JV7+OyZWmhTxbtI/wzxSanY8nDEZeeaOWewEtGTk+NpyVrRJtOGli5dmvHvMD5endxcvny5OqYWtWrVUidDv/jiixyDLdlZWVmhYcOGuWa2ENGTc3eyxQ8D62Pu7sv4dPUZrD11CydvROGb5+qpYAyZWLBlxowZKqvl5ZdfVuVCUgevIUEPaa4lWSL5IY23ckt5kvTG3EhwZdu2bY/9ObqaL0qEXjaiov5g83+dqmJEu8rYdOY2FjzMdtFsXi726NugLAY09Ie/J7NdiKjwSfPuN9sEqobekuVyITwGL805gOcb+2NM12pF1lts2/lwxCWlqjHVtcuyhIioMEjGSfaJQdKPRXPCUUrxZZNgiTY5iSlZMXklx/cSoKlZs6ae9pyIspPkh5eaBagGum8tPIyrkfHo+/1ujOpcDS83K88m80Ygz0dQkm0iZMyyLNQ2NkVz8EVkrtkucuZWtrCIOCw6GIa/Dl5T2S4yllW2FpW8VJq/TA+Rx2vEJ6XA2soK0QnJasKITLRio2UyRrmVivr7+yMyMlKVcN64cUPdr/kAINMsNBMtpJm5bJrnkYxHyW6U789v6SrlLqiMO/55uzk+W3sOv+66hD/2hWFXyF1M719HHcgVtlUnMhrXdw7y5QEiUSGRsc7So1DKiPr164f9+/ercnrZNOObW7VqhZEjR8LR0VEFYeTEpmSaT58+PfN5pOSoTJkyqsmtkBOxUkYkvWBkApyUDsl6/+233/JvSVTIavsVx79vt8CopcdVhurH/0pZUQS+eKa2yoAhwymWns9uOjJSWab9aCLVf//9txofJymJ0mNFslwsgbyRSHaPNF+UNyaigpKGuZvOhKveLtsv3FHTjIQ02H2mvh8GBvurzBcpO5qz+xIexKeoyVYyQlwmW7HhMhkbGdesXSqqHbyXRoqyvfTSS4/cL6Wg8n4i5Kuu5uvyvjN48OA87QfX6/yTIMv7i4/hZlQCZCr0W20C8XbbSoVW5piQnIr6H29AbFIqlr3RtEiCO0SW6t9//1XNaaXER06iShn/kCFDMu+XALfcv379ehUUl4CLjH+WQI2mjYBkp0tWu6zjQu5btmyZ+l45PpZeMLJ+5yfrnWs1UcHIx/rf9l7B5H/PqImDkikqU1Lr8j3VdIItUn85atQo1bhWOppLkKV37944cOCAqu2UciNLwDcEKkwyInrRgav46+BVNclIyLi349ei1FSj7GSUuEy4YoYLEddrfYmKT8aElaew/Mh1dV2mA33VvzYCvTP6punTulO38Ppvh1Da3QG7Rj3FzBYiC8RjayL9OHEtSpUVXYmIg41VMTWw45XmAXxvNYB8n6KSus46deqoy4sXL1aphgsWLFCRbU1zLSIqGJlO9H7HKupDhzS/6l6rFJoFemHenkf7DwnJdLHJVl9NRFQQMtHgq/511FkxuXziehS6ztyJObsuIS1NvyMm1zycQtQpqBQPBomIiAqgZtmMsmCZ7JeSlo7Jq85gyPyDeBCfpNoRJKWkISImUX2NS0rha21so581DbI2btyIbt26ZTar1Z74Q0QFJyn7HWv4qk36uUjpkC5yuyyaO0Luwt/DSZ2BdrZnXyUiKrhutUqjYXkPjFxyHNvP38HEf06rksfP+9ZCKXdHvZQQbTyTMYWoa62MXj1ERET05NwcbNXJkuB9nqqHy6W7cUhJA37eeVFNMGI7gqKR709jDRo0wOTJk9XoN2mYJSOaNY0PfXx8CmMfiejhWWbp0aIr4CK3SwOsqWvOIjI2SfVYqOzjitpli6umWTICrrKPi5o6QkSUXz5uDpj3UkP8vvcKPll9BjtD7qLjV9vx8dNB6FmnTIFeUJnEFpOYAl83B9T1Y68WIiIifZAeSwODy6GuX3Hci0tSmana7QjkM8XXmzLGs7MdgZEEW6Qny/PPP48VK1ZgzJgxCAwMVLcvWbJEdTcnosKRmpammuFqFkVtcvu1e/FoHOCBo1fvq6aWZ29Fq23RwavqMY621irjpbafe2YARhpnaZrdERE99qCtSXk0DfTCu4uO4ti1KAz/86jKSvm4Zw0Ud7IrYAmRL6wkUkxERER6nTYoJUNvLjicYzuCN9tkfKYnAzfIzUlCQgKsra3VpCJLwCZeZAiJyal5mkZ0+0ECjl29rwIvx67dx/GrUYhOfDQjRiYdSfaLBF4kACOXOSKOzA3X68KZnvbtlhB1hiw1LR0+bvb4om9ttKhUMl/Pk5iSigYfb1Tr0+KhTVS5EhFZJq7VRIVH2g3Un7wxx/t3/l8bvPvXMXVZsuErebui0sOv8nmBJ2cNHGyxNHxDIEORRlbSDDc6IRmuDrZISUt77BQiaWYZejcGR69G4ejVezh2NQpnbj5QTbOyq+DlnJn5Il+rlXKFvc1/gRwiU8P1uvBIUHfEoqMIvRurrg9uWh7/16kqHO3ytmZsOnMbr8w7CG9Xe+wd3ZaZLUQWjGs1UeGRzJYGn2zIsR2BvAc3n7ZFtSPIroSTrVbwxUW1Kgj0cUFJF3sGYfQdbElNTcVXX32Fv/76C2FhYUhKyvoHiYyMhCXgGwKZOmlKeerGgywZMDIiLjs7aytUK+2GOmXdUcc/I/slwMuZiyuZDK7XhSs+KRVT15zBvD1X1PUKJZ0xo38d1Cpb/LHf+95fx7D08DUMalIOE3sGFfKeEpEx41pNVHhkCtH320J1tiMY3rYShrQIwOWIOFwIj8aF2zE4fztGXQ6LjENO0YLiKgjjgko+rplBGPla0pVBmCcOtowbNw4///wz3n33XYwdO1b1bbl8+bLq4SL3DRs2DJaAbwhkju7FJuHotfv/BWCu3se9uORHHufmYJOZ/aLJgPFysTfIPpvTm6B1PjOWKG+4XheNbefvYOTiYwiPToSNVTG8/VQlvNmmYo6NudVZtskb8CAhBYteC0bjCp5FtKdEZIy4VhMZRzuC7CdnQ8Jj1Hb+djQuhMfgwu2MIIyOBPnMoR6PBGF8XFQWq6WVI+U72FKxYkXMnDkTXbt2haurK44ePZp52969e7FgwQJYAr4hkCWQ5eFqZDyOPCw9kuyXk9ejkCiz47KRZruS+VJHesD4F0dQafc8lxJYuid586O843pddO7HJWHMipNYdTyj6a0EY6f3q40KJV0eeeyWs+F4ae4BFajd92FbWLM5LpFF41pNZJztCHIKwly8oxWEUZkwMbgSEZtjEMbNwUYFYKQnTKB3xlcpT5K+b+YahMl3sMXZ2RlnzpyBv78/SpUqhVWrVqFevXoIDQ1F3bp1ERUVBUvANwSy5MaY525F48jDzBfZQu7EPJJiKB+cJJKdkf3ijjp+JRDo7cIPVDre9H7IJa2To/gKjut10ZLDipXHbuCjFScRnZCiJqF92LUaXmjsn+Vg6st15/DH/jB0rVlKjZAmIsvGtZrI9EkQJvRObGY50oWHXy/nEoRxlSCMpheMViaMr5uDyQdh8h1sqVKlCubPn4/GjRujRYsWKsNl1KhRWLRoEd5++22Eh4fDEvANgUjr30NCMk5ei8oMwEgJkpQSZOdklzF+WpMBI+VHpdxzXkiNtbRGls345FTEJKYgJiEFsYmpiE5MVl9jEpPVbTEPL6v71GPktv82uW5rVQxrR7RE8JRNOTYsOzimPexsdJdhUN5wvTaMG/fjMXLJMewKiVDXW1cpiS/71lbrgPy7lqlpni52iIpLRqnijgbaSyIyFlyricxXYoomCJNRhqT6woRHq36RMtUwtyBMZnPeh1kxeQ3CGMPniHz/tF69emHTpk0q2DJ8+HAMGDAAv/zyi2qWO2LEiMLZSyIyam4Otmga6KU2jZtR8SrwognAnLgWhdikVOy7FKk2Danf1O7/UrOsu3o+Ka2RRl76Kq2RAElCclqWYEdOQRBdt2cEVVLUiFr5mlN0Pj+q+LgiIiZJZ6BFyO3yBuHJfjhkgkoXd8RvLzfG3N2XMW3tWVWSKAdH3227qG5jyRwREZFlsLexRrVSbmrLHoS5dDc2IwvmYU8YKUuSZr1yPH447L7atLna26hpSNmzYbRP4Or7c4TBRj9Ln5bdu3cjMDAQPXr0gKVg9J0ofyRqLXWdKvPl2n0cDbuPc7ejH4lmyxr528uNsP9SJGZuDtFZWtO3QVkcunJPZxAkIziSipgETabJfwGTnCLnT0r21cXOBi4ONnC2t4GL1ibXJSLvbG8NF3tbuMhXB7nPVt3mam8LVwdrlC7ulOsoPma2FBzXa8OTA6g7MYnYczECs3L4d82SOSLLxrWaiLSb6KsgTHh0xmSkh4GYy3djkZLD8bwcf0vgZWKPGth09jZmbjL88UaBgy2Wim8IRPoZGXvyRlRm6ZFscUmp2Pl/bXItrdk7ui2aT9uCyNiso+fzGiBxttMERCQA8jAQogmQPPyaERjJtjlkfYyUQxS0lvRxo/j4AbTguF4bBzV9iIFFIsoB12oiysuxhPR/+a8pb8bXSw+DMB7Odo/9HFGUJzLzFNJZuXJlnp8wP9kt27dvx+eff45Dhw7h5s2bWL58OZ5++unM+wcPHox58+Zl+R4pX5JsGhEZGYnx48dj/fr1uHr1Kry8vNT3f/zxx3B3d8/x506YMAETJ07McpuPjw9u3bqV530nooKTaUUNy3uoTeNeXJLKVsmttOZ+XDLaV/NWY6m1gyC6MkuyZpnYwMnWGlZGNPXE0c5GpTQKQ6c6EhUmKYljyRwRERE9KQmSSMmQbNmDMDIJ6WZUAh7EG8/xRp6CLdoBkNzIGd7U1NQ8//DY2FjUrl0bL730Evr06aPzMZ06dcKcOXMyr9vZ2WVevnHjhtq++OILVK9eHVeuXMHQoUPVbUuWLMn1Z9eoUQMbN27MvG5tzQ80RMaghJOdWjAl4JBTRFpGxU57pjbMhQRUJIPlzTaBWZp4MdBC5kT+v87t37XcT0RERPQkQRhpoCvb4z5HFOXxRp6CLWlpaYXywzt37qy23Njb28PX11fnfUFBQVi6dGnm9YoVK+KTTz7BCy+8gJSUFNjY5PzryX05PS8RGVZqWprK7NBVWiO3SyDCDuY1oUdTO6qJtJvb70dkif+uiYiIyHKPN4z+qGbr1q3w9vZG5cqVMWTIkMeOlo6KioKbm1uugRZx4cIFlC5dGgEBAXj22WcRGhqa6+MTExNVLan2RkSFW1ojPUskAi3kq1yX241h/DMR5Q//XRMREZElHW/kOdjSpUsXFcjQkAyS+/f/G8MUERGhSnn0SbJe/vjjD2zevBlffvklDhw4gKeeekoFPnSRfZB+La+//nquzyt9X+bPn49169bhp59+Ur1amjZtqr4/J1OmTFF9YDSbn59fgX8/Inp8aY00sTr0UTv1Va6ztIbIdPHfNZHhXb9+XWWBe3p6wsnJCXXq1FH9EzViYmLw1ltvoWzZsnB0dES1atXw3XffPfZ5JdtcPgtIVrp8lV6MRESWfLyR52lE0tNEmthKlomQ7JGjR4+iQoUK6vrt27dVpkh+erZk2ZFixR5pkJud/Pxy5crhzz//RO/evbPcJ5kmHTp0QIkSJVRDX1tb23z1jpESpA8++ADvvvuuzsdIgEc7yCM/TwIumkwaIiIyTpxwQUSU4d69e6hbty7atGmD//3vf+q4/uLFiyhfvrw6FhaSSb5lyxb8/PPP6nYZRPHGG2+oYErPnj11vpR79uxBixYt1EnPXr16qWP6cePGYefOneokJ9dqIrJEec6hyR6TMcTE6FKlSqlgi5QAaYuOjlaNdF1cXNTinp9Ai3B2dkbNmjUfeV5tEqWXjYiIiIjIFE2bNk2dLNQePiEBleyBk0GDBqF169bq+muvvYYffvgBBw8ezDHYMmPGDLRv3x6jR49W1+Xrtm3b1O0LFy4s1N+JiMhYGX3PFm1S5iMjniXokj2jRaYUSUaLg4NDvp9XMlbOnDmT5XmJiIiIiMyJHCs3aNAAffv2VVktkuUiJfXamjdvrh4n5UZyclWyXM6fP4+OHTvm+LwSoJHjcW3y+N27d+f4PeyHSETmziY/ZT6yZb+tIKQmNCQkJPP6pUuXVGmSh4eH2iZMmKBGQksQ5PLly/jwww/h5eWl0hM1GS2ysMfFxeH333/P0ri2ZMmSmeOc27Ztq75H6k/F+++/j+7du8Pf31813J08ebL6Poni55Ums4eNconIGLi6uhZ4TTZXXK+JyJgYcr2WgRDSf0XK5uW4ev/+/Rg2bJjK3n7xxRfVY2bOnKlKiaRniwycsLKyUiVFEoTJifQ/9PHxyXKbXJfbc+uHOHHixEdu57E1EZnLWp2vMqLBgwdnltIkJCRg6NChqgRH5NS0NjeSjig1oxqafikS9JA3ghMnTqhGttKIVwIu8thFixapX1xIM699+/apy4GBgVmeWwI3mrRIqUW9e/du5n3Xrl3DgAED1G0SlAkODsbevXtViVJeSaBHsFEuERkD9o/KGddrIjImhlyv09LSVGbLp59+qq5LZsupU6fUcbd2sEWOiyW7RY6Nt2/frnq2yLF4u3btcnzu7B9K5LNDbh9UpNRIu1eiZNJIY10eWxORuazVeQ62ZM/6kC7m2WkW6bySWtDcer/ItKCCfL+GZMVokwa7BSXNgKWkyRTOJmua+cr+mnszX0v5XS3l9xT8XfNGE4Qm012v+f+6eeLf1fwU9G9qyPVaAibZp4fKtCFpfivi4+NVxov0QOzatau6rVatWirz/Isvvsgx2OLr6/tIFotkj2fPdsmtH6L0XjSFtdqS/l1byu8p+LuapwcF+H9YH2t1noMt2o20CCqlUtIrTYn8D2buC6Wl/a6W8nsK/q5kKes1/183T/y7mh9T/Js2a9YM586dy3Kb9GPRZHcnJyerTdZNbVKaL1kxOWnSpAk2bNiAESNGZN4mU4yaNm1qtmu1qf4/8CQs5fcU/F3Nk5uB/h/Oc7CFiIiIiIhMlwRDJAAiZUT9+vVTPVt+/PFHtQn5MNKqVSuMHDkSjo6OKggjU4WkrH/69OlZstnLlCmj+q6I4cOHo2XLlmrakUws+vvvv7Fx40Y1+pmIyFIx2EJEREREZAEaNmyoSoSkX8qkSZMQEBCgxjM///zzWcrt5X65LTIyUgVcPvnkE9WrUSMsLCxL9osEcOT7PvroI4wdOxYVK1ZUfRYbN25c5L8jEZGxYLDFAkg97Pjx47PUxZorS/ldLeX3FPxdyVLw/3XzxL+r+TH1v2m3bt3UlhPpv/K49gFbt2595LZnnnlGbZbA1P8fyCtL+T0Ff1fzZG/g/4eLpeelwywREREREREREeVJ1u5XRERERERERERUIAy2EBERERERERHpEYMtRERERERERER6xGALEREREREREZEeMdhCRERERERERKRHDLYQEREREREREekRgy1ERERERERERHrEYAsRERERERERkR4x2EJEREREREREpEcMthARERERERER6RGDLUREREREREREesRgCxERERERERGRHjHYQkRERERERESkRwy2EBERERERERHpEYMtRERERERERER6xGALEREREREREZEeMdhCRERERERERKRHDLYQUabWrVtj7ty5fEWIiIwY12oiItPA9dqyMdhCJkeCAcWLF4e5Klas2CPb999/n+UxJ06cQKtWreDo6IgyZcpg0qRJSE9Pz/KYbdu2oX79+nBwcECFChUeeY6CWLp0qXrzcHd3h4uLC2rVqqX2ITIyUt1/8+ZNPPfcc6hSpQqsrKzwzjvvPPIcp06dQp8+fVC+fHn1O86YMUNv+0dEhse12jzW6p9++gktWrRAiRIl1NauXTvs379fb/tIRIbH9dr412ttu3btgo2NDerUqZPj8/3555/q+Prpp5/W2z5S/jHYQmSE5syZow6CNdugQYMy73vw4AHat2+P0qVL48CBA5g1axa++OILTJ8+PfMxly5dQpcuXdQB8pEjR/Dhhx9i2LBhaiEvqDFjxqB///5o2LAh1qxZg5MnT+LLL7/EsWPH8Ntvv6nHJCYmomTJkuqxtWvX1vk8cXFx6o1q6tSp8PX1LfB+EREVNUtYq7du3YoBAwZgy5Yt2LNnD/z9/dGhQwdcv369wPtIRFRUTH291oiKisKLL76Itm3b5vh8V65cwfvvv6/2lQwsnagItWrVKv3tt99OHzlyZHqJEiXSfXx80sePH5/lMV9++WV6UFBQupOTU3rZsmXT//e//6VHR0er+7Zs2SIh5iyb5vsjIyPTBw4cmF68ePF0R0fH9E6dOqWfP38+83nnzJmT7u7unv7PP/+kV65cWT2mT58+6TExMelz585NL1eunPret956Kz0lJSXz+7799tv0wMDAdHt7+3Rvb2/1PYVJfqfly5fneP/s2bPV75GQkJB525QpU9JLly6dnpaWpq5/8MEH6VWrVs3yfa+//np6cHDwY/8+8jrlZN++fWr/ZsyYofP+e/fu6XzO4cOH5/pz5bX/6quvcn0MERUdrtWPZ4lrtZD3R1dX1/R58+Y99rFEVPi4XlvWet2/f//0jz76SH3+qV27ts41ulmzZuk///xz+qBBg9J79uyZ6/5R4WJmCxW5efPmwdnZGfv27cNnn32mUuQ2bNiQeb+kMs+cOVNFdeWxmzdvxgcffKDua9q0qSo3cXNzy4xMS+RWDB48GAcPHsTKlSvV2TdZWyUCnZycnCWbQp5bUuvWrl2rztj17t0bq1evVptEj3/88UcsWbJEPV6eT6LWso/nzp1T39OyZcscf7ewsDCV+pfbNnTo0Me+Rm+99Ra8vLxUhFtSFNPS0jLvk99N0hzt7e0zb+vYsSNu3LiBy5cvZz5Gzjxqk8fI76P9euTXH3/8oX6HN954Q+f95lzeRWRpuFZzrdZF3kflfcTDw6PI/58kIt24XlvGei3ZORcvXsT48eNzfD75zCIZi6+88soT7xPpj40en4soT6QGUbNIVKpUCd988w02bdqk0veEds14QEAAPv74Y/zvf//D7NmzYWdnp2oZpQZRu/TkwoULKsgiNYwSkNEsXn5+flixYgX69u2rbpPF8LvvvkPFihXV9WeeeUYFWG7fvq0WuurVq6NNmzYqXVrS+SR4IoGhbt26wdXVFeXKlUPdunVz/N0k/fDo0aO5/v4SKMqN/L6SGig1o/K6vPfee7h79y4++ugjdf+tW7dUnxNtPj4+mffJayZfNbdpPyYlJUU9V6lSpfAk5HWW0h9bW9sn+n4iMh1cq7lW6zJq1CjVz0B6txCRceB6bf7rtTxO1t8dO3aofi26yOegX3755bGfRajoMNhCBnlD0CaLU3h4eOZ1CXR8+umnOH36tKqhlEUsISEBsbGxKvChy5kzZ9TC07hx48zbPD09VdM/uU/DyckpM9CiWSRlcZVAi/Ztmv2RAJAEWGQR7NSpk9p69eqlnkcX2YfAwEAUhGbhF5rGVxKl1r5dgk3aNA28tG/Py2PyS56jIN9PRKaDa3XuLHGtlmzUhQsXqqxQaRBJRMaB67V5r9epqamqmfnEiRNRuXJlnY+Jjo7GCy+8oJqaSwYPGQeWEVGRyx65lQVGk8onDZ2k9CcoKEg1nDp06BC+/fZbdV9uKXrZu4XntIDp+tm57Y9ksxw+fFgdXEpQaNy4caqJ4P379wu1jEhbcHCwCjpJ9o2QjB6JrmvTBIc0EfecHiPBIAlCPSlZ4CV9sSDpkkRkGrhWc63WJs0i5UTI+vXrH/lgR0SGxfXavNdrCaRIuZKUQsnPk02CRdJAVy5LywV5Dil56t69e+Zj5s+frzL/5bLcT0WPmS1kVGQhkUwW6cAtvVvEX3/9leUxUkokEV5tUv4j3yd9YDRlRBERETh//jyqVatWoH2SBUrSpWWT8iepnZRFTXq9FEYZUXbS8VzOIGpqNps0aaI6oCclJanXQsjBr/xsTQqkPOaff/7J8jzymAYNGhSoBEii6tLzRkq6hg8f/sj9EoRi3xYi88e12rLW6s8//xyTJ0/GunXr1L4Rkengem3667V8dpDR1Nrk8fJ5RPpMSpmTtbX1I4+RzB0J1Hz99deqtQIVPQZbyKhIiY8ETWTkmkRmpfYw+wx7WfRiYmJUzaVkmUhJj/R+6dmzJ4YMGYIffvhBZaRo6srl9if177//IjQ0VDXFLVGihGqiK1kvUp5UGGVEsohL1FwWdKkrlZIqGQf32muvZTbt0qQRSkNgeWOQGk452yhZN5osHsmekV447777rnpNpKmX1HBKhk5BSJmWNCuWWlcZ+yklVfJGFBISov5OzZs3z3yj0ASd5G91584ddV3ewCQwJuQNTUrFNJfl+eQxkv1T0FIsIipcXKstZ62W0qGxY8diwYIF6v1Xc2ZXk61JRMaN67V5rNeS9a/N29tbBYy0b8/+GE0wKfvtVIQKedoR0WNHS8pIMhlNpjF9+vT0UqVKqdHMHTt2TJ8/f74aiaY9+mzo0KHpnp6eOkc/y+g2zffqGv2sTdfYNO0xaTt27FD7LGOq5Tlr1aqVvmjRokL7q65Zsya9Tp066S4uLmr0tYzAllFwycnJWR53/Pjx9BYtWqhx1L6+vukTJkzIHE2nsXXr1vS6deum29nZpZcvXz79u+++e+zPf9x4Og15DVq2bKnGfzo7O6vXZdKkSVn+RtlHdMsmI541Ll26pPMxsg9EZFhcq3NnSWu1XNb1GM17LxEZFtdry1mvteU0+lkbRz8bXjH5T1EGd4jIeLVu3VpF9WUjIiLjxLWaiMg0cL22bGyQS0RERERERESkRwy2EBERERERERHpEYMtRJRJyofq1KnDV4SIyIhxrSYiMg1cry0bgy1ElIlvCERExo9rNRWETDx54YUX4OnpqSY6ykmWQ4cOZd5/+/Zt9f+YTESR+zt16qSmszzO0qVL1RQrmfAiX5cvX84/FFk8rteWjcEWIiIiIiILcO/ePTRr1gy2trZYs2YNTp8+jS+//DJzRKzMzXj66acRGhqKv//+G0eOHEG5cuXQrl07xMbG5vi8Mga3f//+GDhwII4dO6a+9uvXD/v27SvC346IyLhwGtETkjej6OhouLq6Zs5fJyIi48P1mogow6hRo7Br1y7s2LFD50ty/vx5VKlSBSdPnkSNGjXUbampqfD29sa0adPw6quv6vw+CbQ8ePBABXA0JCOmRIkSWLhwIddqIrJIzGx5QhJocXd3V1+JiMh4cb0mIsqwcuVKNGjQAH379lUBlLp16+Knn37KfHkSExPVVwcHh8zbrK2tYWdnh507d+aa2dKhQ4cst3Xs2BG7d+/O8XvkZ0mARrNJeROPrYnInBgk2KJZyImIiIiIqGhIedB3332HSpUqYd26dRg6dCiGDRuG+fPnq/urVq2qyoZGjx6tSo6SkpIwdepU3Lp1Czdv3szxeeV+Hx+fLLfJdbk9J1OmTFHBFc3m5+enx9+UiMhCgi2ymEtzoIoVK6oaUWm2JeU3rVq1wieffIIbN24UxW4QEREREVmstLQ01KtXD59++qnKann99dcxZMgQFYARcpwujW6lnMjDw0Mds2/duhWdO3dWGS65yV5WLyWcuZXaS0AnKioqc7t69aqefksiIgsItqxYsULVfQ4aNAhWVlYYOXIkli1bpoIvv/zyiwq2bNy4ERUqVFCR9Tt37hTm7hARERERWaxSpUqpSUHaqlWrhrCwsMzr9evXx9GjR3H//n2VzbJ27VpEREQgICAgx+f19fV9JIslPDz8kWwXbTK1yM3NLctGRGRObArzySVq/sUXX6Br164q2JKddCkXUqP59ddfqxTG9957rzB3iYiIiIjIIskkonPnzmW5TbJYpHQoOyntETL2+eDBg/j4449zfN4mTZpgw4YNGDFiROZt69evR9OmTfW6/0REpqRQgy379+/P0+PKlCmDzz77rDB3xWLFJ6XA2soK0QnJcHWwRUpaGpzsCvXPTkRExPclIiMkwRAJgMgJUTnpKcfqP/74o9o0Fi9ejJIlS8Lf3x8nTpzA8OHD1Tho7Qa4L774ojp+l74rQh7TsmVLNbGoZ8+eamy0ZK/n1lS3oHiMS0TGjp+6zVhiciq+3xaKObsv4UF8CtwcbfBS0wC80boi7G1zr7slIiLi+xKReWnYsCGWL1+u+qVMmjRJlQbNmDEDzz//fOZjpHTo3Xffxe3bt1XZkQRWxo4dm+V5pOxIO2tdAjh//vknPvroI/VY6dO4aNEiNG7cuFB+Dx7jEpEpKJYu3auKyLVr19TIOVmgpbu5tunTp8OUyIg6Sa+Uhl7GWGMq0X4JtHy96cIj9w1vWwmvt6rADBcisgjGvl5bCr4vEZE+1mquJURkKooss2XTpk3o0aOHiqBLrWhQUBAuX76sOpVLV3TSLykdkowWXeT2N9sE8iUnIqIiw/clIuJaQkSWpEhGPwtJV5TmtydPnoSDg4MaKycj3mQiUd++fYtqNyyG9GiR0iFd5Ha5n4iIqKg8eMz7ktxPRPQ4PMYlIlNRZMGWM2fOqBHQwsbGBvHx8XBxcVH1otJMi/RLmuFKjxZd5Ha5n4iIqChciYiFs51Nru9LTnbW+GVnKBKSU/lHIaIc8RiXiExFkQVbnJ2dkZiYqC6XLl0aFy9ezLzv7t27RbUbFiM1LU01w9VFbpepRERERIVtz8UI9PhmF3aG3MGgJuV1PkZu33nhLj7+9ww6ztiOjadvqzJjIqLseIxLRKaiyHq2BAcHY9euXahevTq6du2qSopknNyyZcvUfaRfjnY2qgluWno65u25nDmNSA5oh7auCEdOIyIiokK26EAYxiw/iZS0dKw4egNf9K0Nq2LFdE7J23HhDrxd7XElIg6vzj+I1lVKYly36qhQ0oV/JyLKcowra4bQXkvUMW6rCup+IiKLmkYUGhqKmJgY1KpVC3FxcXj//fexc+dOBAYG4quvvkK5cuVgSkxhusWyw9fgYm+DFpVKIi4pRU0f2n7hDk7deIB321c29O4RERUJU1ivzU1qWjqmrT2LH7eHquvdapVSgRYHW2v1fmRjZaX6Lkg5gGRayvuTiElMwTebQ1Q5UXJqOmyti+Hl5gF4+6lK6v2MiMxXftdq7bXEyd4G28/fwcnrUXivQ5Ui2V8iIqMItkRHR2Pv3r1ITk5Go0aN4OXlBVNnCgfvby04jH+P38SYLtUwpGUFHAm7h16zd8Paqhg2jGjJs4VEZBFMYb02J7GJKRj+51FsPHNbXR/ethLeaVcJxYoVy/NzhN6JwaR/T2PruTvqumS8jO5SFU/XKZOv5yEiy1irD1+5h97f7YaDrRX2jGqLEs52hbafRERG07Pl+PHjqFq1Kjp16oRu3bqpTJaNGzcW9o8lAEfC7qvXoUbpjDesuv4l0Laqtzrj+OX683yNiIhIr27cj8cz3+9RgRY7Gyt8/WwdjGhfOd8BEikdmjO4IX4Z1ADlPJ0QHp2IEYuOqeeWM9dERNrq+hdHtVJuSEhOw6KDV/niEJFlBFtGjRoFf39/7NixAwcPHlSjnt96663C/rEW71ZUAq7fj4dVMaC2X/HM12NkpyqQY95VJ27i+LWMYAwREVFBHb16Hz2/3YUzNx/Ay8UOf74WjJ51yjzx80mApm01H6wf0RIjO1ZRvcYOXbmH7t/sxOhlJxAZm8Q/GhFlrhcvNc1owP3bnivqxCIRkdkHWyTAMmvWLDRt2hT16tXDr7/+igsXLqj+LVR4DofdU1+r+LrBWavOvaqvG3o9PPj9fN05/gmIiKjA/j1+A/1/2IM70Ymo6uuKFW82Qz3/Enp5Ze1trPFmm0Bsfr8VetQuDSl+Xrg/DK0/34J5uy8jJZXT9YgI6FGnNEo42aqTjZoyRiIisw62yFhnyWzR8PT0hJOTE+7cyajDpsIhtauifrn/slo0JKVbmg7uuHAXu0I4dpuIiJ6MtH2buekC3lpwBIkpaXiqqjeW/K8pypZw0vtLWsrdETMH1MVfrzdR5QIPElIwfuUpdJu1E3tDI/T+84jItEgD7mcbZXzmmLvrsqF3h4io8IMtktYnDXKl6ZVs0vQq+22yUeFktug6s+jn4YTnG2dMf5JpEUU0kIqIiMxIQnIq3ll0FNM3ZPQAe6V5AH56sUGhTw1qFOCBf95qho+fDkJxJ1ucvRWNZ3/cq5rCS88YIrJcLwSXUyX0e0IjcO5WtKF3h4gsXKEHW+SDfOXKlVGiRAm1eXh4qBKiunXrquvFixdXX0l/ElNScfJ6RgArpzTut54KhLOdNY5fi8Kak7f48hMRUZ5JudBzP+3F30dvwMaqGD7tVRNju1VX0+6Kgo21FQYGl8OW91rjhWB/9eFKpu+1/XIbvtl8QQWCiMjylCnuiA7VfdXleXuY3UJEZh5s2bJlCzZv3pxl075Nczmvtm/fju7du6N06dIqQ2bFihWPPObMmTPo0aOHGh/n6uqK4OBghIWFqfsiIyPx9ttvo0qVKqqcSUqchg0bpjJuzIUEWpJS0+DpbKemOOji5WKPV1tUUJe/WHeONe9ERJQncrb46W934XDYfbg52GDey43wXOP/yoWLkox3nfx0Tax8qzkali+B+ORUfLH+PDp8tR0bTt9m5iaRBRrcLKNR7vLD1xEVl2zo3SEiC1a4ub6Amj6kT7GxsahduzZeeukl9OnT55H7L168iObNm+OVV17BxIkTVcBFgi8ODg7q/hs3bqjtiy++QPXq1XHlyhUMHTpU3bZkyRKYgyMPS4hk1HNu4zZfbRGA3/ZeQejdWCw5dC2zzpWIiEiXLWfD8fbCI4hJTEF5Tyf8MrghKpZ0MfiLFVTGXfVyWXnsBj5dfQZhkXEYMv8gWlUuiXHdqxvFPhJR0Wgc4KEadUuJ4V8Hr2JIy4yTi0RERa1YehE37Dh16hRSU/9L77W2tkaNGjWe6LkkkLB8+XI8/fTTmbc9++yzsLW1xW+//Zbn51m8eDFeeOEFFcixsdEdf0pMTFSbhvSZ8fPzUxkxbm5uMCZv/HEIq0/cwgedquCN1oG5PvaXnZfw8b+n4evmgK0jW6vmYkRE5kTWawm8G+N6bSrkUGHOrsuYvOo0ZKJqcAUPfPd8fZVZYmxiE1PwzZYQ/LLjksrylDKnl5sH4O2nAuHqYGvo3SOiIlir/9wfhlHLTqBsCUdsG9mmyEociYiKtIxox44daNiwYeZ1KemRfi116tRRW61atbBx40a9/Ky0tDSsWrVK9Yjp2LEjvL290bhxY52lRto0i3pOgRYxZcoU9Qag2STQYqwHxIc0k4jyMHZTat2lvvXWgwQ1QpOIiEhbcmoaPlpxEpP+zQi09G/gh/kvNzbKQItwtrfB/3WqinUjWqrpSClp6fhxeyie+nIblh2+hjT5JYjIrPWsUwbujra4di8em8+GG3p3iMhCFXqwZfbs2Rg4cGCW26RPy6VLlxAaGorhw4fju+++08vPCg8PV813p06dik6dOmH9+vXo1asXevfujW3btun8noiIiP9n7z7goqz/OIB/ZG8UEEVBUdwL3HvlTk3TXJkrM82WWf3Lhu3Uyqw0U9MclWllmpVl7r1w7wUIThSVveH/+v7wLkBA0Nv3ef9fz//unjvuHg577rnv8x344IMPMHbs2CKfe9KkSSooo1mioqJgii7HpuBaXKo6k9fA/+6xz/k52tmqUdBi9ubziE1mbSsREeWQfgcjF+7Fj3siIVWpbz5cG1P714eDnd4PHx5YFR9XfDeyKb4b2USVPElT34k/H8Zjc3bi6EXL6dNGRHdzdrDF4KY5J0Z5MpGIjEXvR0v79u1Ds2bN8qzz9/dH5cqVERgYqAIxu3bt0llmi+jTpw9eeukllTnz+uuvo1evXpgzZ06B6Yo9e/ZUvVveeeedIp/b0dFRZb/kXkzRgTtZLbX9PNQHTXE82rAiapRzU4GWuVvO63kLiYjIHETcSMSj3+zAjnMxcHGwxbxhTVTvg6J6gZmih2qVU1kuku0iv4c09n3k6+2Y9NsRxCT8Vx5MRJY5Bnr7uRs4e41joInIAoMtly5dgp+fn/b24sWLUb58zkg2IaOgJbtEF3x8fFQpkARPcqtdu7Z2GpFGfHy8yn5xc3NTfV+kz4sl0JYQVS7+OG2pY321Wy11/bsd4bgWl6K37SMiItO3OywGfWfvQNj1RFTwdMKv41qhS51yMFeSxflMhyBsfLkD+oZUgHSr+2lvFDp+thmLdoRzIh+RBQrwckHn2jn7LY6BJiKLDLbI6GUpGdKQkh4Zuawh9+kqS8TBwUH1hzl9+nSe9WfOnFGZNLkzWrp27aoev3r1au2kIsuaRHTvEqLcOtf2VQGalPQsfLXhrJ62joiITN3P+6IwbMEe3E5KR7C/J1Y92xp1KphmNmdJlfd0wheDG+KXcS1Rx88DcSkZePePE+j51XbsOq+bEz9EZHpjoFfsv8RSeSKyvGCLNKhdsmRJofcvWrRIPaa4pCfLoUOH1KIJ1sh1TebKq6++iuXLl+Pbb7/FuXPnMGvWLPzxxx8YP368NqNFAi0yeWjBggUq8HL16lW15J6SZI5S0jNx/HKcut6oGM1xc5O0cEmxFsv2RSH8RqJetpGIiExTZlY2pqw5if+tOIL0zGz0bOCH5WNbwtfDck5IaDQN9MIfz7fBh33robSLPU5fi8eQb3fj2aUHcOl2srE3j4h0pGVVb9Qs547k9Ez8Emqa/RaJyHLpPdgyceJEVTokQRBpYKsh119++WX88MMP6jHFFRoaqqYZyaJ5frk+efJkdVsa4kp/lk8++QT169fH/PnzsWLFCrRp00bdv3//fuzZswdHjx5FtWrVVImTZjHVprfFdeRirJq64OvuqEbdlVSzKl7oWLOsOuCe/m/e7CAiIrJcMi553A/7MXdrmLr9QqfqmDm4IZzsi9f7yxxJCa30dNj8SgcMu9Pb4a8jV9Bp+mbM3HBWncAgIvMmJxOHt8rJbl+y64I6xiUiMpRS2TIr2AATiaRhbUZGhioZkh2fTPSR/irTp0/Hc889B3MjGTEyAlozNtoUzNlyHlP/PoXudctjzrDG9/UcJ6/E4eGvtql69j+fb4N6FT11vp1ERNa+vzYll28nY/TiULX/lylDn/RvgL4NK8LanLgch3f/OI694TfV7QAvZ7zds47qVWNuTYGJzJG+9tVJaRlo8fEGVTa4YEQTdLrTx4WISN8MMrtRSnikpOezzz7DkCFDMHjwYHVd1pljoMVUaSYRNapcsn4tuckUoz7BFdT1af+c0tm2ERGR6TkcdRt9vt6hAi0+bg74aUwLqwy0COlLs/zpFvhqSEOU93BC1M1kPP39fgz/bi/ORScYe/OI6D65ONhh0J0x0It2RvB9JCLLymyxRKZ2plT+jE0/Wo8bCWlY8UxLNK7sdd/PFRmThE6fb1Y1+0ufao5W1Xx0uq1ERNa8vzYVUjIz8edDSM3IUj0N5o9ooqZ3UM6Z8K83ncO3W8ORlpkFO5tSGNU6UJVXuTtZxvRCImvaV0fdTEK7TzepzO31E9ujmq+bTp+fiMjgmS27du0q9mOlYe3x48f1uTkWTc7ASaDF3rYU6lZ4sNKfSt4ueLxZJXV92trTKpBDRESWQfbp0pNEmsFKoEV6df36TEsGWvKdCX+1Wy2sm9hOTeuTfmjfbgtHx8+24Nf9F5HFvg9WKzktA2kZWYhJSFWXEpgj0yeB5E61csqHluxidgsRWUCwZfjw4ejSpQt+/vlnNUWoICdOnMAbb7yhmtUeOHBAn5tj0Q7cGfksgRZdNDR87qHqcHGwVSnma49f1cEWEpG12bp1K3r37o0KFSqonherVq3Kc/9vv/2Gbt26wcfHR92vmTJXWICgR48eBT4PFZ80fX1p+SFMX3dG3X6ydRXMH9GU2RqFqOztqt6fhaOaoqqPK24kpOKVXw6j/5ydOHLxNv/pWZnU9EzM2RKGJh+tQ+MP16vLuVvC1HoyfSNbacZAX0RcSrqxN4eIrIBegy0SSOnTp4+aFFSmTBnUrVtXBV/k4FumA8kBduPGjXHhwgWsW7cOw4YN0+fmWLT9mn4tJRz5XJiy7o54qk0Vdf3TtaeRkZmlk+clIushGYvBwcGYNWtWofe3bt0aU6dOvedzffHFF2xS+oAkUDB0/h6sOnRZTeL56NF6mNy7jrpORetY0xf/TGiHST1qwdXBFgcjc3rdvPbrEfW+knVktMzefB5fbjiLuOScbBa5lNuynhkupq91NW9VPpSYlolfQy8ae3OIyAoYrGeLZK1s27YNERERSE5OVoEWGdncsWNHeHndf38RYzG1HgA9v9qG45fj8PXjjdCzgZ9OnjM+JR3tPtmEW0npmNa/PgY1zSktIiIqKclIWblyJfr27XvXffK5UKVKFRw8eBAhISF33X/48GH06tUL+/btg5+fX6HPo5GamqqW3PvrgIAAk9lfG8Ppq/EYvXgfLt5KhoeTHWYPbYw21dmP635ci0vBtL9P4beDl9Rtdyc7TOxSQ42PtrM1yNwBMgIpGZJMFk2gJTcPZzuEvtlFTfMi0z62/n73Bby96hgCvV2w8eUOsGGwmYj0yA4G0qhRI7WQ7iWmZuDU1fgHnkSUnzQBfLZjNXz410l8sf4s+oRU1EmJEhFRcSUlJakpdpIdU758+WL9zJQpU/Dee+/xTb5j0+loPL/0IBJSM9QXjAUjmyKoLJtD3q9yHk74fFAIHm9eSY2KPnYpDu/9cQI/7Y3Eu73rsqm8mZNzkFdiU3D6WjzOXI1Xl6kZmXi9e+0CAy1C1ssJKm83R4NvL5VMv4YV8ck/pxARk4QtZ6+rrDUiIrMPtpD+HL54G5lZ2fDzdIKfp7NOn/uJFpXx3fZwXI5Nwfe7LmBMu6o6fX4ioqK89NJLaNWqlSpJLa5JkyZh4sSJd2W2WOOXRhlz+sGfJyD9XJtX8cKcJxqjjKuDsTfNIjQJ9MLvz7bB8n1R+HTtKZy5loDH5+/Bw/XL482edVCxtLMqPbG1sVFfxOUERkZWlmq+S6ZBSsA0AZUz1+JVBtjZawmIT80bVPFydYC3m4PKYCkss4VTqsyDq6MdBjYJwILt4Vi0I4LBFiLSK37iWwCpHReNKuumX0tukskyoUsN/O/XI/h68zkMahYAD469JCIDWL16NTZu3KjKi0rC0dFRLdYsPTML764+jh/3RKrbA5v448O+9VnmoGPS70YyXHrW98OM9WfUlJM1R68iIiYRy59uifnbwrFwZ7j6gi5fyEe1qoLxHYLgyCxRg4pNTsdZCaZcywmmSFBFgisxiWkFPl5GfUv2V/Vybmoseo3y7khJy1R/P+nRkp+sl0Cag35bIZKODG9ZGd/tCMeWM9cRdj0BVZnpR0R6wmCLBTig4+a4+fVv5I9vt4bhbHQC5m0JwyvdaurldYiIcpNAy/nz51G6dN7yyP79+6Nt27bYvHkz37BCvlg+++MBbD93A6VKAa93r4Wn21Vlg2E98nSxx7uP1MXgZgF45/fjeKptFczbGoaZG89pH6NppirGtq/KDBc9SE7LxLnohDyZKnIpZUEFkf8+Knu5oEY5d9Qs7669DPR2LTAwKYEywQCa+U8Ze6imLzacisaSXRfUf7tERPrAYIsFpIlrxj43qqS7fi35z9xJgGXs9/tV2qWcEfD1cNLLaxERabz++ut46qmn8rwh9evXx4wZM9RUO7pbxI1E1Qj3/PVEONvb4svBIehat3i9bujB1SrvgWVPt0BaZhZe/uVwgY+RL+rPdAjCwh3hqvREpv/5uDmoS29XR06HKmaz2vAbiXn6qkhQJfJmEgob+1DB00llqEimSnUJqpRzV5NpnB2K34tOMpIkUCb97HKXhplbptKlS5fw2muv4e+//1ZDK2rUqIEFCxaoCaEiISFB7X9XrVqFmJgYBAYG4oUXXsAzzzxT6HMuWrQIo0aNumu9PL+Tk+kdM45oFaiCLb/uv6iOcd0c+ZWIiHTPKHuWlJQUk9zxmiM52JBpQXIGpm4FT729Ttc65dCwUmlVsiRn6j7oW09vr0VElkEO2M+d++/Mfnh4OA4dOqQm0FWqVAk3b95EZGQkLl++rO4/ffq0upRGuLmX/ORnZXoR5bU7LAbjftiP20npqofXt8OboF5F/X0uUOGTtxJSMopspiq9QpbtjVJBgtxkMIqXq2OeAIxa3PJdujvC09ne4rOVpB+dBFDO5AuqhF1PRIY0IiqA9FepmSdTRcqB3HVWAq3puaNphmtupUO3bt1C69at1TRQCbb4+vrelUEovbI2bdqEH374QQVa/v33X4wfPx4VKlQosn+WTBDS7Mc1TPV4v001H1Qt66r+La3Yf1EFX4iIzDbYkpWVhY8++ghz5szBtWvXcObMGVStWhVvv/222pGPHj3aUJtiUQ7c6dfSoKKnXmvx5YDute61MHjebjVxQVKkJQ2TiKgwoaGh6oBeQ9O0dsSIEeosqPRkyX0mdPDgwerynXfewbvvvss3tgR+Do3CmyuPIj0zG8H+nirQwgxE45GMh6Kaqfq4OaJ5VS+U83TC9fhUtdxMTFWNjCUQI8u92NuWUs+TPwijXXdnvY+7I1wdbE06MFPQBKAzd/qrpGZkFfgz7o52KlNFBVTKualLuS2/PxVu2rRpqmH4woULtevkODy3Xbt2qf10hw4d1O2nn34ac+fOVfv0ooIt8m+suFPjjE1GPo9sFYjJvx/H4p0RanQ7x0ATkdkGWz788EMsXrwYn3zyCcaMGXNXSjiDLfdnv6Zfix6a4+bXoqo32tcoqxqKTf/3DL4a0lDvr0lE5ksO1OVLVGFGjhyplpIo6vmsUVZWNqatPYW5W8LUbWnU+tmA4BKVRpDuZWZlFdlMNSs7G+/3qXdXFsfNxLSc4EtCTgBGgi6aYIxmvayT7CUJrEmAorB+JLlJSVneAIwDyro55QrQ5GTRSKBCGuPfj+JOXiruBCANRzsb1ag2J6iSE1CRS8neMuUAkqmSIHe3bt0wYMAAbNmyBRUrVlRZK7mPzdu0aaMe9+STT6psFumPJSdJv/zyy3tmM1auXBmZmZkICQnBBx98gIYNCz9WTE1NVUvuyXGG1K+RPz755zTCbiRi27kb6hiXiMgsgy1LlizBvHnz0KlTJ4wbN067vkGDBjh16pShNsPiHNT2a9F/sEX8r3tNFWxZffiyqlvWZ+kSEREVLiktAxOWHcK/J66p2y88VA0TOtfg2VkT4OxgV+JmqtIfTRP8uJfUjEzEJNwJzOQOyhQQpElMy0RyeqYqx5HlXjyc7O7OkMmVJSOXvu6OqlzHzjYnozY1PRNztoTd9bvKccLGk9EIvXCrWBOApKwjf1AlwMuFfWx0KCwsDN98843KNHzjjTewd+9e1Y9FJrgNHz5cPearr75SwRd/f3/Y2dnBxsYG8+fPV0GYwtSqVUtlLMpJVAmaSGBGypUOHz6M6tWrF/gzU6ZMwXvvvQdjkT4tA5r4Y+GOCJXdwmALEelaqWwDnSZ0dnZWQRWJeLu7u6udr5QRnThxAs2aNVPRcHMiHySenp6IjY1VNarGIGePGrz3r2oGt/fNTvB1N0xd7As/HVTBFvlQWvxkM4O8JhGROe+vde1KbDKeWhyK45fj4GBrg08ea4C+DSsae7OogICYXTGyPfQpMTWnR0xBWTLX49NysmXurJPGvsUlSSXerg74cnBD1S8o9+Qljecfqob6FT3x9Pf78/xcJc0EoFxBlSo+BU8AIt1ycHBAkyZNsHPnTu06Cbbs27dPlQ+Jzz77DN9++626lOP2rVu3YtKkSVi5ciU6d+5c7PYBjRo1Qrt27VTwpriZLVLiZMh9tfQ+7PjZZvXvctPLHRDowxJ5ItIdg33i161bF9u2bVM77dx++eWXIlMMqXCHom6rQIt/GWeDBVrEy11rYM3RKyrDZdf5GLQM8uafiYjIQI5cvK0CLdHxqerL7rzhjdG4shfffxNkCs1UXR3t1HKvPmty7k2yUjTZMdrL/OVMCamIScjpLyOLNM9/5sf/gim5Ld4VgT2TOmNC5+rwL+NyXxOASLf8/PxQp06dPOtq166NFStWaKcHScaLBFZ69uypzUKX5uYSfClusEWyYZo2bYqzZ+8updOQbBpZjEmCfB1qlsXm09fVGOjJvfO+N0REZhFskYaHw4YNU+PmJNr922+/qY7lUl70559/GmozLMqBCznNcRsboF9LbnLANqRZJXy/+wI+WXsKvz3TinXTREQGIIHuiT8fQkp6FmqUc8OCEU1VmQXRg5L+J54u9mqRgEhRpL/MraQ0xCWn33Pykip361yDfyATIaU9+ScGST8WzcnQ9PR0tUiwJDdbW1t1/F5cEryTAI2UFZk6aZQrwZZfQqPUCUUJThIR6YLBTrH07t0by5cvx5o1a9QH+uTJk3Hy5En88ccf6NKli6E2w6IcMHC/ltye71RNNdyTUdCafgFERKQf8sVl1sazGP/jARVokTOxK55pxUALGYX0l5GeLlXLuqG0i4Pq0VIQWS/lU2Q6ZKzz7t278fHHH+PcuXNYunSp6qn47LPPqvulfKd9+/Z49dVXVWPc8PBw1YtFTo4++uij2ueR/i5SWqQhvVfWrl2resJIkEUGX8hl7j6Npqpd9bIqw0WaNP924KKxN4eILIhB81ml+7l0Ppf+LElJSdi+fTu6du1qyE2wqAkUxgy2SNnS6DZV1PVP155WZ7mIiEj3pBnqxJ8P47N/z2jPws4f3oRfYsmkJi8VRNZLnxoyHVLaIyVCP/30E+rVq6cmBn3xxRcYOnSo9jHLli1Tj5N1UnI0depUfPTRR3kCJ5GRkbhy5Yr29u3bt9WIaClJkmN7yWSXXi/Sl9HUycjnES1zMnsW7Yzg1DsiMr8GuZbG2A0Xz16LR5cZW1V2yZF3u8L+zkQAQ4pLSUe7TzapEZTSnHFgkwCDbwMRkanvrx+E9MoY+/1+7L9wS2UTvPtIXQxrkbf3GZGxyTSi2ZvPF3vyEpGp7auliXWLjzeo6V3fj26GttU5BpqIHpzBihKl9lPKhwqTmZlpqE2xCJqslgb+nkYJtAgPJ3s826EaPlpzEl+sO4NHgivAiQdVREQ6IWNyn1y0DxdvJcPdyQ6zhzbiFwAySRJQkTHPz3aslmfyEgMtZC7k3+xjjf2xeNcFNQaawRYiMqtgi6Qs5ibNtw4ePIjFixerOk+6v+a4jQzcHDe/YS0r47sd4bgcm4Ifdl/AU22rGnV7iIjMUXJaBmxzjQi+Hp+CV34+rAItlb1dVCPcezUtJbL2yUtED2J4q0AVbNlwKhqRMUmo5M3m40RkJsGWPn363LXuscceUyOhpXGuNNKi4tt/J7OlsRH6teQmmSwy0vG1FUfx9aZzGNg0QGW8EBFR8Usw5mwJy1OCMaJlIBaOaooP/zqJyb3qoIyrA99OIiI9CirrhnY1ymLrGRkDHYG3enEMNBE9GKOfdmjevDnWr19v7M0wK7FJ6TgXnaCuN6xU2tibg/6N/BFU1hW3ktIxf2uYsTeHiMisMlqk18WXG85qx+fK5cyN51Qq+4d96zHQQkRkIKNaBarL5aFRSEwteKQ5EZFZBFuSk5Mxc+ZM+Pv7G3MzzM7BqJyslkBvF226rjHZ2drg1W411fX528NxPT7V2JtERGQWpHRIMloKsmhXhNF6chERWaP2Ncqq4+v4lAysPHjJ2JtDRGbOYEdxZcqUgZeXl3aR2+7u7vjuu+/w6aefGmozLMKBC8Yb+VyYbnXLIzigNJLSMjFr41ljbw4RkVmQHi2ajJb8ZL3cT0REhhsDPaxlTnaLlBJxaCsRmUWwZcaMGXmWr776Cn/++ScuXLiARx55pNjPs3XrVvTu3RsVKlRQ041WrVp112NOnjypnlPGx0lAp0WLFoiMjNTen5qaiueffx4+Pj5wdXVVj7148SLMxYFI02iOm5v8LV7rnpPdsnRvpGosRkRERZNmuNKjpSCyXu4nIiLDGdDEHy4OtjhzLQG7zsfwrSci0w+2jBw5EiNGjNAuw4YNQ/fu3VWGS0kkJiYiODgYs2bNKvD+8+fPo02bNqhVqxY2b96Mw4cP4+2334aTk5P2MRMmTFDTkZYtW4bt27cjISEBvXr1Movx05lZ2TgUddvkMltEqyAf1VgsPTMbn687bezNISIyeZlZWRjVqkqB98l6GZ9LRESGI4MepB+hWLgzgm89EZnmNKIjR44U+7ENGjQo1uN69OihlsK8+eabePjhh/HJJ59o11Wt+t844tjYWCxYsADff/89OnfurNb98MMPCAgIUI16u3XrVuDzSjaMLBpxcXEwhjPX4pGQmgFXB1vULO8OU/O/bjVVF/ffD1/G0+2CUKeCh7E3iYjIZDk72GF8hyCVqi49WjTTiCTQIusd7W2NvYlERFZnRKvK+H73BWw4eQ1RN5MQ4MUx0ERkYsGWkJAQVV5yr3pHeYwuskqysrLw119/4X//+58Kmhw8eBBVqlTBpEmT0LdvX/WY/fv3Iz09HV27dtX+nJQk1atXDzt37iw02DJlyhS89957MLYDd0Y+h1QqDVubUjA19Sp6olcDP/x55Ao+XXsKC0c1M/YmERGZNAmoNAn0wrgOQWr6haezg8poYaCFiMg4qvm6o211H2w7ewM/7L6ASQ/X5p+CiEyrjCg8PBxhYWHqsqhFHqML0dHRqiRo6tSpqkTp33//xaOPPop+/fphy5Yt6jFXr16Fg4PDXeVL5cqVU/cVRgI2khWjWaKiomAMBy6YZglRbq90rQk7m1LYdPo69oSx1pWIqCjR8SkY/t1etP1kE5wdbOFgZwMXB72eCyEionsYcadR7rJ9UUhOM/1WA0RkevR6NFe5cmUYkmS2iD59+uCll17SZtdIxsqcOXPQvn37Qn9Wsm8kw6Ywjo6OajGVzBZTDrYE+rhiUNMA/LgnEtP+OYUVz7Qq8r0lIrJmmglzZd0c4ebIhrhERKagYy1fVPJyQeTNJKw6dAlDmlUy9iYRkZkxWINcjRMnTuCff/7B6tWr8yy6INOF7OzsUKdOnTzra9eurZ1GVL58eaSlpeHWrZyD29xZMZLdYspuJqYh/Eaiut6wUmmYshc7VYeTvY2anLT+ZLSxN4eIyGSFRuR8HjU2oQlzRETWTsr1h7fMOXG8aAfHQBORCQdbpFRIpghJb5SePXuqHiqySJmPLLog5UFNmzbF6dN5J+GcOXNGm2XTuHFj2NvbY926ddr7r1y5gmPHjqFVq1YwZQfvZLUElXVFaRcHmDJfDyc82Tpnwob0bpEpSkREdLfQO5ktTQIZbCEiMiUDmgTA2d4Wp6/FY3fYTWNvDhGZGYMFW1588UXVrPbatWtwcXHB8ePHsXXrVjRp0kSNaC4u6cly6NAhtQjp+SLXNZkrr776KpYvX45vv/0W586dUyOi//jjD4wfP17d7+npidGjR+Pll1/Ghg0bVBPdJ554AvXr19dOJzJV+y+YfglRbmPbB8HT2R5nriVg5cFLxt4cIiKTk5KeieOXY9X1xpW8jL05RESUixzH9mtUUV1fzDHQRGSqwZZdu3bh/fffR9myZWFjY6OWNm3aqCk/L7zwQrGfJzQ0FA0bNlSLmDhxoro+efJkdVuyZKQ/i4x+lgDK/PnzsWLFCvVaGjNmzFBZNQMHDkTr1q1V8EcCMra2pj1iU9OvxVxSzeUDSkaXihnrziA1g83FiIhyO3IxFumZ2Sjr7ogAL2e+OUREJmZEq5xGuf+euIqLt5KMvTlEZEYMFmyR0c5ubm7a3iqXL19W16W8J3/ZT1E6dOigmtnmXxYtWqR9zJNPPomzZ88iOTlZZb1Iw9zcnJycMHPmTMTExCApKUkFWgICAmDKMjKzcDgq5+xnIzMJtmg+oMp7OOHS7WT8sDsn+4iIiPJmLDapXIaNxImITFCNcu5oXc0bUhHPY1kiMslgi/RqOXLkiLrevHlzlXmyY8cOle1StWpVQ22G2Tp1NR7J6Zlwd7JDtbI5QStz4GRviwmdq6vrX286h/iUdGNvEhGRydh/4aZZZSwSEVn3GOhIVf5JRGRSwZa33npLO5r5ww8/xIULF9C2bVusWbMGX331laE2w2xpSogaVioDGxvzGqP8WGN/VPVxVdOU5m8LN/bmEBGZBMnK1GS2MNhCRGS6OtUuB/8yzridlI7fD7EPIRGZSLAlJCRENalt1qwZ+vXrp9ZJJouMgL5x44YaufzQQw/pezPM3gFtc1zTHvlcEDtbG7zSraa6Pn9bGG4kpBp7k4iIjC7sRiJuJaXD0c4GdSt4GntziIioOGOgd15QwXIiIqMHW6RkSLJaKlSogMcff1xNANLw8vJijXox7Y80r0lE+fWoVx4N/D2RmJaJWRvPGXtziIiMbn9Ezn492L80HOwMlmhKRET3YWCTANSp4I6JXaojLTMLMQmpSMvIQlJaBt9PIiqQ3o/u5s6di6tXr2LevHnqsmvXrggMDFS9WjTjmqlo1+NTEXUzGaVKASFmmNkiSpUqhde611LXf9xzAVE32c2diKxbqKZfS6B5BtGJiKxJaRcHLBvTUk2Ra/rRejT+cD2afLQOc7eEIZV9XIioAAY5lSbTf4YNG4aNGzfi3Llz6vqCBQtUOVG3bt3w888/G2IzzL5fSw1fd3g42cNcta7mg7bVfdSYUxkFTUSWbevWrejdu7fKbJSA66pVq/Lc/9tvv6nPAJlQJ/fL9Ljcbt68ieeffx41a9aEi4sLKlWqhBdeeAGxsTmT2cydtl+LmWYsEhFZk+S0DMzfHoaZG88hLjknm0Uuv9xwFrM3n2eGCxHdxeB5y1WqVMEHH3yAiIgILFu2DKGhoRgyZIihN8M8+7VUNs+sltxevdO7ZeWhSzh1Nc7Ym0NEepSYmIjg4GDVt6uw+1u3bo2pU6cWeP/ly5fV8tlnn+Ho0aNYtGgR/vnnH4wePdrs/263EtNw/nqius7muEREps/WxgaLdkYUeN/CneGws2E5KBHlZQcj2LRpExYuXKjOatrZ2WHMmDHG2Ayzy2wx134tuTXwL42e9f3w19Er+PSf01gwsqmxN4mI9KRHjx5qKYxkOQoJvhekXr16WLFihfZ2UFAQPvroIzzxxBPIyMhQnx/mntUSVNYVZVwdjL05RER0D/Ep6dqMlvxkvdzv7ebI95GItAwWgpX+LNKnRUqHOnXqpEY/z549G1euXMGcOXMMtRlmRxpvSW2oaFTZ/IMt4uWuNVRX9w2norEvIqdnARFRcUgJkYeHR5GBltTUVMTFxeVZTLXpObNaiIjMg7uTPTycC/7skfVyPxGRQYMtS5cuRZcuXVSQRZrlDho0CGfOnMGWLVswfPhwODs763sTzNqJK3FIzchCaRd7VPVxhSWoWtZNdXQX0/4+xfF5RFQsMTExqgx17NixRT5uypQp8PT01C4BATn7G1OcRNSkspexN4WIiIohMysLo1pVKfA+WZ+RlcX3kYgMG2wZOXIk3NzcVGPEqKgodRBcrVo1fb+sxfVraRhQ2qLGZE/oXB2OdjYIvXALG09FG3tziMjESXZKz549UadOHbzzzjtFPnbSpEkqA0azyGePqWUsHr54W13nJCIiIvPg7GCH8R2C8GKn6toMF7l8/qFqeKptFbg4mG9pKxHph973ChcvXoSvr6++X8bi+7VYWqp5OQ8njGpdBXO2nMcn/5xGh5q+qrSIiCi/+Ph4dO/eXQXuV65cCXv7olO1HR0d1WKqjl+OVRmLZSwoY5GIyBo42ttibPuqeLZjNdWjxc3RDpvPXMejs3dicq86aFejrLE3kYisKbOFgRYdTSKygOa4+T3TPggeTnY4fS0evx+6ZOzNISITzWjp2rUrHBwcsHr1ajg5OcFiRj5XLmNRGYtERNZAMlgc7GxUM1wJvmw+HY1z0QmYsPwQrsQmG3vziMiEcEaZCbsam4LLsSmQhI/gAPMf+5yfp4s9numQU1L2+bozSM3INPYmEZEOJSQk4NChQ2oR4eHh6ro0TBc3b95Ut0+cOKFunz59Wt2+evWqNqNFAi0yInrBggUq8CL3yZKZmWkBwRb2ayEiMnfv9K6LuhU8cDMxDc/+eADpmezdQkQ5GGwxgxKiWuU94OpomXWgI1sFopyHIy7eSsbSPTlfwIjIMoSGhqJhw4ZqERMnTlTXJ0+erG5Lporcll4sYvDgweq2ZkLd/v37sWfPHhw9elT1+vLz89MuptaHpbiys7NVrypLLA8lIrJGTva2mD20Edyd7HAg8jam/n3K2JtERCaCwRZzKCGqbHlZLRrODrZ4sVMNdX3WxnNISM0w9iYRkY506NBBBRfyL4sWLdI2UC/o/nfffbfIn5clMDDQLP9OUTeTcT0+Ffa2pdDA39PYm0NERDpQ2dsVnw0IVtcXbA/HP8eu8H0lIsMFW2T0s4ztzO/27dvqPrrb/kjL7deS24Am/qji44qYxDTM3xZm7M0hItKb/ZE31WW9ip7qbCgREVmGbnXL4+l2Od9pXv3lCCJuJBp7k4jIWoItERERBdbYp6am4tIlNke9633JyMTxS3FWkWpub2uDV7rWVNe/3RqGmIRUY28SEZFehEbcKSGy8CA6EZE1erVbTTQNLIP41Aw88+MBpKSbb38xIjKDYIvU5Msi1q5dq70ti4zw/OCDD8w2HVyfjl2KQ1pmFrxdHVDJywWWrke98qhf0ROJaZn4etN5Y28OEZFem+M2CWSwhYiMQ05yPvHEE/D29oaLiwtCQkJUj6zczc2fe+45+Pv7w9nZGbVr18Y333xzz+ddsWIF6tSpA0dHR3Upx/nWRk4gzhzSSB2/n7wSh3d+P27sTSIiI9J719W+ffuqSxlvOWLEiDz32dvbq0DL9OnT9b0ZZtuvpWEl6xgNamNTCv/rXhPDFuzFD7sv4Mk2gfAvY/lBJiKyHnEp6WrUvWhk4RmLRGSabt26hdatW6Njx474+++/4evri/Pnz6N06f/6A7700kvYtGkTfvjhB3Wc/u+//2L8+PGoUKEC+vTpU+Dz7tq1C4MGDVInUR999FEVaBk4cCC2b9+O5s2bw5qU93TCl4MbYth3e7A8NEoF1wc0CTD2ZhGRJWa2ZGVlqaVSpUqIjo7W3pZFSohk1GevXr30vRlmO4nI0kuIcmtbvSxaV/NWGT0z1p019uYQEenUwcjbyM6Gylb0dXfiu0tEBjdt2jQEBARg4cKFaNasmQqmdOrUCUFBQXkCJ3KCVJqUy/1PP/00goOD1YS5wnzxxRfo0qULJk2ahFq1aqlLeV5ZXxj5HhAXF5dnsRRtqvvgpc45AyDe/v0YTl21nN+NiEywZ0t4eDh8fHwM9XJmTSZtaIItjSpZ7iSigvyvWy11+dvBizh9NecMMBGRJdgfkdMct4kVBdGJyLRIGX+TJk0wYMAAldXSsGFDfPvtt3ke06ZNG/U4KTeSY1LJcjlz5gy6detW6PNKgKZr16551snjd+7cWejPTJkyBZ6entpFgkCW5LmO1dCuRlmkpGfhmR8OID4l3dibRESWPPp5w4YNeOONN/DUU0/hySefzLPQfy7dTsa1uFTY2choUOsKtgQHlMbD9curs7+frj1t7M0hItL9hDkGW4jISMLCwlT/lerVq6teiuPGjcMLL7yAJUuWaB/z1VdfqZ4r0rPFwcEB3bt3x+zZs1UQpjBXr15FuXLl8qyT27K+MJL9Ehsbq12ioqJgaSXyXwwKgZ+nE8JvJOL1FUdV8IqIrIfBgi3vvfeeinhLwOXGjRuqZjT3Qv85EHlbXdap4AFnB+sbDfpy15qwtSmF9SevYf+FnDPBRETmLCMzS5URCTbHJSJjkTL+Ro0a4eOPP1ZZLWPHjsWYMWPyNMCVYMvu3btVdos0zpXeitKzZf369UU+d/4egxJYKKrvoDTS9fDwyLNYGi9XB8x6vJE6gfrX0StYvDPC2JtERJbUIFdjzpw5WLRoEYYNG2aolzT75riNrHQ0aFBZNwxo7I9l+6Iw7e/TWD62hVU0CSYiy3XqajyS0jLh7miHGr7uxt4cIrJSfn5+KmslN5k2JJOERHJysspClwa3PXv2VOsaNGiAQ4cO4bPPPkPnzp0LfN7y5cvflcUivRrzZ7tYI+m/+MbDtfH+nyfw0ZqTaBBQ2mqP8YmsjcEyW9LS0tCqVStDvZxZ0/RraWhl/Vpye7FzdTja2WBvxE1sPn3d2JtDRKSTkc8NK5dRqeVERMYgk4hkOEVu0o+lcuXK6np6erpabGzyfkWwtbVVWTGFadmyJdatW5dnnUwx4rF/jlGtA9GjXnmkZ2bjuR8P4FZims7+pkRkugwWbJE+LUuXLjXUy5mtlPRMnLgcZ3WTiPLz83TGyFaB6vq0f04hK4s1rkRkvkLvBFvYHJeIjEnGOkuJkJQRnTt3Th2bz5s3D88++6y6X0p52rdvj1dffRWbN29WAy4kM116ushIZ43hw4ernisaL774ogquyLSjU6dOqUspO5owYYJRfk9TIxnanzzWAFV8XHE5NgUTlh/isS2RFTBYsCUlJQWff/652oE///zzmDhxYp6luLZu3YrevXujQoUKase1atWqPPePHDlSrc+9tGjRIs9jJM1Rypkk5dHV1VXVrv76668wBUcuxiIjKxu+7o6oWNoZ1uyZDkFwd7JT6ferD1829uYQET1weSiDLURkTE2bNlUlQj/99BPq1auHDz74QI1nHjp0qPYxy5YtU4+TdVJyNHXqVHz00Ueqma5GZGQkrly5or0tGSzyczJSWsqOJECzfPlyNG/e3OC/o6lyd7LH7KGNVOb2ljPX8fWmc8beJCKylJ4tR44cQUhIiLp+7NixPPeVpB9HYmIigoODMWrUKPTv37/Ax0jXdNnZa0gn9dwk0CJdz6Xxl4yjlqj+oEGDEBoaqpqFmUKqudRyWnufktIuDhjXPkhNJZq+7jQeru8HBzuDDtAiInpgV2KT1ZQ5afwtE9eIiIypV69eaimMnIzMfRxdEMl6ye+xxx5TCxWutp8HPuhbD//79QhmrD+jptO1rubDt4zIQhks2LJp0yadPE+PHj3UUhTpbi4fFIXZtWuX6rrerFkzdfutt97CjBkzcODAAaMHWzT9Wqy5hCh/jeuinRGIupmMn/ZGYsSd0iIiInMRGpGzX6/t5w5XR4N97BIRkQka2CQAoRE38XPoRby47CD+eqEtynk4GXuziEgPLDJNQKLtvr6+qFGjhhpnJ93Qc2vTpo1Kbbx586Zq9iVpj6mpqejQoUOhzyn3x8XF5Vl0TUbkHbwTbGlUmWc/hYuDHV7sVF1dn7nxLBJTM3T+vhMRGSJjsUllL77RRESE9/vUQ63y7riRkIbnlh5AembhzYeJyHwZ9BTbvn378Msvv6g6T5lOlNtvv/2mk9eQrJcBAwaorurS1Ovtt9/GQw89hP3796uMFyGBFikb8vb2hp2dHVxcXFT9alBQUKHPO2XKFLz33nvQp8ibSWqna29bCnUreOr1tczJoKYBmL8tDBExSViwPRwv3Am+EBGZA215KDMWiYgIgJO9Lb55ojF6z9yOfRG38Nna05j0cG2+N0QWxmCZLZI9IuPmTpw4oQIbMlZOrm/cuBGenroLLEgQpWfPnqrplzTS/fvvv9VIu7/++kv7GCkbunXrluqSLn1apEGvBGiOHj1a6PNKx3Xp86JZoqKioK8SonoVPdVOmHLY29rg5a411fV5W8Nwk+PyiMhMSDbeiSs5mZBsjktERBoymejTxxqo63O3huHf41f55hBZGIMFW2TEnPRF+fPPP1XD2i+//BInT57EwIEDUalSJb29rp+fn8pyOXv2rLp9/vx5zJo1C9999x06deqkmu2+8847aNKkCb7++utCn0eyYmQcXu5F1w5cuK1tjkt59azvh7oVPJCQmoHZ7N5ORGbi8MXbyMzKhp+nEypY+YQ5IiLKq0d9PzzZuoq6/vIvhxEZk8S3iMiCGCzYIkEOyTjRBC5kqpBM23nppZcwb948vb1uTEyMykKRoItISsrZidnY5P3VbW1tVf8WU5lERHnZ2JTCa91rqetLdl1Qkz2IiEzd/jvNcdn0nIiICvJ6j1poWKk04lMyMH7pfqSkZ/KNIrIQBgu2eHl5IT4+Xl2vWLGidvzz7du3tQGQ4khISMChQ4fUIqQvi1yXPjBy3yuvvKKmDUVERKhGuVJKJOOdH330UfX4WrVqoVq1ahg7diz27t2rgkDTp0/HunXr0LdvXxgz1fzU1ZxUczbHLVjb6j5oWdUbaZlZ+GLdGYP+fYiI7keotjkug+hERHQ3BzsbfP14I5RxscexS3F4/88TfJuILITBgi1t27ZVAQ0hpUMvvviimhQ0ZMgQVc5TXNJjRcYza0Y0S78VuT558mSVnSJ9V/r06aMmEY0YMUJdSvDF3d1dPd7e3h5r1qxB2bJlVSCmQYMGWLJkCRYvXoyHH34Yxkw1z8oGKng6wc+TqeYFkUyo/3XP6d2y4sBFnL2WE7wjIjJFWVnZ2l5cjTmJiIiICiFlpl8MbohSpYCleyKx8uBFvldEFsBg04ikT0pKSoq22awEPbZv345+/fqpiUHFJeOZZURyYdauXXvP56hevTpWrFgBU3LgztnPhjz7WaSGlcqge93y+Of4VXy69jTmDW9imD8QEVEJnY1OUGnhLg62qO2XE/AnIiIqSPsaZfH8Q9Xx1YazeOO3Y2oyaY1y/OwgMmcGLSOqUKFCzova2OB///sfVq9ejc8//xxlyjC9+kAkm+MW1yvdasCmFPDviWvaPjdERKZGs38KCSgNO1uDfdwSEZGZerFTdbSp5oPk9Ew888N+1WaAiMyXwY7+pMQnOjq6wAa2cp81k0yd/1LNGXi6l2q+7hjQOEBdn/bPqSIznYiIjCX0wk11yf06EREVh61NKXwxOATlPBxx/noiXv/tKI9zicyYwYIthX0hTk1NVaOgrVnYjUTcTkqHo50N6vjpfqS0JXqxc3XVUGxv+E1sOXPd2JtDRFRoZguDLUREVFw+bo6qYa4EXv44fBk/7L7AN4/ITOm9Z8tXX32lbW46f/58uLm5ae/LzMzE1q1b1YQga6bp11K/oqcKIFDxGomNaFkZ324Lx7R/TqNd9bJqPDQRkSm4Hp+KCzFJqtmh9JoiIiIqriaBXni9ey18tOYkPvjzJBr4l0ZwQGm+gURmRu/BlhkzZmgzW+bMmZOnZEgyWgIDA9V6a6bp18KznyUzvkM1LNsbhZNX4vDHkcvoE1JRL38fIqL7zWqp4esOT2d7voFERFQiT7Wtgn0RN1WPwvE/HsBfL7RBaRfrrgYgMjd6T6MIDw9XS/v27XH48GHtbVlOnz6tpgc1b94c1kw7iYhnP0ukjKsDxravqq5P//cM0jKy9PHnISIqsf2afi2BzGohIqKSk6qATwcEo5KXCy7dTsbLPx9GVhb7FBKZE4PVrGzatCnP1CEpITp06BBu3bLuaTJxKek4Ex2vrjeqzPTAknqyTRVV2xp5MwnL90Xq4S9ERPQA/VoYRCciovskmZGzhzZSbQY2nIrGnK3n+V4SmRGDBVsmTJiABQsWaAMt7dq1Q6NGjRAQEIDNmzfDWh2Oug3pHRzg5Qxfdydjb47ZcXGww4udqiGorBsCvFxUdktMQqq6TErjuDwiMryU9EwcuxSnrjdhZgsRET2AehU98d4jddX1z9aexq7zMXw/icyEwYItv/zyC4KDg9X1P/74AxERETh16pQKwrz55puw9rOfjXj2874NaloJv45rqd7LJh+tQ+MP16vLuVvCkJqeqbs/FhGViDRA7927NypUqKDSoVetWpXn/t9++w3dunWDj4+Pul+yHQuaWPf888+rx7i6uuKRRx7BxYsXTfovcfRSLNIys1TWnaR/ExERPYjBTQPQr1FFSBXR8z8dRHRcCt9QIjNgsGBLTEwMypcvr66vWbMGAwYMQI0aNTB69GgcPXoU1t4cl8GW+5eZlYWFO8Mxc+M5xCXnZLPI5ZcbzmL25vPMcCEyksTERBVknzVrVqH3t27dGlOnTi30OSQgv3LlSixbtgzbt29HQkICevXqpTIkTX/kc2kVRCIiInoQ8lnyYd96qFHODTcSUlXAJSOTvQqJYO3TiDTKlSuHEydOwM/PD//88w9mz56t1iclJeWZUGRNpMnVwUjNQTmbKN4vWxsbLNoZUeB9EoR5tmO1+35uIrp/PXr0UEthhg0bpi4l07EgsbGxqvz0+++/R+fOndW6H374QZWfrl+/XmXFFESyYWTRiIvLKekxlNCInP16k8peBn1dIiKy7NL5b55ojEdmbsee8Jv4fN0Z/K97LWNvFhGZQmbLqFGjMHDgQNSrV09FZ7t06aLW79mzB7VqWeeO4vz1BMSnZMDZ3ha1yrsbe3PMVnxKujajJT9ZL/cTkfnZv38/0tPT0bVrV+06KUmSz5GdO3cW+nNTpkyBp6endpHgjKFkZ2fjgCaIzn4tRESkQ9KjcGr/Buq6ZG9vOHmN7y+RCTNYsOXdd9/F/Pnz8fTTT2PHjh1wdHRU6yWr5fXXX4c10qSaN/D3hJ2twf4UFsfdyR4ezgUnacl6uZ+IzM/Vq1fh4OCQZ5KdJlNS7ivMpEmTVFaMZomKioKhhN9IxM3ENDU5om4FD4O9LhERWYfewRUwomVldX3iz4cRdTPJ2JtERMYuIxKPPfbYXetGjBgBa6U9+8kSogfu2TKqVRXVoyW/ES0DcSjqFqqWdVPNKonI/En2SFG9UCSYrwnoG1ronSB6sL8nHO2ss0SWiIj0642etXHoYqyaavrs0gP4ZVxLfuYQWXuwZcOGDWqJjo5GVlbepk7fffcdrA2b4+qGs4MdxncI0vZokdIhyWgZ2SpQLQPm7FalRDOHNETzqt46elUi0jdpqp6WloZbt27lyW6Rz5BWrVqZ5B/ggLY5Lvu1EBGRfkgw/+vHG6LnV9tx5GIsPvrrJN7vU49vN5GJMVjtynvvvafq7iXYcuPGDXXwnHuxNreT0nAuOkFdb1iptLE3x+w52ttibPuqCH2zC/a/1VldjmsfpAIvNqWA6PhUPD5/D77ZfF41JiYi09e4cWPY29tj3bp12nVXrlzBsWPHTDbYoslsYcYiERHpk38ZF3wxKERdX7LrAlYfvsw3nMhaM1vmzJmDRYsWaadPWLuDUTkjn6v4uMKb5S0669IuNO+nA2wQ6GOH359rjTdXHsPKg5cw7Z9TCI24iekDg1HaxUE3L0xEBZIxzefOndPeDg8Px6FDh+Dl5YVKlSrh5s2biIyMxOXLOQeIp0+f1ma0yCLNbUePHo2XX34Z3t7e6udeeeUV1K9fXzudyFSD6Ay2EBGRvnWs5YtnOwbh603n8fqKI6jj545qvhy6QWR1mS2SCm6qZyKN4eCds5/MajFMEObzgcGY2q++alq54VS0SrvUjN0mIv0IDQ1Fw4YN1SImTpyork+ePFndXr16tbrds2dPdXvw4MHqtgTnNWbMmIG+ffuqaXatW7eGi4sL/vjjD9Vc3VT7cFUt6wovVwZziYhI/17qXAMtq3ojKS0Tz/xwAElpBU/oJCILDrY89dRTWLp0qaFezuTtv3NQ3qhS3ikbpB/STHNws0pYOb4VAr1dcOl2MgbO3YWFO8JVs00i0r0OHTqo/77yL5LlKEaOHFng/TK9TsPJyQkzZ85ETEwMkpKSVKDFkKOcSyI04k4JEffrRERkIDLR9MshISjr7oiz0Qkqm5vHtkRWVkaUkpKCefPmYf369WjQoIGqw8/t888/h7XIzMrGocicMiIGWwyrbgVPrH6+DV779Qj+PnYV7/1xAnvDb2LaYw3gwRHRRKSDfi1NAhlEJyIiw/F1d8KsIQ1Vf0Ipm28a6IXHm1fin4DIWoItR44cQUhIThMnaW6YW1EjPC3RmWvxSEzLhKuDLWqWZ12loUlQZfbQRli8MwIfrTmpgi4nr8Th66GNVDCGiKik0jOz1AhOwX4tRERkaDJx85WuNVV/wndXH0cDf0/Uq8jjWiKrCLZs2rTJUC9l8vbfOfsZUqk0bGVUDhmcBPhGtq6C4IDSeG7pQUTEJOHR2Tvx3iN1MbhpgNUFAInowRy/HIfUjCyUdrFHVR83vp1ERGRwY9tVxf4LN7H+ZDSe+XE//nyuLTxd8lYTEJEF9mzJ7eLFi7h06RKslaaJIkuIjK9hpTL464U26FTLF2kZWZj021FM/PkwElPZXIyIik+mnGn6tdgwiE5EREYgnz/TB4TAv4wzom4m45VfD7N/C5E1BFuysrLw/vvvq1GelStXVmM/S5cujQ8++EDdZ00Oavq1VGZdvymQEdDfDm+C13vUUplGUuva5+sdOHst3tibRkTmFkTnfp2IiIxIMlmkXN7B1gbrTlzDt9vC+PcgsvRgy5tvvolZs2Zh6tSpOHjwIA4cOICPP/5YTZl4++23YS1iElIRfiNRXW8UwGCLKZ0JGNc+CEufag5fd0eci07AI7N2YOXBi8beNCIycTL1QTOJqAmDLUREZGQN/Etjcu866vq0f06rYRBEZMHBlsWLF2P+/Pl45pln1DSi4OBgjB8/Ht9++612DKg1ZbUElXVlDaWJNhdb82JbtKnmg+T0TLy0/DAm/XYEKemZxt40IjJRF28lIzo+FXY2pVQfKCIiUyal/E888QS8vb3h4uKiBljs379fe7/0rSto+fTTTwt9TjmWL+hnZBopGcfQ5pXQJ6SCmoL63NIDuB6fyj8FkaUGW27evIlatWrdtV7WyX3WlmrOaRWmy8fNEYufbIYJnatD+uT+tDcK/WbvRMSdjCQiooKantet6Akne1u+OURksm7duoXWrVvD3t4ef//9N06cOIHp06er0n6NK1eu5Fm+++47FTjp379/kc/t4eFx1886OTkZ4Leigsjf7ONH66Oar5s6IfDisoMq8EJEFhhskUwWKSPKT9bJfdZCdnZerg5sjmvipHfLhM41sOTJZvB2dcCJK3HoNXM71hy9YuxNIyITE3oh54QBS4iIyNRNmzYNAQEBWLhwIZo1a4bAwEB06tQJQUFB2seUL18+z/L777+jY8eOqFq16j2/3Of/2aKkpqYiLi4uz0K65epoh2+GNoKzvS12no/Bl+vP8C0mssRgyyeffKIi43Xq1MHo0aPx1FNPqeuSdlhUWmJ+W7duRe/evVGhQgW1U1+1alWe+0eOHHlXCmOLFi3uep5du3bhoYcegqurq4rmd+jQAcnJydCX5LQMNe3mxU7Vsf21juhcp5zeXot0p231svjrhbZoGlgGCakZGP/jAby7+rj6WxIRif0XcspDGWwhIlO3evVqNGnSBAMGDICvry8aNmyoSvoLc+3aNfz111/q2P1eEhIS1BAMf39/9OrVS/VoLMqUKVPU4AzNIkEg0r3q5dwxtX99df2rjeew+XQ032YiSwu2tG/fHmfOnMGjjz6K27dvq9Khfv364fTp02jbtm2xnycxMbHQLBmN7t2750lhXLNmzV2BFnlM165dsXfvXuzbtw/PPfccbGz083akpmdizpYwNPloHdp+sgktpmzA97suqPVk+sp7OuGnMS1UA12xaGcEBszdhYu3koy9aURkZPEp6Th9NedsLMtDicjUhYWF4ZtvvkH16tWxdu1ajBs3Di+88AKWLFlSaM9Fd3d3dcxeFGkLICdQJZjz008/qfIhKVc6e/ZsoT8zadIkxMbGapeoqKgH/v2oYH1CKqoeLuKl5Ydw6bb+TjAT0X9KZcsYBTMlWSsrV65E375982S2SDAnf8ZLbpLp0qVLFzV2urgk1VEWDUl1lAi8fDhIjWpRGS0SaPlyw90fNpLlMrZ9Vbg42BV7O8i41p+4hpd/OYzY5HR4Otvj84HB6FSbWUpEpkz213LW9F776/ux9cx1DP9uLwK8nLHtfw/p9LmJiHTNwcFBZbbs3LlTu06CLXLiUU5GFhREkWNmmR5aEllZWWjUqBHatWuHr776yuj7aoIa9jBgzi4cvRSLkIDS+HlsSzjYGey8O5FV0vt/YRLRHjJkSIF1mLIzffzxx1WUXZc2b96sUiNr1KiBMWPGIDr6v3Q5ub5nzx51f6tWrVCuXDmVdbN9+3a9pDra2thg4c7wAu+T9XZ6yqYh/ZDyrz+fb4Ngf08VcBm9OBRT/z6FjEyWFRFZc3PcJpW9jL0pRET35Ofnp8r4c6tduzYiIyPveuy2bdtUBrqU/peUZIs3bdq0yMwWMixp4D57aCN4ONnhUNRtfLzmJP8ERHqm92/60o9FAhMFRag1QYuS9Gy5lx49euDHH3/Exo0bVXd1idRLbxZNVoomsPPuu++qQMw///yjIu/SHEwfqY6SYh6XnFHgfbJe7ifzEuDlgl/GtcLIVoHq9pwt5/H4t3twLY7jDYmsNdjSqHIZY28KEdE9SWmPBFBykzJ/6bWS34IFC9C4ceP7GmQhifOHDh1SwR0yrWPY6QNDtGXxfx3h4Acisw62SENbacJVmIEDB6rAiK4MGjQIPXv2RL169VQjXRlrJx8i0txLk9Yoxo4di1GjRqnGYDNmzEDNmjVVA9/CODo6qoBR7qU43J3s4eFccJmQrJf7yfxI2uW7j9TF1483gpujHfZG3MTDX27D9rM3jL1pRGQgktF2MFKT2cJgCxGZvpdeegm7d+/Gxx9/jHPnzmHp0qWYN28enn322TyPk4z0X375pdCsluHDh6sTkRrvvfee6gEjJzUlyCINdeVSesKQaelSp5xqYyBeW3EEYdcTjL1JRBZL78GWCxcuqJKdwvj4+Oi1IZZE1CVar8la0UTYi5tC+aAys7IwqlWVAu+T9Rl3gj9knno28MMfz7dBbT8PxCSmYdh3e/DF+jPIzDLbVkhEVEynr8UjMS0T7o52qFHOne8bEZk8Ke2RfofSxFZOTEr/wi+++AJDhw7N87hly5ap7BRpBVAQOWaWIRQa0i/x6aefVsfTMoDi0qVL6oSrjJcm0/Nq15poVsVLO2kzOY1DO4jMMtgipULnz58v9H6JquuzCVZMTIwK5miCLIGBgWpsdHFTKB+Us4MdxncIUs1wNRkucim3ZT2b45q/Kj6uWDm+FQY3DYC0m/5i/VmMXLgXNxL+a6hMRJZbQhRSqTRsbUoZe3OIiIpFxjIfPXoUKSkpOHnypCqrz08CJ0lJSeo4vrD+iDJ9SEOyxOUEq5TtS39EyXJp2bIl/yImys7WBrOGNISPmyNOXY3H278fM/YmEVkkvY/BkS7k0sFc+qYURDqUl2T0c0JCggrQaISHh6s0RS8vL7VIL5b+/fur4EpERATeeOMNlT0jI6c1E4xeffVVvPPOO6oGNSQkRI21O3XqFH799Vfog6O9rUrXe7ZjNdWjRUqHJKNF1pPlNB2b2r8BmgZ64a1Vx7Dt7A30/GobZg5ppM4cEJHlCY1gc1wiIjJPvh5O+GpICJ6Yvwe/7r+IZoFeGNi0eANAiMhEMluknlP6pjz22GPYu3evtsGsTASSoIhEvnPXfN5LaGio6rMii5g4caK6PnnyZNja2qpIfZ8+fdQkohEjRqhLGWXn7v5fiveECRPUa0rdqgRcNmzYgHXr1iEoKAj6Ihks0ufD281RXTKjxTL1b+yP359rjWq+brgWl4oh3+5WDXSzWFZEZLGZLY3Zr4WIiMxQqyAfvNy1prou2S0nLt89PZaI7l+pbCnI1LM///wTTz75pCrpyc3b2xvz58/HI488AnMjjcMktVICR/osgyLzlJiagTdXHsWqQ5fV7U61fDF9YDBKuzgYe9OIrI4+9tdXY1PQYsoGSPXQkXe7qUbZRER0/3hsbRxyQnD04n3YdPo6Ar1dsPr5NvDgAA8i8wm2iOTkZDVmWUqA5CUl40QaaLm4uMAc8QOB7kX+nf+0Nwrv/nEcaRlZqFjaGV8PbYSQgNJ884jMfH/955HLeG7pQdSt4IG/Xih+KSwRERWMx9bGcysxDb1mbsel28noXrc8vnmikWq9QEQPxmCn4pydnbV9U4isgXxIPd68Ehr4e+LZpQdwISYJA+bsxJsP18aIVoH8ECMyYywhIiIiS1HG1UGdEJTj1H+OX8V3OyIwuk3B01SJyIR6thBZu3oVPdV4aDlTkJ6ZjXf/OKHOiEuzZCIyTwy2EBGRJZHM67d61lHXp6w5if0Xbhp7k4jMHoMtRAYgta+Skjm5Vx3Y2ZTCX0evoPfM7WxERmSGktIycPxOE8EmgZw2RkRElmF4y8ro2cAPlb1dkZCSocrgYxJS1aV89lmq5DTr+V3JsNjRj8iAZUVPtqmCkEql8dyPBxARk4S+s3fg/UfqYlDTAJYVEZmJw1GxyMzKRnkPJ1TwdDL25hAREensWPWTxxogLT0L3+0Ix/PLDiIuOQMeznYY1aoKxncIgqO9rUW926npmZizJQwLd4Zb/O9KhsfMFiIDa1SpjGqo2bFmWRU9f/23o3j558OMohOZCU1qdePAMgySEhGRxX05lMDDzI3nVPBByOWXG85i9ubzFnW8Khkt8jvJ72bpvytZeGbLmjVrYGtri27duuVZv3btWmRlZaFHjx6G2hQik2hEtmBEU8zZeh6frT2N3w5ewtFLsarUqJqvu7E3j4iK06+lUhm+T0REZFFsbWywaGdEgfdJEGZc+yDVSFeCEpqBRZIRI1fltlrkf5r7ch7w3/35Hy/XtOvv3C7suYp4Hs2r/Xfffz979+uUgrujHd7uXUf9ToX9ruM7BuHklTiUdrGHl6sDHO2Y6UImGmx5/fXXMXXq1ALH48p9DLaQtbGxKYXxHaqpTJcXfjqIs9EJ6D1zB6b0q4++DSsae/OIqABZWdnaYEuTQAZbiIjIssgAB02WR36yPiYxVV2evhYPc1aznDtuxOf8LgWR9dfjUzFh2SHt7yoBGi83B3i7OsDL1RE+bnLpAG83R7XO+85tHzdHlHFxgIMdi0isncGCLWfPnkWdOjkdrnOrVasWzp07Z6jNIDI5Lap6q7KiF5cdxM7zMZiw/BD2hN/EO73rwIm1okQm5dz1BMSlZMDZ3ha1/TyMvTlEREQ65e5kr/qWFBSEkPVl3R3xfp+6yMjKRnY2kA3NZc5JdLlE7vW57rtzl1qnHqG97+7n0chzX1Gvo33evOvkivY1cl13tLNRv0tRv6u3q6N6LhluIb9vfGqGWi7EJBXrvfRwslOBl5yATNEBGi8XB9jZ2hikdEqylySoJn/rjKwsuDiwjau+GOyd9fT0RFhYGAIDA/Osl0CLq6uroTaDyCTJzv770c1VjejMjWfx095IHI66jdlDGyHQh/99kHnaunUrPv30U+zfvx9XrlzBypUr0bdvX+39ctDz3nvvYd68ebh16xaaN2+Or7/+GnXr1tU+5urVq3j11Vexbt06xMfHo2bNmnjjjTfw2GOPGeV30mS1BAd4wt4AB0VERESGlJmVpRrEyjFpfrJeGsQ3r+ptEX8UCTwU9btKoOXfl9qr4xVNVk9MYhpiEtLU9ZvqMg03ElJxU7s+DTcTU5GVDXVyRpawG4nF2h4pV1IBGFdHbRCmoKwZuZTMGVsbbf1UsbAZsAUHWx555BFMmDBBHWwHBQVpAy0vv/yyuo/I2skOc2KXGmhSuYzKbjlxJU6Nh5au8D3q+xl784hKLDExEcHBwRg1ahT69+9/1/2ffPIJPv/8cyxatAg1atTAhx9+iC5duuD06dNwd8/pXTRs2DDExsZi9erV8PHxwdKlSzFo0CCEhoaiYcOGBv+rhEbcKSGqzJHPRERkeZwd7NQkHmHpE3qK+7tKjxdPF3u1VC1bvJLj2OT0nODMnQBMTpAmd1Am5z65fTMpTWXb3E5KV8v56/cOzkgfGgm45JQ0/ReEkaBMTnAm53ZOJo0jnOxsMHdrWJ7AkqYZsBjbviozXPSgVHbuPC09koPl7t27qwNkf39/te7ixYto27YtfvvtN5QuXRrmJC4uTmXryO/l4cFUctKtK7HJeH7pQYTeOYs+qnUgJvWozdpPMltyoJI7s0U+eipUqKCC8K+99ppal5qainLlymHatGkYO3asWufm5oZvvvlGBV00vL29VaBm9OjRBt9fd/h0kxrbvnBUU3Ss6ftAz0VERP/hsbVpkUk8dlZSbmLs31WyhW4naQIy/wViCgzQJKapgExJSNBl+2sd0WLKhkJLpkLf7MLvGeZeRrRz506VCn748GE4OzujQYMGaNeunaE2gchs+Hk646enW6hJRRKFXrgjAgcjb2PusMaq/pO1lmTuwsPDVYlQ165dtescHR3Rvn179VmhCba0adMGy5cvR8+ePVVQ/ueff1ZBmQ4dOhT63HK/LLkP4HVB0oQl0CIaBbA5LhERWS5NsEEyJISDGgptmYz9u0p2uyoXktcvd+/HZ2RmqWyY3KVLmqDMDZUt81/WjBy7lHVzVLeLagYsgSbN70+6Y2foM5tyYJ374JqICib9ICY9XBtNAr3w8s+HEJ+SodZ9s+W8GslnyWmdZPkk0CIkkyU3uX3hwgXtbQm0SNmQZLPY2dnBxcUlTzlqQaZMmaJ6weirX0uNcm4qlZiIiIjI0KSRrq+7k1qKIy0jS10W1QxYAk47zl1HqyAf9Z2dzCDY8tVXX+Hpp5+Gk5OTul6UF154QZ+bQmS2utQpp6YVXbyVhIU7wjFz43/Tu1hrSeYu/we6lBflXvfWW2+p5rnr169XPVtWrVqFAQMGYNu2bahfv36Bzzlp0iRMnDgxT2ZLQEDAA2/rgTvBlsbs10JERERmQkZQF9UMeETLQGw7ex1Pf78ftcq74+l2VdE7uAIHAZh6sGXGjBkYOnSoCrbI9cLIgTWDLUSFC/ByQTkPJ4z9YX+B90tTr2c7VuNbSGajfPny2gwXP7//GkBHR0drs13Onz+PWbNm4dixY9oJRdJwVwItMrVozpw5BT63lCPJomuaHkqNK7OEiIiIiCyjGfC4DkFYtCMcrg62OHU1HhN/PoxP157Gk62rYHCzANXHhkww2CI1+QVdJ6KSk1rKomot41LSVSdyInNQpUoVFXCRPl6aqUJpaWnYsmWLapArkpJy+qPY2OStnba1tUVWVk5KrKGkpGfi6MVYdV0mhhERERGZE2k5IFOH5ARt7mbAzva2eKZDNTzerDJ+3HtB9Yq8EpuCj9acxFcbz2Jo88pqWIec+KWSMVj3n/fff1974JxbcnKyuo+IiiY7RIlAFySn1tIWzy89gH+OXdHWZpL5kPRO+btJgzO5lM745i4hIQGHDh1SiyboLtcjIyNVRqNMIvr4449VDxbJXhk5cqTqyfL444+rx9eqVQvVqlVTzXL37t2rMl2mT5+uAjSaqUaGcvxyLNIys9QIxcreLgZ9bSIiIiJdkN4sUlYkzXDlMvfUJelHN75DNTW5aFr/+ggq66p6Rs7Zch5tpm3Eq78cxtlr8fxDmOLoZzkTeeXKFfj65h2VGRMTo9ZlZmbCnHA8HRnjy/icLWEF1lq+8FA11KvoqWothXwh7NfIHwObBKCarxv/WCYuNT0Tszefvyut09wbH2/evBkdO3a8a/2IESOwaNEi1Z9FGtnOnTtX9WVp3ry5Kg+qV6+e9rFnz57F66+/ju3bt6vgjQRfXnnllTyjoA2xv5675Tym/H0KXeuUw7zhTe7rOYiIqHA8tiYyLVlZ2dh4Khpzt57HvoicUmrRqZav6uvSrIoXm+maSrBF0sCvXbuGsmXL5lm/ceNGNWni+vXrMCf8QCBT+1IeHZ+CH/dE4df9F9WYN42mgWVU0KVnA7880Wsy/SDai52qq3RP/t2Mv78esyQU605cwxsP18LT7QqfhERERPeHx9ZEputA5C3M2xKGtSeuQhM9CA4ojbHtqqJb3fJqfDUZIdhSpkwZFfHSHOTmnjIh2SxypnLcuHHqbKY54QcCGYuUl9jZ2OSptcz9ZTw9MwubTkVj+b4obDodjaw7/4W7OdrhkZAKGNw0APUrejISbSKkZKjJR+sKHcUX+mYXleZJxttfy8dkkw/XIyYxDSueaclpREREesBjayLTF3Y9AfO3h6uTu5q2BVJe/VTbqhjQ2B9OZpyRbZbBlsWLF6sD1SeffBJffPGFOuDVcHBwQGBgIFq2bAlzww8EMgdXY1Ow4sBFFXiJvPlfzyQZ6yZBl74NK6K0i4NRt9FaScPVIxdvI6CMC1pO3Vjo4/a/1VnV1ZLx9tfhNxLR8bPNKuh19N2ucLTjgQQRka7x2JrIfEgW/ZKdEViy+wJuJ6WrdV6uDhjesjKGtwxU18mAZUQyYaJ169aws7OMMgZ+IJC51VzuDo9RQZe/j13VRqLly2OPeuUxqEkAWlT1hg1TAPXqenyqyjpaf/Iatp29AWcHW9WErMWUDcxsMeH99S+hUXj11yNqCtGvz7TSyzYSEVk7HlsTmWfG/c/7olS2y8VbyWqdk72NamHwVJuqqGTlQwUMFvlwd3fHyZMnUb9+fXX7999/x8KFC1GnTh28++67KsuFiPRDgiitgnzU8l5SGlYdvIRl+6Jw6mo8fj90WS2VvFwwqGkAHmvsz9FuOiKx7DPXElRwRZZDUbe1da7C09ke56MTVN+dgnq2yHopE3Mw3OA4KqROWTTmyGciIiIiLWllMLJ1FTzRorI6oSvNdI9disOSXRfww+4L6FHPTzXTlf4u1shgmS1NmzZVEyX69++PsLAwFWTp168f9u3bh549e6oSI3PC6DuZO/lP/+ilWBV0WX3oMhJSc3qGSHJLx5q+KvDSsZYv7G35Rb8kJGtob/hNbYBFE+XXkH45nWr7onPtcqhbIaePlaVOI7KU/XWXz7fgbHQC5g1rjK51y+tlG4mIrB2PrYks4/vFrvMxmLs1DFvO/DcAp0VVL4xtF4QONctaVd9IgwVb5ED3wIEDCAoKwrRp09QUorVr12LHjh0YPHgwoqKiYE74gUCWlgK45uhVLN8XmWe0m4+bo8p0kcBLFR9Xo26jKbudlKaaEa8/GY2tp68j/k7gSlOq1TrIG53rlEOnWuVQ3tPpvhofk3H21/K3DXl/nbrO/jlERPrDY2siy3LyShy+3RqG1YcvI+POxI4a5dwwpm1V9AmpaBUDIAwWbJED3P3796N69ero0qULevXqhRdffBGRkZGoWbMmkpPznv01dfxAIEt1LjpB9aiQxro3EtK065tX8VJBF0kHlF4j1k66sW84GY11J69h/4VbyNSMfVJBKgc8VCsne6VNdR8GTcx4fy09dkYt2qeCjZte6aC3bSQisnY8tiayTJdvJ2PhjnD8tDdKm0lf3sMJo1oHYkjzSvBwsoelMliw5aGHHkJAQAA6d+6M0aNH48SJE6hWrZpqnDtixAhEREQU63m2bt2KTz/9VAVurly5gpUrV6Jv377a+0eOHKkmIOXWvHlz7CnKMZgAAQAASURBVN69+67nkl/94Ycfxj///HPX89wLPxDI0skIaQkmSLaLpAFqYgnuTnboG1JRBV7qVfxvupily8jMUkGVDdLg9sQ1hN1IzHO/THiS8qBOtcshxL80mw2bkAfZX3+69hS+3nReZXh9NiBYb9tIRGTteGxNZNlik9Px095IfLc9HNHxqWqdm6MdHm9eSQVe/DydYWkMlqMuPVmGDh2KVatW4c0331SBFvHrr7+iVaviT3dITExEcHAwRo0apfq/FKR79+6q+a5GYc13ZZusqWaMqCSkV0v3euXVIhHpX/dfxM+hUaoHyfe7L6hFeo7ICOlHQiqqZq+WRkp6tp65oXqvSJmQZrSdsLctheZVvNH5ToAlwMu6u61bKgmwCZlERERERET3x9PZHuPaB6nAigznkBIj1RNva5jKfHkkuKJqpluzvLvFvMUGy2wpTEpKCmxtbWFvX/IvahIoKSiz5fbt2yqoU5TDhw+rUiZp0Ovn58fMFqJijpDeeT4Gy/ZF4t/j15CWmTNC2tHOBg/X91PZLlJuZM5BzKibSdigmttGY094DNIz/9tFlnaxV82DpTyoXQ0f1VuFLPdsqWR31X93LVLSs7DupXaoXs5yPvyJiEwNM1uIrO97xeYz0ZizJUwNl9CQJrrSTFea6przdwph9O6LTk4FN4t8EJs3b4avry9Kly6N9u3b46OPPlK3NZKSkjBkyBDMmjUL5csXb7JEamqqWnJ/IBBZ4whp6UEiy63ENKw8eAnL90Xh9LV4dV0W6W0xsEkA+jeuCF933f/3rY8d/aGLt1WARcqmZBx2blV9XO80t/VVo3/tOJ3Japy4HKcCLXImJqism7E3h4iIiMiivlc8VKucWg5F3ca8refxz7Gr2Hz6uloa+HuqTJfudcub7fG3wbY6MzMTn332GZo1a6YCHF5eXnkWXenRowd+/PFHNe1o+vTpKnNF+sXkDpS89NJLqnSpT58+xX7eKVOmqDOjmkX6zxBZszKuDniyTRX8M6EtVo5vhSHNAuDqYIvwG4mY9s8ptJyyEWOWhKoghvQ7MSUy+eff41fxv18Po9nHG9Bv9k7Vl0MCLTL6ulkVL7z5cG1sfLk9Nr7SAW88XBvNq3qb7Y6eHqyEqFEl9uAhIstx6dIlPPHEE/D29oaLiwtCQkJUL0QNOZNc0CI9E4uyYsUK1KlTB46OjupSss+JiIojJKA0Zg9tjI0vd8ATLSqprPkjF2Px3NKDeGj6FizZFYHktEyYG4Nltrz33nuYP38+Jk6ciLffflv1bZGmuFLuM3nyZJ29zqBBg7TX69WrhyZNmqBy5cr466+/0K9fP6xevVoFYg4ePFii5500aZLa9tyZLQy4EOUclDWsVEYtb/Wsg7+OXMHy0Cj1RXXdiWtqKeeRM0JaMl4qextnhPTV2BRsOHVNNbfdcT4GaRn/BYDcHe3QrmZZdKldTqUulnYpuM8TWWm/lkDdnRAgIjKmW7duoXXr1ujYsSP+/vtvlfl9/vx5lQ2uIQMocpPHyXCLwnolil27dqlj8A8++ACPPvqoCrQMHDgQ27dvV4MqiIiKI9DHFR/2rY+XOtfAkl0XVJAl8mYSJv9+HDPWncGwloEY0bIyvN0cYQ4M1rMlKCgIX331FXr27Al3d3ccOnRIu04mBS1dulQnPVsKIuOmn3rqKbz22muYMGGCek0bG5s8WTdyu23btqoEqThYV0pUtLPX4lWJ0W8HL+Fm4n8jpFsFeaveLt3qloeTvf5GSMuu7fjlONXcVsqDjl6KzXO/fxln1XtFFslkcbBj1oqlup/9tfz7aTFlA67FpWLZ0y3Qoqq33reTiEjfXn/9dezYsQPbtm0r9s/IcXZ8fDw2bNhQ6GMk0CL7WgnM5B5YUaZMGfz000/Feh0eWxNRfpLN8sv+KMzfFq6CLkKyXgY08cdTbaqq4IwpM1hmy9WrV1G/fn113c3NTR30CmlSK5ku+hITE4OoqCjVBFfzISOBl9xku2bMmIHevXvrbTuIrI00E32rVx38r3stFfBYti8K285eVw12ZZE+GI82rKiyXepUKNk43sKkpGdiV1iMtv/KldgU7X3SX0tSFDUBlhrl3My+6Rbpz5XYZJR2doCcjgj2/++MLxGROZMM727dumHAgAHYsmULKlasiPHjx2PMmDEFPv7atWsqO3zx4sVFPq9ktkiZfm7yOjL5szDsh0hE9+LsYIvhLQPxeLNK+Of4VTW5SMqLftgdiR/3RKp+LtLXRTLsrTrY4u/vr9ISK1WqpMY+//vvv2jUqJHqqSK1ncWVkJCAc+fOaW+Hh4erLBlN75d3331XpTlKcEXKlN544w34+PiolEYh/WIKaoor21WlShUd/bZEpOFwZ1KRLBdvJakR0r+EXsSl28lYtDNCLdIAS7JdHgmukGfCT3JaBmxtbNQIZlmfkZUFF4e8u60bCanYeCpaBVi2nb2BpFz1nM72tmhb3UcFVzrW8kVZd/NIOSTjkn933q6OmD+iCXzcHJENow7tIyLSmbCwMHzzzTeqNF6Okffu3YsXXnhBHYsPHz78rsdLkEUy0qUU/14nVcuVK5dnndyW9UX1Q5Q2A0RE9yJ9E3s1qICe9f2wO+ymaqa76fR1/H3sqlokS31su6pqaqg03i3u9wiLKSOSjBJJ35Yd+6+//qqmAQUGBiIyMlJFwqdOnVqs55EyH6kzzW/EiBHqw0NSHaUfi4x/loCLPFbqR4vqr1LccqTcmOpIdP8ys7Kx/dwN/LwvCv+euKodryzBEQnKjGxdGTV83TF783ks3BmOuOQMeDjbYVSrKhjfIUhlrPx19IoKsByMuq2yDzTKezihU+2c8cwtg7z1WqpE5qEk++vU9MxC/9058t8SEZk5BwcH1c9w586d2nUSbJGTn5Kdkl+tWrXQpUsXzJw5857PK4EZOb7XkIEV0uslJeW/LNN7ZbbI8XpJSj6JyHqdvhqvMl1WH76k/S5RzdcNL3epoU6yfmMCx3MGC+3kDqY89thjKtNFdvSS5fLII48U+3k6dOigaukLs3bt2hJvm4HiTUR0h61NKbSvUVYtMQmpamS0lBmdi07AigMX0b1eOfx7/Bpmbvwvi012lF9uOIus7GzUr+iJT9ee1t5Xr6KHtjyobgUPlgfRfZEzIHO2hKl/Z/n/3Ymx7asa/IwIEZEuyYlImRSUW+3atdUkofykr8vp06exfPnyez6vZI3nz2KJjo6+K9slN8mmKUl2OxFRbjXLu2P6wGC82q0mFu4Ix9I9keq7hJ1tKXy96VyB3yMMfTxnsMwWS8PMFiLdkl3Rgcjb+PPwJbzavZZqTio7xvwkMr17Uie8/usRNKvqrbJY/Dyd+eegB95fy4SqJh+tK/TfXeibXdhImYjM2uOPP656GeZukCsZ5nv27MmT7SJGjhyJY8eOITQ09J7PKw1ypYnumjVrtOt69OihphyxQS4RGUJcSjpWHriIAU0CivweYcjjOTt9N+EqrpJktxCR5ZFyvsaVy6hF+rAUtIMUsl46k3/1eCODbyNZNqnpLerfndxvLqMGiYgKIoGVVq1a4eOPP1ajmaVny7x589SSP0j9yy+/YPr06QU+j/R3kea60ndFvPjii2jXrh2mTZuGPn364Pfff8f69evV6GciIkPwcLLHiFZV7vk9wpDHc3oNthS3B4p8yZLxy0REmp2lRJ4Li0jnbqJLpCvy74r/7ojIkjVt2lT1KZw0aRLef/99NRxCJgYNHTo0z+OWLVumMk5z92DJTXou2tj8d2ZYAjjyM2+99ZaaMhoUFKTKj5o3b67334mIyFS/R7CM6D6xjIjIsL0zNF7sVJ29M0gv+2v+uyMiMh4eWxORLpjS8Rw7/RGRyXF2sFPdwoWxu4iT9eC/OyIiIiLz5mxC3yP0ntny8MMPq8ZYclZRfPTRR3j22WdVwywRExODtm3b4sSJEzAnjL4T6V9SWgbsbGxUbaWk/GVkZXEaDOl9f81/d0REhsdjayLSJVM4ntN7G14ZxZyamqq9LY2zbt68qb2dkZGhxsoREeUnO0TpFi5NrOSSY3fJEPjvjoiIiMi8uZjA9wi9B1vyJ85w0jQRERERERERWTLDDJgmIiIiIiIiIrISes+lkbHOsuRfZ+40GTpSX0pEZGzu7u4WsW/VB+6viciUcH9dMO6ricjS9tV2hthxjhw5Eo6Ojup2SkoKxo0bB1dXV3U7dz8XcxIfH68uAwICjL0pRETFbv5qjbi/JiJTwv11wbivJiJL21frfRrRqFGjivW4hQsXwpxkZWXh8uXLZnF2QrJvJCgUFRVl8V/GrOV3tZbfU/B3LR5z2BcZi7nsr/lv3TLx72p5HvRvaur7ImMxl321Nf13bS2/p+DvapniHuDfsFlktphbEKW4bGxs4O/vD3Mi/8AsfUdpbb+rtfyegr8rWcv+mv/WLRP/rpbHmv6mhmBu+2pr+jdgLb+n4O9qmTyM9G+YDXKJiIiIiIiIiHSIwRYiIiIiIiIiIh1isMUKSHPid955R9uk2JJZy+9qLb+n4O9K1oL/1i0T/66Wx5r+pmTd/was5fcU/F0tk6OR/w3rvUEuEREREREREZE1YWYLEREREREREZEOMdhCRERERERERKRDDLYQEREREREREekQgy1ERERERERERDrEYAsRERERERERkQ4x2EJEREREREREpEMMthARERERERER6RCDLUREREREREREOsRgCxERERERERGRDjHYQkRERERERESkQwy2EBERERERERHpEIMtREREREREREQ6xGALEREREREREZEOMdhCRERERERERKRDDLYQEREREREREekQgy1ERERERERERDrEYAsRERERERERkQ4x2EJEhQoMDMTmzZv5DhERmTjur4mITB/31daFwRYyaYsWLULp0qVhqV588UU0btwYjo6OCAkJuev+06dPo2PHjihXrhycnJxQtWpVvPXWW0hPT9c+ZuTIkShVqtRdS926dbWP+fbbb9G2bVuUKVNGLZ07d8bevXt18jtkZ2dj3rx5aN68Odzc3NTfq0mTJvjiiy+QlJSkHnP8+HH0799ffcDItsl9+W3duhW9e/dGhQoV1GNWrVqlk+0jIsPg/tp69tdTpkxB06ZN4e7uDl9fX/Tt21d9XhGR6eO+2jL21bktW7ZMbZ/siwsj+215zIQJE3SyjVQ8DLYQGZHsTJ988kkMGjSowPvt7e0xfPhw/Pvvv+pAVnaysnN/5513tI/58ssvceXKFe0SFRUFLy8vDBgwQPsYyU4ZMmQINm3ahF27dqFSpUro2rUrLl269MC/w7Bhw9SOu0+fPur5Dx06hLfffhu///672m4hHwzyYTZ16lSUL1++wOdJTExEcHAwZs2a9cDbRESka9xf/2fLli149tlnsXv3bqxbtw4ZGRnqM0X240RExmQt+2qNCxcu4JVXXlGBn8Ls27dPBW8aNGjwwNtGJZRNpCft27fPfv7557NfffXV7DJlymSXK1cu+5133snzmOnTp2fXq1cv28XFJdvf3z/7mWeeyY6Pj1f3bdq0KVv+ieZeND9/8+bN7GHDhmWXLl0629nZObt79+7ZZ86c0T7vwoULsz09PbP/+OOP7Bo1aqjH9O/fPzshISF70aJF2ZUrV1Y/+9xzz2VnZGRof+7rr7/OrlatWrajo2O2r6+v+hlDkN8rODi4WI996aWXstu0aVPo/StXrswuVapUdkRERKGPkd/Z3d09e/HixUW+lrxP8ncozPLly9XfZdWqVXfdl5WVlX379u0Cn3PGjBlFvq48p/weRGQY3F8XH/fXd4uOjlb77S1btujwXyUR5cd9dfFZw75aXrN169bZ8+fPzx4xYkR2nz597voZ+V5VvXr17HXr1ql/Py+++GKR20e6xcwW0qvFixfD1dUVe/bswSeffIL3339fnQXTsLGxwVdffYVjx46px27cuBH/+9//1H2tWrVS0WYPDw9tZFkit5r0vtDQUKxevVpFk+X7+cMPP5wnBVCyKeS5JbXun3/+URHofv36Yc2aNWr5/vvvVZT3119/VY+X53vhhRfUNkqkW36mXbt2hf5ukZGRKrWvqGXcuHE6fT/PnTuntqt9+/aFPmbBggUqlbFy5cqFPkbeG3mvJEr/IH788UfUrFlTRd7zk1RFT0/PB3p+IjIc7q+5v75fsbGx6vJBP1OI6N64r+a+WkO+s5QtWxajR48u9N+LZCH27NlTfTcgI9Bx8IZIS6Kn+aPETZs2zX7ttdcKfZd+/vnnbG9v77syVHKTDBb5p7tjxw7tuhs3bqjsFfl5zc/JY86dO6d9zNixY1UGjSZzRnTr1k2tFytWrMj28PDIjouLK9ZfMT09Pfvs2bNFLteuXdNJ9L1ly5Yq20Z+p6effjo7MzOzwMddvnw529bWVkXFizJ+/PjsoKCg7OTk5AeKvteuXTv7kUceKfI5CnpOZrYQmRbur7m/vt/9tZxp7d27d5FnhYlIN7iv5r5aY/v27dkVK1bMvn79urpdUGbLTz/9pCoINMf7zGwxPDtjBHjIeuSvDfTz80N0dLT2ttQhfvzxxzhx4gTi4uJU3XdKSoqq+5aMmIKcPHkSdnZ2qmmUhre3t8qwkPs0XFxcEBQUpL0tjbCk4Z9knORep9meLl26qGwQ6S3SvXt3tTz66KPqeQoi21CtWjUYwvLlyxEfH4/Dhw/j1VdfxWeffabNACqo6VlRDbIkw+inn35SmT7SGOxBSEaRZLAQkfnj/lo3rG1//dxzz+HIkSPYvn27zp+biO7GfbVumPO+Wrb7iSeeUL1mfHx8CnyM9JmRQRzS4+VBt4nuH8uISK+kCVVusvPIysrSNnSS0p969ephxYoV2L9/P77++mt1X+5yoPxyWnrce+dU0GsXtT0yVeHAgQNqZylBocmTJ6uGrbdv3zZ6GVFAQADq1KmjGnFJk9l3330XmZmZd/3+3333nWqq5eDgUODzyAeJBLdkx6uLJlk1atTIE+AiIvPF/TX31yX1/PPPq3JeOXHi7++vl3+XRJQX99XcV58/fx4RERFqiqec/JVlyZIlan8s1+V++V4lJ5Rl6qnmMdLcXFosyPX83yNIP5jZQkYjPVIkk2X69Omqd4v4+eef8zxGggb5dwYSdJCfkz4w0tdFxMTE4MyZM6hdu/YDbZPsfKSmURbpSi6RbOkjI71e8pMRxdIdvCjSb0bXJKgiwaj8QSfZgUpPl8LqNj/99FN8+OGHWLt2rRofpwuPP/44Bg8erLqj5+/bItsn2Urs20Jk/ri/vj+Wur+Wx0ugZeXKlepMbpUqVXSyjUT0YLivto59da1atXD06NE898n4asl4kUlKcpLW19f3rseMGjVK/exrr70GW1tbnWwvFY3BFjIaKfGRoMnMmTNVZHbHjh2YM2dOnsdI2U9CQgI2bNigskykpKd69epq5zNmzBjMnTtXZaS8/vrrqFixYoGNWovrzz//RFhYmGqKW6ZMGdVEV7JepDxJX2VEsgOX3+/q1atITk7WBm8koCSBJmlAK2cw6tevD0dHRxWlnjRpkhpnJ6+fvzGulFZJplBB6Y0yMm7p0qXqPZXXE5oMnPs1cOBAdbAtGTfy/FKKJY26ZOc+Y8YMdTAuaZdpaWmqVEzIdRmLJ7+rvLbmPZT3Qd4PjfDwcPUYabgo4/SIyHi4v+b+Ovf+WhouyueJfBmQz2DNZ4oEa5ydnfmfKhH31QqPrfV3bJ3/eF9OEAvNevkekf8x0qJBWi8U9F2B9MQIfWLIShTUhEkaN0kDJ43PP/8828/PTzW3lWa1S5YsUU1gb926pX3MuHHjVNPcgkY/S/Nczc8WNPr5Xk1oczeT2rZtm9pmGVMtz9mgQYN7Npp9UPJ6+cdbyxIeHq7uX7ZsWXajRo2y3dzcsl1dXbPr1KmT/fHHH9/V2FbGwMk2z5s3r9AmhwW9Tv5R3CVtkCukWe8333yjmh9LA2JpMty4cePsL7/8MjspKUk9Rn6fgl5ffn+NgkZ9y5L73wsR6Qf318V7j7i/zlHQ+yCLfPYSkf5wX12898ga9tX5FTb6Of97w9HPhlVK/k9fgRwiMm+SBSONwTp06GDsTSEioiJwf01EZPq4r7YubJBLRERERERERKRDDLYQEREREREREekQgy1EVKgJEyaodEciIjJt3F8TEZk+7qutC3u2EBERERERERHpEDNbiIiIiIiIiIh0iMGW+yRDnOLi4tQlERGZLu6viYhMH/fVRGRpGGy5T/Hx8fD09FSXRERkuri/JiIyfdxXE5GleaBgS2pqqu62hIiIiIiIiIjI2oIta9euxciRIxEUFAR7e3u4uLjA3d0d7du3x0cffYTLly/rb0uJiIiIiIiIiCwl2LJq1SrUrFkTI0aMgI2NDV599VX89ttvKviyYMECFWxZv349qlatinHjxuH69ev633IiIjKYrVu3onfv3qhQoQJKlSqlPhdyk8+Ebt26wcfHR91/6NChIuvye/ToUeDzFGT27NmoUqUKnJyc0LhxY2zbtk0nvxMRERERkb7YFedBH3/8MT777DP07NlTBVvyGzhwoLq8dOkSvvzySyxZsgQvv/yy7reWiIiMIjExEcHBwRg1ahT69+9f4P2tW7fGgAEDMGbMmCKf64svvlCBluJYvnw5JkyYoAIu8vxz585VgZoTJ06gUqVK9/37EBERERHpU6lsjtO5LzKJSBrkxsbGwsPDQ9d/F6JCJadlwNbGBvEp6XB3skdGVhZcHIoVNyXSCQmUrFy5En379r3rvoiICJWFcvDgQYSEhNx1/+HDh9GrVy/s27cPfn5+hT6PRvPmzdGoUSN888032nW1a9dWPzNlypRC+4nl7ikm++uAgIBi76/53xgRkeGZy7E1PyOIqLj4DY3IjKSmZ2LOljAs3BmOuOQMeDjbYVSrKhjfIQiO9rbG3jyiIiUlJWHIkCGYNWsWypcvf893Ky0tDfv378frr7+eZ33Xrl2xc+fOQn9OgjDvvffeff01+N8YERHxM4KIjBZsuXjxIlavXo3IyEh1MJzb559/rpMNI6K7z6RIoOXLDWe16yTgork9tn1VZriQSXvppZfQqlUr9OnTp1iPv3HjBjIzM1GuXLk86+X21atXC/25SZMmYeLEiXdlttwL/xsjIiJ+RhCR0YItGzZswCOPPKLSxE+fPo169eqptHGpRpJUbyLSDykdkoyWgsj6ZztW41tPJksC9Bs3blTlRSWVv7+LfN4U1fPF0dFRLSXF/8aIiIifEURklNHPmjOG0vz22LFjajLEihUrEBUVpSYSSWNEItIP6dEimSwFkfVyP5GpkkDL+fPnUbp0adjZ2alFSLPdDh06FPgzMtnI1tb2riyW6Ojou7JddIH/jRERUWHieBxGRPoOtpw8eVKNgBZysJycnAw3Nze8//77mDZtWkmfjoiKSZrhSo+Wgsh6uZ/IVEnflSNHjqiR0JpFzJgxAwsXLizwZxwcHNSo53Xr1uVZL7elHEnX+N8YEREVJCU9E66OdjwOIyL9BltcXV21Ux4qVKigzlTmrq8nIv3IzMpSzXALIutlKhGRviQkJOQJkoSHh6vr0rtL3Lx5U92WkcxCykzltiYrRRriStlp7kXI+GYpS9Xo1KmTaqCrIb1X5s+fj++++04F+6Xvi7zmuHHjdP478r8xIiIqKKNl5MK92H72Oka0DCzwDeJxGBHppGdLixYtsGPHDtSpUwc9e/ZUJUVHjx7Fb7/9pu4jIv1wdrDDU22rICs7G4t3RWinEY1sGchpRKR3oaGh6Nixo/a2pgGtZDouWrRI9WQZNWqU9v7Bgwery3feeQfvvvtusV9HAvi5A/eDBg1CTEyMyp68cuWKCtKsWbMGlStXhj7+G5PJXoITv4iI6Hp8KkZ8txcnrsQhKTUTy8a2gE2pUnk+I0a24nEYERWsVLZ0GiyBsLAwdYazQYMGaoznK6+8gu3bt6NatWoqHVwfB8CmSKZbeHp6IjY2Fh4eHsbeHLICmVnZGLZgj/pQb1+jLOJTMuDiaIvtZ2+gZVVvuDuzjIhIF/vrpLQM2NmUQnR8KrxcHdQ6F4f7Gt5HRERmemwdGZOEYd/twYWYJPi4OWDRqGaoV9HzzmeEDWKT0+HqaIsd526gaaAXSrvkfF4QEWmU6OgxPj5enXVMT09XJUTSvHD27NkleQoiuk/rTlzDzvMxOHklDrsmdYKPuyMGzd2FPeE3MbVffQxuVonvLZEOSGAlPTMLz/ywH5dup+DXcS1Rtawb31siIitx/HIsRny3DzcSUlHJywVLnmyGQB/XPMF3CcA8MX8PdpyPwUuda+DFztWNvNVEZLY9W6SxYa1atdC9e3f06tVLZbKsX79ev1tHRFqL7ox9HtKsEpzsbdX19jXLqsvfD13mO0WkQ/a2NnCws8XNxDQcirrN95aIyErsDovB4Lm7VaCltp8Hfn2mpTbQklupUqUwpHnOiS4p705OyzTC1hKRRQRbZJKENDLctm2bqt2XUc/PPfecfreOiBTJZtkddhO2NqXwRIv/SvV6N6igLneHx+BaXArfLSIdCgkorS4ZbCEisg7/HLuK4d/tRXxqBppV8cLysS3g6+5U6OO71y2vMl8kMP/r/iiDbisRWVCwRQIsM2fOVOM2GzVqpCZDnD17VvVvISL9WrQjQl12r1ceFUo7a9cHeLmgceUykM5LfxxmdguRLjHYQkRkPZbtjcT4H/cjLSMLXeuUU6VDHk5F98Ozs7XBmLY5E/W+3RaOjExOhiSi+wi2yHQIyWzR8Pb2houLC65fv477tXXrVvTu3Vv1f5FUvFWrVuW5f+TIkWp97qWwiUfS57dHjx4FPk9RpkyZon5mwoQJ9/17EOmTnC1ZdeiSuj6q1d0jB/uE5GS3rGawhUgvwRbJLEtJZ3o4EZElku8QX286h9d/O4qsbGBw0wDMHtpIW7J9L481DlDN1CNvJuGf41f1vr1EZIHBFglISINc6RQui3QKz79OlpJITExEcHAwZs2aVehjpEeMjPvULDLysyBffPGF2p6S2LdvH+bNm6cmKxGZqp/2RiI1Iwv1K3qqLJb8Hq7vp8qLjlyMRfiNRKNsI5El8i/jDG9XB6RnZquxn0REZFmysrLx3h8n8Ona0+r2cx2rYUq/+ipjpbicHWwxomXOybC5W8JU8IaISBR7TyI7jho1aqBMmTJq8fLyUiVEDRs2VLdLly6tLktCMlE+/PBD9OvXr9DHODo6onz58tpFXje/w4cP4/PPP1elTcUl2z506FB8++23Jd5uIkORiSg/7L6grsvI54ICij5ujmhdzUddX81GuUQ6I/+9aUuJItkkl4jIkki50ITlh7BoZ06p9ju96+CVbjVLfPJWDG9ZGc72tjh6KRa7zsfoYWuJyKJHP2/atAnGsHnzZvj6+qpgjjTl/eijj9RtjaSkJAwZMkRlx0gwprieffZZ9OzZE507d1YBn3tJTU1Vi0ZJs3iI7sfa41dxJTZFjRfsFexX6OP6BFfA1jPX8fvhS3ihU7X7OlAgortJsGXDqWg2ySUisiCJqRl45scD6tjJzqYUpg8MRp+Qivf9fGVcHTCwiT8W77qAOVvD0OrOSTAism7FDrZIoMPQJPNlwIABqFy5MsLDw/H222/joYcewv79+1XGi3jppZdU094+ffoU+3mXLVuGAwcOqDKikvR2ee+99+7r9yB60Ma4jzevDEe7wmuHu9YtB8eVNgi7nojjl+NQr6In33QiHQipxIlERESW1gtv1KJ9OBx1W2WjfPNEI3So+d+J3Pv1VNuq+H73BRXAOXE5DnUqeOhke4nICoIt+R0/fhyZmf81DLS1tUXdunWhS4MGDdJer1evHpo0aaICL3/99ZcqPVq9ejU2btyIgwcPFvs5o6Ki8OKLL+Lff/+Fk1Pho9zymzRpEiZOnJgnsyUgIKAEvw1RyRy9GIvQC7dgb1sKTzT/rzl1Qdyd7NGpti/WHL2qGuUy2EKkGw38c4It0vgwJiEV3m45gX4iIjI/l24nY9iCPerkVBkXe3w3sikaVtJNOwGZENmzQQU1HXLe1vP4YnBDnTwvEVlBz5Zt27ahadOm2tsyFUj6tYSEhKhFmsyuX78e+uTn56eCLTJyWkig5fz586rEyM7OTi2if//+6NChQ4HPIVkx0dHRaNy4sfZntmzZgq+++kpdzx1Ayk0yaTw8PPIsRPq0cGe4uuxZ3w++HvcODD4SXFHbt0UavhHRg/N0tkdQWVd1/fBF9m0hIjJXZ6/F47FvdqpASwVPJ/wyrqXOAi0aY9tVVZd/HLmCi7eSdPrcRGTBwZbZs2dj2LBhd/VxkfKesLAwlS3yzTffQJ9iYmJUZooEXcTrr7+OI0eO4NChQ9pFzJgxAwsXLizwOTp16oSjR4/m+RnJmJFmuXJdMnSIjO16fCr+PHxFXR/ZukqxfqZDzbJwd7LD1bgU7I24qectJLIeIQE5B+NskktE5uDSpUt44okn4O3tDRcXF3VSVE425h4S8dxzz8Hf3x/Ozs6oXbt2sY7hV6xYgTp16qgTkHK5cuXKAr8vVKlSRWWPy4lNOVlrCvZfuIXH5uxSffCq+brh12daoZqvu85fRzKL21TzQWZWNr7bnlMKTkTWq9jBFulv0qxZszzrZCctmSaBgYEqELNr164Svbjs7HMHSSRwI9cjIyPVfa+88op6zoiICNUot3fv3vDx8cGjjz6qHi8NcaW8KPciKlWqpHb0uQMsmvHS7u7ud/2Mq6ur+kDS/DyRsS3dE4m0zCzVnFMzDeVenOxt0aNeTpPo3zmViEjnfVsORjGzhYhM261bt9C6dWvY29vj77//xokTJzB9+nSVBa4h/Q7/+ecf/PDDDzh58qS6/fzzz+P3338v9HnleFzK++V4X6aAyuXAgQOxZ88e7WOWL1+OCRMm4M0331Ql/m3btlX9F+W43pg2nY7G0Pm7EZucjoaVSuOXsS1RobSz3l5vbPuc7JZl+yJxOylNb69DRBYUbJEouSajRCxevDjP9B8ZySyZJyURGhqqSpFkEdITRa5PnjxZZZhIBoo0vpWR0yNGjFCXsrOXgElJSKnRjRs3SvQzRMYcRfjDnpxxz6NaB5boZzWlRH8fu6Keh4geXMM7AU9ppsgSPSIyZdOmTVM9BSXDW06SyglROekYFBSkfYwcS8txtZTcy/1PP/00goOD1XF5Yb744gt06dJF9TCsVauWupTnlfUan3/+OUaPHo2nnnpKZcvIfbIt+s58L8rKgxcxZnEoUtKzVAbwj081V5OD9EkyW+r4eSApLRM/7M45niMi61TsYIsEOCTzREMa1EpqoobcV9I+JrKTz87OvmtZtGiRSmtcu3at6q+SlpaGCxcuqPX3akorP9+3b9886yQz5t133y30ZyRrJveHBZExSaBEyoh83R3Ro17h454L0jLIGz5ujridlI5tZ6/rbRuJrEnN8u5wtLNBXEoGwmMSjb05RESFkuERUh4v0zx9fX3VScxvv/02z2PatGmjHicnUuW4WdoCnDlzBt26dSv0eSVA07Vr1zzr5PE7d+5U1+VYXUqV8j9Gbmsek19qaqoaOJF70aX528Lw0vLDyMjKxqMNK+Lb4U3g4nDfs0GKrVSpUtrslkU7I5CSXnA/SCKyfMUOtjRv3hxLliwp9H4JhMhjiOjBfHdn3POwFpXhYFfs/0QVW5tS6B2cE6BhKRGRbtjb2qD+nXHq7NtCRKZM+ihKJkn16tXVSctx48bhhRdeyHMML0MhpOeKtANwcHBA9+7dVa8VCcIU5urVqyhXrlyedXJb1gvJIJchE0U9Jr8pU6bA09NTu+hqyqcEkKb+fQof/nVS3X6qTRVMHxCs9uWGIsMNKpZ2xo2ENKw4cNFgr0tEpqXYex0p8ZHSoVdffVVlm2jI9ZdfflnVfeYejUxEJXcw8pYqVXCwtcGQe4x7LkyfkJxSonUnriEpLYN/BiId0PROOsS+LURkwrKystCoUSN8/PHHKqtl7NixGDNmTJ5SHgm27N69W2W3SDaK9HQZP378PaeKSsZG/qBG/nXFeYyGlCLFxsZqFxmC8aAyMrPw2oojmLPlvLr9eo9aeLNnbdjYFLwN+mJna4On2ub0j/x2a5hqmEtE1qfYuXQdO3bEzJkzVRMtqcmUkiHZecrOUUYmSxnOQw89pN+tJbJwkm4qegdXUOVA9yPY3xOVvV1wISZJBVw0wRcievAmuQy2EJEpk/6KkrWSm/RPkUlCIjk5GW+88YaaJNSzZ0+1rkGDBmpAxWeffYbOnTsX+LzSpzF/hoqccNVkssgAC+m3WNRj8pOpRrLoipTrPLf0INafvAaJrUzt1wADm+omW+Z+DGoagC83nEVETBL+PX4VPeqXrDSciMxfifLpJOp97tw5tTMeMmQIBg8erK7LOhkhR0T371pcCv46cuW+GuPmJkHQR4IrqOurOZWISKeZLSevxLH+nohMlkwiOn36dJ510o9FpoeK9PR0tdjY5P0KIIESyYopTMuWLbFu3bo86/7991+0atVKXZdyJBn1nP8xclvzGF1LTstQwwBiElLV5aGoWwi/kah6bM0d1sSogRYh/WGGt8h53yXTRrJ8iMi6lLhLlNRTSnYLEenWj7svqCZuTQPLoN6d/hD3q09IBczceA5bzlzHrcQ0vXfeJ7J0Unsv2WY3ElJx/HIsGlf2MvYmERHdRY7RJbghZUQymnnv3r2YN2+eWoRkprdv3161BZBhFBKE2bJli+rpIpnrGsOHD0fFihVVXxXx4osvol27dmrakUwKlTHRUna0fft27c9IOwEZCS0NeiU4I68pY5+lb4yupaZnYs6WMCzcGY645Ax4ONthRMtA/DKuJS7eSkID//9GXRvT8FaBmLs1DIcvxmJP+E20qOpt7E0iIlPLbJEO5MWVmJiI48ePP8g2EVkdSX39cU+kuj6yVU6N74Oo5uuO2n4eKnjz97GCG9MRUckyxkICcoKgByNv860jIpPUtGlTVSL0008/oV69evjggw9Uqf/QoUO1j1m2bJl6nKyTkqOpU6fio48+yhMUkSDJlSs52bZCAjjyczJSWsqOZDDG8uXL8wzHGDRokHqt999/HyEhIdi6dSvWrFmjzarRZUbL7M3nVYmOBFqEXMpJpsU7I1DN1w2mQoL0A5r4q+vztoYZe3OIyMBKZRcjp006mgcGBqoGWw8//DDc3O7eiZ04cUI1yZWd8CeffKIi25ZMxtNJ53TpWVPSkddE+f26/yJe+eUw/DydsO1/HVVjtQclKavSjb95FS8sH9uSbzpZLV3tr2dtPIvP/j2jeirNHNJQp9tIRGTtiruvlpKhJh+t0wZacpMMl9A3u5R4mqM+RdxIxEPTN0N65K6d0A41y7sbe5OIyECKtSeSQIqkDE6ePBllypRB3bp10aVLF/Tu3VuNiZOmWFKneeHCBVWbaemBFiJdknjnwh3h6vqwlpV1EmgR8oVQ7I24iSuxyTp5TiJrFhJQRl1KXwAiIjKO+JT0AgMtQtbL/aYk0McVPerlNMdldguRdSnWtzp7e3vVAPfUqVPYs2cPnn76aZWaKLWcHTp0wNy5c3Hp0iX8+OOPaj0RFV/ohVs4fjlONXQb0vT+xj0X1mOiWaAXJHftz8P/pQIT0f1pEOAJmWAadTNZNWQkIiLDc3eyVxksBZH1cr+pebpdVXX5+6FLPAFGZEVK3CC3UaNGaiEi3Vi0I2fc86MNK+q8kW3vkAoqs+X3w5cw5s4HPRHdHw8newSVdcO56AQ1ArpT7YLHmRIRkf5kZmVhVKsqqmdLfrI+IysLDiUbuKp3wQGl0bKqN3aFxeC77eF4s2fe8dxEZJlMa09EZGUu307GP8dzGtiOfIBxz4XpWd8PdjalcOxSnPqCSES6GQEtwRYiIjI8Zwc7jO8QhBc7VddmuMil3Jb1MnLZFI1tn3PSa+meSMQmm1apExHpB4MtREb0/e4LyMzKVmc7apXXfaNlL1cHtK3uo66vPnxZ589PZG0YbCEiMj5He1sVvJBmuPvf6qwu5basN1Xta5RFrfLuSEyTCZQXjL05RGQADLYQGXHc8097I/WW1aLRJ6Siuvzj8GXVjJeIdBNsyZLREkREZBSSwSJTh7zdHNWlqWa0aJQqVUrbu2Xhjgh1HEhElo3BFiIjWXXwEm4npcO/jDM667H3Q5c65eBkb4PwG4k4eilWb69DZA3krKT89xSfkoGwG4nG3hwiIjIjMimygqcTrsenquNAIrJsDxRsSUlJ0d2WEFkRyTBZtDOnMe6IloGwtSmlt9dydbTTBnN+P8RSIqIHIaPZ61f0VNfZt4WIiErC3tYGT7apoh0DzQxJIstW4mBLVlYWPvjgAzX22c3NDWFhYWr922+/jQULFuhjG4ksjnSjP3U1Hs72thjYJEDvr6cpJfrzyGXVI4aIdFFKdItvIxERlcjgZpXg4WSnsiPXnbzGd4/IgpU42PLhhx9i0aJF+OSTT+Dg8N+Y2vr162P+/Pm63j4iix733L9xRXi62Ov99drV8FEf7NfiUrEnPEbvr0dkyUICyqhLZrYQEVFJuTnaYVjLytrsFiKyXCUOtixZsgTz5s3D0KFDYWv7X8fvBg0a4NSpU7rePiKLE3UzCevvnMkY2Up/jXFzc7SzxcP1/dT11SwlInogIZVyMltOXYlng0MiIiqxEa0CVVPf/RduITTiJt9BIgtV4mDLpUuXUK1atQLLi9LTOTOe6F6W7IqAVPLISOZqvu4Ge8MeCamgLtccvYLUDHbAJ7pf0tywrLsjMrKycYxNp4mIqIR83Z3Qv5G/uj5nC7NbiCxViYMtdevWxbZt2+5a/8svv6Bhw4a62i4ii5SYmoFl+6LU9VF6HPdckOZVvFHOwxFxKRnYeuaGQV+byJLI+M7cI6CJiIhKakzbKihVCirb+Vx0PN9AIgtU4mDLO++8g+eeew7Tpk1T2Sy//fYbxowZg48//hiTJ0/Wz1YSWYjfDl5SI2MDvV3QoYavQV9bJh71apCT3fL7IY4bJHoQmmDLQQZbiIjoPlQt64audXKmRbJ3C5FlKnGwpXfv3li+fDnWrFmjzu5JgOXkyZP4448/0KVLF/1sJZGljHveEa6t1bXR47jnwvS5U0okZ1ESUjMM/vpElkKb2RLJzBYiIro/Y9sHqcuVBy/hWlwK30Yiaw+2iG7dumHLli1ISEhAUlIStm/fjq5du5b4ebZu3aqCNxUqVFCBm1WrVuW5f+TIkWp97qVFixaFfpHt0aNHgc+T35QpU9C0aVO4u7vD19cXffv2xenTp0u8/UQlsf3cDZy/nqi60D/WOKdO19DqV/REFR9XpKRnYd2Jq0bZBiJL0MDfU6V/X7qdjOvxqcbeHCIiMkONKpVBs0AvpGdm47s7J+SIyMqDLbqSmJiI4OBgzJo1q9DHdO/eHVeuXNEuklFTkC+++EIFWopDAkXPPvssdu/ejXXr1iEjI0MFi2R7iPRl4Z1xzxJocXfS/7jngsh/I48E52S3cCoR0f2T/4arlXVT1w+zlIiIiO7T2PZV1eXS3ZGIS+GwESJLYlfSH7CxsSkyqJGZWfwpJ5KJIktRHB0dUb58+SIfc/jwYXz++efYt28f/PxyxtsW5Z9//slze+HChSrDZf/+/WjXrl2BP5OamqoWjbi4uHu+DpFG+I1EbDwVrS0hMiaZSvTlhrPYevYGYhJS4e3maNTtITLnUqKz0QmqSW7nO3X3REREJdGxpi+q+7qpz5Of9kRqS4uIyAozW1auXKma4moW6d/y+uuvqyDHvHnzdL6BmzdvVoGQGjVqqEa80dE5X1g1pIxpyJAhKjvmXkGZwsTGxqpLLy+vIkuPPD09tUtAQMB9vRZZ77hn0bFmWVXGY0xBZd1Qr6IHMrOyseYYS4mI7ldIJU4kIiKiByM9/J5ul5PdIqVEaRlZfEuJrDWzpU+fPnete+yxx9RIaAm8jB49WlfbprJeBgwYgMqVKyM8PBxvv/02HnroIZWBIhkv4qWXXkKrVq0K3K7ikF4vEydORJs2bVCvXr1CHzdp0iT1uNyZLQy4UHHEp6Tjl9CL6vqo1lVM4k3rE1wRxy7F4Y9DlzGsRWVjbw6RWTfJlTKirKxsozS9JiIi89cnpCI++/c0rsWlqomRA5rwpC6RJdBZz5bmzZtj/fr10KVBgwahZ8+eKggijXT//vtvnDlzBn/99Ze6f/Xq1di4caPq13K/ZIz1kSNH8NNPPxX5OAnueHh45FmIimPF/otq8k9QWVe0re5jEm9ar2A/1dxzb8RN1eCT6EEbmkumozRP9/HxUfcfOnTorucYO3YsgoKC4OzsjLJly6og+alTp4p8Xemp9dZbb6FKlSrq56pWrYr3338fWVnGP/NXs5w7nO1tEZ+agbAbCcbeHCIiMlMOdjYY3aaKdgy0BPCJyPzpJNiSnJyMmTNnwt9fvxNWpFRJslzOnj2rbkug5fz58yhdujTs7OzUIvr3748OHTrc8/mef/55FbDZtGmT3redrJN8WC7edUFdH9kqsNhNnPXNz9NZdb8Xfxy+bOzNITNwr4bmcn/r1q0xderUQp+jcePGqkfWyZMnsXbtWpVZKM3Ji+r1NW3aNMyZM0e9rvzcJ598gk8//VR95hibna2NmvAlDnIENBERPYAhzSrB3dFO9W7ZdDpv2wQispJgS5kyZVRvE80it2WE8nfffacOgPUpJiYGUVFR2ia40itGslLkDKpmETNmzFAH9IWRA3zJaJEzsRKwkTOmRPqw5cx11RzX3ckO/Rr5m1zKqvj9EIMtVLyyzg8//BD9+vUr8P5hw4Zh8uTJ6Ny5c6HP8fTTT6sm5IGBgWjUqJF6PtmnR0Tk9DQqyK5du1QGjGQ5ys9J2aoEaEJDQwv9GWlmLqWeuRd9Yd8WIjI1ly5dwhNPPAFvb2+4uLggJCREleBryImfgpaijuPlJGZBPyP7Zo133333rvvvt5+itU65G3qntHvuljBjbw4RGaNniwQycp+dl+lEkg4uZUQSeCmJhIQEnDt3Tntb+rJIwEQTyJGdtmSpSHBFDsbfeOMNlaL+6KOPqsfLDrygnXilSpXyBFA6deqkfkYCLELGPi9duhS///67ChRdvZrTJFQa30qaOpGuLNyZ8yVyUJMAuDqW+D83vepRrzzeWX0MJ6/E4ey1eFQv527sTSIrIpkwEhSXfXVR/a+kn5ZktkgJqTRKl+lz27dvL7J8VBqav/feezBk3xaZSEREZGy3bt1SWYYdO3ZU5fcyZEKTBa5x5cqVPD8jj5Oei3LMXRg5QZmWlpbnBKhkO0pvxdykh2PutgK2trY6+s2sw6jWgViwPUyVee+/cAuNK5fsuxURmZYSf/sbOXKkzl5czkzKh4GGpgHtiBEj8M033+Do0aNYsmQJbt++rQIu8lhpwisBkpKQD5kbN25ob8tzi/ylRnLgr8vfj6zbuegEbD1zXfVGMfa454KUcXVAu+plseFUNFYfvoyXu9Y09iaRFZg9ezb+97//qWBLrVq1sG7dOjg4OBT6+Ndee01NjJPHykG7lBx99NFHagqdKTQ01wRbTl2NR3JaJpwd+MWCiIxHSi9lf5c7w1uyAnPLf6JSTj7KMbb0xCpM/omdy5YtU1kz+YMtUtLPbJb7V87DCY82rIifQy9i3tbzmDusyQM8GxGZRbBFSnWKq0GDBsV+rAQ7pKSnMFLTX1IFPV/+FPWiXpNIVxbfyWrpXLscArxcTPKNfSSkggq2SCnRxC41TKanDFmuoUOHokuXLurM6meffYaBAwdix44dcHJyKvDxEmD/4YcfVDainDGV7McJEyaoRr0SmC+soblmYp2++Xk6wdfdEdHxqTh2ORZN7/RCIiIyBulFKM3KJQiyZcsWVKxYEePHj8eYMWMKfPy1a9fU4InFixeX6HUWLFiAwYMHw9XVNc966aso+2fZB0vW+8cff1xoEEdKPmXR0GfJpzmRMdASbPn3xDWcv56AoLJuxt4kItJnsEVqPeVL2L2CFPKYohodElmL2OR0rDhwZ9yzCWa1aHSpU05NU4m8mYTDF2O1Z+mJ9EXKNWWpXr06WrRoocpPV65cWWimyquvvqr6c8lBvahfvz4uXLigSoUKC7YYknzuyX83clB8KPI2gy1EZFRhYWEqg1uy+6T8fu/evXjhhRdU8GP48OF3PV6CLJIxXlg/roLIcx47dkwFXHKT4IpkpEvJpwRxpC9Xq1atcPz4cdU/xpgln+akmq+7OlG3/uQ1zN8Whin9in8im4jMMNgivVSIqPh+CY1CUlqmGg3bMujuAwxT4eJgh651y6nMlt8PXWKwhQxOgvi5z2zml5SUpHqD5SblRKYw+jl3k1wVbGHfFiIyMtk3NmnSRGWUiIYNG6pghwRgCgq2yIALyTgsLLuwIBJkqVevHpo1a3ZXI3UNCYy3bNkSQUFBKqCTu7TTGCWf5mZc+6oq2LJi/yW81KUGfN2L//chIjMLtsi4ZSIqnkw17jmnhGhka9MZ91yYR4IrqGDLH4ev4K2edWBrY9rbS8ZRVENzaUp+8+ZNREZG4vLlnOlWp0+fztPIXM62SkmQTBKSpuoyLUN6C0hT8ocffrjQhua9e/dWPVrkNaSM6ODBg/j888/x5JNPwlSwSS4RmQrpcVinTp0862rXro0VK1bc9dht27apfbXsm4tLAuDSr+X999+/52OlxEiCLlJaZOyST3PTJNBLNceVJrmLdkTgf91rGXuTiOg+3Pd4lBMnTqgD69ydycUjjzxyv09JZBE2nLyGqJvJKO1ij753xiubsrbVy6ptvZGQil3nY9Cmuo+xN4lMUFENzRctWqT6BIwaNUp7v6bs55133lGT5eSsqRzYyxQhmZZRrlw5NQZ6586dalpGYQ3NZ86cibffflv1HIiOjla9AMaOHavGTJuK+hU9VSPsS7eTER2fwjOQRGQ0MolIE+zWkGluBZ04lQyVxo0bq6lCxfXzzz+rbEQZLX0v8riTJ0+ibdu2xX5++s/YdlXx9Pf78cPuCxjfsRrcTGyqJRHdW6nsEnaLlbOTctZRJgXl7uOiOXtvLT1bJNVR+g7IlAwPDw9jbw6ZkMe/3Y2d52Mwrn0QXu9hHmci3lh5FEv3RGJgE3988ljxD7qIzIEh9tddZ2zBmWsJmDesMbrWzTvpg4jIUPbt26f6pEgvFGlALv1VpDnuvHnzVLlQ7v2iZMFMnz4d48aNu+t5pORImutKX5XcJHAi6yW7Jb9XXnlFZSNKJqIEx6VnizTple8MxcmS57F1XllZ2eg8YwvCrifirZ618VTbwqdFEZFpylsIXwwvvvgiqlSpohpfycg3qQPdunWrqg/dvHmzfraSyEycuhqnAi1SijOspfmU30kpkfj72FWkpFtHwJRIl1hKRESmoGnTpqrp+E8//aT6qnzwwQcqozB3oEVIsEROmBbWnFyy12VqXP4Mme3bt2P06NEF/szFixfV89WsWVM13HVwcMDu3bvZjuA+2diUUtktYsH2cKRnmk6vMiLSU2aLj48PNm7cqEY8y5lCiZjLTlXWvfzyy6qe3how+k4FmfTbEfy0NwoP1y+P2UMbm9XZk1ZTN+JqXArmPNEY3evxzDxZDkPsryUzTDLEWgV5Y+mYFnp5DSIiS8Zj67ulZmSizbRNuB6fis8HBqNfI38j/GWIyGCZLVIm5Obmpg28aJohSnpg/hpRImtyKzENKw9eUtdHtqoCczt78khITnbLH4dz/psmopJnthy5GKuCl0RERA/K0c4Wo1oHqutzt4Rp2zcQkYUGWyQl8ciRI+p68+bN8cknn2DHjh2qK3nVqqwlJOu1bF8UUtKzULeCB5oGloG50ZQSyajB+JR0Y28OkVmpUc4Nzva2SEjNwPnrCcbeHCIishBDm1eGq4MtTl+Lx+Yz1429OUSkz2DLW2+9haysnJpBaXx14cIF1SxrzZo1+Oqrr0r6dEQWISMzC99rxj23Mv1xzwWRIFHVsq5IzcjCv8evGXtziMyKna0N6vt7qusHo24be3OIiMhCeDrb4/HmldT1uVvOG3tziEgfwZaQkBDMmjULzZo1U02vhGSyyAhoGdMpXccfeuihkrw2kcX498Q1XI5NgberA3rfyRAxNxIg6hOcM6r6d5YSEZVYwzulRIcYbCEiIh16sk0V2NmUwu6wm/yMIbLEYIuUDElWS4UKFfD4449jw4YN2vu8vLzM8kw+ka4s2pGT1SJnHpzsbc32jdX0bdlx7gZuJKQae3OIzHMiUSQzW4iISHf8PJ3RJyTnhNi8rcxuIbK4YMvcuXNx9epVzJs3T1127doVgYGBqleLjIcjslbHLsVib8RNdcbhiRbmM+65IFV8XBHs74nMrGysOZp35CMRFS2kUk6wRerqk9M4Qp2IiHTn6TtjoP8+dhURNxL51hJZWs8WJycnDBs2TI15PnfunLq+YMECVU7UrVs3/Pzzz/rbUiITtWhnTlbLw/X9UM7DCeZOUwb1+yFOJSIq6ZnHch6OKlh59FIs3zwiItKZmuXd8VAtX8hAovnbw/jOEllig1yNKlWq4IMPPkBERASWLVuG0NBQDBkyRLdbR2TipNRm9Z2gxMg7o/ksIdgiVYH7L9xC1M0kY28OkXmWEkXdMvamEBGRhRl7J7vll9CLLPcmsuRgi9i0aRNGjBiBkSNHIjMzE2PGjNHdlhGZgWV7I5GWmaVKbzTNMc2dZOe0rOqtrv9xhNktRCUREpAz9p1NcomISNeaVfFCcEBpNTlyyZ3MaiKyoGCL9GeRPi1SOtSpUyc1+nn27Nm4cuUK5syZo5+tJDJB6TLuefcFdX1U6yoW1ST6kTulRJqsHSIqHjbJJSIifZFjzXF3slsW77qAxNQMvtlElhBsWbp0Kbp06aKCLNIsd9CgQThz5gy2bNmC4cOHw9nZWb9bSmRipEHZtbhUlHV3VP1aLEmPen6wty2FU1fjcfpqvLE3h8hsNPD3hE0pqFHw0XEpxt4cIiKyMF3rlkegtwtik9Pxc2iUsTeHiHQRbJFSITc3N6xatQpRUVGYMmUKqlWrVtwfJ7I4C3eEq8uhzSvBwe6BKvJMjqeLPTrU9FXXVx++ZOzNITIbro52qO7rrq4fjOIIaCIi0i1bm1IYcye7Zf62cJVpTUSmqdjfEC9evIiVK1eiV69esLGxrC+WRCUl/RgORt5W2R9Dm5v3uOfC9An5bypRtrS+J6ISNsllsIWIiHSvfyN/+Lg54NLtZKw5eoVvMZGJKnbUxNc35yw3EQGL7zQl692ggiojskSdapWDq4MtLt5KxoFIfmkkKq6QSneCLfzvhoiI9MDJ3hYjW+VMwZyzJYwnxYhMlFFTVLZu3YrevXujQgUZNVtKlSjlL12S9bmXFi1aFPhccua9R48eBT5PQaSpr4yvdnJyQuPGjbFt2zad/V5k2aQPw593pvRIY1xL5exgq+qCxepDLCUiKmlmy5GLt5GZxawwIiLSvSdaVIaLgy1OXonDtrM3+BYTmSCjBlsSExMRHByMWbNmFfqY7t27q0lHmmXNmjUFPu6LL74o9jSY5cuXY8KECXjzzTdx8OBBtG3bVgVqZNIS0b38uCcS6ZnZaFy5DOr7e1r0G/bInVKiv45eQQZrgomKpUY5d3UAnJiWiXPRCXzXiIhI50q7OGBw00rq+tyt5/kOE5kgowZbJMDx4Ycfol+/foU+xtHREeXLl9cuXl5edz3m8OHD+Pzzz/Hdd98V63XlsaNHj8ZTTz2F2rVrq0BNQEAAvvnmm0J/JjU1FXFxcXkWsj6pGZn4cU/OuGdN+qYla1PNB16uDriRkIad52OMvTlEZtO8sH7FnEDsYfZtISIiPRndtor6zNlxLgbHLsXyfSYy92CLjH6Oibn7S9ft27fVfbq2efNm1S+mRo0aGDNmDKKjo/Pcn5SUhCFDhqjsGAnG3EtaWhr279+Prl275lkvt3fu3Fnoz8n0JU9PT+0iwRmyPn8duaICD+U9nNC93r3/vZk7e1sbPFy/vLZRLhGVrG8LJxIREZG+VCztjEeCc7KQ524N4xtNZO7BloiICGRmZhaY+XHp0iWdZ778+OOP2LhxI6ZPn459+/bhoYceUq+l8dJLL6FVq1bo06dPsZ7zxo0bavvLlSuXZ73cvnr1aqE/N2nSJMTGxmoXGX9N1kX6Ai3ckdMYd1jLyioQYQ36hFRUl2uPX0VK+t3/7RPR3RpyIhERERnAmLY5J7v/OnIZUTeT+J4TmRC74j5w9erV2utr165V2R0aErzYsGEDAgN1W1YxaNAg7fV69eqhSZMmqFy5Mv766y9VeiTbJIEY6btSUvn7u8gX6aJ6vkg5kyxkvQ5E3sLRS7FwsLPBkGY5NbLWoHGlMurMiYwX3HQqGj3q+xl7k4hMXkhAGXV5+mocktIy4OJQ7I9bIiKiYqtTwQPtapTF1jPXMX9bGN7rU4/vHpGJKPbRX9++fdWlBCRGjBiR5z57e3sVaJHsE33y8/NTwZazZ8+q2xJoOX/+PEqXzknX1ujfv79qeislSPn5+PjA1tb2riwWKU/Kn+1ClJsmq6VvSAXVx8Ra2NiUQq9gP8zdEqZKiRhsIbq38p5OqtzwalwKjl6MRfOq3nzbiIhIL8a1q6qCLctDo/Bi5xpWdZxKZMqKXQeRlZWllkqVKqnAhOa2LFLWc/r0afTq1UuvGyu9YqR8R4Iu4vXXX8eRI0dw6NAh7SJmzJiBhQsXFvgcDg4OatTzunXr8qyX21KORFSQK7HJ+PtYToBuZCvLHfdcmD7BOaVEG09HIy4l3dibQ2RWI6APsUkuERHpUcsgb9WYPSU9C0t25ZwcJCLjK3HTifDwcJUdogsJCQl5giTy3HJdRjDLfa+88gp27dql+sRIlkrv3r3Vaz/66KPq8dIQV8qLci9CAkJVqvz3hbhTp055xktPnDgR8+fPV9OLTp48qfq+yGuOGzdOJ78XWZ4fdl9AZlY2mlfxUuma1qa2nzuq+7ohLSMLa+8EnYioeE1yGWwhIiJ9ksqDse1zercs3hmB5DT22CMyBffV4VP6s7zxxhtqdPKTTz6ZZymJ0NBQNGzYUC2aIIhcnzx5sir1OXr0qGp8K5OIpHRJLiX44u7uXqLXkVIjaYybuxeMjHt+//33ERISgq1bt2LNmjWqRIkoP2kKu3RPpLo+qrXlj3su7EO8T0hOt/vVhzmViKg4mNlCRMYgAyueeOIJeHt7w8XFRR3ryiTO3J/pBS2ffvppoc+5aNGiAn8mJSUlz+Nmz56tTng6OTmpTPJt27bp9Xel/3SvWx6VvFxwKykdv+znIA8iU1Dijn3vvfeeClJIs1op5ymqqey9dOjQQTWmLYw04i2pgp5PMmPyGz9+vFqI7mX1ocvqg0uaxHaubb19fXoHV8Bn/57BjnM3EB2fAl93J2NvEpFJk5Rum1JShpiCa3EpKOfB/2aISL9u3bqF1q1bo2PHjvj777/h6+t7V3/DK1eu5PkZedzo0aNVz8OieHh4qLYBuUlQRWP58uWYMGGCCrjINsydO1dNFj1x4oTKOif9srO1wZi2VfD278fx7bYwPN6sklpHRGYUbJkzZ46Kbg8bNkw/W0RkauOed+YE64a3rGzVH1qVvV3VmXopiVhz5ApGtra+3jVEJeHqaIca5dxx6mo8DkbeRvd65fkGEpFeTZs2DQEBAXl6F+afFipl+Ln9/vvvKjhTtWpOGUph5ARr/p/N7fPPP1dBG8l8F5JFLidOv/nmG0yZMuWux0vPR1k04uLiivEbUlEeaxyAGevPIupmTq9BOVFGRMZT4m+OaWlpbCRLVmNv+E2cvBIHJ3sbDGoaAGunKSX6naVERMXSkH1biMiAVq9erbLPBwwYoLJapDz/22+/LfTx165dw19//aWCJPci/RSl5N7f318NxTh48GCe7wdSqtS1a9c8PyO3d+7cWeDzSQDG09NTu0iQiB6Ms4MtRrTMCa7N2xpWZAUBEZlgsEWi1UuXLtXP1hCZ6Ljnfo38UdqFY/R6NvBTZRFylj4yJsnYfx4ikxfsr2mSe8vYm0JEViAsLExlklSvXl1llcjwhxdeeAFLliwp8PGLFy9WvRD79etX5PPWqlVLZbZLMOenn35S5UNSKnT27Fl1v/RGzMzMRLlyecut5fbVqwU31p80aRJiY2O1i0wcpQc3rGVldZLw6KVY7Dofw7eUyJzKiKQR1rx587B+/Xo0aNAA9vb2d6UQElmCi7eS8O8Jzbhn62yMm5/0aWkV5IPt5/7P3l3AVXV4cQA/ktJKKSCCiI2C3e1mzZ41e9amTqf/lWs3p9PNmHN2bzNmzm3G7O4WixREQkFFOv+fc/AxQEBQXv++n8+V9+57vHd54H33nXviIe28EkYT2lVR9yYBaMVEomv3nshEM0OOVgIAKElGRoZktsyYMUOuc2aLr6+vBGCGDh363P15MuegQYNy9V7JT5MmTWRR4EBLvXr16Oeff6YFCxZkr8/by5EzKwrq72hqaioLlCxbCxPq38CV1p66S0uOBlIzz5KZIgsAKshsuXr1qnQ1NzAwoOvXr0sKoWJRjHAG0AW/nrpLGZlELTztpe8CZOmuKCW6fB/pqQAvUMXRiixMDCk+JZ38op7i9QIApeLhFTVr1sy1rkaNGhQSkjVVMSeeFMQNbxU9VoqDPwc0bNgwO7PF3t5eJonmzWKJiop6LtsFlG9USw/JRD565wHduI9eOABak9ly6NAh5WwJgAZJSEmjDWezDkyQ1ZIbN/n8fMd18ouKk8afNZys1fI7AtAGnMlSu4INnQ6Mocshj6l6efx/AQDl4YyTvBOD7ty5I71W8lq5cqWMZ/b29i7283DGCp9krV27tlw3MTGRx9q3bx/16tUr+358vUePHi/1s8DLc7U1p651nOmvK/dp2dEAmj+gLl5OADXQ39EqAIXYcek+xSalUUVbc2pb3RGvVQ7WpY2pbTWH7OwWACicj2tZ+cqTvAAAlGny5Ml0+vRpKSPy9/eXPotc/j9+/Phc9+PJP5s3by4wq4VLjrinisK0adOkBwz3hOEgCzfU5a/cE0ZhypQptGLFCilNunnzpmwLZ9TkvA+ozthWWdOl/roaLqXxAKAFmS3s3LlzsoPmHSh3H89p27ZtJbVtAGrBZ2vWnAySy8OauaPHQj56+LjQXt9IOWPyUcdqZIA+FAAF4pHpDMEWAFA2Lu3Zvn27BEq++eYbqlSpkoxg5r4sOW3cuFGOdwYOHJjv4/AxPpcKKTx+/JjGjBkjZUI8OYh7wRw9epQaNWqUfZ/+/ftTdHS0PG94eDh5eXnRrl278s2qAeXzcrGRUnjus7fyeBB91a0WXnYAFSuVWcyZYLxz5mg3j3Lj1ED+yvWavPPltMHVq1eTPuAzAvxmw93Tra2RFq5LTvg/pEErzpC5iSGd/rS9ZHJAbkmp6dRg+n6KS06jLe80pQbutniJQGOpe38dGZtEjWcckPr5a193JAvTlzrPAQCg09S9r9ZFx/we0JCVZ8nM2JBOftKOylpgsiaARpcRcVrivHnz6O+//5b6zJ9++klSBfv160cVK1ZUzlYCqNDqE1lZLW/Wr4BASwFKGxtSx1rl5TJKiQAKV866NDnZlJaG2zyKEwAAQBU4s6WmkzUlpqbTb6fv4kUH0PRgS0BAAHXt2lUu87i2+Ph4GenGdZlcEwqgze5Gx9OBW1HZJUTw4qlE/1wLp9T0DLxUAIVAKREAAKgaf0Yb2zqrd8uak8GSmQwAGhxssbW1padPs8ZXuri4yPhnRS1nQgKaL4F2W3fqLnFhXeuqDlTZwVLdm6PRmle2IzsLE4qJT5HSKwAoQrAlBE1yAQBAdbrWdiKXMmYUHZ9CWy/ew0sPoMnBlpYtW0qvFsalQ5MmTaLRo0dLg6327dsrYxsBVIL7j/xxLlQuj2iOrJYXMTI0oDfqOMnlnZhKBFAoZLYAAIC6jtdGtawkl5cfDaR0rmkFAM0MtixcuJAGDBggl7nT+QcffECRkZHUu3dvWrlypTK2EUAltl28R0+T08jD3oJaVckabQyF6+7jIl/3+kZQYgpSUwEKUruCjUw2i4hNoognSXihAABAZfo3dKUy5sYUHJ1A//pG4JUH0OQyImfnrF4NPBLuo48+op07d9LcuXOpbNmyythGAKXLyMikNSeCs3u1YJRx0dSrWIYqlDWj+JR0OnArUqm/IwBtZm5iRFXLWcnly6GP1L05AACgZ+9BQ5tkjeBeciRAxn4DgAYGWwwNDSkqKquBaE7R0dFyG4A2Our3gAIfxpOVqRH1qV9B3ZujVY3XuntnBV9RSqTbjh49St26dZNgO//ed+zYkev2bdu2UceOHcne3l5uv3z58nOPMXbsWKpcuTKZmZmRg4MD9ejRg27duvXC5w4LC6PBgweTnZ0dmZubk4+PD124cIG0tZToUij6tgAAgGoNbeZOpkYGdOXeEzoTFIOXH0ATgy0FRUKTk5NlFDSANuIO7axvA1eyNDVS9+ZolR7PSokO335ATxJS1b05oCQ8ec7b21tKSQu6vXnz5vT9998X+Bj169en1atX082bN2nv3r3yfvL6669TenrBJWiPHj2SxzU2Nqbdu3fTjRs3aM6cOVSmTFbgQpvURZNcAABQE3tLU+rbIOuE4tIjAfg9AKhAkT9VLliwQL7yGcsVK1aQpeV/k1r4QJnPelavXl05WwmgRAEP4iRQUKoUlxBlpVhC0VUrb0XVylnR7cintMc3nPo3rIiXTwd17txZloIMGTJEvgYHZwUu8zNmzJjsy+7u7jR9+nQJ4PD3cMZLfmbNmkWurq4SpMn5vYXh4D8vCrGxsaQJvJ8FW66FPZEGhdzDBQC0S2JKGhkaGNDTpFSyKm1MaRkZUqIBoA1GtfCg9WdC6NDtB3QrIpaql7dW9yYB6LQivzvMmzdPvvKZyCVLluQqGeKMFj745fUA2mbds6yW9tUdyc3OQt2bo5W6+zjTD3tv084r9xFsgSLhTBgOoFSqVEmCKQXhnmBcntS3b186cuQIubi40Lhx42QKXkFmzpxJ06ZN07jfhKejJVmYGEqPozuRT6mGEw5yAbRJcmo6LTkSSKtPBlFsYhpZmxnRiGaVaFybymRqjFJ60Hzu9hbU2cuJ/rkWTsuOBtLcfj7q3iQAnVbkMqKgoCBZWrduTVeuXMm+zsvt27clJbxx48bK3VqAEhablEpbLtyTy8ObZY3Fg+JT9G05GRBNUbGYtAIFW7RokWRG8rJnzx7at29foSWogYGBtHjxYqpSpYq8z7zzzjs0ceJEWrduXYHfw5Pynjx5kr2EhmaNdFc3zmSpUyEru+Uy+rYAaF1Gy6LDAfTTAT8JtDD+ytd5fUJK1joATTemlUd2r737jxPVvTkAOq3YPVsOHTqUa+oQlxBxI0SuqwfQNpvP35OzzFUcLam5p526N0drudqaU323ssQtnf66Gq7uzQENNmjQILp06ZJkqXAApV+/fpSUVHCALiMjg+rVq0czZsygunXrSpNdzmrhAExBTE1NydraOteiKXwqPgu2hKBJLoA24dIhzmjJD683Mij2ITWA2kpam3rYUVpGJq06nv/fNACUjGK/M7z//vu0cuXK7EBLq1at5ECY08APHz5cotMthg8fLutzLk2aNHnl6RZpaWn0+eefS/o6f5+Hhwd98803clAP+oN7Jqx9VkI0vLm7/H3By/tvKlEYXkYokI2NjQRZ+L1jy5Ytsr/evn17gfd3cnKimjVr5lpXo0YNCgkJ0cpXWTGRCJktANqFe7QoMlry4vV8O4C2GNM6K7tlw9kQepKIv10AjQm2bN68WRoasr/++ksaG/LBMgdhPvvssxKdbsE6depE4eHh2cuuXbteeboFN1zk/jL8vPx9s2fPph9++IF+/vnnYm0/aLdDt6IoJCaBbMyMqVfdrIk68PK61HaSMgkeKRj8MB4vJRQJ77NzNrPNiycRcalqTnfu3CE3N+1sZq2YSHQn6inFJaPsAEBbcDNc7tGSH17PtwNoizZVHWS4AWd3/37mrro3B0BnFTvYEh0dTeXLl5fLHPjgpoVVq1alkSNH0rVr14r1WDzZgqdR9O7du9B0cH4+xWJra/vcdAs+Q8oNejnDhh+P6/MLm4hx6tQpyYDp2rWrfN+bb74pAZrz588Xa/tBN8Y9D2joikkCJcDBypSae9rLZW6UC7olLi5OSkZ5Ydyviy8rMkxiYmLkOo9mZhwg4esRERHZvVe4ce2FCxfke3g/zCVEnF3YpUuX7Odp3759rgD85MmT6fTp01JG5O/vT+vXr6dly5bR+PHjSRs5WpcmZ5vSUnJ39R5KiQC0RWxiKg1rmv8kNG6Sy1OJALQFZ3OPfZbdsvpEMCWlFnySGgBUGGwpV66cHExz5gg3N+zQoYOsT0hIyDWhqKRwaZKjo6MEdLhOPyoq6pWnW7Ro0YIOHDggZ0cZN/w9fvx4rgP+vPjMK48PzbmA9vKLfErH/R8ST14d0lQ7z5Broh7PSol2XA6TjAXQHRyM5p4pvLApU6bI5S+//DJ7ahBf5yA2GzBggFxXTKkrXbo0HTt2TPaznp6eEmixsLCgkydPyj5eISAggB4+fJh9vWHDhlJmtGHDBvLy8qJvv/2W5s+fL71ftJWib8uV0Cfq3hQAKIKY+BSatOkSDW/mThPbeWZnuPDXSe2ryDQijH8GbdPN21mC/w+eJtOOSygBB1Dr6GeFESNGyEEy19FzVPS1116T9WfOnKHq1auX6MZx5gtnznC6OJ9F/eKLL6hdu3ZyZpQzXnJOt/joo48k2MLb8KLpFh9//LFMqOD7coCIA0ffffcdDRw4UOtGicLLWf0sq+X1muWpQllzvIwl5PVa5ch0uwEFPogn3/ux5OVig9e2GJMuuAEj1/1zOjqfJdWkg/c2bdoUGkDjHlu8FIR7c+UtA81PflmJb7zxhiy6gvu27LoWQZdD0VgeQNOlpmfQu79doDNBMTR502Va+FY9mtCuSq59NcY+gzYyNjSgt1tUoun/3JQx0P0auJIBn4UEAPVltnz99de0YsUKKd85ceJEdtCDgxaffPJJyW0ZEfXv31/OkvLZTG6ku3v3bslG+eeff15pusWmTZvot99+k3T0ixcv0tq1a+nHH3+Ur9o2ShSK70lCKm27+Gzcc/P8U4Lh5fCBZ/saWVkKf6GUqMiSU9NpyZFAavDdPqo/fb98XXokUNaD7vFxzZrohya5AJpv2l++EmixNDWiL96oSdZmxmRiZEB2lqbyVZOC4gDFNaBRRbIubUSBD+Np381IvIAAJeyl3iG4x0lew4YNI2XjbBrOcvHz83tuuoViwgVPK+LR1Jx2XlCmyocffiiBIU5zZ7Vr16a7d+9K9kpBPwcHlXJm04D22nguhJJSM6iGkzU1rpS7BxC8uu7eLnLWnvu2fNypOs6SFCGjhQMtPx3wyzXZQnGda6pxMK9barvYSDPpyNhkCn+SSE42ZureJADIx6+n79Jvp0OIhxX+NMCHqpSzwusEOoWDiFxO/8uhAFpyJIBer1kO0zkB1B1s4X4nvHD/lLzjkletWkXKws15OaOEgy6vMt2C+8sYGORO6uHMHIx+1n1p6Rm07lRW1/URzTDuWRnaVHMgK1MjCn+SROeCY6ixh51SnkdXcOnQ6pNB+d7G68e39VT5NoFymZkYyhSIG+GxdDnkMTnVRrAFQNOcDHhI03b6yuWPOlan9jXKqXuTAJRiWDN3Wn4siC6FPKbzdx9RQ3eciARQWxkR9y3hyT0cbOEmho8ePcq1lNR0C77tgw8+kIkVXMPPjXK5lMje3p569er1StMt+HG4RwuXI/FjcxbM3Llzsx8XdNf+m1EU9jiRypobU3efrGauULJKGxtSJ6+siWWYSvRisUmpksmS722JadIXAHSPokkuSokANE9IdAKN//0ipWVkUg8fZ3rn2dQWAF3kaFWa+tSrIJeXHglQ9+YA6HdmC0+WWLNmDQ0ZMqREplu0bds2+zpPt2BcyrN48WIZJb1u3Tp6/PixZLPwfbnfipWVVa7pFjyZggM9PCmJx0C/aLrFzz//LM12x40bJ9k53Lhx7Nix2VM1QHetPpGVQfBW44oSFADl6OHjQpsv3KN/roXTV91qSV07PC8mLpksTIxkokV+ARdez31wQPdwk9z1Z0LoUijGPwNokrjkNBq97jw9Skgl7wo2NKtPHZRVgM4b3bKSlNnzSUme2ImSOYCSUexPQCkpKdSsWbMSnW6Rd+FgDmen7N27V4Ih/JzcU4XX5xzprJhuERkZKffhEqPff/+dqlWrlut5OHuFG/sqcLCGAzT8mImJiRKMmT59eqETjED73bgfK03uuFfC4CYY96xMTSvbkb2lKT1OSKXj/g+U+lzaijOs3lx6Sl6fYU3zb9Q8olklmXQBuqeua1Zmy7V7T6S8EQDULyMjUyYO3Y58So5WprR0SAOtPDETFhZGgwcPJjs7OzI3NycfHx/JAlfgaaL5LT/88EOBj7l8+XJq2bKl9EXkpUOHDnT27Nlc9+Fj7byPWb58VqYraDYPB0vp18J4MhEAqCnYMmrUKJniA6Bt1jzri8ElLmhIqVwc0HqjTlZvpT8v31fys2kfPmvUZ9FJGZG96ngQjWvjSZPaV5FMFsZf+fq4NpXRHFdHVXawlMaEianpdCcyTt2bAwBENHffHdp3I1KyMZcOqU/lbUpr3evCmd7NmzcnY2NjmeJ548YNmjNnDpUpkxXgZeHh4bkW7rfIgZE+ffoU+Lhczs+DJw4dOiRl+xUrVpS2AhzYyalWrVq5Hpuz1EE7jG1dWb7uuBxGkbEFT3UFACWWEfFI5WXLltH+/fupTp06sjPPiXufAGiamPgU2vHsQ//bGPesElznvuZksBy4JqSkIWjwzMWQR/T2mnOS9ePpaElz+/tIw1SeOsTNcLlHC5cOcUaLqRaeUYWiMTAoRXUq2NDJgGjp21LT2RovHYAa/XXlPi085C+Xv+9dm+pWzBrRrm1mzZolWeCrV6/OXufunjt7Mm+2yZ9//iml+h4eBfem4czxvJkuW7ZskR6OQ4cOzV5vZGRU5GwWHmaRc6BFbGxskb4PlKNexbLUyN2WzgbH0KoTQTS1cw281ACqzmy5evWqpCPyNJ/r16/TpUuXshdFo1sATbPhbAilpGXIyFV+MwHV9KSoaGtOCSnpUgMMREfuPKBBy89IoIVfn81jm2ZnWfF4Zz6bamdpKl8x7ln38d8AuxxavObyAFCyuJzvwy1X5PLYVh7U+1mzUG20c+dOatCgAfXt21f6F9atW1cCIwXhUnweGDFy5MhiPQ9P9kxNTSVb29yTa/z8/KTMv1KlSjRgwAAZZlEQHnJhY2OTveRsFQDqwSd+2PrTIdLAHwBUnNnC6YMA2iQ1PYN+VYx7bo5xz6rCKcmc3fLzQX/aeTmMunvr9/Qnnsz0vz8uU2p6JrWsYk9LBtcnC9Ni74JBJ4MtaJILoC5RT5NozK/nKSk1g9pWc6CPOlXX6l8GBzd4yAQPnfj000+lr8rEiRPJ1NQ0VwaKwtq1a6WXYe/evYv1PJ988gm5uLhI7xaFxo0by2CLqlWrShCH+yFyn0dfX1/pH5PX1KlTs4djKDJbEHBRr7bVHKmKoyX5RcXRhjMh2aVFAPByXmlEyL17956r1QTQNHt9IygiNonsLU2o67M+IqAaigALZ3Q8TkjR25d93algmrTxkgRaunk708phDRFogezxz3xQixHfAKqXnJZO7/x6gcKfJFFlBwv6aWBd6TmmzTIyMqhevXo0Y8YMyWrhaZujR4+WAEx+uF/LoEGDZMJnUc2ePZs2bNhA27Zty/V9nTt3lr4vtWvXliAMZ8woAjr54QCQtbV1rgXUX+I6plVWdguXEvH/EQBQYbCFd+LffPONpPu5ublJgyxuuvXtt9/KbQCaZvWJYPn6VmM3MjVCDwxV4tGBNZysJciw+3oE6RuerjZv3x368k9fyswkGtrUjX7q74NR2CAcrUqTSxkz+dvgMgYAUO3++bPt1+liyGOyLm1EK4Y1JOvSufsQaiMnJyeqWbNmrnU1atSgkJCQ5+577Ngxun37tgy/KKoff/xRAjn//vuv9G4sjIWFhQReuLQItEcPHxcqZ21KkbHJtEcPj91AdySmpEkbiei4ZPnKPSRVrdg57J999hmtXLmSvv/+e+l2zm9WJ06ckHFv3Dz3u+++U86WAryEq/ce04W7j8jYsBQNblwRr6EacCnRzfBY+vNyGA1spD+/g/SMTPp6py/9ejqrhO39DlVkwhCXVwHkLCXiMeCXQh9TM097vDAAKrLyeBBtuXCPOJHll0H1qJK9hU689nxszgGUnO7cuSMnSPPi4/n69euTt7d3kR6bR0NzadDevXulL8yLcPPbmzdvysho0B7cN+5/r1WlshYm1MLTgR7GJUsgkhv3o58caIvk1HRaciSQVp8MotjENJn0OaJZJZn0qcoBFMUOtnAq4IoVK6h79+7Z63gnzXWb48aNQ7AFNApPw2FdazuRo7X2jXDUBVw28/3uW3QmKIYiniRp5SjN4uLo+ZQ/LtPfV8OJYyvfdK9FQ5rmngYBoAi2/HMtHH1bAFSIS1tn7Loplz/vWpNaVnHQmdd/8uTJ0ieFs0/69esnPVt4iigvOXF/lM2bN8tY6Pxwfxc+tucmtorSoS+++ILWr18v040iIrIyHiwtLWVhH3zwAXXr1k2y3qOioiQww88zbNgwpf/cULK6+7jQL4f86X+br6j1gyrAy2a0cKDlpwP/ZdXx37HiOjeCVlXgsNhlRDExMVS9+vPNw3gd3wagKR48Taa/r4TL5RHNK6l7c/QWl0k0dC8rpRJ/X80av63L4pPTaOTacxJo4YyqBQPqItACL+zbwk1yOVMUAJQr8EEcTVh/kTIyifo1qCCN83VJw4YNafv27dJTxcvLS8r858+fL31Zctq4caPscwYOHJjv43DZUXh41jEUW7RoEaWkpNCbb74ppUqKhcuKcvZy5MerVq2aNNw1MTGh06dP55tVA5r9QXXx4QAZcMAfUHN+UF10OEAtpRgAxWFoYCAZLfnh9UYGr9S2tliKHdLhLJaFCxfSggULcq3ndUVNQwRQhfVnQiglPYPqVixD3s+mfoD6zpCcC35Ef16+T6NaZjVe00Ux8Sk0Ys05uhL6mMxNDGXiUKuqunPGFEqel7ONNOTk4DA36XQukzUKHABK3pPEVBq17jw9TUqjBm5l6dueXjpZ2vnGG2/IUpgxY8bIUpDDhw/nuh4cnJUpXBgO4IDuf1Ad39ZT5dsEUBw8dEARKMyL1/PtdpampArFDrZwGmHXrl1p//791LRpU3mTOnnyJIWGhtKuXbuUs5UAL1HG8duZrF4Zw5vp1lkrbcRlXNN2+tK1sCdyVtHDISvlWJfcf5xIQ1aeoYAH8VTG3JhWD29IdSuWVfdmgYYzMzGk6uWtyPd+rGS3INgCoLw+WhM3XKLAB/HkbFOaFg+uj6b5ABr+QRXgZViWNpLSt/z+jnm9lQqboRc7h6Z169bSaKtXr170+PFjKR3iVEFuxoUGWJrdDVmf7LoWLmeKuZt6l9oY96xuttxkrUpW88+dV3SvlMg/Ko7eXHxSAi1ONqVpyztNEWiBYvVtYRxsAd2C937N8f3um9KrpbSxAS0b2oAcrPBhESA//EGUP5DmR9UfVAGKiwdTHL3zgIYV0CuRew9xs2dVeanOMM7OzmiEq4XdkPXJ6meNcQc3diNjQ9XV5UHhU4kO335AOy/f16mpPPwBecTqs/QoIZU8HCzo15GNpU8NQHGCLb+fCaHLIQi26BK892sOnjq0/FhWWcScvj7k5WKj7k0C0FjpGRnyOSVnc1EF/gB7J/Ip1XCylhJYAE2RkZFJs/beoqVHAqmygyVtH9eMDEqVUvvn7yJ/CvXz85OmV9xVPK8nT57QW2+9RYGBgSW9fTpxVoubSfEOC02mVONiyCPpmcGj697CuGeN8VrN8nJGMfBhPF0Pe34/oo2O+T2gt5aflkCLdwUb2vJOMwRaoNi4rxTjMru0dNWdbQHlwXu/Zh0TfLrtmlye2M6TutZBtitAYcxMjOQDKZ8YU2S48NeJ7T2lNH/Sxss09tcLMhAAQBMkpabTxI2XJNDCevo4k1VpI5k6dP6z1+jC5x3kK19XdaJDkYMtP/zwA7m6upK1tfVzt9nY2MhtfB/Q3G7I+mLv9QgpW+nu7YyaUg1iaWpEHWqUk8t/Xg4jbceTld5ec44SUtKphac9/T66ifzdARSXh72lHBQkpqbT7cineAF1AN77NUP4k0T5UMjN8jvWKkfvd6iq7k0C0Ar8gTTvB9V3WlemK/eeUOijBNp/M5L6LT1FEU+S1L2poOcexadIz0TFFNC5/bzpvWcZ9DzemU++c48h/qqqcc85FfmT/tGjR6lv374F3t6vXz86ePBgSW2XXjWZgpKtjR/cxI2Of9yWPupYDS+thuEAGPvr6n1pVqjN9aDvbbhEqemZ0vx35fAGEkwCeBkGBqXIu0IZCdYFP4zHi6jlfO8/oQdxyXjv14AznWPWXZD+bdyEem4/H/m/BgBFk98H1XbVHWnD6CZkZ2Eijd17/nJC9nkA6hASnUB9Fp+Uiad80mrtiEbUu14FjfplFPnTwd27d8nR0bHA2+3t7WUiEeTfZEoTuiHrMtTGa4fW1RzIurQRRcYm09mgGGpa2Y60SWZmJi044E/z9t+R64MaV6Rvenihbhle2Wdda5CbnTk9TkiVoDE3b1PHGRh4+X3D6cAY+vmgH92KeCoBf7z3q/f38eGWq1Kax0HM5UMbkAUC4gAlor5bWdo+rjm9vfacDAjou+QU/TywLrV/lr0MoKqeiSPXnKPo+BQp4V89oiFVLWelcS9+kTNbuFQoICCgwNv9/f3zLTHSd4omU/nhukdVdkPWVaiN1x6mRobZ06F2XgnTusZbX+/0zQ60TGxfhab3RKAFSiZYvPt6ODWZeYCafX+QGny3T+qOeT1o/od6nnrA6fQDl5+mkwHRFJuYSv6RcQW+93ODyYt3YygyFun3ysK98v66cp+MDErRokH1yNXWXGnPBaCPKtqZ09Z3m1FzTzsppx697jytOh4k+0QAZfvXN4IGLDslgZZaztbSDFcTAy3FCra0atWKfv755wJvX7BgAUY/F6PJ1HvtsppMcZ0ZvBrUxmtnKdGuaxFyBl8b8HZO2nSZ1p66K9e/7laTprxWVWcmKoH6g8WcMYUm6tqDP1AcuBlJPRedpKGrzkoKs4mhAQ1uUpEOf9iG6riWKbDB5IjmleizHb7UdcFxOh0Yre4fRefsuxFJP/57Wy5P61GLmnhoVwYlgLawMTOmNSMa0YCGrsSV4d/8fYO+2umLRu+gVGtOBNHY3y5QUmoGta3mQH+MbUqO1qU19lUvco7y1KlTqWnTpvTmm2/SRx99RNWqZfXDuHXrFs2ePZv27t1LJ0+eVOa2an2TqfFtPaVHC5cOXQp5RH2XnKbyNqb028jG+ND2Cp4kvrgvDtebgmZo7GFHjlamFPU0Wc4Id6ip2WmnCSlp9M5vF2Vb+SzpnH7e1MPHRd2bBXoSLOb3DdCsDLe9vhH080F/uhGeNVXN9Nnku7GtKlN5m9KFvvdzNmtMfIo08XsYl0yDVpyhTzpVp1EtK+E4oATwSNr3N14iPrk+pIkbDWrsVhIPCwAFMDY0oJm9a1Mlewv6fs8tWnfqLoXEJEhZEVolQEm//87YdZNWHM86ZuL33W+61yIjQ80eNlPkratbty5t2bJFGuVy0MXW1laWZs2a0bFjx+iPP/6gevXqKXdrdajJFB+QhT1OoBP+0bTlwj11b57WnlnkqTYWpobZZw7zQl8czWNoUIq6Pctu+fPKfdJknHn21vIzEmgxMzakFcMaINACKm2izh/IOftBmxtK6wJ+/fn9ptNPR+nd3y9KoMXcxJDGtvKg4x+3o6+61coVaCmswWSFsubS76BXXRd53O923aRxv19Ew/wS2F+PWnue4lPSqamHHX3ZrearPiQAFAFn+Y5tXZkWD6pHpY0N6PDtB9LHJexxIl4/KLGG5+PXX8wOtHzcqTp919NL4wMtrFhb+MYbb0ijXA66fP/99zRz5kzaunUrBQcHU/fu3Yv95By46datGzk7O8t/1B07duS6ffjw4bI+59KkSZNc9xk7dixVrlyZzMzMyMHBgXr06CHZNi8SFhZGgwcPJjs7OzI3NycfHx+6cOECqYqbnQVNfjaCcPo/N6VbPhTvoIoPTidtvEwn/B/S8Kbu+d6Pa+bRF0fz9PDJCrbsuxFB8cn5f9DUhJGhfZeekgZcnCr726jG1KZawU3CAV6liXp+eH0Zc2PZ17WafYh+PuBHUejzoVJp6RlyQuS1uUfk/eZOZBxZmRrRhLaeEmSZ2qUGOVgVP3PSzMRQxlN+26OWZLnsvh5BPX45IZkZUHyp6Rny/4TPqLvamkmfFj7jDgCq08nLiTaNaSr7RG4U3mPhCboS+hi/Angl0XHJ9Nby0/I+yeW6Pw3woXfbVNaabNBijzrgoEavXr1K5Mnj4+PJ29ubRowYQX369Mn3Pp06daLVq1dnXzcxMcl1e/369WnQoEFUsWJFiomJoa+//ppef/11CgoKIkNDw3wf89GjR9S8eXNq27Yt7d69W6YscfPfMmXKkCqNbFGJdl65L6PTpv3lSwvfQmZQURz3e0j/23xZJtpwWQef+R3X1lP+03HaPZ8N5g8pHGjhmnlO5QbNUtvFhtztzCk4OoH234zUuGyRgAdxNHTlWTkrU966NK0b2UhjG2+BbjRR/+mA33O38fqgh/GUkZkpf4tz9t2R+71Ws5yURzSrbIdRtkrs07T14j1adNifQmOyzs5y0PXt5pVoeHN3ufyq+D1rSFN3quViQ+N/v0iBD+JljOqsPnWys/+gaL79+wadCowmCxNDWjG0IZW1yH2sCACq4e1ahnaMby5TYjjg0n/ZKZrf30cCMQDFFfwwnoavPiufF/h9d9mQ+tKOQJuUytSQttF80LF9+3bq2bNnrsyWx48fP5fxUpirV69KAIenI3HGS34++eQTOnHihJQ/vazY2FiZ0PTkyZNXmsJ0PeyJnM3iVOKVwxpgbNoLUsh+2HubVj5LIfNwsKCf+tel2hVssntrGBkY5KqNx+hUzTV33x1acMCP2lV3pFXDG5KmuHrvMQ1ffU76KnjYW0ighdP+QXuV1P5aWXjqEDfJLShYnPRsWtHvp0Po/N1H2d/HAcuBjSrSm/UroC9VCeHX+o/zobTkcADdf5I1LcjOwoRGtfSQ5rfK6kHAZ+7e23BJphmxEc3d6dMuNZCdUQS/n7lLn22/TnySc9mQBhKMBO2k6ftqKDo+Fp+w/hIdufNA/m9yb6oxrTy0JhsB1O/C3RgpDX2UkEoVyppJM2ZPR0vSNhofbOFAC2ezcNZJ69at6bvvvpNMlIIyZT7//HP6888/pZQobxaMQs2aNaljx4507949OnLkCLm4uNC4ceNo9OjRBW5fcnKyLDnfEFxdXUvkDWHmrpu09GggOdmUpn1TWpOlabETjnTe7YinNGnjJYmSMz7o/axLTUnFBu3kHxVHHeYekeyks591IFsNOBPJWVNjf82q+efsmzUjGuJDrA7QhgP4ogaLeV+4/sxd2nYxjJ4+K8HjtNrOtctLtktD97I4mH0JiSnp8qF92dFAad7NOBWee7JwEz5VBO75pMucf29L4I01cCtLvwyqR+U0eMqCup0JjJYmw2kZmfRhx2poKK3ltGFfDcUrw5z21w369XTWJMeBjVzpmx5eCCLDC+2+Fi5TQDnLtE4FG1o5rOFLlexqAo0OtmzatIksLS3Jzc1NyoK++OILSktLk94qpqb/veCLFi2SCUkcbKlevTr9/fffBWa1sNKlsw5cpkyZQn379qWzZ8/S+++/T0uXLqWhQ4fm+z1cnjRt2rTn1pfEGwIf5HWcf1RqjYc1daNpPbxe6fF0rfP0mpPB0uGc/8PxGcbZb9ZBBpCOeOPnY3Q9LJam9/SiwU3UOzVi17Vwen/jZUpJz5DyjGVDGyDwqSN08QCegzN/XblPv58Joav3nmSvr+JoSYMaV6Re9SqUSKmLrotLTqNfT92lFccCKTo+RdY525Smd9pUpn4NXKm0GspQ//WNoP/9cUWCafaWprTwrboYX5yP0JgEyQzmLEQuu1owwAeBRi2ni/tqfccfM1efCKZv/7khU8JaeNpLEBnvT1DQ3wtXMHDjeP576VDDkRYMrKvVlQoaHWzJKzw8XAIvGzdupN69e2ev551yVFSU3P7jjz9K81suE1IEVfLijJcGDRrkGlU9ceJEOnfuHJ06dUrlmS2Mm7zy2RnOrtvyTlOq72ZL+i4yNok+2HyFjvk9lOtcbsK17Noa2YTnLTsaQDN23aJGlWzpj7FN1fYS8Rntz3dclx17Z6/yNH+AD5kaIWtKV+j6ATyXvq0/E0J/Xr5Pianpso4nQnSr40yDmriRdwUbfAjN40liKq09GUyrTgTR44RUWceNVce18aQ+9SrI5CB116m/89sFyebkCW4fd6pGo1siBV+BG6v3WXxSXh/OQuT3D2S6aj9d31frs/03ImnixkuUkJIupSCrhzckV1uUaEPu7E7uv8Un2dnQpm4y6Y/fA7VZsY8mdu3aRXv37n1uPa/jZrPK5OTkJMEWP7/cjQR5x1ylShVq1aqVTEriEiIO3BT2OFxKlFONGjUoJCSkwO/hTBre8edcSlJzT3upu+cPe59svUbJaVkHzPpqz/UI6jT/qARa+EPDtz29pKcNAi26hc9GcoDxbFAM3VfDiECONfOEF6735/973P+CG1Uj0ALapE6FMvR9nzp05rP29E2PWlStnBUlpWbQ5gv3pOHqGz8fl2CMpk7+UvUkOy7VafH9QekbxYEW7s30Y19vOvi/NrIPUHeghbnbW+QaD81BaYyH/i/jdcoflyXQwpk/y4bWR6AFQMN1qFlOgqI8dIDLyPm96UKOHmSg3xJT0uUEgyLQ8lmXGjStu/YHWlixjyi4uWx6enq+H1r4NmWKjo6m0NBQCZYUhrclZxZKXjyJ6Pbt27nW3blzRwI56sR/WPaWJuQXFUdLDgeSPuIPAx9tuSL/4bghkpeLNf39Xgsa0sQNZ2Z1kJONGTVyz8ri4pIIVR+wcy0xT3hhPMp1Ri8vndixg36yLm1MQ5u60573W9LWd5tS77ouEjjgiXefbr9GjWccoM93XKMb92NJ3/DUupm7b1KLWQfp54P+UqJTtZyljJDkXml8skPTRgVjPHT+5h/wo72+kdKraOmQ+vI+AgCaz8vFRiYV1XK2lrLNgctPq/zYDzTz/XnA8tO070akHLP88lY9Gq1DzZSLXUbEo59v3rxJ7u7uudYHBwdTrVq1pG9KUcXFxcnUIFa3bl2aO3eujGO2tbWVhfuk8EhoDq7w43/66aeSfcLPb2VlRYGBgdLXhUc9Ozg4SPnQrFmzZMoQ30fRSLd9+/YyrnrChAlyncuFmjVrJj1Y+vXrJz1buDnusmXLZIy0OlMdeafDEwmMDUvRroktqYoejZu9FPKI3t90me5GJ0i2wzutK9PkDlU14iwjKH+SBL/5/jOxpUpe6tT0DPpw8xXacTnrTf7LN2rS2y0qqeS5QfX0OTWdMzl4hDH3duEx0gp1K5aRhrpv1HFSS18SVZajLj0SSOvP3pVsH1bTyZrea+dJHWuV15rR2RdDHsl46PAnSWRmbEiz3qxD3fVwPPQ/V8Np/PqLcpmzkThIBrpDn/fV+nZiddLGy7T/ZqRc/99rVWlCO0+d+XANRRfwIE5GO4fGJFJZc2NaPrQBNXh2ElZXFPtTLO8EOciRFwdNLCwsivVY58+flyALL4qGtXz5yy+/JENDQ7p27Rr16NGDqlatSsOGDZOv3FOFAy2Me7JwYKVLly7k6ekpgRPeBu7FknNiUUBAAD18mNX3gzVs2FDKjDZs2EBeXl707bff0vz584scaFEmPvBtX92RUtMz6ZNt1+Tsuz50K/9pvx+9ueSUBFq4OeGG0U3o407VEWjRA128nGQiEZ9994/Kmjal7Maio9edl0ALP++8/t4ItIDOKvtsbPHB/7Wm9aMaU9faWf/fLoU8lp5YnO3yzV83JK1bl4Q9TqQvdlynlrMPSV8WDrR4u5aRctR/JragzrWdtCbQwupVLCtZns097aQvz8QNl+jrnb7SOF5fXA97Qv/bfFkuj2pRCYEWAC1lYWokWWkjn53k4gzj/22+ovctFPTN2aAY6b3FgZaKtua09d1mOhdoeanMljFjxtDp06clWKGY+MOBFs5A4SDGihUrSB8oM/rOvStem3tExs9+26MWDWmaO4tIl4REJ9D7my7RxZDHcp3P1HF/FnQp1y8j15yjA7eiaGI7T5ryejWlPc/jhBR6e805+XvjXkCLB9WnttXzHyUPugNnS3OLeppEm8/fkz4uHJRQaOJhK9kunPGhrRmF/J6y6LC/ZPPwSQvG47Dfa1eFWlax1/ozp3nHQ9d3K0uL9GA89IOnydRj4XG6/ySJWld1oFXDG6LkUwdhX61/eCw0B45538bDEpYOri8nCUC3/XXlvkzd4wmgPs9OhNhZ6uYAlGIfTf3www+SPcIjlitVqiQLN5e1s7OTSUDw6pzLmNFHnarL5Vl7blP4E9U3DlU2jvFtPh9KnX86Kh98rUyNaH5/HxnvhUCL/unuk5UO/+eV+/K3oQwRT5Ko39JT8vdmXdqIfhvZGIEW0EuOVqVpfFtPOvpRW1o9oiF1qFGOOMnjdGCMlLE2+/4AzdpzSwIX2pSKzE1T2845TBvPhUqghUe4c5YkN2VsVdVB6wMtjHtK8fHBsiH15X2TG0x2XXCMTgVEk67i7J13f7sggRZuZszHCeitVTguqx88eLAcm5ubm5OPjw9duHAh+3b+v5Dfwsf4hdm6dasMmOChEfw1v2EUixYtks8GnH1ev359yUAHKAj3ZOQP2pamRpLp0HvxyVwlr6BbMjMzacmRADnW4EBLx1rl5H1aVwMtLz36mb9l3759dOXKFenhUqdOHZkEpE+UHX3nCG/fJSflgyHPGOcaNl04UFT0EPhsxzXadS1CrnOD1Ln9valCWYyA01dc2lP/2/2SHv/n+OaS7l+SAh/E0ZCVZ+UsvqOVKa0b2Yiql0c9uL7A2dKiZVRykGLTuRCKjM1qMM9vOS2rONCgxhWlvNVIwxrIstsRT+nng370z7VwmSjGOPNhYntPqu+me+nIhY2H/qhjNRqjQ00Fs4cvbL1Gm86HklVpI2muWdnBUt2bpdEePXokJfncA/Hdd9+Vsnoup+dei4qM9IiIrOMvBZ4mOnLkSMlU9/DwyPdxuYy/ZcuWUnrPfRA50MJl/8ePH6fGjRvLfbiP4pAhQyTgwsMoli5dKhnvN27coIoVK75w27Gv1l+3ImJp5JrzcpxWxtxYMlwae9ipe7OghNtGfLXTV3rIsbebV6LPutbQ+eD5SwVbQDVvCHcin8oZKz5Dx52Zu9YpfAqTNjju91BqrvlgnvsGTH6tqjTC1fX/aPBi3INg55X7svP9slvu0eyv4tq9J9J8izvfu9uZ068jG5OrLQJ7+gQH8MU7GOKSPj4YOnrnQfZ6HtfZv6ErDWjkqhHTX7h/BwdZeCqNAmfocOPbkg7Wavq4zM+2X6Ntl8Lkeqda5emHvnXIqrQx6YLVJ4JkahwfIqwe0UgCaVA4ngx64sSJYmWU9OzZk54+fUoHDhwo8D79+/eXfSkHZhQ6depEZcuWlR6IjIMu9erVo8WLF2ffh7Pf+fFnzpz53GPy5NCc00P58V1dXdEgV49LXEevPU9X7j2RQSGz+tSh3vXQBFtXmiK/t+ESHbwVJSdyvuiqP4MpihRsWbBggfRq4ZRAvlyYiRMnkj5Q1cH73H13aMEBP7K3NKUDU1qTjbl2HkAlpabTj3tv04rjQXKdU4HnD/ChOhX056AYCnfgZiSNXHueHKxM6fTU9iUSgDsZ8JDGrLtAcclpMu1o7duN5P8S6BcEW17O3eh42nA2VEo+OVjJ+L9l+xrlJNulVRUHlTeZ5al1PLqZD9gYH7R19ipPE9pWoZrO+pmtxodxv50JoW/+8pWTM/z+umRIfaqq5dMMj/k9oGGrzhLPCfi8aw1p9AwvxuU9HTt2pHv37tGRI0fIxcWFxo0bJ1M38xMZGUkVKlSgtWvX0ltvvVXg43JmyuTJk2VRmDdvngyYuHv3LqWkpEjJ0ubNmyXzRWHSpEl0+fJl2Za8eOooTwbNC9OI9BcHkLkkdPf1rOwr7uXHJ2Z1KWNPH4Nob685R9fDYsnUyIB+GlCXOnmVJ31RpJxg3pkqRjrz5YIW3uFCyRrftjJVdrCQGeQzdt3UypeX07x7/nIiO9DCB+l/T2yBQAvkwuUKnDrKjRDPBL56/4E918Np+KpzEmjhxp8bxzRBoOUVHD16lLp160bOzs5y0LNjx45ct2/btk0O8O3ts5qQ8sF1XmPHjpU0di4/dXBwkGlzt27dKvI28JlRfuz333//VX4UKCI3Owv6pHN1Ojm1nfTJaFzJVj747rsRScNXn6NWPxyiXw75y/9ZZeNa/iErz1CvRScl0MIxnh4+zvTv+61o0aD6ehtoYfx/gvsecG8aJ5vSFPgwnnosPCGZgtqKezZMWH9J/t54vLNiagm8GE8M5cySKlWq0N69e+mdd96RE6Hr1q3L9/4cZOEpn7179y70cbn0qFy5crnW8XVFSRJP/UxPTy/0PnlNnTpVAiuKJTQ0FL9iPWdmYijZ/O+2ySp5W3DQX8ZE80lb0D5+kU+p1y8nJdBia2FCG8Y00atACzMqyp2CgoLyvQzKZ2pkKGl0PBaZa5b54LKZp71WvPQ8tnrNyWD6fs8taXBnZ2EiP0uHmrnfiAEYTz/p7OVEG86G0J+X77/S3zk/BqfW84E6N9/iKHppY0O80K+AA+7e3t40YsQImT6X3+1co9+3b98Cz6Bys8RBgwbJGdKYmBg5q/n666/L+4qhYeG/n3PnztGyZcukRxio/n2IJ8XxwuPZucRo64V7dO9RIv2w9zbN33+HXq9VXgLpTT3sSuwMJGdsnAyIluzOM0Exso4z3nrVdZEGv5XsLUrkeXRF3WfjoSduvEQn/KOlNPPi3Uf0aZcaWjVdKjYplUavO09PElOpXsUy9F0vL5zVLoaMjAxq0KABzZgxQ65z/xZfX18JwAwdOvS5+69atUr2y5y9/iJ5/2/z/9G864pyHwVutMsLQE6cMflxp+pS+v3Z9usSOOZeLtwYXJcbqeoabtw+9tfzFJuUJu/Xa0Y0lJM4+qbY777ffPMNJSQ8P6EgMTFRboOSxzPHBzfJaiw2dfs1rYjuRsYm0bDVZ+mbv29IoKVtNQfa834rBFqgUBxMZLuuh1NyWvH/zvmgjs+0T92WFWjp38BVzpAg0PLqOnfuTNOnTy/w7Cc3ReRmiR06dCjwMbgclZupc6NGruvnx+MzmcHBwYU+d1xcnHwYWL58ufQHeBHuAcClQzkXKBmejlb0VbdadObTDvRjX2+qW7GMlK78czWc3lp+htrPOUIrjgXKmPWXxf+PD92Ooj6LT9KgFWck0ML1+wMbVaTDH7SR50WgJX/8QWTd240lK5bxCY+By0/LNDZtwMMBJm24RP5RcZKlw+VQHOyDonNycpJSopy4b0pISFZTypy4r8vt27dp1KhRL3zc8uXLP5ehEhUVlZ3JwlmNHDQv7D4AxdG/YUVa93YjmSDJk9d6LjohAX/QfDsuhdHQVWck0FLfrSxtfbeZXgZaXirYwrWVfOCbFwdg8qu7hJLBox65QeHd6AT66YCfRr+se65HUKf5R+mY30Opzfu2Ry1aNbyh9OIAKAxPpuK/86dJaXT49n/NOYuaSTX9n5typp1xCur3fWpr5AQVyMqEWb16tYwI5YaIhRk/fjx17dq10EBO3nIj7qmlWF70+PByqd5c3rF9XHP6Z2ILyWqxMDGUEhb+f9hoxgGasukyXbgbU+Rx7ny/f30jqMcvJ2jE6nMyjY8zMoY1daMjH7almb1ro7l1EXD2z4cdq8sUQ6tnH1Le+Fk7xkPP3nuLDt1+IMcOy4Y0kDHlUDycYcgBlJzu3LlDbm5uz9135cqVknHIWYsv0rRpU5lEmtO///5LzZo1k8smJibyWHnvw9cV9wEoLs5y3jauOVW0NafQmEQpJT3h/xAvpIZSnPR8f9NlORHTtbYT/T6qsZQQ6atifwopKB2Qx0Db2ur2mEV1si5tTN/29JLLy44Gku/9J6SJnaY/3nJVRlE+SkiVhqR8ED6kqTtSgKHIqaPdvLOmbhWn30BqegZ9sPkKrXzWF4ibKXIKKhqqaR4eCWppaSnLnj175ECcD9ILsnHjRrp48WK+kywKgj4AqlXL2Ya+61WbznzWQUo+ajpZS0YjT8jps/gUdf7pGP16KpieJqXK/RNT0uT26Lhk+ZqQnEZHbj+Q+4359QJdvfeEzIwNaXTLSnT8o7Y0rYcXOZdR/wQkbfNazXL014QWVL28FT2MS6HBK8/Q0iMBRQ5+qdr2S/do6ZFAufxDX2+qXcFG3ZuklbiB7enTp6WMiEc5r1+/XkowOWidE2f8cTPbgrJauOSI96U5G91ycGXWrFnSa4u/7t+/P1cPrSlTpsioZy5NunnzpmwLZ9Rw3xiAl+XpaEnbxzWTDAk+GceNszedez5TC9SLj8U5s1xx0nNMKw/6eSDK+IvUs4Vx6jZ/cOGlatXcXaG5IRZnu2BnqvwDpy61y9OuaxH0ydZrsuPRlLP2PCGCo5icecN/GmNbVaYpr1XVqjpx0Aw9fFxo+bEg2n8jUprbWpoavbBz/fj1F6VpJp/Rnd2nDvWpj1GBmorLgV577TUKDw+nH3/8kfr16ydjSvPrF8AlRooD/KL0E1BAHwD14P+rgxq70VuNKsrozt9P36W/rt6nWxFP6Ys/fWnTuVBaP7oJrTgeKOUtsYlpZG1mRMOautPwZu5yFowfY2hTN2mIitr8V+dubyHZR4rx0DN336JLIY81bjz05dDH9PHWa3KZS6C4PxC8nIYNG9L27dslUMLl/Zw9yAMseN+bN5DNgbeBAwfm+zgcJDEw+O8YjrNT+Hs+//xz+uKLL6TZ+aZNm2Tcc87x0NHR0fK8vI/38vKiXbt25ZtVA1Ac/H7AGRIfbrlKf125L/uLoIcJ9FHHaiqfigfP4+P1cb9fpKN3HkgD+6+716KhTd3xUhV19LOiWznf9e2335adNqdmK/BZSa7B5xRDfaGuUaI8PqvDnCNSA/dZlxo0upV6RyGmpWfQL4cCaMFBP6m1drYpTXP6+VDTynZq3S7QXryfaT/3CAU+iKe5/bypd72CAydPElJp5NpzdP7uI0k75/4saMCsfBxs54P5nj17Pncb91/hg/tLly6Rj49PoY/Do0I5kM9nQvM74OeJRzxCNGfzXA7u8/PzhwDuzfKixroMo5/Vh/+Pbrt0T5rqftypmmSt8OjmvN5r5ynpxuVtSlMZc/1NN9bH8dDc463bz8cp6mmynFRaOrg+PjzpKeyroSj7snn7/aRxOuvsVZ7m9vOR0lZQ3z6cS39vhMdSaWMD+nlgPdmXQzEzW4YNGyZf+SCa60GNjIr8rVCCuH75My6R2HqN5uy7TR1rlaeKduZqeY1DohPo/U2XpK6edfN2puk9vMjGXHPOloH24Q/SPbxdaN7+OzKVqKBgizRhXnVWzppzXwLuC9TQHaWM2njgxEGT/LRv356uXcs6263A05CqV69OH3/8cZECLaBe/H4wonklyVxJSc+g/22+ku/91p4KpvfaVUE2pJLHQ3s5W8vZR8V4aO5rxdmE6sIN/8esOy+BlqrlLGlefx8EWgCg0H0ZZ87zpKKPt16l3dcj6P7jU7R8GHo8qcOtiFgJtIQ/SSJ7SxNaOawhebuWUcu2aKpi13hYWVlJHabCn3/+KWc3P/30UzlLCcrXr4GrjNdMSs2gz3ZcU3n9NT/f5vOh1PmnoxJosTI1ovn9faQuD4EWKAndn00lOu7/UPo65BX8MF4mlXCghRsv/zG2KQItSsalopcvX5aF8bhmvqyYcMGjnPn6jRs35Do3aOTriskUgYGB0nflwoUL8j2nTp2SEiIzMzPq0qVLrgDLwoULs99vOA0952JhYUF2dnZyGbTrADkuKU1Kh/LD6xU9XUD546FbeNpTYmo6Tdp4mb7e6Su9c1SNjyU+2XpVSs7KmBvTiqENX1g2CgDA+ETcbyMby76D9yG9fjlJtyMwqUiVuFFx38WnJNBS2SGrZBWBlhIItowdO1a6misOnrk+09zcXJpsffTRR8V9OHjJg9YZvWvLGUCe+LPtYpjKXkce58n9MbhmMj4lXabH7JrUknrWVd+ZMdA9PNa1TgUbKU07cDMy123Xw57Qm0tO0r1HieRmZ05b32lGNZxUV8qnr86fP09169aVRdEIkS/zuGe2c+dOuc5Tg9iAAQPk+pIlS+Q691zhMaMcWPH09JRACwdOTp48SY6OjtnPExAQQA8fYtKALuIeIdyjJT+8XpN6iOh674O1bzdS+3jopUcDacfl+9Jra9GgemrL0gUA7dTYw04+4PMxY9jjRDkJd+RO8SZZwsvZcuGeZJc/TU6jRpVsZbSzqy324a/Us0WB+5TwZAhujMWdyA8ePEh79+6VBod8cM0NDfWBJtSVLjrsT7P33Jao7v4prcneUrmjlY/7PaT/bb5MkbHJZGRQiia/VpXeaV1ZDpQAStqW86GSKdXC04ESUtLkg1h0fDKNXXeBroY9kQDL2rcbYjQoaMX+GrKmEC05Ekg/Pau1z2lS+yo0trUHmZsgs0GV9t2IpCl/XJYJH5wCvmBgXWpW2V7pz3vwViSNXHue+Aj02x61ZGohAPbV8LIngsf+eoHOBMXIZxJuzsplk1DyOGyw4IC/lPozbmbODddNjVDWXaKjnzMystJNeeSbIv3b1dUVZyNVbHRLD/nA+Tghlb79Oyt1XxmS09Jp+t83ZGwkB1q4sd62cc1ofFtPBFpAabp6O0szzcYz91P96fupwXf7aP2ZEFo9oiH1qutCm8Y2QaAFQIuYmRjRuDaVJbCiyHDhr3yd1yPQogHjoVecoSVKHg/tH/WUJm64LIGWQY0rItACAK+Em6r/OrIx9alXQTKiv9hxXT4X8WUoOVxuypUNikALv29zGwkEWko4s6Vdu3YSWOnQoQONHDlS6vM5JfzIkSPSRJcnUegDTYm+X733mHr+coJ4f7J6eENqW/2/dPySwPWPkzZekt4YjA+MuEEvDopBXWfAJ7bzpDGtPcjSFCUHoF37a8jCmWpGBgbSo4Uz1tIyMvCeomaJKenZ46FZp1rllTIems9A8zFLcHQCNa5kKx+QuCQagGFfDa+CP9L+csiffvw3KxjQoUY5+mmAD1mgF9Qri01KpXG/XZReilzQ8G1PLxrUGNlDRVHsdzge+8xlRBMmTKDPPvtMAi1sy5Yt1KxZs+I+HLyiOhXK0NvNK8nlz3dcp/jk/JsPFldGRiatOh5E3RYel0CLnYUJrRjagL7rVRsHxaB0hgYGtPpkUL63rTkVTCaYQgOgtThYzx+wuXcIf0XwXv14bOqcft40vacXGRuWoj2+EdR94YkSbTiZlp5BE9ZfkkBLhbJm0qcFgRYAKMmelhPaVZGBHbxv2X8zkvotPaXyflS6JvxJIvVbckoCLeYmhjJxCIEWJWa2FCQpKUnGcBob68fZZk2KvvNZwtfnHZWGoSOau9NX3Wq90uNFxSbRB1uu0tFnTabaVnOgWW/WQckGqAxPIOLSoYJc+LyDfFAD0Lb9NYCmuxTySMZD84QJM2PDEhsPzVOPuBkvH6xzM0U0Noe8sK+GknLh7iMZKx8dn0LlrE0lQODlYoMXuJh87z+ht9eckzYSPP2TqyjwOhZPieVu8qQJfQm0aBo+KzijV225zAcyfKD0svZcj6CO849KoMXUyIC+6VGLVg1HE1JQLUwtAQDQnfHQG8+GyPEJm9vPB4EWAFCq+m5lZVKRp6OlBAo4w2X/jdzTLaFwPNmJM1r49aviaEnbxzVDoEUVwZb09HT68ccfqVGjRlS+fHmytbXNtYB6tKrqQL3rukjDuU+2Xiv2QRGXH3285Sq989sFepSQSjWdrOVga2hTd0nLA1Cl9IwMGtEsqzwuL17PPR4AAEB146EHLHu5dPxzwTH0xZ/X5fKU16pSJ6/yJb69AAB58Th5zqJr7mlHCSnpNPrX87TyeJBSG4Drik3nQiSjJT4lnZp62NGWd5tRhbIY7aySYMu0adNo7ty51K9fP0nJnjJlCvXu3ZsMDAzo66+/LtZjHT16lLp160bOzs7ygX7Hjh25bh8+fLisz7k0adIk133Gjh0rY6jNzMzIwcGBevToQbdu3SryNsycOVMe9/333ydt9/kbNcnWwoRuRz6lpUcCivx9nAnTdcEx2nQ+lDiuwuM3d4xvTlXKWSl1ewEKgqklAADqxSNUP+xYnZYPbUBWpY3oYshjeuPnY3Qy4GGRHyPscSK98+sFSk3PpK61nei9dll9/gAAVMHGzJjWjGhEAxq6Zo2a//sGffmnr/SQgudxIOrHvbfp463XZJoTn8jnwDu/jqCiYMvvv/9Oy5cvpw8++ICMjIxo4MCBtGLFCvryyy/p9OnTxXqs+Ph48vb2poULFxZ4n06dOlF4eHj2smvXrly3169fn1avXk03b96kvXv3yh/J66+/Lhk4L3Lu3DlatmwZ1alTp1jbrak40PJVt5py+eeD/uQfFVfo/XlH89N+P3pzySlpWOdkU5rWj2pCUzvXQNM6UDtTY0MJ/J3/7DXp0cJf+TqvBwAAzR4Pzf3kRq3N6plQy9laphshUxYAVM3Y0IBm9q5NUztXl5PKv56+SyPXnpeJePAfroqY8scVWnjIP3v6JzdORyNzFQdbIiIiqHbtrP4glpaWkt3C3njjDfrnn3+K9VidO3em6dOnS2ZMQUxNTaVcSbHkLVUaM2YMtWrVitzd3alevXryeKGhoS8cQR0XF0eDBg2SwFHZsmVJV3T3dqbWVR0oJT2DPt12TaYK5SckOoH6Lzsts9I5ctnN25n2TGpFTSvbqXybAQqCqSUAAOrnbm8h/Q9613MhPqz4fvctKTvmcaD54WOP//1xhW6Gx5K9pQktG9oAU6cAQG040Du2dWVaPKgelTY2kH4kfZeckuw7IHqSmErDVp2l7ZfCJKtxdp86NOX1agiQqyPYUqFCBckwYTz2+d9//83OEuHASEk7fPgwOTo6UtWqVWn06NEUFRVVaKYMZ7lUqlSJXF1dC33c8ePHU9euXalDhw5F2o7k5GTpkp5z0dSdyXe9vKTb/9ngGNpwLiTX7XwmasuFe9RlwTHp1G1lakTz+nvTggE+ZGOOFDEAAAAoYDx03//GQ+/1jaQeBYyHXnEsiHZfj5D7LRlcn1zKmOElBQC16+TlRJvGNJXJOrcinso+7EroY9Jn9x4l0JuLT9KpwGiyMDGUwSj9Ghb+ORqUGGzp1asXHThwQC5PmjSJvvjiC6pSpQoNHTqU3n77bSpJnPnCZUsHDx6kOXPmSECnXbt2EvjIadGiRZJlw8uePXto3759ZGJiUuDjbty4kS5evCj9WoqK78ujQxXLi4I56sQNjD54vRpVdrAkJ+vSkhbGo3T5K/dnWXw4gOKS06ihe1naNakl9apbAZFLAAAAeOEJncFN3OiPsU2l9DjoYTz1/OUEHbgZSYkpaXKcERmbRIObVqRlQ+rTggF1qYE7hicAgObwdi0jvSmzSiOTaer2qxQak5Dr8xKXQeoqxb4662dNJ7+oOMlYLG9dmja/00wqJKDklMp8xZbM3Kfl5MmTkuXSvXv3l9+QUqVo+/bt1LNnzwLvwxk1bm5uEizJWXrEpUyc8cK386SksLAwOnHihIyjzotLjBo0aCAZOdwvhrVp04Z8fHxo/vz5BT43B3hyBnk4s4UDLvzc1tbWpGm4NIhrEbnr9tpTwRSbmEbWZkY0rKk7DW/mTnt9I6h/w4qSKgYAoMt4f81Bck3dXwNoIz5Q57HQ4U+S6I+xTWjtyWBak+N4g481xrfxRJ8tKDLsq0GV+HPSjF035QQ1T1zL+XmJJ1+Oa1NZ5/ZfyanptOhwAK0+GZTrs+HbLSpJL08Hq+c/O4Oagy0lpSjBFsZZNKNGjaKPP/4439tTUlKkBws37eXmvXnxxCPOzjE0/O8/DzfT5efniUocUMl5m7a+IXDUcvGRAFpwIKvJUU6T2leRRqPcDwMAQNdp+v4aQFvxiZ07kU9p17VwacyfF443oDiwrwZVi09OkwmuC/LZf01s70ldajvRnusRL/XYJf0J+1UfrotXedp1PRyfDVWsSJ+2d+7cWeQHfJXslheJjo6WzBQnJ6dC78fxo7ylRgrt27ena9eu5Vo3YsQIql69ugRwihJo0QaGBgYSpc0PRzPHt8X4RQAAAHiVY41SUrLMZ4RxvAEA2jipiDPy8sOfo95pXZnWnbpLMfEppO0Ta99p7YHPhpoabHlRtokCZ4cUZeRyzolA/v7/RRKDgoLo8uXLMnGIl6+//pr69OkjwRWeLvTpp5+Svb29ZKawwMBA2rRpk4x6dnBwkPKhWbNmkZmZGXXp0iVXgIW/Z8KECWRlZUVeXl65tsPCwoLs7OyeW6/tqXGcHpYfXs+321mWfENjAAAA0B843gAAXd1/8ZSe4c3cKDI2/5P4OfFY6ZdVil7+m4vyvI5WpvQkAZ8NNTbYkpGRoZQnP3/+PLVt2zb7+pQpU+TrsGHDaPHixZKBsm7dOnr8+LEEXPi+HFzhgAnjnizHjh2TXiuPHj2icuXKyRho7iHDE4wUAgIC6OHDh6RPrEobSx1efjsQXs+3AwAAAOB4AwD00Ys+L9lZmNLE9lVJF3BTXHw2VD21Nu3gxrSFtYzZu3dvod/v7OxMu3bteuHzcFbMi8ZL65r0jAxp7vTTAb/nbuP1aRkZZFL8YVQAAAAAON4AAK2nT5+X9Oln1SRFfkW5LIebCyp89913knGSs59KzZo1S34L4aWYmRhJF21uTsdRTMZf+TqvR3NcAAAAeFU43gAAbaVP+y99+lm1choRN47l0cqK8hye6MD9VTw8POR6ZGSkZJoUp2eLNtOWjuk8J97IwEBqEjlVjqOW+M8EAPpEW/bXANoMxxuag3sY8tCH3bt3U2JiIlWtWpVWrlxJ9evXz77PzZs35T5HjhyRdgG1atWiP/74gypWrFhgNjrfN7+Tsf/8849c5l6L06ZNy3U7l/hHRBRtmgv21aAu+rT/0qefVRMU+ZXNG5PRkInR8AKK/zyKZrhIDwMAAICShuMNzcA9DJs3by59DjnYwidJuXdhmTJlsu/D11u0aEEjR46U4AgHozn4wr0QC7Jt2zZKSUnJldHu7e1Nffv2zXU/Dtrs378/+7quTPkE3aZP+y99+lk1AcJYAAAAAAA6gKdyurq60urVq7PXubu757rPZ599Jhkps2fPzl6nyFQvCE8JzWnjxo1kbm7+XLDFyMiIypcvX6RtTU5OliVnZgsAgF4GW3isMy951+krRWYP3hgAQBPwlDZ93icXBvtrANCX/fXOnTupY8eOEgThsh8XFxcaN24cjR49Wm7nkiEu+/noo4/kfpcuXaJKlSrR1KlTqWfPnkV+Hi5LGjBgAFlYWORa7+fnJ20FTE1NqXHjxjRjxowCAzkzZ858ruyI4dgaAHRlX13kni0GBgbUuXNn2Xmyv/76i9q1a5e9k+XI9J49e/SmZ8u9e/fkzAEAgCZAP5KCYX8NAPqyv1aUAk2ZMkUCLmfPnqX333+fli5dSkOHDpX+KU5OTpKVMn36dCk34uP3Tz/9lA4dOkStW7d+4XPwY3Ig5cyZM9SoUaPs9Vy2lJCQID1iuJcjP/6tW7fI19eX7OzsXpjZwr1mMGwDAHRpX13kYMuIESOK9IA50xZ1GZ8ZuH//vlacTeYzBBwYCg0N1fnmkPrys+rLz8nwsxaNNuyL1EVb9tf4W9dN+L3qnlf9nSpzX2RiYkINGjSgkydPZq+bOHEinTt3jk6dOiX7Qs52GThwIK1fvz77Pt27d5cTqBs2bHjhc4wdO1Ye/9q1a4XeLz4+nipXrixZNBz80ZV9tT79v9aXn5PhZ9VNsa/wN1wS+6IilxHpSxClqDjTp0KFCqRN+A9M13eU+vaz6svPyfCzgr7sr/G3rpvwe9U9mvg75ayVvNkhNWrUoK1bt8ple3t76auS332OHz/+wsfnzBXu1/LNN9+88L4cvKldu7aUFunivlpT/waUQV9+ToafVTdZq+lvGO2HAQAAAAB0AE8iun37dq51d+7cITc3t+zMl4YNGxZ6n8LweGgu/Rk8ePAL78v34ylHHAACANBHmEYEAAAAAKADJk+eTM2aNZPGtP369ZP+KsuWLZNF4cMPP6T+/ftTq1atsnu2cC/Gw4cPZ9+H+7twuRE3sc3bGJcb6ebXg+WDDz6gbt26UcWKFSkqKkp6tnAK/7Bhw5T8UwMAaCYEW/QANzX+6quvspsb6zJ9+Vn15edk+FlBX+BvXTfh96p7NPl3ylkr27dvl+lCXOrDk4bmz59PgwYNyr5Pr169aMmSJRJI4X4u1apVkzKjFi1aZN8nJCREynryZr9wqdG///5bYDNy7gXz8OFDcnBwoCZNmtDp06eLlDGjbTT5b6Ak6cvPyfCz6iZTNf8NF7lBLgAAAAAAAAAAvBh6tgAAAAAAAAAAlCAEWwAAAAAAAAAAShCCLQAAAAAAAAAAJQjBFgAAAAAAAACAEoRgCwAAAAAAAABACUKwBQAAAAAAAACgBCHYAgAAAAAAAABQghBsAQAAAAAAAAAoQQi2AAAAAAAAAACUIARbAAAAAAAAAABKEIItAAAAAAAAAAAlCMEWAAAAAAAAAIAShGALAAAAAAAAAEAJQrAFAAAAAAAAAKAEIdgCAAAAAAAAAFCCEGwBAAAAAAAAAChBCLYAAAAAAAAAAJQgBFsAoEDu7u50+PBhvEIAABoO+2sAAM2HfbV+QbAFNNqaNWuoTJkypIuuXLlCAwcOJFdXVzIzM6MaNWrQTz/99Nz9/vjjD/Lx8SFzc3Nyc3OjH374Idft4eHh9NZbb1G1atXIwMCA3n///Xyf7/HjxzR+/HhycnKi0qVLy/Pt2rXrlX+OzMxMWrZsGTVu3JgsLS3l99WgQQOaP38+JSQkyH18fX2pT58+8gZTqlQpuS2vo0ePUrdu3cjZ2Vnus2PHjlfeNgBQHeyv9Wd/PXPmTGrYsCFZWVmRo6Mj9ezZk27fvv3K2wcAyod9tW7sq3PauHGj7K95X1wQ3m/zfQr6WUA5jJT0uADwAhcuXCAHBwf67bffJOBy8uRJGjNmDBkaGtKECRPkPrt376ZBgwbRzz//TK+//jrdvHmTRo0aJcEZxX2Sk5PlcT777DOaN29evs+VkpJCr732mhwUb9myhSpUqEChoaFyoPyqhgwZQtu2baPPP/+cFi5cKNvCgSR+Q+CDdd7x8xuDh4cH9e3blyZPnpzv48THx5O3tzeNGDFCDvQBADQF9te5HTlyRD5gcMAlLS1N3n/4PerGjRtkYWGhpt8SAOg7fdpXK9y9e5c++OADatmyZYGPd+7cOQne1KlT55W3DYopE0BJWrdunfnee+9lfvjhh5lly5bNLFeuXOZXX32V6z5z5szJ9PLyyjQ3N8+sUKFC5rvvvpv59OlTue3QoUOZ/Ceac1F8f0xMTOaQIUMyy5Qpk2lmZpbZqVOnzDt37mQ/7urVqzNtbGwy//rrr8yqVavKffr06ZMZFxeXuWbNmkw3Nzf53gkTJmSmpaVlf98vv/yS6enpmWlqaprp6Ogo36NK48aNy2zbtm329YEDB2a++eabue4zb948ea0yMjLyfc0nTZr03PrFixdnenh4ZKakpBRre/h14t9DQTZt2iS/lx07djx3G2/f48eP831M/hkKw4+5ffv2Ym0rALw87K+LD/vr/0RFRcl++8iRI/hvCKBE2FcXny7vq/kzTPPmzTNXrFiROWzYsMwePXo89z38uapKlSqZ+/btK/BnAeVBGREo1dq1a+Us15kzZ2j27Nn0zTff0L59+7Jv59S8BQsW0PXr1+W+Bw8epI8++khua9asmURwra2tJZ2PF47csuHDh9P58+dp586ddOrUKUm369KlC6WmpmY/NmdT8GNzat2ePXuk90jv3r0lvY+XX3/9VaK8HI1m/HgTJ06UbeR0aP6eVq1aFfizhYSESGpfYcs777xTrNfryZMnZGtrm32dI+uclpgTR97v3bsnkeyi4tepadOmciayXLly5OXlRTNmzKD09HR6Fb///rukWPbo0eO52zhV0cbG5pUeHwBUB/tr7K9fFr93sZzvXwCgHNhXY1+twJ9ZOOtl5MiRBf698LF/165dqUOHDvgvqQ5KDOSAnuPoaYsWLXKta9iwYebHH39c4Pf88ccfmXZ2ds9lqOTEGSz8p3vixInsdQ8fPpTsFf5+xffxffz9/bPvM3bsWMmgUWTOsI4dO8p6tnXr1kxra+vM2NjYIv18qampmX5+foUukZGRmUV18uTJTGNj48x///03e93SpUtlm/fv35+Znp6eefv27czq1avLz8b3z6ugiHW1atUkW+ftt9/OPH/+fOaGDRsybW1tM6dNm/ZK0fcaNWpkdu/evcg/o+IxkdkCoFmwv8b++mX313ymtVu3bs+93wNAycO+GvtqhePHj2e6uLhkPnjwQK7nl9nCx/tcQZCYmJj994PMFtVCzxZQqry1gdxAKioqKvv6oUOHJMOC67xjY2Ol9jspKUn6dxRU9821lUZGRtI0SsHOzk4yLPg2BW56Vbly5ezrnNHBdY6ccZJznWJ7uO6Sm2Rxb5FOnTrJ0qtXL3mc/PA2eHp6UknghoScHfLll1/KdiiMHj2aAgIC6I033pCsHc7ymTRpEn399ddSf1pUGRkZUlPKmTz8ffXr16f79+9LQzB+zpfFGUWcwQIA2g/766LB/jo37nFw9epVOn78uBL+KgEgL+yri0aX99VPnz6lwYMH0/Lly8ne3j7f+3D/GP65/v333+ey5EF1UEYESmVsbJzrOu88eOfEuAyGS3+4pGXr1q3S1OqXX36R23KWA+WV1dLjxTun/J67sO3hhlYXL16kDRs2SFCId5TcsJU7jSuzjIgDTe3atZOdPzfCyrt9s2bNori4OHm9IiIiqFGjRnIbB46Kin+eqlWr5noT4Y7p/Hjc4Otl8WPmDHABgPbC/hr76+J67733pEyVT5xwc0gAUD7sq7Gv5mBRcHCwTPHkk7+8rFu3TvbHfJlv589VfEKZg0CK+3Bzc26xwJdftZUAFA0yW0BtuEcKZ7LMmTNHercoRrHlZGJi8tzOoGbNmvJ93AeG+7qw6OhounPnjgQQXgXvfLimkZevvvpKRq1xHxnu9ZIXjyi+fPlyoY/H0fIXRd050DJs2DD67rvvCrwfB0lcXFzkMgeDuP8KR9OLqnnz5rR+/XoJLClea369OAjDr/HL4rF4AwYMoD///PO5vi0c/OJsJfRtAdB+2F9jf513/86Blu3bt0s/tEqVKqntbxMA/oN9tX7sq6tXr07Xrl3LdRufsOWMl59++kkmMfHPkvc+PPGTv/fjjz8uVhYPvDwEW0BtuMSHgyY8eo0jsydOnKAlS5bkug9nb3BWx4EDByTLhEt6qlSpIjsfzgRZunSpZKR88sknssPMr1FrUf39998UGBgoTXHLli0rTXR5B8rlScooI+I3g7Zt28rYuSlTpkiWCeOdHze7Yg8fPpQGvm3atJHyqtWrV9PmzZslMp2TIujDr9WDBw/kOu/oOTDF3n33XXmdOZ2QD5D9/PykfIsbAr+Kfv36ycH2wIED6YsvvpA0Td523rnzqDx+Lh5Px9kznMHD+HJYWJhsI2f/KF5D3nZ/f//sxw4KCpL7cMPFihUrvtJ2AsCrwf4a++uc+2tuuMgfMvjDAL8HK96/OLjOTdwBQD2wr9affTVXBuTEJ4iZYj1va977cIsGbr2Qdz0okYp7xIAeya8JEzdu4gZOCnPnzs10cnKS5rbcrHbdunXS/PXRo0fZ93nnnXekaW5+o5+5ea7ie/Mb/ZwTf6+3t3eudTmbSR07dky2mcdU82PWqVNHxq8pC29P3tHWvHBDQgVuetWkSZNMCwsLaZTbvn37zNOnTz/3WC96HMYNdRs3biyNcnlU3XfffZdr7PXLNMhl3LiXx99x82PeRm4yXL9+/cyffvopMyEhQe4TFBSU7zby662Q36hvXnL+vQCAcmB/XTjsr3Pvr/PbV/PC770AoDzYV2NfrTi2zqug0c8v+vsB5SrF/ygzmAMA2oszi9asWSPRfwAA0FzYXwMAaD7sq/ULGuQCAAAAAAAAAJQgBFsAAAAAAAAAAEoQgi0AUKD333+/WCOmAQBAPbC/BgDQfNhX6xf0bAEAAAAAAAAAKEHIbAEAAAAAAAAAKEEItrwkHuIUGxsrXwEAQHNhfw0AoPmwrwYAXYNgy0t6+vQp2djYyFcAANBc2F8DAGg+7KsBQNcg2AIAAAAAoCfCwsJo8ODBZGdnR+bm5uTj40MXLlzIvj0uLo4mTJhAFSpUIDMzM6pRowYtXrz4hY+7detWqlmzJpmamsrX7du3K/knAQDQbGoJtiQnJ6vjaQEAAAAA9NajR4+oefPmZGxsTLt376YbN27QnDlzqEyZMtn3mTx5Mu3Zs4d+++03unnzplx/77336M8//yzwcU+dOkX9+/enIUOG0JUrV+Rrv3796MyZMyr6yQAA9HQa0d69e2nDhg107NgxCgkJoYyMDImk16tXj15//XUaMWIEOTs7kzbhfi1cRvTkyROytrZW9+YAAEABsL8GAMjyySef0IkTJ+SYvCBeXl4SOPniiy+y19WvX5+6dOlC3377bb7fw/fnfS0HcBQ6depEZcuWlc8ABZ18zXkClr/f1dUVx9YAoDOUmtmyY8cOqlatGg0bNowMDAzoww8/pG3btknwZeXKldS6dWvav38/eXh40DvvvEMPHjxQ5uYAAAAAAOitnTt3UoMGDahv377k6OhIdevWpeXLl+e6T4sWLeR+XG7E52QPHTpEd+7coY4dOxaa2cInUHPi+588ebLA75k5c6acuFQsHGgBANAlSs1sadSokUTFu3btKsGWgvDO/KeffqJy5crR//73P9LFM6WJKWlkaGBAT5NSyaq0MaVxdo+JkUq2FQBAnyGzRbPg/RBAfUqXLi1fp0yZIgGXs2fP0vvvv09Lly6loUOHym0pKSk0evRoWrduHRkZGckx/IoVK6Q0qCAmJia0Zs0aeuutt7LXrV+/XrLXC2of8KqZLdiXAICmU+qnfd6BF4WLiwvNnj2bdFVyajotORJIq08GUWxiGlmbGdGIZpVoXJvKZGpsqO7NAwAAUAm8HwKoF5fyc2bLjBkz5Dpntvj6+koDXEWwZcGCBXT69GnJbnFzc6OjR4/SuHHjyMnJiTp06FDgY5cqVSrXdT6fm3ddTtxIl5eXgX0JAGgDpFYoGUfdOdDy0wG/7HUccFFcH9vaAxkuAACg8/B+CKB+HDDhSUE58bQhniTEEhMT6dNPP5VJQpyZzurUqUOXL1+mH3/8scBgS/ny5SkiIiLXuqioKMlaL2nYlwCAtlDpNKJ79+7RokWLpDkXpy/mXHQVlw5xRkt+eL1RIeVVAACags9sduvWTZqZ85lK7smVE/fj4vp8e3t7uZ0PzAvCZzs7d+6c7+PklZaWRp9//jlVqlRJRpByj69vvvlGzs6CdsH7IYD68SSi27dv51rH/Vg4g4WlpqbKkrf839DQsND9btOmTWnfvn251v3777/UrFmzEt1+2RYcWwOAllBZZsuBAweoe/fucsDMO3nudB4cHCwH3TyVSFdxjxbOZMkPr+fb7SxfLoUSAEBV4uPjydvbW+rv+/Tpk+/tfBDPPQC41r8w8+fPLzS1PKdZs2bRkiVLaO3atVSrVi06f/68bAP3zJo0adJL/zygWhFPEokbxOH9EEC9eIwzB0C4jIhHM3PJ/7Jly2Rh3CuFB1jwUAsOcHMQ5siRI9K/Ze7cudmPwyVH3AaAm9wy3h+3atVK9tk9evSQMdE8BOP48eMl/jPg2BoAtIXKgi1Tp06V5rd8RtLKykrSFbkL+qBBg2Q0nK7iZrjcoyW/A0xez7cDAGg6zkThpSCKxokcRC/MlStX5ID93Llzks7+Ijzhgg/cFens7u7uMkaUgy4Fya/pIqgen0w5f/cRrToeROeCY+joR20LfT80MzGkZUcCqV/DClTG3AS/MgAlaNiwoZQI8XE5H5PzSVAOgPPxuMLGjRvldl4XExMjAZfvvvtOJocqhISE5Mp+4QAOfx9nIvJwjMqVK9OmTZuocePGJf4z4NgaALSFyoItN2/elANkeVIjI6kJtbS0lB09H0i/++67pIvSMzKkGW7Oni0KvJ6nEpmotpoLAEAtEhISaODAgbRw4UKp7y8KHkHKmS2c5l61alUJ1vCZUv5wUBA+0zpt2rQS3HIojuS0dPrnajitOhFE18P+C3T5hsUW+H44rKk7Hfd7SDN236T5B+7QW40q0qiWHlTeJmtyCgCUnDfeeEOWgvD+efXq1YU+xuHDh59b9+abb8qibDi2BgBtobJgi4WFRfaZRq75DwgIkJRw9vDhQ9JVZiZGMnWIYRoRAOgzRfo6B9iL6uOPP5YxoNWrV5eeAenp6XKGlYM2BeEzsjl7gSnGiYJyPYxLpt9Ph9BvZ+7Sg6dZ7/emRgbUu54LDW9WiaqVt6I6FWwKfD88ERBNNZys6WZ4LK04HkRrTwVTn3oVaEwrD/JwsMSvDwAKPbbmoC0mfQKAXgZbmjRpQidOnJAO6JwOziVF165dk6aKfJsu4/HOPHVofFtPinqaRLYWJpSQko6xzwCgN3iE6MGDB+nSpUvF+j5OQ//tt99o/fr1EqDnxrvvv/++BO2HDRtW4uNEofh87z+h1SeCaefl+5SSntVAs5y1KQ1t6k4DG1WU97z83g+57wKXA3CGJ69vV92R2lZzoMN3HtDiQwF0NjiGNp4LpU3nQ6mLlxO926YyeblkBWsAQL/l3JfEJqWSuYkhHfN7SBGxSeRmZ6HuzQMAUG2whWv04+Li5PLXX38tl/kg2tPTk+bNm0e6ztwk66WevecWHfePpuk9vahL7Rf3KwAA0AUcaOGMxjJlyuRaz812W7ZsmW9KOuMmjTzBbsCAAXK9du3adPfuXSkVKijYAsqXnpFJ+29GSj+WM0Ex2et9XMvQiObu8v5mbGhQ6Puhojl8zlJabpzcthoHXRzpfHAMLT4cQAduRdE/18JlaVnFnsa18aQmHrZFbrIMALpJsS+xtzSl9zdeph2XwyQT7tMuNdS9aQAAqgu2PH36VA6yeZQcn43k0aA8AlofmRgZUkx8CvlFxhHVVvfWAACoBgdMRo0alWsdB0442M4jpQvr81LcEaSgPHwG+Y9zoVLiExqTmPX7MCglwRUOstSrWLbEnquBuy2tHG5LtyJiacnhAPrraricueaFgzpcLtChRjkyMEDQBUDfda3jJMGWbRfv0YcdqxUY7AUA0Klgy9WrV2WCRUREhEwm4JFyW7ZsoQ4dOpA+quKYVXd+J+qpujcFAKDIOBvR398/+3pQUJCU9Nja2lLFihVlYgVPp7h//77cfvv27exGizmXvPh7eRqGQvv27alXr140YcIEuc6BGO7RwvfjMiIuQ+JMybfffhu/PRUKehhPa08G0+bzoRSfki7rypgbSyPbIU3dyMnGTGnPXb28Nc0fUJf+93o1WnY0kP44H0qXQx/TmF8vyHvqO60rU3cfZ3y4AtBjXILoYGUq/aIO3oqijrWK1oQdAECZDFRxNpMPko8dOyajOlu3bp19EP0yjh49KgffnCHDKcQ7duzId/JR9+7dycbGRsZMc08Y/hCgwI1633vvPcmw4ca9fN979+6RKlQplxVs8efMFgAALcH777p168rCuAEtX/7yyy+ze7LwdcWIZi774es8Sag4OAsyZ9P0n3/+WaZbjBs3jmrUqEEffPABjR07lr799tsS/fngeXyC5IT/Qxq55hy1m3OY1pwMlkALBzhm9q5Npz5pTx91qq7UQEtOrrbm9G1PLzr+cTvJarEyNSK/qDj63+Yr1OaHw7TmRBAlPgsEgeolpqRRSloGRccly9eElOdHfAMoi5FhVjNuxkFhAABNUCqTj6aUyNHRkXbt2kUNGjSQ69HR0bKOp0vw6Ofi2r17tzTarVevntT6b9++nXr27JnrQL1Ro0Y0cuRImVbBARcOvjRs2FCel/GY6b/++ovWrFlDdnZ20qyXz8peuHBB0tOLgqdb8GPzz8HZOkUVGpNALWcfImPDUnTzm07y5gAAAMrzsvtrfZWUmk47LoVJ09vbkf9lYXIDWy4VauFprxH9Urik6bfTd6VvzMO4FFnHzXhHNHOX5rw25sbq3kS9kZyaTosOB2DqIqh1Xx3wII7azzkipY2nPmlHjtYYHQ8AOh5s4Vp7LiFSBDoYZ5tweVHO1PGXwQd7eYMtfDbV2NiYfv3113y/h3fgDg4Ocnv//v1lHae981hQDgp17NhRqW8IGRmZVOurvZSYmk77p7Qmz2dlRQAAoBwIthRNxJMk+vV0MK0/E0KPElJlHU/46Fu/Ag1r5q6x45c5OLT5wj1adjQgu4+MhYkhDWriRqNaVMIHLhVktCw5Ekg/HfB77rZJ7avIxBhFI1MAZe+r31x8ks7ffUQfdaomzbQBANRJ6WkVHBDhBrm8A+WFd6B51/FSErhh4j///ENVq1aVoAkHeBo3bpyr1IizV7hR7+uvv569jkuSvLy86OTJkwU+Npce5dzel91mbuSnCLD4o28LAACo2aWQRzRxwyVqMesg/XIoQAItFcqa0edda9Cpqe1pWg8vjQ20sNLGhjSkiRsd+l8b+mmAD1UvbyXlTtzfpcWsQzR12zUKfhiv7s3USXy+ztDAQDJa8sPrjfI0uAZQpn4NXeXr5vP35O8TAECdlH6qgXd0HPzIu05R98+XOfiSnv7qddZRUVHSxPH777+n6dOn06xZs2jPnj3Uu3dvOnTokPSL4SwbExMTKls298SEcuXKyW0F4TGj06ZNo5Lq23It7IlMJOrkVSIPCQAAUGSp6Rm053oErToRRJdCHmevb1TJlt5uXoleq1lOUvG1CZfl9vBxoe7eznTodhQtOhQgZ7g3nA2hTedCZGLSu20qUy1nG3VvqlaLjE2SXj7H/R9SxJNEmtXHm2IT8+/PwuufJqVmj/kGULautZ1o2k5faep9LviR7NMAAHQ22MJBDlVRjALt0aMHTZ48WS77+PhIxgo3aeRgS0EUQZ+CTJ06VRpCKnBmC5cevYwqjlbylRv7AQAAqMqj+BTacC6E1p28SxGxSbLOxNCAunk7Sz8WLxftD0Twe3m76uVkORccQ4sO+dOh2w/o76vhsrSu6iANdvlDmCb0ntF0cclpdCYwWkZuc5Al57EL98ixszQhazOjfAMuvN7MxJDm779Dveq6kJudhYq3HvSNhakRvVHHmTadD5XJZQi2AIBOB1sKC3CUNJ4uZGRkRDVr1sy1nidYHD9+XC7z6NGUlBR69OhRruwWzopp1qxZgY9tamoqS4mOf87ReBAAAEBZ+P2GG95uv3SPklKzTkzYW5rQ4CZuNKixm4xM1UUN3W1p9YhGdON+LC05EkB/X71PR+48kKW+W1l6t3VlafzLJb7wX9YTj9Y+/iy4wpfTMv4rx+D4VG0XG2mUzEtGZiaNaFYp354tw5q6y+PM3+8nt3Ogi0u+2lRz1LrMKdCuUiIOtvxzNZy+6laTrEqjWTYAqIfKO5b5+vrmKhni6T+1atUqkcfm8iCeOnT79u1c6+/cuUNubm5yuX79+tJAd9++fdSvXz9ZFx4eTtevX6fZs2eTKsc/Bz6Mp7T0DEwkAgCAEscN2Q/fiZIgC2clKNRytpZSoTe8ncjUqGgT+LRdTWdrWjCwLv3v9arSy4Ub6l64+4hGrTtP1cpZ0TttPKhbHWe9fD/mzF7OVlEEV04HRkvPm5zc7cyp+bPgStPKdlTG3CTX7ZwppOjRwhkunNHCARhefzHkkQRZOMB1+HbW4lLGjAY1qUj9G7iixAhKXL2KZaiygwUFPIiXbLaBjSriVQYA3ZxGdOzYMSm/OXfuXPYkooSEhOymVZzCu3fvXurQoUORHo97svj7+8tl7vsyd+5catu2Ldna2lLFihVlOhFPGfrll19kPfdsef/99+nw4cPUokWL7NHPf//9t4x+5u/74IMPZCS1KkY/s3SZSLRHzi4e+qANVbJHWi0AgLLo2zSi+OQ02nLhHq05GSx9CxgnEbxes7yUCqF8higqNolWngii30+HSJkM46bAY1t5UN8GrtJ0V9cnT3HPFUXvlQdPk3PdzuVBzSrbUcsq9tSssj252pq/8DETUtKkGS73aOFMgrSMjFxTiO5Gx9PvZ0KktOPxs2lXXMLWtY6TZFjxB2SUdem3ktxX83SyGbtuUd2KZWj7uOYlto0AABoVbBk4cCA1bdqUJk6cmB1s4YlBnGnCT71gwQK6e/cubd26tUiPx0ETDqLkNWzYMAmesFWrVklD23v37lG1atWksS33cVFISkqiDz/8kNavX0+JiYnUvn17WrRoUbF6sLzqG0LXBcfI934sLR1SnzrWKl/s7wcAgKLRl2BLaEwCrT0ZLOnzT5OyAghWpY1oQENXGtrUvUgfmPXNk8RU+u30XVp1PIii41Oyy6tGNK8kAQAbM90oP4hNSqUzgTHZwRX/PD3jShsbUKNKdtTC004yWGqUt1ZaaRWP6uZsg19PBdOVe0+y19d0sqYhTd2oh48zRkXrqZLcV3MAsenMA1ICt29yK6pSLqtfIgCATgVbPD096bfffqMmTZpkB1uuXLlCHh4ecv3SpUvUtWtXun//PunTG8L7Gy/Rjsv36cOO1Wh8W0+lbCMAAOh2sIXfws8GxUip0L83IkjRWoMzJjmLpU+9CtIwEl4cAOCMi6VHAinscaKsszI1okFN3OjtFu7kaFVaq17ClDRF35UHElzhoAZn1SpwHKV2hTISXGnh6UD13MqopaTsSuhjCXbtvHKfktMysgOE/HfLgZfKGjxyHDR/Xz1m3Xn690YkjW5ZiT7rmrufIwCAKij9CCwsLIycnJyyr69du1aa1CpwGQ+X8OgbRYTdD01yAQCgmJLT0umvK+G0+kSQZEkqcNkH92PhHhlo+lp0XDbE2T/c24Gb6C4+HEB3IuOkqS6Px+5bvwKNbVWZKtqZa2zQ7Xbk0+y+K2eCYighT98VDsBxzxXOXGnqYUc25urP2vF2LSPLZ11r0Obz9+i3M3fpbnSClMDx0tzTThrqdqhRTi/76cCr6d/QVYIt2y6G0Ycdq5OJEf6GAEDHgi2cyRIUFJTdoLZ37965bufbdO1MY/EmEmH8MwAAFD01njMBfj9zlx7GpWSXgPSqW0EyWaoiVf6VGBtmvZY9vF3o4K0oWnTYny6GPJZeIxvOhshI2XfbVKYaTuo/brn/OFECK1mlQdH0MC533xU7C5PsprbNPO2oQlnNDBQxbrg7upUHjWxRiY75P6RfT92lg7ci6YR/tCzlrUvTW40rSkmco7V2ZRmB+nDQ2dHKlKKeJsvfUyev/07+AgDoRBlRt27dyMHBQfqo5Gf48OH08OFDaVirT6mO3LSw7Y+HydTIgG580wkjEAEAlEQXyoiuhz2RDIu/r4RTSnpWuQV/AB3azI0GNqxIZS1yT4eBksGHSJwlwpkuPE1HgcdFc9CFR0ursr8MTwpS9F0JfJDV/FjBzNhQmh9zdhMHWXjKkjZnN917lEDrz4TQpnOh2f10jAxKUUev8pLt0riSLRrq6hhl7Ktn7bkl/3/5/+yq4Q1L5DEBADQms4UnEfGkITs7O2lK6+joKOujoqJo1qxZ0s/l33//JX1T0dZc0hm5RpkPKNzsMJEIAEBfJaakkWGeSS7cQ2PfjQhadSJY+rIo8HQNLhXq5FVeMjFAeXg6ThMPO1k44MVlRbuuhUvWCy8N3ctK0KVtNccS/+DPpWKXQh5nB1e4v0mOtivSd4VLcBSlQfx3oUujvDkT56NO1WlShyq053qEZLucv/uI/rkaLkvVcpYSdOlZ10X+zwDkh0sAOdhy+HaUTOEqb4PMKADQocwWxpN+Jk+eTGlpaRKp5gMSjlobGRnRnDlzaMKECaSP0ffOPx2jm+GxtHxoA3qtZrkS30YAAND8zJbk1HRadDiAVp8MotjENLI2M6LhzdxpRLNK9OaSUxTwIE7O6Hep7SSlQnUrllX3Juu14IfxtPRoAG29EJadZVS9vJUEXbrWdnrp3iIZGf/1XeHgCgfYElNz913xcPiv7woHgHRlWlJR3bgfS7+evks7LoVlvzYWJobUq54LDWniTtXKY+KMNlPWvrrfklN0NjgGQykAQDeDLSw0NJS2bNlCfn5+cr1KlSr05ptvFmvcsq69IUzccEk68H/UqRqNa4OJRAAA+hZs4YyWJUcC6acDWe+NOb3XzlOyFS7cfSQfJHFGVrNExibRyuNB9PvpuxT/rBktZ62OaeVBb9avIE1388tYMjf5L6mYJx+deBZcORnwMLsPj4K9pWn2OGZenMuYqfzn1NRR1tsu3JPAS0COcqpG7rYyxahjrfJohqqFlLWv3nw+lD7ccpXc7czp0AdtUH4GALoXbNE1JfGGsPCgH/347x3qXdeF5vb3KfFtBAAAzQ628IjeBt/tk4yWvDjD5fxnr+FDo4Z7kpBK604F0+qTwRTzrLdIA7eytHpEQ1pxLChXxhJnK3EwZsWxQNpx+b70b8vJ3MRQepFIY9sqWX1XSro8SZfwIeypgGgJuvDUGcV4aw5SDWzkKtOlEKDSHsraVyekpFGj7w5QXHIabRzTRLLCAAC0vmfLqVOnqGnTpkW6b3x8PAUHB1OtWrVIX3g6ZqW73ol6qu5NAQAANeCMh/wCLYzX8+12lqYq3y4oOh6h/F77KjSqpQdtOhdCy48F0djWHrTsaCD9fNA/1++TM5gyMjOptosNzdvvJ83xvSvYUIsqDlIe5ONaBsG1YuBAVDOZtmQv/Th4YhQvPH2GX/tfDvlLmTZnhjWrbKfVDYPh5XE2WTdvJ9pwNpT+OB+KYAsAqIxSO+sNHTqUXnvtNfrjjz8oLi7/Ecc3btygTz/9lDw9PenixYukT6qUyxr/7B8VJ7XaAACgX7i0hDMe8sPr0fhTe5iZGNLw5pXo8IdtqFUVB1p7Kjjf+/H6VlUdaM2IhnTpy9do27jmNOW1qjJJiBvnw8vhMrvJr1WlE5+0o0WD6lFTDztpKLzXN5IGrzxDHeYekbIvzkQC/dO3QVbbAm5wzWVoAACqoNR3dQ6k9OjRg7788ksqW7asZK1w8IXHQbdo0YLs7e2pfv36dPfuXdq3bx8NGTKE9IkbTyQyNKCk1Ayp2wYAAP2SnpEhpSX54fXc4wO0C0+I4nKFwjKW4pPTqE01R7LGFB2lvP7cTHrDmCa0b3IrGtbUjSxNjSjwYTx9+/cNajxzP3285apMlwL9Ude1DFVxtJRj7r+vhKt7cwBAT6isZwtnrRw7dkxKhRITEyXQUrduXWrbti3Z2tqSvtaVdpp/lG5FPKVVwxtQu+qYSAQAoE89WxTTiH457E9rTgbn6u0xrk1lMjXWnVG++gS9eDQLB7d2XA6T8dF8zKXADah5fDQHZ7ihMej2vnr50UD6btdNGZn+5/jmJf74AAAq7dmSU7169WSB3DwdLeWN/05kHIItAAB6iAMqzSrb0zutK1NcUhqVMTeRjBYEWrQ/Yym/KVOKjCUT5SYXQw4WpkY0qLEbvdWoIp2/+0iCLruvh9OlkMeycMZLv4auNLixG7namuO101E8InzWnlt0JfQx3Y54ilHhAKB0eKdXs6rlsprk+kXm39MGAAB0G/fsGrX2PLWYdUhGCHPfjpzjgUH7mJkYSWbSpPZVsnvy8Fe+zuvx+1VfQ92G7ra0YGBdOvlJe/qwYzVytilNjxJSaemRQGr1wyF6e805OnQrKnuyEegOnlLVoUZWFjk3ygUAUDYczakZ148yf0wkAgDQS3djEqTHh2m6AbmWNVP35kAJ4cwknko0vq2nTJXiZsfIWNIcDlam8rsZ28qDDt6KkvHRx/weymVeXG3NJBumXwNXsrUwyf6+xJQ0MjQwyPU7RfBMe/RrWIH2+EbQ9kth9HGn6mhKDQBKhWCLhkwk8ns2kQhjCQEA9Ivv/axGndWdrMnIEAmnukTxIVwxvhulQ5qH/8+9Xqu8LEEP4+m303dp8/lQCo1JpO9336K5++7QG3WcaFSLSlTZwZKWHAmk1SeD0F9JS/GksHLWphQZm0wHbkZS59pO6t4kANBhOKpTMzc7CzI2LEUJKel0/wkmEgEA6JvrYbHytZaz5jXvBdAnlewt6Is3atKZTzvQ7D51yMvFWpodb7sYJlMjFx7ylz48iklT/JWvLzocQAkp+U+fAs0LrvWpV0Eub0IpEQDoYrAlKSlJHU+rsSMK+c1dkd0CAAD6mdmCYAuAZjAzMZSGuX9NaEE7xjenIU0rUnNPe1p7Kjjf+3Omi5EBzl9qCy4NY0fvPKBwnOgEACVS2TtDRkYGffvtt+Ti4kKWlpYUGBgo67/44gtauXIl6bMqjoomuf+NIwQAAN2XmZlJvvezMlu8nG3UvTkAkKehro9rGfq2R23JQFZktOTF67mHC2gHd3sLalTJlrgH8tYL99S9OQCgw1QWbJk+fTqtWbOGZs+eTSYm/zUaq127Nq1YsYL0ffwzw0QiAAD9EhGbRDHxKWRoUApjSAE0mHVp4+zJUs/dZmYkzXJBe/R/lt3yx/l70jMRAECrgy3r1q2jZcuW0aBBg8jQ0DB7fZ06dejWrVukz7LHP6OMCABAr/g+69fCk+lKG//33ggAmiU9I4NGNKuU7228nqcSgfboUtuJLE2NKCQmgc4Exah7cwBAR6ks2BIWFkaenp75lhelpup36qViIpF/VJyklAMAgH64/qxfS000xwXQaGYmRjSuTWWa1L5KdoYLf+XrvB7jn7WvL083b2e5/Aca5QKAtgdbatWqRceOHXtu/ebNm6lu3bqkz9ztLMjIoBTFJadR+BM0DwYAzXP06FHq1q0bOTs7Sx+DHTt25Lp927Zt1LFjR7K3t5fbL1++XOBjcVC5c+fO+T5OQcH6wYMHk52dHZmbm5OPjw9duHCBdAH6tQBoD1NjQxrb2oPOf/YaXfi8g3zl67wetE//hlmlRLuuhVMseu4AgBLkX3yqBF999RUNGTJEDpo5m4UPzG/fvi3lRX///TfpMxMjA2nWxZktXErkXMZM3ZsEAJBLfHw8eXt704gRI6hPnz753t68eXPq27cvjR49utBXb/78+RJoKYpHjx7J47Zt25Z2795Njo6OFBAQQGXKlNGJ35BvGCYRAWgTRQaLnaWpfDVRz2BPKAHeFWyoajlLuhMZRzsv36fBTdzwugJAiVLZOwSfEd20aRPt2rVLDrK//PJLunnzJv3111/02muvldjZ1eHDh8v6nEuTJk1y3YcP1Hv16kUODg5kbW1N/fr1o8jISFInrtdnmEgEAJqIM1G40Xnv3r3zvZ2D6bxf79ChQ6GPc+XKFZo7dy6tWrWqSM87a9YscnV1pdWrV1OjRo3I3d2d2rdvT5UrVy7we5KTkyk2NjbXoom4Me79Z9mMKCMCAFAt/oygGAONUiIAUAaVhuM5xfzIkSMUFxdHCQkJdPz4cXr99ddf6uzqwoULC7xPp06dKDw8PHvhAE/O7+fn5B3swYMH6cSJE5SSkiIBHM64UX+wJU5t2wAAoEy83x84cKDsv8uXL1+k79m5cyc1aNBAMmY4q4XLTpcvX17o98ycOZNsbGyyFw7WaCLfZ/1a3O3MMckEAEANetV1IWPDUnT13hO6Ga6ZgXkA0F4qKyMqybOrvBTG1NS0wAN5Dq4EBwfTpUuXJKuF8RlTW1tbCb4UdFaWz5TyolDSZ0qrZE8kelqijwsAoCkmT55MzZo1ox49ehT5ewIDA2nx4sU0ZcoU+vTTT+ns2bM0ceJE2c8PHTo03++ZOnWq3D/n/loTAy6Kfi21nG3UvSkAAHqJy8E61ChHu69HSHbLV91qqXuTAECHqCyzxcDAQEY+F7SUpMOHD8sZ0KpVq0rvgKioqOzbOGDCWS18oK5QunRp2T7OtFHXmVLFRCLu2YKJRACgazhDhQPa3K+lODjjsF69ejRjxgzJahk7dqzs1zkAUxDev3MwPeeiibKDLS6auX0AoJte1HQ8bzm+Yvnhhx8KfVzev1erVo3MzMzkOJkD7ElJmj/4od+zRrk7LoVRclq6ujcHAHSIyjJbtm/fnus6j3vm7JK1a9fStGnTSux5OOuF083d3NwoKCiIvvjiC2rXrp28ifABOPdvsbCwoI8//lgO3jmwwZf5gJ5Ljgqi7DOllewtyNCgFD1NSqPI2GQqb1O6xB4bAEDdONCSX2NbbrbbsmVLCZLnx8nJiWrWrJlrXY0aNWjr1q2kO81xkdkCAKpRlKbjeY+H+X4jR47Mtzm6wu+//06ffPKJ9OPiDMY7d+5IH0U2b9480mStqjhQeevSFBGbRPtvRFHXOk7q3iQA0BEqC7bklzb+5ptvykhobpzLO/GS0L9//+zLXl5eUuvPgZd//vlHGjtyU1weN/3uu+/SggULJKOFewjwmdPCMmw4UJMzG6akmRoZkpudOQU+iJdSIgRbAECX8EH4qFGjcq2rXbu2HIRzz6yC8IcCnlyXEx/E835dm8Ulp1FQdLxcruWMzBYAUI2cTccVuPF4TnlL8f/8808Jznh4eBT4uKdOnZL99VtvvZX9mHx8zaWfmo5Pdr5ZvwItPORPm86HItgCACVG7fPqGjduTPv371fa4/NZUT4o9/Pzy17HDXI5is/lRQ8fPqRff/1VUiorVapE6oQmuQCgqbix+eXLl2VhnDnIl0NCQuR6TEyMXL9x44Zc5wAJX4+IiMg+eOcAeM6FVaxYMde+lycN5WyAzmnop0+flkxEf39/Wr9+PS1btozGjx9P2owbMWZmkpxNtX82QhYAQNmK23Scp3XyCcsXnRRt0aKFZJErgivcb4sHVHTt2lUrJsf1bVBBvh7ze0D3HyeqbTsAQLeoNdiSmJhIP//8M1WokLWDU4bo6GgKDQ2VoEte9vb2kjbJ6e0ceOnevTupUxVHNMkFAM10/vx5OSjnhXFZJV/mcc+KA3i+rjiwHjBggFxfsmRJsZ6HA+EcBFdo2LChlKFu2LBBAjTffvut9AUYNGgQ6UIJkRf6tQCACimajlepUoX27t1L77zzjjQdX7duXb7353J/KysryQ4vDO/zef/MQRdjY2OqXLmyZMNwVqM2TI5zs7OgJh62EgTfcuGe2rYDAHSLysqIypYtK821FLhXytOnT6Ux12+//Vass6t8dlNBcXaVpwnx8vXXX0tNKQdXeOoQT6/goEqvXr2yv4dTJ7nmn0uKOO1x0qRJcvaUm3qpU3aTXIx/BgAN06ZNm0Kbd3NtvqI+v6jyezzeb+f1xhtvyKJLrj9rjlsT/VoAQIW4RyFntnC2IOOguK+vrwRg8pvwxj1YOLjNwyQKw323vvvuO1q0aJFkrfOxOh9f8/E490/Uhslx/Ru60unAGNp8IZQmtPUkA4P/PrcAAGh0sIXr8nMGW7hXCgc7eIfMgZjinF3lSLmCYic9bNgweaO4du2aROcfP34sO3i+L/eE4ai8Aqe38w6e0965pvSzzz6TYIu6/ZfZkjWRKOfrBQAAuuO/sc/o1wIAqlOcpuPHjh2TY2Y+jn4RDqgMGTIkuzcX9+SKj4+nMWPGyHE2H/eruh9icXWq5URfmvpSaEwinQ6Mpmae9ureJADQcioLthT3jOfLnl3llMgX+f7772XRNB4OFsRB9CeJqfTgaTI5WmMiEQCAruHRon6RT+WylwsmEQGA6hSn6fjKlSupfv365O3t/cLHTUhIeC6gwoMn+Ji9sON2TWJmYkjdfZzp9zMh0igXwRYA0Ohgy9WrV4t83zp16pC+K23ME4ksKOghTySKQ7AFAEAH3YmIo7SMTCpjbkzONgiqA4DqcCY3j2bmMqJ+/fpJQ1tuOs5LTlzSw9M758yZk+/jcMmRi4uL9F1hPFVu7ty5UpakKCPibBfuh1jYtE9N06+BqwRbdl+PoG8SUsnG3FjdmwQAWkypwRYfHx8phXlRRJvvk56ersxN0RqejpZZwZbIp9Qc6YsAADrH9/6z5rjONigXBQCVUjQd53L6b775RqbB5dd0fOPGjXL8zuOb88OT6HJmsnz++eeyP+OvPOGTWwVwAIb7uGiTOhVsqHp5K7oV8ZR2XgmjIU1zj8UGACiOUplKzO27e/duke+bX/qiJuOIP3dOf/LkCVlbl1zN/ew9t2jR4QB6q3FFmtGrdok9LgCAvlLW/vplfb7jGv12OoTGtvKgqV1qqHtzAAA0gqbsq1ceD6Jv/75BtV1s6K/3WqhtOwBA+yk1s0XbAiiaoGq5rCa5/phIBACg281x0a8FAEDj9KrrQt/vvknXwp7QjfuxVBONzAFA0xvkKty4cUNSD1NSUnKt55pOyCojYneinmIiEQCAjknPyKSb4ZhEBACgqWwtTOj1muXpn2vh9Mf5UPq6ey11bxIAaCmVBVsCAwOpV69eMpo5Zx8XxXhj9GzJUtnBkvgleZyQStHxKWRvqTkj8QAA4NUEPoijpNQMMjcxpEp2Fng5AQA0UN8GFSTYsv1SGH3SuboMsQAAKK7nh94ryaRJk6QJV2RkJJmbm5Ovry8dPXqUGjRoQIcPH1bVZmjF2DnXsuZy+c6z0aAAAKBbJUQ1nazJwCDrZAMAAGiWllUcyMmmND1JTKV9NyLVvTkAoKVUFmw5deqUdD3n7uTcvZyXFi1ayMi4iRMnqmoztELVclmlRP5RcereFAAAKEHXw7ImEdVCDwAAAI1laFCK3qxfQS5zKREAgEYHW7hMyNIyK4hgb29P9+/fz26ie/v2bVVthlbwdMxqkuuHJrkAADoFzXEBALRD3/qu8vW4/0O69yhB3ZsDAFpIZcEWLy8vunr1qlxu3LgxzZ49m06cOCHZLh4eHqraDK1QRdEkF2VEAAA6g3uV+d5HZgsAgDaoaGdOzSrbEbeZ3HLhnro3BwC0kMqCLZ9//jllZGTI5enTp9Pdu3epZcuWtGvXLlqwYIGqNkO7xj+jjAgAQGfce5RIsUlpZGJoQFWeZTACAIDm6tcgK7tl8/l7lJGRNdwDAEBjphH5+PjQqFGjaNCgQVS2bFlZx5ksPAI6JiZG1ikmEkGWyo5ZEyp4GlF0XDLZYSIRAIDO9GupWt6STIxUdq4DAABeUiev8mT1pxGFPU6kkwHR1KKKPV5LACgypR/tcckQZ7U4OzvTW2+9RQcOHMi+zdbWFoGWfJibGFGFsmZy2Q/ZLQAAutWvxclG3ZsCAABFwCOfe/g4y2U0ygUAjQu2LF26lCIiImjZsmXy9fXXXyd3d3fp1RISEqLsp9f6UiIEWwAAdIOiX4uXi7W6NwUAAIqof4OK8nWPbwQ9SUjF6wYARaaSPObSpUvTkCFD6ODBg+Tv7y+XV65cKeVEHTt2pD/++EMVm6GVTXL90SQXAEAnXH+W2VLTGZktAADaggPk1ctbUUpaBv15JUzdmwMAWkTlReOVKlWib7/9loKDg2njxo10/vx5GjhwoKo3Q+N5Zk8kilP3pgAAwCuKik2iB0+TyaAUUQ0nNMcFANAW3Fuyf8OsRrmbzoWqe3MAQIuopUPfoUOHaNiwYTR8+HBKT0+n0aNHq2MzNBrKiAAAdK9fi4eDpfTlAgAA7dHTx0UmyfG+XNHsHABAY4It3J+F+7Rw6VD79u1l9POiRYsoPDyclixZoqrN0BqVn2W2PIxLpkfxKereHAAAKIl+Lc7o1wIAoG3KWpjQa7XKyeXN55HdAgAaEmxZv349vfbaaxJk4Wa5/fv3pzt37tCRI0do6NChZGaWNXUHcrM0NSKXMphIBACgC66HPZtEhH4tAABaqX+DrFKiHZfvU1Jquro3BwC0gNJzmblUqGvXrrRjxw7q0qULGRiopXJJK1UpZ0lhjxPJL+opNapkq+7NAQCAl+QbnpXZUguTiAAAtFJzT3tq6mFLb7eoRKWIKDoumaxKG1NaRgbKQwFAPcGWe/fukaOjo7KfRmcnEh2+/YD80CQXAEBr8ajQ0JhEuVzLCZOIAAC0kaFBKVo2tAEtOxpI/9t8hWIT08jazIhGNKtE49pUJlNjQ3VvIgDoW7AFgZaXV8Uxa2KFfxQmEgEAaHtWS4WyZmRjbqzuzQEAgJeQmJJGK44F0c8H/bPXccDlpwN+cnlsaw9kuABALlpX03P06FHq1q0bOTs7yyg2Lk/KW7bE63MuTZo0yXWfiIgIGjJkCJUvX54sLCyoXr16tGXLFtLEMiJ2J/KpujcFAABe0o1nk4i80K8FAEBrGRoY0OqTQfnexuuN0CoBALQ92BIfH0/e3t60cOHCAu/TqVMnmXKkWHbt2pXrdg603L59m3bu3EnXrl2j3r17S+PeS5cukSbxfDaRKOppsqShAwCA9lGMCa2FSUQAAFrraVKqZLLkh9fz7QAAKi0jKmmdO3eWpTCmpqaStVKQU6dO0eLFi6lRo0Zy/fPPP6d58+bRxYsXqW7duvl+T3JysiwKsbFZZyqViZtuOdmUpvAnSeT/4CnVd0OTXAAAbeOryGxxQb8WAABtxcfl3KMlv4ALr+fbAQDUktnCo5+jo6OfW//48WO5rSQdPnxYesVUrVqVRo8eTVFRUblub9GiBW3atIliYmIoIyODNm7cKIGUNm3aFPiYM2fOJBsbm+zF1TVr/JuyVSmX1bflDprkAgBoncSUdAp4kNV3C5ktAADaKz0jQ5rh5mdYU3eZTgQAoJZgS3BwMKWnPz+TnoMcYWFhJfY8nPXy+++/08GDB2nOnDl07tw5ateuXa6sFA60pKWlkZ2dnWTBjB07lrZv306VK1cu8HGnTp1KT548yV5CQ0NJVROJGCYSAQBon5sRsZSRSeRgZUqO1qXVvTkAAPCSzEyMZOrQpPZVJJOF8df32nnS8GbuNHTVWVpyJIAyMzPxGgOAasqIuC+Kwt69eyUrRIGDLwcOHCB3d/cSez7uvaLg5eVFDRo0IDc3N/rnn3+kN4uibOjRo0e0f/9+sre3lya7ffv2pWPHjlHt2rXzfVwOyvCiatnBlig0yQUA9TYn/+GHH+jChQvSC4sD1D179sy+fdu2bbR06VK5nbMYuQeWj49Pvo/FB6JdunShPXv2PPc4heEMw08//ZQmTZpE8+fPJ23gi34tAAA6g8c789Sh8W09pUcLlw6lpKXTwoP+5BcVR9/vvkWXQx7TD33roKwIAJQfbFEcRPNUoGHDhuW6zdjYWAItnIGiLE5OThJs8fPLGssWEBAgzXWvX79OtWrVknXccJcDLb/88gstWbKENHEiETJbAEATmpOPGDGC+vTpk+/tzZs3l8A1l28WhgMl/J5QHJyluGzZMqpTpw5pY78WlBABAOgGc5Osj092llknYU2MDOjjztXJxdacvvnLl/b4Rsgk0SVD6lPVZ+0AAEA/KT3Ywj1RWKVKleRgmTNJVInPsHLJDwddWEJCgnw1yDOezdDQMHtbNYmnY9ZOOiI2iWKTUskazbcAQAObk/OUN0XJaGGuXLlCc+fOlfcDxX75ReLi4mjQoEG0fPlymj59Omllc1yMfQYA0Fl8AmFIEzfycramcb9fpMCH8dRj4Qma9WYd6u7trO7NAwBd79kSFBRUIoEWPui+fPmyLIrH5cshISFy2wcffCDThviAnxvlduvWTZ63V69ecv/q1auTp6en9Gk5e/asZLpwZs2+ffuKnMquSjZmxlTOOity7h+V1WQRAEAbcbB74MCBkl1Y2MS4vMaPH09du3alDh06FOn+3KOLJ8blXNQhNT2DbkdklYDWQrAFAEDn1a1Ylv5+rwU197SjxNR0mrjhEn2905dS0jTvhC4A6NjoZ+7PwgtPB8qbRbJq1aoiPcb58+epbdu22denTJkiX7lEicc5X7t2jdatWydTjvisKd+XG+JaWVllly7t2rWLPvnkEwnEcICGgy9r166VHgKaqIqjFUXGJpNf5FOqV7GsujcHAOClTJ48mZo1a0Y9evQo8vfwtLiLFy9KJkxRcW+XadOmqf23xOWfKekZZFXaiFxtzdS9OQAAoAJcXrTu7cY059/btOhwAK05GUzXwp7QokH1qBwapQPoFZUFW/jA95tvvpGGtRwEKW69vgKPZy6syzc34X2RKlWq0NatW0lbcN+W4/4P0bcFALQWN0vnKXHcOLeouASUm+H++++/VLp00Sf58PQ4RSCecWaLq6srqdr1+0+y+7W87HseAABoH0ODUvRRp+rk41qG/vfHFbpw9xF1XXCcFr5Vl5p42Kl78wBA14It3Hh2zZo12XX9ULzMFsZdzgEAtBEHWrhss0yZMrnWc7Pdli1bStlnXjzZiDMh69evn2uKHU9G4lIkLhfifluaMj0urxvo1wIAoNder1We/nrPit757QLdinhKg1acoY87VaPRLT0QhAfQAyoLtqSkpEj6OLz8RCL0bAEAbcWlm6NGjcq1rnbt2jRv3jwp6cxP+/btpTQ0J56GxL23Pv7443wDLZrkumLss4u1ujcFAADUxN3egraPa06fbr9G2y+F0Yxdt+hSyGOa/SbGQwPoOpUFW/gge/369fTFF1+o6il1RhXHrGBL2ONEiktOI0tTlbbaAQCQ/lb+/v7Zr4SiObmtrS1VrFiRYmJipFH5/fv35fbbt2/LV26Em3PJi7+Xp9XlDLBwQ/MJEyZIry0vL69c97ewsCA7O7vn1muajIxMuhmOSUQAAEBkZmJIc/t5U72KZeibv2/Q7usRdJvHQw/GeGgAXaayT+1JSUm0bNky2r9/P9WpU0ca1ebEo0Ahf2XMTcjBypQePE2W7Bau/wQAUKXCmpNziSj3ZOGsE4UBAwbI16+++oq+/vrrIj8Plxo9fPiQtF1wdDzFp6RTaWMD8nDICpgDAICej4du6k61XGxoPI+HfhBPPX85QbP61KFuGA8NoJNUFmy5evUq+fj4yOXr16/nug2NA4uW3cLBFp5IhGALAKjai5qTDx8+XJbiyO/xgoODC/2e/Hq7aKLrz/q1VC9vLY0SAQAAWL1n46Hf23CJTgZEy9eLIY/o0y41yNjQAC8SgA5RWbDl0KFDqnoqnVS1nJXskNEkFwBA8/k+m0TkhX4tAACQ73joRjRn3x1afDiAVp8Ipmv3ntAvGA8NoFMQPtUSns/6tnBmCwAAaDbfsKzMllrONureFAAA0EBGhgb0cafqtGxIfbIyNaLzz8ZDnw6MVvemAUAJUWmn1XPnztHmzZuliSJPJ8pp27ZtqtwUrW2Si8wWAADNxuVR2ZktCLYAAMALxkPv5PHQv16Qprk8HvqTTtVpVMtKaLUAoOVUltmyceNGat68Od24cYO2b99OqampcvngwYNkY4Mzf0UpI2L3HiVSfHKaCn5jAADwMu4/SaJHCalkZFCKqpZHc1wAAChcJR4PPb4Z9fRxpvSMTPpu100av/6iTCEFAO2lsmDLjBkzaN68efT333+TiYkJ/fTTT3Tz5k3q16+fjP6EwpW1MCF7SxO5HPAgDi8XAICG8g3LymqpUs6KTI0M1b05AACgBcxNjGhefx/6pkctMjYsRbuuRVCPhcfJPwotBAC0lcqCLTzOs2vXrnLZ1NSU4uPjJTVu8uTJMhIaitO3BcEWAABN5ftsElEtZ2t1bwoAAGgR/mw0tKk7bRzTlMpbl6aAB/HUfeEJ+vvqfXVvGgBocrDF1taWnj7Nisy6uLhkj39+/PgxJSQkqGozdKKU6A4i3AAAGkvRrwXBFgAAeBn13crS3xNbUFMPO0pISacJ6y/RN3/doNT0DLygAFpEZcGWli1b0r59++Qylw5NmjSJRo8eTQMHDqT27durajN0okmuPzJbAAA0PrPFywX9yAAA4OXYW5rSryMb0TutK8v1VSeC6K3lpykqNgkvKYCWUFmwZeHChTRgwAC5PHXqVPrggw8oMjKSevfuTStXrlTVZmg1T8eszBZMJAIA0EzRcckU/iSJSpUiquGEMiIA0DxhYWE0ePBgsrOzI3Nzc/Lx8aELFy7kKmXJb/nhhx8KfVzOVh8/fjw5OTlR6dKlqUaNGrRr1y4V/ES6PR76k87Vaemz8dDngh9R15+P09mgGHVvGgBo0uhnLiNSMDAwoI8++kgWKLqq5bIyW0IfJVBiSjqZmaDxIgCAJma1VLKzIEtTlb3FAgAUyaNHj2Q6aNu2bWn37t3k6OgofRXLlCmTfZ/w8PBc38P3GzlyJPXp06fAx01JSaHXXntNHm/Lli1UoUIFCg0NJSurrBOF8Go61ipPVSZY0ru/XZTx0AOXn6apnavTyBYYDw2gyVR2JGhoaCg7b94J5xQdHS3r0tPTVbUpWsvO0pRsLUwoJj5FJhIhRR0AQLNcf9avpSaa4wKABpo1axa5urrS6tWrs9e5u7vnuk/58uVzXf/zzz8lOOPh4VHg465atYpiYmLo5MmTZGxsLOvc3NwK3Zbk5GRZFGJjs4LVkD8PB0sZDz112zX68/J9mv7PTboU8phmvVkHwX0AfS8jyszMzHc972R5FDQUcyIRmuQCAGgc9GsBAE22c+dOatCgAfXt21dOdtatW5eWL19e4P255P+ff/6RzJYXPW7Tpk2ljKhcuXLk5eVFM2bMKPRk6syZM8nGxiZ74SAQvHg89Pz+PjStey0yMihF/1wLx3hoAH3ObFmwYIF85VrPFStWkKVlVrCA8Q746NGjVL16dWVvhk41yeU6TYx/BgDQPDcw9hkANFhgYCAtXryYpkyZQp9++imdPXuWJk6cSKampjR06NDn7r927VopBeIeiy963IMHD9KgQYOkT4ufn58EXtLS0ujLL7/M93u4hyNvR87MFgRcXow/Uw1r5i4Z7uN+vyDjoXssPEGz3/SmrnWcivAIAKAzwZZ58+ZlZ7YsWbJEyokUOKOFUxd5PRRz/DMmEgEAaJSnSakU9DBeLtdyxiQiANA8GRkZktnCWSeMM1t8fX0lAJNfsIXLgziAwg1vX/S4nCmzbNkyOdavX78+3b9/X5rqFhRs4QAPL/AK46Hfa0nvbbhIpwNjaPz6i3QxpJI01DU2VFnxAgCoM9gSFBQkX7nWc9u2bVS2bFllP6V+jH9GGREAgEa5Gf5UvjrblJb+WgAAmoYnBdWsWTPXOp4atHXr1ufue+zYMbp9+zZt2rSpSI/LvVpynlTlx42IiJDmuWgZoBwOVqb028jG9MPe27T0aCCtPB5E1+49oYWD6pKjVeEBMgBQPpWFPQ8dOpQr0MIlRJcvX5au6FB0ns8mEoXEJFBSKpoKAwBoiuthiua4yGoBAM3Ek4g4gJLTnTt38m1mu3LlSslQ8fb2LtLj+vv7S4ZLzsflIAwCLcofDz21Sw1aMrieNMo9GxxDXRccp3PBGA8NoDfBlvfff1922opAS6tWrahevXpSm3n48GFVbYbWc7A0pTLmxpSRSTKRCAAANK05rrW6NwUAIF+TJ0+m06dPSxkRB0fWr18vpT/cXyUn7p+yefNmGjVqVL6PwyVH3HNF4d1335UJo5MmTZIgCzfV5efI+7igPJ28nOjPCc2pajlLevA0mQYuOy2ZLgUNKQEAHQq28A5bERn/66+/KDg4mG7duiVBmM8++6zIj8MNdbt160bOzs7SIGrHjh25bh8+fLisz7k0adIk+3Z+3ry3KxbeRk3H2/lfKRGCLQAAmsL32dhn9GsBAE3VsGFD2r59O23YsEEmBn377bc0f/586cuS08aNG+VD+sCBA/N9nJCQEAoPD8++zidP//33Xzp37hzVqVNHmu5y4OWTTz5R+s8E/6nM46HHNafu3s6UlpFJ3/59g97bcInik9PwMgGoQalMFYU7ubEWR9ArVKhAY8aMIXNzc9m5c08XDsJwBL0odu/eTSdOnJCsmD59+sgbRs+ePXMFW3hM3erVq7PXcfqira1tdlbNgwcPcj0mR/Rnz54tdaU5pyUVhreXx9Q9efKErK1VexZz6rZrtOFsCE1o60kfdKym0ucGANA2qthfc1lnra/2UnpGJp2a2o6cbMyU8jwAALpKncfWuoY/3q05GUzf/XNTgi6ejpa0ZHB9+QoAOtQgV6FcuXJ048YNqd3cs2cPLVq0SNYnJCTkaqb1Ip07d5alMNzZvHz58vnexs+V9zYO2PTv37/IgRZ14/RAdicyqxkjAACoF++POdDCjXHLW6MpIQAAqDcTfkTzSlTbxUamFHE2fI+Fx+mHvt7UpTbGQwPoXBnRiBEjqF+/fpKyyDuA1157TdafOXOGqlevXqLPxT1gePxc1apVafTo0RQVFVXgfS9cuCCNekeOHFnoYyYnJ0vEPeeiLlUcs8Y/o4wIAEAzXA/Lek+o5Wwt73EAAADq1sDdVsZDN65kS/Ep6TTu94v03T83KC39v0bGAKADwZavv/6aVqxYISVEXAbE2SeKTJOSrOfkrJfff/+dDh48SHPmzJHa0Xbt2kmwJD/ctJdH0zVr1qzQx505c6akNioWrk1VlyrPMluCo+MpOQ0TiQAA1A39WgAAQFPHQ/8+qjGNbeUh15cfC6K3VpyhqKdJ6t40AJ2nsp4tysBnD/P2bMmLm3fxODtu9NW7d+9ctyUmJkpZ0xdffEH/+9//Cn0uDtbkDNhwZgsHXNRRV8q/Mu9p/1JsUhrtntSSajihrhUAQJ19AHr8coKuhD6mnwfWpW7ezvhlAAAUE3q2KN/ua+H04ZarFJecRo5WpvTLoHrU0D2rryUAaHHPFnbgwAFZuKwnIyN3+tqqVauU8pwcTOFgi5+f33O3bdmyRXrG8Pi6F+FMHEU2jkZMJCpnRRfuPiK/qDgEWwAA1IjTsW+FK8Y+2+B3AQAAGqlzbSeqWt6K3vn1gnyG4PHQn3apQSOau6MEFkCby4imTZtGr7/+ugRbHj58SI8ePcq1KEt0dDSFhoZK0CW/EqLu3buTg4MDaZvs8c9okgsAoFYBD7ikM4MsTY3IzdYcvw0AANDo8dA7xjeXLEyeVPQNxkMDaH9my5IlS2jNmjU0ZMiQV3qcuLg4GSGtwKOjucEtj3bmhXvD8EhoDq4EBwfTp59+Svb29tSrV69cj8OPcfToUdq1axdpI85sYXci49S9KQAAek3Rr6WmkzUZGKA5LgAAaDYLUyNaMMCH6lUsI+Oh/74aTrcjntKSIfUlGAMAWpbZkpKS8sImtEVx/vx5qlu3rixsypQpcvnLL7+UZrvXrl2jHj16yCSiYcOGyddTp06RlVVWcCJn2ZKLi4tk22gjRWaLXxTGPwMAaMIkoprO6J8FAADaNR56w5gm0r+Fy4p6LDwhfV0AQMsa5H788cdkaWkpzWh1gbqbeIU/SaSmMw+SoUEpuvlNJzIxUlncDABAqyh7f91/6Sk6ExRDP/b1pjfrVyjxxwcA0AfqPrbWZzyZaML6S3Q2KEauT+1cnQY3cSNjQwN6mpRKVqWNKS0jg8xNVNruE0Drqex/TFJSEi1btoz2799PderUIWNj41y3z507V1WbohPKW5cmK1MjepqcJiOgqz4rKwIAANXJyMikG/ezMltqIbMFAAC0kKNVaRkPPXvPLTp464GcOFhyJIDWngqm2MQ0sjYzohHNKtG4NpXJ1NhQ3ZsLoDVUFmy5evUq+fj4yOXr168/l8YGxcOvmWc5S7oU8pjuRD5FsAUAQA1CHyVI0JuzCz2flXcCAABoG85i+axrTRraNIHWnAymnw/+1yOTAy4/Hcia7Dq2tQcyXACKSGW1J4cOHSpwOXjwoKo2Q6dk921Bk1wAUDJuKN6tWzdydnaWYO+OHTty3b5t2zbq2LGjNCTn27lxeUG4erVz5875Pk5eM2fOpIYNG0rfLUdHR+rZsyfdvn2bNIXvs6yW6uWt5EAVAABAm5WzLi0ZLflZfTKIjAzwXgdQVGr533Lv3j0KCwtTx1PrFEXpkH8UJhIBgHLFx8eTt7c3LVy4sMDbmzdvTt9///0LH2v+/PlFzmg8cuQIjR8/nk6fPk379u2jtLQ0aWzOz6cJrodlTSJCCREAAOgC7tHCmSz54fV8OwBoWBlRRkYGTZ8+nebMmSPjmxmfqfzf//5Hn332GRkgSlpsipR1LiMCAFAmzkThpSBDhgyRr8HB+Z8NU7hy5Yr06Dp37hw5OTm98Hn37NmT6/rq1aslw+XChQvUqlWrfL8nOTlZlpxNF5Wd2VLL2UZpzwEAAKAq3AyXe7TkF3Dh9dwk92Z4LNVwQhNjAI3JbOGACp8R5bOely5doosXL9KMGTPo559/1pkJRapW5VlmS9DDeEpNz1D35gAAFCohIYEGDhwo7wXly5d/qVeLp1QwW1vbQkuPeKKFYnF1dVXKb4bLoXzvI7MFAAB0R3pGhjTDzc+wpu50zO8BdVlwjKZuu0bRcf+d2AAANQZb1q5dSytWrKB3331XphFxOvq4ceNo+fLltGbNGlVthk5xtilNFiaGlJaRSXejNSOlHgCgIJMnT6ZmzZpRjx49Xjq4MWXKFGrRogV5eXkVeL+pU6dKUEaxhIaGKuWXEvU0mR7GpZChQSmc4QMAAJ1gZmIkU4cmta8imSyMv/L1cW096WxwDGVmEm04G0JtfzxMq08E4aQvgLrLiGJiYqh69erPred1fBu87EQiK7oSyhOJ4sjTEeOfAUAz7dy5U5qhc2bjy5owYYJMtjt+/Hih9zM1NZVF2RRZLZUdLKg0RmECAICO4PHOPHVofFtP6dHCpUVpGRlkZmxIn3etSa/XLE9f7/SlG+GxNO2vG7T+TAh91a0Wtahir+5NB9DPzJaCGivyOr4NXg4mEgGANuBAS0BAAJUpU4aMjIxkYX369KE2bdq88Pvfe+89CdjwBLsKFSqQJrgeltWvxQv9WgAAQMdwbxYTIwOyszSVr3xdoVElW/rrvRY0o1dtKmtuTH5RcTR45Rkas+48hUQnqHW7AfQys2X27NnUtWtX2r9/PzVt2lSyMk6ePCnp3bt27VLVZuhusCUKTXIBQHN98sknNGrUqFzrateuTfPmzZOR0oWVDnGgZfv27XT48GGqVCn/OnJ1UGS21HRGk0AAANAvXEL7VuOK1LW2E83bf4d+PX2X/r0RSYfvPKAxLT1oXNvKuQI0APpIZf8DWrduTXfu3KFffvmFbt26JQfQvXv3lr4tzs7OqtoMnR3/7BeJ8c8AoDw8Rc7f3z/7elBQEF2+fFka1VasWFHKQUNCQuj+/fty++3bt+UrN8LNueTF35szgNK+fXvq1auXlAwxHvu8fv16+vPPP2WCXUREhKznxrdmZmYakdmCSUQAAKCvbMyN6evutSTwMu0vXzrhH00LD/nTlgv3aGqX6tTd21lOsgPoI5WGGzmo8t1336nyKfVm/HPgwzhKS88gI0OVVYYBgB45f/48tW3bNvs6N6plw4YNkybnXOIzYsSI7NsHDBggX7/66iv6+uuvi/w8XGr08OHD7OuLFy+Wr3lLjXgE9PDhw0ldHiekUNjjRLmMzBYAANB3fAL4t5GNaa9vJE3/5wbde5RIkzZept9O35V+Ll4uNureRACVK5XJKSZK5OfnR19++SUtXbqUrK1zp1rzlAieTjR9+nTy8PAgbRIbGytnVvlnyPtzqVJGRibV+movJaam04H/tabKDlnBFwAAUN7++oT/Qxq04gxVtDWnox/9F4QCAADtPraGV5eUmk7LjwbSosMB8hmFE1sGNHSlD16vJj1gAPSF0tMgfvjhB3J1dc13p8k7VL6N7wMvx8CgFFUp96xvSyT6tgAAqIKiX4uXCz4QAAAA5MQT+t5rX0VOBHfzdn42KjqU2vx4mFYdx6ho0B9KD7YcPXqU+vbtW+Dt/fr1kykV8OqlROjboh8SU9IoJS2DouOS5WtCSpq6NwlA7/jeR78WAACAwjiXMft/e/cB1tTd/QH8KBtkI0NRcCuouFrFhbgVtdYO6+trUVtbq9bV9t/apXZpl1U73y61b1u1r1pr655Y6xZxoagMwQUuZKNA/s85mBggIEoSkpvv53muJjc344bw4+bc8zuHPh/Rln57PpSC/FwoM6+A3vkrlgYu+Jv+PnMFbx4onsFrtpw7d468vb3Lvd3Ly0s6EsGDa+J9p0huGorkKl3+7UL6JiqBFu1OpIzcAnJxsKYxnRvQhB6NyM7GqrpfHoDFOH6hOLMlGJ2IAAAAKqRuFb38QAp9vPGUfGcZ9cN+6hvkQ29GBFF9T0e8g6BIBs9s4alCXPCwPNzdAvMyq6apehoRgi2Kz2jhua8Ltp6RQAvj//k6r0eGC4Bx8O9awtVsuYxORAAAAJVvFb3j5XAa3TlQrnOr6N6fRUkAJjsfmdqgPAYPtnTv3p0+//zzcm9fuHAhdevWzdAvwyIyW+KvZFFhkUHrHUM1sqpZUzJadOH11jXRiQrAGE5eypD5597OdlTbGYX+AAAA7rdV9Pop3ahLY0+ZEv/l9njq9WkU/RFzgQzcuwXAqAz+7WzGjBm0fv16evzxx2n//v1SYZyXffv20WOPPUYbN26UbeDB+bs7kL1NTRmskq/n4K1UIG4zyzVa1BktpfH6tMw8+mDdSdoRl4agG4AR6rWgjSUAAEDVWkV/8+/28l3mckaetIp+4ps9mqm6AObO4MGWtm3b0ooVK6RQbmhoKHl4eMjSuXNn+vvvv+m3336jdu3aGfplKL4j0d0iuehIpLTWeV/tOEuDP98lZwK4RosuvN7DyZZWHDpPoxcdoM5zt9Lc9afobBo+DwD6hnotAAAAVVejRg3q39KXtkwPo5f7NiUHGys6eO4GDf5iF81YdVRONAKYM4MXyGWDBg2SQrkbNmyQGi2cHta0aVPq27cvOTqiIJK+phIdv5AhdVv6BuvlIaEaFRWp6I8jF+jjDXF08WaerItJSZdiuFyjpTRen5VXQINb+9EfRy5SakY+fRMVL0tIPTd6vL0/DWldRwI2AFA16EQEAACg31bRk3o2ocfa+9OcdadozZGL0ir6r6OXaGrvpvR0aADZWGG6vL5qQHJpgsy82+Rsb0MFRUXkaGuUkIBFqqHCxLgHkpGRIcV/eUqUKRT4/XL7Wfp4YxwNbVOH5j/VtrpfDlTBnvhrMh3o2J0Uyjqu9vRK/2b0SEhdul1YJMVwK+pGlF9QSNtPpUmWy/a4K5opRbZWNalPkI8EXro18SJr/NECC6HP8ZqnawbP3EC3C1X09/+FUz0PnDAAAFDisTVUn/2J12nWmhMUe6l42i5n8M8cHETdmtTGj6WKXU3v9T0C9AvBFoX8Qdgcm0rjfjoobUjXTkbBYXN0Ni1Lpv5sOZkq12vZWdOE8EY0tksDifhrd0KxrmRE+kpmvhQb48DLqct3pxRxUc9H29alx9r5UzPf4gLLAEqlz/GapxAN4ml9DjYU83YfSYEGAADlHVtD9eKThdwq+pNNcXQ9+5as45OGb6FV9ANntHwTlaAzQ35Kryb0fFhDZLgYgNnlY3Htl8GDB1OdOnXkIHf16tUlbh89erSs1146depU5nH27NlDPXv2JCcnJ3Jzc6MePXpQbm4umasmd2q28Bd2dCQyL1ez8umt1cep3/ydEmjhVnicLrnjlR40oUfjEoEWxoEVW+ua5FnLTv6vKPWPgyrPdmtIG6Z2p7WTu9KYLoFS24WDMN/uTJDn5HowS3Yn0Y07f8gAoHyxd4rjcmAbgRYAAADDtore/lIPOX7l63xyufc8tIp+sPcTXU2rg9lN0MrOzqaQkBAaM2aMdDPSpX///rRo0SLNdVtb2zKBFt6GuyBxW2q+/ciRI1TTjFvnciq7nXVNyi8oovM3cijA06m6XxJUovjtD7sS6esd8ZSVX9xlqHcLH3ptQHNNwWN9Cq7jKsuMAS2kYxFnu2w7lSbTlXh5b20s9WpePM0orFltzI0F0OH4xeLpfehEBAAAYHhcb3Dm4GAa8XB9eufPWNp19qq0iubjWD6mfaRN8Ql4KCn3ViEdPZ9O0cnplJaRR2O7NaiwqylnzPOJXLDwYMuAAQNkqYidnR35+vqWe/u0adNo8uTJ9Nprr2nWNWnSpMLHzM/Pl0U71dGUcLS3Ue1aMrfxTGoWgi1mVvy2VV1Xen1gCwpt5Gnw5+dsmL7BvrJwlXcuQsZ/sLjo54YTl2XxqmVLj7SpK4GXFn5I5QUoWxwXvxcAAADGbBX932cepk2xqXKCMOV6Lk1dHkM/7z1Hs4YEW/RJEC7Bmnw9h6KTb1D0uXQ6nHKDTl7K1Mx24Kx2rv/INVp0BVx4vbO92YUFzILR3tV169aRlZUV9evXr8T6jRs3UlFR0T0DKPdjx44d5O3tLdODwsLC6P3335frLC0tjfbt20cjR46U9tPx8fHUvHlz2aZr167lPuacOXNo9uzZZMqa+BQHW06nZVLvIJ/qfjlQTvHb99fFSucodfHb/+vfnIaE1JEW3sbGEewxXRrIcvJSBq08dJ5Wx1ygq1m3JOuGlyA/Fwm68JkDRLzBkvFBi/Y0IgAAADAezmDpF+xLYU1r0/d/J0iGi7pV9PAO9ejlfs3IywKyM7LzC+jI+XQ6nMzLDfn/mo5yAN7OdtSuvju1C3CjjNzb5XY1jQwNpB1xV2h7XBq93LcZjvfNsUBu69atae7cuTRw4MAS67kd9KuvvirTeB7kF+7333+noUOHatYtX76catWqRQEBAZSYmEhvvfUWFRQU0KFDhyTjZe/evRQaGkoeHh70ySefUJs2beinn36ir776io4fP15uhouuzJZ69eqZVBGvL7adoU82naZhbevSvOFtqvvlQJnitydpy8m0CovfmgLueLTz9BXJduEaMtx1hVnXrEHhzb0l8BLezFsyZAAsqegi/x7zXHEHGys6PrufZBQCAIB+oEAu3K9LN3OlucQfMRflOmdnKK1VNH9VT7yaLdOBou8EVuIuZ9CdpBUN7joaXNeF2tYrDq60re8uJ3W1p1iV141obNcGNOw2V/3oAAAsiElEQVSr3RR/JUvew+l9mtKoTgHoXGpOwRYHBwc6efIkBQYGlliflJREwcHBUotFH8GW0i5duiSBl2XLltGwYcNo9+7d1KVLF6nX8sEHH5QIBkVEREgGi7n+Qdhw/DKN//mQTEn588Xys3TAuMVvF2w5Q7/uT5az4vzlbGTH+lL12xyyRLho7p9Hi6cZHT1fXKtCnY7I2TgceEGhUDB1+hqvubPXlGUx1K6+G62a0EWvrxEAwNKZ4rE1mIcDScWtotVTfbn24duDgqh7U/NrFc21U46k3LwTWLlBh1PSKT3ndpntOJDCAZW29YsDK3w8XpkTuOV1NS39Hjb1qUWzBgdT58ZeBtlPS2G0aUQ8eCYkJJQJtpw9e1Y6AhmKn5+fBFvOnDmjuc6CgoJKbNeiRQtKTk4mc8a/FOqzr1wXpDqmpUD1FL81FHcnW3o6NFCW06mZMs1o1eEL0s1o8e4kWZr7Ot+ZZlRXuh8BKJX6AMSS54UDAACYmocCPWjNpK7028EU+nhjnHwXevrH/dIq+s2IFiZby5K/ryVczZI6K+qsFS4HUToVgrPJW9d1lcAKTwvi4Iqvq/0DPae6i6n6pK/tnebE6veQ221/vPEUnU7Non99v48GtPSVupLcjAVMONgyZMgQmjp1qmSiNGrUSBNoeemll+Q2Q7l27RqlpKRogiwc7OG20XFxcSW2O336tF7rxlSH+h6OkkKWe7uQLqTn4peimgZNrnnyycbqKX5r6MJkMwa2oFf6NaO/z1ylFdHnafOJVDp1OZPeW3uS5qw/ReHNatNj7fypZwtvsrM2relRAFV14k4nItRrAQAAMC2cPc4diwa29KP5W0/TT3vOSavoqLgr9Gy3BjQxvDE52VVvEdibObcphjsEnSvOWIlJvkEZeWUL1vq7O0hAhTNp+X+un2iM6fvqdtsRrfzosy38HibR+uOXpXvp+LBGsjjY4vjeJKcRcUogt1s+ePAg+fv7y7rz589Tt27daNWqVVLMtjKysrIkSMPatm1L8+bNo/DwcKnBwsusWbOkJTQHV3iK0uuvvy4ZKzyFydnZWe43f/58mjlzJv3www9Ss2XJkiVSv4VrtqgDQeaa6th//k758vvj6A7UszmK5BrT7vir9MG6kyZT/NYY0nN4mtElyXiJSUnXrHdztKFHZJpRPWpZ1wUt+aBa6WO85j+Vbd7ZTDdzb9NfL3ZFdgsAgJ6Z6rE1mKczqZk0+06raObjYmfUVtFcPuBMWqZkq6iDK5xxU5q9TU1q7e92N2ulnht5uzxY1oq+nbqcIVOL9iZcl+t13RzojYgWku2CdtsmFmxh/FSbN2+WYrhcw4XrpHTv3v2+Ow1xcKW0yMhI+vrrr6V+y+HDhyk9PV0CLrztu+++K8VstXGx3i+//JKuX79OISEh9NFHH1XYjchc/iC8uPQw/XnkIs0Y0JyeD6tc4Aiq5mxaphTnMofit4Z+H1YcukC/Hz5PqRn5Jaa38TSjoW3qmswfD7As+hivz9/Ioa4fbicbqxp0YnZ/FIgGANAzUz22BvPF3z21W0Wz9gHuUouklb+r3usc8olH9XQgvqwuJaAtwNNRAirtAjiw4k7N/ZxNupgvv4ec3fL+2pMyc4J1buRJMwcHUzPf4kQGMJFgi5KY6h+EhVvP0LzNp2Uqx6dPhlT3y1F88dv5W07T0v0pZln81lD4veCzCJztsvHEZcovKJL1/P50b+Il2S69WnhbVCAKzH+8Vhcg51TedVO66f01AgAYy4ULF6QT6Pr16yk3N5eaNm0q2d7t27eX28s7Y80nJl955ZV7Pj43pRgxYgQ98sgjtHr1arM/tgbl1FL8YttZKbfAH3HtVtG5twrISkfR2PIUFBZJTRN1YIUL2SZcLdvsxdHWikK0slba1Hcz29bUubcK6ZuoeFn42J6P67lj0bTeTcnV0aa6X57JMujEtYULF9Jzzz1H9vb2crkikydPNuRLsRhN7hRf5SwDMF7xWy7AxcVvG9U2n+K3hsKDb1jT2rLwlIu1PM0o+jwdOneDtsddkcXVwYYGh/hJ4CXE3xWpiGDyYu/Ua+FpcQAA5urGjRvSlZMzvznY4u3tTfHx8SWm83MnT2283TPPPCPT9O/l3Llz9PLLL0uZAABTwSf4uGbLsHZ1Na2ilx1IodhLGfTLsx3p+78Ty7RDntCjEdndOTF4LSu/eDrQneDKkfPplHOrsMzzNPRykoBKcRFbN2rm46yY9slcq2Van6aSrc5lEzjbhRtlrDlyUeo5PtmhnnwHACNmtjRo0EBqtHh6esrl8nAEnTsVmRNTjb7zXMDe86Ikknpidj98iTVA8Vuucn5Jq/gtz13s1NC8i98aQ8KVLAm6rIq+oHn/WKPaThJ0ebRt3TKV1e/3TAOAocbrZxYfoK2n0mj2kGCK7Fyyqx4AgLl47bXX6J9//qG///670vfhKfqZmZm0devWCrcrLCyksLAwGjNmjDw+T+lHZguYooPc5vjPE5KNfvT8Tfp8W3E9UG2TezWm8GbeNHV5DJ27llPmdi4bEFLPVQIrkrVSz026eFqKXWeu0uw/T9CZO3Vo+GQUT8/qEOhR3S/NpGAakcKCLbcLiyjo7Q10u1BFu14NJ393tOnSV/Fbnquobv3KBaI4iqvk4reGnGa0J/4arTiUQhtOXKa828XTjPht7NqktkTM+wUVF3f+akd8hWcaAIw1Xnf8YIvUIlr5Qii1D8CBBACYp6CgIOrXr580qYiKiqK6devShAkTaNy4cTq3T01NlcYW3EziX//6V4WPzc0njh49Kp1HR48efc9gS35+vizaYzXXWDS1Y2tQ7vEoTwd66IMtcpxZGh937p3RS+q1Xc++RY29a92ttVLfjZp4O1t8Jgd/7/zvnnPSuSjzTlclPnnK2f4+qNMojHaK+J133pG0QkfHkl/+ea7oxx9/TG+//baxXoqicYGlBl5OMo+QI40ItlQNT8eas+6UnNFmzlL8tjGN6RKImiMPiFMMuzbxkoUzVtYdu0QrDp2nA0k3aOfpK7L8GNlBCost1DrTwH8IF2w9I5efD2uIDBcwmiuZ+RJo4TnezX3xBQAAzBdnknNDienTp0vHzv3798tUfjs7O3r66afLbM9BFu7mOWzYsAofl7NluO5LTExMpV/LnDlzaPbs2Q+0HwD6OB5NzynQGWhhvJ6Xb0e1l8AK6pLo/t45tmsDGtKmDn2yMY6WH0yh3w9fkJqNL/ZsQmO7BpKdtWWfIDVaZouVlZXMAeW5odquXbsm6zj10JyYamYLm/hrtNTJeGNgCxrXvWF1vxyzLX772ebTMp9TXfz23x3r02QLL35rSElXs2lV9HnaejKN/vdCKHWas7XcMw0H3+iDbjBgtPF6R1wajV50QKa8bX2pB955ADBbtra21KFDB9q9e7dmHQdbDhw4QHv27CmzffPmzalPnz70+eefl/uYPMWIO4x+9dVXNGDAAFmHzBYwB7cKiqjD+5txvKknR8+nS6vo6OR0uR7o6UhvDw6ins2LM9YtkdEyWzimo6u6ObeB9vBASrYhiuSeTkWR3AeptP3jPyh+Wx0CvZxoet9mNLV3U7qanV/hmQZO50y+nk3N/VzIxR4V0MGw1NMHg+vot00kAICx+fn5yVQibS1atKCVK1eW2ZbrrsTFxdHy5csrfEwusJuUlESDBw/WrCsqKp4ibG1tLY/RqFGjMvfjbBpeAKpLYVGRTFFXZ05r4/VcK9CWlFHg1hha+7vRivGdpcblnPWnKOlaDo1dfJDCm9WmtwYFUUMLbCRi8GCLu7u7BFl44dZy2gEXzmbJysqi8ePHG/plWBROdWPqgkVQueK3nPb2yaa7xW9b+7vS6wNR/NbYuAaOm4OtZLCUl9nCy/ifoyk95xYF1XGhhwM96eEGHvRQoDsyj0DvTqATEQAoBHci4uCHttOnT1NAQECZbdXtoENCQip8TM5+OXbsWIl1b775pmS8LFiwQOqwAJgiB1trqQXIUCNQf8fxw9r5U99gX/p82xn6cVeidCLddXanTDni6UVcXNhSGHxP58+fL1ktY8eOlXmZnMqtncoYGBhIoaGhhn4ZFqWpj7r9c1a5GUVw1+6zV+n9dSWL3/5f/2Y0uDWK35rimYbRnQPpTGoWOdtbS4bL8QsZsnBGkjqziwMv6sXP1aEa9gCUBJktAKAU06ZNo86dO9MHH3xATz75pNRs+fbbb2UpPf3yf//7H3366ac6H4fru3BxXa67Ym9vTy1btixxu7qVdOn1AKaGmy5wLUBuDa3d/RLNGKqGAyozBrSg4R3q0Tt/xdKOuCv0n6gE6Uo6Y0BzGtqmrkU0GTF4sCUyMlL+59bPHE3ndEIwrABPJ7KuWYOy8gskS6OOG75sVrb47cSejeXLvD263Zj8mYaoV8Lp8s082p90nfYnXqP9idc1haF5+WVfsty/noeDZL50vBN8CfB0RADyAezcuVOKmR86dEjqb3G3CW4HqrZq1Sr6z3/+I7dzLa7Dhw9TmzZtdD4WB4EHDhxIGzZsKPM4unAdAH5uft7g4GAJ4nfr1o2MISPvtqblY3Ad06rPBQBwvx566CEZd2fMmCHNK/j4nMfUkSNHlthu2bJlMlaPGDFC5+MkJydTzZqYXgHK4Ghb/P1UXZcRU4f0p2HtWrR4zMO07VQqvfNnrEwtmv7bEfp57zmaPaQltfJX9hRto0U+uJL5yZMnqVWrVnL9jz/+oEWLFsm80VmzZkmWC+iHrXVNqX9x9s6XTgRbynYWmb/lbvFbDkyNRPFbszzT4OtqL+23eWGc6XJAgi/FC0//SLmeSynXz9PK6POyjbeznQRdioMvnpIJYwmR9arKzs6WVPIxY8bQY489pvN2Dqg/8cQT5bYQVeMD+8pm3HGtgKlTp0rAhR+fAzpcgDE2Npbq169PhharlfHm5oi/UwBg/gYNGiRLRZ577jlZyrNjx44K77948eIHfn0AoDw9m/tQl8Ze9OOuJJlexEV0h3y5SzJfXu7XjLwU2oDEaN2IOJL+2muvyUE6t53jIAu3kePq5xEREXLwbU5MuRsRm/DLIVp37DK9GdGCnu2GjkTq4rc/7Eqgr3fEU/at4u5XfYN86NUBzamRBRZssgQcpOHBXJ35ciTlJt0qLC7ap+bmaEMPBaqDLx4U5OdC1lY4W1cRDpSUl5HCRRL5TGl5mS1cFJ0P8nns50KN98ps6dixI7Vr105alWoXc+T7cPq6ocfrH3Yl0rt/xcpY8e3THe7rvgAAoJxjawDQj9SMPJq7/pTUy2RcGmBa76Y0KjRA2kkridEyW7j4lvrAm+eAhoWF0a+//kr//PMPPfXUU2YXbDF1jaVI7mXJbrF05RW/5dbYHRt6VvfLAwPibJiwprVlYXm3CykmJV2T+XLo3A1Kz7lNm2NTZWFOtlbU/k7whYMw/FnBtDL9yMnJkZT0L774gnx9fe+5/a1bt2RaEgfqtfXt27dE29LS8vPzZdE+gH9QJy7clP9b1lV2misAAACAMfi42NNnw9vIzIKZa05IbTyu67J0fzLNGhIsGTBKYdTWz+o2cFu2bNGkL3KF8qtXrxrrZVgMS2z/nHurgKxq1iwx5STuUia9sfo4xV5C8VsgCZp0augpC7tdWETHL9zUBF94ClJGXgHtPH1FFvW0vDb13DSZL+3qu5OTBVVRN0RhxkceeaRS2/PfBu5a5+PjU2I9X798+XK59+OMFy7Irt/iuDjLCgAAAKAvHQI9aM2krvTbwRT6eGOclL8Y+f0+6h/sS29EtKB6Ho5m/2Yb7RtDhw4d6L333qPevXtTVFSUJiU8MTGxzIE0VF1Tn7vtny2hI1H+7UL6JiqhRDHV0aGBFNk5kPILilD8FnTiVMW29d1leT6skWRBxaVmaoIv+xKv09WsfM11ZlWzhmQ5SPAlsDj7xdXRBu/wPaxZs4a2bdsm04vuV+nx615jGhd+nD59eonMlgdpPcqZUGevFGcHIrMFAAAAQL+satagEQ/Xp4Et/eizLafpv3vP0YYTl2l7XBqND2ski4Pt3XqN5sZowRZ1pfPVq1fTG2+8QY0bN5b1K1askDOdoF+BXo7y4c3MK6C0zHxJ11JyRgsHWrTbBHPAZeG2s8QFiRY81UaKBHs4obglVIwL5bbwc5GFA3X8pT7xanaJ4MuF9Fw6kpIuy7c7E4i/8zfzcdYU3H2ogTt5Oyv39+1BcaAlPj5e0w5Ujet4cWchXcUWvby8yMrKqkwWS1paWoVBejs7O1mq6tTlTCmi7VXLVgorAwAAAID+uTrayBSipx6uR7PXxNKehGvy3W7FofOS5TKgpa9ZJg8YLdjSunVrOnbsWJn13M6TD6ZBv+ysraTFbcKVbJlKpLRgC59xTr6eQ+dv5FDnRl6S0aLLkj1J9GLPJjIVBOB+8aDOLet4eerh4s43/JnT7ngUfyVbvpTzsmTPOdmmgZeTZL3wtCNe/N0dzPIPhD5x3ZVnn322xDruTvfZZ5/R4MGDdd6Hu9S1b9+eNm/eTI8++qhmPV+v7FSkquApZiyojqvF//wAAAAADK25rwv9Oq4jrT9+md5fe1JOck74JZpCG3rSzCFBcrs5qfbCA/b2ygoCmFrdFg62nEnNom5NiguEmhM+o3zhRi4lXM2ipKvZkmGQcOd//sXjPlqcUfB9pLNksujC67mGi6dC24mB8fm7O8ryaFt/TSvxg0nFWS8cfDl5OUM+o7wsP5gi29Rxtb8TePGU/xvVdirz5V1XzSFH22ofojWysrLo7Nmzmus8BTQmJoY8PDykBfP169cpOTmZLl68KLfHxcXJ/1wIV3spje/L3YvUevXqJYGVSZMmyXWeDjRq1CiZihoaGkrffvutPM/48eMNvs/qei0tUa8FAAAAwChq1KhBA1v5UXgzb/omKl4WznSJWLiLRnUKkM5F5jKF32hH8lzkkM9g/vbbb3KgzF0mtPGBOui/bsvGE6lSt8VU8TQN/rLKQZTSAZXkazll2vRqc7azJm9nW/JytpMaLboCLryev7gCGEptZzsa0MpPFnYz9zYdOnc3+HLs/E26eDOPVsdclIV5Otlqsl66NvGieu6OZWoOjencgCb0aER2NqaR+Xfw4EEKDw/XXFfXRImMjKTFixdLTZYxY8Zobucuc2zmzJk0a9asSj8PTzXSLpo+fPhwunbtGr3zzjt06dIlatmyJa1bt44CAgLI0GIvFme2BNdBJyIAAAAAY3KwtaJpfZrS4+396YN1JyXbZfHuJPoj5gK90q85DX+onpTNMGU1VPxt1wjefvtt+v777+UA/a233pK6LUlJSVLDhW+bPHkymRMuuOjq6ko3b94kFxfTTGfiD+KUZTHUIcCdVrxQvXVx+Ato8dn+LEq8mnP38pVsyr5VWO79ePpPA08nmZYR6OVEDb2cqEHt4uv8hZUjn7pqtqhN6dWEng9raFIZAmBZcm4V0OHku+2mo5NvSNFmte+ebk9Hz9+kz7fdzRpRw+e3+sZr7lQVPHMj3SoooqhXelCAp5OeXg0AAJjrsTUAVJ9/zl6lWWtOaBIJuFPk7CHB0tXIVBntG+gvv/xC3333HUVEREhLzhEjRlCjRo2klsvevXvNLthiDpp4G7cjEddRSbqWLQEU7UwVXq5ll8xk0sYBSW7tJQEVTydqeCeYwksdVwcpWloRB1tryQBgppwZAJaJA31dGnvJwvILCqUWCGe+nLyYIetf+t8Rnfflz/PE8OJi4mBc8VeyJNDCGXSceQQAAAAA1adLYy9aN6Ub/bz3HM3bfFqmez/+zR4a2qYOvTagBfm62ltusIW7SXAxRFarVi2JWrNBgwZJpgvoHwctOE7B6VXXc26Rp1PV65YUFBbR+Ru5WtN9uJ5KjqaOSkV8XOw0QZTipZb8X9/DscoFbDmgwhks/MVUu+YFAi1gisWr2wd4yMK4tTRqDpme06lZUhOqnse9A74AAAAAYHg2VjVpTJcGNCSkDn2yKY6WHUiRafqbYlNpUs/G9EzXBnKsbXHBFn9/f5lvz8UQue3zpk2bqF27dnTgwAG9tOiEsuxtrGjJ2IepfYA7ZeUVyFnayhTd5CyY1Ayuo8JTfoozVeT/a8V1VAqKyp955mJvXdy95c60H3VghS/XsjPsx029X+piuLaEDkRg+lzsbVBzyMTw1MS+QT7Utp6b1OThqWCYiggAAABgGjxr2dGcYa3pXw8H0Mw1xyk6OZ0+2hBHyw+k0NuDgqhnc2+ZdVHdzSeM9mzcXWLr1q3UsWNHmjJlikwj+uGHH6RY7rRp0yr9ODt37pR20YcOHZLgze+//05Dhw7V3D569GhasmRJifvwc/JUJbUePXpQVFRUiW24COOyZctISfJvF9KBxOs08ddonVNr0nNuFWenqIMpV+9O/8m9XX4dFXubmiWm+9y9XIvcHW3QIhXgPhQWFcnvpa6aQ7ye/zAgcGjccdPUixUDAAAAAFErf1da+UJnWh1zgeasO0XnruXQB+tOSbLBj/8kSkHd6jyeM1qwZe7cuZrLjz/+uGS67N69W7JchgwZUunHyc7OppCQEOl68dhjj+ncpn///rRo0SLNdVtb2zLbjBs3TrpbqDk4OJCSqIvGLtQquskfNP5CV6RSUdv6bjR28cFy789Tj3h6j3ZmihSn9XIiXxd7pNUD6AlqDpkOXcW21eMmQ7FtAAAAANNSo0YNerStP/UJ8qUvtp2lDgFu9MOuxBLNJ6rreK7aWrR06tRJlvs1YMAAWSrC05J8fX0r3MbR0fGe25gzTpniM7O6LNmTRC/06EUeTrZkx91+StRRKV64YC3PiQMAw0PNIdMfN1GsGAAAAMB01bKzptcGNJfSGdNNpPmEQYMta9asqfS295Pdci87duwgb29vcnNzo7CwMHr//ffleunuSD///DP5+PhI8GbmzJnk7FzcvUeX/Px8WbTb05kynptWUdHN7PxC+ue1cHKwQUtkAFOAmkOmP27y7eqaUAAAAABgejJN6HjOoN+0tWup3Cv1p7Cw/Boh94MDJ0888QQFBARQYmKidDrq2bOn1HhRF+IdOXIkNWjQQDJbjh8/TjNmzKAjR47Q5s2by33cOXPmSMtqc8FFgHhumq4PGq93dbCpcgcgAAAlude4ybcDAAAAgOlyNqHjOYN+2y4qKqrUoq9Ai7rQbUREBLVs2ZIGDx5M69evp9OnT9PatWtL1Gvp3bu3bPPUU0/RihUraMuWLRQdHV3u43JAhttVq5eUlBQyh6KbuqiLbgIAAMZNAAAAAKUoNKHvwYqfQ+Ln5ydZLmfOlO30ocYtqG1sbGQbvqwLZ8WYU4tqFN0EAMC4CQAAAGBJHGytpesQq+7ukgYPtgwcOJCWLl1Krq6ucp3rp0ycOFHqqbBr165Rt27dKDY21iDPz4/PWSgcdCnPiRMn6Pbt2xVuY45QdBMAAOMmAAAAgCWxs7GSrkNcDJdrtPDUIc5oMWaghRm8aMfGjRtLFJb98MMP6fr165rrBQUFFBcXV+nHy8rKopiYGFkY12Xhy8nJyXLbyy+/THv27KGkpCQplMtTiby8vOjRRx+V7ePj46Xl88GDB2WbdevWSY2Xtm3bUpcuXUiJRTe5NgsXAeL/jdXmCgDAXGHcBAAAADBvjibwPdjgz6hSqSq8fr84SBIeHq65Pn36dPk/MjKSvv76azp27Bj99NNPlJ6eLpkqvO3y5cs1nYZsbW1p69attGDBAgnO1KtXT2q8cDciKyvjRroAAAAAAAAAQHnMLs2hR48eFQZsOJOmIhxciYqKMsArAwAAAAAAAAAwQrCF2zrzUnqduVMHfDIyMqr7pQAASPaeEsZWQ8B4DQCmBOO1bhirAUBpY7VRphGNHj1a08knLy+Pxo8fT05OTnJdu56LOcnMzNRkygAAVDduSe/i4lLdL8MkYbwGAFOC8Vo3jNUAoLSxuoaqqkVU7mHMmDGV2m7RokVkToqKiujixYtmcXaCs284KMRdmZT+ZcxS9tVS9pNhXyvHHMai6mIu4zU+68qEn6vyVPVnaupjUXUxl7Hakn6vLWU/GfZVmTKq8Bk2i8wWcwuiVFbNmjXJ39+fzAl/wJQ+UFravlrKfjLsK1jKeI3PujLh56o8lvQzNQZzG6st6TNgKfvJsK/K5FJNn2GDt34GAAAAAAAAALAkCLYAAAAAAAAAAOgRgi0WgIsTz5w5U1OkWMksZV8tZT8Z9hUsBT7ryoSfq/JY0s8ULPszYCn7ybCvymRXzZ9hgxfIBQAAAAAAAACwJMhsAQAAAAAAAADQIwRbAAAAAAAAAAD0CMEWAAAAAAAAAAA9QrAFAAAAAAAAAECPEGwxQTt37qTBgwdTnTp1qEaNGrR69eoSt3NN41mzZsntDg4O1KNHDzpx4kSJbfLz8+nFF18kLy8vcnJyoiFDhtD58+dLbHPjxg0aNWoUubq6ysKX09PTS2yTnJwsr4Ufgx9r8uTJdOvWLb3s55w5c+ihhx4iZ2dn8vb2pqFDh1JcXJwi9/Xrr7+m1q1bk4uLiyyhoaG0fv16xe1neT9n/hxPnTpVcfvL+8D7pr34+voqbj+hfBivSXGfd0sdrzFWK+9nCndhrCbFjWGWOlYzjNezzOfnyt2IwLSsW7dO9cYbb6hWrlzJnaJUv//+e4nb586dq3J2dpbbjx07pho+fLjKz89PlZGRodlm/Pjxqrp166o2b96sio6OVoWHh6tCQkJUBQUFmm369++vatmypWr37t2y8OVBgwZpbudteR3flx+DH6tOnTqqSZMm6WU/+/Xrp1q0aJHq+PHjqpiYGFVERISqfv36qqysLMXt65o1a1Rr165VxcXFyfL666+rbGxsZN+VtJ+l7d+/XxUYGKhq3bq1asqUKZr1StnfmTNnqoKDg1WXLl3SLGlpaYrbTygfxmuM10r4vcZYjbFa6TBWY6xWwljNMF7PNatjawRbTFzpYEtRUZHK19dXvsSp5eXlqVxdXVXffPONXE9PT5cv8suWLdNsc+HCBVXNmjVVGzZskOuxsbHy2Hv37tVss2fPHll36tQpzR8mvg/fV23p0qUqOzs71c2bN/W+r/wllZ8/KipK8fvK3N3dVd9//71i9zMzM1PVpEkTGZzCwsI0wRYl7S8HW3jw1kVJ+wmVg/FauZ93JY/XGKuV9zOFimGsVu7nXcljNcN4XWR2P1dMIzIziYmJdPnyZerbt69mnZ2dHYWFhdHu3bvl+qFDh+j27dsltuFUq5YtW2q22bNnj6RMdezYUbNNp06dZJ32Nnwfvq9av379JDWLn0Pfbt68Kf97eHgoel8LCwtp2bJllJ2dLSmPSt3PiRMnUkREBPXu3bvEeqXt75kzZ+TxGzRoQE899RQlJCQocj/h/in5M4DxWjk/U4zVyv09hcrBWG3+n3ccWytrHDujoGNr6yq9E2B0/AFjPj4+Jdbz9XPnzmm2sbW1JXd39zLbqO/P/3OdlNJ4nfY2pZ+HH5MfW72NvvCJhunTp1PXrl3lg63EfT127JgEV/Ly8qhWrVr0+++/U1BQkOaXWin7yTiYFB0dTQcOHChzm5J+rjxI//TTT9S0aVNKTU2l9957jzp37ixzR5W0n/BglPoZwHitnJ8pxmqM1YCx2pzHMBxbK+94o6PCjq0RbDFTXIiz9MFv6XWlld5G1/YPso0+TJo0iY4ePUq7du1S7L42a9aMYmJipPjSypUrKTIykqKiohS3nykpKTRlyhTatGkT2dvbl7udEvZ3wIABmsutWrWSYFqjRo1oyZIlEiFXyn5C1SjtM4DxWhk/U4zVGKuhJCX8XmvDWK2cnynG60Zme2yNaURmRt3ppHRELS0tTRN94224UjJXWa5oG44WlnblypUS25R+Hn5MTs0qHemrCq4WvWbNGtq+fTv5+/srdl85Etq4cWPq0KGDVBEPCQmhBQsWKG4/ObWOX1f79u3J2tpaFg4qLVy4UC6rn0cp+6uNq5Vz0IXTH5X2c4X7p8TPAMZr5fxMMVZjrIZiGKvNcwxjOLbGsbXJf36rWKcHqqmI14cffqhZl5+fr7Mw0PLlyzXbXLx4UWdhoH379mm24SJBugoD8X3VuNiQvgo+8b5MnDhRKjufPn1a5+1K2VddevbsqYqMjFTcfnI1cK4Orr106NBB9e9//1suK21/tXGRLq5+Pnv2bEXvJ+iG8Vq5n3cljtcYqzFWWyqM1coYw3RR4ljNMF7XNdtjawRbTBBXmj58+LAs/EOfN2+eXD537pzczhWY+UO1atUq+fI6YsQInS2v/P39VVu2bJF2VTz46Gp5xS15ufoyL61atdLZ8qpXr17yGPxY/Jj6amX2wgsvyH7s2LGjROvcnJwczTZK2dcZM2aodu7cqUpMTFQdPXpUWj/zL/CmTZsUtZ/l0e5GpKT9femll+Tzm5CQIIM0Pze3o0tKSlLUfkL5MF5jvFbS7zXGaozVSoWxGmO1ksZqhvF6lVkcWyPYYoK2b98uQZbSC0dqGUf1uOUsR/Y4uta9e3f5sGnLzc2VD4OHh4fKwcFBPjzJyckltrl27Zpq5MiR8uWQF75848aNEttwgCciIkIegx+LH5PP3uuDrn3kZdGiRZptlLKvY8eOVQUEBKhsbW1VtWvXll9cdaBFSftZ2T8IStnf4cOHywDPEXTO0Bo2bJjqxIkTittPKB/Ga4zXSvq9xliNsVqpMFZjrFbSWM0wXvuaxbF1Df6n8pOOAAAAAAAAAACgIiiQCwAAAAAAAACgRwi2AAAAAAAAAADoEYItAAAAAAAAAAB6hGALAAAAAAAAAIAeIdgCAAAAAAAAAKBHCLYAAAAAAAAAAOgRgi0AAAAAAAAAAHqEYAsAAAAAAAAAgB4h2AJQBUlJSVSjRg2KiYnB+wgAYKIwVgMAmAeM16AkCLaAWRs9erQEO8aPH1/mtgkTJshtvE3p7XmxsbEhHx8f6tOnD/34449UVFR0z+caOnRoiXX16tWjS5cuUcuWLcmU9OjRg6ZOnVrdLwMAQGCs1g1jNQCYGozXumG8hgeBYAuYPQ54LFu2jHJzczXr8vLyaOnSpVS/fv0y2/fv318CJBw5X79+PYWHh9OUKVNo0KBBVFBQcF/PbWVlRb6+vmRtba2XfQEAUCqM1QAA5gHjNYB+INgCZq9du3YSVFm1apVmHV/mPxRt27Yts72dnZ0ESOrWrSv3ff311+mPP/6QwMvixYt1PsesWbNoyZIlsp06M2bHjh1lUh15HV/fuHGjPLeDgwP17NmT0tLS5PFbtGhBLi4uNGLECMrJydE8vkqloo8++ogaNmwo9wkJCaEVK1ZUuN9fffUVNWnShOzt7SVD5/HHH9eckYiKiqIFCxZoXiu/ThYbG0sDBw6kWrVqyX1GjRpFV69eLRG1nzRpkixubm7k6elJb775pry+ez0vAADGaozVAGD+cGyNY2vQExWAGYuMjFQ98sgjqnnz5ql69eqlWc+XP/vsM7mNtym9vS4hISGqAQMG6LwtMzNT9eSTT6r69++vunTpkiz5+fmqxMREjkKoDh8+LNtt375drnfq1Em1a9cuVXR0tKpx48aqsLAwVd++feX6zp07VZ6enqq5c+dqHv/1119XNW/eXLVhwwZVfHy8atGiRSo7OzvVjh07dL6eAwcOqKysrFS//vqrKikpSR53wYIFclt6eroqNDRUNW7cOM1rLSgoUF28eFHl5eWlmjFjhurkyZNynz59+qjCw8M1j8uvs1atWqopU6aoTp06pfr5559Vjo6Oqm+//faezwsAgLEaYzUAmDccW+PYGvQHwRZQxB+EK1euSHCCgx8cBLC3t5d19xNsGT58uKpFixb3fC5t5QVbtmzZotlmzpw5so6DKGrPP/+8ql+/fnI5KytLXu/u3btLPPYzzzyjGjFihM7XsnLlSpWLi4sqIyND5+0cNOGAiba33npLAj7aUlJS5LXFxcVp7sfvQVFRkWabV199VfO+3Ot5AQB0wViNsRoAzAPGa4zXoD8oNAGK4OXlRRERETLVh4OIfJnX3Q++H0+50YfWrVtrLvNUG0dHR5kipL1u//79mqk9XGOGC/Vqu3Xrls5pUIy3DQgIkMfkGjS8PProo/I85Tl06BBt375dphCVFh8fT02bNpXLnTp1KvE+hIaG0qeffkqFhYUP9LwAAGoYqzFWA4B5wHiN8RqqDsEWUIyxY8dKrRH25Zdf3vf9T548SQ0aNNDLa+FOR2rqzkfaeJ26+5H6/7Vr10odmdL1ZXRxdnam6OhoqRGzadMmevvtt6WuzIEDB6TWii78PIMHD6YPP/ywzG1+fn6V2q8HeV4AAG0YqzFWA4B5wHiN8RqqBsEWUAzOsuBsENavX7/7uu+2bdvo2LFjNG3atHK3sbW1lewOfQsKCpKgSnJyMoWFhVX6ftwBqXfv3rLMnDlTgh28H8OGDdP5WrnY2cqVKykwMLDC7kl79+4tc50L4nLnpXs9LwDAvWCsxlgNAOYB4zXGa6gaBFtAMTgYwNkp6svlyc/Pp8uXL0swIjU1lTZs2EBz5syR1s9PP/10uffjIAV3GYqLi5MuPa6urnp53Zwt8vLLL0ugh7NPunbtShkZGbR7926Z8hMZGVnmPn/99RclJCRQ9+7dyd3dndatWyf3bdasmea17tu3T7oQ8WN4eHjQxIkT6bvvvpNOSK+88oqkh549e1baZvN69XuWkpJC06dPp+eff16yWD7//HOZRlSZ5wUAuBeM1RirAcA8YLzGeA1Vg2ALKAq3Vb4XDq7wtBnO0OCAAbdZXrhwoQQ1atYsvxv6uHHjZPpMhw4dKCsrS+qfcFBDH959913y9vaWoA8HMzhbRN2WWhe+ndtb8xQervfCmSdLly6l4OBguZ2DN7w/nDWTm5tLiYmJ8lr/+ecfevXVVyXzh4NOXH+Fz1po7zcHnPg+Dz/8sPyRffHFF+m5556r1PMCAFQGxmqM1QBgHjBeY7yGB1eDq+RW4f4AoCA9evSgNm3a0Pz586v7pQAAQDkwVgMAmAeM15at/NP4AAAAAAAAAABw3xBsAQAAAAAAAADQI0wjAgAAAAAAAADQI2S2AAAAAAAAAADoEYItAAAAAAAAAAB6hGALAAAAAAAAAIAeIdgCAAAAAAAAAKBHCLYAAAAAAAAAAOgRgi0AAAAAAAAAAHqEYAsAAAAAAAAAgB4h2AIAAAAAAAAAQPrz/xN1twZ+Tq7SAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "g= sns.relplot(\n", + " data=calculations_df_long,\n", + " x='run',\n", + " y='Value',\n", + " row='natoms_output',\n", + " col='ElasticConstant',\n", + " kind='line', # Use 'line' if you want line plots\n", + " marker='o',\n", + " facet_kws={'sharey': False, 'sharex': True},\n", + " height=2.5,\n", + " aspect=1.5\n", + ")\n", + "\n", + "g.set_axis_labels(\"MD time steps\", \"Elastic Constant Value (GPa)\")\n", + "g.set_titles(row_template='natoms = {row_name}', col_template='{col_name}')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "ce054a02", + "metadata": {}, + "source": [ + "### Number of atoms on x-axis" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "2a0ae347", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABFsAAAXRCAYAAABB/JICAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Qd4FFUXBuCPdBJSCCS0ACGETujSe+9NaQKCiII0RUVFfwsWFAsgXSx0QaWJoghI7713klBCIEBIIb3s/5wbdk0giQls3+99njG7s7O7kwnenT1z7jkFNBqNBkREREREREREpBd2+nkZIiIiIiIiIiJisIWIiIiIiIiISM+Y2UJEREREREREpEcMthARERERERER6RGDLUREREREREREesRgCxERERERERGRHjHYQkRERERERESkRwy2EBERERERERHpEYMtRERERERERER6xGALEeVLgQIFEBoayqNGRGTmOF4TEZk/jtXWi8EWeixDhw5VA8PIkSMfeWzUqFHqMdnm4e1lcXR0RLFixdCuXTv8+OOPSE9Pz/W94uLi8NZbbyEgIAAuLi7w8fFBy5Yt8ccff+i28ff3x/Tp0y3+rylBDO1xyrxs2LAhy3bbt29H3bp11fGQ4zJv3rxHXmvVqlWoWrUqnJ2d1c81a9Y8ss2cOXNQrlw59Tryejt37tTL75GcnIwvvvgCNWvWhKurK4oWLYomTZpgwYIFSElJUdvs2LED3bp1Q8mSJdXvuHbt2kdeZ/Xq1ejQoYN6vmxz7NgxvewfkS3heG0YHK//JeO6fE4HBQXBzc1NjevPPfccbty4YaCjT2R9OFYbhi2N1Zl99tln6vd89dVXc3zNESNGqG2s4TuUuWKwhR5b6dKlsWLFCiQkJOjWJSYmYvny5ShTpswj23fs2BHh4eFq0Pvrr7/QqlUrvPLKK+jatStSU1NzfB8J6MgX8VmzZuHcuXNqcHz66adx9+5dq/3rbd68WR0r7dK6dWvdYyEhIejcuTOaNWuGo0eP4p133sG4cePUB4DW3r170a9fPwwePBjHjx9XP/v27Yv9+/frtvn555/VAPzuu++q15HX69SpE65evfrEHwYSIPn888/x0ksvYc+ePThw4ABGjx6NmTNn4vTp07ogmnxgyN81J7KNfJDIaxHR4+N4bTgcr4H4+HgcOXIE7733nvopgfILFy6ge/fuBjzyRNaHY7Xh2MJYrXXw4EHMnz8fNWrUyPE15buV7LsEx8mANESPYciQIZoePXpogoKCNEuXLtWtX7ZsmVonj8k2D2//sH/++Ucj/wy/++67HN/L09NTs3Dhwhwfb9GihXqNzIvW7t27Nc2aNdO4uLho/Pz8NGPHjtXcv39f93jZsmU1H330kWbAgAEaNzc3TYkSJTQzZszI8voffPCBpnTp0honJyf1uLyGoYSEhKj9P3r0aI7bvPnmm5rKlStnWTdixAhNw4YNdff79u2r6dixY5ZtOnTooOnfv7/ufv369TUjR47Mso287ttvv53rPsr+yX7mZMqUKRo7OzvNkSNHHnksOTk5y/HP/Jpr1qx5ouNCRNnjeG0YHK9zd+DAATVuX7lyxUB/ASLrwrHaMGxtrI6NjdVUqFBBs2nTJvUd6ZVXXnnkOdevX9eUKlVKc+rUKfVdaNq0abnuHz0+ZrbQE3n++edV+pqWTAsaNmxYnp8vUWXJbpCrYDkpXrw4/vzzT8TGxmb7uDzXz88PH330kS5aLU6ePKmiwL1798aJEydUtHnXrl0YM2ZMlud/+eWXKvIrV+MmTpyI8ePHY9OmTeqxlStXYtq0afj2229x8eJFFQWWNOmcSKpgoUKFcl0mT578n8dFrgb6+vqqrA7Zh8wkst6+ffss6+T3PHTokC6NMKdtJBKujZAfPnz4kW3kvnabx7Vs2TK0bdsWtWvXfuQxmUImKeZEZHwcr7PieG3Y8To6Olqlp3t5eT32axDZIo7VWXGszt9YLdkuXbp0UdtnR8o3SFbOhAkTUK1aNb3/+6WsHB66T5Qv8j+rBCi08yF3796tphZt27Ytz69RuXJlFQzJiaTBDRw4EEWKFFGBmaZNm+KZZ55RgQjh7e0Ne3t7uLu7q8BM5iDKs88+q5urWKFCBcyYMQMtWrTA3Llz1VxKIa/z9ttvq9sVK1ZUv4MEWKSmjKT9yWvKgCWDmUyPql+/fo77Wq9evf+sKyL7mxMJxkydOlXtk52dHdatW6dSFhctWoRBgwapbW7evKlq3mQm92Uq1p07d1CiRIkct5H1QrZLS0vLdZvHJUEpqalDROaF43VWHK8NN17LlGL5XJXPYA8PD72/PpE141idFcfqvI/V8h1MLh7LNKKcTJkyBQ4ODmqaFBkegy30RKQ4k0RPJRggWXByW9blhzxPAjU5ad68OYKDg7Fv3z4VCNmyZQu++eYbTJo0Sc0Pz4lkbly6dElFgzO/l0R0ZW5mlSpV1LpGjRpleZ7c1xaK6tOnj7othbKk5ozM55SirjJIZadgwYIIDAzE45JjJ5k1mT9g7t27pwpiaYMt4uHjlZGBmHV9dts8vC4v2+SXPl6DiPSP43VWHK8NM15LhmX//v3VZ60UiiSi/OFYnRXH6ryN1deuXVO1MDdu3Ki7oJzddyP5DiUBGZ6rGwenEdETk2lDCxcuVAGX/Ewh0jp79qyq2p0bySqRIlNypUwGEZky9PHHH6vpMDmREz2psi2ZJtpFClpJdLh8+fK5vp92AJJCZefPn8fs2bPVYC+dliT4k13Vb32mOmbWsGFDtc9akmnzcPZJRESECgBJ9k9u22gzWeSDXLKBctvmcUl2kPxNicj8cLz+F8dr/Y/X8tkoBSPlgoZMx2VWC9Hj4Vj9L47VeRurJZAi5/HSAUm+E8giHZYkq19uS0a7HEvZRjL1tdtcuXIFr7/+uursSvrHzBZ6YpLxoQ16SF2Q/JAsFamtkjmbIy+k3ZpMm5FUZScnJ7XIIJJZnTp1VHXu/8o0kYyZh+/L1CYtCbJIDRVZZB6kPCb7LK+v71TH7Eg1c5kalDnz5vfff8+yjQSg5L0lKKXdRk50Mx9X2aZx48bqthwvGYxlm169eum2kfs9evTAk5C0caniLvv98NxS+ZslJSWxbguRiXC8/hfHa/2O19pAi1wc2Lp1qy74T0Qcq3lubfhz6zZt2qjvJw/X/5HvLW+99Za6yCpT1B6u5SLf3WS9bEsG8ATFdcmGPdxdKDo6Wi1a2XUjkgre4eHhqgL24cOHNZ9++qmmUKFCmq5du2pSU1NzfC+ppD1v3jzNoUOHVKXu9evXaypVqqRp3bq1bpt27dppunfvrl779u3bat3x48c1BQsW1IwaNUpVIL9w4YLmt99+04wZM0b3PKnA7eHhoap8nz9/XjNr1iyNvb29ZsOGDerxBQsWaL7//nvNyZMnNZcvX9a8++676jXv3LmjMQTpuiQdnc6cOaM5d+6c5ssvv9Q4Ojpqpk6dqtsmODhY4+rqqhk/frza7ocfflDbrFy5MksXJvk9Pv/8c83Zs2fVTwcHB82+fft026xYsUI9T54vr/Pqq6+qjkyhoaFPVDE9MTFRdYAqXLiwOp7Hjh1Tx+7nn3/W1KlTR1cNXqqly21Z5DXld5TbmTtX3L17V62Tv7lsI/ss9+XfERHlDcdrjteGHq9TUlLUZ7B0/ZPXkDFauyQlJfF/VSKO1Ty3NsK59cNy6kaUGbsRGRaDLfRYcmrlnFuwRduWWb70+/j4aNq2bav58ccfNWlpabm+1+TJkzWNGjXSeHt7qxbOAQEBmnHjxmUJeOzdu1dTo0YNjbOzc5bWz9J6UgIxEtSRQIJsI0GezAPMpEmTVDs3CWAUK1ZMM336dN3j0o64QYMGKiAjz5cWcJs3b9YYigRbqlSpovbF3d1dU7duXc2SJUse2W7btm2a2rVrq3bU/v7+mrlz5z6yza+//qqCUhJQkbZzq1atemSb2bNnq2MgryOD9fbt2/9zH//rA0H7ofDZZ5+pNuDyN5O/XZMmTdTvJyflYuvWrY+07JYl878bCXZlt4204yaivOF4bRgcr/8dr7WtVbNbZKwnIo7VWjy3Nty59cMYbDG9AvIfQ2TMEFkCmZ8o3Yq0HYvov0k9G5mPz7mdRGRMHK/zj+M1ERkbx+r841htvVggl4iIiIiIiIhIjxhsISIiIiIiIiLSI3YjIpsWGhpq6l2wOB988AG8vLxMvRtEZGM4Xucfx2siMjaO1fnHsdp6sWYLEREREREREZEecRoREREREREREZEeMdjymKSJU0xMjPpJRETmi+M1EZH541hNRNaGwZbHFBsbC09PT/WTiIjMF8drIiLzx7GaiKwNgy1ERERERERERHrEYAsRERERERERkaUHW5KSkkzxtkRERERERERE1hFs+fvvvzF06FCUL18ejo6OcHV1hbu7O1q0aIFPP/0UN27cMMZuEBERERERERFZdrBl7dq1qFSpEoYMGQI7OztMmDABq1evVsGXH374QQVbNm/ejICAAIwcORK3b9825O4QEZmNhORUJKem4+79JPUzPjnV1LtED/BvQ0TWzN/fHwUKFHhkGT16tK4r0IcffoiSJUuiYMGCaNmyJU6fPp3ray5cuDDb10xMTDTY78GxmojMnYMhX3zy5Mn46quv0KVLFxVseVjfvn3Vz7CwMHzzzTdYvHgxXn/9dUPuEhGRySWlpGHe9mAs2BOCmIRUeBR0wPONy2FUy/JwdrQ39e7ZNP5tiMjaHTx4EGlpabr7p06dQrt27dCnTx91/4svvsDUqVNVAKVixYr45JNP1OPnz59Xmek58fDwUNtk5uLiYpDfgWM1EcHWgy0HDhzI03alSpVSAzsRkbWTK3ESaPnmn4u6dRJw0d4f0SIArk4GHZqJfxsismE+Pj5Z7n/++edqqr9knEtWy/Tp0/Huu++id+/e6vFFixahWLFi+OmnnzBixIgcX1cyWYoXL56vGo6Z6zjGxMTk6Xn8HCUiS8FuRERERmRvZ6cyWrIj6x2yyQIk4+DfhohsTXJyMpYuXYphw4apYElISAhu3ryJ9u3b67ZxdnZWgZg9e/bk+lr3799H2bJl4efnh65du+Lo0aO5bv/ZZ5/B09NTt5QuXTpP+8yxmogshVEvn16/fh3r1q3D1atX1eCemaQrEhFZu9jEFJXJkh1ZL48XKeRs9P0i/m2IyPZIfcWoqCjVyEJIoEVIJktmcv/KlSs5vk7lypXVtKOgoCCVoSLlAZo0aYLjx4+jQoUK2T5n4sSJeO2113T35Xl5Cbjwc5SILIXRgi3//PMPunfvjnLlyqn5nNWrV0doaKhKV6xTp46xdoOIyKTcXRxVjZbsAi6yXh4n0+DfhohsjTSs6NSpkyqGm5lkuWQm5+sPr8usYcOGatGSQIuc38+cORMzZszI9jmSMSNLfnGsJiJLYbR8dYleS/FbKcIlxbJWrVqFa9euqbREbUEuIiJrdz8pBUMa+Wf7mBTJTU1PN/o+UYa09HT1N8gO/zZEZG0kU0W6gg4fPly3TltzRZvhohUREfFItktupDHGU089hYsX/61Ppi8cq4nIUhgt2HL27FnVAlo4ODggISEBhQoVwkcffYQpU6YYazeIiExG2ju/tfIEhjb2x9jWgSqTRcjPV9pUUN2IWBzXdAo6Oai/gfwt+LchImu3YMEC+Pr6qq6hWpKBLgGXTZs26dbJ1P/t27ejcePGeX5tyYQ5duwYSpQooff95lhNRJbCaNOI3NzcdBXHJVXx8uXLqFatmrp/584dY+0GEZFJyInn26tOYtPZCNxbchjfD6mHsa0rqLnnkhItGS1s+2x68jeQjlAvtyyPO/eTULSQM9I1Gv5tiMiqpKenq2CLXAiVi6BaMlXo1VdfxeTJk1WtFVnktqurK5599lndds8995zqJipFbsWkSZPUNCLZXmqvyNQhCbbMnj3boGP16FaBuBuXBM+Cjrh06z7HaiKyzWCLDMC7d+9G1apVVQRdphSdPHkSq1evzjLHk4jIGv2wKwTrjt+Ag10BvNmxMrxcndR6bTFcJzaHMxuSXfTHiRuY+c8l+BV2wQ9D65t6l4iI9EqmD0nDCulC9LA333xTZaCPGjUK9+7dQ4MGDbBx40a4u7vrtpHnylQhLSmy+9JLL6npR9JZqHbt2tixYwfq1zfc+KnNBL0WGY8uS4/ArkAB7H+nDeztcq4tQ0RkTAU0crnVCIKDg1VLuBo1aiA+Ph5vvPEGdu3ahcDAQEybNk21issLGbi//PJLHD58GOHh4VizZg169uz5yJSlt956S6U8SuReMmh++eUXlClTRj0uGTby/suXL1cfJm3atMGcOXNUq7q8kqi9fJhER0fDw8Mjn0eDiGzJnst3MPiHA0hL1+DDblUxtEn2dUHIMB5nvL54Kxbtpu1AQUd7nJrUgSfvREQG9rjn1smp6aj7ySbEJqbilxGNUL+ct0H3k4jIrGq2xMbGqmlD0vpZpgxJKqIEN06cOKEyW/IaaBFxcXGoWbMmZs2ale3j8j5NmzZVLei2bdumWs699957qiivlqRHSpBmxYoVKuAjQaCuXbsiLS1NL78vEZHWjagEjP3pqAq09KpdCkMaZ18cl8xLgE8huDrZIyElDcG375t6d4iIKAdODnZoVyWjeO9fp8J5nIjIdqYRSUBFWspJWqEk0UikeuXKlWjbtu1jvZ68liw5effdd9G5c2d88cUXunUBAQG62xItlzZ3S5Ys0e3D0qVLUbp0aZVS2aFDh8faLyKihyWmpOHlpYdxNy4ZVUt4YHKvoFxbZ5L5kDT0aiU9cDD0Hk5cj0aFYv+mzxMRkXnpWL04Vh8Nw9+nbuL9rlX5WUtEtpHZ8vbbb6vpOzt37sShQ4dUq+cxY8YY5L1kytD69etRsWJFFTSRCusyz3Tt2rW6bWT6UUpKCtq3b69bJwV7q1evjj179uT42jL1SNIbMy9ERDmR4PIHv53G8evR8HJ1xLeD66Kgkz0PmAUJKuWlfp4Mizb1rtATSkhOVVMN7t5PUj+lMxgRWY/mFX1UNuKN6ET1uUtEZBPBFgmwzJw5U7WLq1OnDn788UdcvHhRTd3Rt4iICPW6n3/+OTp27KiKefXq1Qu9e/dW9VuEZNg4OTmhcOHCWZ5brFgx9VhOpNq6zCPVLpIJQ0SUk58OXMXPh65B6vTNHFAbpb1dbe5gSY2tbt26qYC2ZPRkDnwLmUYqgfGiRYuqx6VzRW7BK8lqzO51DCXIL6NmAIMtli0pJQ3ztgej3qebUPeTzernt9uD1Xoisg4ujvZoVdlX3f7rJKcSEZGNBFukRou2MK0oUqSIqtly+/Ztg2S2iB49emD8+PGoVauWyqyReizz5s3L9blyIp9bev/EiRPVFCTtcu3aNb3vPxFZh8NX7uHDdafV7QkdKqNZBR/Yov+qsSWPN2nSRAXI/8v06dONnhauzWw5cyMGqWkZny9keRktc7Zdxjf/XERMQkY2i/yU+7KeGS6Ul39DzIqyDJ2qF1c//zqVUbqAiMjqa7bIybEUyNUWqNUGNWRd5qk4+ujoI1dHHRwcVHvpzKpUqaIK4YrixYsjOTlZtbLLnN0iWTGSfZMTZ2dntRAR5SYiNhGjlh1GSppGnfiNbPFvzShb8181tgYPHqx+hoaG5vo6Uuh86tSpOHjwIEqUKPGf7yvTPmXRetxpnwFF3eDmZI+45DRcvh2HSsVZt8XS2NvZYcGekGwfk/UjW5bHxNUnVdDFvkABdX4i2WjSQla62sp9+wfrMh7LuC01fbJs++BxWf/wthmv9ei2ctve7sm2lfij2r+c3vfB7/HIugfP1T7vkd9d7ts9eG3ttg/toy1lRcm/FQnSeRR0wPONy2FUy/JwduS0UHPTqpIvnB3scDUyHmfCY1CtpKepd4mIbJzBgy0SXJEaKg+vq127tu62fMDroxOQTA966qmncP78+SzrL1y4oOt4VLduXTg6OmLTpk3o27evWictpE+dOpWlqC4RUX6lpKVj9LIjuBWThAq+hfBln5os0veE4uPjMWDAAJUdI8HyvJBpn5MmTXrSt1ZfKKuV8sSBkEg1lYjBFssTm5iiy2h5mKyXGi5HrtzD+VuxRt83S5clMPMgAJVTYObhbTOCR49umxGw+ve2dn1GMOjfIJhu20zPyxwk+zeolPXx7IJkGfv36LbdapZUnW1m/HNJ9ztrs6LEiBYBcHUy+Gk05YObswNaVPTBxjO3sOHUTQZbiMjkDP4psXXrVr2+ntRkuXTp3w++kJAQNc/f29tbTVeaMGEC+vXrh+bNm6NVq1bYsGEDfv/9d9UGWki9lRdeeAGvv/66mtIkz3vjjTcQFBT02B2SiIjEp+vPqu417s4OqiBuIWeeiD8pmRIqWYcyPTSvZNrna6+9liWz5XHrbAVpgy3Xo/BMXb/Heg0yHXcXR5WNkF3ARdb7FHLGkEZlEZ+SBpl1kKbRIF2jUbfT0+U21P1/l4z7atv0TNtmfjz90W3lp2z/JNvKxSm1f+kPbfvwPqRn2vbB83S/xyO/04NtH6zPD+3rANY3XcPbzQljWgdi4Z7ss+4k02V0q0Cj7xf9t05BxVWwRaYSvd6+Eg8ZEZmUwb8JSPchfRfclSCKlvaEesiQIVi4cKEqiCv1WeTK5rhx41CpUiWsWrUKTZs21T1n2rRparqRZLYkJCSgTZs26rn29kwJJaLHs/rIdd2J+dR+tRDgU4iH8gmtW7cOW7ZswdGjR/P1PH1O+6zhl5GGziK5liktPV1N+9BmI2Qm6yUg8WzDjMxXeigwkymwk11gJi/bpucYlMocbMq0rS7Ylfn1sntd2Q9t0CnzNlkDWNpttfuR122LuDkhOj73rCjJmipSiNPLzU3rysXgaF8AlyLu4+KtWFQoxumfRGQ6Rr/sevr06SxThiTAUa1atTw/v2XLlv9Z9GrYsGFqyYnUj5EOSbIQET2pU2HRqu6DGNemAtpVLcaDqgcSaLl8+TK8vDIK1Wo9/fTTaNasmS5j0ZCql8oItsj8fymS6yBzHMhiFHRywLCm5dSX6EV7Q1l34z9op+bYwzZqsuRGiuLmlhUlWVNkfjwLOqJJYFFsO39bZbcw2EJEVh1s2blzp8o+kcKGomHDhmoOvjZgIh/sf//9N6fwEJFFioxLxoglh5GUmo5WlXzwapsKpt4lqyHd5IYPH55lnUz5lOxEaSltDOWKuKnpYPeTUnHp9n1ULv7kxdzJeK5FxuOFRQfxRvtKOPRuW8Qmpqovyanp6SxwSk+UFSX/hpwM39STHoMUp9cGW+QCCBGR1QZb5syZo+s4kbmOixSslYDLjBkzMHfuXAZbiMjiSKbDuOVHERaVgLJFXDG9X22b6dKhjxpbkZGRuHr1Km7cuKEe1xY3l0K4mZeHyXPLlStnlN9BFckt6YH9IZE4cT2awRYLM2/7ZVy4dR9L9l1B+2rFUaRQxnRhfkmmvGRFSdchwW5ElqVd1eJ4Z80pnA2PwZW7cShbxM3Uu0RENsrgIXnJaKlfv36WdX5+firY4u/vrwIxe/fuNfRuEBHp3VcbL2DXpTso6GiP+YPrwdOVaeUP19iSznPa7nOS5Si333//fV1NFrnfpUsXdb9///7qvtTdMifaui0yXYwsx83oRPx66Lq6PYbFTOkxSHtn6Tp06N12OPy/tuqn3GfbZ/MvcNwwwFvdluwWIiKrzWwJCwtDiRIldPcXLVqU5UqlXOG8e/euoXeDiEiv/jwZrq6aiy/71GBb4MeosTV06FC15Md/1ewyZN0WyWwhy/HdzmAkp6Wjvr83GgQUMfXukIXStnfWFsNlVpRl6Fi9BHZfuquCLSNbZGQoERFZXWaLu7u7Sh3X6t27N1xdXXX35TEPD86BJyLLceFWLN749bi6/VLzAHStUdLUu0QGVMMvo0CvpKSnSAsUMnt37ydh2f4r6vbo1mzRS2RrOlQrhgIFgOPXotRUXyIiqwy2NGjQAIsXL87xcWm5LNsQEVmC6IQUVRA3PjkNjcsXwZsdKpl6l8jAynq7wt3ZQRVBvnjrPo+3BfhxdwgSU9IRVMoTzSsUNfXuEJGR+bq7oF7Zwur2Bk4lIiJrDbbIHH2ZOjRhwgRERETo1svt119/HUuXLlXbEBGZu/R0DV77+RhC7sShlFdBzBxQm62AbYAUydVOJWLdFssIiC7ek5HVMqZ1oOp6SES2OZVIbDgVbupdISIbZfBgS6tWrTBz5kzVdUhqtxQuXFjVaZHbs2bNwvTp09G6dWtD7wYR0RObueUS/jkXAScHO8wbVFc3h5+sX9CDIrknwqJMvSv0HxbvCUVsUioqFiuEdlWK8XgR2aiO1TNqRB66cg8RsYmm3h0iskEGL5ArRo0ahW7dumHlypW4ePGiWlehQgU888wzKF26tDF2gYjoiWw5dwvT/7mgbn/as7ruyzfZBpmOIk6GxZh6VygXcUmpagqRGN0qkK3YiWyYZKDWLO2l6rb8ffoWBjcsa+pdIiIbY5Rgi5Cgyvjx4431dkREeiPThl5ZcQzSCEdO1vrUY5DYVoMt2iK5jvYGTwylx/DT/qu4F58C/yKu6BL0bydEIrJNnaoXV8EWmUrEYAsRGZtBzxb37t2b523j4uJw+vRpQ+4OEdFjXSkfseQQYhNTUbdsYbzXtSqPog0qW8QV7i4OSE5NV92oyPwkpqRh/s5gdfvlluVZT4mIVLBF7AuORGRcMo8IEVlPsOW5555Du3bt8Msvv+D+/ew7OJw5cwbvvPMOAgMDceTIEUPuDhFRvmg0Gry56gQu3LoPH3dnzBlYR9VrIdsjRVZ1U4muR5t6dygbvx6+jtuxSSjp6YJetf14jIgIZYu4oUoJD6Sla7DpzE0eESIyKoN+a5BASo8ePfD++++rwrjVqlVTwRep39K0aVMULVoUdevWxZUrV7Bp0yYMHjzYkLtDRJQv83cEY/2JcDjYFcDcgXVQzMOFR9CGaev0nAxjsMXcyNSuedsuq9sjWpRnUJSIdDo/yG75iy2giciaarY4OjpizJgxapGslZ07dyI0NBQJCQmoWbOmquEi3YqkOxERkTnZfekOpmw4p25/0K0q6vlznLJ1/xbJZbDF3Kw9GoawqAQULeSMfk+xphIR/atTUHF8vemC+lyX1vCeBR15eIjIKIyWD1+nTh288sormDZtGubNm4dPPvkETz/9NAMtRGR2rt+Lx5ifjiBdAzxT1w+D2MGAANQo5aWOw7nwWFW7hcyDTA+Y+yCr5cVm5eDiaG/qXSIya/7+/mpq5MPL6NGjdVNoP/zwQ5QsWRIFCxZEy5Yt81RXcdWqVahatSqcnZ3VzzVr1sAcBPq6I9C3EFLSNKqzIBGRsbD4ABHRQ0U2Ry49rDqaSCbDJz2rq5NQotLeBdUV0eQ0Fsk1J3+eDEfwnTj1txnIwCjRfzp48CDCw8N1i0zlF3369FE/v/jiC0ydOhWzZs1S2xYvXlyVAYiNjc21KUa/fv1USYDjx4+rn3379sX+/fvNqlDuXydZt4WIjIfBFiKiB+Rq3rtrTuFUWAy83Zwwb3BdXiWn7IvkciqRWUhP12D21kvq9rAm5VDI2aCzo4msgo+PjwqgaJc//vgD5cuXR4sWLdTn4PTp0/Huu++id+/eqF69OhYtWoT4+Hj89NNPOb6mPEcCMhMnTkTlypXVzzZt2qj15qDjg2DL9gu3VZdBIiJjYLCFiOiBJfuuYNWR67ArAMwaUBulvAry2FAW1R8EW06wI5FZ+OdcBM7djFVBlqGN/U29O0QWJzk5GUuXLsWwYcNUQDkkJAQ3b95E+/btddvItCAJxOzZsyfXzJbMzxEdOnTI9TlJSUmIiYnJshhK1RIeKOPtiqTUdGw9H2Gw9yEiyozBFiIiAIdCI/HR72fUsXi7U2U0DizK40KPqPGgI9EpZraYnFyBn/Ugq0XqKnm6suglUX6tXbsWUVFRGDp0qLovgRZRrFixLNvJfe1j2ZHH8vuczz77DJ6enrqldGnDFbeWQJIUyhXsSkREVh1sSUxMNMXbEhFl61ZMIl5edgSp6Rp0rVECLzYL4JGibGmnEZ27GYOk1DQeJRPafekujl+LgoujHYY3K8e/BdFj+OGHH9CpUydVDDezh2uVSXDzv+qX5fc5MtUoOjpat1y7ds2gf8NO1Uuon1vPRaj6bEREVhNsSU9Px8cff4xSpUqhUKFCCA4OVuvfe+89NdATEZmCdJUZtewIbscmoVIxd3zxTA0WxKUc+RUuCC9XR9XV4sLN+zxSJjRzy0X1s/9TZVTLZyLKnytXrmDz5s0YPny4bp3UcBEPZ6REREQ8krmSmTwvv8+R6UkeHh5ZFkOq6eeJkp4uiE9Ow44Ltw36XkRERg22SKvnhQsXqgrnTk5OuvVBQUH4/vvv+dcgIpP46I/TOHzlHtxdHPDt4LpwdWKBTcpbkdwTYVE8VCZyMDQS+0Mi4WhfACNaMBON6HEsWLAAvr6+6NKli25duXLlVOBE26FIW9dl+/btaNy4cY6v1ahRoyzPERs3bsz1OaYYvzs8KJS74RS7EhGRFQVbFi9ejPnz52PgwIGwt7fXra9RowbOnTtnrN0gItL55dA1LN13FZLl/E3/WvAv6sajQ/9JG2xh3RbTmbUlo1bLM3X9UMKThayJHifjXIItQ4YMgYODQ5aAxKuvvorJkydjzZo1OHXqlKrn4urqimeffVa33XPPPaemAWm98sorKrgyZcoUdV4vPyVrRl7LnGinEm06e0tlthIRGZLRLuGGhYUhMDAw28E+JSXFWLtBRKScuB6F/609pW6/2qYiWlfOOdWZKDNdZgs7EpnEyevRqn2rdA0b2aI8/3ESPQYJhFy9elV1IXrYm2++iYSEBIwaNQr37t1DgwYNVCDF3d1dt408187u32u2ksGyYsUK/O9//1MlAqSV9M8//6yea07qli0MH3dnNXV49+U7aFXJ19S7RERWzGjBlmrVqmHnzp0oW7ZslvW//vorateubazdICLC3ftJGLnksLqq1bZKMYxt/WggmCgnQQ86El24FauKLLo4/putSYY3+0EHoh61SqFsEWajET0OadMsBWyzI9ktH374oVpysm3btkfWPfPMM2oxZ/Z2BdChWjGV1brh5E0GW4jIOoItH3zwAQYPHqwyXCSbZfXq1Th//ryaXvTHH38YazeIyMalpqVj7PKjuBGdiICibpjarybs5BI5UR6V8iqIwq6OuBefgvM3Y1GztBePnZFIgGvD6YxaC6NaMquFiB5vKpEEWzaeuYlP06rDwd4kzVmJyAYYbXTp1q2bSif8888/VcT8/fffx9mzZ/H777+jXbt2xtoNIrJxUzacw57Ld+HqZK8K4nq4OJp6l8gSi+T6ZQRYToZFm3p3bMqcB1ktHasVR4Vi/05pICLKqwblvHUB8wMhkTxwRGQwRm270aFDB7UQEZnCuuM38N3OEHX7qz41+WWNHltQKQ/VOlTqh5BxXLkbp/4fFmM49Y+IHpNksrSrWgy/HLqOv07dROPAojyWRGQQzJsjIptwNjwGb608oW5LUc3OQRkdCYgeR1ApZrYY29xtl5GuAVpW8kH1B0WKiYiepCuRTEtMl4GFiMiSgy1SsVxaPue0EBEZSnR8CkYuPYyElDQ0q1AUEzpU4sEmvRbJJcO6EZWAVUeuq9ssaE1ET6pxYBG4uziorkSHr97jASUiy55GtGbNmiz3pd3z0aNHsWjRIkyaNMlYu0FENkauWL3681FcuRsPv8IFMaN/bdWNgOhJlPR0QRE3J9yNS8a5m7GoxSK5BjV/RzBS0jRoGOCNumW9DftmRGT1nB3sVTfCNUfD8NfJm3jKn+MKEVlwsKVHjx6PrJP2cNISWgrnvvDCC8baFSKyIdM3X8DW87fh7GCHeYPqorCbk6l3iaykSK5MZdmu6rZEMdhiQHLlefmBq+r2mFYVDPlWRGRDOlYvroItf5++ife6VlHjOhGRVdVsadCgATZv3mzq3SAiK7Tx9E3M2JLRveTzp4NY54H0qsaDqUTsSGRYP+wKQVJqugpoNQksYuB3IyJb0aKij+pMGBaVgBMsdk5E1hZsSUhIwMyZM+Hn52fK3SAiK3T59n289stxdXtoY3/0qs1xhvRLW6SVJ+mGExWfjCV7Q9XtMa0CeeWZiPTGxdEerSr5qtvSlYiIyGKnERUuXDjLSZJGo0FsbCxcXV2xdOlSY+0GEdmA+0mpGLHksPpZ398b73apYupdIivObLkYcV8VyZUTd9KvhXtCEZechiolPNCmSsaXIiIifU4lWn8yHH+dCsdbHSsxoEtElhlsmTZtWpYBTLoT+fj4qGlEEoghItIHCeS+8ctxXIq4j2Iezpg1sDYc7U0+Y5KsUHEPFxQt5IQ795NxJjwGdcrws0yfJFi6YHdGVsvoVuX5JYiI9K5VZV9V002K6J8Nj0XVkh48ykRkecGWoUOHGuutiMiGzd1+GRtO34SjfQHMHVQXvu4upt4lslJyASGolKcqwHwqLJrBFj1buu8KohNSEODjhk7VS+j75YmIUMjZAc0r+mDTmVvYcCqcwRYispxgy4kTJ/K8bY0aNQy5K0RkA3ZcuI2v/j6vbk/qXp1ffsngtMEW1m3RL5mW9f3OYHV7VMtAtmsnIoPpVL24CrZI3ZbX2lfikSYiywi21KpVS135k7T+3Mg2aWlphtwVIrJy1yLjMXb5UaRrgH71SmNA/dKm3iWyAUF+XuqnZLaQ/qw4cFVNz/IrXBA9apXkoSUig2lTpZjKhpX6WzIFOdC3EI82EemFQQsZhISEIDg4WP3MbZFtiIgeV0JyGl5aclhNOajp54lJPaqxvoMZ2LFjB7p164aSJUuqv8fatWuzPL569Wp06NABRYsWVY8fO3Ysy+ORkZEYO3YsKlWqpIqplylTBuPGjUN0dLRZZbaIC7di1b9DenLJqen4dkfGecHIFuVZc4mIDMqzoCMaly+qbstUIiIii8hsKVu2rCFfnohIZc5NXH0CZ8NjUMTNSdVpYVcY8xAXF4eaNWvi+eefx9NPP53t402aNEGfPn3w4osvPvL4jRs31PLVV1+hatWquHLlCkaOHKnWrVy5EuZAijD7uDvjdmySKpJbtyyL5D6pNUevIzw6Eb7uznimLlu2E5HhdQ4qju0XbuPPkzcxpnUFHnIisqwCuVpnzpzB1atXkZycnGV99+7djb0rRGQlrWHXHruhajrMHlgHJb0KmnqX6IFOnTqpJSeDBw9WP0NDMzrOPKx69epYtWqV7n758uXx6aefYtCgQUhNTYWDQ/YfYUlJSWrRiomJMXiR3C3nInDyehSDLU8oNS0dc7ZdVrdfah7AwCkRGUW7qsXxzppTKmh+9W48yhRx5ZEnIssJtshUoV69euHkyZNZ6rho20GzZgsR5df+4Lv4ZP1ZdfudzlXQMKAID6KVkylEHh4eOQZaxGeffYZJkyYZbZ90wZYwwwV1bMX6k+GqBWthV0c826CMqXeHiGyEt5sTGpTzxp7Ld/HXqXCMaFHe1LtERFbAoDVbMnvllVdQrlw53Lp1S829P336tJrPX69ePWzbtk1vNQCkxbSsz7w0bNgwyzY3b95UV1SLFy8ONzc31KlTx2xS0okob8KjEzD6pyNIS9eoAprDmvjz0Fm5u3fv4uOPP8aIESNy3W7ixIkqKKNdrl27ZpS6LSfDogz6PtYuPV2DWVsuqdsvNC0HVyejJ98SkY13JRLSlYiIyKKCLXv37sVHH30EHx8f2NnZqaVp06bqCqQUPMxvDYBZs2bluE3Hjh0RHh6uW/78888sj0ug5fz581i3bp3KtOnduzf69euHo0ePPtHvSETGkZSahpeXHlHdSioXd8fnvWuwIK6Vk6lAXbp0UbVbPvjgg1y3dXZ2VtkvmRdDCvLLCLZIF4v45FSDvpc123jmluoG4u7sgMGNGDwlIuPqUK04JOH+2LUo3IhK4OEnIssJtsg0oUKFMlqpSecJKXCoLaIrgY+8kvn/n3zyiQqQ5HaiLVkr2sXb2/uRwI90uKhfvz4CAgLwv//9D15eXjhy5Mhj/35EZDwfrjutToakg8D8wfVQ0Mmeh9+KxcbGqiC6fIasWbMGjo6OMCfFPFxUMVdpO37mBqcSPQ6ZWjx7a0ZWy5DG/ur/bSIiY/L1cEHdMhlFzjcwu4WILCnYIoUOT5w4oW43aNAAX3zxBXbv3q2yXSTgoU8yLcnX1xcVK1ZUHS4iIiKyPC4ZNT///LNqK5qeno4VK1aoYootW7bM8TXlcbmymnkhIuNbfuAqlh+4pq4+fdO/FovYWTkZa9u3bw8nJyeVjeji4gJzVONBdsvJMPNpS21JpAuIHLuCjvYY1rScqXeHiGxUp6AS6ieDLURkUcEWyR6RwIaQzBRp4dmsWTM1xWfGjBl6ex/JfFm2bBm2bNmCr7/+GgcPHkTr1q2zdKaQQIt0sihSpIjKgpH5/3K1VDpd5ESmO3l6euqW0qVL622fiShvjl69hw9+O61uv9G+ElpW8uWhM2P379/HsWPH1CJCQkLUbelIJyTgLfelS52QLEe5L3W1tBktEmiR6aM//PCDCrzIY7KYW1H16tq6LdcZbHmcrBZtrZaBDcqoQpVERKbQ8UHdloNXIhERm8g/AhE9EYNXn6tVqxaGDx+OgQMHonDhjNQ8yWSRk2s50ZZ12o5E+iC1VzJn00gBXpmqtH79et3UIwn83Lt3D5s3b1ZTmqTIbp8+fbBz504EBQXlWHDxtdde092Xk34GXIiM53ZskqrTkpyWjg7VimFUS3YKMHeHDh1Cq1atdPe1Y+iQIUOwcOFClany/PPP6x7v37+/+ik1WT788EMcPnwY+/fvV+sCAwOzvLYEbvz9zaeuBzNbHt/+kEgcunIPTvZ2eLG5fjNdiYjyo5RXQdT088Tx69HYePoWBjUsywNIROYbbJEpQxLcmDBhgmr9/MILL6BNmzbqsYdrqRhCiRIlVLDl4sWL6v7ly5dVcd1Tp06hWrVqap0U3JVAy+zZszFv3rxsX0cyYGQhIuNLSUtXnYduxiSivI8bvupTkwVxLYBMzZSshZxI9zhZHvf55pjZcun2fcQlpcLNmZ108kpbq6VPPT9V/4aIyJQ6Vi+hgi0ylYjBFiIy62lE3377rUr5nj9/vvopKeFyNVJqtWhTyQ3dKlTafkrQRcTHx6uf0g0pM3t7e900JyIyL5P/PIsDIZEo5OyAbwfXg7sLi2eSefF1d0FxDxdIbOhMOGt65ZUUut558Q7s7QpgZAtmqxEZQ1hYGAYNGqSm07u6uqosdMkk1Lp165YKhJcsWVI9LgXKtRctcyLZipKp/vCSmJhosS2g9wbfxb24ZFPvDhFZMKPUbJGChtJuWeqoXLp0Sd2W+fcynahDhw745Zdf9FIDQB574403VLeh0NBQVSi3W7duaqqQZNWIypUrq3R0qdNy4MABlekitV02bdqEnj17GuwYENHjWXs0DAt2h6rbX/etiUDfjK5mROaa3XKCdVvyTFurpWetUijt7WqoPw0RPSDT6Js0aaK6uv31119qWr+cB0tXTiHZhHI+HBwcjN9++w1Hjx5VGeJt27ZV9bNy4+HhgfDw8CyLuRY1z41/UTdULu6OtHQNNp25ZerdISILZrQCuVrlypXDxx9/rIIh0gVI5vQPGDAgz8+X7WvXrq0WbQ0Auf3++++r7JSTJ0+iR48eqhOR1AWQnxJ8cXd3V9vLh4sU5fXx8VGBmBo1amDx4sVYtGgROnfubLDfm4jy7/SNaLy9OqOL2ZhWgehQLeNqE5E50tZtOcWORHly7mYMNp+9pTqLjWrFrBYiY5gyZYqqObhgwQLUr19fZZvL9H5tkwjJYNm3bx/mzp2Lp556CpUqVcKcOXPUBc3ly5fn+tqSyVK8ePEsS27MudNn5wddif46FW7qXSEiC2aSSeVbt25Vg/zq1avh4OCg2jPn1X/N4f/777//8zUqVKiAVatW5fk9icj4ouKTMXLpYSSmpKNFRR+Mb1eRfwYya0G6zJYoU++KRZi99bLuS015H2asERmDFCaXrHJpDLF9+3aUKlUKo0aN0p2La7t3Zs5IkYuZTk5O2LVrl2p6kRMJyEgWjHSLk6lJcnFVe3E0p06fkyZNgrlOJZq66QJ2XbqDmMQUeHD6MhGZc2aLTPOROi0ydUgi6NL6WSLlkmKYU1FaIrJNkro7dvlRXItMQBlvV3zTv5aq6UBkCdOIgu/E4X5Sqql3x6wF376PP07cULdHt8zaaYqIDPj/XnCwylqRC49ygXLkyJEYN26cyvLWTreXgIl04ZQpR8nJyfj8889V3UU5Z8+JPE/bZU4yYCRYI9OVcqv1Iu8RHR2tW6TGormoUMxdFeRPSdNgy9kIU+8OEVkog2e2/PTTTyqLRbJZihUrhueee051JHq4jScRkdbXG8+ropkujnaYN6guvFydeHDI7Pm4O6OEpwvCoxNxOiwaDQKKmHqXzNbcbZdVMeG2VXxRtaSHqXeHyGZIM4h69eph8uTJ6r5knpw+fVoFYOQcXabbS/a3nKtL11DJapF6LZ06dcr1dRs2bKgWLQm01KlTBzNnzsSMGTMsstNnp+olMGvrJTWVqGftUqbeHSKyQAbPbJFq5oUKFcLatWtVxFpSBhloIaKcbDgVjjnbMqYXTHm6Br+IkUVOJTrJui05un4vHmuOhqnbo1vxwguRMUl3zqpVq2ZZV6VKlSwdQuvWrauaT0RFRalslg0bNqjunlJ3Ma+k66fUfPmvLkbmrOODrkTbzt9GHLMVicgcgy3Xr1/HmjVr0LVr10faLRMRZXYpIhav/3Jc3X6haTn0qMUrSWSZwRYWyc3Zt9uDkZquQdPAoqhdprDR/jZElJFxcv78+SyH4sKFC2rq0MM8PT1VQwkJmEiDCmlAkVdSX1ECNhLcsVTVSnqoqcxJqekq4EJElF8Gj374+voa+i2IyArEJqbgpSWHEZechoYB3pjYqbKpd4ko36o/6Eh0gpkt2YqIScTPhzLqMjCrhcj4xo8fr7oNyTSiS5cuqen+8+fPx+jRo3Xb/Prrr9i2bZuu/XO7du1UO+j27dvrtpEpR1JzRUsK3UoNGHmOBFlkGpL8lJowlkq6K0mhXMGuRERkMd2IiIgyS0/X4LVfjiP4dpyqeTHr2TpwsGcmHFluZkvInTgVQHRnB4ssvtsZjOTUdNQtW1gFVYnIuGRqj2ScS6BEGlfI1KDp06dj4MCBum1k6tBrr72GW7duqcwUCay89957WV5Hph1lzliXKUcvvfSSKqQrGTFSC2bHjh2qvbQlk6lE3+4IxtZzEUhMSYOLo72pd4mILEgBTW59lClHMTEx6sNEqqd7eLC4H9GTmPnPRXy96QKc7O3wy8hGqFXaiweULHa8bvzZP7gRnYgVLzVEQxbJ1YmMS0bTKVsQn5yGBc8/hVaVmPlKRKYbq/N6MajJlC2q8Pl3z9VDu6rFTL1LRGRBeOmYiExq6/kITN18Qd3+uGc1BlrI4gU9mErEui1ZLdgdogIt1Ut5oGVFH5P8bYiI8sPOrgA6VONUIiIy82BLQECAqmT+MEk7lMeIyPZcuRuHV5YfVS1gn21QBv2eKmPqXSLS21SiE9ejeTQfiElMwcI9oer26JaBqhYCEZEl0NZt2XzmlpoGSURkdsGW0NBQpKWlPbI+KSkJYWEZLSCJyHbEJ6dixJLDiElMRe0yXvigW9ZWlESWKsgvYxocM1v+tWTvFcQmpiLQt5DuKjERkSWo5++NooWc1fnKnst3TL07RGRBDF4gd926dbrbUqVc5mJqSfDln3/+gb+/v6F3g4jMiJSKemvVSZy7GatOYOYOrAtnBxadI+vKbAm+E6cyOjxsvEiuBFZ/2BWibo9uVV6l5RMRWQp7NZWoGJbtv4oNp26iJetNEZG5BFukVZyQlOEhQ4ZkeczR0VEFWr7++mtD7wYRmRH54vX78RtwsCuAOQProLini6l3iUhvvN2cUMqrIMKiEnA6LAaNyhex6aO7/MA1VRy3jLcrutUoaerdISLKt07VS6hgy8Yzt/BJz3R2TCQi85hGlJ6erpYyZcogIiJCd18WmUJ0/vx5dO3a1dC7QURmQlJwP/vrnLr9vy5VUL8c27+S9Wa3nAyLgi1LSk3D/B2X1e2XW5bnFxQiskgNArzh5eqoAscHQiNNvTtEZCGMVrMlJCQERYsWNdbbEZEZkiv9Y346irR0DXrXLoUhjTmFkKy7I9HJsBjYspWHr+NWTBKKe7igd51Spt4dIqLH4mhvh3ZVMto+y1QiIiKzmEaUmdRnkUWb4ZLZjz/+aMxdISIjS0xJw8tLD6urQtVKemBy7yB2JCHrz2y5bruZLSlp6Zi7LSOrZUSLANZlIiKL1imoOH49fF0FWz7sVo31p4jIfDJbJk2ahPbt26tgy507d3Dv3r0sCxFZd0Hc9387pVrhShruvEF14eLIgrhk/cGW0LvxiE5IgS1ad+wGrt9LQBE3J/RnW3cisnBNAovC3dkBEbFJOHKV312IyIwyW+bNm4eFCxdi8ODBxnpLIjITUlTul0PXIU1IZg6ojdLerqbeJSKDKuzmBL/CBVWw4XRYNBoH2tY02vR0DeZsu6RuD28WgIJODK4SkWWTroltqvhi7bEb+OvUTdUSmojILDJbkpOT0bhxY2O9HRGZicNX7mHS76fV7QkdKqNZBR9T7xKRUdTQ1W2JtrkjvuH0TVy+HQcPFwcMaljG1LtDRKQXHauXUD9lKpFk7RIRmUWwZfjw4fjpp5+M9XZEZAYiYhJVnZaUNA06BxXHyBYBpt4lIqOp/mAq0QkbC7bIF5CZWzKyWoY2KQd3F0dT7xIRkV60qOiDgo72quC/LQbSichMpxElJiZi/vz52Lx5M2rUqAFHx6wnX1OnTjXWrhCRESSnpmPUsiNqbnMF30L44pmaLIhLNqVGKS/185SNnZBvPR+Bs+ExcHOyx/PsOEZEVkSmRLaq7IM/T95UU4lq+GWM80REJg22nDhxArVq1VK3T506leWxAgUKGGs3iMhIPl1/Boeu3FPF5L4dXBeFnI3a/IzI5KqX8lA/r0iR3PgUeLo62lRWy6CGZVXtGiIia9KpeomMYMvJcLzZoRK/xxBRjoz27Wfr1q3GeisiMrFVh69j0d4r6va0frUQ4FPI1LtEZHRerk4o4+2Kq5HxOHUjWnWysHZ7L9/F0atRcHawwwvNypl6d4iI9K5VZV84OdipbnPnbsaiSomMwDoRkclqthCRbZApE++sOaluj2tTAW2rFjP1LhGZvAW0tD23BbO2ZmS19H+qNHzdXUy9O0REeieZus0fFPuXqURERDkxal7/wYMH8euvv+Lq1auqO1Fmq1evNuauEJEBRMYlY8SSw0hKTUfryr54tU0FHmeyaUF+nlh/Mtwm6rZI57E9l+/Cwa4AXmpR3tS7Q0RkMJ2qF8fms7ew4VQ4XmtXkUeaiEyb2bJixQo0adIEZ86cwZo1a5CSkqJub9myBZ6eGVf+iMhypaalY+zyI6pCv38RVzV9yM6O9ZjItukyW8KiYO1mP8hqebqOH0p5FTT17hARGUzbKsVUYPnCrfu4fPs+jzQRmTbYMnnyZEybNg1//PEHnJyc8M033+Ds2bPo27cvypQpY6zdICID+XLjeey+dBeuTvb4dnA9eBa0/mKgRP+lesmMYMu1yARExWfN6LQmkrmz5VwEJL76cktmtRCRdZOC540f1OHawKlERGTqYMvly5fRpUsXddvZ2RlxcXGqevf48eNVS2gislzrT4Tj2+3B6vYXz9RApeLupt4lIrM5IS9bxFXdPmnFU4nmbMvIaulaoyT8i7qZeneIiAyuc/Xi6uefJ8N5tInItMEWb29vxMbGqtulSpXStX+OiopCfHy8sXaDiPTs/M1YTFh5XN1+qXmA+rJFRI9OJbLWYMuliFhdkcjRrQJNvTtEREbRrmoxlc13+kYMrt7ldxkiMmGwpVmzZti0aZO6LVOHXnnlFbz44osYMGAA2rRpY6zdICI9ik5IwYglhxCfnIYmgUXwZodKPL5EOQVbrLQj0Zytl6HRAO2rFmNWGxHZjCKFnNGgXBF1e8NpZrcQkQm7Ec2aNQuJiYnq9sSJE+Ho6Ihdu3ahd+/eeO+994y1G0SkJ+npGrz28zGE3o1XxTBnDqgDB3t2kyfKriORtWa2yNXc347fULfHtGZWCxHZlk5BxbE3+K7K7nupOetVEZGJgi0yjUjLzs4Ob775plqIyDLN2HIR/5yLgJODHeYNqgtvNydT7xKRWar+ILPl+r0E3ItLRmEr+n9l3o7LSEvXoHlFH9Tw8zL17hARGVWHasXx/m+ncfRqFMKjE1DCk53YiOhfRrsMbW9vj4iIiEfW3717Vz1GRJbjn7O3MH3zRXV7cq8g3ZV7osx27NiBbt26oWTJkqog+tq1a7M8vnr1anTo0AFFixZVjx87duyRA5iUlISxY8eqbdzc3NC9e3dcv37dog60h4sjyj0oGmtN2S03oxOx8lDG32IMa7UQkQ0q5uGCemULq9t/sysREZkq2KKRCd3ZkBNpaQVNRJYh5E4cXv0540vx4IZl8UxdP1PvEpkp6TpXs2ZNNY00p8ebNGmCzz//PMfXePXVV7FmzRqsWLFCTT29f/8+unbtirS0NFhidos1BVvm7whGclo66pfzVgsRWYawsDAMGjQIRYoUgaurK2rVqoXDhw/rHr916xaGDh2qAuXyeMeOHXHxYsYFltysWrUKVatWVV1H5aeM3bago7YrEYMtRGTsaUQzZsxQP+Wq5ffff49ChQrpHpOTZbnyWblyZUPvBhHpQVxSKl5afAixianqSs57XavyuFKOOnXqpJacDB48WP0MDQ3N9vHo6Gj88MMPWLJkCdq2bavWLV26FKVLl8bmzZtVVkxOQXxZtGJiYkz+V6pRyhO/H79hNUVy79xPwk8HrqjbzGohshz37t1TQe5WrVrhr7/+gq+vLy5fvgwvLy/dxdGePXuq2oq//fYbPDw8MHXqVDUGnzlzRmUYZmfv3r3o168fPv74Y/Tq1UsFWqQhhgTJGzRoAGsPtnyy/iwOhkbidmwSfNydTb1LRGQrwZZp06bpBu958+ZlmTIkGS3+/v5qPRGZN/l/WFo8X4y4D193Z8wZWEfVayEyFLnSmpKSgvbt2+vWyZXW6tWrY8+ePTkGWz777DNMmjTJrP4w1pbZ8uOuECSmpKOmnyeaVShq6t0hojyaMmWKClgvWLBAt07OxbUkg2Xfvn04deoUqlWrptbNmTNHBWWWL1+O4cOHZ/u606dPR7t27VQTDCE/t2/frtbL8ywlMP44/Aq7ooafJ05cj8bGMzcxsEFZU+8SEZkJg39TCgkJUUuLFi1w/Phx3X1Zzp8/j7///tvqI95E1uDbHcH48+RNONoXwNxBdeDr4WLqXSIrd/PmTRWUL1w4Yz68VrFixdRjOZGTfMmK0S7Xrl2DqVUv5aF+hkUl4O79f79cWKLo+BQs3puR1TK6VaDKXCUiy7Bu3TrUq1cPffr0UQGU2rVr47vvvtM9rg1+uLj8+xkvF0plLJYslZxIZkvmwLiQgLgExnMigXFPT0/dIkEgS59KtIFTiYgoE6Ndlt66dWuWE2aZQiTFECWdkYjM266Ld/DFhnPq9vvdqqFuWdZnINNmWeX2BV/qBUjqe+bF1NxdHBFgJUVyF+0Nxf2kVFQq5o62VYqZeneIKB+Cg4Mxd+5cVKhQQV3wHDlyJMaNG4fFixerx2Vqf9myZVXQWs7Rk5OTVV0tCXCHh4fn+LryuATCLT0w/rg6VS+hfu69fBfR8cmm3h0isrVgixQ5lLn32kBL8+bNUadOHRXF3rZtm7F2g4jy6VpkPMYuP4J0DdCnrh8GNSjDY0hGUbx4cXWi/3BQXjrbPXxSbwm0XbtOWXCwReo2/bg7RN0e3ToQdnbMaiGyJOnp6er8e/LkySqrZcSIEXjxxRdVAEZIrRYpdHvhwgV4e3urArlyni71t/6re+jDQXBLDIw/Luk4166Kr8r8dXG0VxmMyanpiE9ONfWuEZEtBFt+/fVX1ZVC/P7776og4rlz51QQ5t133zXWbhBRPiSmpGHk0sO4F5+CoFKe+LhndU4ZIKOpW7euOvHftGmTbp1cWZVaAo0bN7a4v4T8PyRkXr+l+mn/VUTFp6gvFl2CMq7kEpHlKFGihOoUlFmVKlVw9erVLGOvZJ9HRUWpMXfDhg24e/cuypUrl2tw/OEsFksNjD+uqf1qqfH9qcmbUfeTzaj36SZ8uz0YSSmW1T2PiCww2CKDtAzE4s8//1RzRStWrIgXXngBJ0+eNNZuEFEeyRWpd9acxOkbMfB2c8K8wXXV1RqivJI2zXLCLouQWl1yW3tSHxkZqe5LhwshdbzkvvaEXebwy2fE66+/jn/++QdHjx5V7UqDgoJ03YksMdhiqZktEnydvzNY3X65ZXnYM6uFyOJIJyIZazOTLBaZOvQwGYN9fHxU0dxDhw6hR48eOb5uo0aNsgTGxcaNGy0yMP44EpJT8d3OYMzccgkxCRnZLPLzm38uYs62y8xwIbJRRgu2SGRbTqhlCpFEyLUnyvHx8f+ZlkhExicFMFcfCYN8n5o1oDZKeRXkn4HyRU7OJU1dFvHaa6+p2++//76uUKPc79Kli7rfv39/dT9zhzrpaCdtSKWFqHxJkJR2yY60xM+NaqU8IRn1N6ITVetkS/ProWuqramMBb1qlzL17hDRYxg/frzqNiTTiC5duoSffvoJ8+fPx+jRo7Nko8vUIanvIu2fpcuQjMOZC+A+99xzus5D4pVXXlHBFel2JJnr8nPz5s0qg90W2NvZYeGe0GwfW7AnBA527N5IZIsM3vpZ6/nnn1cny5K+KPM3ZeAW+/fvV8W4iMh8HAyNxMd/ZGQbTOxUBY0D2dqV8q9ly5YqQyonQ4cOVUtupCPGzJkz1WLpCjk7qCK5l2/HqSK5rSr5wlKkpKVj3vaMrJYRLQLgaM8vDkSW6KmnnsKaNWtUoOSjjz5SU4OkPfPAgQN128jUIQmO37p1S523S2Dlvffey/I6kqFolymAIBksK1aswP/+9z+1bfny5fHzzz/bTMfR2MQUXUbLw2S9PF6kkLPR94uIbCTY8uGHH6J69eqq0rhMIZKiWEKuTr799tvG2g0i+g+3YhIxatkRpKZr0LVGCQxvlvMcbSLK/1QiFWy5blnBljVHw1Tbah93Z/StZ7ntWYkI6Nq1q1pyIt2JZMlNds0tnnnmGbXYIuk451HQIduAi6yXx4nI9hgt2CKyG4CHDBlizF0golxI5fyXlx5WUwWkresXz9RgQVwiPQry88LaYzcsqv1zWroGc7ddVrdfbFaOtZuIiB4ZJ9PxfONyqkbLw4Y29lfZgU4OzAgksjVG/b9eChy+8847GD58OIYNG5ZlyasdO3agW7duKFmypPoSuHbt2iyPS0q6rM+8NGzY8JHX2bt3L1q3bg03Nzd4eXmpdPeEhATYEinmJV+u2Z6OtCb9fhpHrkbBw8UB3w6uC1cno8ZjiayetkiuZLZYivUnwxFyJw5ero4Y2ODRIppERLauoJMDRrUsj1faVFCZLEJ+jm0diCGN/PHR76cRk5hi6t0kIiMz2jepSZMmqbmh9erV09VteRxxcXGqhbTUgHn66aez3aZjx45YsGCB7r6Tk9MjgRbZRuarSh0Aefz48eNZ5p5aO2lDJ/PvpWiXpDzKB4JE5OWDwpkdZ2zSLwevYdn+q6qA5zf9a8O/qJupd4nI6lQr6aH+H7sZk4iI2ET4urvAnKWnazB7yyV1e1iTcnBzZgCWiCg7cv4sNa1GtwpUNVpk6pCM9YN/3I8zN2Jx9FoUfhjyFEp7u/IAEtkIo501SXeJhQsXYvDgwU/0Op06dVJLbqQejLbNdE6V2GUuauZaMRUqVMj1NZOSktSiFRMTA0vOaJFAS+ZUR217OiEfFMxosC3Hr0Xhf2tPqdvj21ZEq8qWU0uCyJJIsKK8TyFcirivWkC3rmzewZbNZ2/h/K1YVdxXrs4SEVHOtOfP2mK4ZbxdMaV3Tbyw6CAu3LqPXnN2Y/5z9VCnTGEeRiIbYLRUjuTkZFWp3BikaJevry8qVqyIF198EREREbrH5LZ0QJLHZX+kJXWLFi2wa9euXF/zs88+g6enp24pXbq0Rbenk4yW7LA9ne2RFrQjlx5Gclo62lYphjGtAk29S0RWrYZuKpF5B+2lk9TsrRlZLc81KgtPVxZ4JCLKryA/T6wd3QRVSnjgzv1kDJi/D3+cuMEDSWQDjBZskTotP/30k8HfR7Jeli1bhi1btuDrr7/GwYMHVW0WbVZKcHCwrjuSBGI2bNiAOnXqoE2bNrh48dGiVloy5Sg6Olq3SFclSxWdkPyf7enINqSmpWPMT0cQHp2oWtJO7VcTdnaPN8WPiPKmujbYEhZl1ods16U7OH49Gi6OdnihKbuSERE9rpJeBfHryEZoXdkXSaly7nVUBbMlqE1E1sto04gSExMxf/58bN68GTVq1ICjY9YrZFOnTtXL+/Tr1093W1pNS42YsmXLYv369ejduzfS09PVYyNGjFB1X0Tt2rVV8d4ff/xRZbDkNDVJ267aUsnc+8X7QlXbTranI/H5X+ewLzgSbk72qiCuB1sTEhlcDT9tsMW8i+TOfFCrZUD9MrqUeCIiejwyHfO75+rh0/Vn8ePuEHz593kE347D5N7V4exgz8NKZIWMFmw5ceIEatWqpW6fOpVRG0LrcYvl5oUU45VgizZrRe6LqlWrZtmuSpUquHr1KqxVREwiXvvluLpSWcqrIIY28seMByfSmcmc/FNhUahY3EN9KJD1+u1YGL7flTGd7Ks+NVGhmLupd4nIJlQt6QFJILsVk6TGZl8P86vbcjA0EgdCIuFkb4eXmgeYeneIiKyCvV0BvN+tKsoVdcUH605j1ZHruHYvHt8OqovCblkbehCR5TPat+mtW7fCFO7evaum/GiDLP7+/qpt9Pnz57Nsd+HChf8svGuptp6LwOu/HkdkXLJKB09JTVeV0iXIlbkb0dDG/irY0vfbfdBAg3mD6qIiv4BbpbPhMXhr1Ql1++WW5dEpKOP/DyIyTgHFQN9CqliiZLe0McNgy6wHwfin6/qhhGdBU+8OEZFVGdzIX3UlkulEEtiWwrk/Dn0KAT6FTL1rRKRHJklduH79uvqiX6pUqXw/9/79+7h06d+MjJCQEBw7dgze3t5qkVos0hJagiuhoaF45513ULRoUfTq1UttL+87YcIEfPDBB6qFtGTbLFq0COfOncPKlSthTZJS09Q0kQW7Q9V9Kcw1c0AtBPpmZDA83J4uNT0doXfiEJ+cqmp49Ji1G5/1DkLP2vn/O5H5io5PwYglh5GYko5mFYrijfaVTL1LRDZZt0WCLSeuR6NNlWIwJyeuR2H7hdvqCuzLLcqbeneIiKxSy0q+WPVyYwxbeBChd+PRe+4edaGzYUARU+8aEVlagVyplfLRRx+pTj4yradMmTLw8vLCxx9/rKujkheHDh1SNVZkEa+99pq6/f7778Pe3h4nT55Ejx49VCeiIUOGqJ979+6Fu/u/UyReffVVVfBWWkBLwEXqtWzatAnly1vPSaW0Fe01e48u0CJZK2tGNdYFWrRXV50c7NRcfPkp96uW9MQfY5uiaWBRJKSk4dWfj+G9tadU4IYsX1q6Bq/8fBRXI+PhV7ggZvSvrb5QEZFpOhJJ+2dzo+1A1KNmSZQp4mrq3SEislqVirtjzejGqFnaC1HxKRj8w378eshym3AQUVYFNEYqgy3BjR9++AGTJk1CkyZNVPXt3bt367oCffrpp7AkMTExKnAknYk8PDxgLuS4/nLoGj5cd0YFS7zdnPDlMzXyfeVUvpR/s/mCrq6LfAjMGVhH1Xshy/X1xvOq6KWzg526mqLtikJkzcxxvD58JRJPz90LH3dnHHy3LczF+Zux6DB9B6SU2qbxzbME6ImIbG2sNpbElDS8/stxrD8Zru6PblUer7erxA6RRBbOaNOIZKrO999/j+7du+vWSVaJTCUaNWqUxQVbzFF0QgreWXMS609kDNRNAotgat9aKPYY9QAk2+G19pVQq4wXxv98HMevRaHrjJ34pn9tNK/oY4C9J0P7+/RNXXeRz58OYqCFyISqlvBURXJvxybhVkziY43ThjBnW8YY0al6cQZaiIiMxMXRHjMH1IZ/UVfM3npZLaF34vF135rqMSKyTEabRhQZGYnKlSs/sl7WyWP05FdJO3+zUwVaHOwK4K2OlbFkWIMnPoFvXbmYmlYUVMoT9+JTMGTBAXyz+aJqI02WNa1Mrphop5T1qu1n6l0ismkFnexR4UHWiNRtMQdSs+v34zfU7VEtA029O0RENsXOrgAmdKisMtId7QuoLJf+8/epoDwRWSajBVski2XWrFmPrJd18hg9HpnuM/Ofi6qDUFhUAsp4u2Lly41VhxkZtPVBqqX/OrIRnm1QBjLpbNrmC3h+4UHci0vmn80CSAHkEUsO4X5SKuqX88a7XaqYepeICECQX8Y0PulIZA7mbrsMiaO3ruzLzDciIhPpU680lrzQAJ4FHXHsWhR6zt6tpngSkeUxWrDliy++wI8//oiqVavihRdewPDhw9XthQsX4ssvvzTWbliV8OgEPPvdPny96YIKuvSsVRLrxzVFrdJeen8vSWGc3CsIX/Wpqep9SKeKrjN3qelFZL6khs8bvx7H5dtxKObhjNnP1oGjvdH+tyeiXEjGoDh53fTjqATrVx+9rm5LlzoiIjId6UgkjS38i7iq8fnpuXvUuTcRWRajfetq0aIFLly4oFowR0VFqalDvXv3xvnz59GsWTNj7YZV1d/o9M1O7A+JhJuTPab2rYnp/WurFs6G9ExdP6wd3UQ3+PeZtxdL911RX+rJ/MzZdhl/n76l0lHnDqqrinESkblltsSYfAydv/0yUtI0aBRQBHXLFjbpvhARERDgUwhrRjVRWcmSnSwtopfsu8JDQ2RBjNaNyNqYqmK6VCv/dP1Z3WArV0ZnDKiNckXdYEwxiSl445fj2Hjmlrrfq3YpfNqrumofTeZBroAMXXBATf2SrCSZBkZki8y1w4WM59U++FtlJu6d2BolPE3T7U3qATSdsgVJqen4aXgDNA4sapL9ICLbZq5jtaklpabhndWnsOpIRvbh80388b8uVVUzCyKy8cyWixcvYsCAAWoAfZgMps8++yyCg4MNvRtWQeZr9pi1WxdoGdE8QLXvNXagRXi4OOLbwXXxTufKarBfczQMvWbvQfDt+0bfF3rU1bvxGLf8qAq09H+qNAMtRGZIpmdW8C2kbp80YZHc73cFq0BL7TJeaFS+iMn2g4iIHuXsYI+v+tTAhA6V1P0Fu0Px0uKMWnxEZOPBFqnHUrp06Wwj1BK9lsdYsyV3knwkU3W6z9qF87diUbSQMxYPq4+JnavAycF09TcKFCiAl5qXx7LhDdQ+yb51n7UbG05ltJ4m00hITsOIpYdVK/Capb0wqUc1/imIzL1ui4mK5EbFJ2Pp3owA/phWgWpcJyIi8yJjs9TTmvVsbXXu/8+5CDWVX+o3EpH5Mvg39R07dqBPnz45Pt63b19s2bLF0LthseREeMSSw/jf2lPqymOLij7Y8GozNK/oA3Mq4vXnuKao758xp3Tk0iP4dP0ZpKSlm3rXbDIw9/bqEzgbHoMibk6YN6iOuiJCROaphok7EskV0rjkNFQp4aG6EBERkfnqWqMkVrzUEEULOalzPcl4N2VmJBGZONhy5coV+PrmfAJXtGhRXLt2zdC7YZH2Bd9VRXClLooUOP1flypYMPQplUVibnw9XLDsxQZ4qXmAuv/dzhAM/G4/ImISTb1rNkW+OP127Iaa2jV7YB2T1YAgoryprutIFG30IrnSFn7hnlB1m1ktRESWoU6ZwqpwbsVihRARm4S+3+5VjTOIyAaDLTJV6PLlyzk+funSJRbBekhqWjqmbjyv2jqHRycioKibGlSHNwuAnRkXw5KWwu90rqKyKQo5O+BAaCQ6z9ilgkZkeHKcP/3zrLotfwfJOCIi8yYZJQ52BXA3LlmN98a0dN9VNd2wvI8bOlYvbtT3JiKix1fa2xUrX26MZhWKIiElDSOXHsb8HZdN3tmOiIwcbGnevDlmzpyZ4+MzZsxg6+dMrkXGo9/8fZix5RLSNUCfun74fWxT3dVPS9CxegmsG9MElYu74879JAz8fj/mbecHgCHJnN0xPx1RXU161CqJYU38Dfp+RKTHIrnF3NXtE0ZMBZfaTj/syihOP6plILtaEBFZGGlWIRnvgxqWyeg8+ec5vLPmJKfxE9lSsGXixIn466+/8Mwzz+DAgQOqA5Es+/fvx9NPP42///5bbUPAHyduoPOMnTh85R7cnR0wc0BtfNmnJtycLa+dcoBPIZWN07tOKRUA+Pyvc3hpSUbRVtJ/S0Cpk3PnfrK6Sv557xoscklkQWo8CKafMmLdlhUHr6oxw69wQXSvVdJo70tEphcWFoZBgwahSJEicHV1Ra1atXD48GHd4/fv38eYMWPg5+eHggULokqVKpg7d26ur7lw4UJ17vHwkpjI6eSG5GBvh497VMd7XatC6psvP3ANQxcc4Pk2kZkw+Lf42rVrY+XKlRg2bBjWrFmT5TEZ5H/55RfUqVMHtiw+ORWT1p3Bz4cyatdI+80Z/WurFEFLVtDJHl/3qYl6Zb3x4brT2HTmluqoNHdgXVQt+Wh3Kno8H/x2GsevRcGzoCO+HVRXHXcishzV/TzV+H/CSMGW5NR0zN+RkdXycsvyagooEdmGe/fuoUmTJmjVqpW6GCp1FWW6v5eXl26b8ePHY+vWrVi6dCn8/f2xceNGjBo1CiVLlkSPHj1yfG3pPHr+/Pks61xcXAz6+1BGp6IXmpZDWW9XjFtxFLsv3UXvObuxYGh9lCli2d8liCydUVImunbtqgrlbtiwQdVokfmEFStWRPv27VVE3ZadvhGNscuPIvh2nIpIj24ZiFfaVrCak1/5AHi2QRlUL+WBl5cewZW78eg1Zzc+6VkdfeqVNvXuWbzlB65ixcFr6t/OjAG1+aFKZOGZLfL5aOj2y6uPXFf1YYp5OOOZun4GfS8iMi9TpkxB6dKlsWDBAt06CahktnfvXgwZMgQtW7ZU91966SV8++23OHToUK7BFhm7ihdn/SdTaVu1GH4d2QgvLDyEy7fj0HPObnz3XF3ULettsn0isnVG+0YvaYi9evXChAkT8Oabb6Jnz542FWhJSE5VVxPv3k9SPyWbZdXh6+g1e48KtMhJ77LhDfBGh0pWE2jJrIafF/4Y2xQtK/moFtYTVp7AxNUnkJiSZupds1hHr95TWS3ijfaVVFtwIrI8lYq7qyK5kXHJCItKMHgB9jnbMorWv9S8PFvDE9mYdevWoV69eujTp4/KapEM9O+++y7LNk2bNlXbyXQjCQBLlsuFCxfQoUOHXF9bph+VLVtWTT+SC61Hjx7NdfukpCTExMRkWejJVCvpid/GNFEXOeUzZcB3+/HbsTAeViITsb5v9WYoKSUN87YHo96nm1D3k83q57xtl1XgQaYKta1SDH+90hyNyxeFNSvs5oQfhzyF19pV1M0rfWbeHlUUmPLndmySyhRKTktHh2rFMKpleR5CIgsukisBF2PUbfnjRDiuRsbD280JA+ozu5DI1gQHB6v6KxUqVFB1E0eOHIlx48Zh8eLFWZpXVK1aVQVNnJyc0LFjR8yZM0cFYXJSuXJlVbdFgjTLly9X04dkutLFixdzfM5nn32mupZqF8m4oSdXzMMFv4xohHZVi6kLvK+sOIbpmy+wUxGRCRTQsEfYY5Hou3wwSLFfmaOaW0aLBFq++efRD5uxrQPRs1YpBPi42VxB050Xb2Pc8qO4F5+iao1M61cTrSsXM/VuWYSUtHQM/G6/aq0tLVvXjm4CdxdHU+8WkcWP16b09qoTakqgBE7f7FjZIO+Rnq5Bh+k7cDHiPiZ0qITRrQIN8j5EZL4keCKZLXv27NGtk2DLwYMH1fQh8dVXX6lsF/kpmSo7duxQzSyk9mLbtm3z9D7p6emqJqN0JZXgTU6ZLbJkHqsl4GLOY7UlkQYVUzac09Xo6lmrJD5/uoYK8BORcTCzxcDs7eywYE9Ito8t2huqMltsLdAimlXwwR/jmqFWaS9VMX3YwkP46u/z6oOBcvfp+rMq0FLI2QHzn6vHQAuRFQjyy6jbctKAmS0bz9xUgRZ3FwcMblTWYO9DROarRIkSKmslM+k2dPXqVXU7ISEB77zzDqZOnYpu3bqhRo0aqjNRv379VPAlr+zs7PDUU0/lmtni7OysgiqZF9Ife7sCeKdzFUzuFaRurz12A4O+369KGhCRcTDYYmCxiSmISUjN9jFZL4/bqlJeBVWa45AHJ/2ztl7Ccz/yQyA3a45ex8I9oer2131rorxPIaP8rYjIsIJK/RtsMUTCqbymjLFiaGN/eDAbjsgmydSehzsGST0WyWARKSkpapFgSWb29vYqWyU/Y86xY8dUcIdMSxpVLHq+vgq0H7pyD73m7MGliPv8sxBZU7Dlzz//VHNDHybrpPWctZLpHR4Fs2/6JOttffqHk4MdJvWojm/610JBR3vVrq7LjF04fOWeqXfNLDtXTVx9Ut0e0yoQHaqx4j+RtZCaLY72BRAVn4Lr9/RfJHfbhds4FRYDVyd7PN+knN5fn4gsg7R13rdvHyZPnqw6hP7000+YP38+Ro8erR6X7JIWLVqohhbbtm1DSEiIqsUiNV2k0YXWc889p6YWaU2aNEmd00tNGAmyvPDCC+qn1IQh02taoSjWjGqM0t4FVd0uaQ29+9IdU+8WkdUzWrDl7bffRlpaWraRb3nMWqWlp+P5xtmf2Mr61HxcJbBmPWqVUtXTpX7NzZhE9Pt2LxbsDmExrwfuxSVjxJLDSExJV12HxreraNo/GBHplbPDv0Vy9T2VSD5nZ2/JyGoZ2KCMKo5LRLZJpvZI7RUpYlu9enV8/PHHmD59OgYOHKjbZsWKFWo7WSdTjj7//HN8+umnWQInMu0oPDxcdz8qKkq1iJYpSe3bt1edjKTWS/369Y3+O1L2An3dsWZUE9Qp44WYxFQM+fEAfj6YMX2MiCy8QK60fj579iz8/f2zrA8NDUW1atUQFxcHay24KN2IpNWm1G6RqUOS0SKBFimE6MwiVVncT0rFW6tOYP2JjA/wrjVKYMrTNeDmnH12kC2QOjZDFxzAzot3UMbbFb+PaQpPV9vOiCLLICfaX375JQ4fPqxOyuUEv2fPnrrH5eNHrobKVdV79+6hQYMGmD17tvpM0Lp586a6wrpp0ybExsaiUqVKqp7AM888Y1UFcoVkri0/cBUvtyyPt/RYJHdf8F30n79PZRLuerMVfD1c9PbaRET6YiljtaVLTEnDmytPYN3xG+r+iBYBeKtDZdjZ2V4NSSKryWyRwVNSCx8mKYxubm6wZhJQkYHs0LvtcPh/bdVPuc9Ay6Ok6OusAbXxfteqcLAroNqU9pi9G5ciYmGrvtp4XgVaZJrVt4PrMtBCFkOC6DVr1sSsWbOyffyLL75QRRjlcemEUbx4cbRr104FVbQGDx6s6gtIO9GTJ0+id+/eqlDj0aNHYbV1W67rN7Nl1oOsln71SjPQQkRk46QbkUzff6VNBXX/2+3BGLXsCBKSH52BQEQWEmzp3r07Xn31VVy+fDlLoOX1119Xj1k7VycHdVWxSCFn9VPuU/akO9OwpuXw84iGKObhrIp4dZ+1WxeBtyV/nQzH3G0Z/89MeaYGqpTglR6yHJ06dcInn3yiAiQPk6wWSV1/99131eOSzr5o0SLEx8erGgJa0op07NixKhU9ICAA//vf/+Dl5YUjR47k+L7SSlSukGZeLEGNTB2J9JV0evTqPey6dEcFryXIT0REJOfaMiV9er9acLK3w4bTN9Fv/l5ExCTy4BBZYrBFUsklg6Vy5cooV66cWmReZ5EiRfLVSo5sR92y3lg/rhkaly+C+OQ0jFt+FB+uO43kVNuoc3PxVize+PW4uj28aTl0r1nS1LtEpDdSdFGmCMnc/sxtQKUw4549e3TrmjZtip9//hmRkZGqE4bUEpBgSsuWLXN87c8++0xlU2qX0qVLW8RfrmIxd3XSG52QgmuR+imSO/tBB6KetUvBr7CrXl6TiIisg3w2LHuxAQq7OuLE9WiVTX7mhmVcoCCyBEadRiQn0OvXr8eoUaNURss///yDLVu2qKuURNkpWsgZS15ogNGtyqv70vZYIu/h0frv1mFOYhJTVEHcuOQ0NAzwxtud9Fe/gcgcSKBFFCtWLMt6ua99TEigJTU1VQXmJRgzYsQIVfulfPmMMSE70iFD5vxrl2vXrsESSNZj5RL6K5J7NjwGm89GoEABqBphRERED3vK3xtrR2c0qQiPTkSfeXuw5dwtHigiSwq2aFPW5CqmFDscM2YMmjdvbsy3Jwtlb1cAEzpUxvfP1YOHiwOOXo1S7aF3XbTOlnXp6Rq89vNxBN+JQwlPF8x6tg4c7I36vyqRUT8XMpPpM5nXybQhKZ67efNmHDp0CK+99hr69Omj6rfkRIIyUlwx82Ipqj+o23IiLEpvWS1dgkogwKfQE78eERFZp7JF3LDm5SYqm1wu9A1fdAgLd4eYereILJ5BC4fMmDFDtYFzcXFRt3Mzbtw4Q+4KWYG2VYvhj7HN8PKywzh9IwaDf9yP19tVxKiWgVZVQX3W1kvYfPaWuso9b1Bdld1DZG2kGK6QLJYSJUro1kdEROiyXaTGlxTPPXXqlK5DkRTc3blzp+paNG/ePFibGqU8IRVrTj1hZsvl2/ex/mRGV7fRrQL1tHdERGStpNPlomH18b81p/DzoWv48Pcz6sKfalrBi35E5hdsmTZtGgYOHKiCLXI7J3IVk8EWyosyRVyx6uXG+OC30+qD4KuNF3DkahSm9q0JL1cniz+IW89FYNrmC+r2Jz2qo2ZpTrEj6yR1uyTgIi2da9eurdYlJydj+/btmDJlirovxXKFnV3WzC57e3tVv8UaVc/UkejhLJ/8kMLaUmO3bZViLKxNRER54mhvh8+fDkI5Hzd8/tc5LN57BVcj4zFzQG24uzjyKBKZU7BFCiBmd5voSVvWSWeeuv6F8d7aU9hyLgJdZ+7C3IF1EfSgm4clCr0Th1dWHFVfkAY2KIO+T1lGUU+inNy/f191ncv8OXDs2DF4e3ujTJkyqkPd5MmTUaFCBbXIbVdXVzz77LNqeymoHhgYqOq0SCF1qduydu1aFaD5448/rPLAqyK5DnaISUxVJ7iS2p1f1yLjseZomLo9pjWzWoiIKO8kyD+yRXn4F3HFqz8fw7bzt9Fn3l78MPQplPIqyENJlA9GKwTx0Ucf6a5SZpaQkKAeI8qvvvVKY/Woxijj7Yrr9xLw9Lw9WH7gqt5aphpTfHIqRi49rL5g1S7jhfe7VTX1LhE9MamxIlkr2swVqbcit99//311/80331QBFymaXq9ePYSFhWHjxo1wd88oEuvo6Ig///wTPj4+6NatG2rUqIHFixerFtGdO3e2yr+QBFqqFH+yIrnf7riMtHQNmlUoilrMjiMiosfQsXoJ/DKiEXzcnXHuZix6zNqNY9eevJ4YkS0poDHSN1NJ+w4PD4evr2+W9Xfv3lXr0tLSYEliYmJUhyXpdGFJxRetkbRJff2X46rOiXi6jh8+6VkdBZ3sYQnkf8Gxy4/ijxPhqj7L+nFNUczDxdS7RWQ1LG28/t/ak1i67ypGNA/AxM5V8vXcWzGJaPbFViSnpmPFSw3RMKCIwfaTiMiWx2pbcSMqAcMWHlQBF2cHO0zrVwudg/6ttUZEZpDZktPc8+PHj6uUcqLH5VnQEfMH18VbHStD6uSuOnIdvebsVtNyLMH3O0NUoMXBrgDmDqrDQAuRjQvS1m15jMyW73YEq0DLU/6F0aAcP1uJiOjJlPQqiJUvN0arSj5ISk3HqGVHMGfbJYvMJCeyumBL4cKFVTBFAi0VK1ZUt7WLRK/btWuHvn37Gno3yMpJN6KXW5bH0uENULSQk4q+d5u5C3+fvglztufSHXz211l1+72uVfGUP78cEdm6oFJeumBLfk5mI+OSsWz/VV0HosctrktERJRZIWcHfPdcPQxt7K/uf7HhPN5ceUIF94nIRAVyxfTp09XJ4rBhwzBp0iQVYNFycnKCv78/GjVqZOjdIBvRuHxRrB/XDKOXHcGhK/cwYslhjGgRgAntK5ld27qwqASMWX4U6Rqgd51SeK5RWVPvEhGZgQrFCqnaLbGJqbhyNx7+RfNWJHfB7hAkpKSpzJgWFX0Mvp9ERGQ75Dz6w+7VUK6oGyb9fhq/Hr6Oa/fiMW9QXavoCEpkkcGWIUOG6Np8NmnSBA4OBn9LsnFS72T5Sw1Vy7ofdoXg2+3BOHY1CjOfrQ1fd/OohZKYkoaRSw6rK9HVSnpgcq8gXoUmIl3rzaolPFQhwhNh0XkKtsQkpmDhnlB1m1ktRERkKEMa+6NMEVeMWXYE+4Ij0XvOHvw49Kk8XxggsiVGu9Qv3SXOns2YLiF+++039OzZE++88w6Sk5ONtRtkQ19WZFrOnIF1VOrj/pBIdJmxCwdCIk29ayrTS1pWyxSBwq6O6oqAtLMmInq4bsupPNZtWbL3isqEqVisENpXLcYDSUREBtOqkq+q41LS0wXBd+LQc85uszjHJrLZYMuIESNw4cIFdTs4OBj9+vWDq6srfv31V9X+k8gQpFr6b2OaqC8gt2OTMOC7faqApCmLei3df1WlXkox35kD6qC0t6vJ9oWIzFOQX0aw5cT1qDy1jv9+Z7Auq0VqWBERERlSlRIeWDumCWr6eSIqPgUDv9+H1Ueu86ATmSLYIoGWWrVqqdsSYGnRogV++uknLFy4EKtWrTLWbpANKu9TCGtHN0HPWiWRlq7Bp3+exctLj6i0e2M7fCUSH/1+Wt1+s2NlNK1Q1Oj7QESWk9lyOiwG6VLYKRc/7b+Ke/EpKFvEFV3YjpOIiIxEpueveKkROgcVR0qaBq/9chxfbzz/n59bRLbCqK2f09MzKlZv3rwZnTt3VrdLly6NO3fuGGs3yEa5OjlgWr9a+LhndTjaF8CG0zfRY9ZunLsZY7R9iIhJxMilR9SHkXwhGtE8wGjvTUSWpYJvIThLkdykVITejcu1/tN3D7JaXm5R3uwKgRMRkXUr6GSPWQPqqK6gYuaWSxi34qj6fCKydUY7K6tXrx4++eQTLFmyBNu3b0eXLl3U+pCQEBQrxvnlZHjSBnVww7L4dWRjlPIqiBCZYzp7t1FSHqU13qhlR9RUJvkS9cUzNVgQl4hyJEGTqiU91G2p75STlYev41ZMEkp4uqB3HT8eUSIiMjqZvvpWx8rq/NbBrgD+OBGOZ7/bhzv3k/jXIJtmtGCLtIA+cuQIxowZg3fffReBgYFq/cqVK9G4cWNj7QYRapX2wu9jm6JZhaJITElXKY/vrjmJpFTDReA/WX9GtaJ2d3bAt4Prws2ZXbmIKHc1HkwlOnk9+2BLSlo65m2/rG5Lppy0iyYiIjKVvvVKY/EL9eFZ0BFHrkapi5oXbsXyD0I2y2hnZjVq1MDJkycRHR2NDz74QLf+yy+/xKJFi/L8Ojt27EC3bt1QsmRJlRmwdu3aLI8PHTpUrc+8NGzYMMepTZ06dcr2dci6ebs5YeHz9fFKmwooUABYtv8q+szbi2uR8Xp/L7nyvHjvFXV7ev9aCPAppPf3ICLrU10bbMkhs+W3Yzdw/V4CihZyQv/6ZYy8d0RERI9qXL4oVo9qrOqIyWfU03P2YOfF2zxUZJNMfhnMxcUFjo6Oed4+Li4ONWvWxKxZs3LcpmPHjggPD9ctf/75Z47ZNhJoIdtkb1cA49tVxIKhT8HL1REnrkej26xd2HY+Qm/vIVek31lzUt2WwE6bKpwyR0R5U8PPS/08fePRIrlS7HvOtkvq9vBmAWwfT0REZtWcYs2oJqjv761qjw1dcBDL9mdceCSyJUaby5CWloZp06bhl19+wdWrV5GcnJzl8cjIvPVml0wUWXLj7OyM4sWL57rN8ePHMXXqVBw8eBAlSpT4z/dNSkpSi1ZMjPEKq5Jhtazkiz/GNsXoZUdw/Ho0nl94EGNbV1DBEQnIPK6795MwculhVa+lTWVf9XpERHlV3scNLo52uJ+UipC7cerkVWvDqZsIvh2nUrUHNSzLg0pERGaXRb5keH1MXHUSq4+G4d01pxByOw4TO1d5ovNrIktitMyWSZMmqeBG37591VSi1157Db1794adnR0+/PBDvb7Xtm3b4Ovri4oVK+LFF19ERETWTIX4+HgMGDBAZcf8V1BG67PPPoOnp6dukS5KZD38Crvil5GNMKhhGWg0wIx/LmLoggOIjMsaFMyr1LR0jF1+FGFRCfAv4oqp/Wqp4mFERPkpklut5KN1W2QK7KytGVktzzfxRyHWgCIiIjPk7GCPr/vWxOvtKqr73+8KwYglhxGXlGrqXSOyrmDLsmXL8N133+GNN96Ag4ODCnZ8//33eP/997Fv3z69vY9kvch7bdmyBV9//bXKXGndunWWrJTx48erorw9evTI8+tOnDhRBYm0y7Vr1/S2z2Q+Hwif9AzCtH411dXknRfvoOuMnTh69V6+X+vLv89jz+W7cHWyx7eD66mrz0RE+RWUTd2WLecicDY8Bm5O9hja2J8HlYiIzJaUbBjbpgJmDqitCrlvPnsLfb/di5vRiabeNSLrCbbcvHkTQUFB6nahQoVUwEJ07doV69ev19v79OvXT7WVrl69uiqk+9dff+HChQu691i3bp0KxEi9lvyQqUkeHh5ZFrJOvWr74bfRTRFQ1A03ohPVB8KSvaHqanJe/HHiBr7dEaxuSwu8SsXdDbzHRGT1wZYHmS0yDs3ckpHVMqhRWXi5Opl0/4jI8oSFhWHQoEEoUqQIXF1dUatWLRw+fFj3+P3791X3UD8/PxQsWBBVqlTB3Llz//N1V61ahapVq6pzZvm5Zs0aA/8mZEm61SyJ5S82RBE3J1WLrMfsXTiVQwF4ImthtGCLDNhSrFZI2+eNGzeq25J5IoOyoUg9lrJly+LixYvqvgRaLl++DC8vL5VhI4t4+umn0bJlS4PtB1kWCZD8NqYJOlUvjpQ0Dd777TRe/fkY4pNzT3s8fzMWb648oWvF2rVGSSPtMRFZoyC/jGDL6RvRqiiuZMwduxYFZwc7DG8aYOrdIyILc+/ePTRp0kQ1p5ALkmfOnFGZ4HJenDkDfMOGDVi6dCnOnj2r7o8dOxa//fZbjq+7d+9edcFz8ODBqi6i/JTSAfv37zfSb0aWoG7Zwlg7ugkq+BbCrZgk1Ql005lbpt4tshIJyamqVqbUzZSf//W9zaqCLb169cI///yjbr/yyit47733UKFCBTz33HMYNmyYwd737t27asqPtgju22+/jRMnTuDYsWO6RUjx3gULFhhsP8jyuLs4Ys7AOvhfl4xCXtJmtces3bgUcT/b7WMSUjBiySHEJ6ehSWARTOhQyej7TETWRYriFnS0h7OjPcLuxWPRnlC1fkD9MvBxN9yFCiKyTlOmTFF1B+Wct379+vD390ebNm1Qvnz5LIGTIUOGqIuQ8vhLL72kOoEeOnQox9eVjPF27dqpafeVK1dWP+V185tJTtavtLcrVo1qjGYViiIhJQ0vLTmE73cG5zmDnCg7SSlpmLc9GPU+3YS6n2xWP7/dHqzWm1IBjYn+ZUudlj179qgsl+7du+f5eZLaeOlSRgp17dq1VdHdVq1awdvbWy1SbFeyVCS4EhoainfeeUd1P5LIvLu7e45zCSXVsWfPnnneD+lGJIVyZToUpxRZvwMhkRjz0xFExCapOglfPFMTXWqUUBFUezs7xCSmwM3JATsv3sbCPaGY9WwdVYWdiEzP0sfrfcF3UcPPE9HxKfB0dcTuS3dQ088Lvh4upt41IrIwMr2nQ4cOuH79OrZv345SpUph1KhRqqGE1siRI9W0orVr16JkyZKq8YScq0smTNOmTbN93TJlyqgMGFm05EKmBFuuXLmS506fEgiy1LGa8iclLR0frDuNn/ZfVfefbVAGk7pXU00m5Nw6NjFFXfhMTU+Hq5PRGuiSBUlP1yA1XYPk1DR8tzME3/yTMZMlM+kGO6JFgMn+DZnsX27Dhg3Vkl8SVZfgipZ0NRISgZf5pCdPnsTixYsRFRWlAi6y7c8//5xjoIUoL+qX88Yf45pi3PKj2BcciambLqiI/A+7QrBgTwhiElLhUdABQxr54/sh9fihQER6IVdk9ly6o678accZKYrbvIIPjzAR5VtwcLA6X5bzZ7kgeeDAAYwbN05N6ZdsczFjxgwVfJESADLdXjqHSlOLnAIt2tqMxYoVy7JO7sv63Dp9SrdSsk2O9nb4tGd1VSPx0z/PYn9wpOpStGB3aJZz6+cbl8OoluVVhiflTnIo0h4EIGRJS5Of6dnfT8vYNiU9PeM5mR7L2C7j/iOPyXPUc/99nYz1WV9XbZ+myfScB6+Vzf3ULLf/fd+M98n0+plfLz1ddZCVi9u73mql/s1kR9aPbhVosn86Bg22SDHavMprdoukNOaWjPP3338jv5i2Rnnh6+6CpS80wFcbL6BuWS98tzNYV6hSyIeC3LcrUMCkEVQisg6SOScpsTMeGmdm/HMJBcBxhojyLz09HfXq1cPkyZN1WeKnT59WAZjMwRbJQJfzeKl7uGPHDpX9Ihcx27Ztm+NrS6b4w+fXD6/LTKYaaS+aZs5sIdsh/z6GNwtA2SJusCsAdRHz4XNrbbbC455ba7MfdIGFTIGEfwMDD9//93ZKpi/6D9//N4iRKaCRh8CCdn3mwEJugYbUnJ6fzX1b41PIGXfvJ6t/K9mR9ZIlVaSQaaZeG/TbYF6n5cj/aGlppp1PRZQXDvZ2eLtTZSSlpuH1X4+bZQSViKyDpFGb65UaIrJMEjCRqUSZSbch6SQkEhISVMaLTK+X7p6iRo0aqsbhV199lWOwpXjx4o9ksURERDyS7ZKZZNMYskkGWY52VYupqSDjf8mopZndZ97IFuUx+Pt9iIxPySaAkXN2hQ3GHx4htSdlcXzwU77P6O7bF4CDnR0cdI9lvS8ZSGp9NvdlWzlX0d7O2MYOjmp99ve17629/e/r/vtaD9/P/Nr/vm/Gfsp2zg72Kgsqu4CLrJfpaKbiYOjoOZE1up+YarYRVCKyDjKOcJwhIn2STkTnz5/Psu7ChQsqg0WkpKSoRaYOZWZvb5/reX2jRo2wadOmLDVbpPNo48aN+QekPIn9j3Pru3FJiIhNxvlbsXo5ov8GAOwyfZn/935GMOJBYCCb+w9/+TdkoCG7/cw9CJIpeGJXINcMM2vJBH6+cblsa7bIegm6ORmvL1AWnOdA9BgkQmquEVQisg4cZ4hI3yQYIgEQmUYkrZmlZsv8+fPVIqQwbYsWLTBhwgQULFhQBWGkkK7UQ5SmFFoy5UiK60rdFW2n0ebNm6tuRz169FBtojdv3oxdu3bxj0h6+cyTDnzvdqmsMlVyCyxkuf8gS+PfAMa/98l6FHRyUHV9hLnV+zF4sKVz585Yvny56gQhPv30U4wePRpeXl661szNmjXDmTNnDL0rRHojaYrmGkElIuvAcYaI9O2pp55SU4SkXspHH32EcuXKqY5BAwcO1G2zYsUK9bisi4yMVAEXOX+XLkVa0ukzc/aLBHDkef/73//w3nvvqVbS0qCiQYMG/COSXj7zZFpQ84q+PJqULQmoSF0fmWKduZOVqQsrG7z1s6QdhoeHw9fXVxcxl3mfAQEB6v6tW7dUWzlLq9li6a1EST9dQuZsu2x2EVQisp7xmuMMEdkKSx6rST/4mUfWxuDBFol6S8EsbbBFWjAfP36cwRayCvHJqSodMXMElV2IiMyLpZ/Ac5whIltg6WM16Qc/88iasGYL0RPQBla0xXA5dYiI9I3jDBER2Qp+5pE1MXhRCal+/HAFZGuviExEREREREREtsvgmS0yS2no0KFwds648p+YmKgKbLm5uan7SUlJht4FIiIiIiIiIiLrCbYMGTIky/1BgwY9so20j7M02lI3Mr+UiMjYpP4VswTzhuM1EZkKx+q841hNRNY2Xhu8QK61un79OkqXLm3q3SAiG8UCgnnH8ZqITIVjdd5xrCYiaxuvGWx5TOnp6bhx44aKgMXGxqrAy7Vr11g93Ugko4jH3Lh4zM3rmPNqad5xvDYtjh083taOY7V+cKw2LY7VPOa2IMbI59bsRvQELa39/PzUbe0fRf5gbFVnXDzmxsdjzmNuaThemweOHTze1o7/xp8Mx2rzwH/HPOa2wMNI39sN3o2IiIiIiIiIiMiWMNhCRERERERERKRHDLbogbS1/uCDD3TtrcnweMyNj8ecx9wa8N8xj7m1479xHnNrwH/HPOa2gP/Orf+Ys0AuEREREREREZEeMbOFiIiIiIiIiEiPGGwhIiIiIiIiItIjBluIiIiIiIiIiPSIwRYiIiIiIiIiIj1isIWIiIiIiIiISI8YbCEiIiIiIiIi0iMGW4iIiIiIiIiI9IjBFiIiIiIiIiIiPWKwhYiIiIiIiIhIjxhsISIiIiIiIiLSIwZbiIiIiIiIiIj0iMEWIiIiIiIiIiI9YrCFiIiIiIiIiEiPGGwhIiIiIiIiItIjBluIiIiIiIiIiPSIwRYiIiIiIiIiIj1isIWIiIiIiIiISI8YbCEiIiIiIiIi0iMGW4joiYSGhqJAgQI8ikREZoxjNRGRZeB4bT0YbKE8GTp0qPpCPXLkyEceGzVqlHpMtnl4e1kcHR1RrFgxtGvXDj/++CPS09Nzfa+4uDi89dZbCAgIgIuLC3x8fNCyZUv88ccfum38/f0xffp0i//rJSYmqmMVFBQEBwcH9OzZM9vttm/fjrp166rjIcdl3rx5j2yzatUqVK1aFc7OzurnmjVrHtlmzpw5KFeunHodeb2dO3dmeVyj0eDDDz9EyZIlUbBgQXXcT58+rZffNSYmBu+++y4qV66s3r948eJo27YtVq9erd5XyO0OHTqgaNGi6t/OsWPHHnmd+fPnq/3y8PBQ20RFRell/4isAcdqw+BYnb+xOjIyEmPHjkWlSpXg6uqKMmXKYNy4cYiOjjbQX4jI8nC8NgyO11nH68xGjBihxuycvkPJczp16qS2Wbt2rYH+QraFwRbKs9KlS2PFihVISEjIMqAtX75cnUg9rGPHjggPD1fR2b/++gutWrXCK6+8gq5duyI1NTXH95GAjvwPPmvWLJw7dw4bNmzA008/jbt371rdXystLU0FNeQkVAIP2QkJCUHnzp3RrFkzHD16FO+8847aXoIrWnv37kW/fv0wePBgHD9+XP3s27cv9u/fr9vm559/xquvvqoCHvI68noyoF69elW3zRdffIGpU6eqY3/w4EEVEJEgWWxs7BP9nhIQady4MRYvXoyJEyfiyJEj2LFjh9rnN998U3cCLoG2Jk2a4PPPP8/xteLj49W/LTkORPQojtX6x7E6f2P1jRs31PLVV1/h5MmTWLhwofosf+GFF/i/LBHHa4PieJ11vNaS71byvUAuqOZEgjDMVtczDVEeDBkyRNOjRw9NUFCQZunSpbr1y5YtU+vkMdnm4e0f9s8//0iYVfPdd9/l+F6enp6ahQsX5vh4ixYt1GtkXrR2796tadasmcbFxUXj5+enGTt2rOb+/fu6x8uWLav56KOPNAMGDNC4ublpSpQooZkxY0aW1//ggw80pUuX1jg5OanH5TWMIadj9uabb2oqV66cZd2IESM0DRs21N3v27evpmPHjlm26dChg6Z///66+/Xr19eMHDkyyzbyum+//ba6nZ6erilevLjm888/1z2emJio/h7z5s3Lcb9DQkKy/A2y8/LLL6vjHRYW9shjsbGxmpSUlGxf8+jRozm+5tatW9U29+7dy/W9iWwJx2rjHeOHcazO3S+//KI+Vx8e74lsFcdr4x1jWx+vr1+/rilVqpTm1KlT6rvQtGnTHnnOsWPH1Hen8PBw9d5r1qzJ9f0pb5jZQvny/PPPY8GCBbr7Mi1o2LBheX5+69atUbNmTZXelhPJpvjzzz9zzKaQ5/r5+eGjjz5SmTOyCLl6JmnNvXv3xokTJ1Qmx65duzBmzJgsz//yyy9Ro0YNlV0hWRbjx4/Hpk2b1GMrV67EtGnT8O233+LixYsqCixTfHIi03AKFSqU6zJ58mQ8Cclaad++fZZ18nseOnQIKSkpuW6zZ88edTs5ORmHDx9+ZBu5r91GMmhu3ryZZRuZktSiRQvdNo9Dpo1JRtTAgQOzjabLMZIpVESkPxyrs+JYbfqxWq6yyvRPjvdEHK95bm28c2vZVjLeJ0yYgGrVquWYNT5gwACV2S7fw0h/+A2H8kX+Z5UAhbZw0+7du9X/7Nu2bcvza0jNDgmG5ERqcsjgUaRIERWYadq0KZ555hmVsiy8vb1hb28Pd3f3LAOCBFGeffZZNVVGVKhQATNmzFDBgrlz56o6IUJe5+2331a3K1asqH4HCbDIdBmZUqOtJSK1ZmR6VP369XPc13r16mVbVyQz2d8nIQEQqXmTmdyXqVh37txBiRIlctxG1gvZTtIqc9tG+zO7ba5cufLY+y/vfe/ePfV3JyLj4FidFcdq047VMg34448/VvUCiCgrjtdZcbzW73g9ZcoUFXiREgQ5kQvPMt2/R48e/N9TzxhsoXyRYnhdunTBokWLVBEluS3r8kOel9t8wObNmyM4OBj79u1TgZAtW7bgm2++waRJk/Dee+/l+DzJ3Lh06RKWLVuW5b0koitZG1WqVFHrGjVqlOV5cl9bKKpPnz7qthShlbogUiulW7duOV6Jk3orgYGBMLSHj5e26FXm9dlt8/A6fW2TH9ntKxEZFsfqrDhWm26sluLocq4ghds/+OADvb42kTXgeJ0Vx2v9jdfy3Ui+Q0k2f07brlu3Tn3XknqOpH+cRkT5JtOGpNidBFzyM4VI6+zZs6ojTm4kq0QKuEoGysaNG9WUIbkqJtNhciJBFblqJpkm2kWKxcp0oPLly+f6ftoBSApLnj9/HrNnz1aDvXRakuCPdrqOKVLTJdNGm3WiFRERoQJAkv2T2zbaLBX5IJdsoNy20WYJ5bbN45BuUoULF1Z/dyIyHo7V/+JYbZqxWqYDy4UL+SyUDnny2U5Ej+J4/S+O1/obr+VYynm8ZOrL9wZZJFv99ddfV51dhQRaLl++DC8vL902QpqTSPdPejLMbKF8kxMnbdBD6oLkh/wPLbVVJF0tP+SKmEybke5HTk5OapFpMZnVqVNHtSn+r0wTyZh5+H7mNDwJsnTv3l0to0ePVo/JPsvrmyLVUTJvfv/99yzrJAAl7609cZVtpO5M5uMq20hKoJDjJa2eZZtevXrptpH72pRBCYBJwEXW1a5dW62Tv7O0nZYUxMdlZ2enug4tWbJEXdV8eG6pdLWQ2jCcx0+kXxyr/8Wx2vhjtWS0yDmCPEeunGqn8hIRx2ueWxvn3FqmqD3c7VTGZVkvtd2EXNgePnx4lm2kpo6UWJDsfnpCeSykSzbu4Wre0dHRatHKrhuRVPCWitZSAfvw4cOaTz/9VFOoUCFN165dNampqbl2G5IK3YcOHVLVuNevX6+pVKmSpnXr1rpt2rVrp+nevbt67du3b6t1x48f1xQsWFAzatQo1cXmwoULmt9++00zZswY3fOkAreHh4dmypQpmvPnz2tmzZqlsbe312zYsEE9vmDBAs3333+vOXnypOby5cuad999V73mnTt3NIZy+vRptb/dunXTtGzZUt3O3IUnODhY4+rqqhk/frzmzJkzmh9++EHj6OioWblyZZYuTPJ7SLXzs2fPqp8ODg6affv26bZZsWKFep48X17n1VdfVVXMQ0NDddvI86RC+urVq9UxkK5N0pEpJibmiSqmR0ZGqursUuV80aJF6neWv4/sS2BgoK6j0N27d9XvLn9zeU3ZZ7kv/4605Lask45Wss2OHTvUfXkuka3jWM2x2hzGavnMaNCggepWeOnSJbVeu+T2+U9kSzhec7w2xnj9sJy6EWXGbkT6w2ALPVHrtNyCLdq2zPKl38fHR9O2bVvNjz/+qElLS8v1vSZPnqxp1KiRxtvbW7VwDggI0IwbNy5LwGPv3r2aGjVqaJydnbMMRgcOHFCBGAnqSCBBtpEgT+YBZtKkSaqdmwQwihUrppk+fbrucWlzJieIEpCR50sLuM2bNxv0X4ns08OtrB8eYLdt26apXbu2apvp7++vmTt37iOv8+uvv6qglARUZPBdtWrVI9vMnj1bvZ+8Tp06dTTbt2/P8ri0qJPW19KmTo5t8+bNVdAlN3n5QBBRUVGqFV6FChXU+8uxl38TcszlfbXBruyOheyTltzObht5LpGt41htOByr8z5Wb926NdvHZZHPDCLieG1IHK//Ha+zOzYMthhPAfnPk2bHEFkKmZ8o3Yq0HYvoyUlnKpmCxKGEiPSFY7X+cawmIkPgeK1/HK+tBwvkEhERERERERHpEYMtRERERERERER6xG5EZHNpeaRf0ipOKqETEekLx2r941hNRIbA8Vr/OF5bD9ZsISIiIiIiIiLSI04jIiIiIiIiIiLSIwZbHpN0XomJiWEHFiIiM8fxmojI/HGsJiJrw2DLY4qNjYWnp6f6SURE5ovjNRGR+eNYTUTWhsEWIiIiIiIiIiI9YrCFiIiIiIiIiMhcgi1JSUn62xMiIiIiIiIiIlsLtvz9998YOnQoypcvD0dHR7i6usLd3R0tWrTAp59+ihs3bhhuT4mIiIiIiIiIrCXYsnbtWlSqVAlDhgyBnZ0dJkyYgNWrV6vgyw8//KCCLZs3b0ZAQABGjhyJ27dvG37PLUxCciqSU9Nx936S+hmfnGrqXSIiIiKiXPD8zXzxb0NE5q6ARvqs/Yf69evjvffeQ5cuXVSwJSdhYWH45ptvUKxYMbz++uuwZtL2WboRRUdHw8PDI9dtk1LSMGfbZSzYE4KYhFR4FHTA843LYVTL8nB2tDfaPhMR2aL8jNdERFo8fzMunlsTkU0GW+jxPxAk6j5vezC++efiI4+90qYCRrQIgKuTAw8xEZGBMNhCRPnF8zfj47k1EVkbdiMyMHs7O5XRkh1Z75BLphARERERGR/P38wX/zZEZCkeK6Xi+vXrWLduHa5evYrk5OQsj02dOlVf+2YVYhNT1NSh7Mh6ebxIIWej7xcRERERZS8qIZnnb2aK59ZEZLXBln/++Qfdu3dHuXLlcP78eVSvXh2hoaGQ2Uh16tQxzF5aMHcXR1WjJbuAi6yXx4mIiIjItORcdl9wJBbtDcHUvrV4/mameG5NRJYi33NYJk6cqIrfnjp1Ci4uLli1ahWuXbumOhL16dPHMHtpwdLS01Ux3OzI+tT0dKPvExERERH9G2TZei4Cz8zbiwHf7cOGU7ew+9IdDG3sn+0h4vmbafHcmoisNrPl7NmzWL58ecaTHRyQkJCAQoUK4aOPPkKPHj3w8ssvG2I/LVZBJwfVdUhk7kY0pJE/i+MSERERmUh6ugZ/n76JWVsv4fSNGLXOycEO/Z8qjaBSnmhewQcFUIDdJC3k3JqdPonI4oMtbm5uSEpKUrdLliyJy5cvo1q1aur+nTt39L+HVkDaO0vXodGtAtU8UzdnB2y/cBuv/XIMc56tCzu7AqbeRSIiIiKbkJqWjj9OhGP21ku4GHFfrXN1sseghmUxvGk5+Hq46LbNfP4m01ckI1nO68h8zq1vxyaisJsTouJT+LchIsueRtSwYUPs3r1b3e7SpYuaUvTpp59i2LBh6jHKnrR3lqslUgw3PikVb/xyXKWp/n7iBg8ZERERkYElpaZh+YGraP31drz68zEVaHF3ccC41oHY/VZrvNO5SpZAy8Pnb/JT7tsif39/FChQ4JFl9OjR6vHVq1ejQ4cOKFq0qFp/7Ngxg++T9m+zaE8omk7ZilWHrxv8PYmIDBpskW5DDRo0ULc//PBDtGvXDj///DPKli2LH374IV+vtWPHDnTr1k1lyMjAvHbt2mynLUlBXk9PT7i7u6uAjnRBElKYN7uBX5Zff/01x/eV/X54++LFi8NYvAs5Y+SD9McvNpxXH/5EREREpH+JKWlYuDsELb/chomrT+JqZDy83ZwwoUMl7H67NV5rX0llRlDODh48iPDwcN2yadMmtV5brzEuLg5NmjTB559/bvTDWNKrICLjknHwyj2jvzcRkd6CLbGxsWrakLR+lilDrq6umDNnDk6cOKEi2hJwyQ8ZmGvWrIlZs2Zl+7i8V9OmTVG5cmVs27YNx48fx3vvvacK84rSpUtnGfhlmTRpkprq1KlTp1zfW6Y+ZX7eyZMnYUzDmpRDMQ9nhEUlYMneK0Z9byKi/Pqv4Hh+rmpKMUoZo3MKsptTcJyILNf9pFTM234ZTadswYe/n0F4dKI69/pflyrY9VYrNQXFg10h88THx0eNvdrljz/+QPny5VWDDDF48GC8//77aNu2LYytnr+3+nn0yj2kpWuM/v5ERDnJcy6kBFTk5PjmzZvqRNnDwwMrV658okFVXi+3oMi7776Lzp0744svvtCtCwgI0N22t7d/5KR7zZo16Nevnyramxsp7mvKE/aCTvZ4vV0lvLnqBGZuuYQ+dUvD05VtoInIPGmD488//zyefvrpbB+Xq5pylfPFF1/M9bWmT5+ugiZ5JcHxzZs3Zxn7iYhyEhWfjIV7QrFgdyiiE1LUOr/CBfFyy/J4pq4fnB04hjyJ5ORkLF26FK+99lq+xvKHSQ1IbR1IEROTUaQ4vyoXd4ebkz1ik1Jx4VYsqpTweOx9IiIySbDl7bffRpkyZdT0HMkskQySMWPG4Ny5czCE9PR0rF+/Hm+++aa6Wnr06FGUK1dOtZ7u2bNnts85fPiwupo6e/bs/3z9ixcvqiu0zs7OalrU5MmTswRyDPWBkNnTdf3w/a5gXLh1H3O2X8LETlWe+DWJiAzhv4LjclVTO70zN5KhKNNRJSW9RIkSeXpvUwfHicgy3I5Nwg+7QrBkbyjikjOmaAf4uGF0y0B0r1USjvb5nj1P2ZCMxKioKAwdOvSJjs9nn32mvk88KQd7O9QuUxi7Lt3BoSv3GGwhIrOR50+dQ4cOYebMmWjcuDHq1KmDH3/8UQUs7t/PqOKubxEREeq1Ze5nx44dsXHjRvTq1Qu9e/fG9u3bs32O1IypUqWK2sfcSHBl8eLF+Pvvv/Hdd9+pbB15zt27d3P9QJC6MdpFpjA9KXu7Ani7U2V1W66+yJQiIiJrFR8fjwEDBqipo/kJnmiD4xJw79+/P4KDg3PdXgLjEhDPvBCR9QqPTsCH606r6UIybUgCLZLtMOvZ2tg0voW6uMVAi/7I+bYE32VcfhJyATU6Olq3XLt27bFfq27ZwurnodDIJ9onIiKTZLZIjRbJbNEqUqSIqtly+/bt/5yy87iZLaJHjx4YP368ul2rVi3s2bMH8+bN080R1UpISMBPP/2karr8l8xXZ4OCgtCoUSM173TRokUqJTKnD4TMj8nJuz4CLq0q+aJhgDf2BUdi6sYL+LpvzSd+TSIicyRjuQS2ZVzPK21wvGLFirh16xY++eQT9RqnT59Wn0OGvFpKRObtyt04FVxZefg6UtIyanXUKu2Fsa0D0bqy7xNNcaEcjvmVK2pap9TpelKSXS6LPjz1oG7LoVAWySUiCwy2yAeWFMjVFqeVui3adZmvGkotF32QIouSOl61atUs6yVzZdeuXY9sL/Vj5Krpc889l+/3koK6EnSRq6fG+EDITI6hTB/qMXs3Vh+9jhealkPVkpxrSkTWZd26ddiyZYuaEpof5hQcJyLzcPFWLOZsu4zfjoVBWw9VLlyNaVUBTQKLMMhiQAsWLICvry+6dOkCc1KrjBfsCkBliUumUwnPgqbeJSKivAdbJLgiVxYfXle7dm3dbQkcpKXpp42xk5MTnnrqKZw/fz7L+gsXLmTb9UhSGqVFtFRLzy9JOZcW082aNYMp1Cztha41SuCPE+H4fMM5LB5W3yT7QURkKBJokQ5zXl5eWdZLsV0Ze6XjnLkHx4nItE6FRWP21kvYcFqaNWSsa1nJB2NaBeo60pDhSNa5BFuGDBmiLohmFhkZiatXr+LGjRvqvvb8Xdu9yNAKOTuoWi2nb8So7JZuNRlsISILCrZs3bpV728uNVkuXbqkux8SEqIK3Hp7e6spSxMmTFCdhZo3b45WrVphw4YN+P333x85KZfXkLakf/75Z7bv06ZNG1XvRQr6ijfeeEO1MJX3kNowkpYuVz7lw8NUJnSohL9P38SOC7ex6+IdNK1Q1GT7QkSkb1Jkffjw4VnWSdBk2rRpajy2lOA4ERnf4Sv3MGvLRWw9f1u3rmO14qp1c5CfJ/8kRiLThySgMmzYsGyzF6VbnZbU1xIffPABPvzwQ6PsX72yhVWwRf69dKv5ZPVkiIiMGmx5uEaKPkjRXQmiaGnTviXosXDhQhUgkfosMv9+3LhxqFSpElatWoWmTZtmeR0p1luqVCm0b98+2/eRq6lSc0br+vXrqkijrJNMmIYNG2Lfvn3ZZswYS9kibhjUsKwqlPvZX2fxe/mmsJN8SCIiM/BfwfH/uqqZ09VNea4UvrWk4DgRGZ5kTO+9fBczt1zC3uCMBgZyWtS9ZkmMahWIisXc+WcwMjnPlr9LdqQz0ZN2J3pSkt20aO8VHLrCIrlEZB4KaHIaNf+DFCfMPGXI3t4e1apVg62Qk33pSiTV0/VVpyYyLhktvtiK2KRUTO9XCz1rl9LL6xIRPSnJKMwcHNfSBsdlyXxVUyu3q5oy9XTNmjXo2bOnbp2/v786Ydc+R66OSuZi5uD4xx9//Eg9L2OP10RkGHJauvV8hAqyHL0apdY52hdA79p+eLllefgXdeOht1JPOlZLrZZGn21RQbkTH3ZQU4uIiCwi2LJz506VeXLw4EF1393dXRWk1T5dTpqllXLbtm1hCwx18i5zkb/8+zxKeRXEP6+3gIujvd5em4jIFjHYQmT+0tM1qhbLrC2XcCY8o/GCs4Md+j9VGi+1KK/Oi8i66WOsbvL5FlUkd+kLDTgln4hMLs8h3zlz5mDw4MGP1HGRqTcScJkxYwbmzp1rM8EWQxnWpByW7L2S8UGx7wqGNwsw9S4RERERGURqWjrWHb+hLjZdvh2n1rk52aup1S80Kwdf94wumER5Uc+/MMKOJaipRKx/SESmZpfXDSWjpX79rF1y/Pz8VLBF0r4lELN3715D7KNNKehkj9faZ3R9khTa6PgUU+8SERERkV4lpabhp/1X0errbXjtl+Mq0OLh4oBxbSpg11utMbFzFQZa6LGK5AopkktEZDGZLWFhYShRooTu/qJFi7IUO5QiiXfvZhQwoyfzdB0//LAzBOdvxWLOtkvqhIOIiIjI0iUkp2H5gauYvyMYN2MS1boibk4qi2Vww7Jwd3E09S6SBatbNqMF+JEr91TWlIN9nq8rExGZLtgiNVqk+4S2Y0/v3r2zPC6PsfCgftjbFcDbnSrj+YUHsWBPKJ5r7M+5ykRERGSxYhNTsGTfFXUx6W5cslpX3MMFLzUPwID6ZVRmL9GTqlTcHe7ODqrZxLmbsaheiq3Bich08hzubdCgARYvXpzj49KJQrYh/WhZyQeNAoogOTUdX2/MaKFKREREZEnuxSVj6qYLqnDpFxvOq0BLae+CmNwrCNvfbIlhTcsx0EJ6vWBZm1OJiMjSMlukE5EUvy1SpAgmTJgAX19ftT4iIgJTpkzB0qVLsXHjRkPuq02R7k4TO1dG91m7seZoGF5oWg7VSjI6T0REROYvIjZRZbFINkt8cppaV97HDaNbBaJ7zZKc3kEGrduy48JtHAyNxJDG/jzSRGT+wZZWrVph5syZGD9+PKZOnaqmDElAQNqzOTg4YPr06WjdurVh99bG1PDzQreaJfH78Rv4/K9zWPICM4eIiIjIfEk3xfnbL2PFwWtISk1X66qW8MCY1oHoWK047OwKmHoXycqxSC4RWVywRYwaNQrdunXDypUrcfHiRbWuQoUKeOaZZ1C6dGlD7aNNm9C+EjacCsfOi3ew8+JtNKvgY+pdIiIiIsoi9E4c5m67jNVHryMlTaPW1S7jhbGtA9Gqkq+6QEdkDLXKeKnpROHRiSr4V8qrIA88EZl/sEVIUEWyW8g4yhRxxeCG/vhxdwg++/McmowtyqtCREREZBYu3IrF7K2XVBZuekaMRdWckyBLo/JFGGQho3N1ckC1kh44cT0ah0IjUapWKf4ViMh8C+Tu3bs3zy8YFxeH06dPP8k+0UMk9VYqq58Jj8Fvx8N4fIiIiMikTl6Pxoglh9B+2g78diwj0NKqkg9WvdwIy19qiMaBRRloIZOp+6BI7qHQe/wrEJF5B1uee+45tGvXDr/88gvu37+f7TZnzpzBO++8g8DAQBw5ckTf+2nTvN2c8HKr8ur2V39fQGJKRqE5IiIiImOSTIEhPx5At1m78PfpW5DZQZ2qF8cfY5tiwfP1UbesN/8gZHJP+Wf8Ozx0hcEWIjLzaUQSSPn222/x/vvvY+DAgahYsSJKliwJFxcX3Lt3D+fOnVMZLb1798amTZtQvXp1w++5jRnWpByW7L2i5p7KzxebB5h6l4iIiMgGaDQa7L50F7O2XsS+4Ei1TmpiSFehUS3Lo0Ixd1PvIlG2RXLP34xBTGIKPFwceYSIyOgKaOQTNB8ka2Xnzp0IDQ1FQkICihYtitq1a6tuRd7etnM1IyYmBp6enqobk3RmMoZfDl3DmytPwMPFATvebAUvVyejvC8RkSUzxXhNZA3kFPGfsxGYtfUSjl2LUusc7Qvgmbp+GNmiPMoWcTP1LpIV0fdY3eyLLbgWmYBFw+qjRUU2mCAiCyiQW6dOHbWQ8T1dxw8/7AzB+VuxmLPtMt7pXIV/BiIiItKrtHQN/joVjtlbL+NseIxa5+xghwH1y+Cl5gEoye4uZAHqlfXGtcgwHA6NZLCFiCwj2EKmIym7b3eujOcXHMTCPaF4rlFZ+BV25Z+EiIiInlhKWroqdjtn2yUE345T69yc7DG4kT9eaFoOPu7OPMpkMer5F8aao2Gs20JEJsNgi4VpWdEHjcsXwZ7LdzF14wVM7VfL1LtEREREFkwK7688fB3ztl/G9XsJap1nQUc838QfQxv7c9oyWWxmizh6NUoFEh3t89QXhIhIbxhssTAFChTAxE5VVBeANcfCMKxpOVQv5Wnq3SIiIiILE5+cip/2X8V3O4NxKyZJrStayAnDmwVgUMOyKOTM00SyXBV8C6k6hzGJqWo6XA0/L1PvEhHZGH6KWqAgP0/VAWDd8RuYsuEclrzQwNS7RERERBZCurNIZ8MfdoUgMi5ZrSvh6YIRzQPQv34ZuDjam3oXiZ6YnV0B1C1bGFvP38ah0HsMthCR0T1RPl1iYqL+9oTyZUKHSqojwM6Ld7Djwm0ePSIyqB07dqBbt24oWbKkyrBbu3ZtlsdXr16NDh06qA518vixY8dy7XDSqVOnbF8nO3PmzEG5cuXg4uKCunXrqo54RJR/Elj5euN5NPl8C778+7y6X7aIKz7vHYTtE1phaJNyDLSQVannnzGV6PCVe6beFSKyQfkOtqSnp+Pjjz9GqVKlUKhQIQQHB6v17733Hn744Qe9nryLs2fPonv37qoVnLu7Oxo2bIirV6/qHm/ZsqV6bualf//+Vn/yXtrbFYMb+qvbn/11Dunp+ergTUSUL3FxcahZsyZmzZqV4+NNmjTB559//p+vNX36dDVW58XPP/+MV199Fe+++y6OHj2KZs2aqUBN5s8BIspdREwiPl1/Bk2nbMHMLZcQm5iKQN9CmN6vFv55rYXKZnFyYD0Lsj6S2SIOhkaqQD8RkTHl+5P1k08+wcKFC/HFF1/AyclJtz4oKAjff/+9Xk/eL1++jKZNm6Jy5crYtm0bjh8/roI6EiDJ7MUXX0R4eLhu+fbbb23i5H1s60C4uzioeahrj4WZeneIyIrJGCnjf+/evbN9fPDgwXj//ffRtm3bXF9HxvGpU6fixx9/zNP7yrYvvPAChg8fjipVqqhATenSpTF37twcn5OUlISYmJgsC5EtCotKwPu/nULTL7biu50hiE9OQ7WSHpg3qA42vtocPWuXggOLhpIVq+nnpTLBI2KTdMWfiYjMtmbL4sWLMX/+fLRp0wYjR47Ura9RowbOnTuX75N3WXIiwZDOnTurwI5WQEDAI9u5urqiePHieX7fzCfvQk7e//77b3Xy/tlnn+V48i6LljmcvBd2c8KoloGqbsvXGy+gc1AJpv8SkdmKj4/HgAEDVIA9L2N2cnIyDh8+jLfffjvL+vbt22PPnj05Pk/G8UmTJulln4ksUcidOMzddgmrj4Qh9UHmq1zhH9M6UHU1zGtmGZGlK+hkj2olPXHsWhQOXYlUmeFERGab2RIWFobAwMBspxelpKToa7/U661fvx4VK1ZUdQB8fX3RoEGDbKcaLVu2TNUJqFatGt544w3Exsb+58m7nKzn9+RdpjJpF7myag6kLaMUtZOrV4v3hpp6d4iIcjR+/Hg0btwYPXr0yNNRunPnDtLS0lCsWLEs6+X+zZs3c3zexIkTER0drVuuXbvGvwrZhPM3YzFu+VG0+Xobfjl0XQVamgQWwfIXG2LlyEZoVcmXgRayOfV0U4lYt4WIzDzYIgGN7Oqb/Prrr6hdu7a+9gsRERG4f/++mv/fsWNHbNy4Eb169VIp7Nu3b9dtN3DgQCxfvlxNM5IpRqtWrcoxzd0aT96lY8Br7Sqq27O2XEJUfEZXASIic7Ju3Tps2bJFZRLm18NX4WXefW5X5p2dneHh4ZFlIbJmJ65H4aXFh9Bh+g7VqVCSWdpU9sXqUY2xbHhDNCpfhEEWsln1/DOCLYcZbCEic59G9MEHH6i5+ZLhItkn0oHi/PnzanrRH3/8obcdk9cWcgVUroaKWrVqqeyTefPmoUWLFrp6LVrVq1dHhQoVUK9ePRw5cgR16tTR68m7LOaodx0/1b7x3M1YzN56Ce92qWrqXSIiykICLVKHy8vLK8v6p59+WtXNkoD5wyRj0d7e/pFAuATjHw6YE9miAyGRmLX1kq4roZzGdK5eAqNalVdTJ4hIptBldCS6EBGL6IQUeBZ05GEhIvPMbJHuQVJg9s8//1TBCSmIKB2Dfv/9d7Rr105vOyYn2Q4ODqhaNWvgQAok5lbIVgIsjo6OuHjxYo6va20n7/Z2BfB2p8rq9qI9V3AtMt7Uu0RElIXUXTlx4oRqCa1dxLRp07BgwYJsj5YUYZducZs2bcqyXu7LdCQiWyQXhyS40vfbvWqR23Ie0LtOKWwa3wKzB9ZhoIUoEx93Z/gXcYU0IzpylVOJiMiMM1uE1FCRxZDkJPupp55SWTOZXbhwAWXLls3xeadPn1a1Y0qUKPGfJ+8yLUlL7ue1joA5alHRB43LF8Gey3cxddMFTOtXy9S7RERWRKZ1Xrp0SXc/JCREBUy8vb1RpkwZREZGqkD4jRs31OPasVsK4WZeHibPLVeunO6+FF+XsXnMmDHq/muvvaayKSVjsVGjRqpAu7xP5gLtRLYgPV2Df85FYNaWizh+PVqtc7K3wzP1/DCyeXmUKcLCn0S5ZbeE3o3HodBIVbuIiMhsgy3GOnmfMGEC+vXrh+bNm6NVq1bYsGGDyqDRpptLSroUx5WORZKxcubMGbz++uuqdkyTJk1s6uRdsowmdqqCbrN2Yc3RMLzQtByql2IKMRHpx6FDh9Q4rCXjqBgyZAgWLlyoarI8//zzusf79++vm3r64Yf/Z+8+4Koq3ziA/2SDbBmKCri34t57p+YoV+ZKzfJfajatrLTSppmVmiNH08yRlSP3woWJ4sIBuBUFkb35f54X7hUUEBS46/f9fE733nMu954O8t5zn/O8z/NBgd9HxnWpraUhnwERERGYMWMGrl+/rqaLSmZlfkF3ImOSlp6Bf4KuY96O82q6sLCxNMMzzXzwfLvKKOtko+tdJNJ7TX1dsPq/Kwhg3RYiKkGlMiQftRDMzMzyrW0ixWcLSoIm2U/eNTQn7+KHH35QnYCuXLmCGjVqqHaemgwUKVL77LPP4sSJEypwIx2CevXqpU7uJWCj4evri1GjRuU44Z83b55qKa05eZdUdgnqFJS0fpauRFIsV5+KL0767Sj+DLyGttXc8OOY5rreHSIindPX8ZooPylp6Vh39Crm77yAkNtxap29tQVGtPTBc20qwc1eP+vIEenjWH0+PAZdZu9Wgcrj73eHlUWhKykQERV/sOXPP//M8Vim7Bw9ehTLly9XgZAxY8bAFOjrybvUa+n85S4kp6VjxXPN0K66u653iYhIp/R1vCbKTWJKGlYduYIFOy/galSCWudsZ4nnWlfCyJa+cLJjcU8yTsU5Vss0vEYfbUFUfArWTmiFht6ZHYqIiPRqGlFudU2efvpp1RJaCueaSrBFX1V0tcPwlj6qO9GsjWfQuqqbKpxHRERE+isuKRW/HLyERXtCEB6TpNZJ9srz7SphWHMflLbW6cxvIoNmZlYKjb1dVN2jIxfvMNhCRCWiyHLomjdvjq1btxbVy9FjeKljVTjYWOD09WiVgkxERET6SVrRStHbNp9ux8cbTqtAi5eTDWb0rYO9b3bE8+2qMNBCVASa+GaWGGDdFiIqKUVymSQhIQHffPMNKlSoUBQvR4/JpbQV/texKj7ZeAZf/huMXvXLwcbSnMeViIhIT0TGJeOHvaFY7h+GmKRUtU7a007oUBX9GpZnTQmiItbEN3PqUMDFSNVCPb8alEREOgm2uLi45BicZLCKiYmBnZ0dfvrppyLZKXp8o1r5qhO4a3cT1e349lV4WImIiHTsZnQiFu0Owc8HLyEhJbOpQHVPe3WRpFe9crAwZ+FOouJQr7yTapd+OzYZFyPi4etWmgeaiPQr2CJde7IHW6Q7kbu7u5pGJIEY0g+SyfJqtxp4bdUxfLfjPAY3rQhnOytd7xYREZFJkgL23+++gN8PX1FF7DVf/l7qVBVda3mqmhJEVLznxvUqOKmaLQEX7zDYQkT6F2yRFspkGPo3LI/Fe0Jw5kaMCri806u2rneJiIjIpITcisW8nRdUDbXU9MwGkE19XVQmS/vq7pzKQFSCmvi4qGDLkYuReLoxyx8QkR4EW44fP17gF6xfv/7j7A8VIelCNPWJWhj5wyEs97+IES19VbciIiIiKl5SpF4udPwTdB0ZmTEWtK3mporYN69choefSAca+2Rm4R8Ou8PjT0T6EWzx8/NTV16kPkt+5DlpaZnzj0k/tKvmhtZVy2Df+QhVLHfOkIa63iUiIiKjFXg5Ct9uP4+tp29q13Wp5ammC/lVdNbpvhGZOk2w5Xx4LKLikznFnoh0H2wJDQ0t3r2gYiMBsKk9a6H3N3uxLvAaxratjLrlnXjEiYiIitDBkAh8u+M89py7nfX5C1XwVqYL1SrnyGNNpAfK2FujsntphNyKU9OJOtfy1PUuEZGpB1t8fHyKf0+o2EhwpZ+flwq2zNp4Gj+Nac454kRERI9JMn53n7uNb7ef005LkCm8UjPtxQ5VUMXdnseYjIKvry8uXrz4wPoJEybgu+++U38L06dPx8KFC3Hnzh3VOEPW16lTB/pYt0WCLfI3y2ALEelVgVyNU6dO4dKlS0hOTs6x/sknnyyK/aIiJp2JNgTdUNOJ5MRQivIRERFR4aWnZ2DL6ZtqulDQ1btqnbSUHdS0Asa3q8L6aGR0Dh8+nKNUwIkTJ9C1a1cMHDhQPf7ss88we/ZsLFu2DNWrV8dHH32ktgcHB8PBwQH6pImPK34PuKKK5BIR6VWwJSQkBP3790dQUFCOOi6adtCs2aKfpDDuiJY+WLw3FLM2nEabqm7q6hsREREVTFp6Bv4+fk0Vvj17M1ats7U0xzPNvfF8u8rwdLThoSSj5O6e8yLdJ598gipVqqB9+/bqu8CcOXPwzjvvYMCAAWr78uXL4enpiV9++QXjx4+HPmnim1m35diVu0hKTYO1hbmud4mIjJRZYX9g0qRJqFSpEm7evAk7OzucPHkSu3fvRpMmTbBz587i2UsqElKcz9HGQrWClhaURERE9HDJqen4/fBldP5yJyb9FqgCLQ7WFqqz0N43O2Ja79oMtJDJkKz2n376Cc8995y62Cq1HW/cuIFu3bppn2Ntba0CMf7+/nm+TlJSEqKjo3MsJaGSW2mUKW2l/q5PZGWmERHpRbBl//79mDFjhopwm5mZqaVNmzaYNWsWJk6cWCw7SUXD2c5KFeoT0pkoMYWdo4iIiPIin5Mr9oehw+c78Mbq4wiLiIeLnSVe61Yde9/qhNe611AFN4lMybp16xAVFYVRo0apxxJoEZLJkp081mzLjXx3cHJy0i4VK1ZESZAAUaOsrkQBbAFNRPoUbJFpQvb2mQXf3NzccO3aNW0RXZmXSfptZCtfeDnZ4NrdRCzzD9P17hAREemduKRULNx9AW0/24H3/jypPjPdHazxzhO1sPfNTnipUzU42VrqejeJdGLJkiXo2bMnvLy8cqzXlBTQkOlF96/LburUqbh79652uXz5MkpK06ypRAEXMwtbExHpRc2WunXr4vjx46hcubKqNC4FsaysrFT1cVlH+s3G0lwVy5238wKqe9irFMqYxBQ42FgiNT0ddlaPXDOZiIjIoN1NSMFy/zD8sC8UUfEpal15Z1u80KEKBjauoD5DiUyZdCTaunUr1qxZo11XtmxZdStZLOXKldOuDw8PfyDbJTuZaiSLLjT2cVW30v75YUEhIqISy2x59913kZ6eru5LpXEZdNu2bYsNGzZg7ty5j7wjVHL6NSyPP15siaOXo9Dk4y1o/NFWdfv9rhAkcWoREeVCanP16dNHXcmUk1JJI89OTry7d++uMh5le2Bg4AOvIUUSpaCira2tmorat29fnDlzJt/j/cEHH6jXy75oTuyJikpEbBI+23QGrT/ZjtlbzqpAi9R1+Ozp+tj5egcMb+HDQAsRgKVLl8LDwwO9evXSHg+p5Sjj8pYtW3LUddm1axdatWqll8etbnlHWFmYITIuGSG343S9O0RkpAqcxuDn54exY8di2LBhcHHJTL2TTBZpAR0ZGanWMSpsGJJT07B0Xyi+2X5euy46IRVfbzun7o9vX5kZLkSUQ1xcHBo0aIDRo0fjqaeeynV769atVRvQcePG5Xr0GjdurD5DvL291eeGBFKkoKIUVzQ3zztjoE6dOupKqkZ+zyXKTUJyKszNzB7I5LxxNxELd4fgl0MXkZiSeSGphqcD/tepKnrVK8eufUTZyMVWCbaMHDkSFhb3vkLI+f/kyZMxc+ZMVKtWTS1yXxppPPPMM3p5DKUDkV8FZxwKi8SRsDuo4p5ZIoGISCfBFpkyJFktr7/+umr9PGbMGHTu3Fltc3XNTMUjwyAnnHnVa1nqH6otoktEpCHz82XJy/Dhw9VtWFjetaCef/557X1fX1+VHSkBHPkZyXjJi5zUM5uFHpVkbC7YFaI+3+TCgqOtBUa3qoQxbSph9NJDOH0jRj2vQQUn9fnXpZYnzMw4pYDofhL0vnTpkupCdL833ngDCQkJmDBhAu7cuaO+N/z7779wcHDQ2wPZ2NdFBVsCLkZiUNOSKc5LRKalwNOIvv/+ezUXU2qzaNq7ycmydCaSgbc40tLF6dOn8eSTT6oq5TJgt2jRQvt+cmX05ZdfRo0aNVT0XK6WSkckKbKVH1NPS5cre3LCmRtZL9uJiIqTZMLIFVJJP39YB4pz586pzwl57pAhQxASEpLv83XVTpT0M6NFapRJ5qbmc0+TybloTwhe6VodzSq5YsVzzbDuf63RrU5ZBlqI8iDn/lLfpHr16g9sk3NpOb++fv06EhMT1RQiqfOoz5qwIxER6VPNFhsbG3X1cvv27Th//ry6LxXJZTqRzNX//fffHykt/dtvv811+4ULF1Rb6Zo1a2Lnzp04duwYpk2bpvZDSCckWb744gsEBQVh2bJl2LRpk8q6eRhJS5cPBM0iP28qJIVaruzlRtbLdiKi4jBv3jzV0U4WGa9ljr8UWc+LXB1dsWIFNm/ejEWLFqlgv9QAiIiI0Lt2oqSfmZyS0ZKb5fvD0L6GO34f3xLtqrtzKjSRiWmcFWyRmi1St4mIqKiVypAQ9WOQH1+9erUqfBgVFaVaQz/SjpQqhbVr16Jfv37adXIF09LSEj/++GOBX2fVqlV49tlnVSAn+3zS7CTyLlk0uRVwLCi5Uion8ZJF4+joCEO70icp1ZoaLdlN6lyNNVuIqNDjtYZMCZIMlKNHj6paX/eTMVM6VEiQWwLlV69exb59+7RB9IeRsV2mHEnK+pQpU/LMbJEl+3gtARdDHK/p0YTHJOJQSCQa+rioord5OfJuF5Sx1003FCLS/bl119m7cC48FguHN1aZbUREOu1GlN2OHTtUkaxRo0apIEteRREftQjXP//8o1IVJWtGKp/LFc7cphplpxmg8wq0aJhyWrqtlQUmdKiiAiuaDBe5fblTVYxtW4nFcYmo2MiJtBRPbNeuHf744w/VjUgCNwVVunRp1KtXT43heZFWovI5kH0h43c5Mh6L94Tg6fn+aD5zG95bfxIudszkJKK8NfF10baAJiLSebBF6qVInRaZOiQFcqX1s6SFy1XKBQsWFNmOyZXP2NhYfPLJJ+jRo4cqsiWFeQcMGKDmgeZG0so//PBDlWWTH6alA9aW5iqDJeCdrurK3uF3uqBueSf0n+eP/RfyTs8nIipKkh2ZPQvlYeS5UsurXLly/EUQzofH4Nvt59Br7h60/WwHPvrnNAIu3oHk7Hq72uHqnQRVDDc3sl66EhGR6Wrsk9nk43BYpK53hYhMuRvRL7/8oooZSjaLp6cnRowYoWqjVK1aPJ1rJLNF9O3bF6+88oq6Lynp/v7+KqjTvn37HM+XTJNevXqhdu3aeP/99/N97ewdNeQKacuWLVVa+vLly/NMS586dWqObZq0dEMmbS+FJoV6++lwnA+Pxau/B2LjpHZwsmPtFiLKJMFvqdWlIe2aZSqmdKPTtHKWYLzU0RLBwcHqVoqPyyLZgytXrlQFFt3d3dX0oU8//RS2trZ44okntK8rQXwJrL/00kvq8WuvvaYKqct7SBBeOhjJ+CtZlWSawbkTV6Ox6eR1bDpxAxduxWm3SQOh5pXKoEfdsuhWxxPlnGzV+gkd7NTt/d2IJMNTLjwQkelqmpXZIuNKYkoabDgmEJEugi0yVUiCGTKNR06MzcweawbSQ7m5uampQBI8ya5WrVrYu3dvjnUxMTEq+0UKLko6utR5KYyCpqXLYsze61MbB0MjEBYRj3fWBeGboQ1ZMJCIlICAAHTs2FF7NDTBZwl6SHHy9evXY/To0drtMj1TSPBb6mRJTZY9e/Zgzpw5qi2oBO1lKpEE0GWaaPbC6Ldv39Y+vnLlCoYOHarWSZBGOtIdOHAAPj4+/M2YiLT0DJXiL8GVzSdv4GpUgnablbkZ2lRzQ486ZdG5lkeu9Vc0mZzS1lm67UkReMloYaCFiCQDzs3eGrdjkxB09S6a+mZmuhARlWiwRU54s58QFzfpTtG0aVPt1VGNs2fP5jjJliucUtNFAiFysl/QIou5paW3bdsWpqy0tQXmDGmIp+b74+/j19GppgcGNKqg690iIj3QoUMHlVWQX0BelrxIjawNGzY89H2kwG52v/32WyH3lIxBcmo6DoREYOOJG9hy6gZuxyZrt9lamqNjTXf0qFsOHWu4F6iD3v2ZnFaPV7KOiIyo4Lu0gN508oaaSsRgCxHpJNhSHIGWh6Wlv/766xg8eLC6+ilXVKVN6F9//aXaQGsyWiQlPT4+Hj/99FOOwrVyBdTcPDM9mGnpBedX0RmTO1fDl1vO4r0/T6oPnYqumSnYRERExSUhOQ27z93C5hM3sPX0TUQnpmq3OdpYoEttT5XBIm2amepPREVZJFeCLUfCWCSXiHQUbNFFWrrM25f6LLNmzcLEiRNRo0YN1Wa6TZs26nlHjhzBwYMH1f37a8dI4MbX11fdZ1p64UzoWFWd8B4Ou4PJKwOx8vkWsDDnVUAiIipa0Ykp2HEmXE0R2hl8CwkpadptktrfvY6nqsHSonIZWPJziIiKQZOsqUNHLt1BenoGzKQAFBFRESiVkV9eOOVJMmikhamm1bQxttB84us9iElKxZSu1TGxczVd7xIR0SMx9vHa0ETEJmHLqZvqSvK+87eRknbvNKS8sy161i2rAiwNvV1gzi89RCZDV2N1Slo66n2wGYkp6djySjtU83QosfcmIuOm08wW0l8ydWhGvzp4ZeUxfL3tnCpA2Mg7s2I7ERFRYVyLSlDFbSWDReoipGe7zFPVw15ND5IASx0vRxZmJ6ISJVlzDSo442BopGodz2ALEeks2FK5cmUcPnwYZcqUybE+KioKjRo1Uu09yTj08yuPHWduYf2xa3hlZSD+mdgW9taMzxER0cOF3IrF5pOZGSzHLkfl2FavvJMKrsg0oaoevIpMRLolNQpVsCXsDoY28+avg4iKRKG/OUuniLS0e3Oqs3f0uXr1atHsFelNhfYP+9VVLTcvRsRjxl8n8dnTDXS9W0REpIdkVvLp6zEquCJFboNvxmi3lSoFNPVxRfesAEsFFxZeJyL90dg3M3v7yMVIXe8KEZlisEXaKmts3rxZzanUkODLtm3btAVpyXg42Vpi9qAGGLLoAH4PuIKONTzQs145Xe8WERHpASkmefRylHaK0KXIeO02C7NSaFXVTU0R6lrbE+4OmW2XiYj0jUyVl6BwWEQ8bsUkcbwiopINtvTr10+b7SDdgrKztLRUgZYvv/yyaPaK9ErzymXwYvsqmLfzAt5aEwQ/b2eUc7LV9W4REZEOpKalq3R7Ca5IkCU8Jkm7zcbSDO2ru6spQp1qeMLJzpK/IyIyiIuLNTwdcOZGjMpu6VGXFxaJqASDLenp6eq2UqVKqmaLm5tbEbw9GYrJXapjz7nbCLp6F6+tOoYfn2vO1nhERCYiMSVNdQ6SAMuW0zcRFZ+i3eZgbYFOtTxUBkv7Gu6ws2JtLyIyPI19XFSwReq2MNhCREWh0GdEoaGhRfLGZFisLMwwZ4gfes/di33nI7BkbyjGtaus690iIqJiEpuUip3B4SrAsuNMOOKS79Vrcy1thW61PVUNllZVysDawpy/ByIyaE18XfDzwUs4fPGOrneFiIzEI11+kvossoSHh2szXjR++OGHoto30jNV3O0xrXdtvL02CJ9vDkarqmVQx+te7R4iIjJsd+KSsfX0TTU9aPe520hOvfcZX87JBt2zWjQ38XGBhbmZTveViKgoNfFxVbcnr95FQnIabK0YRCaiEg62TJ8+HTNmzECTJk1Qrlw5VcOFTMfQZhWxIzgcW07dxKTfAvH3y21gY8kPIyIiQxUenYjNp25i04nrOBASibT0DO023zJ2Kp2+Z92yqF/BiZ/5RGS0KrjYwtPRGjejk3DsShRaVC6j610iIlMLtixYsADLli3D8OHDi2ePSK9JcO3Tp+oj8PJunA+PxawNpzG9b11d7xYRERXCpYj4zA5CJ2/gv0t3kHEvvoJa5RxV/RXJYKnuac8ACxGZzDmuZLf8E3QdRy7eYbCFiEo+2JKcnIxWrVo9/juTwZK5+l8MbICRPxzC8v0X0aGGBzrW9ND1bhERUR4yMjJwLjxW1V+R5dT16BzbG3k7q+CKTBPyKVOax5GITLZIrgRbDodF6npXiMgUgy1jx47FL7/8gmnTphXPHpFBkNaeo1v7Yum+MLz+xzFsmtwObvbWut4tIiLKFmA5fuWuyl7ZfOIGQm7HaY+NuVkptKjsqjJYutYui7JONjxuRGTymvpm1m357+IdpKdnsPMmEZVssCUxMRELFy7E1q1bUb9+fVhaWubYPnv27MfbIzIYb/aoCf/zEQi+GYM3/ziOxSObMN2ciEiHpN5KQFgkNp64gX9P3sC1u4nabVbmZmhbzU1lsHSp5QmX0lb8XRERZVOrnAPsrMwRnZiqsgFrlHXg8SGikgu2HD9+HH5+fur+iRMncmxjsVzTIoVxvx7qhye/3YdtZ8Lx08FLGN7CR9e7RURkVBKSU2FuZoaYxBQ42FgiNT0ddlb3Pr6lY5D/hduqBsu/J28iIi5Zu02+NMg0T8lgkVt760dqQkhEZBKky5pfRWf4X4hQU4kYbCGix1Hos64dO3Y81huScalZ1lFluHz49yl8/M8ptKzsiqoevApARFQUklLSsGBXCJb6hyI6IRWOthYY3aoSXuxQRX0RWH3kigp2xySman/GydYSXWt7qgBLm2pu7BhHRFQI0tpegi1SJPdZXkQkosdg9jg/TCRGt/JVqemJKemqHbRcZSUi47J792706dMHXl5eKotx3bp1ObavWbMG3bt3h5ubm9oeGBj4wGuMHz8eVapUga2tLdzd3dG3b1+cOXPmoe89b948VKpUCTY2NmjcuDH27NkDU8lombfzAr7edk4FWoTcyuPvdpxHQnIa1gVeU4EWDwdrlVn489jmCHi3iypi3qW2JwMtRESF1CSrbkvARRbJJaLH80j5xIcPH8aqVatw6dIl1Z3o/hNuMi1mZqXUiX2PObtx8lo0vtwSjKk9a+l6t4ioCMXFxaFBgwYYPXo0nnrqqVy3t27dGgMHDsS4ceNyfQ0JlAwbNgze3t6IjIzEBx98gG7duiE0NBTm5ua5/szKlSsxefJkFXCR1//+++/Rs2dPnDp1Sr2OMZOpQ5LRkpvl+8NwYGpnTOpcFe2qu6NhRRcWciQiKgINvZ1hVgq4HJmAm9GJ8HRkAXEiejSlMqRdQSH89ttvGDFihDpB3rJli7o9d+4cbty4gf79+2Pp0qUwBdHR0XBycsLdu3fh6Oio693RC1IvYPyPR1CqFNTV1VZV3HS9S0RUDCRzZe3atejXr98D28LCwlQWytGjR7X1vfKrASYBnPPnz6uMl9w0b94cjRo1wvz587XratWqpd571qxZuf5MUlKSWrKP1xUrVjS48ToiNgmNP9qa5/Yj73ZBGXaBIyIjoU/n1j2/3oPT16Px3TON0Kt+OZ3uCxGZ0DSimTNn4quvvsLff/8NKysrfP311zh9+jQGDRpk9FcZKX/d65TF0GYVIeG7V38/hrvxKTxkRJQryYSR4LwEZiQQkhvJnDxy5IgK6mcnj/39/fM8shKEkRN2zZLX6+s7KYYrNVpyI+tlOxERFb2mvi7qllOJiKhEgy0XLlxAr1691H1ra2t1wixXOV955RXVErooawAICeQ8+eST6oTZwcEBLVq0UNOXNOTq5csvv6zqBJQuXVo998qVKw99b1OtAVDcpvWujUpupXH9biLeXhuEQiZOEZGRk7HX3t5eLZs2bVIZkhK4z83t27eRlpYGT0/PHOvlsWRT5mXq1KnqyqhmuXz5MgxRWnq6KoabG1kvXYmIiKjoNfbJDLZIkVwiohILtri6uiImJkbdL1++vLb9c1RUFOLj4x+pBsC3336bZ2CnTZs2qFmzJnbu3Iljx45h2rRpKkCiIXP5JZ1dpjft3bsXsbGx6N27tzpBz4umBsA777yjUt3btm2ragBkD+LQo5F2pHMG+8HCrBT+CbqO1f9d5aEkIi2p2SLj7q5du1CtWjWVFZmYmJjvEZJgfHYSxL1/XXZyIUBS0LMvhsjWygJj21bCy52qajNc5HZS52qY0KFKjvbPRERU9EVypRZhXNK9bm9ERIVR6DM1CUzIlch69eqpk+RJkyZh+/btal3nzp0L9VoS4JAlLxIMeeKJJ/DZZ59p11WuXFl7X65YLlmyBD/++CO6dOmi1v30008qZXzr1q2qM0ZuZs+ejTFjxmDs2LHq8Zw5c7B582ZVEyCvGgBUcA0qOuOVrtXx+eZgvP/nCTTzdYV3GTseQiLSTu2RQItkKrq4uKiA+dChQx84OpKxKIVz789iCQ8PfyDbxRilpWeoOlijWvni8NtdEJuUqqYOSUaLtWXuBYWJiOjxlXe2hZeTDa7dTcSxy1FoVZV1CImoBDJbJAtlyJAh2lTt1157DTdv3sSAAQNU4KOopKen459//kH16tVV0MTDw0MVSsw+1Ujm8qekpOSYzy9TkurWrZvnfP5HrQEg05WkcFf2hfL2QvsqKsgSl5yGySuPIjWN6e5E9CDJUslezDY7mV4k0zwlmJ+dPG7VqpXRH86tp2/C/0IE3lx9HDIhU4rhWlmYMaOFiKgENNa2gOZUIiIqwWlEEtBQP2xmhjfeeAPr169X2SJyhbKoyJVLmRL0ySefoEePHvj3339VtyMJ6kj6uZCrnXIyfv/75jef/1FrABhLwcWSYm5WCrMHN4CDtQX+uxSFb3ec1/UuEdFjkPE4MDBQLULaNct9zfRLaeUsj6UlswgODlaPNeNqSEiIGkcl2C0/s3//fpUdaWtrqzIYNSRDMvvU0ilTpmDx4sX44YcfVA0vqQ8mP//CCy8Y/e9zxf4wdTu4qTdsmMlCRFSimmTVbTkcFskjT0QlE2yRlG4JhNwvIiJCbSvKzBbRt29fdXItLUTfeustVY9lwYIF+f7sw+bzP0oNAGMpuFiSKrjY4aP+ddX9b7afZ5ExIgMWEBCAhg0bqkUTBJH77733nnosQXd5rCmgLhmQ8lgzXkutLSlELoGVqlWrqkCLFDWXjELJXMxeq0uC4hqDBw9WUz1nzJihPgeksPqGDRvg4+MDY3buZgz2nY+AWSng2Rbs9EdEpKsiuUcvRalpnURExV6zJa/uMpIGnldHiUchc/UtLCxQu3btHOtr1aqlCuGKsmXLqmlBd+7cyZHdIsGgvFLMH7UGgBRclIUKp69feWw/E44/A6/hlZWB2DCpLeytWdSRyNB06NAh3+5io0aNUkteJCNSgiQPExaWmc2R3YQJE9RiSpZnZbV0qeWpAtdERFSyapZ1UOesUi8r+EYMansZZrF1ItKdAn/rnTt3rrqV7A9J6Za2nRoyLUeuNkrXoKIigZumTZuqVPTszp49q72iKXP5LS0t1fx9uUoqrl+/rjokZS+qm1cNAJmWpCGPJYuGit6MvnUREHYHlyLj8cH6k/hiYAMeZiKiPEQnpmBNVic3KY5LREQlz8LcDA29nbHn3G0cuRjJYAsRFV+w5auvvlK3cmVT0sKzTxmSAIavr+9Dp/fkVgPg/Pl7tTw0NQCkLoy3tzdef/11lULerl07dOzYEZs2bcJff/2l2kALqZ0iXYVeffVVlClTRv2cFOyVTkma7kSaGgASWHnppZe06e/Dhw9HkyZN0LJlSyxcuNBkagDogpOtJb4a7IchC/fjjyNX0LGGB3rVL6fr3SIi0kt/BFxBfHIaqnnYo2WVMrreHSIik55KJMGWw2F3MLwlg99EVEzBFgmECAl6rFmzpkiK4UoNAHk9DQmCiJEjR2LZsmUqQCIBHCmqOHHiRNSoUQOrV69GmzZtcgSBZLqRZLYkJCSowIr8bPZgUG41AKTGjNQAkEwY6V5kCjUAdKlZJVdM6FBVFcp9e20QGvk4o5yTra53i4hIr6SnZ+DHAxfV/RGtfB9af4yIiIpP06yOREfYkYiIHkGpjPwm4ReATCEKCgpSgYqi7Eak76T1s2TWSLFcR0fO4SyIlLR0PD3fH8eu3EXLymXw89jmMJPqj0RExciQxuudweEYtfSw6uR24O3OKM0aV0RkIvRxrI5LSkX96f+qArn+b3WClzMvFBJRMXYjmjx5MpYsWaINtMgUn0aNGqlWyJrpPUS5sTQ3w5whDWFraY79IRFYtCeEB4qIKJvl/pmFcZ9uUoGBFiIiHZOAd61yDup+ALNbiKi4gy2rVq1CgwaZBU6lfop0jjhz5owKwrzzzjuFfTkyMZXcSuP9Ppkdpr74Nxgnrt7V9S4REemFsNtx2Hn2lro/grUBiEjPXL16Fc8++6yqk2hnZwc/Pz8cOXJEu/3mzZuqK510n5PtPXr0wLlz52DomvhkTSUKi9T1rhCRsQdbpNaJtFwWUudk4MCBqF69uipUK9OJiB5mcNOK6FbbEylpGZi8MhAJyWk8aERk8qRWi0zsbV/dXQWmiYj0xZ07d9C6dWvVBXTjxo04deoUvvzySzg7O6vtUpWgX79+CAkJwZ9//omjR4+qEgPSsCIuLg6GrIlvZpkEZrYQUbEHWzw9PdUAK1OIpDuQputPfHx8jqK0RHmRgo+fPFUfHg7WOB8ei5kbTvNgEZFJi09Oxe8Bl9V9tnsmIn3z6aefqpIBS5cuRbNmzVQXUmlKUaVKFbVdMlgOHDiA+fPno2nTpqqpxbx581Tn0V9//RXGkNly+no0YpNSdb07RGTMwZbRo0erzj/SwUe+NHft2lWtP3jwIGrWrFkc+0hGyLW0Fb4c1EB7NXfb6Zu63iUiIp1Ze/QqYhJT4VPGTmW2EBHpk/Xr16NJkyYqo93DwwMNGzbEokWLtNuTkpLUrY2NjXadXIS1srLC3r17c31N+Rkpipt90UdlnWxQ3tkW6RnA0Ut3dL07RGTMwZYPPvgAixcvxvPPP499+/bB2tpaO6C+9dZbxbGPZKTaVnPHmDaV1P03/jiOWzGZH9RERKZE0u9X+Ge2ex7ewodd2ohI78j0IMlaqVatGjZv3owXXngBEydOxIoVK9R2ueAq04amTp2qphwlJyfjk08+wY0bN3D9+vVcX3PWrFmq+5BmkcwZfdVUM5UojMEWIirB1s+mSh/b0xmixJQ09PtuH87ciEHHGu74YVRTlTFFRGQq4/X+CxEYuuiA6tQm7Z6dbC11vUtERDlIhopktvj7+2vXSbDl8OHD2L9/v3osxXKlhuOxY8fURVgpNWBmZqat85hbZosmI0YzVkvARR/HasnCnrbuBNpUdcNPY5vreneIyEBYPMoPbdu2TS3h4eFIT0/Pse2HH34oqn0jE2BjaY6vhzREn2/3YkfwLfx04CKGswsHEZlgu+f+jcoz0EJEeqlcuXKoXTuzm6RGrVq1sHr1au3jxo0bIzAwUAVLJLPF3d0dzZs3V0Ga3Eh2vCZDXt818cnMbPnv0h2kpqXDwrzQkwOIyAQVeqSYPn06unXrpoItt2/fVqmC2ReiwqpR1gFTe2bW+/non9M4dzOGB5GITMLVqAT8e+qGuj+SgWYi0lPSiSg4ODjHurNnz6qpQ/eTTEIJtEjR3ICAAPTt2xeGrrqnAxxsLBCfnKaysYmIiiWzZcGCBVi2bBmGDx9e2B8lypN035DMlt1nb2HSb4FY+79WsLZgdysiMm4/H7ioii62rFxGBZ6JiPTRK6+8glatWmHmzJmqUcahQ4ewcOFCtWisWrVKBVm8vb0RFBSESZMmqXbQcpHW0JmblUIjbxfsOnsLAWGRqFveSde7RETGmNkiaYEy2BIVJanT8sXT9VWXolPXo/Hlv2d5gInI6GtW/XY4s93zyFYPXh0mItIX0s557dq1qo2zdCT98MMPMWfOHAwbNkz7HCmEKxdjpViu1HOR+4be9jm3qUSHLzKTn4iKqUDum2++CXt7e0ybNg2mTN8LLhqqLaduYtyKAEiN3J/HNEerqm663iUiMnD6Ol7/ceQKXlt1DF5ONtj9RkfWACAik6avY7WG/4XbeGbRQZR1tMH+qZ3Y0IGIin4aUWJiokoZ3Lp1K+rXrw9Ly5xdE2bPnl3YlyTS6lrbE0ObeePXQ5cw5fdj2DS5LZztrHiEiMioyHUOTWHcYS18GGghItJzfhWdYWFWCjeiE1W9rQoudrreJSIytmlEx48fh5+fn2rlduLECRw9elS7SAVyosc1rXctVHYrrT7M3l4bpL6UEJFu7d69G3369IGXl5e6mrdu3boc29esWYPu3bvDzc1Nbb//8yAyMhIvv/wyatSoATs7OzWnX9LM5Qpmfj744AP1etmXsmXLwtAdvRyFoKt3YWVhhiFNK+p6d4iI6CHsrCxQxysz4+YIpxIRUXFktuzYsaOwP0JU6A8zaQfdf94+bAi6oVLtBzbhlxEiXYqLi0ODBg0wevRoPPXUU7lul24VAwcOxLhx4x7Yfu3aNbV88cUXqn3oxYsX8cILL6h1f/zxR77vXadOHZVNqWFubvjFszVZLX3qe6GMvWG0PiUiMnWNfVxx7MpdHA6LRF+/8rreHSIytmBLdleuXFFXGcuX52BDRateBSdM6VYdn20KxgfrT6JZJVf4lCnNw0ykIz179lRLXjQd6sLCMoMI95OCiqtXr9Y+rlKlCj7++GM8++yzSE1NhYVF3h9Hss0Yslk0wmMSsSHourYTGxERGYamvi74YV8oAsJYJJeIimEaUXp6OmbMmKEKWPn4+KhUcGdnZ1WVXLYRFZXx7aqoIEtcchomrwxEahr/fREZE00RxPwCLeLcuXNq+lKlSpUwZMgQhISE5Pv8pKQkVWgx+6JPfj14GSlpGWjk7awCy0REZBga+2Z2JAq+GYPoxBRd7w4RGVuw5Z133sG3336LTz75RNVp+e+//zBz5kx88803Jt+hiIqWuVkpfDXYDw42Fjh6KQrfbD/PQ0xkJCIiIlSQfvz48fk+r3nz5lixYgU2b96MRYsW4caNG2jVqpX6+bzMmjVLXRDQLBUr6s80xJS0dPx88KK6P5JZLUREBsXDwQbernaQcoL/sW4LERV1sGX58uVYvHgxXnzxRdWNSObwT5gwQZ0EL1u2rLAvR5Sv8s62+Lh/PXX/m+3ncORiJI8YkYGTTJNevXqp2i3vv/9+vs+VqUtSI6ZevXro0qUL/vnnH+1nUV6mTp2qsmY0y+XLl6EvNp24gfCYJLjZW6Nn3XK63h0iIiqkJj6Z2S0skktERR5skY4SNWvWfGC9rJNtREXtyQZe6N+wPNIzoKYTxTBtk8hgxcTEoEePHrC3t8fatWthaWlZqJ8vXbq0CrzI1KK8WFtbq+lJ2Rd9sWJ/Zk2bZ5p7q05ERERkWJr4uqpb1m0hoocp9JmeZLLINKL7yTrZVpStREeNGvVAy88WLVpot0shxvu3a5ZVq1aZXCtRYza9bx1UcLHF5cgEfLD+lK53h4geMaOlW7dusLKywvr162FjY1Po15B6LKdPn0a5coaXFXLymnSwuAMLs1IY1txb17tDRESPoElW3Zajl++oqaFEREXWjeizzz5T6d/ShrNly5YqUOHv76/StDds2FCkrUSFXAFdunSp9rGcpGvIPPzr1zM7OmgsXLhQ7WN+XTOMtZWoMXO0scScwX4Y9P1+rP7vCjrWdEfv+l663i0ikxEbG4vz5+/VTQoNDUVgYCBcXV1VoXTJbLx06ZJq5SyCg4PVrQSyZZGMFgm0xMfH46effspRuNbd3V07Bnfu3Bn9+/fHSy+9pB6/9tprKigv7xEeHo6PPvpI/dzIkSNhqO2ee9YrB0/HwgeaiIhI96q628PRxgLRiak4dS0aDSo663qXiMhYgi3t27fH2bNn8d133+HMmTPIyMjAgAEDVN0WyVApylaimnTwvLJO5OT8/m2Slj548GCVop6fwrYSlaupsmjoW3cLU0nb/F/HqqpQ7ttrgtDI2wVezra63i0ikxAQEICOHTtqH0+ZMkXdStBD6nVJpooEzjWka5CQmiySTXjkyBEcPHhQratatWqO15bAja9vZgvkCxcu4Pbt29ptV65cwdChQ9U6CcpIduOBAwdUNzxDcicuGX8GZgaiRrY0rH0nIqJ7zMxKqXPS7WfCEXDxDoMtRFR0wRYhQZWPP/4YJWHnzp3w8PBQ7aUl0CPvK49zIyfzcqVVAkEPo2klKsEc6XYhHZUqV66cb3eL6dOnP9b/Cz2+iZ2rYfe52zh2OQpTfg/Ez2NbqK5FRFS8OnTooILreZFpn7I86s9nnx6a3W+//QZjsDLgMpJS01HHyxGNs4orEhGRYZJxXIIt0rhhTJtKut4dIjL0mi0SnJCri7lldEi3h2eeeQYhISFFunOS9fLzzz9j+/bt+PLLL3H48GF06tQpR4ZJdkuWLEGtWrVUW9CibiWqz90tTImluRm+HuwHOytzHAiJxKI9RftvjoioqKWlZ+DH/Vntnlv6qum3RERk+B2JpA5XQS4kEJFpKnCw5fPPP1c1UnLr6uDk5KS2yXOKkkwHkvowdevWVXP2N27cqKYwaVp/ZpeQkIBffvkFY8aMeejrPkorUX3ubmFqfN1K44M+ddT9L/8Nxomrd3W9S0REedp2+iauRiXA2c4ST/qx1hQRkaGTOi2W5qVwKyZJNW8gInqsYIt0Dho4cGCe2wcNGqQyUIqTdJ+Qefq5tfz8448/VOHFESNGFPp1C9JKlPTLwCYV0KNOWaSkZWDib0eRkJym610iIsrV8qx2z4ObVoSNJYuxExEZOhnL65Z3UvcDLkbqeneIyNCDLRcvXsyzVopwc3Mr9qk1Ms1H3iO3lp8yhejJJ59UBRRNqZWoqZI0/FkD6sHT0Roht+Lw8Qa2gyYi/XM+PAb7zkdASksNb8HCuERExjiViIjosYItMlVIukTkRVqCFnZqjbQSlYK2smRvJSrtQ2WbtPzcv3+/KpgohXJlKpEEdaQt6P3vLZk3Y8eOzfV9pJXot99+q30sr7tr1y71ftId4+mnnzbYVqKmzKW0Fb4c6Kfu/3TgEraeuqnrXSIiymG5f2atli61PFHBxY5Hh4jISDT2cVW3UiSXiOixgi3t2rXDN998k+f2uXPnom3btihsK9GGDRuqRdNKVO6/9957qq1zUFAQ+vbti+rVq6tAiNxK8MXBwSHH6/zwww8oX748unXrluv75NVKtEaNGqpttZWVlUG2EiWgTTU3jM2qAv/m6uNq7iwRkT6ITkzB6v+uqPsjW2W2tiYiIuPQxDczs+XszVjcjU/R9e4QkR4qlVHAEtpHjx5Fy5Yt0bt3b7zxxhsqUCHOnDmDzz77TBWZ9ff3R6NGjWAKJBNGsn2kMxGL5epWUmoa+n67D2duxKBDDXcsHdWU3T6ISOfj9dJ9oZj+1ylU9bDHllfacVwiIjKyc+uOX+xE6O04de7ZsWbe5RaIyDQVOLNFMk6kCK1M15Ggi6urq1qkZfKePXvw+++/m0yghfSLtYU55g5tCGsLM+wMvoUVWS1WiYh0JT1Hu2cfBlqIiIxQY23dFk4lIqIHWaAQJKtFCuVu2rRJ1UmRpBiZ2iPTd+zsOBeddKe6pwPefqIW3l9/EjM3nEbLKmXUOiIiXdhz/jZCbsfBwdoCAxpV4C+BiMgINfV1wR9HriDgIovkEtFjBluEra3tAwVqifTBiJY+2BEcrrJbJv56FH++1FplvRARlbTl/pntnp9uUgGlrQv9UUtERAZUJPfY5Sgkp6bDyqLAkwaIyARwRCCjagf92dP14VraStVv+WJzsK53iYhM0MWIOBX4FWz3TERkvKq4l4aLnSWSUtNx4tpdXe8OEekZBlvIqHg42OCzp+qr+4v2hGLvuXtdqIiISoLUapHS8+2ru6Oyuz0POhGREV/o09RtORLGqURElBODLWR0utT2xLDm3ur+q6sCcScuWde7REQmIj45Fb8HXFb3R7by0fXuEBFRMWvimzmVKOAii+QSUU4MtpBRerdXbVR2L42b0Ul4e22QKuZMRFTc1h29hujEVHi72qFDdbYBJSIydk2yMlsCwu7wfJOIHi/YsmHDBmzevPmB9bJu48aNhX05omJha2WOuUMawtK8FDaeuIFVAVd4pImoWElQd8X+MG3BbjOzUjziRERGrm55J1iZmyEiLhlhEfG63h0i0iOFDra89dZbSEtLy/UkU7YR6dOH35SuNdT9D/46ibDbcbreJSIyYgdDI1VxbltLcwxsUlHXu0NERCXAxtIc9Ss4qfsBYZxKRESPEWw5d+4cateu/cD6mjVr4vz584V9OaJi9Xy7ymhR2RXxyWmYvDIQKWnpPOJEVKztnvs3Kg8nW0seZSIiE9HYN6tI7kUWySWixwi2ODk5ISQk5IH1EmgpXbp0YV+OqFiZm5XC7EF+cLSxQODlKHyz7RyPOBEVuWtRCfj31E3tFCIiIjIdTXwyi+QeZmYLET1OsOXJJ5/E5MmTceHChRyBlldffVVtI9I3Xs62mDmgnrr/7Y7zTPEkegS7d+9Gnz594OXlpVpdrlu3Lsf2NWvWoHv37nBzc1PbAwMDc2yPjIzEyy+/jBo1asDOzg7e3t6YOHEi7t69+9D3njdvHipVqgQbGxs0btwYe/bs0bvf4c8HLyItPUNl0tUs66jr3SEiohKkaf984VYcu2AS0aMHWz7//HOVwSLThuTkV5ZatWqhTJky+OKLLwr7ckQlond9LwxoVB7pGVDTiaITU3jkiQohLi4ODRo0wLfffpvn9tatW+OTTz7Jdfu1a9fUIp8TQUFBWLZsGTZt2oQxY8bk+74rV65UAf533nkHR48eRdu2bdGzZ09cunRJb35/iSlp+PVQVrvnlr663h0iIiphrqWtUMU9M8OfU4mISKNUxiP0xJUf2bJlC44dOwZbW1vUr18f7dq1gymJjo5WU6rkqqyjI69iGoKYxBQ8MXcPLkcmYEDD8pg92E/Xu0RkkCRzZe3atejXr98D28LCwlQQXgIjfn75/42tWrUKzz77rArUWFhY5Pqc5s2bo1GjRpg/f752nQT45b1nzZqV688kJSWpJft4XbFixWIbr1cfuYJXVx2Dl5MNdr/RERbmhb6OQURk8gz93PrNP45jZcBlTO5aDZM7V9f17hCRHsj97LYAJ9rdunVTC5GhcLCxxJzBfhi4YD/WHL2KDjU98GQDL13vFpHJ0pxQ5xVoSU5OxpEjRx7odCefPf7+/nm+rgRhpk+fjpIgFx+WZ7V7HtbCh4EWIiIT1aGmO7rU9kCbqu6IiE1S552p6emws3qkr1smKyE5FeZmZuoiKY8hGboC/fXPnTsXzz//vJovL/fzI3PwifRVYx9XvNSpGuZuO4d31gapObblnW11vVtEJiciIgIffvghxo8fn+dzbt++jbS0NHh6euZYL49v3LiR589NnToVU6ZMeSCzpThI4e3jV+7CysIMQ5qy3TMRkanqUN0D83aeV5mO0QmpcLS1wOhWlTChQxVYW5rrevcMQlJKGhbsCsFS/1AeQzKdYMtXX32FYcOGqWCL3M8v44XBFtJ3EztVxZ5zt3D0UhSmrAzEL+NaqK5FRFQyJPjRq1cv1K5dG++///5Dny+fLfdnk9y/Ljtra2u1lGS75z71vVDGvmTek4iI9C8bQ4IE32w/r10nAZevs7pgjm9fmRkuBTyGmmPGY0gmE2wJDQ3N9T6RIZJ6CjKd6Imv9+BgaCS+330BEzpU1fVuEZmEmJgY9OjRA/b29qrui6WlZZ7Plc5G5ubmD2SxhIeHP5Dtogu3YpLwT9B1dX9kK7Z7JiIyVTLtRbIxciPrX2hfBU/P98fdhBRkv1ZQCvce5HUNIfvFhexPyfE6BXhN7d2CvF5h3z/7ljxfJ+99dLCxwJzBDfM9hv/ryHN1MjyFnkQ4Y8YMvPbaa6p1Z3YJCQmqU9F7771XlPtHVCx8ypTG+0/WwRt/HMfsf8+ibVV31KvgxKNNJcYU5yRLRou0h5ask/Xr16tsyfxYWVmpVs9SkL1///7a9fK4b9++0LVfD11CSloGGno7o34FZ13vDhER6Yh8lksmS25kfURcEmISU3EuPLbE980Q1PB0wO3YpHyPYXhMIr7acg7Wlmao7mGPap4OqOZhD3cH63yzXYl0qdBn9lJ08IUXXngg2BIfH6+2FSbYsnv3bhWgkQKI169ff6C7xahRo7B8+fIHOlMcOHBA+7hDhw7YtWtXjucMHjwYv/32W77vPW/ePPXe8r516tTBnDlzVEtRMh0DG1fAzuBwbAi6gUkrj+Lvl9sY/Zdd0g+GOCc5NjYW58+fz5HlGBgYCFdXV3h7eyMyMlK1Y5b2ziI4OFjdli1bVi2S0SKFbeWz4qefflKBF1mEu7u7ymARnTt3VoGVl156ST2W2ivDhw9HkyZN0LJlSyxcuFC9j3wO6VJKWjp+PnhR3We7ZyIi0yYXTeSzPLdggayXgMCH/eogNT2rCWy2XrCau9n7w2Zke0LO9dnuZ9uQo7XsQ16nsK+Xs29tQfbrwfd/2HtamZvBw8E632Mo7bV3BIcjMi45xzYnW0sVdKnmaY9qHg7aW09HBmFI9wr9zTKvufLSBlpOugtD2n02aNAAo0ePxlNPPZXrcyTdfOnSpTmudN5v3LhxKuNGQ9pR52flypWYPHmyCri0bt0a33//PXr27IlTp06pLw1kGuTf8cz+9fDfxSiE3IrDR/+cVo+JipOhzkkOCAhAx44dtY81BWhHjhyJZcuWqUwVGcs1hgwZom6lJssHH3ygguoHDx5U66pWzZkKLIEbX19fdf/ChQuqMG724LkU05UxXoLjdevWxYYNG+Djo9tpO5tP3sDN6CS42VvjiXrldLovRESkW2np6eqiSfbPdg1Zn5aegWaVyuhk3wzp/Ci/YxibmIr3etfGufAYnL0Zi/PhsbgYEaemZgVcvKOW7GRqkgrCaAIwWZkw5ZxsmAlDJaZURvYwZj5cXFzUP0xNq87sARfpFiFXPeVK43ffffdoO1KqVK6ZLVFRUVi3bl2ePyeZLX5+fiozpaAkO6ZRo0aYP3++dl2tWrXUe0vL0NwkJSWp5f7uFprjQYbL//xtDFtyUEXdF41ogq61dV8LgoxHenoGbkQnIiwiDjfvJqJnvXJoNnNrnlduAt7pqjrbUNGR8drJyalIx+uBC/xxOOwOJnauhildqxfJaxIRmbLiGKtLOmt13s4LBpW1aujHMDElTV0wlQCMBF/O3oxRU7UuRsSrAFdu7K0tUFUFYexzBGG8nGxhxoYZVMQKfPlUghkSl3nuuefUdCEZDLNnm8hVSUnxLmo7d+6Eh4cHnJ2d0b59e3z88cfqcXY///yzSkuXgomSoSJXUh0cHHJ9veTkZHWF9a233sqxXtLb/f3989wPCcLI/zcZn1ZV3TCubWUs3B2CN1cfR4OKbeHhkH8tCaL7p5Rci0pAWES8uspyMetWHl+KjEdyarp2TnITX9d85yTLvG92tdFvJ6/dVYEWC7NSGNac2ZBERAQVDJDsVCnkmr0eGwMtxXcMbSzNUdvLUS3ZJaWmIfR2HM7djFXBl3NZQZiw23GITUpF4OUotWRnZ2Wugi5VszJhqmdNRyrvzCAMlUCwRVLFRaVKldTUGwuL4k9zl8DJwIEDVbq4pJlPmzYNnTp1UsESTVtPaUkt+yQ1AU6cOIGpU6eqKU1SQDE3kp4umTj3d7KQx/d3vMhOXleTNp89s4WMw6vdqmPvuds4dT0ar686jmWjmzLFkB64enI5UoIo8SpLRQVU1OM4XLmTkOcVFCFfyiu62qkPbveHzEmWEwvSbyv8M2u19KhbFp6ODMwSkWm4evUq3nzzTWzcuFE1xqhevTqWLFmiCpkLyXKXi5mSkS7TP+VC7MSJE/Hiiy/CVGimAWsumliBmaq6OIbWFuaoWdZRLdnJxS85h8sMwsRobyUwE5+chmNX7qolO1tLc20mTFUJwmQFYyq42MGcmTD0EIWOmEjGyOnTp1GvXmZtiz///FPVVKldu7aal59bTZVHJXP1NWSevhRIlMDLP//8gwEDBmjrtWR/TrVq1dTz/vvvPzVVKC/3153JqxaNhgR3NAEeMj4yKM8d6odec/di19lbWO4fhlGtK+l6t6iEydWOe5kpmuyUOFyKiMf16MT7isTlZG1hBp8ydqrTlW8ZO3hn3fqWKa3mB0vL8YLMSZYrODw5019R8clYF3hV3R/ZKrPODBGRsbtz54662Cq1uyTYIlnmUmNLMs81XnnlFezYsUNlm0ug5d9//8WECRPg5eWlFx3kiGSadnVPB7UA5XJkKMs5nyYTRqYjybQkmaKUkJKGoKt31ZKdjaUZqrhrpiM5aG+9XRmEoccItowfP15FrSXYEhISogIiEvhYtWqV6jJRmNophVWuXDkVbDl37sEvKRoSYLG0tFTPyS3Y4ubmprpe3J/FEh4e/kC2C5kWSRt8p1ctvPfnSczceAYtq7ihRtncp6ORYZKgalR8ijYjJey2ZKfcm/ZzOzZnhfv7OVhbwMfNDj6upVVgRQIp3lm3UkW/IHN9ba0s1NxjwXndhmfl4ctISk1H7XKOaOLjouvdISIqEZ9++qnK6M7etEJT2Fxj//79KhNe6imK559/XjWhkALruQVbcquHSKQLluZm6nuALD2zrU+VIExkvArCnM8qzCvBmAu3YpGYko6T16LVcn9ARxuE0QRiPO3h42qnvfBGpqPQwZazZ8+qgrRCAixSR+WXX37Bvn37VPeJ4gy2SEri5cuXVdAlLydPnkRKSkqez5HMG0l3lGlG0l5UQx4z6k7DW/hgx5lw7Ai+hUm/HcW6/7VW80HJsAIqt2KSctRPUdkpkfFqrm50Yu71UjSktaA2kOJqB18JrpQprT4kZVt+GXAFxXndhkmmiv14IHMK0ahWvpxqSEQmQzrOde/eXU3v37VrF8qXL6+yVrJnmLdp00Y9T+o7SjaL1F2U7w1ff/11rq/Jeoik7yQ4IoETWYCyOc4H5LxSUwtGcyvZMHJB5vT1aLVkJ+2tK7uXzpqSJNk1mQV65RxTgj1knB6p9XN6emaxx61bt6J3797qvkS7s7frLAiZ23n+/HntY6nLEhgYqFpIyyLTkqQltAROwsLC8Pbbb6vMFE2QRNIXpTjuE088odZL6+ZXX30VDRs2VKmOGp07d1Y/89JLL6nHUntl+PDharqRFPVduHAhLl26pLopkWmTL9KfPd0APebsxpkbMfh8czCm9a6t692i+8iH3PW7CfcCKdnrqETEq5TP/JR1tMnKSMkKpGTLUnEsoZopnNdteLafCVf1eZztLPGkn5eud4eIqMRINrt08ZRzaDkfP3TokKrHIlPsR4wYoZ4zd+5cFXypUKGCqu1oZmaGxYsXqyBMblgPkQyV1Gqp5FZaLd3q5Dw/vXInMxNGBWGy6sJIEEbOTeW7hSzAde3PWJpnvpYEYCQQI1OcJAgj56XsTmmCwRYJUHz00Ufo0qWLimxr2idLoKSw03AkrVDmfmpoCtBKCqK8blBQEFasWKHaP0vARZ67cuVKbachyVLZtm2biphL4EYCPr169VLdiGSqkIYEZbIHgmTqk2TJzJgxA9evX1e1XjZs2KCmKBFJAdPPB9bHc8sCsGRvKDrUcEfbau48MCVMiphdVR1+4nDxdlzW1J/MoMqVyAQkp2UGfXMjs3nKu9jey07JCqj4ZD22tWK2EhWe1HISg5tWZMYbEZkUudAq3wFmzpypHsuFTckml/P17MGWAwcOqOwWOafevXu3yn6Rc3j53nA/1kMkYwzCZF7EK40ute99L05Pz1DntPeK8t7LhpHCvDI9SZb7myv4qiBMzulIEpiRWpNkGEplSKpKIRw/flx1AJJMEAmOSGBDvPzyyyqAIVOKTIHMK5X213fv3oWjY85K12Qcpq07oaYMSC2OzZPbwaV00RV/pkwJyWkqDfOB6T4Rcbh6JwH5NPhR6ZgVXG3vBVJc7eDjJkVpS6s2fbwaQEU5Xstc7S6zd6tA3q7XO6ruUkREpkKCJ127dlWZKhoSaJELsNKlSLoTyTi7du1adeFTY+zYsbhy5Qo2bdr00PfguTWZGgnCSAMGVZA3qzPS2axMGGnakHdAxy4rCJMZgJFbmaLE0gdGkNlSv359lXFyv88//zxHNgmRoXv7iVrwv3AbF27F4a01x7Hg2cas0fAIohNT7pvmIx1+4tW6G9GJ+f6stNvLzEjRZKdoMlTsUM7Jli33qMSs2J9Zq6VzLU8GWojI5Mj0/ODg4BzrpB6LJitc6iXKIlOHspPvBpryA0SUkzRWkAuEsnSs4aFdL7kQco6sCvJmdUY6m5UJE5OYqrokybL55M17r1UK6jxZ06ZapiPJfVkYhDGgYEtebGxsiuqliPSCTDX5ekhD9J+3Tw1mvwdcxuCm3rreLb0jHwiRcck5OvxoslMkuCLb8uNoY6HSJDVFaFVgRR672qkpXUVRkJboccQkpmD1kSvq/siWbPdMRKZH2jq3atVKTSMaNGiQqtkiNQ9lEZI1KE0zXn/9ddja2qogjJQbkHIAs2fP1vXuExkUOfeVi4qytK/unuOcOzwmKTPwkm06kjyWBhCht+PUsuXUvSCMnEbLFHoJwFTVFOb1cEAVj9La+oGkR9OI0tLS8NVXX+H3339XU4mSk3N+kYqMjIQpYKqj6fh+1wXM2nhGZVlsmNRWzZU0xTRHGdwfKEYrbZNvxyMmj1RHDTd76/syVDLrp0iBWmc7Ts8i/R6vl+0LxQd/nVJXh7a80o4BQCIySX///bcqanvu3DlUqlRJlRPI3o3oxo0bavu///6rvg9IwEXaP0ugpiAXTnhuTfQYnThjkzIDMNoOSbE4Gx6DqPiUXH9G/iQruNhmTkXS1ITJyoQpbc0gjM6CLe+9956arykD7LRp0/DOO++oTkHr1q1T26QyuSngB4JpBRqeXXIQ/hci0KCCE/54sZVRtmhLTUvH9buJKpCSOc0n81ayVSRTJTEl/zRgLyebbNN8MgMp3ln37Tlok4GO1/L332X2LoTcjsOHfetgODNbiIiKBc+tiYqWfM2PiEvOrAmjCcBk3Zf1eZFpTZm1YHIGYRxKqGOnSQdbqlSpoqqNS/Er6QokrZo166QCOQvkkjGSNsM95uzB3YQUvNypKl7tVgOGKCk1DZcjE3ApMnO6jypMm9Xl53JkPFLzqUgrBbkkAq4NpGR1+fF1s0MFFzvOByWjPIHfffYWRvxwSAUMD7zdmYFDIqJiwmALUcmJkEwY1Z46FufVVKTM+7djk/K9sFo1K/gi05FkWpIEZRwZhMlToXOEJEWwXr166r69vb06eRW9e/dWmS5ExkjmTM7sXw//++U/fLfjPNpVd0dTX1foo/jkVG0h2swOP/fuX7ubgPzCq9LBR1M35V52Suatl7OtUWb0EBWk3fPTjSsw0EJERERGoYy9tVpaVC6TY/2duOSsIIymLkzmrZQTuHY3US1yISq7so42KuhSNaswr6ZTkpMdM2EKHWypUKECrl+/Dm9vb1StWlXNy2zUqBEOHz4Ma2vrx//NE+mpXvXLYUdwBfxx5Aom/xaIjZPb6iySezc+RdVLUYGU25rslMzHt2LyjkiL0lbS4SczI8XbNTOQopn+I4OlVEYnIqj6RNuDw9WhGNEys+MGERERkbFyKW2FZpVc1XL/dw8VeMmajqQJwkjXJM2y59ztHD/j4WCtbU2tvfWwV+9hKgodbOnfvz+2bduG5s2bY9KkSRg6dCiWLFmiiuVKASwiY/bBk3VwKDRS1TB5b90JzBnSsFjeR2b33Y5NzjHdRwVWsoIqeRW70nCxs9RmpGi6/EhwRe6XKW3FAp9EBbDp5HW42FmhbnknVHa35zEjIiIikyRZKk18XdWSXXRiigq6nM8KvpzNmpYkGTDhMUlq2Xc+4oHGGZn1YO7VhJFFMm1g6jVb7id1Wvz9/VWWy5NPPglTwXmlpuvIxTsY9P1+Va/kh1FN1BQjaQ0rRaNS09ML3EZNCm9KFPheh597033kNi45Ld+fl2ix7IMUoc2eneLjWpppe0SPMV4nJKfC3MwMN6MTUcbeSrUvl7pERERUfHhuTWQ85LvReU1NGG2L6lhcjUrI82fkgnDVrCCMTEdS9z0c4GZfsAvFmvO3R/leprfBFlPFDwTTJnUcetcvh2X+YVi+PwzRCalwtLXA6FaVMKFDFVhbmqvnpaSl41pUwgOBFNXtJzIeyal5d/iRMcXLyVabkZJZS0Uz/cdO54MHmZbdu3fj888/x5EjR9RU0rVr16Jfv37a7WvWrMH333+vtkdERODo0aPw8/PL8RoLFy5URdT/++8/xMTE4M6dO3B2ds73fT/44ANMnz49xzpPT09VP6w4xuuklDTM23kBS/1D8/y7JiKiosdzayLjF5eUigu3pCtS5lSk81ktqqWBR34Z+xJ0qSpBmGwdktwdrLVBGH09fyvQt7X169cX+AVNKbuFTJcUy1yw6wK+2X5eu07+sL/edg4ZyECbqu54/Y9juHInAWn5dPixMCulAieZ2SmatsmZQRXp/GNtwS93pB/i4uLQoEEDjB49Gk899VSu21u3bo2BAwdi3Lhxub5GfHw8evTooZapU6cW+L3r1KmDrVu3ah+bmxfP34VcEVmwK0T9Hd//dy3Gt6/MICcRERHRIyptbYH6FZzVcn+Dj5Bbcao1dfa6MHJx+k58Cg6FRaolOydbCcLY470+tbH19E3M3XZe787fCvSu2a9e5kciS2lp+U99IDIG0pVHMlpyI9kuL7SvgpjEVBVosbGUDj85AymawEo5JxtYsMMPGYCePXuqJS/Dhw9Xt2Fhuf9diMmTJ6vbnTt3Fuq9LSwsULZsWRQ3ST2VKyK5kfX/61i12PeBiIiIyNTYWVmoGnmyZJeYkqYyYbIX5ZVgjMwUuJuQgpDbcWq60bNLDurl+VuBgi3p6XlPdSAyRTIXUCKmuZH1sYmpWDaqKTydbFRtlYLMMySi3J07dw5eXl6q450UZ585cyYqV66c5+FKSkpSi/ZvMjq6SP6uZbsxFm8jIiIi0kc2luao4+WklvuDMKG343D9boIKuujr+ZuZTt6VyMBJ0SWZC5gbWe9sZ4X6FZ3h6WjDQAvRY5DgyooVK7B582YsWrRI1Wpp1aqVqguTl1mzZqkaLZqlYsWKRfJ3LduJiIiISPdBmFrlHNGppifKlLbW2/O3AgdbnnjiCVVcUOPjjz9GVFSU9rGc+NauXbvo95BID6Wlp6uiS7mR9VL9mogen0xdkhox9erVQ5cuXfDPP/+o9cuXL8/zZ6QejHxeaZbLly8X6L34d01ERERkWNL0+HtZgSvFyFXF7GnZn376KYYOHartJJGamorg4ODi2UsiPWNrZaGqWwt9q3pNZMxKly6tAi8ytSgvMt1IlsLi3zURERGRYbHV4+9lBQ623N8hmh2jydTJH65Ut5aiS9n7uTPQQlR8JOh/+vRptG3btlhen3/XRERERIbFWk+/l+mmBxKRkdC0EdMUXbJiGSQyUrGxsTh//l5LvdDQUAQGBsLV1RXe3t6IjIzEpUuXcO3aNbVdk+koXYQ0nYSk3oosmtcJCgqCg4OD+nl5HdG5c2f0798fL730knr82muvoU+fPuo54eHh+Oijj1TB25EjRxbb/yv/romIiIgMi50efi8r8B5IN5X7O6qwwwoRkWkICAhAw4YN1SKmTJmi7r/33nvq8fr169XjXr16qcdDhgxRjxcsWKB9Dbkv68aNG6cet2vXTj2Wn9W4cOECbt++rX185coVNWW1Ro0aGDBgAKysrHDgwAH4+PiU2P87EREREVFhlcoo4HwgMzMzVahQMw/+r7/+QqdOndT8eU1q96ZNm5CWlgZTIFdWpcuFFF90dHTU9e4QEVEeOF4TEek/jtVEZGwKPI3o/pTtZ5999oHnjBgxAqZCE6OSDwYiopIm02+YXVgwHK+JSFc4Vhccx2oiMrbxusCZLZSTpLZXrFiRh4WIdIJZdQXH8ZqIdIVjdcFxrCYiYxuvGWx5ROnp6aoQpETAYmJiVODl8uXLnFJUQiSjiMe8ZPGY69cx59XSguN4rVscO3i8jR3H6qLBsVq3OFbzmJuC6BI+t2Y3okckNWwqVKig7mt+KfILY/2WksVjXvJ4zHnMDQ3Ha/3AsYPH29jx3/jj4VitH/jvmMfcFDiW0Pd23fdDIiIiIiIiIiIyIgy2EBEREREREREVIQZbioC0w37//fe1bbGp+PGYlzwecx5zY8B/xzzmxo7/xnnMjQH/HfOYmwL+Ozf+Y84CuURERERERERERYiZLURERERERERERYjBFiIiIiIiIiKiIsRgCxERERERERFREWKwhYiIiIiIiIioCDHYQkRERERERERUhBhsISIiIiIiIiIqQgy2EBEREREREREVIQZbiIiIiIiIiIiKEIMtRERERERERERFiMEWIiIiIiIiIqIixGALEREREREREVERYrCFiIiIiIiIiKgIMdhCRERERERERFSEGGwhIiIiIiIiIipCDLYQERERERERERUhBluIiIiIiIiIiIoQgy1EREREREREREWIwRYiIiIiIiIioiLEYAsRPZawsDCUKlWKR5GISI9xrCYiMgwcr40Hgy1UIKNGjVJfqF944YUHtk2YMEFtk+fc/3xZLC0t4enpia5du+KHH35Aenp6vu8VFxeHN998E5UrV4aNjQ3c3d3RoUMH/P3339rn+Pr6Ys6cOQb/29u5cyf69u2LcuXKoXTp0vDz88PPP//8wPN27dqFxo0bq+Mhx2XBggUPPGf16tWoXbs2rK2t1e3atWsfeM68efNQqVIl9Tryenv27MmxPSMjAx988AG8vLxga2urjvvJkyeL5P81Ojoa77zzDmrWrKnev2zZsujSpQvWrFmj3lfI/e7du8PNzU392wkMDHzgdRYuXKj2y9HRUT0nKiqqSPaPyBhwrC4eHKsLN1ZHRkbi5ZdfRo0aNWBnZwdvb29MnDgRd+/eLabfEJHh4XhdPDhe5xyvsxs/frwas/P6DiU/07NnT/WcdevWFdNvyLQw2EIFVrFiRfz2229ISEjQrktMTMSvv/6qTqTu16NHD1y/fl1FZzdu3IiOHTti0qRJ6N27N1JTU/N8HwnoyB/4t99+izNnzmDTpk146qmnEBERYXS/LX9/f9SvX18FSo4fP47nnnsOI0aMwF9//aV9TmhoKJ544gm0bdsWR48exdtvv61OWuVnNPbv34/Bgwdj+PDhOHbsmLodNGgQDh48qH3OypUrMXnyZBXwkNeR15MB9dKlS9rnfPbZZ5g9e7Y69ocPH1YBEQmSxcTEPNb/pwREWrVqhRUrVmDq1Kn477//sHv3brXPb7zxhvYEXAJtrVu3xieffJLna8XHx6t/W3IciOhBHKuLHsfqwo3V165dU8sXX3yBoKAgLFu2TH2Wjxkzhn+yRByvixXH65zjtYZ8t5LvBXJBNS8ShGG2ehHLICqAkSNHZvTt2zejXr16GT/99JN2/c8//6zWyTZ5zv3Pv9+2bdskzJqxaNGiPN/LyckpY9myZXlub9++vXqN7IvGvn37Mtq2bZthY2OTUaFChYyXX345IzY2Vrvdx8cnY8aMGRlDhw7NKF26dEa5cuUy5s6dm+P133///YyKFStmWFlZqe3yGiXpiSeeyBg9erT28RtvvJFRs2bNHM8ZP358RosWLbSPBw0alNGjR48cz+nevXvGkCFDtI+bNWuW8cILL+R4jrzuW2+9pe6np6dnlC1bNuOTTz7Rbk9MTFS/jwULFuS5v6GhoTl+B7l58cUX1fG+evXqA9tiYmIyUlJScn3No0eP5vmaO3bsUM+5c+dOvu9NZEo4VpccjtUFG6s1fv/9d/W5ev94T2SqOF6XHFMfr69cuZJRvnz5jBMnTqjvQl999dUDPxMYGKi+O12/fl2999q1a/N9fyoYZrZQoYwePRpLly7VPpZpQZKNUVCdOnVCgwYNVHpbXiSbYsOGDXlmU8jPVqhQATNmzFCZM7IIuXomac0DBgxQWSKSybF371689NJLOX7+888/V9kkkl0hWRavvPIKtmzZorb98ccf+Oqrr/D999/j3LlzKgpcr169PPdVpuHY29vnu8ycOROFIZFoV1fXHFkr3bp1y/Ec+f8MCAhASkpKvs+R6L5ITk7GkSNHHniOPNY8RzJobty4keM5MiWpffv22uc8Cpk2JhlRw4YNyzWaLsfIwsLikV+fiB7EsTonjtW6H6vls02mf3K8J+J4zXPrkju3ludKxvvrr7+OOnXq5Jk1PnToUJXZLt/DqOjwGw4VivyxSoBCU7hp37596o9d5kcWlNTskGBIXqQmhwweZcqUUYGZNm3a4Omnn1Ypy0ICEebm5nBwcMgxIEgQ5ZlnnlFTZUS1atUwd+5cFSyYP3++qhMi5HXeeustdb969erq/0ECLDJdRqbUaGqJSK0ZmR7VrFmzPPe1SZMmudYVyS574ORhJNgj03ck2KMhARCpeZOdPJapWLdv31b1XvJ6jqwX8ry0tLR8n6O5ze05Fy9exKOS975z5476vRNRyeBYnRPHat2O1TIN+MMPP1T1AogoJ47XOXG8Ltrx+tNPP1WBFylBkBe58CzT/aWOJBUtBluoUKQYXq9evbB8+XJVREnuy7rCkJ/Lbz5gu3btEBISggMHDqhAyPbt2/H1119j+vTpmDZtWp4/J5kb58+fz1FgVt5LIrqStVGrVi21rmXLljl+Th5rCkUNHDhQ3ZcitFIXRGql9OnTJ88rcVJEtmrVqigKErCSYmmLFi16IPJ8//HSFL3Kvj6359y/rqieUxi57SsRFS+O1TlxrNbdWC3F0eVcQQq3v//++0X62kTGgON1Thyvi268lu9G8h1Ksvnzeu769evVdy2p50hFj9OIqNBk2pAUu5OAS2GmEGmcPn1adcTJj2SVSAFXyUD5999/1ZQhuSom02HyIkEVuWommSaaRYrFynSgKlWq5Pt+mgFICksGBwfju+++U4O9dFqS4I9muk5xpaZLtyEJ6khxWimQm51k2miyTjTCw8NVAEiyf/J7jiZLRT7IJRsov+dosoTye86jkG5SLi4u6vdORCWHY/U9HKt1M1bLdGC5cCGfhdIhTz7biehBHK/v4XhddOO1HEs5j5dMffneIItkq7/66quqs6uQQMuFCxfg7OysfY6Q5iTS/ZMeDzNbqNDkxEkT9JC6IIUhf9BSW0XS1QpDrojJtBnpfmRlZaUWmRaTXaNGjVSb4odlmkjGzP2Ps6fhSZDlySefVMv//vc/tU32WV6/OFIdJaNFOjRJmt/zzz//wHbJvMnenUhIAEreW3PiKs+RujPZj6s8R1IChRwvafUsz+nfv7/2OfJYkzIoATAJuMi6hg0bqnXye5ZAkOzbozIzM1Ndh3788Ud1VfP+uaXS1UJqw3AeP1HR4lh9D8fqkh+rJaNFzhHkZ+TKqWYqLxFxvOa5dcmcW8sUNSmNkJ2My7JearsJubA9duzYHM+RmjpSYkEuBNNjKmAhXTJx93cXunv3rlo0cutGJBW8paK1VMA+cuRIxscff5xhb2+f0bt374zU1NR8uw1Jhe6AgABVjfuff/7JqFGjRkanTp20z+natWvGk08+qV771q1bat2xY8cybG1tMyZMmKA6I5w9ezbjzz//zHjppZe0PycVuB0dHTM+/fTTjODg4Ixvv/02w9zcPGPTpk1q+9KlSzMWL16cERQUlHHhwoWMd955R73m7du3M4qDdNSxs7PLmDp1qgM1YkEAAQAASURBVDpWmiUiIkL7nJCQEPWcV155JePUqVMZS5YsybC0tMz4448/cnRhkv8PqXZ++vRpdWthYZFx4MAB7XN+++039XPy8/I6kydPVlXMw8LCtM+Rn5MK6WvWrFHHQLo2SUem6Ojox6qYHhkZqaqzS5Xz5cuXZ5w8eVL9fmRfqlatqu0oJP/f8ruT37m8puyzPJZjoiH3ZZ10tJLn7N69Wz3OfsyITBXHao7V+jBWy2dG8+bNVbfC8+fP5/h8y+/zn8iUcLzmeF0S4/X98upGlB27ERUdBluoQPJq5ZxfsEXTllm+9Lu7u2d06dIl44cffshIS0vL971mzpyZ0bJlywxXV1fVwrly5coZEydOzBHw2L9/f0b9+vUzrK2tcwxGhw4dUoEYCepIIEGeI0Ge7APM9OnTVTs3CWB4enpmzJkzR7td2pzJCaIEZOTnpQXc1q1bi+1fSfbjlH2RgFN2O3fuzGjYsKFqm+nr65sxf/78B15r1apVKiglARUZfFevXv3Ac7777jt1DOR1GjVqlLFr164c26VFnbS+ljZ1cmzbtWungi75KcgHgoiKilKt8KpVq6beX469/JuQYy7vqwl25XY8ZJ805H5uz5GfJTJ1HKuL77hyrC74WC0XEnLbLot8ZhARx+viwvE657n1/RhsKVml5D+Pmx1DZChkfqJ0K9J0LKLHJ52pZAoShxIiKiocq4sex2oiKg4cr4sex2vjwQK5RERERERERERFiMEWIiIiIiIiIqIixG5EZHJpeVS0pFWcVEInIioqHKuLHsdqIioOHK+LHsdr48GaLURERERERERERYjTiIiIiIiIiIiIihCDLY9IOq9ER0ezAwsRkZ7jeE1EpP84VhORsWGw5RHFxMTAyclJ3RIRkf7ieE1EpP84VhORsWGwhYiIiIiIiIioCDHYQkRERERERERk6MGWpKQkXbwtEREREZFJu3r1Kp599lmUKVMGdnZ28PPzw5EjR7Tbb968iVGjRsHLy0tt79GjB86dO5fvay5btgylSpV6YElMTCyB/yMiIhMOtmzevFkN2lWqVIGlpaUauB0cHNC+fXt8/PHHuHbtWknsBhERERGRybpz5w5at26tzsc3btyIU6dO4csvv4Szs7O2SG2/fv0QEhKCP//8E0ePHoWPjw+6dOmCuLi4fF/b0dER169fz7HY2NiU0P8ZEZH+sSjOF1+3bh3efPNN3L17F0888QRef/11lC9fHra2toiMjMSJEyewdetWfPjhhyoYI7fu7u7FuUuUTUJyKszNzBCTmAIHG0ukpqfDzqpY/0kQEVEhcawmoqLy6aefomLFili6dKl2na+vr/a+ZLAcOHBAnaPXqVNHrZs3bx48PDzw66+/YuzYsXm+tmSylC1btlCZ7tmz3aXLZ2FwbCQifVes36xnzpyJL774Ar169YKZ2YNJNIMGDdKmM3799ddYsWIFXn311eLcJcqSlJKGBbtCsNQ/FNEJqXC0tcDoVpUwoUMVWFua8zgREekBjtVEVJTWr1+P7t27Y+DAgdi1a5e6CDphwgSMGzcuc8zJCn5kz0gxNzeHlZUV9u7dm2+wJTY2VmXBpKWlqalJchG1YcOGeT5/1qxZmD59+iP9f3BsJCJDUCpD8gWp0CT6Lq2fJWtH0iYNiVwJkEDL19senH87qXM1jG9fmRkuRGQ0DHW85lhNREVNE0SZMmWKCrgcOnQIkydPxvfff48RI0YgJSUF1apVQ7NmzdS60qVLY/bs2Zg6dSq6deumSgPkRrJhzp8/j3r16qkxVy6ibtiwAceOHVOvV9DMFsm6edhYzbGRiAwFgy0mdvIuklPT0eTjLSqj5X6S4RLwTldYWbBRFREZB0MdrzlWE1FRkwyVJk2awN/fX7tu4sSJOHz4MPbv368eS7HcMWPGqECJZLVIvRZNhroEUAoiPT0djRo1Qrt27TB37twiHas5NhKRoSjRb9RXrlxR8z7feustFVHPvhTU7t270adPH1UhXeaGSl2Y7KT2y/2V0Fu0aKHdHhYWlmu1dFlWrVoFUyA1WnILtAhZL9uJiEi3OFYTUVErV64cateunWNdrVq1cOnSJe3jxo0bIzAwEFFRUarI7aZNmxAREYFKlSoV+H0kONO0adOHdjF6FBwbichQlFg11G3btuHJJ59UA3VwcDDq1q2rAh8yi0ki3wUlldAbNGiA0aNH46mnnsr1OdKiLnvhL4nia0h6onxwZLdw4UJ89tln6NmzJ0yBFMOVDJa8MltkOxER6RbHaiIqatKJSM7Dszt79qyqtXI/yTIREjAJCAhQNVgKSs7vJWAj04qKGsdGIjIUJZbZInM9pfitVDeX+aKrV6/G5cuXVftnmTNaUBIQ+eijjzBgwIA8n2Ntba2qoWsWV1dX7TZJh8y+TZa1a9di8ODBsLe3z/M1ZU6ppDdmXwzV1agEjGx5r/J8dlIkV7oSERGRbqWlp6sxOTcyhp+6Ho3UNI7XRFRwr7zyiqqvIk0spMbKL7/8oi46/u9//9M+RzK9d+7cqW3/3LVrV9UOWmq2aEh9Fzm315BCt1LPRX5GgiwyDUluX3jhhRIdG3keS0QmGWw5ffo0Ro4cqe5bWFggISFBBTdmzJih2tAVJfmAkBZ11atXV9XVw8PD83yuzEvVfCjkRyqmS4Rfs0iGjCGKiE3ClN8DMaqVLyZ2rqoyWYTcymPpRsT2z0REumdrZaHG5ImdHhyrZQx/9fdjeOGn/5CYkqbrXSUiAyFTe+Qio7RxlixzyVaZM2cOhg0bpn2OZIAPHz4cNWvWVPVc5L48PzuZdpQ9U1ymHD3//PNqSpIEZaTTqEz9l0K7xTU2SlOH7GOjPOZ5LBGZZIFcySDZvn27midap04dFbyQaUVSfEtSGqVdXGFJnRX5wJBou8bKlStVEEfSIUNDQzFt2jSkpqaqoIpkvNxP2t1JcObUqVP5vtejVkzXNxJoWfPfVXSt5YE5QxrC0twMd+KT4WBjgcOhkWhTzR3mZqV0vZtERDD1ArkiPT0D24PD0apKGcQnpcHR1lJlHwZeisKoZYdVochmlVyxeGQTOHIKKBGZ0Fgdn5wKCzMzhMckwrW0FaITUlDWybZE9pWISK8yW6RI7b59+9T9Xr16qSlFH3/8MZ577rkcBWwfl0wHkteXaL0U0t24caOai/rPP/888FzJrpH0yYdltQgJ1MjAn30xNP4XbqtAS6lSwIsdq6K0tYXqOuRka4nec/dg5NLD+PfkDV3vJhERZQm5HYexywPQ+ctdcLazVGO2ZB+2quqGFc81g4O1BQ6FRmLI9wdwK+beBQEiImMnY6GMiYv3hKLNpzvw9/GcNRmJiEwm2DJ79mw0b95c3f/ggw/U/E/JQpEMlCVLlhRr1XV5j9yqof/xxx+Ij49X806NXVJqGt5de0LdH9bcG428XbTbbCzN0au+l7q/eG+ozvaRiIhyOnH1rrr1craFhXnOj+wWlcvg1+dbwM3eStVvGbjAH5cj43kIicikuDtYIzIuGYGXo3S9K0REJR9siYmJwYULF1Tr59u3b8POzk61gD5+/DjWrFmTawX0oiKt6qQQrwRd7idBHpnK5O7uDmM3f+cFdYVUPpBe717zge3DW/rAytwMRy7ewX+X7uhkH4mIKKfjVzKDLfXKZ3YFuV/d8k5Y9UIrlHe2RVhEPJ5e4I/gGzE8jERkMhpUcFa3x64w2EJEJhZskYCKFNiSdsy9e/dG1apVsXXr1kd+PantIgVtZRFSl0XuS6Eu2fbaa69h//79qq201GKRqURubm7o379/jteRCuxSuGvs2LEwdhduxWLejgvq/nu9a6tpQ/fzcLBBX7/M7JYle5jdQkSkT5kteQVbRCW30lj9YitU97THzegkDPp+vwqcExGZgvoVM8fHy5EJqhEEEZHJBFveeusteHt7Y8+ePQgICFCtnl966aVHfj15jYYNG6pFTJkyRd1/7733VFvnoKAg9O3bV3Uiku5HcivBFwcHhxyv88MPP6B8+fI52tgZI6l/LNOHktPS0b66O3rXfzDDR2NM28w2ehtPXGcqOhGRjqWlZ+DEtaxgS4W8gy2irJMNfh/fEg29nXE3IQXPLj6IXWdvldCeEhHpjhQHr+JeOkc2IBGRSXQjkhbMGzZsQJMmTbTTemSdVBqXrkGGylC6W6w+cgWvrjoGawszbHmlPbzL2OX7/OFLDmLPudt4rnUlvNendontJxGRqY/X9zsfHoMus3fD1tIcJ6Z3L1CnOOnOIe2gd5+9BUvzUvhykB+ebJCZtUhEZKxjtabb5sTO1TCla/Vi20ciIr3KbJEaLZLZolGmTBlVs+XWLV5xK2534pLx8YbT6v6kLtUeGmgRY9tWVrcrD19SV0eJiEg3grKmENXxcixQoEXTnWPxiCYqizElLQOTfjuKHw9cLOY9JSLSLb+KWXVbWCSXiEwp2FKqVClVIFei1bJItPr+dbJQ0Zu18bSqzl7D0wHjsoIoD9Oumpua9x+XnKYCLkREpOPiuA+ZQnQ/aYX69ZCGGN7CB5K7Om3dCczddk5NKyUiMvYiuRzriMhkgi0y4EndFBcXF7W4urqqQrZSZ0UeOzs7q1sqWgdDIvB7wBV1f+aAurC8r2VoXiQQNrZNZmBm6b4wpKSl81dDRI9EipBLkXIvLy81tqxbty7HdulG1717d1XEXLZrCp9n16FDB7Ut+zJkyBCT+I0UpDhuXiQTZkbfOiqlXszechbT/zqF9HQGXIjI+NQq56i6akbFp+BSZLyud4eISLFAMduxY0dxvwXdJyk1DW+vDVL3hzbzRmMf10Ido74NvfDZ5mBcv5uIDUHX0devPI8xERVaXFwcGjRogNGjR+Opp57KdXvr1q0xcOBAjBs3Ls/XkW0zZszQPra1tTWN4rhXM7M+6xcys0VDAlNSu8DFzlIFWpb5hyEqPhmfD2xQ4AA8EZEhkIy+2l6OCLwcpRafMpkFc4mIjDrYIt2HqGQt3BWCC7fi4GZvhbd61Cz0z1tbmGNkSx98ueUsFu0JUcUV5aSdiKgwevbsqZa8DB8+XN2GhYXl+zpS56ts2bIFft+kpCS1aBjiVNWQW7FISEmDnZU5Krk9XjH50a0rwcXOCq+tOoZ1gdcQnZiK755pBFsr8yLbXyIifajbogm28EIhEemDEr+0dfLkSRw/fly7yGMqOqG34/DNjvPq/rTeteFkZ/lIrzOshQ9sLM3UldWDoZH8FRGRzvz8889qqlGdOnXw2muvqZpf+Zk1a5bqaKFZKlasCEOt11LXy6nAxXHz069heSwc0Vh1ptt+Jlx1nmMRdCIyJg0qZmYBskguEZlMsGXPnj1o2rSp9nGLFi1UvRY/Pz+11K9fH1u3bi3u3TAJUh9HCiEmp6ajbTW3x2r36VraCk81qqDuL94TWoR7SURUcMOGDcOvv/6KnTt3Ytq0aVi9ejUGDBiQ789MnTpVFWPXLJcvXzbYTkR1H6FeS1461fTET2Obw8HGAgEX72Dw9/sRHp1YZK9PRKRLfhUza0CeuBbNmoNEZBrBlnnz5mlTxbPXcQkNDUVISAgmTZqE+fPnF/dumIQ/A69h7/nbat7qh33rPvbUn+faVFK3287cVCntREQlTeq1dOnSBXXr1lWFcf/44w8VoP/vv//y/Blra2s4OjrmWAw12PKo9Vry0tTXFb+Pbwl3B2ucuRGDpxfsx6UIFpMkIsPnW8YOjjYW6qJj8I38MyCJiIwi2HL48GE0a9Ysx7oKFSrAx8cHvr6+KhCzf//+4t4NoydFDz/655S6P7FTVfi6PX5hsCru9uhSy0O1Dv1hH7NbiEj3GjVqBEtLS5w7dw7GKjUtHaeuRRd5Zkv2rh1/vNAS3q52qmvHUwv8cfq64dW1ISoJCcmp6st7RGySuo1PTuWB11NykbFBxcwW0EcvR+l6d4iIij/YcvXqVZQrV077ePny5TkKHUor6IiICP4qHtOnm87gdmwyqnrY4/l2VYrseI7JagP9x5EruBOXXGSvS0T0KKTOV0pKSo7PFWMjBc6lOG5pK3NULoLAeW6kU4cEXGqWdcCtmCQM+n4/AsJYn4sou6SUNCzYFYImH29B44+2qtvvd4Wo9aS/RXIF67YQkUkEWxwcHNSUIQ2Zay+dJTRkmyGmeOuTw2GR+PVQZk2Cj/vVVdOIikqLyq6oW94RiSnp+PngxSJ7XSIyfrGxsQgMDFSLZryX+5cuXVKPIyMj1eNTpzKz8oKDg9XjGzduqMcXLlxQLZ8DAgJUx6INGzaoNtFS90taRhsrzRSiOuWdYFYExXHz4uFog5XPt0QTHxfEJKbi2SUHseNMeLG9H5GhZbTM23kBX287h+iEzGwWuZXHsp4ZLvqpQQUGW4jIhIItzZs3x4oVK/LcvmzZMvUcejSS0vrO2iB1f3CTimheuUyRp2SOzcpuWb7/IpJSeTWHiApGgiQSGJFFTJkyRd1/77331OP169erx7169VKPpSaLPF6wYIF6bGVlhW3btqF79+6oUaMGJk6ciG7duqmaLebmxtu2OOhKZvp7/WKYQnQ/6Vj345jm6FjDXQXVx60IwLqjV4v9fYn0nbmZGZb65z6FWtZbmJV4Q08qAM00ovO3YhGTmMJjRkQ6ZVHcbyAn11LcsEyZMnj99dfh4eGh1oeHh+PTTz/FTz/9hH///be4d8NoLdoTgrM3Y1X3oLd61iyW9+hVvxw+2XgGN6ITsT7wGgY2Mbw2qkRU8jp06KC6pOVl1KhRasmLtGzetWsXTI0ms6VeERfHzYutlTkWjmiC11cdw7rAa5i8MlDVARvVOrNIOpEpkTHr7M0YONpaajNa7ifr5Yt8GXvrEt8/yp8U/y7vbIurUQkIunIXraq68ZARkc4Ue1i+Y8eO+OabbzB37lw1x97FxUXVaZH73377LebMmYNOnToV924YJekgMXdbZpHId3vVgktpq2J5H0tzM4xq7avuL9kbmu+XJyIiesziuFnFauuVQGZL9nF+9iA/jGqVOdZ/8NcpzN5yluM9mYyLEXH4eus5dP5yF4YuOggnW0s42uZ+TVLWO9hYlvg+UuHqtgRmZQkSERltZouYMGEC+vTpo1p2ajpIVKtWDU8//bS6ckmFJwGPd/88gaTUdLSqUgb9G5Yv1sM4tJk3vtl2TrUK3XPuNtpVdy/W9yMiMkWS+i7TeeytLeBbpniK4+ZF6sO836e2ypSUQIsE86Uw+vQn6xRr7RgiXZEOQ/8EXcfao1dx9NK9L+Y2lmaqdfDoVpVUjZb7yfrU9HRYFf81S3oEDSo6qd8ri+QSkUkEW4QEVV555ZWSejuj9/fx69h99haszM3wUb+6qrZKcZIrPIOaVsTSfWFYvDeUwRYiomJw/ErmFCIpTK6LAId8lkzsXA0udpZ4b/1J/HjgIqISUvDlwAZFWnydSFcSktPw76kb+DPwmjqPSk3PzNaVP7fWVd3Qz688utctqwKetcs5amu0yNQhyWiRQMuEDlVgbWm8daOMp0hu5nhKRGSUwZb9+/ejZcuWBXpuXFyc6jZRp06d4twlo3A3IQXT/8rs3vG/jlVR2d2+RN73udaVsNw/TJ2cyBWfGmUdSuR9iYhMxQlNvZYSnEKUm+EtfeFkZ4UpKwPx17FriE5IwfxnG8HOqsSu0RAV6fQ8/wsRqvjzppM3EJ98r9i//K31a1gefRqUg4eDTY6fk4DK+PaV1bmW1GiRqUOS0cJAi36TelcSPJNagzfuJqKsU87fKxFRSSnWy1QjRoxA165d8fvvv6sWoLmRlp9vv/02qlativ/++684d8dofLbpDG7HJqGye2m80CGzU1BJqOhqhx51y6r7S/aGlNj7EhGZWmZLvawrs7r0ZAMvLB7ZBLaW5th19haeXXxQFc4lMpTp1sevRGH6XyfRYtZ2jPjhENYcvaoCLRVdbTGxU1VsndIef73cBmPaVHog0KIhAUbJ6pJiuHLLgKP+k99Rdc/MC4KBl1m3hYh0p1gvUUkg5fvvv1dtPocNG4bq1avDy8sLNjY2uHPnDs6cOaMyWgYMGIAtW7agbt26xbk7RuHIxTv45dAldf/jfvVgbVGyaaxj2lTGhqAbWHf0Gl7rXiPPkxMiIiqclLR0nNZBcdz8dKjhgZ/GNsdzyw7jv0tRGPz9AawY0wyejhz7SX8L3coUIcliCbkdp10vU+N61/dSWSyNvJ2Lffo16b5IrtQZPHYlSnuhkIjIqIItlpaWeOmll9QiWSt79uxRU4USEhLQoEEDVcNFuhVJdyIq2In4O2uDIM2AnmpUAS2rlCnxw9bYx0WdpMhJ90/7L2JKtxolvg9ERMbo3M1YVfTcwcYCPq520Bcy7v8+viWGLzmI4JsxeGq+P34a0xy+biVbwJfoYYVuJcAi5yfZC912rV0W/fy8VK056bpFpqFBRWf8dvgyi+QSkU6V2OTrRo0aqYUe3Q97Q1WUXq7OvNOrls4O5di2lTHh5/9U4cQXO1SFrRWLxBERFVW9lrpeTnrX/UdqdK1+sZUKuIRFxOPpBf5YNroZ6upJBg6ZnsIUuiXTbf8sUzPT0zP0bkwlItPATyADcTkyHl9tPavuv/1ELdWaU1e61ymr5jtfjkzAmqNXMKy5j872hYjIWBy/mnlFvn4F/QxgSN2uVS+0UrUvZLrT0IUHVE2X5pVLPsuSTFP2QrebT95A3H2Fbvv6ealaQx6c5mbyqnnYq3pTsUmpCLkdi6oebOpARCWP+ZQGUuTtvT9PIDElHc0rueLpxhV0uj/mZqVU60OxZE+oumJARESPJ+hqZr0Wfc4WcXewxsrxLdCskitiklJV4GXrqZu63i0ygUK3M/46laPQrQRa5MLPy9kK3UrmLQMtD3f16lU8++yzKFOmDOzs7ODn54cjR45ot9+8eROjRo1SdRZle48ePXDu3LmHvu7q1atRu3ZtWFtbq9u1a9dCVyzMzbS1r45mm1pGRFSSGGwxABtP3MCO4FuwNC+Fj/vX04uiboOaVlR1BaT43I7gcF3vDhGR0RTH1dfMFg1HG0useK4ZutTyUDVmxv90BKuPXNH1bpGRuRQRj7nbzqHz7F148tt9+GFfqOrEKFOph7fwweoXW2L36x3xarcaqOphr+vdNRjSoKJ169aqruLGjRtVM4svv/wSzs7O2uBWv379EBISgj///BNHjx6Fj48PunTpoppa5GX//v0YPHgwhg8fjmPHjqnbQYMG4eDBg9CVBhUzx1IpkktEpAucRqTnohNT8MH6k+r+i+2r6M0JhcyBfqaZN77fHYJFe0LQuZanrneJiMhgnb0Zg+TUdDjaWMBbj4rj5sXG0hzzn22MN1cfx5r/ruLVVcdwJz5ZZRYQFXWhW2sLKXTrif4Ny6NtNXfVgpkezaeffoqKFSti6dKl2nW+vr7a+5LBcuDAAZw4cQJ16tRR6+bNmwcPDw/8+uuvGDt2bK6vO2fOHHTt2hVTp05Vj+V2165dar38nK6K5IpjlzPrYRERlTSdfFolJibq4m0N0pebgxEekwTfMnaY0LEq9Mmo1r6wMCuFAyGR2sKORERUeEFXMsfQehWc9CJ7sSCks8sXTzfAc60zp5V+9M9pfLE5WF0ZJypModv1x66p9uLNZ27De3+eVIEWqWfatpobvhzYAEemdcW3zzRSF3YYaHk869evR5MmTTBw4EAVQGnYsCEWLVqk3Z6UlKRubWzutXc3NzeHlZUV9u7dm29mS7du3XKs6969O/z9/fP8GXmv6OjoHEtxFMmVrMHElHv1fYiIjC7Ykp6ejg8//BDly5eHvb29Sk8U06ZNw5IlS0pqNwxK4OUorDhwUd2X6UNyJVGflHOyRe/65dT9xXsyf59ERFR4QZpORHpcryU30uFjWu9aeL17DfX42x3n8c66E0hjLS96SKFb6SA05fdANPloCyb+ehTbz4SrjkJSZ+PdXrVwYGpn/DimOZ5qXIEdhYqQnH/Pnz8f1apVw+bNm/HCCy9g4sSJWLFihdpes2ZNNW1IMlNkylFycjI++eQT3LhxA9evX8/zdWW7p2fOLGd5LOvzMmvWLDg5OWkXybgpSuWdbeFmb6X+XZ28VrSBHCIivQq2fPTRR1i2bBk+++wzFR3XqFevHhYvXlxSu2FQJyJvrwmCXCCUtFlpY6iPNCnjfx+/jut3E3S9O0REBh1sqV8+80qsIZFMnP91rIqP+9eFJOX8cvCS+vKclMoryXSPZDxJBpcUum35SVah2/8yC91WcGGh25K8+NmoUSPMnDlTZbWMHz8e48aNUwEYIbVcpNDt2bNn4erqqgrk7ty5Ez179lQZLvm5PytPfuf5ZepJQOfu3bva5fLly0X0f3lvfxpU0EwlYt0WIjLimi0SMV+4cCE6d+6souga9evXx5kzZ0pqNwzGMv8wnLoeDSdbS7zTqxb0lVyFbVHZVU0lkn2e2lN/95WISB9JrZYz12PUfU33DEM0rLkPnG2tMHnlUVV3Q2qOLXi2MUpbszycqRe6XRd4VS0ht+4VWJVCt73ql1MXlBp5uxjM9DlDV65cOdUpKLtatWqpAItG48aNERgYqAIgktni7u6O5s2bq+lHeSlbtuwDWSzh4eEPZLtkJ12LZCnuui3bzoSzSC4R6YRFSbaZq1q1aq4R9pSUlJLaDYNwNSoBX/57Vt2f2rMm3OyL94PocY1tU1kFW+Rq5sudqjHdl4iosMVx09JVcF1a2Roy+fLsaGuB8T8ewZ5zt/HM4oNYNqopXErfy2gl4xcZl4x/jl/D2jwK3fbzK4921VnoVhekE1FwcHCOdZLFIlOH7idTezRFcwMCAlQ5gLy0bNkSW7ZswSuvvKJd9++//6JVq1bQJU3dFma2EJFRB1ukovmePXseGMxXrVql0hjpXsrl+3+eQEJKGpr6umBQk6Kdv1ocOtX0QGW30qoN9KqAyxidVSyRiIgKPoVIslqM4eq+dIv5eWxzjF52WH3BGfj9fvw4ppmq80XGXeh2y+mb+PPoVew6e0vVyRBS6LZVFTf0a1ge3et4wsHGUte7atIkGCIBEJlGJK2ZDx06pDLPZcl+bi7ZLN7e3ggKCsKkSZNUO+jsBXBHjBih6jBK3RUhz2nXrp3qdtS3b1/VNnrr1q35FtUtCfUrZAaMwiLiERWfDGc7Bn6JyAiDLe+//z6GDx+uMlwkm2XNmjUqsi7Ti/7++++S2g29t/nkTWw9HQ5L81KY2b+eKj6o72Qfn2tTCe+uO4Ef9oViREtfmBvAfhMR6YPj2ToRGYuG3i5YNb4lhi85hPPhsXh6fmbApbK7va53jYqQFEL2v3BbZbBsPnFD1V/RqFveUWWwPNnACx6O9zrbkG41bdoUa9euVfVSZsyYgUqVKqn2zMOGDdM+RwrhTpkyBTdv3lTTjiSwIg0tsrt06RLMzO6VfpQAzm+//YZ3331XPbdKlSpYuXKlmn6kSxJcqeRWGqG341TjiQ41PHS6P0RkWkpllGCPRql6LpH0I0eOaAt0vffeew+0ijME0p5O0itlPqujo2ORvGZsUiq6fLkLN6IT8b+OVfB695owpCtarT7ZhjvxKZg/rBF61svsUkREZIzjdVHq881eld0yb1gjPGFkY+eVO/EYseSQynwsU9oKy0Y3M6qgkimS08YTV6NVgOWv49dwKyazVbCQQrcSYOnX0AtVPRx0up9keIprrJ7821GsC7yGV7pUx6Qu1YrsdYmIHqZEq9Z1795dLZS7L/8NVoEWb1c7VfvEkNhamePZFj74Zvt5LNoTwmALEVEBSMeeMzeiDb44bl4quNjh9xdaYtTSQ+oL+tBFB7BoRBO0rFJG17tGj1Do9s/Aq1h7X6FbZztL9K5fTgVZGvuw0C3pHymSK8GWY1fYkYiIShZbBOgJaYe43D9M3f+oX13YWObfXk8fDW/pg+93hahieEcu3lEnXURElLezN2KRkpahvrBKVoAxkiLvv45rgXErAlQx9ZFLD+GboQ3RvU5ZXe8aFbDQrXxRlc91DRa6JUOSvUjuw9pRExEZZLBF5nXmN7ilpd2b52tqUtPSMXXtcUgtOZnbLBX6DZGHgw36+nlh1ZErWLI3BI19Gut6l4iI9Nrxq1FGVRw3L1IUVaYQTfz1KP49dRMv/nQEnzxV3yCKwJsaFrolY1OrnKOqhRgRl4wrdxJQ0dVO17tERCaixIItUowrO2n3fPToUSxfvhzTp0+HKVux/6JKr3a0scC7vWvBkI1tW1kFWzaduIHLkfH8QCMiyseJbJ2IjJ1kbEpdmqlrgtTnxBt/HFfdQZ5vV0XXu2byClLotk8DL3iy0C0Z6NgjARcpRi5FchlsISKjC7ZIG7j7Pf3006oltFQrHzNmDEzR9bsJqlaLeLNnTZUdYshqlHVQmTm7z95SnYne71NH17tERKT3nYg07UmNnYW5GT57uj5cSlth4e4QzNxwBpFxKXizRw2jzuzR50K36wKvYv0xFrol49aggrMab2UqkQQOiYhKwr2ebToiLeG2bt0KU/XB+pPqClIjb2cMbeoNYzC2TSV1+/vhy7ibkKLr3SEiHdm9ezf69OkDLy8v9UV63bp1ObavWbNGFU13c3NT2wMDA/P9YtizZ89cX8dQJaak4ezNGHW/rglktmjI7/DtJ2rhrZ6ZHfcW7LqAt1YHqSm1VDKFbr/Zdg5dZu9Cn2/3YsneUNVRSOoGDWvujT9eaIk9b3TEa91rsKMQGVWRXMEiuURkMgVyExIS8M0336BChQowRVtO3cTmkzdhYVYKMwfUg5mZcVzVa1vNDTU8HRB8Mwa/HbqE8e2ZIk5kiuLi4tCgQQOMHj0aTz31VK7bW7dujYEDB2LcuHH5vtacOXOMLvMh+EaMKo7rWtoK5Z2Nszhufl5oXwXOtpZ4e20QVgZkBufnDPEzyALxBlHoNug61h29+kCh2y61PdU0ofbV3WFlofNrcETFWiQ36OpdFdiVLDsiIqMJtri45GwHKFcpY2JiYGdnh59++gmmJi4pFe//eUJb56RmWUcYC/k9j2lbSc3HX+YfhufaVIIlP9SITI5kosiSl+HDh6vbsLDMTmx5OXbsGGbPno3Dhw+jXLlyD33fpKQktWhER2e2VtY3ctKvyWoxtkBSQQ1p5q0yKib+GohNJ2/guWWHsXBEE9hbs1liURS63Xr6pgqw7Dp7C6lShV99RgOtq7ipgvY96pZVxYuJjF1lt9JwsLZATFKquhhYx8t0sgmJSHdK7Gzmq6++ynEyKd2J3N3d1TQiCcQUJi39888/x5EjR3D9+nVVeLdfv37a7aNGjVJFd7OT9zhw4ECOdfv378c777yDgwcPwtLSEn5+fti4cSNsbUvm6uJXW87i2t1E1epzUudqMDZyEvfZpmBcv5uIDUHX0devvK53iYgMUHx8PIYOHYpvv/0WZcsWrFXwrFmzDKLwepCmXosJTSHKTY+65bBstKVqDe1/IQLPLDqApaOaooy9ta53zWAL3a47eg2bTlzPUei2jpcj+jdkoVsyTZI9Xr+iE/adj8Cxy3cZbCEi4wq2SBCkJNLSRY8ePbB06VLtYysrqwcCLfKcqVOnqmlMsl2unEoAqCScvh6Npf6ZV3I/7FcXtlbGlzJtbWGOkS198OWWs1i0J0S1tDbVK7dE9OheeeUVtGrVKtci63mRsX3KlCk5MlsqVqyo15ktpq5VVTf8+nwLjFp6WBWxHPj9fvw4prlJTq8qLMkUPnktWnUS+uvYNYTH3Mvqkgs6cvFDpglV83TQ6X4S6UOR3MxgSxSeaW4cdRKJyISDLcePHy/wc+vXr18kaenC2to63yugcvI+ceJEvPXWW9p11aoVb3ZJQnIqzM3MEJ2YAt8ypTF/WCMcCI1ExxoeMFbDWvjgu53nVbeDg6GRaFG5jK53iYgMyPr167F9+3YcPXq0UD8nnwGyGEpxXFPpRPQw9Ss44/fxLTFiyUGE3IrD0/P98eOYZizSmofLkfFqipB0E7pwK067XqZl9apXTmWxNPbJOYWbyJRp6rawSC4RGUWwRabmyIe8XHXJjzwnLe1equvj2rlzJzw8PODs7Iz27dvj448/Vo9FeHi4mjo0bNgwdbX0woULqFmzpnpOmzZtiqUGQFJKGhbsCsFS/1BEJ6TC0dYCI1v64vXuNWDMpOjjU40q4OeDl7B4TwiDLURUKBJokTFaxvLsJKuxbdu2aqw3VGduxKgaGmVKW6Gck42ud0dvVPWwxx8vtsLwJQdVAGHggv1YNrqZtpOIqbsTl4y/WeiW6LGCLRLoltqJpVkbiogMOdgSGhqKkiZZL9LZwsfHR73/tGnT0KlTJ1XjRa50hoSEqOd98MEH+OKLL1RAaMWKFejcuTNOnDiRZ4bLo9YAkIwWCbR8ve2cdp0EXL7Zfh5mpUphfPvKsLMy3kKAY9pUUsGWrafDEXIrFpXd7XW9S0RkICT7cOzYsTnW1atXT9UAk5bShizoShRMvThuXrycbbHqhVYYvfQQjl25i6GLDmDRiCZoXdUNplzo9s/Aq9gZnLPQbasqZdQUIRa6JXo4D0cbFdyWeoIyjZMZ10RU3Ir1W74EPEra4MGDtffr1q2LJk2aqP34559/MGDAAKSnp6tt48ePV3VfRMOGDbFt2zb88MMPKqhSlDUAZOqQZLTkRtb/r2NVGDMJrnSp5aGCLUv2huLj/vV0vUtEVEJiY2Nx/vx57WMJgAcGBsLV1RXe3t6IjIzEpUuXcO3aNbU9ODhY3co00OzL/eRnK1WqZNC/R029Fk4hyjsz8udxLTD+xwBVY2H00sP4eogfetZ7eDcqYyl0u/9ChKrDsvnkDcQmpeYodCsBlj4NvFCWWVFEha7bcv3uDVW3hcEWIipuJZ5ScerUKXVynZycnGP9k08+WSzvJ21CJdhy7lxmZommbWjt2rVzPK9WrVpqv4q6BkBMYorKZMmNrJftxt5xQVpbS7DljyNX8Gq3GuokmoiMX0BAADp27Kh9rAlYjxw5EsuWLVM1WTRBbzFkyBB1+/7776vsQ2MmRWAFi+PmTdo//zCqKSZltYX+3y//qYD90GbeRl3oVuqwrL+v0K0UCu7XkIVuiR6XTEmU8YR1W4jIqIItMn2nf//+CAoKylHHRZM+XZQ1W7KLiIjA5cuXtUEWX19feHl5aa+gapw9e/ahhXcfhYONparRklvARdbLdmPXvJIr6pV3Uldyfz5wES8bYatrInpQhw4d8q3ZJV3qCtup7mE1wAyBFMc9Fx6r7jOz5eGd7b4b1gjvrgvCr4cuY+qaINyJT8aL7asYzfQrKXQrU4QkiyV7oVsnW0v0qp9V6NbbRbWuJaIiKpJ7OTPgTURkFMGWSZMmqbTvrVu3onLlyjh06JAKhLz66quqdkpRpKXLIldDpXiiBFfCwsLw9ttvw83NTQV6hJycvf766+rKqbSQlpoty5cvx5kzZ/DHH38U+f93Wno6RreqlKNmi4asT01PhxVKpuW0rsgxH9u2Eib9Fojl+y9iXLvKsLE0vnbXREQFcep6tJom4mZvhbKOLI77MOZmpTCzfz0421lh/s4L+GxTsCoU+/YTtQw24KIpdPvn0asIuHhHu97awgxdanmiX8PyaF/dHVYWxn1+QFTS6lWQOlnA1agEhMckwsOBYzARGUGwZf/+/aqzhLu7O8zMzNQi3X+kRoq0YS5oa8/80tLnz5+vMmek4G1UVJQKuMhzV65cCQcHB+3PTJ48GYmJiaoFtNQMkKDLli1bUKVKlSL//7a1ssCEDpmvm70bkQRaZL21iQQdnqhXDp9sPKOKkkl69KAmD693Q0RkjE5k1WuRjD9DDRaUNDlOb/aoCVc7K3y84TQW7QnFnfgUfDKgHizMzQwmo0kK3co0odwK3fbNKnTraAIZr0S6nJ5YzcMeZ2/GquyWrrUZbCEiIwi2yDQhe/vMTjSSaSIFEWvUqKHqqdw/pedx0tI3b95c4C4XspQECahI1yEphis1WmTqkGS0mEqgRViam2FUK1/M2ngGS/aEYmDjCvySQUQmSVOvRYItVDiSGelsZ4m31gSpOmB3E1LwzdCGepstqSl0uy7wKjadyFnotnY5RzVFiIVuiUq+SG5msCUKXWt78vATkeEHW6Qz0PHjx9UUoubNm+Ozzz6DlZUVFi5cqNYZO017Z00xXGOfOpSbIc28MXfbOQTfjMGec7fRrrq7rneJiEh3mS0VMmsHUOEMbFJR1TN56dej2HLqJkb+cAiLRjbRm4wQFrol0m9+3s5YdeQKi+QSkfEEW959913ExWUWfvvoo4/Qu3dvtG3bFmXKlFHTfMj4ycnxoKYVsXRfGBbtCWGwhYhMTkJyGs7ejFH3mdny6LrVKYvlo5th3IoAHAyNxNCFB7D8uWZw02F3P02h23WB13A+qwCyYKFbIv3LbBGS2ZKensHi00RkuMEWKUA7duxYDBs2DC4uLmqdZLJIC2iplyLrOGfddDzXuhKW+4epzJbgGzGoUfZeLR0iIlMojiulOtwdrOHpqLvAgDFoWaUMfnu+hcpskZbJAxfsx49jmqGCi12JFrr9J+i6qsOSvdCtFLbtWssTff280KGGBwvdEukROfeUYtTRiakIjYhDFffMMgdEREWt2OeyyJQhyWqRdsvPPPMMtm3bpt0m3YMYaDEtFV3tVAFAsXhPiK53h4ioRAVdiVK3LI5bNOqWd8KqF1qivLMtQm/H4en5+7WZQ8VZ6Pbv49cwdvlhNJu5Fe+uO6ECLZpCt589XR8B73ZRLaslA4cdhYj0r46gjB2a7BYiIoMNtnz//fe4ceOGqs0it926dYOvry9mzJiBS5cuFffbkx4a2zazRs+fgddU2z0iIlMRdDVa3XIKUdGp7G6PP15sqTqM3IhOxKDv9+PopXtZJkVV6Hbvudt4bdUxNPloK1765Si2ng5HSlqGKnT79hM1sf+tzvhlXAvVbU9f6scQ0cOnEhERFZcSqdJqY2OD4cOHq9bP58+fV/eXLFmiphN1794dv//+e0nsBumJRt4uaOTtjOS0dPy4/6Kud4eIqMQEXb2X2UJFp5yTLX4f3xJ+FZ0RFZ+CYYsPYvfZW49d6FaKGX/09ym0nLUNzy45qDogSUchyaSZ0KEK/n2lHTZMaovn21VBWSe2kCUypCK5IjCrOxwRUXEolZFfH+ViJG+7evVqjB8/HlFRUao1tCGJjo6Gk5MT7t69C0dHR13vjsHZGHQdL/78H1zsLOH/VmfYWuln204iMnz6Ml7HJ6ei7vubVc2Wg293hqcjv5wXtbikVLzw0xFVF8zSvBS+GuyH3vW9irTQbT+/8mji48KimkQGPFZfiohHu893wMrcDEHTu8HaguehRGTA3Yiy27FjB5YuXYo1a9bAwsIC48aN08VukA7JPPaKrra4HJmA1f9dwbMtfPj7ICKjdupaZnFcD1Ucl4GW4lDa2gKLRzbBlN+P4Z/j1/Hyr0dVt5GutT1hbmaGmMQUONhYIjU9HXZWFgUqdNullocKsLSv4c4vZERGQs5B5YLfnfgUnL4eo7LiiIgMNtgi9VmWLVumlrCwMNX2ed68eRg4cCBsbW1LajdIT5iblVKdiab/dQo/7A3FM828eZWQiIxa0NXMdPX6FTiFqDjJFeq5QxrC2dYSB0Ii0bqqG+bvuoBl/mGITkiFo60FRreqhBc7VMGBkAj8dOASdp3NrL8ipNBty8plVIClR72yrL9CZISkQUeDis7YGXxL1W1hsIWIDDLY8ssvv6gsFslm8fT0xIgRIzBmzBhUrVq1uN+a9JwUEZy95SxCbsdh+5lwdKntqetdIiIqNkFZtQE0XTCoeAP6H/WrizM3YlSQ5Zvt57XbJODy9bZzSM/IULVztp6+qdZLodt+Db3wZIPyrL9CZCJFcjXBFiIigyyQO2rUKNjb22PdunW4fPkyZs2axUALadO9n2nure4vYhtoIjJyzGwp+SvXVdztsXx/WK7bZX2bam54tWt1Frolk3L16lU8++yzKFOmDOzs7ODn54cjR45ot8fGxuKll15ChQoVVPZ5rVq1MH/+/HxfUzLX5W/u/iUxMdEAiuQy2EJEBprZcuXKFXh4eBT325CBGtXKF0v2hOJgaKS66luP6fVEZKSFW8/fyiy2ysyWkiM1WiSTJTeyPiE5DS93rlaCe0SkW3fu3EHr1q3RsWNHbNy4UZ2jX7hwAc7O92qWvPLKKyoj/aeffoKvry/+/fdfTJgwAV5eXujbt2+ery1FbYODgx/oSKrv7Z9DbsXhbnwKnOzYsp2IDCyzhYEWeli7zt71y6n7i/eG8GARkVE6dT0a0vuvrKMNPBz098uHsZFiuFKjJTeyXrYTmZJPP/0UFStWVFP8mzVrpoIpnTt3RpUqVbTP2b9/P0aOHIkOHTqo7c8//zwaNGiAgICAfF9bMlnKli2bY9FnrqWt4O1qp+4fv8rsFiIywGAL0cOMbVtZ3UrniGtRCTxgRGR0jrNei06kpaerYri5kfXSlYjIlKxfvx5NmjRRDSrkgmjDhg2xaNGiHM9p06aNep5MN8rIyFBZLmfPnkX37t3zfW2ZfuTj46OmH/Xu3RtHjx7N9/lJSUmq3XP2paRJkVzBui1EVBwYbCGdk5T6FpVdkZqegeX+uc+tJyIyZCfYiUgnbK0sMKFDFUzqXE2b4SK38ljWZ2//TGQKQkJCVP2VatWqYfPmzXjhhRcwceJErFixQvucuXPnonbt2ipoYmVlhR49eqgOohKEyUvNmjVV3RYJ0vz6669q+pBMVzp37lyePyN1HJ2cnLSLZNyUNE0XosDLmQXMiYiKUqkMCVlToUn0XT4Y7t69q+ao0uPZdvomxiwPgIONBfZP7Qx7a54AE5HxjNedv9yJC7fisHRUU3SsyTpmJS0+ORUWZmaqhotMHZKMFgZayBRJ8EQyW/z9/bXrJNhy+PBhNX1IfPHFFyrbRW4lU2X37t2YOnUq1q5diy5duhTofdLT09GoUSO0a9dOBW/yymyRJftYLQGXkhyrj1yMxFPz98PN3hqH3+mspkIRERlcZkvlypURERHxwPqoqCi1jUxbxxoeqOxeGjGJqfj98GVd7w4RUZGJTUpVLe4Fi+PqhgRWrCzMUMbeWt0y0EKmqly5ciprJTvpNnTp0iV1PyEhAW+//TZmz56NPn36oH79+qoz0eDBg1XwpaDMzMzQtGnTfDNbrK2tVVAl+1LS6ng5qVbxt2OTcO2u/nZOIiLDVGLBlrCwMKSlpT2wXiLaMieUTJuZWSmMaZM5r/6HfaFITeM8eiIyDiev3lXFccs52cDdwVrXu0NEJkym9tzfMUjqsUgGi0hJSVGLBEuyMzc3V9kqBSWJ84GBgSq4o89sLM1Rs6yDus+6LURU1Ip9robM3dSQuaGSyq0hwZdt27apSudEAxpWwBebg3HlTgL+PXUTT9TT7w9oIqKCCMqq11Kv/L3PPyIiXZC2zq1atcLMmTMxaNAgHDp0CAsXLlSLkOyS9u3b4/XXX4etra0KwuzatUvVdJFsF40RI0agfPnyqu6KmD59Olq0aKFqwch0IJk6JMGW7777Tu9/0VIk9+S1aBVs4bknERlUsKVfv37qVuZAShu57CwtLVWg5csvvyzu3SADYGtljuEtfDB3+3ks2hPCDzwiMgoMthCRvpCpPVJ7RWqwzJgxA5UqVcKcOXMwbNgw7XN+++03tV3WRUZGqoDLxx9/rIrpasi0o+zZL1IWQFpE37hxQ11YlS5HUutF2kvrOymS+8vBSwi8zPbPRGSgBXJlMJfiW25ubjAG+lBw0RjdiklC60+2IzktHatfbIXGPi663iUiMnC6Hq87fbkTIbfisGx0U3SoweK4RET6NFafvRmDbl/thp2VOYI+6K5quBARGVTNltDQUKMJtFDxkXoG/Rp6qfuL94TwUBORQZPuNxJoEZxGRESkf6q426O0lTnik9NwLjxG17tDREakxIItQuqzSIXzsWPH4rnnnsuxEGmMbZvZnWrzyRu4FBHPA0NkoCSFXLpZeHl5qamk69aty7F9zZo16N69uwrEy3aZ33+/8ePHo0qVKqp2gLu7O/r27YszZ87AUEgdAFHe2VZ1wiEiIv0imSz1KmTW1GKRXCIyyGCLFM7q1q2bCrjcvn0bd+7cybEQaVT3dEC76u5Iz8jsTEREhikuLg4NGjTAt99+m+d26YzxySef5PkajRs3xtKlS3H69GlVZF1mvspnSW7d7fRR0JXM4rh1y3O6KRGRvvKrmDltPfBy5phNRGQQBXI1FixYgGXLlmH48OEl9ZZkwMa1rYTdZ2/h94DLeKVrdTjZWup6l4iokHr27KmWvGg+D8LCwvJ8jhRc1JCC6h999JEK4MjPSMZLbpKSktSSvQ6Arovj1q/grLN9ICKi/PlVZGYLERlwZktycrJqNUdUEG2quqFmWQc1f/bXQ5d40IhIZcJIlosUXK9YsWKeR0RakUqRRc2S33NLKthSl22fiYj0uv2zCL4Zg4Rkw8icJCL9V2LBFqnT8ssvv5TU25GBk/oNY9pUUveX7QtDSlq6rneJqEglJKciOTUdEbFJ6jY+OZVHOA/z5s2Dvb29WjZt2oQtW7bAysoqz+MlLUulm4VmuXz5sk6ObXRiCkJvszguEZG+K+toAw8Ha6SlZ+DENU4lIiIDm0aUmJiIhQsXYuvWrahfvz4sLXNOC5k9e3ZJ7QoZiCf9vPDZ5mDciE7EP8evo1/D8rreJaIikZSShgW7QrDUPxTRCalwtLXA6FaVMKFDFVhbmvMo32fYsGHo2rUrrl+/ji+++AKDBg3Cvn37YGNjk+uxsra2VouuncjKapHiuK6l8w4OERGR7i/ySXbLllM3VZHcpr6u/JUQkeEEW44fPw4/Pz91/8SJEw8McET3s7Ywx8iWPvji37NYtCcEff0yO5oQGXpGiwRavt52TrtOAi6ax+PbV4adVYkNzQZBMx2oWrVqaNGiBVxcXLB27VoMHToU+kwTbKmf1eWCiIj0l19WsCXwcpSud4WIjESJndHv2LGjpN6KjMiw5j74dsd51T71QEgkWlYpo+tdInos5mZmKqMlN7L+fx2r8gg/hHQkyl4AV18d13YiYrCFiMgQgi3i2BUGW4jIwGq2ED0Kl9JWeLpxBXV/8Z4QHkQyeDGJKSqTJTeyXrYbi9jYWAQGBqpFhIaGqvuXLmUWvY6MjFSPT506pR4HBwerxzdu3FCPQ0JCVLHbI0eOqJ/Zv3+/mkJka2uLJ554AvqOmS1ERIajXlYW4uXIBFVPjYjocZVorvrhw4exatUqddIs3YmyW7NmTUnuChmQ51pXws8HL2HbmXBcuBWLKu72ut4lokcSHpMIBxtLVaMlt4CLrJftxiIgIAAdO3bUPp4yZYq6HTlyJJYtW4b169dj9OjR2u1DhgxRt++//z4++OADVZNlz549mDNnDu7cuQNPT0+0a9cO/v7+8PDwgD67m5CCsIh4db+uFzNbiIj0naONJaq4l8aFW3Equ6VTTU9d7xIRGbgSy2z57bff0Lp1a3UFU+bap6SkqPvbt29Xc/GJ8lLZ3R6dsz7wluzNffoFkT5LTUtXmVmdvtiFveduYWRL31yfJ0VyU9ONp/NWhw4d1JSf+xcJtIhRo0blul0CLcLLywsbNmzAzZs3VYBeugr9/PPPqFGjBvTdyax6LRVdbVWGHhER6T+/ii7qNvAyOxIRkQEFW2bOnImvvvoKf//9t2rZ+fXXX+P06dMqJdzb27ukdoMM1Li2mW2gVx+5gsi4nFlRRPosICwSvb/Zi4/+OY3YpFSsP3YNL3aogkmdq6lMFiG38li6EbE4rnE4nhVsqcd6LUREBsOvYuYFYOlIRERkMNOILly4gF69eqn70pIzLi5OdZZ55ZVX0KlTJ0yfPr2kdoUMULNKrupLS9DVu/jpwEVM7FxN17tElC8JCn6y8TR+D7iiHjvbWeKtHjUxqElFmJmVUl2HpBiu1GiRqUOS0cK2z8ZDxipRr3xmwUUiItJ/0v5ZyDQiybRkF0wiMojMFldXV8TExKj75cuX17Z/joqKQnx85rx2orzIh93YrOyWFfvDkJiSxoNFeik9PQO/HLyETl/u1AZahjStiO2vdsCQZt4q0CIkg8XKwgxl7K3VLTNajEtQViciZrYQERmOmmUdYWVuhqj4FFzMqrtFRKT3wZa2bdtiy5Yt6r5MHZo0aRLGjRuHoUOHonPnziW1G2TAnqhXDuWcbHA7NhnrA6/peneIcu0+M2C+P95eG6RO1GqVc8TqF1vhk6fqw5V1O0zG3fgUXIrMPElnsIWIyHDIxY/aXo7qPltAE5HBTCP69ttvkZiYqO5PnToVlpaW2Lt3LwYMGIBp06aV1G6QAbM0N8Po1r6YueEMFu8NwcAmFZjeSXrTeWb2v8H48cBFpGcA9tYWeLVbdQxv4QML8xKLaZOeTSHydrWDk53xdJciIjIFfhWdEXg5Si19/crreneIyIBZlOQ0Ig0zMzO88cYbaiEqjMFNvfH11nM4ezMWu8/dRvvq7jyApDMyn/vPwGuq+O3t2CS17skGXni3Vy14ONrwN2Pq9VoqsNMeEZEhBlsEi+QS0eMqsUuu5ubmCA8Pf2B9RESE2kZUEE62lirgIqSVLpGunLsZg6GLDmDyykAVaKnsXhq/jG2OuUMbMtBi4oKuZnax4BQiIiLDLZJ74lo0klPTdb07RGTAzEryCnBukpKSVCtoooKSqURSY3TPuds4cyOaB45KVHxyKj7ZeAY9v96DAyGRsLE0w+vda2DjpLZoVdWNvw3SZrbUZ9tnIiKD41vGDo42FirQEnwjs7kHEZFeTiOaO3eutpvM4sWLYW9vr92WlpaG3bt3o2bNmsW9G2REKrraoWfdcvgn6DoW7wnFFwMb6HqXyARIwPjfUzcxff1JXLubWX+qSy1PvN+ntvo3SSTuxCXjcmSCul+HwRYiIoMj31kku0Uu6gVeieKUUCLS38yWr776Si3yRWXBggXax7LIY2n7LLcFJcGZPn36wMvLSw2G69aty7F91KhRan32pUWLFjme06FDhweeM2TIkCL7f6bip2kD/WfgVYRHZ37xJSoulyLi8dyywxj/4xEVaKngYovFI5pg8cgmDLRQDieu3dVeGZVpj0REZHgasm4LERlCZktoaKi67dixI9asWQMXF5fHer24uDg0aNAAo0ePxlNPPZXrc3r06IGlS5dqH+c2TUnaTs+YMUP72NbW9rH2i0pWQ28XNPZxwZGLd7Bi/0W81r0GfwVU5BJT0rBwdwi+23EeSanpsDQvhfHtquB/HavC1oq1puhBx69kBlvqMquFiMjg67ZIRyIiIr3vRrRjx44cj2UKUVBQEHx8fAoVgOnZs6da8mNtbY2yZcvm+xw7O7uHPof027i2lVSw5aeDF/nll4rc7rO38N6fJxAWEa8et6nqhul966CK+72pkET3O6Gp18JOREREBqt+hcxgy4VbsYhOTIGjDTMViUiPC+ROnjwZS5Ys0QZa2rVrh0aNGqFixYrYuXNnkb6XvJ6HhweqV6+uMlhy64L0888/w83NDXXq1MFrr72GmJj8C2BJId/o6OgcC+lW19pl4e1qh6j4FPzx3xX+OqhIXL+bgP/9/B9G/HBIBVo8HKzxzdCG+HFMMwZa6KGY2UJEZPjcHaxR3tkW0t/jRFbGIhGR3gZbVq1apab/iL/++gthYWE4c+aMCsK88847RfY+kvUigZTt27fjyy+/xOHDh9GpUycVLNEYNmwYfv31VxWUmTZtGlavXo0BAwbk+7qzZs2Ck5OTdpEgEemWuVkpPNfaV93/YW8o0tNz73hFVBApaelYtDsEnb/cpYovy7+vMW0qYdur7dGnQWaNKKL8RMYl42pUZnFcTiMiIjJsft5ZU4mucCoREen5NKKIiAjttJ0NGzZg4MCBKvNkzJgx2o5FRWHw4MHa+3Xr1kWTJk3UVKV//vlHG1CRbJfsz6lWrZp63n///aeybXIzdepUTJkyRftYMlsYcNG9gU0qYvaWswi9HYdtZ8LRtbanrneJDNCh0EhMW3cCwTczM9ykHtCHfeuitpejrneNDLDlcyW30kw5JyIycH4VnPHP8es4xrotRKTvmS2enp44deqUmkK0adMmdOnSRa2XbkTm5sVXaLJcuXIq2HLu3Lk8nyMBFktLy3yfI3VgHB0dcyyke6WtLfBMcx91f/GeEF3vDhmY27FJePX3Yxj0/X4VaHGxs8RnT9XHqvEtGWihR67XUo/FcYmIDB6L5BKRwWS2SPegQYMGqeCHpON37dpVrT948CBq1qxZrBk1ly9fVu+bl5MnTyIlJSXf55D+GtnKRwVaDoZGIujKXdRjYUp6iLT0DPx66BI+23QG0YmpkBlCQ5p6443uNeBS+sHuZUQFcTwr1ZzBFiIiw1e3vCPMSgE3o5Nw424iyjrZ6HqXiMjAlFhmywcffIDFixfj+eefx759+1SmiJCslrfeeqvArxMbG4vAwEC1aFpLy/1Lly6pbVLsdv/+/aomjNRk6dOnjyqE279/f/X8CxcuqJbPAQEB6jmaKU0NGzZE69ati+n/nopTOSdbVVNDLN7L7BbKnwTkBszbh3fXnVCBljpejljzYivMGlCPgRZ6LCeuZhZOZ8CXiPTZ1atX8eyzz6JMmTKqO6efnx+OHDmi3S7n0y+99BIqVKgAW1tb1KpVC/Pnz3/o60oNxNq1a6tzfLldu3YtDJmdlQWqezqo+2wBTUR6ndkinn766QfWjRw5slCvIUGSjh07ah9r6qjI68gHgbSTXrFiBaKiolSmijx35cqVcHDIHCytrKywbds2fP311+rDROqu9OrVC++//36xTmei4iWFTNcevYq/j1/Hmz1qwsvZloeccrgbn4Iv/g1WrcKlu4CDtcX/2bsP6Cjqrg3gD+mkh0AIgUBC6L1X6V1ABKUo0gQE0Zdi+RQVO2JHsdCriqBSRAHpTULvHdLoENJ7z3fuP+yaTgKbbHt+54zZnZ1sxg2Znb1zC17rVRvPtammmuESPYrwuGRtc1wJ4BERGaLIyEh1cVHOjzdv3qymd8qFSFfXrGawYtq0adi1axd+/vln+Pj4YOvWrZg0aRK8vLwwYMCAfJ9XLnRK38SPPvpIXeCUQItktP/7779o3bo1jFXTqq64eCcWp25EoXeDrN6TRERFVSYzUz52lA4Jcsgio5gzMjJyPLZkyRIYE2mQK1OJoqOj2b/FQDyz4CAOBIXjhY7V8dbjdfW9O2Qg5BC39vhNzNp8AWFxKWrdwKaVMf3xOvBwYkqwOSiN4/XuS6EYvfQIqldwwM5XO5fIzyAielSSTS4Z5vv27StwGxkeIYETmdip0bx5czz++OMqmJIf2V6OtRLA0ejduzfc3NzUBND8yKTQ7NNCNcMnDOncetXha3hz7Rm083PHyvFt9L07RGRkSq2M6IMPPkDPnj1VsCUsLExF1rMvRI9qfEdf9fXXQ9cQl5zGF5Rw6U4shi44iFd/P6UCLTU8HLFyfGvMHtqEgRbSeXmaYL8WIjJkGzZsUBM4pYReslqkjH7hwoU5tnnsscfUdlJuJBcsJMvl8uXL6NWrV4HPK5ktcp6fnWzv7+9f4PfMmjVLBcI1iyFO+dQ0yT19I1r1eyMiMsgyonnz5mHZsmUYMWJEaf1IMjOda3moq8pB9+Kx+sh1VVpE5ik+OQ3f7riCJf8GIy0jE2WtLTG5W031b8LGqtRizGSGY58ZbCEiQxYUFKTK7qUM/6233sLhw4cxefJk1Wdl5MiRaps5c+Zg/PjxqmeLlZUVLCwsVN9FCcIU5M6dO2ryaHZyX9YXZPr06dp2ANkzWwxJTQ9HdQ4hF/GC7sWh5v0eLkRERVFqwZaUlBS0a9eutH4cmSELizIY91h1vLXuDJbuD8aottVgZckP1uZErsD9c/YOPvz7PG5HJ6l1vepXxLv966My+/hQCWKwhYiMgZTxS2bLJ598ou5LZotM5ZQATPZgy8GDB1V2S7Vq1bB3717Vs0V6IXbv3r3A55Zpo7nfk3Ovy04CPJqBGYZKziOl6fnh4AjVJJfBFiIqjlL7JDpu3DisXLmytH4cmalBzSqjnIMNbkQmYsu5u/reHSpFIWHxqmfGi78cV4EW73JlsWR0C8wf0YKBFipR92KT1b85+UxRv7ILX20iMlgSMJFJQdnJtCGZ6ikSExNVxsvXX3+tJno2atRITSaSnixffvllgc/r6emZJ4tFejTmznYxRk3ulxJJk1wiIoPMbElKSsKCBQuwfft2deC2trbO8bgc1IkelZ21pZouM2fHFTUGum+jSnxRTVxSajrm7g7E3D2BSEnLgI2lBSZ29sOkzn7q3wNRSTt7v4SoenkHONqW6pA/IqJikUlEly5dyrFO+rFIBotITU1Vi5QOZScTO3MPt8iubdu22LZtm5pkpCFTjEwhq71xlaxgC8c/E5HBZracPn0aTZo0UQfvs2fP4sSJE9rl5MmTpbUbZAZGtKmm+nKcuBaFY1cj9L07VIJ2XQpFr2/2qv4sEmjpULM8tkzriFd61GKgxQBI6rlcGZVxoZJKvn79+hyPr127VjVQLF++vHo893tBREQE/ve//6F27dqwt7dH1apVVW8BmVRhiCVEje6fkBMRGSoJhkiJkJQRBQQEqKxzuRj60ksvqcdlClCnTp3w+uuvY/fu3QgODlY9F1esWKFGOmtIyZH0XNGYMmWKCq589tlnuHjxovoqF1inTp0KY9fYOytj8eLtWHWBh4ioqErtEpx0MicqDRWcbDGwSWWsPnodi/YFo3m1cnzhTcytqER8+Nd5/HMuK2XZ09kO7/avhz4NPAutD6fSFR8fj8aNG2PMmDF46qmn8n1crrLKVAxpxpjbrVu31CKp65L2fvXqVUycOFGt++OPP2AoZEqFaMASIiIycC1btsS6detUoOTDDz+Er68vvvnmGwwfPly7zapVq9Tjsk6C3pL1MnPmTHX81ZCyo+zZL5LBIt/3zjvvqJHRfn5+WL16NVq3bg1jJz3fyjvaqKmG527FoHk1N33vEhEZiTKZ0r2qlN24cUN9IKpcuTKMlXRMlzF1coVVrgKQYbl8NxY9Z++FRRlg92tdUNXdXt+7RDqQmp6hJgxJJktCSjosLcrg+fY+mNK9Fss3DJwc8+UE/8knn8zzWEhIiDrhl0xHyYAszO+//47nnntOBWpkSkZ+kpOT1ZJ7wkVJHa/bfLIDd2KS8PvEtmjpw+AuEZGpnVuPW34E2y+E4t1+9fA8p10SkaGVEUmdp0TQ5SAqEXJJB3d1dcVHH31UaA0o0cOoVdEJnWpVQEYmsGR/MF9EE3AwKByPf7sPszZfVIGWlj5u2Dj5Mbzdtx4DLWZEcxJeUKBFzJo1S73XaJaSHCUaGpukAi2SUFWvkmF9OCAiIt32bWGTXCIyyDKit99+G4sXL8ann36q0sYloWb//v14//33VfNcSU8k0qVxHXyx5/I9/Hb0OqZ1rwUX+5xNmcl4Jr3M2nQBa0/cVPfdHWww/fG6eKpZZZYMmZnw8HAVoJ8wYUKh20n6+yuvvJIns6Ukm+PWqOAIBzbHJSIySY3vTyRik1wiMshgy/Lly7Fo0SI88cQT2nVSyy+lRJMmTWKwhXTusRrlUcfTCRfvxGLl4Wt4sbMfX2Ujkp6RiV8OXcUXWy4hNilNZQ4Mb10Vr/esw8CZGZKASd++fVXvlvfee6/QbW1tbdVSGs7ciFFfG7JfCxGRyWpUJatJ7tXwBETGp8DNwUbfu0RERqDUyoikwVadOnXyrJd18hhRSfSIGNehurq9zD9YTash4yBXjgb88C/e/fOcCrTIB9n1k9rj4ycbMtBihmJjY9G7d284Ojqqvi/W1oaTpXbmZpT62vD+iTgREZkeV3sb+JZ3ULdZSkREBhdskSyW77//Ps96WSePEZWE/o0rqelEd2OSsfHMLb7IBi4qIQVvrzuDgT/ux9mbMXCys8JHTzbA+pfaa1N4yfwyWnr27AkbGxts2LABdnZ2MMSxz8xsISIybU3un4ecup513CciMpgyos8//1ylgG/fvh1t27ZVWQf+/v64fv06Nm3aVFq7QWbG1soSo9v5qFIUGQP9ZBP2+TBEGRmZWHP8hmp+GxGfotYNalYZ0/vUVcEyMk5xcXEICAjQ3g8ODsbJkydRrlw51SRdshplfKiMchaXLl1SXz09PdUiGS0SaElISMDPP/+sAi+yiAoVKsDS0hL6FBqTpAK5MvWsnheb4xIRmbLGVVyw7sRNnLweqe9dISIjUWqZLZ06dcLly5cxcOBAREVFqZPsQYMGqZPrDh06lNZukBl6tlVV2Flb4NytGBwICtf37lAuF+/EYOiCA3j9j9Mq0FLTwxGrXmiDr4c0YaDFyB09ehRNmzZVi5CmtXL73XffVfclU0XuSyBeDBs2TN2fN2+eun/s2DEcOnQIZ86cQY0aNVCpUiXtIoF6Q8lqqeHhCHubUrt2QUREeqDJsD11I1oN+iAiepBSPTv08vJiI1wqddLEbHBzb/x08CoW7wtGO7/y/C0YgLjkNHyz7TKW+oeoZrj2NpaY2r0mxrT3hbVlqcWBqQR17ty50BPS0aNHq+Vhv1/fTt/ICrY0YHNcIiKTV7eSM6wty6gLQzciE+Fdzl7fu0REBq7EP9FcuXIFzzzzjDb1O7vo6Gg8++yzCAoKKundIDP3/GO+aprNjouhCAiN0/fumDX58Pz36Vvo9tVuLPo3WAVa+jTwxPZXOuGFjn4MtJDR0Ix9bsRgCxGRybOztkS9SlkloxwBTUQGEWz54osv4O3tDWfnvPXsLi4u6jHZhqgkSQf57nUrqttL9gfzxdaToHtxGLnkMF5eeUL1uqjmbo9lY1pi7nPN4eValr8XMiqnNc1xOYmIiMi8SomuZ02iIyLSa7Bl7969GDx4cIGPDxkyBDt37izp3SDCuMd81auw5tgNhMcl8xUpRUmp6fhq6yX0/mYf9l0Jg42VhSoZ2jK1IzrX9uDvgozO3Zgk3Iu93xy3Esc+ExGZg8ZVsoItzGwhIoPo2XL16lV4eBT8Yap8+fIG0eiQTF8r33JoVMVF9Vn45dA1TO5WU9+7ZBZ2XryL9zacw/WIRHW/U60K+HBAfVRzd9D3rhE9cr+Wmh5OKGuj36lIRERUupktZ29FIzU9g6XPRKTfzBYpFQoMDCzwcRkLml+JEZGuybjxsfezW1YcCFHZFlRybkQm4IUVR/H8sqMq0FLJxQ7znmumyoYYaCFjp5lExBIiIiLzUb28A5zsrJCUmoHLd2P1vTtEZO7Blo4dO+K7774r8PE5c+Zw9DOVmscbVoKXix3C4lLw58mbfOVLQEpaBn7cHYDuX+/B1vN3YWVRBhM6VlcNcHs3qKSCXkTG7syNrHr9hmyOS0RkNiwsymhLiU5dzwq6ExHpLdgyffp0bN68GU8//TQOHz6sJhDJcujQITz11FPYsmWL2oaoNMhIYRktLBbtCzbosbLGyD8wDH2+3YvP/7mkrvpI6damKR0w/fG6cLAt1UnzRCVGjhtnbmZN2GNmCxGReWnsndWni01yiehBSvzTT9OmTfHHH3/g+eefx7p163I85u7ujt9++w3NmjUr6d0g0hrayhvf7riCK6Fx2HP5Hhu06kBoTBJmbrqAP0/eUvfLO9rgrcfrYmDTysxkIZNzJyYJYXHJsLQoox0DSkRE5oFNcomoqErlUnO/fv1Uo9x//vlH9WiRq4K1atVCz549YW9vXxq7QKTlbGeNoS29sfjfYLVwGs7DS0vPwE8Hr+LrrZcRm5wGqRAa0aYaXu1ZGy5lrfmvjkzSGW1zXEfYWbM5LhGROWlyv0nu5dBYxCWnwZGZu0RUgFLL6y9btiwGDhxYWj+OqFCj2/lg6f5gNYb4wu0Y1OXV6WI7fi0S76w7i/O3s8opGldxwcdPNmRZBZlPc1z2ayEiMjseznaq/9+t6CScvRmNNtXd9b1LRGSuPVuIDJF3OXv0aVhJ3ZbsFiq6yPgUvLnmNAb96K8CLc52Vpg5sAHWTmrPQAuZVbBFRskTEZH5joBm3xYiKgyDLWS2xt0fAy1TiaTnCBUuIyMTq49cQ9evdmPVketq3dPNq2Dna50xvHU11b+CyCya494vI2rAzBYiIrMOtpy8njWZjogoPxwPQmaraVU3tKjmhqNXI7HiwFW81qu2vnfJYJ2/FYN31p/B8WtZJxW1Kzrh44EN0NKnnL53jahU3Y5OQnh8ihppzvJDIiLz9N/4ZwZbiKhgDLaQWRvXwVcFW34+dBWTuvjB3oZ/EtnFJqXi622Xsdw/BBmZgIONJab1qIVR7XzUGG0ic3Na0xy3ohOb4xIRmamGVVzUUADp2yLZ0dLHhYgot1L7tLRp0yZs2bIlz3pZt3nz5tLaDaIcetTzRNVy9ohKSMWa4zf56mQrldhw6ha6fbUHS/dnBVr6NqqEHa92xrgO1RloIbMlzRBFI5YQERGZLZlAVMvDSd0+dT8IT0Skt2DLm2++ifT09Hw/1MljRPogfUaeb++jbi/5N1j1JTF3AaFxGL7oECb/egKhscnwLe+AFc+3wg/PNoOnC6/ckHk7fT/Y0oDNcYmIzFpj76wm6SwlIiK9B1uuXLmCevXq5Vlfp04dBAQElNZuEOUxuIW3mqgTHBaP7Rfumu0rlJiSji+2XESfb/fCPzActlYWeLVHLfwztQM61qqg790j0ju5OMDMFiIiEmySS0QGE2xxcXFBUFBQnvUSaHFwcCit3SDKw8HWCsPbVFO3F5npGOht5++i+9d78MOuQKSmZ6JL7QrYNq0T/tetJmytLPW9e0QG4WZUIiLuN8et7ZmVPk5ERGbeJPdGFDOjiUi/wZYnnngCU6dORWBgYI5Ay6uvvqoeI9KnUW191Aeow8EROH3DfDrLX49IwLjlRzB+xVH1QdLLxQ7zRzTHktEtUdXdXt+7R2RQNFktEmixs2YQkojInGW9F1ggNikNweHx+t4dIrOXmJKGlLQMhMclq68JKWnmE2z54osvVAaLlA35+vqqpW7dunB3d8eXX35ZWrtBlC/pRfJEYy91e9E+089uSU5Lxw+7AtBj9h5svxCqAk0vdvbD9lc7oVd9T5SRFvtElO8kooZsjktEZPZkKmMDL/ZtITIEyanpmLcnCC1mbkPzj7err/P3BKn1ZlNG5O/vj40bN2LSpEkqo2XHjh3YuXMnXF2z0vCI9GlsB1/1deOZ2yrLw1T9eyUMfb7Zhy+2XEJSagbaVC+HzVM64I3edTj6mqgQZ+5ntsjITyIiY3Xz5k0899xz6oKnvb09mjRpgmPHjmkflwsu+S1y4bQgy5Yty/d7kpKSYMrYt4XIMDJaftwdiG93XEFMYlY2i3yV+7JenxkuVqX5w+Sg27NnT7UQGZr6Xi5o5+eumsMu9w/BW4/XhSm5G5OEjzdewF+nbqn75R1tMaNfXZXRw0wWogc3x9UGW5jZQkRGKjIyEu3bt0eXLl2wefNmeHh4qBL/7Bc+b9++neN7ZLuxY8fiqaeeKvS5nZ2dcenSpRzr7OzszCLYwolERKUrJS1DTVANuBeHnvUqYql//pUJsv6lLjVMM9gyZ84cvPDCC+pAK7cLM3ny5JLcFaIiGdfBVwVbfj10Df/rWgNOdtZG/8qlpWdg+YGrmL3tMuKS02BRBhjZ1gev9KwFZxP4/yMqDTciExGVkAprSzbHJSLj9dlnn8Hb2xtLly7VrvPx8cmxjaenZ477f/75pwrOVK9evdDnlgs3ub/X1DW53yT3/O0YVaLNoQJEuhedmIoLt2Nw/laM+luTr1dCY9VQj9oVndDU21Wb0ZKbrI9NSoW7o63pBVtmz56N4cOHq2CL3C7s4MxgCxmCzrU84FfBAYH34vHb0RsY+1hWaZGxOnY1Am+vO4uLd2LV/Sbervj4yQZowCvzRMWiyWqRhog8mSYiY7Vhwwb06tULgwcPxp49e1C5cmVV3j9+/Ph8t797965qAbB8+fIHPndcXByqVauG9PR0VZr00UcfoWnTpgVun5ycrBaNmJgYGBvvcmVRzsFGTaq7cDtWnWcR0cNnEd+ITNQGVDRfC2rv4GRnpf4GKzjZwrmsVb4BF1mvz4vnJRpsCQ4Ozvc2kaGysCiDsY9Vx1vrzmDJv8EY1bYarCxLrbWRzsib/qebL6iAkXApa403+9TB0Bbe6v+RqDTs3btX1fhLLwBJS1+3bh2efPJJ7eNr167F/Pnz1ePh4eE4ceKEOkHPbsGCBVi5ciWOHz+O2NhYlQKvjz5f/5UQ8USaiIxXUFAQ5s6di1deeQVvvfUWDh8+rC542traYuTIkXm2lyCLk5MTBg0aVOjzygAM6dvSsGFDFTT59ttvVbnSqVOnULNmzXy/Z9asWfjggw9gzOSCceMqLth16Z4qJWKwhahoktPSceVuXFbGSrbgikz3yk8Vt7KoV8kZ9byc1de6lZzVOvkblJ4tY9r5qh4tucn6tIwM2JReq1r99Gz58MMP8dprr6lGXNklJiaqk/F33323tHaFqFCDmlXGl1svqSjqlnN30bdRJaN5xTIyMrHqyHV8vuWiKnkQQ1pUUc1v9ZU+R+YrPj4ejRs3xpgxY/Kt9ZfH5WRcrrAWdFU1ISEBvXv3Vsv06dOhL2c4iYiITEBGRgZatGiBTz75RN2XzJNz586pAEx+wZYlS5Zos9QL06ZNG7VoyLG9WbNm+O677wpsJSDHdAn6aEiQRkqcjLFviwRbTl6Pwih97wyRAYpKSMmTrSL9VtIyMvNsK+XaNT2ctEEV+SqBFblwXJCyNlaY1NlP26NFMlwko0UCLbLe1toS+lJqwRaJXE+cODFPsEVOpOWxogZbHnSldPTo0XlSHVu3bo2DBw/mm6r0+OOP459//snzPGS+7Kwt8Vybapiz4woW7gvC4w2NYxTy2ZvReGf9WfVmL+p4OmHmwAZoXq2cvneNzFSfPn3UUpARI0aoryEhIQVuM3XqVPV19+7dMITmuI04iYiIjFilSpVQr169HOvq1q2LNWvW5Nl23759quHt6tWri/1zLCws0LJlS1y5kvdKs4Zk08hi7Ngkl+i/86XrEVIGFK0NrFy4HVtgGZAEULJnq8hXvwqOsLEqfhaKBFQmdKqumuFKjxYpHZKMFn0GWko12CIvfn4fWCW9sFy5cjq7UirkCmj2xl82Njb5bvfNN98YxYdoKn0j21bDvD2BKnBx7GokWvgYbsAiJikVX2+9jBUHQiABYkdbK0zrUctoS6CIHpWu+wDIiYM0Z7OxtECtik78BRGR0ZKMk9wTgy5fvqx6reS2ePFiNG/eXJ13P8x5/8mTJ1VZkalrfL9JblBYPKITUuFiz+EDZPqSUtNVdkr2bBUpCYpNzr8MqGo5+xyZKvLVy8VOp5/F7W2yQhuabH59lQ6VarDFzc1NvYiy1KpVK8cLKg20pJmWZLzo6kqpkCj5g7qhS5Dn66+/xpEjR1SU/0FMoYkXFZ2MRR7UtLIqyVm0L9gggy1yIvPnyVtqnHNYXNa/zf6NvfBO37qo6GzaoxaJCqPrPgCarJY6lZwe6moLEZGhmDZtGtq1a6fKiIYMGaJ6tkhvLFmyk/Pc33//HV999VW+zyMlR9JcV463Qo65UkYk/Vnke6V0SIItP/zwA0ydNMit5m6Pq+EJOH0zCh1qVtD3LhHpVFYD6FxlQPfikJ5PGZC6MOXpmBVYqSRBFRd1/mSuE1BLPNgi2SPyofD5559XB2IXF5ccGScybq5t27Y6/ZmSbu7h4aGaKHbq1AkzZ85U97OXLj3zzDP4/vvvizyizhSaeFHxyCQiCbZsOX8HV8PjUc3dwWBewoDQWFUydDAoQt2vXsEBHw1ogPY1yut714j0Ttd9AOTkWXCKFxEZOyntkdJ5OU5KP0VfX191ri59WbJbtWqVOn+X8+X8XLt2TZUKaURFReGFF17AnTt31Lm+9IKR0v9WrVrBHEh2iwRbpEkugy1krKT347WIhBz9VSTIcjs6Kd/t3eytc5QA1avkoj6TWDOzvvSCLaNGZbWKkoO5pC5aWZXsj5SsF2m2KOmQMgFpxowZ6Nq1q+rxoqkL1UT1BwwYUOTnNZUmXlR0NSs6oXPtCth96R6W7g/B+0/U1/vLl5CShjk7ArBoX5BqKmVnbYH/da2JcR18OY6WqIT6AEg/JNGII9OJyAT069dPLYWRwIksBcndR2v27NlqMVfSt2XDqVvavnlExlAGdPlubJ4yoPiU9Hy393G3zyoB8rwfWPFyhqezbsuATFGp9WyRsXEXLlzQ1m7++eefqq+KNOl6//33C+yrUlxDhw7V3m7QoIHquC6Bl40bN6qxdRs2bMDOnTvViNHiMJUmXlQ84x6rroItvx29jmnda+mtDleuLm09fxcf/nVe22Sqe10PvNe/PrzL5Ww6TUS6/dvTTCJiZgsREeWniXdW5v7J69EF9qkk0pfwuOQ804Ckx1C+ZUBWFmrIRvbGtXUqOauekFR8pfaqTZgwAW+++aYKtgQFBamgiAQ/pB5UynokhbEkSD8WCbZouqFLoCUwMFCVGGUnzXY7dOig14kXZHja13BXB5yLd2Kx8vA1vHh/rFhpuhaegPc2nFVjBUVl17Iqy6ZHvYqlvi9ExSE9uQICArT3JdtQavilKXrVqlURERGhUtFv3bqlHtc0bZTyTk2Jp6Sky6J5njNnzqjgvXx/cZqrPyxJp41JSlMnH2yOS0RE+anv5QIrizKqh96t6CR1rkakjzKgkPD4HJkqcvtuzH99R3P3G6qfowzIGb7lHThgwxiDLdLpvEmTJuq2BFikl8rKlSuxf/9+DBs2rMSCLeHh4bh+/bq2Ca4EfMaNG5djGwkASepj//79S2QfyHjJlYlxHarjtd9PYZl/sOrjUloNMiW9b8HeIPywKwDJaRlq7vwLHavj5S41UdZGv2PMiIri6NGj6NKli/a+phRTykuXLVumMg1lspyGvBeI9957T2U8innz5uXol9WxY0f1VTIjR48eXeK/iNP3s1rqerI5LhER5c/O2lI1AT17M0b1bWGwhUpaYko6LmnLgLJGLcvF4YR8yoAk0crX3QF1NYGV+8EVDydbZmGZ0ujnjIwMdXv79u3aWlHpexIWFqaTK6WyyAm6ZKlIcCUkJARvvfUWypcvj4EDB+a5YpqdXCWVvjJEuT3R2Auf/3NRRYU3nrmFgU2rlPiLtPfyPby34RyCw+K1GTYfPNEANTwc+Qsio9G5c2d17C+IBEseFDCRY7om8KIPmn4tDav819ydiIgovya5EmyRvi2PN3zwpFOioroXm7MMSDJWgu7FIZ8qINhKGVC2gIoqA/J0ggPLgEw72CK9Uz7++GN0794de/bswdy5c7XBkooVK+rkSqk8p6SYr1ixQnVFl4CLbLt69WqVdk70MCSTZVQ7H3yx5RIW7g3Gk00ql1gU+E50Ej76+zw2nrmt7kvE+Z1+9dC/USVGnon0QJPZ0pDNcYmI6AFNcn85dA2B9+L4OtFDkR4qcqFVE1DRBFck2JKf8o42arTyf4EVJ/i4swzILIMtmrFy69evx9tvv40aNWqo9X/88YeaDKSrK6Vbtmwp9r4V9nxEYnjrqvh+Z4A64B0ICkc7P92OWE5Nz8By/xDM3nZZdQG3KAOMbueLaT1qwslM59ITGULt89lbmmBLzj5fRERE2bXyKYeFI5ujfY3yqneLs5010jIyYG/DxqKU/4RRKfvJ3rT24p0YJKVmVYJkJ9d4q5d3UIGVupX+a17r4WTHl9bAldpff6NGjVTWSW5ffPEFLC3Zf4IMm6u9DZ5uXgU/HbyKRfuCdRpsORISgXfWnVV1l6JZVVd89GQD1WyNiPTnakQCYu83x61ZkSV8RERUME8XO6w5fgOv/n4KMYlpcC5rhTHtfDGpsx9srflZx1zJRX3JTDmXq2mtZLDkd72/7P3+P9nLgGp7OjFoZ6T0Hmq1s2NEjoyDNMf9+dBV7LwYioDQWNTweLTSNLnq8enmi/jj2A11383eGm/2qYPBzb1hIaktRKRXZ+73a5ETHWvL0mmMTURExicxJQ3z9gThu53/9ZWUgMu3O7KmoU7oVJ0fls1AWnqGtgwo+0SgsLiUfLeXdgGagErd+8EVKQOy5OcAk1FqwZb09HQ18ee3335Toz5TUnL+o5MRoESGzKe8A3rUrYit5+9i8b8hmDWo4UPXY/56+JpquisjZcUzrbzxf73qwM3BRsd7TUQP68yNKPWV/VqIiKgwlhYWWOofnO9jsl6CLc8uPKialHq52KGSa1lUkq8uWV8lK4ZBfeMSnyxlQP/1VdFMA5IJorlJ7MSvgqM2oKIJrlRwstXLvpMJBltkdOeiRYtUQ9sZM2aovi0yLUh6uLz77rultRtEj0TGQEuwZe3xG3itZy24OxbvIHnmRjTeWX8Gp+433ZSD7ccDG6BZVTf+ZogMNLOFk4iIiKgwsUmpKpMlP7I+Ij4F4XEp8A8Mz3cb6clRwdH2vwCMqx28XMqqIIyXa9Y6yYKwYpalXsqAZCKpZrzyhduxKrgSEp5/GZC9jWVWUCVbYKVWRSeUtWEpmTkqtWDLL7/8goULF6Jv374q8PLMM8/Az89P9XI5ePAgJk+eXFq7QvTQWvq4oXEVFxUs+fngNUzpXrNI3xedkIovt15SZUhyYHaytcKrPWvhuTbV+MZJZKjNcW/GqNvMbCEiosLIMAPp0ZJfwEXWS6Dkrcfr4FpEAm5FJ+F2VCJuy9foJDWJMiU9A6GxyWrRXJDLLzuionNWFowEYirlyJCRoExZlHe0ZQnKI5YBBUkZULZsFfkqwbL8eDrb5SkDqlbOnu0AqPSDLXfu3EHDhlllF46OjoiOzjqQ9OvXT2W6EBkDGfk8tkN1TP71BH46GKLSQu0KaXom0fB1J27ik00XtPWaTzbxwluP14WHM/sVERkquWIVl5wGW2mO68HmuEREVLD0jAzVDFfToyU7WZ+WkYlOtT0KDO6Hx6eooMut6MQcgZjb0Ym4FZWEuzFJ6jk0608gq8w1NyuLMiogownEqJIlVaZUVpsh4+5gw2DA/Wwk7TSg+0EVGVaRkk8ZkPRQ8avgkC1bJWsqUHEz3Mn8lFqwpUqVKrh9+zaqVq2qxj5v3boVzZo1w5EjR2Bry3+oZDweb+CJz1zL4mZUIv48eRNDW1bNd7vLd2PxzvqzOByc1Y9IDtIyZUjXY6OJqASb43o5M/uMiIgKVdbGSk0d0vRoKc40IhmKIL07ZCmobFX6/YXHJWuzYrTZMTH/ZcloAjJyfioLrkbm+1w2lhYqOyYrQ+a/oIwEZDQZMjK0QS4wmgK58CmvT/ZJQLJcDU/Id3tHW6sc45UlsCITCQu7uEqk92DLwIEDsWPHDrRu3RpTpkxRZUSLFy9WzXKnTZtWWrtB9MikXnZ0Ox/M3HRBjYEe0sI7xxuSNMyas+MKFv8brN707KwtMLlbTYx7rLoaIUtEhi8wNA61KzqhjW85fe8KEREZAQmoSMbzS11qqKwJKS1Ky8jQydhnyayQjGhZmni7FlgCc08CMlFZGTG3o7Jlx9wPzsjjUrIk5UyyFPj/YmWRp3+MfNWsk/sSTDK0gExqegYC78XlyFaRJSohNd/tJciUuwzI241lQKQ7ZTIl3KcH0qfF399fZbk88cQTMDYxMTFwcXFR5VDOzs763h0qZTFJqXhu4SH8r1sNdKxVAXFJaepNVa4qvP7HKRwMyspm6VmvIt7tXw9V3Oz5OyIykuO1jPAEyqjx7FJnn56ZyZGdREQljOfWpROMkHNVCcLcikpUpUua25rATEFjivNrBFtY/xj5KufGxSXvwTLdKXvAyt7GKt9z8Qu5eqtcuRungkn5lVfV8HDM0bRWgiucAkomG2wxdnxDoJjEVCzcF4TlB0K06aKj2vqorJfJq07g+fa+6Fa3Il8oIiM6XienpuPH3YHFTgMnIqLSO1ZTyUlOS8fdaClZkgDM/SDM/WwZyZq5E5NUYMPY3GQghGeO/jGawMz9DBlXuxyBlILegyd29sOJq5E4EhKZNRXodgyuRyQW+DPr3g+oaAIrUgZka8X3cDKxMqINGzYUeVtjzG4h8yVRdykT+m5ngHadvCnIfcmonD+iORxtix/NJyL9/l3P2xOUo8Gh/F1r7kt6eH5X14iIiEyFBCWquturpSBJqen3gzD/ZcTknrIUnZiK2OQ0xIbG4UpoXIHP5VLWWgVgPn6yAfZevoc5uc6t5T04IzNTTQacvf1yju+t7FpWBVQ0o5brezmjiltZgytvIvNVomeNTz75ZJG2kz+I9PT0ktwVIp2S9EaJuudnmX8IXu5StJHQRGQcf9eyXurwiYiIzJ00i/Ut76CWgkgPQ00gJkd2jBp3ndVTRoIxEpSRnjQSNHl++ZF8n0uyyA9N746Rbauhmvv9qUCVnOFizwubZMbBloyMvDVzRKZA6kgl2p4fWS+PcxwckXHh3zUREZFuONhaqT4pshT2viuBGCnNj01KK/TcOiElDR8OaMBfDxkV5kMTPQRp2CV1pPm9Kcj6h2kIRkT6xb9rIiKi0n3f1Zwzp6Rl8NyaTE6Jz6F9/PHHVaMrjZkzZyIqKkp7Pzw8HPXq1Svp3SDSqfSMDNWwKz+yXjqnE5Fx4d81ERER34OJjCbYsmXLFiQnJ2vvf/bZZ4iIyBqLK9LS0nDp0qWS3g0inSprY6Wmk0zpVlNF4YV8lfuynk00iYwP/66JiIj4HkxkNKOfLSwscOfOHXh4eKj7Tk5OOHXqFKpXr67u3717F15eXkbXIJfj6UhI/aiVhYWqOZU0SMloYaCFyLiP1/y7JiIqfTy3Jr4Hk6lhzxaiR6AJrGia4dqUfLIYEZUw/l0TERHpB9+DyZSU+CdDGeuce9Y5Z58TERERERERkakq8cwWqVIaPXo0bG2zrvwnJSVh4sSJcHDImsuevZ8LEREREREREZGxK/Fgy6hRo3Lcf+655/JsM3LkSBgbTasbqS8lIipt0v+KWYJFw+M1EekLj9VFx2M1EZna8brEG+Saqhs3bsDb21vfu0FEZqqozV6Jx2si0h8eq4uO59ZEZGrHawZbHlJGRgZu3bqlImCxsbEq8HL9+nV++CklklHE17x08TU3rNecV0uLjsdr/eKxg6+3qeOxWjd4rNYvHqv5mpuDmFI+t+Y0okcYaV2lShV1W/NLkV8YrzSXLr7mpY+vOV9zY8PjtWHgsYOvt6njv/FHw2O1YeC/Y77m5sC5lD63c04tEREREREREZEOMdhCRERERERERKRDDLbogIy1fu+997Tjrank8TUvfXzN+ZqbAv475mtu6vhvnK+5KeC/Y77m5oD/zk3/NWeDXCIiIiIiIiIiHWJmCxERERERERGRDjHYQkRERERERESkQwy2EBERERERERHpEIMtREREREREREQ6xGALEREREREREZEOMdhCRERERERERKRDDLYQEREREREREekQgy1ERERERERERDrEYAsRERERERERkQ4x2EJEREREREREpEMMthARERERERER6RCDLUREREREREREOsRgCxERERERERGRDjHYQkRERERERESkQwy2EBERERERERHpEIMtREREREREREQ6xGALEREREREREZEOMdhCRI8kJCQEZcqU4atIRGTAeKwmIjIOPF6bDgZbqEhGjx6tPlBPnDgxz2OTJk1Sj8k2ubeXxdraGhUrVkSPHj2wZMkSZGRkFPqz4uPj8cYbb6B69eqws7NDhQoV0LlzZ/z999/abXx8fPDNN98Y/W/v0qVL6NKli3p95P9V/p/feecdpKam5thuz549aN68uXabefPm5XmuNWvWoF69erC1tVVf161bl2ebH3/8Eb6+vup55Pn27duX4/HMzEy8//778PLyQtmyZdXrfu7cOZ38v8bExODtt99GnTp11M/39PRE9+7dsXbtWvVzhdzu1asXypcvr/7tnDx5Ms/zLFiwQO2Xs7Oz2iYqKkon+0dkCnisLhk8VhfvWB0REYH//e9/qF27Nuzt7VG1alVMnjwZ0dHRJfQbIjI+PF6XDB6vcx6vs5swYYI6Zhf0GUq+p0+fPmqb9evXl9BvyLww2EJF5u3tjVWrViExMVG7LikpCb/++qs6kcqtd+/euH37torObt68WQUVpkyZgn79+iEtLa3AnyMBHfkD//7773Hx4kX8888/eOqppxAeHm5yvy0JRI0cORJbt25Vbw5y8Fu4cCHee+897TbBwcF4/PHH0aFDB5w4cQJvvfWWOmmV4IrGgQMHMHToUIwYMQKnTp1SX4cMGYJDhw5pt1m9ejWmTp2qAh7yPPJ8ckC9du2adpvPP/8cX3/9tXrtjxw5ogIiEiSLjY19pP9PCYi0a9cOK1aswPTp03H8+HHs3btX7fP//d//aU/AJdDWvn17fPrppwU+V0JCgvq3Ja8DEeXFY7Xu8VhdvGP1rVu31PLll1/izJkzWLZsmXovHzt2LP9kiXi8LlE8Xuc8XmvIZyv5XCAXVAsin0OYra5jmURFMGrUqMwBAwZkNmzYMPPnn3/Wrv/ll1/UOnlMtsm9fW47duyQMGvmwoULC/xZLi4umcuWLSvw8U6dOqnnyL5o7N+/P7NDhw6ZdnZ2mVWqVMn83//+lxkXF6d9vFq1apkffvhh5jPPPJPp4OCQWalSpcw5c+bkeP733nsv09vbO9PGxkY9Ls9RmqZNm5b52GOPae//3//9X2adOnVybDNhwoTMNm3aaO8PGTIks3fv3jm26dWrV+awYcO091u1apU5ceLEHNvI87755pvqdkZGRqanp2fmp59+qn08KSlJ/T7mzZtX4P4GBwfn+B3k58UXX1Sv982bN/M8Fhsbm5mamprvc544caLA59y1a5faJjIystCfTWROeKwuPTxWF+1YrfHbb7+p99Xcx3sic8Xjdekx9+P1jRs3MitXrpx59uxZ9Vlo9uzZeb7n5MmT6rPT7du31c9et25doT+fioaZLVQsY8aMwdKlS7X3pSzo+eefL/L3d+3aFY0bN1bpbQWRbIpNmzYVmE0h31ulShV8+OGHKnNGFiFXzyStedCgQTh9+rTK5Pj333/x8ssv5/j+L774Ao0aNVLZFZJlMW3aNGzbtk099scff2D27NmYP38+rly5oqLADRs2LHBfpQzH0dGx0OWTTz4p8usTEBCgrv516tQpR9ZKz549c2wn/59Hjx7VlhsVtI2/v7+6nZKSgmPHjuXZRu5rtpEMmjt37uTYRkqSZF802zwMKRuTjKjhw4fnG02X18jKyuqhn5+I8uKxOiceq/V/rJarrFL+yeM9EY/XPLcuvXNr2VYy3l9//XXUr1+/wKzxZ555RmW2y+cw0h1+wqFikT9WCVBoGjft379f/bHv3r27yM8hPTskGFIQ6ckhBw93d3cVmHnsscfw9NNPq5RlUa5cOVhaWsLJySnHAUGCKM8++6wqlRE1a9bEnDlzVLBg7ty5qk+IkOd588031e1atWqp/wcJsEi5jJTUaHqJSBqilEe1atWqwH1t0aJFvn1FspP9fRApsZHgT3JyMl544QUVSNKQAIj0dMlO7kspVlhYGCpVqlTgNrJeyHbp6emFbqP5mt82V69excOSnx0ZGal+70RUOniszonHav0eq6UM+KOPPlL9AogoJx6vc+LxWrfH688++0wFXqQFQUHkwrN8FhkwYAD/PHWMmS1ULNIMr2/fvli+fLnKcJHbsq44pPlSYfWAHTt2RFBQEHbs2KF6tUiDVukvIidqhZHMDakLz55VItkdEtGVrA2Ntm3b5vg+uX/hwgV1e/DgwaonjTShHT9+vGoyW1h/GWkiW6NGjUKXogRbJAtHgi0rV67Exo0bVZ17drlfL03Tq+zr89sm9zpdbVMc+e0rEZUsHqtz4rFaf8dqaY4u5wrSuD17PzIiysLjdU48XuvueC2fjb799lv1+aigbTds2ICdO3eaxOARQ8RgCxWblA3JH60EXIpTQqQhgQ2ZiFMYySqRAItkoEjzWMn0kGCLlMMURIIqctVMMk00izSLlXIgPz+/Qn+e5gAkjSWlUe0PP/ygDvYyaUmCP7mnA+k6NV1+rpyISgqfNByUiUCSiSIk00aTdaIRGhqqotSS/VPYNposFXkjl2ygwrbRZAkVts3DkGlSbm5u2oAWEZUOHqv/w2O1fo7VUg4sDc3lvVAuXsh7OxHlxeP1f3i81t3xWl5LOY+XTH353CCLZKu/+uqrarKrkEBLYGAgXF1dtdsIueAt0z/p0bCMiIpNTpw0QQ/JHCkO+YOW3iqSrlYcEoiQDBOZfmRjY6MWTTBCo1mzZioLRrJJCnPw4ME897On4UmQ5YknnlDLSy+9pB6TfZbnL6lUx9zRagnuaKLWknnz119/5dhGAlDyszUnrrKN9J3J/rrKNpISKOT1klHPss3AgQO128h9TcqgBMAk4CLrmjZtqtbJ71nGTksK4sOysLBQU4d++ukndVUzd22pTLWQ3jCs4yfSLR6r/8NjdekfqyWjRc4R5HvkyqmmlJeIeLzmuXXpnFtLiZq0RshOjsuyXnq7CbmwPW7cuBzbSE8dabHQv39//rk+qiI20iUzl3u6UHR0tFo08ptGJB28paO1dMA+duxY5syZMzMdHR0z+/Xrl5mWllbotCHp0H306FHVjXvjxo2ZtWvXzuzatat2mx49emQ+8cQT6rnv3bun1p06dSqzbNmymZMmTVKTES5fvpz5559/Zr788sva75MO3M7OzpmfffZZ5qVLlzK///77TEtLy8x//vlHPb506dLMRYsWZZ45cyYzMDAw8+2331bPGRYWllkSZLLT6tWrM8+fP69+nkxrkG7hw4cP124TFBSUaW9vrzqpy3aLFy/OtLa2zvzjjz9yTGGS/w/pdn7hwgX11crKKvPgwYPabVatWqW+T75fnmfq1Kmqi3lISIh2G/k+6ZC+du1a9RrI1CaZyBQTE/NIHdMjIiJUd3bpcr58+fLMc+fOqd+P7EuNGjW0E4XCw8PV705+5/Kcss9yX/4dachtWScTrWSbvXv3qvvyvUTmjsdqHqsN4Vgt7xmtW7dW0woDAgLUes1S2Ps/kTnh8ZrH69I4XudW0DSi7DiNSHcYbKEiKWiUc2HBFs1YZvnQX6FChczu3btnLlmyJDM9Pb3Qn/XJJ59ktm3bNrNcuXJqhHP16tUzJ0+enCPgceDAgcxGjRpl2tra5jgYHT58WAViJKgjgQTZRoI82Q8wH3zwgRrnJgGMihUrZn7zzTfax2XMmZwgSkBGvl9GwG3fvr3E/pXICWqzZs20+1uvXj31/5+YmJhju927d2c2bdpUjc308fHJnDt3bp7n+v3331VQSgIqcvBds2ZNnm1++OEH9RrI88jP3bNnT47HZUSdjL6WMXXy2nbs2FEFXQpTlDcEERUVpUbh1axZU/18ee3l34S85vJzNcGu3GO9ZZF90pDb+W0j30tk7nisLhk8VhfvWL1r1658H5dF3jOIiMfrksLjdc7jdW4MtpSuMvKfR06PITISUp8o04o0E4vo0clkKilB4qGEiHSFx2rd47GaiEoCj9e6x+O16WCDXCIiIiIiIiIiHWKwhYiIiIiIiIhIhziNiMwuLY90S0bFSSd0IiJd4bFa93isJqKSwOO17vF4bTrYs4WIiIiIiIiISIdYRkREREREREREpEMMtjwkmbwSExPDCSxERAaOx2siIsPHYzURmRoGWx5SbGwsXFxc1FciIjJcPF4TERk+HquJyNQw2EJEREREREREpEMMthARERERERERGUqwJTk5WXd7QkRERERERERkbsGWLVu2YPTo0fDz84O1tTXs7e3h5OSETp06YebMmbh161bJ7SkRERERERERkakEW9avX4/atWtj1KhRsLCwwOuvv461a9eq4MvixYtVsGX79u2oXr06Jk6ciHv37pX8nhMRGbHElDSkpGUgPC5ZfU1ISdP3LtF9/N0QERk+HquJyNCVyZQ5aw/QqlUrzJgxA3379lXBloLcvHkT3377LSpWrIhXX30VpkzGPss0oujoaDg7O+t7d4jIiCSnpuPH3YFY6h+MmMQ0OJe1wph2vpjU2Q+21pb63j2zPl7zd0NEpB88VhORWQZbKC8GW4joYa/EzdsThG93XMnz2JRuNTGhU3XY21jxxdXD8Zq/GyIi/eGxmohMDacRERGVIksLC5XRkh9Zb1VI9iCVLP5uiIgMH4/VRGQsHury6Y0bN7BhwwZcu3YNKSkpOR77+uuvdbVvREQmJzYpVZUO5UfWy+Pujralvl/E3w0RkTHg+ygRGYtiX0LdsWOHapb7448/4quvvsKuXbuwdOlSLFmyBCdPniyZvSQiMhFOdtaqR0t+ZL08TvrB3w0RmQPpsfjcc8/B3d1dTRZt0qQJjh07pn387t27avqol5eXerx37964ciVv6Wtua9asQb169WBra6u+rlu3rkT2n8dqIjLZYMv06dNV89uzZ8/Czs5OHVivX7+uJhINHjy4ZPaSiMgExCen4eT1SIxq65Pv49IkNy0jo9T3i7KkZ2So30F++LshIlMQGRmJ9u3bw9raGps3b8b58+fVxVNXV1f1uLRyfPLJJxEUFIQ///wTJ06cQLVq1dC9e3fEx8cX+LwHDhzA0KFDMWLECJw6dUp9HTJkCA4dOqTz/wceq4nIZBvkOjk5qQwWPz8/uLm54d9//0X9+vXVgXXAgAEICQmBOWCDXCIq1jEjKRVjlh5BVEIqfp/YBsv9r3IaUSnhhAsioixvvvkm9u/fj3379uX7kly+fFllsMtFVTm/F+np6fDw8MBnn32GcePG5ft9EmiRY60EcDQkI0Y+K/z666/5fk9ycrJash+rvb29OTmOiMy3Z4uDg4P2wCjphYGBgdqDcVhYmO73kIjIyEXEp2DkkkM4ezMGznZWuBuTrKYOvdSlhqo9l5RoyWjh2Gf9k9+B/G5kDPe9uGS4O9giE5n83RCRSZCei7169VLZ6Hv27EHlypUxadIkjB8/Xj2uOceX7HUNS0tL2NjYqAusBQVbJLNl2rRpOdbJz/nmm28K3JdZs2bhgw8+eKRjtbyP3otNhpuDtXqv5fsoERl1GVGbNm1URFz07dtXlRTNnDkTzz//vHqMiIj+ExqbhGELDqhAi7uDDVa90BZ1Kzmr8c42VhaqGa585bhnwyG/i6sRCRi77Ch6fL0bNpacEEVEpkHKg+bOnYuaNWtiy5YtmDhxIiZPnowVK1aox+vUqaPKhqRtgJQcySCMTz/9FHfu3MHt27cLfF55vGLFijnWyX1ZXxD5GdHR0dpF2hIUh+Z99Pdj1/HYZ7uwbL95ZNcTkQlntsi0obi4OHX7/fffV7dXr16NGjVqYPbs2SWxj0RERulWVCKGLzqE4LB4VHS2xS/jWqOGh5O+d4uKoEYFR9yOTkRMUhrO345BoypZ/QyIiIxZRkYGWrRogU8++UTdb9q0Kc6dO6cCMCNHjlS9XKQf49ixY1GuXDmV1SL9Wvr06fPA5y5TpkyO+9KpIPe67KSRriyPqnoFR5XV4h8Y/sjPRUSkt2BLbGysKhtKTU1VJUTly5dXU4mIiCina+EJeGbhQdyMSkRl17JYOb41qrk78GUyEhYWZdDCpxx2XgzF4eAIBluIyCRUqlRJTQrKrm7duirAotG8eXPVn1GyTSSzpUKFCmjdurUK0hTE09MzTxZLaGhonmyXktC2urv6KoHxyPgUuDnYlPjPJCIqiiLnRp8+fVqlFkqzq379+qlMlu3btxf124mIzEZAaBwGz/dXgRbf8g74bWJbBlqMUEufcuqrBFuIiEyBTCK6dOlSnqa4UjqUm4uLiwq0yNjno0ePqkEYBWnbti22bduWY93WrVvRrl07lLQKTraoVdFR3T4YxOwWIjLCYIt0L69atarqXi4HXBn1/PLLL5fs3hERGZnzt2IwdP4B1QRXTv5WT2ijMlvI+LTydVNfj16NVOnwRETGTprYHjx4UJURBQQEYOXKlViwYAFeeukl7Ta///47du/erR3/3KNHDzUOumfPntptpORIeq5oTJkyRQVXZGLRxYsX1Ve5KDt16tRS+f9q51defWUpEREZZRmRBFg2bdqkTSFcsmSJGgMnPVscHbOiyURE5uzk9SiMWnIY0YmpaFDZGSueb41yTGc2Wg0ru8LWykL1Agi8F8d+O0Rk9Fq2bIl169apQMmHH34IX19fNTFo+PDh2m2kEe4rr7yCu3fvqrIjCazMmDEjx/Ncu3YNFhb/XbOVDJZVq1bhnXfeUdv6+fmpno5SflQa2vq5Y5l/CPwDORmViAxHmcwiXq6TA6rUYkqARcPJyUmVF8mB2tzExMSo9EqpZ3V2dtb37hCRnkmpyfPLjiAuOQ3Nqrpi6ZhWcClrre/dokc8XkuW0qHgCHwysCGebV2VrycRkQEeq6MTUtHko62QTzWH3+oGD+f/RlcTERl8GZF0E5cGuXIglEUOhLnXyUJEZG72XbmHkUsOqUCLNOr7aWxrBlpMRCvfrL4tR0LYt4WIyFC52FujgZeLun2AfVuIyNjKiCQBplatWnnWycg4zW0JvqSnp+t+L4mIDNT283cx6ZfjSEnPQOfaFTDvueaws7bU926RjrBJLhGRcWjn544zN6PhHxCOAU0q63t3iIiKHmzZtWsXXy4iomz+Pn0LU1edRFpGJnrX98S3zzSBrRUDLaakWTU3WJSBmix1KyoRXmx2TERkkKRvy/y9QfAPYt8WIjKyYItMHyIioix/HLuB//vjFDIygSebeOHLwY1hZVnkykwyEo62Vqjv5aKulkopEa+WEhEZbiailUUZXI9IxPWIBHiXs9f3LhGRmStysCW3c+fO5SgZsrS0RP369XW1X0REBuung1cxY/1ZdXtYS2/MHNgQlpL+QCZ7Ai/BFmmCzGALEZFhcrC1QhNvVxy9GokDgeEMthCR3hX5Muy+ffvUuDiNNm3aqH4tTZo0UUujRo2wffv2Yv3wvXv3on///vDy8lL9XtavX5/j8dGjR6v12Rf5ubkdOHAAXbt2hYODA1xdXdG5c2ckJiYW+rN//PFHNUXJzs4OzZs3V/9/REQPsnBvkDbQMqa9D2YNYqDF1LXydVNf2SSXiMjw+7YIjoAmIqMKtkhwYsSIEXn6uAQHByMoKAhTpkzB3Llzi/XD4+Pj0bhxY3z//fcFbtO7d2/cvn1bu2zatClPoEW26dmzJw4fPowjR47g5ZdfVqOqC7J69WpMnToVb7/9Nk6cOIEOHTqgT58+uHbtWrH2n4jMhzQB/3b7FczcdEHdf6mLH97tV08Fgc3Bg4Lja9euRa9evVC+fHn1+MmTJ/M8hwTCcwfQhw0b9sCfre/geAufrIlEl+/GITI+pVR/NhERFV1bv/Lqq39guHrfJiIyimCLBDFatWqVY12VKlVQrVo1+Pj4qECMBD6KQwIcH3/8MQYNGlTgNra2tvD09NQu5cplnfRqTJs2DZMnT8abb76pyphq1qyJp59+Wn1fQb7++muMHTsW48aNQ926dfHNN9/A29u72MEiIjIPcsL26T8XMXv7ZXX/tZ618HqvOmYTaClKcFweb9++PT799NNCn2f8+PE5Aujz588vdHtDCI6Xd7RF9QoO6rakpxMRkWFqWtUVtlYWCI1NRuC9eH3vDhGZuSIHW27evIlKlSpp7y9fvlwFPzQkCBIeHq7zHdy9ezc8PDzU2Gk5SQ8NDdU+JrcPHTqkHm/Xrh0qVqyoGvn++++/BT5fSkoKjh07pjJhspP7/v7+BX5fcnIyYmJicixEZPoyMjLx/oZzmL8nSN2f0a8eXu5aE+bmQcFxCbi/++676N69e6HPY29vnyOA7uLiUuj2DxMcL4njdav72S0sJSIiMlx21pZo4ZNV+nkgkFOJiMhIgi1OTk6qZEhDTrjlpFlDHnN2dtb5yf0vv/yCnTt34quvvlLZNdKbRU6khZQviffff18FYv755x80a9YM3bp1w5UrV/J9zrCwMNXYVwIz2cn9O3fuFLgvs2bNUh8KNIuc7BORaUvPyMQba05j+YGrkCSWTwY2xNjHfPW9W0ZNjulSaiSZiK+99hpiY2N1HhwvieO1NMkV0iSXiIgMV7tspUREREYRbGndujVWrFhR4OPLli1T2+jS0KFD0bdvXzRo0ED1Cti8eTMuX76MjRs3qsczMjLU1wkTJmDMmDGqYe/s2bNRu3ZtLFmypNDnzp3+L2UChZUETJ8+HdHR0drl+vXrOvl/JCLDlJqegamrT+L3Yzcgg4a+HtIYz7auqu/dMmrDhw/Hr7/+qjIWZ8yYgTVr1hRaRvqwwfGSOF638s0Ktpy9GY2ElLRHfj4iIioZbe83yT0QFK6yU4mIDH708yuvvKLSw93d3fH666+r0h1NKc9nn32Gn3/+GVu3bi3JfVVlTNIjRpO1oilrqlevXo7tJNW8oHp+uaIqY6pzn6jL/0fuE/rspAdMYX1giMh0JKel4+WVJ7Dt/F1YWZTBnGea4vGG/5VR0sORDEQNCaJLj60WLVrg+PHjKitRV8HxkjheV3ErC09nO9yJScLJa1FoVyPryikRERmWRpVd4GhrhaiEVFy4E4P6XoWXqxIR6T2zpUuXLvjuu+8wZ84cFeRwc3NTfVrktjRMlDp6KfEpSdITRq5QaoIs0phXJmNcunQpx3aS/SJBmfzY2NioaRbbtm3LsV7uS98XIjJviSnpGL/imAq02FhZYMHI5gy0lBAJsFhbWxdY9vmwwfGSIMGdlvezWw6HsJSIiMhQWVlaaLMRD7CUiIiMIbNFTJo0SZXz/PHHH9qTY830n4epiY+Li0NAQECOvi8yLlSCOLJIL5annnpKBVdCQkLw1ltvqZPvgQMHak9+JcvmvffeU1MymjRpohr3Xrx4Ue2jhvRwke+RkdCaLB1p5ihXVNu2bYsFCxaoTJiJEycW+/+BiExHXHIanl92RPXlKGttiUWjWqA9MxhKzLlz55Campqj+XpBwXHNcV/I/QEDBqC0tfJxw1+nbrFJLhGRgWvn546dF0NV35ZxHarre3eIyEwVK9giJKgi45Z14ejRoypjRkOCIGLUqFFq0sSZM2dUn5ioqCh1Mi7byhhQadarISNBk5KS1D5FRESooIuciPv5+Wm3CQwMVLX/2XvBSJbMhx9+qEaPSjr7pk2bCsyGISLTF52QilFLD+Pk9Sg42Vph6ZiWaHG/KSoVHhyvWrWqOv5K0PrWrVvqcU3GoWbqkByHpTnu448/roLm58+fx6uvvqp6bcnIaGMIjmsyW45fjVI9fawti5wcSkREpahN9ay+LYeCwnm8JiK9KZMpxe8PcODAAXWSWxTx8fEqC0UmTZgyGSUqUy6k+aKupzARUekKj0vGiMWHcf52DFztrbHi+VZoVMWVv4ZspKlt9uC4hgTHpUG6LNKoPDfJPJQsRSkBfe6553D27FkVuJHAvTRAl8clYKMh5aGjR49W36Px448/4vPPP9cGx6UReseOHUv9eC2NFpt+tA3RialY/1J7NPHmvxEiIkM8t85+vF47qR2aVc0aB01EZHDBFikVkhNgaW4oVyUdHR3zbCNXKaVJ7tKlS9VJsVyJNGUMthCZhrsxSRi+6BACQuNQ3tEWP49rhTqeDKCaEl0er8cuO4IdF0Px9uN1Mb4jU9OJiAz13HriT8fwz7k7eL1XbbzUpYZO9pGIqDiKlAMtgRSpj3/33XdVY1zJWunRo4fq3/LYY4+plHCpq7969aoq4TH1QAsRmYYbkQkYMv+ACrTIpJnVE9ow0EKFYpNcIiLj0K5GVimRf+B/rQSIiAyuZ4tMi5D6eVlkROe+fftUqVBiYqLqkSL9UiS9PHsqOBGRIQsOi8fwhQdxKzoJ3uXKYuW4NvAuZ6/v3SIDp5lwcTQkQqWpW1gUPIKaiIj02yRXHA2JRFJqOuysLfnrICLDbpArozplISIyVpfvxqrSoXuxyahewUEFWjxd7PS9W2QEGni5wM7aApEJqQi8F4eaFf9r2E5ERIbDr4IjKjjZqvf6E9ei0PZ+8IWIqLRwlAIRmZWzN6MxdP4BdfJVx9MJq19oy0ALFZmNlQWaemc1WjwcEsFXjojIQJUpU0ab3XKApUREpAcMthCR2Th2NRLPLDyoshIaVXHBqhfaqKteRA/Tt+VIMIMtRESGTBNs8Q8M1/euEJEZYrCFiMzCgcBwjFh8CLFJaWjp44afx7WGq72NvneLjFArn/vBlpBIfe8KEREVop1fefX15PUoxCen8bUiolLFYAsRmbzdl0IxeulhJKSk47Ea5bH8+VZwtrPW926RkWpa1RWWFmVwMypRLUREZJik8X0Vt7JIy8jEEZZ+EpExBVuSkpJ0tydERCXgn7N3MH7FUSSnZaBbHQ8sGtUC9jbF7g1OpOVga4UGXs7qNkuJiIgM2399W1hKREQGHmzJyMjARx99hMqVK8PR0RFBQUFq/YwZM7B48eKS2Ecioofy58mbeGnlcaSmZ6Jvw0qY+1xzjn4knWh5v5SITXKJiIyjlIh9W4jI4IMtH3/8MZYtW4bPP/8cNjb/9Tto2LAhFi1apOv9IyJ6KKuPXMPU1SeRnpGJQc0q49thTdQkGSJdYJNcIiLjoBn5fPZWNKITUvW9O0RkRor9yWPFihVYsGABhg8fDktLS+36Ro0a4eLFi7rePyKiYlu2PxhvrDmDzExgeOuq+PLpxrCyZKCFdJ/ZciU0DpHxKXxpiYgMVEVnO/hVcFDnBAeDWUpERKWn2J8+bt68iRo1auRbXpSaymgxEenX3N2BeP+v8+r2uMd88fGTDWBhUYa/FtKpcg42qOHhqG6z6SIRkXGUErFvCxEZdLClfv362LdvX571v//+O5o2baqr/SIiKpbMzEx8vfUSPvsnK8NucreaeLtvXZQpw0ALlWx2C4MtRGRM5MLpc889B3d3d9jb26NJkyY4duyY9vG4uDi8/PLLqFKlCsqWLYu6deti7ty5hT6ntBiQ99vci6EM09A0yfUPDNP3rhCRGSn2SI733nsPI0aMUAdqyWZZu3YtLl26pMqL/v7775LZSyKiBwRaZm68gEX/Bqv7b/Sugxc7+/E1oxLVytcNvx6+hsMhkXylicgoREZGon379ujSpQs2b94MDw8PBAYGwtXVVbvNtGnTsGvXLvz888/w8fHB1q1bMWnSJHh5eWHAgAEFPrezs7P6TJCdnZ0dDEGb6lnBlst343AvNhkVnGz1vUtEZAaKndnSv39/rF69Gps2bVIR63fffRcXLlzAX3/9hR49epTMXhIRFSAjIxPvrD+rDbS8378eAy1Uqpkt525GIyElja86ERm8zz77DN7e3li6dClatWqlgindunWDn99/FygOHDiAUaNGoXPnzurxF154AY0bN8bRo0cLfW75XODp6ZljMRRuDjaoV8lZ3T4QxL4tRFQ6HqpjZK9evbBnzx6VZpiQkIB///0XPXv21P3eEREVIi09A6/9cQq/HLoGqRb6/KlGGN3el68ZlYoqbvbwcrFDWkYmTlyL4qtORAZvw4YNaNGiBQYPHqyyWqQFwMKFC3Ns89hjj6ntJItdMkcly+Xy5cvq/L8w8rmgWrVqqvyoX79+OHHiRKHbJycnIyYmJsdSGqVEB1hKRESlhOM5iMgopaRlYMqqk1h7/CYsLcrgm6FNMKSlt753i8x0BPTh4Ah97woR0QMFBQWp/is1a9bEli1bMHHiREyePFm1A9CYM2cO6tWrp4ImNjY26N27N3788UcVhClInTp1VN8WCdL8+uuvqnxIypWuXLlS4PfMmjULLi4u2kUybkpSuxqavi3MbCGi0lEmU0LWxWBhYVFow8n09HSYA4m+yxtDdHS0qlElotKTlJqOl345jh0XQ2FtWQbfPdMMvRsYTroymc/x+ueDV1UZm1wxXTm+jU6fm4hI1yR4Ipkt/v7+2nUSbDly5IgqHxJffvmlynaRr5KpsnfvXkyfPh3r1q1D9+7di/RzpK9js2bN0LFjRxW8KSizRZbsx2oJuJTUuXVsUiqafLgN6RmZ+PeNLio7kYjIoBrkyoE2Oxn3LGmCy5cvxwcffKDLfSMiykN6Y7yw4hj+DQiDrZUF5o9ojs61PfhKkV60up/ZImVEqekZsLZkwigRGa5KlSqprJXsZNrQmjVr1O3ExES89dZb6ny/b9++al2jRo1w8uRJFXwparBFLs62bNmy0MwWW1tbtZQWJztrNKrioo7XMgJ6cAsGW4jIwIIt+XUhf/rpp9VIaGmcO3bsWF3tGxFRnqtSzy87giMhkbC3scTiUS3R9n4NNpE+1KjgCFd7a0QlpOLszWg0rerGXwQRGSwp7ck9MUj6sUgGi+YiqiwSLMnO0tJSZasUlSTOS4CmYcOGMCSShfhfsIWlx0RUsnR2Ca5169bYvn27rp6OiCiHqIQUDF90SAVanOys8PO41gy0kN5ZWJRBi2pZ2S1HQti3hYgMm4x1PnjwID755BMEBARg5cqVWLBgAV566SX1uJTvdOrUCa+//jp2796N4OBg1YtFeroMHDhQ+zwjR45UpUUakt0uPWCkJ4wEWeTiq3yVnjCGpJ1feW3flmJ2UiAi0k+wRVIOv/vuO9VIi4hI1+7FJmPYgoM4fSMa5Rxs8Ov4NmjGDAIyEK18s7JZDgdH6ntXiIgKJaU9UiIkTWwbNGiAjz76CN988w2GDx+u3WbVqlVqO1knJUeffvopZs6cmSNwcu3aNdy+fVt7PyoqSo2IlpIkmVAqk4yk14uMlzYkzau5wcbSAndikhAcFq/v3SEiE1fsBrlubm45GuTKt8fGxsLe3h4///wznnjiCZgDNsglKh23oxNVRkvQvXhUcLLFynGtUbOiE19+Mpjj9YlrkRj4o78qJzr+Tg+V7UJERIZ5bj1swQEcDIrAzIENMLx1VvkUEZFB9GyZPXt2jmCL1HRWqFBBlRFJIIaISFeuRyTg2UUHcT0iEV4udvhlfBv4lnfgC0wGpUFlF5S1tlR9WwLuxaEWg4FEJiMxJQ2WFhaqZ5g0WE3LyIC9TbFPn8nASokk2CKlRAy2EFFJKva7xejRo0tmT4iIsgm8F4fhCw+pVN9q7vb4ZVxrjmkkgyQTiJpWdVUn7oeDIxhsITIRyanpmLcnCEv9gxGTmAbnslYY084Xkzr7wdbaUt+7R4/QJPfrbcDBwHBkZGQyG5GI9BtsOX36dJGfUMbDERE9iot3YvDcokMIi0tBDQ9HFWip6GzHF5UMVkufcirYIk1yn2vDtHQiU8hokUDLtzv+G10sARfN/QmdqjPDxUg1quKqJhqGx6fgcmgs6niWXMkSEZm3IgVbmjRpokqHHtTeRbZJT0/X1b4RkRk6fSMKI5ccViUZ9So546exreDuaKvv3SIqVCvf+xOJgjmRiMgUSOmQZLTkR9a/1KVGqe8T6YaNlYUKkO+5fA/+AeEMthCRfqcRydg3GeUmXwtbZJvikC7l/fv3h5eXlwrUrF+/Pk/JkqzPvrRp0ybHNp07d86zzbBhwwr9ue+//36e7/H09CzWvhOR7h0NiVClQxJoaeLtqqYOMdBCxkDKiKwsyuBWdBJuRCboe3eI6BFJjxbJZMmPrJfHybhLiYRkJBIR6TWzpVq1kkmJjo+PR+PGjTFmzBg89dRT+W7Tu3dvLF26VHvfxsYmzzbjx4/Hhx9+qL1ftmzZB/7s+vXrY/v27dr7lpasvSXSp/0BYRi3/CgSU9PR2rccFo9uCUdbNiEk4yANM+tXdsGp61GqlKiKm72+d4mIHoGjnZXq0ZJfwEXWS7NcMu4mueJQUDjS0jNgZVmk689ERMXy0J9kzp8/j2vXriElJSXH+uKMfu7Tp49aCmNra/vArBMZO13czBQrK6tifU9ycrJaso+nIyLd2HnxLib+fBwpaRnoULM8FoxogbI2DICScWnl46aCLdIkd2DTKvreHSJ6SMv2B6OyW1mMauuD73YG5HlcmuTKVCKboiWIkwGq5+UMZzsrxCSl4dytGDT2dtX3LhGRCSr2u4SUCkk2SoMGDdC3b188+eSTahk4cKBadG337t3w8PBArVq1VAZLaGhonm1++eUXlC9fXmWrvPbaa4iNjX3g8165ckWVL/n6+qqyoweVQM2aNQsuLi7axdvb+5H+v4goy6YztzHhp2Mq0NKjXkUsGsVACxkn6QEgJNhCRMZHJtPM3Hge7/91Hp9uvoTxHapjSreaKpNFyFe5L9OIOP7ZuFlalEGb6iwlIiIDC7ZMmTJFBSju3r2rMkrOnTuneq+0aNFCBUZ0SbJeJJCyc+dOfPXVVzhy5Ai6du2aI8Nk+PDh+PXXX9XPnjFjBtasWYNBgwYV+rytW7fGihUrsGXLFixcuBB37txBu3btEB5ecN3m9OnTER0drV2uX7+u0/9XInO09vgNvLzyOFLTM9G/sRd+HN4MtlbMaCHjDrYE3otHeNx/71NEZPiSUtPxv19PYOG+rKa4TzWvDCc7KzV16OjbPXDsne7qq9zn2GdT69sSpu9dISITVewyogMHDqjgR4UKFWBhYaGWxx57TGV+TJ48GSdOnNDZzg0dOlR7WzJpJKAj/WM2btyoDahItkv2bWrWrKm2O378OJo1a5bv82YvXWrYsCHatm0LPz8/LF++HK+88kqB5UyyEJFurDx0DW+vPwMZcjakRRXMGtRIXWkiMlZuDjao6eGIK6FxOBISid4N2HidyBhExqdg/IqjOHo1EtaWZfDl4MYY0KSyekyTwaJp1s7SIdPR9n7fFumzJdm1MqWIiEiXin1UkdHOjo6O6raU7ty6dUvdliDIpUuXUJIqVaqkfo6UABVEAizW1taFbpObg4ODCroU53uI6OEt2heEt9ZlBVpGta2GTxloIRPRUjMCOoSlRETG4Fp4Ap6a568CLZLJsuL51tpAC5m2WhUd4e5gg6TUDJy8HqXv3SEiE1TsYItkj5w+fVpbjvP5559j//79ahpQ9erVUZKkzEfKdyToUhApa0pNTS10m9ykLOnChQvF+h4iejjf77yCjzdeULclHfv9J+rDghktZCJa3S8lYrCFyPBJQ+tBc/cj6F48KruWxZoX26Ht/dISMn1lypTR/r5ZSkREBhFseeedd5CRkaFuf/zxx7h69So6dOiATZs2Yc6cOcV6rri4OJw8eVItIjg4WN2WKUfymDS7lbKlkJAQ1ZOlf//+KptG04g3MDBQBXmOHj2qtpF9GDx4MJo2bYr27dtrf063bt3w/fffa+/L8+7Zs0f9vEOHDuHpp59W04VGjRpV3JeDiIooMzMTn/9zEV9uvazuv9KjFt7sXUed7BCZWmaLTLeIT847MpaIDMP283cxbMFBhMWloL6XM9ZOaodaFZ30vVukpxHQ/oEF920kIirxni1NmjTBuHHjVENaNzc3tU4yWWQEdEREhFpX3A9NEiTp0qWL9r6mX4oEPebOnYszZ86oRrZRUVEq60S2Xb16NZycst4MbWxssGPHDnz77bcqOCMTgmRC0nvvvQdLy/+abEpQJizsv+ZXN27cwDPPPKPWSe+ZNm3a4ODBg6pEiYhKJtDywV/nscw/RN1/+/G6GN+xZDPhiPRBro7LcjMqEcevRaJDzQr8RRAZmJ8OXsV7f55FRibQqVYF/DC8GRxti93GkEyoSe6Ja5FITElHWRs26Sci3SmTKZ+CimDChAkq0CElN5JZMnbsWJUxYq4kE0ZGQMtkImdnZ33vDpHBSs/IxNvrzmDVkawJXh892QAj2jCwSaZ7vJ666gTWn7yFyV1r4JWetUv85xFR0Uc7f7blIubvCVL3h7X0Vu9J1pZsjGqu59byMaj9pztxKzoJP41txQA5EelUkd9d5s+fr0YkL1iwQH3t2bMnfHx8VBmPlP0QEeWWlp6BV347qQIt0pZFJjww0ELmUkp0mE1yiQxGclo6pqw+qQ20vNazFmYNashAi5nL6tvCUiIiKhnFCuXb2dlhxIgRavRzQECAur148WJVTtSrVy/89ttv/D0RkfbE9qWVx/HnyVuwsiiDOc80xdPNq/DVIbNpknviWpQaJ0pE+hWdkIoRiw/jr1NZ70dfD2mMl7vWZM8wylFKxL4tRKRrD5036evri48++kg1pl21apXqvyJ9UIiIklLT8cKKY9hy7i5sLC0w77nm6NfIiy8MmYUaHo5ws7dGcloGztyM1vfuEJm16xFZo50PB0fAydYKy59vhUHNGPin/2gmEp25EYWYpFS+NESkM49UpLpr1y7VzHb06NFIT0/H+PHjdbdnRGSUZALLmKVHsOfyPdhZW2Dx6BboXq+ivneLqFTT0ltwBDSR3p25EY1Bc/0REBqHSi52+P3FtmhfI6tkhEjDy7UsfMs7qIbJh4Mi+MIQkf6CLdKfRfq0SOmQNMiV0c8//vgjbt++jXnz5uluz4jI6EQnSqr2IRwICleTHVY835rN5kzE3r170b9/f3h5ealgwvr163M8vnbtWlVOWr58efX4yZMnC21I2KdPn3yfJ7f3339fbZd98fT0hLGUEh0J5ok7kT7suhiKoQsO4F5sMup4OmHdpPao48mBBlR4dgtLiYhIL8GWlStXokePHirIIs1yhw4disuXL2PPnj0YOXIkypYtq9MdIyLjEhGfguGLDuL4tSg421nh53Gt0ep+o1AyfvHx8WjcuDG+//77Ah9v3749Pv300wc+1zfffFOsXgn169dXAX3NcubMGRhLk9yjVyPVBBQiKj0rD13DuBVHkZCSjg41y+P3iW3h6WLHXwEVoW9LGF8lItIZq6JuKKVCffv2VVchH3/8cVhYcEweEWUJjUnCc4sP4fLdOLg72OCnsa1Rz4tXEE2JZKLIUhBpmC6kj1dhTp06ha+//hpHjhxBpUqVivSzraysipXNkpycrJbs40RLW30vZ5S1tlTZXpdDY3lFnagUSNbcl1sv4Yddger+4OZV8AknDlERtKmeFWy5eCcW4XHJcHe05etGRI+syBGTGzduYN26dejXrx8DLUSkdSsqEUMXHFSBlorOtlg9oS0DLZSvhIQE1UhdsmOKEzy5cuWKKl+SxuzDhg1DUFDW6NaCzJo1Cy4uLtrF29u71H8j1pYWaFbNVd1mKRFRyZPJX9NWn9QGWqZ2r4nPn27E0c5UJOUdbVW5mTjIvi1EVNrBFg8PD139TCIyEVfD4zF43gEEh8WjsmtZ/DahrZrEQpSfadOmoV27dhgwYECRX6DWrVtjxYoV2LJlCxYuXIg7d+6o5wgPDy/we6ZPn47o6Gjtcv36db38Qlr5ZF0pPRwSqZefT2QuJINs1JLDWH8ya7TzF083wtTutTjamR6ybwtLiYiolMuIiIiyCwiNxbMLDyE0Nll18f9lXGvV0Z8oPxs2bMDOnTtx4sSJYr1A2UuXGjZsiLZt28LPzw/Lly/HK6+8ku/32NraqkXfWvq6aTNbpLyhOH1qiKhobkYlYszSwyq7Uhqz/zi8GTrWqsCXj4qtnV95LN0fggOBBQfziYiKg41XiKjYzt+KwdD5B1WgpXZFJ6ye0IaBFiqUBFoCAwPh6uqqerDIIp566il07ty5yK+eg4ODCrpIaZGha+rtBmvLMrgTk4QbkYn63h0ik3PuVjQG/rBfW8Yq2ZUMtNDDkqb+FmWAoLB43I7mMZuIHh2DLURULCeuRWLYggMIj09Bg8rOWPVCG3g4ccoDFe7NN9/E6dOn1UhozSJmz56NpUuXFvnlk8a3Fy5cKHJzXX0qa2OJBpVd1O3DHAFNpFN7Lt/DkHkHtEF/Ge3Mxuz0KFzKWqPh/WM2s1uISC/BFhn9nF+tfFRUlHqMiEzXoaBwPLfoEGKS0tC8mhtWjm8DNwcbfe8WlYK4uLgcQZLg4GB1+9q1a+p+RESEun/+/Hl1/9KlS+q+9FgR0hC3QYMGORZRtWpV1fhWo1u3bjnGS7/22mvYs2eP+nmHDh3C008/raYLjRo1yih+7618skZAHwmJ0PeuEJmM1Ueu4fllRxCfko72Ndzx+4ttmV1JOtHWr7z66s9SIiLSR7BFxnqmp6fne7Xx5s2butgnIjJAey/fw6ilh9XJbTs/d6x4vhWc7az1vVtUSo4ePYqmTZuqRUi/FLn97rvvanuyyP2+ffuq+zI1SO7PmzevWD9HSo3CwsJyTMKTCUa1a9fGoEGDYGNjg4MHD6JatWowBi3vB1sOM9hC9Mik99HXWy/hjTVnkJ6RiUHNKmPpaL4Xke7I+Y0ms0X+vRERlUqDXDmR1pCpEDJOU0OCLzt27ICPj88j7QwRGaZt5+/ipV+OIyU9A11qV8Dc55rDztpS37tFpUj6qhR24jl69Gi1FEd+zycB/exWrVoFY9bCJ6tJbtC9eITFJavxokT0cKOd31x7GmuPZ13Ym9y1Bqb14MShhyEXR9944w1s3rwZiYmJqFWrFhYvXozmzZtrMxml9HP9+vUqm13O7ydPnowXX3yx0Odds2YNZsyYoYLm0sh85syZGDhwIIztmC29tqTx8rWIBFRzd9D3LhGROQRbnnzySfVVpinkTt+2trZWB+KvvvpK93tIRHr116lbmLr6pLqK2KeBJ74d1hQ2Vmz3RFQUrvY2qp/EpbuxOBoSgd4NDL/XDJGhiUlKxaSfj+PfgDBYWpTBzCcbYFirqvreLaMUGRmJ9u3bo0uXLirY4uHhoW1erjFt2jTs2rULP//8szq/37p1KyZNmgQvLy8MGDAg3+c9cOAAhg4dio8++kgFWNatW4chQ4bg33//RevWrWEs7G2sVHNzyUaUUiIGW4joURT5E1NGRoZapL4+NDRUe18WKSGS+vx+/fo90s4QkWH5/eh1TFl1QgVaBjatjO+eYaCF6GFHQB8OjuSLR1RMMhVGGuFKoMXBxhKLR7VgoOURfPbZZ/D29laNyVu1aqWCKdIrSzJRsgdO5MKqZDTK4y+88AIaN26sykkL8s0336BHjx6YPn066tSpo77K88p6Y9P2fikR+7YQ0aMq9uVpaVJYvnxW8ygiMl0/HQjB63+cRkYm8Ewrb3w1uDGsLJnRQvSwfVvYJJeoeC7cjsHAH/xx8U4sKjjZYvWEtuhc24Mv4yOQtgAtWrTA4MGDVVaL9NZauHBhjm0ee+wxtZ2UG0m5p2S5XL58Gb169SrweSVA07NnzxzrZHt/f/8Cv0cu1krD8+yLYfVtCWPfFiIqnTKi7KQ/iyyaDJfslixZ8mh7RER6N39PIGZtvqhuj2nvg3f71VMlhERUfK18s4It525FIy45DY62D/XWS2RW9l25hxd/Pq7+Zmp6OGLpmJao4mav790yekFBQZg7d65qcv7WW2/h8OHDqh+Lra0tRo4cqbaZM2cOxo8fjypVqsDKygoWFhZYtGiRCsIURCbPVaxYMcc6ua+ZSJefWbNm4YMPPoChaVLVFXbWFgiLS8GV0DjUquik710iIiNV7MvUclCUyLUEW2RihNR+Zl+IyHjJFaxvtl/WBlpe6uLHQAvRI6rkUhZV3MqqLLHjV/k+SVSUEtYxS4+oQEub6uXwx8R2DLToiFwkbdasGT755BOV1TJhwgQVWJEAjIYEW2Tqm2S3HDt2TPVklJ4t27dvL/S5c1+UkXOKwi7USKlRdHS0drl+/ToMga2VpTYj0T/gv+l4RETFVezLazLGc9myZRgxYkSxfxgRGS45Kfp080XM3xuk7r/eqzZe6lJD37tFZBJa+ZTDjcibqpSoY60K+t4dIoN9H5qzIwCzt19W9wc08cLnTzdSH35JNypVqoR69erlWFe3bl01SUjIdCLJeJEGt3379lXrGjVqhJMnT+LLL79E9+7d831eT0/PPFkskgGfO9slO8mmkcVQ+7bsuxKm+raMbu+r790hInPJbElJSUG7du1KZm+ISC8yMjLx3oZz2kDLjH71GGgh0qGW90uJDgdH8HUlykdqegbeWHNaG2iZ1NkPs4c0YaBFx2QSkQy1yE76sVSrVi3r95CaqhYpHcrO0tIyT+uA7Nq2bYtt27blWCdTjIz1M0M7v6z+lAeDwtWQACKiUgm2jBs3DitXrnyoH0ZEhkdOIv5vzWmsOHAVku37ycCGGPsYr+IQ6ZImJf3k9Sgkp6XzxSXKJjYpFc8vO4Lfjt6ARRlg5sAG+L/edWAhd0inZKyzlAhJGVFAQIA6p1+wYAFeeukl9bizszM6deqE119/Hbt371aDMSSjfcWKFWqks4b0d5EyII0pU6ao4IpMO7p48aL6KmVHU6dONcrfYAMvZzjZWiEmKQ3nbxlG414iMoMyoqSkJHVQlgOopBVaW1vnePzrr7/W5f4RUQlfSZy2+iT+Pn0blhZl8OXgRhjYtApfcyId86vgAHcHG4THp+DszWg0r5YVfCEyd3djkjB66RE1eaistSV+GN4UXesUXHpCj6Zly5aqREgCJR9++CF8fX3VeObhw4drt1m1apV6XNZFRESorJeZM2di4sSJ2m2uXbuWI/tFMljk+9555x3MmDFDjZJevXo1WrdubZS/Mpm+2Lp6OWy/EIoDQWFoWMVF37tEREaoTKYUyBZDly5dCn6yMmWwc+dOmAMZT+fi4qIaeslVACJjk5SajpdXnsD2C3dhbVkGc4Y1RZ+GlfS9W0Qme7ye8NNRbDl3F2/0roMXO/vpbT+IDMWlO7EYs/QwbkUnobyjLZaMboFGVVz1vVtk5sdqjcX/BuOjv8+jc+0KWDamlb53h4jMIbNl165dJbMnRFRqElPS8cJPR1XzNxsrC8x/rjm61PHgb4CohEuJJNgiTXJfBIMtZN5kysuEn48hNilNZX7Jh1nvchztTIajnZ+7tteWZAJbWxa7+wIRmTkeNYjMjIzSHLX0sAq02NtYYtnolgy0EJWCVveb5B4NiVBNqYnM1boTN9T7kARaZFLXmhfbMdBCBqd2RSeUc7BBQko6Tt+I0vfuEJG5BFuOHDmC//u//8OwYcMwaNCgHEtx7N27F/3794eXl5cqQVq/fn2Ox0ePHq3WZ1/atGmTY5vOnTvn2Ub260F+/PFHVadqZ2eH5s2bY9++fcXadyJjFJ2QiuGLDqmrNNL47aexrdCuRlbHfSIqWfUqOcPBxlI1XLx0N5YvN5kdqVz/fucVTFt9CqnpmejXqBJWjG0FV3sbfe8aUR7SoLlt9azsFv+AcL5CRFTywRZpfiVj486fP68abMl4OLktvVqkzrI44uPj0bhxY3z//fcFbtO7d2/cvn1bu2zatCnPNuPHj8+xzfz58wv9udKwS7qjv/322zhx4gQ6dOiAPn36qGZfRKYqLC4ZwxYexKnrUXC1t8bK8W3YpJOolBsuNqvmpm5LKRGROUlLz8Bb687gy61Zo50ndKqueoXZWVvqe9eICtT2fimRfyCDLURUCj1bZFTc7Nmz1Yg4JycnfPvttypDZMKECahUqXjNNSXAIUthbG1t4enpWeg29vb2D9wm98SksWPHqjHWQrqwb9myBXPnzsWsWbOK/DxExjTt4dmFBxF4L141IfxlXGvU9nTS924RmWXfFinhk+yykW199L07RKUiPjkNL608jt2X7qnRzu8/UZ///smo+rYcuxapBgswOEhEJZrZEhgYiL59+2oDIZKdIqU706ZNUyOhdW337t3w8PBArVq1VAZLaGhonm1++eUXlC9fHvXr18drr72G2NiC07NTUlJw7Ngx9OzZM8d6ue/v71/g9yUnJ6su6dkXImNwPSIBg+cdUIGWSi52+G1CGwZaiPQYbNFkthRzGCCRUQqNScLQBQdUoMXO2gLzR7RgoIWMhm95B1R0tkVKWgaOX43U9+4QkakHW8qVK6cNZlSuXBlnz55Vt6OiopCQkKDTnZOsFwmkSInSV199pXrFdO3aVQU+NIYPH45ff/1VBWVmzJiBNWvWFNo7JiwsDOnp6ahYsWKO9XL/zp07BX6fZLxImZRm8fb21tH/JVHJCQ6Lx9D5B3AtIgFVy9njtwltUb2CI19yIj1pWtVVjVq/G5OM6xGJ/D2QSbtyNxYDf/TH2ZsxcHewwaoX2qJHvZznX0SGTC4ot/PL6m3HUiIiKvEyIulvsm3bNjRs2BBDhgzBlClTVDBE1nXr1g26NHToUO3tBg0aoEWLFqhWrRo2btyoDahItkv2bWrWrKm2O378OJo1a1bowTM7ucKYe11206dPxyuvvKK9L5ktDLiQIbt8N1Y1w70Xm6zGav4yrg08Xez0vVtEZk1S0BtWdsHxa1E4HBKBqu4cdUum6WBQOF5YcVQ1hK5ePmu0M/+9k7H2bVl34ib8A8NkRpG+d4eITDnYIs1sk5KStAEIa2tr/Pvvvyr4IZklJUl6wkiw5cqVKwVuIwEW2SfZJr9gi5QbWVpa5slikfKk3Nku2UnJlCxExuDszWiMWHwIkQmpqOPphJ/HtVa9WohI/1r6llPBliPBEXi6eRV97w6Rzv158iZe//00UtIz0LyaGxaNbAE3B04cIuPu23LqRjTiktPgaFvsj09EZKYeqoxIRjWrb7awUCOgN2zYoJrOurllTVkoKeHh4bh+/XqhjXjPnTunJiQVtI2NjY0a9SyZONnJ/Xbt2ul8n4lK27GrkXhm4UEVaGlcxQWrXmjDQAuRAWmVrW8LkSmRLOG5uwMxZdVJFWh5vKGnasjOQAsZsypu9qoUOz0jUwXJiYhKLNgiWSH5NamVQIg8VhxxcXE4efKkWkRwcLC6LSOY5TFpdnvgwAGEhISoniz9+/dXmSkDBw7UNuv98MMPcfToUbWNjIUePHgwmjZtqsZTa0h5U/bx0lIOtGjRIixZsgQXLlxQzX3lZ06cOLG4LweRQZEUV8loiU1KQ0sfN5XR4mrPq4lEhqRFtXKQqtWgsHhV5kdkKqOdZ/x5Fp/9c1HdH/eYL75/phmnt5BJZbdklRIRERVNsfPgCpqeIE1rJWukOCRI0qVLF+19TU+UUaNGqTHMZ86cwYoVK1TzXclUkW1Xr16tRk4L+Xk7duxQ46clOCM9VGRS0nvvvZcj8CNBGWmMm70XjASHJFBz+/Zt1etFAjVSokRkrHZfCsWEn44hOS0DHWqWx/wRzWFvw1RXIkPjYm+N2hWdcPFOLI6GRKBPw4KzNYmMQUJKGv638gR2XAxVgcR3+9XDmPa++t4tIp32bVl15Dqb5BJRsRT5k9icOXPUV2kiK1khjo7/TTSR6T579+5FnTp1ivXDO3fuXOjoyy1bthT6/RJc2bNnzwN/jmS95DZp0iS1EJmCf87ewf9+PY7U9Ex0r+uB75/l1UQiQx8BLcEWaZLLYAsZM8nOGrv8CE7fiIatlQW+HdYUvRt46nu3iHQebBHnb8cgMj6FpXFEpNtgy+zZs9VXCY7MmzcvR+aIZJj4+Pio9URU+o0IX/ntlKol7tuoEr4Z2gTWlsWuECSiUm6S+9PBq+zbQkYtIDQOo5cexo3IRLjZW2PRqJaqIS6RqfFwskNND0dcCY3DoeBw9G7AjEQi0mGwRfqpCCnlWbt2bYk3wyWiB1t1+BqmrzsDSRB7qlkVfP50I1haFDzCnIgMq0nu+VsxiE1KhZOdtb53iahYpMHzuOVHEZ2Yimru9mq0s295B76KZNJ9WyTY4h/IYAsRFU2xL3/v2rUrR6BFSoikqW1kZGRxn4qIHsHS/cF4c21WoOW5NlXxBQMtREbD08UO3uXKIiMTagw0kTH5+/QtDF90SAVamni7Yu2L7RhoIZPX1q+8+irBFiKiEgm2TJ06FYsXL9YGWjp27IhmzZqp/ikyMYiISt4PuwLwwV/n1e3xHXzx0YAGsGBGC5HR9W0Rh4N54k7GQUrJF+wNxMsrTyAlLQM961XEr+PbwN3RVt+7RlTi2lTPmiQn5XOhMUl8xYlI98GW33//HY0bN1a3//rrL9V89uLFiyoI8/bbbxf36YiomCe6X229hC+2XFL3p3Sribcer6saVxORcZYSHQlmZigZPukL9v6Gc/hkU9Zo59HtfDD3ueYoa/NfDz8iU+Zqb4P6Xs7q9oEgBsmJqASCLTIy2dMzq8u8jEsePHgwatWqhbFjx6pRzURUcoGWjzdewHc7A9T9N/vUwbQetRhoITLiJrni5I0oJKel63t3iAqUmJKOiT8fw/IDV9X9d/rWxXv967FHGJmddppSogAGW4ioBIItFStWxPnz51UJ0T///IPu3bur9QkJCTkmFBGR7mRkZOLt9Wex+N+sRtUfPFEfEzv58SUmMmLVyzugvKONKseQsblEhigsLhnDFh7EtvN3YWNlgR+ebYZxHaoz0E9mPQLaPyhM37tCRKYYbBkzZgyGDBmCBg0aqDfaHj16qPWHDh1CnTp1SmIficxaWnoGXvv9FFYeuqZqhT9/qhFGtfPR924R0SOS99AW1TR9WyL4epLBCboXh0E/+uPU9Si42lvjl3Gt0bcRR96SeffasrIog+sRibgekaDv3SEiUxn9rPH++++rQMv169dVCZGtbVZTNMlqefPNN0tiH4nMllzxnrr6BDaduaPStb8e0hgDmlTW924RkQ5Lif45d0eN0SUyJMeuZo12jkxIVZOzZLSzXwVHfe8WkV452lqhsbcrjl2NxIHAcHiXs+dvhIh0F2wRTz/9dJ51o0aNepinIj1KTEmDpYUFYpNS4WRnjbSMDNjbPNQ/CSoBSanpmPTLcey8GAobSwt892xT9Kqf1S+JiEyrSe6xkEjVgFSCqkT6tvnMbUxdfRLJaRloXMUFi0a1RAUnThwiEu383FWwxT8wDENaevNFIaICPdQn6x07dqglNDQUGRkZOR5bsmTJwzwllbLk1HTM2xOEpf7BiElMg3NZK4xp54tJnf1ga83eO/qWkJKG8SuOYn9AOGytLLBgZAt0qlVB37tFRDpWt5ITHGwsEZuchot3YlDfy4WvMemV9Ab7eON5ZGYC3et6YM4zTXkhhihX3xYZVuAfGK6GF3AiJBHprGfLBx98gJ49e6pgS1hYGCIjI3MsZBwZLT/uDsS3O66oQIuQr3Jf1ssHfdKfmKRUjFx8WAVa5EPY8udbMdBCZKKsLC3QrJqbun2EfVtIjySz6oO/zuGjv7MCLSPaVMP8ES0YaCHKpVlVN9UsOjQ2GYH34vn6EJHuMlvmzZuHZcuWYcSIEcX9VjIQUjokGS35kfUvdalR6vtEWSLjUzByyWGcuRkNZzsrLHu+lXpTJyLTLiXadyUMR0IiMbq9r753h8y0bHXqqpOqf5CY3qcOXujIiUNE+bGztkSLam4qs+VAYBhqeLCXERHpKLMlJSUF7dq1K+63kQGRHi2ajJbcZH1obBL+7/dT+Gb7ZdX8S07CqOTdi03GsAUHVaClnIMNVo5vw0ALkZk0yRWHQyJUSjpRaYqIT8GzCw+qQIv0B5OyoQmd/FgaQfSAvi1CAi5ERDrLbBk3bhxWrlyJGTNmFPdbyUBIM1zp0ZJfwEXWywf97RdD1QkYcEWdfDX2dkEr33Jo7euO5tXc4GDLRrq6dDs6EcMXHkJQWDw8nGzVeM2aFZ10+jOIyDA18XaFtWUZFXC9Gp4An/IO+t4lMhMhYfEYvfQwQsITVDblwpEt0Lp61odIIipYW7/yAC7jQFA4MjIyYcHm5kSUj2J/Yk5KSsKCBQuwfft2NGrUCNbW1jke//rrr4v7lFTK4pJTMaqtj2rulZs0yU1ISccrPWrhUHAEDgWFq5pUSW+X5YddgWpaRoPKLmjjW04FYFr4lINL2Zz/DqjoroUn4NlFB3EjMhGVXcuqQAs/bBGZV0p64yquOHo1UmW38O+fSsOJa5EYu/yourAi7z3Ln2+JGh4M8hMVRaMqLqqvXlRCKi6wuTkR6SrYcvr0aTRp0kTdPnv2bI7H2I3bOHyz/QqmdKsJGTC67EBIvtOInmtTTS2S0i5XWg8Fh98PvkTgZlQiTl2PUsv8vUEoUwao6+mM1tWzMl8kACPZMfRgAaFxeG7RIdyJSYKPuz1+HtcaVdzs+dIRmWEpkQRbpEnukBYcJUola8u5O5iy6gSSUjPQoLIzloxuCQ8nO77sREVkbWmhznd3XbqnSu45SY6IdBJs2bVrV3G/hQyIf0AYVhy4ioNB4aonyMtda6oeLlJalJaRkWfsswTQ5CqrLENbVlXrbkQm4PD9wItchQ0Oi8f52zFqWbo/RG1Tq6KjtuyotW85eDjzJC63C7djMGLxIYTFpaCmh6PKaOHrRGS+TXLnIhBHQiL0vStk4pbtD8YH9ycOdaldAd8/24ylwWbm5s2beOONN7B582YkJiaiVq1aWLx4MZo3b17oxdPPP/8cr7/+er6PyfCMMWPG5Fkvz29nZ5rngO38yqtgi/RtGdehur53h4gM0CM13rhx44Y6IFeuXFl3e0QlOtbxw7/Pq9ttq7ujvKOtuu1+/6tNEfslS+aFLIOaVVH378YkZQVfJPslKAJXQuNw+W7W8vPBa2ob3/IO6sOEyn6p7q5Sls2ZZAXJ1KHoxFTUq+SMn8a20v4eiMj8yPhn+XwjvTOkSTmzDEjXpK/ErM0XsHBf1jTCZ1pVxUcD6qvx42Q+IiMj0b59e3Tp0kUFWzw8PBAYGAhXV1ftNrdv387xPbLd2LFj8dRTTxX63M7Ozrh06VKOdaYaaBFt7zfJlZL71PQMle1CRJRdsY8KGRkZ+PDDD+Hi4oJq1aqhatWq6gD90UcfqcfIcK06cg0X78Sq/ipTu9fS2fNWdLZD/8Ze+PjJhtj2Sicce6c75j3XDGPa+6hAgnyAkOyX1Uev45XfTqH9pzvV8spvJ7H6yDXVoM+cJnDIlevhiw6pQEvTqq749YU2DLSQwdu7dy/69+8PLy8vFWRfv359jsfXrl2LXr16oXz58urxkydPFvhc8vfep0+ffJ8nPz/++CN8fX3VSbtced23bx9MjRyX63g6q9tHgiP1vTtkYmSq4P9+PaENtLzeqzY+GdiAgRYz9Nlnn8Hb2xtLly5Fq1at4OPjg27dusHPz0+7jaenZ47lzz//VMGZ6tULz96QY3ru7y1McnIyYmJicizGRM5x5dgdn5KuJkkSET1ysOXtt9/G999/j08//RQnTpzA8ePH8cknn+C7777jhCIDJh/sv9p6Wd2e2r0m3Eqwp4pkaPRuUAnv9a+PTVM64OS7PbF4VAtM6Fgdjb1dVYNd6fuy9vhNvLHmDDp/uRttZu1QJ4I/H7yKK3djTTb48u+VMIxcfBhxyWloU70cfhrbms2FySjEx8ejcePG6vhf0ONytVTeGx7km2++KXKPr9WrV2Pq1KnqvUfeczp06KACNdeuZWXNmZJWPm7qK0uJSJci41NUb7CNZ26rqVffDG2Cl7rUYJ89M7Vhwwa0aNECgwcPVlktTZs2xcKFCwvc/u7du9i4caPKbHmQuLg4dSG2SpUq6NevnzpmF2bWrFnq4q1mkSCQMZEJRJIpLqRvCxFRbmUyi/mpVq5qzps3D0888USO9RL1njRpkqoDNQcSfZc3hujoaJU2aeg+/vs8Fv0bjBoejtg8pYNeUx0l0HD8aqQqO5Lyo1PXo5GSnjMrShrsasuOfN1Rx9PJ6Mfq7bhwFy/+chwpaRnoWKsC5j/XHGVtcvbIITIGEihZt24dnnzyyTyPhYSEqCwUOcnWNFPP7tSpU+ok/MiRI6hUqVKBz6PRunVrNGvWDHPnztWuq1u3rvoeOVEv6GqpLNmP13ISb+jH679P38LLK0+oq6USqCbSxbS70csOI+hePJzsrDB/RHPVZ4LMl6as55VXXlEBl8OHD6uA9vz58zFy5Mh8+7RIEP3WrVuFlgQdPHgQAQEBaNiwoTrmfvvtt9i0aZM65tesWdOkjtXZrTgQgnf/PIf2Ndzxy7g2+t4dIjL2ni0RERGoU6dOnvWyTh4jwxN0Lw7L/LMa177Tt67ea0odba1UsEEWTXrziWtR2p4vx69FqlGU/5y7oxbhbGelGu5qmu7W93I2qvTnjadvq8kPaRmZ6FmvIr57tilsrRhoIfOSkJCAZ555RmXHPCi9XKSkpODYsWN48803c6zv2bMn/P39C/w+CcJ88MEHMDYSYBYyRjQmKRXOdtb63iUy8t5gY5cfUU3YvVzssOz5VqhVkaOdzZ2U/Etmi2SlC8lsOXfunApo5xdsWbJkCYYPH/7A3itt2rRRi4ZkOkqgXDLf58yZk+/32NraqsWYtbvft+VoSKQ6n7XLNWiCiMxbsYMtmjTy3AdOWSePkeGZufGC+pAvUwc61/aAoZE3Jmkypmk0Jpkfp29I8EWa7kbgWEgEYpLSsP1CqFqEg40lmkvmiwq+lEOjKq6wsTLM4MuaYzfw+h+nkJEJPNHYC18Naaz3gBeRPkybNg3t2rXDgAEDirR9WFgY0tPTUbFixRzr5f6dO1mB2PxMnz5dXbXNfbXU0Mk0smru9rganoBjVyPRxQCP12Qctp+/q0pzE1PTVabU0jEtVX81IskorFevXo4XQrIF16xZk+fFkf5Y0vBWyjmLy8LCAi1btsSVK1dM+kX3q+CICk62uBebrC4cas5liYgeKtgi6YR9+/bF9u3b0bZtW5VOLlcYr1+/rtIFybDsvXwPOy6GwsqiDN7pl/PN1VBJ0KSFTzm1vNQFSEvPwLlbMdqJR/JVgi/y/yaLsLWyQLOqbqrsSLJf5LYhXF2QHjTvrD+rbg9t4Y1PBjVUPWuIzLFPwM6dOx9Yw5+f3P1dpPq1sJ4vxny1tKVPORVsORIcwWALPZSfDl7Fe3+eVQF+ySD9cXgzlVFKpMk4yT0x6PLly6rXSm6acdAPczFVjtPSKF3KikyZvBdJdsufJ2/hQGAYgy1ElEOx3307deqkDso//PADLl68qA6mgwYNUv1apJ8LGQ4JUnx0f9TzyLY+KvpujKRcSBrryjK+Y3U1wvrSnVht4EWW8PgUHAgKV4uQJoCNq7hqe740r+YGh1I+2Vy0Lwgfb7ygbo9u54N3+9Uz+r4zRA9LAi25x4sKGSUqTW93796d53tkspGlpWWeLJbQ0NA82S6mQkqJ/jh2g01y6aFGO3+25SLm7wnSBvg/HtiAmZSUb4ahlBENGTJE9WxZsGCBWrKTjMDff/8dX331Vb6voJQcVa5cWds7S0o3pYxI+rPI90oGvARb5POCqdMGW+6fgxKRfiSmpMHSwgKxSalwsrNGWkYG7G30e7HhoX66BFVmzpyp+70hnVp5+BquhMbBzd4aU7rl35zMGElmSD0vZ7WMae+rAn4BoXHasqNDQeEIjU3G0auRavlhV6D6ngaVXbRlR5I1I+P6SoLsz/c7A/DVtqzpTxM7+eGN3rU5+YHMmvRdGTduXI51csVz9uzZaqR0fmxsbNRV1W3btmHgwIHa9XK/qKVIxqalb1bfFmkczvp/KqrktHS89vtp/HXqlrr/ao9aeLkrJw5RPseYli1VY3Ipt/zwww9VQ3OZECd9WbJbtWqVOp+RPlv5kYlwUiqkERUVhRdeeEEFx2WAhPSC2bt3rxovbeo0TaeljCghJU3vH+6IzFFyajrm7QnCUv9gxCSmwbmsFca088Wkzn6w1WO1Q5GnEUnN5bvvvqu6lefuEC5dw1988UV8/PHHqF69OsyBoU8jikpIUSOVoxJS8dGA+hjR1gfmQv5JSxq+ZLwcvN90V0ZNZycVCHU9ne9nvkjpkbuagKSLn/35lkuYuztQ3ecJL5kKGekpkyaEnER//fXX6NKlC8qVK4eqVauqBuly8i0TK6TUVE7Ua9eurRrhFtQMN7+pRt26dVOBlZdfflndl14BI0aMUFPwpHRVrr7KmFJp6Jhf2rsxHq9zH0NaztyBsLhk/DahrSqLJCpMdEIqxv90VL3nScnwZ081wlPNq/BFI6NjTMfq3Np/ulOday5/vhU63R8AQUSll9EigZZvd+TtESUJBxM6VddbELTIXTq/+OIL1WAwv4OfHBjlMdmmOCTiLVc0JVNGTrrXr1+f4/HRo0er9dmX7J3Oc5+g9unTJ9/nye3999/P87xFmYxhTL7ZfkUFWmpXdMIzrarCnMjv06e8A4a09MbXQ5pg/5td8e8bXfD1kMYY1tIbvuUdICHG87djsHR/CCb+fBzNPtqGHl/vwTvrz2DDqVsIjUl6qBTuD/46rw20yOSn/3WryYwWMglHjx5VQRZZhDSgldsShNf0ZJH7EmgRw4YNU/clSFIcUmokjXE1hg4dqq66yhVYGSUt7xvSH6yogRZjPH618nVTt4+EcMIfFe56RAKemuevAi1Otlbqgx4DLUT6m0rkH/jf+xcRlTz5/CVtGiSjJT+y3ipbFl5pK3KIR05wf/rppwIfl7rPZ599tlg/PD4+XjXdGjNmjKrbz0/v3r2xdOnSHGnl+ZGT8cIaJuZWv3591eRXQ/oCmIqA0FjVIE/M6FfPqEYkl5QqbvZqGdQs62qfBFOk5EjTdPfy3ThVciXLzwevqW0kKCP9EzRNd+X7C6oNlDGt0oBQ3mz3XQnDmPY+eK6NaX4YJPPUuXNnFdQuiATHZSmO/J4vJCRrTH120hNMFnMhTXI3nbmjjk/SJJwoP2duROP55UfUFBRPZxnt3BJ1PI0rG4DIVLSr4Y7fj93AgUD2bSEqjQDL0auR2HTmNi7fjcFnTzVWpUP5kfXSw8Xd0dawgy1Xr16Fh0fBYyilkaFMJCoOyUSRpTAyUeJBWSenTp1SKe1HjhxRI+2KwsrKqljZLMnJyWrJnupoqD76+4JqItu9bkU8VjOrjpTyjljt39hLLSI8LhlHQiK1TXcl6yU4LF4tq49m/buu7Fo2q+dL9XJ4rEZ5lHe0zVMbOKqtD/58uT0nPxDRIwVbxPGrkepYzglmlNuui6F4aeVxJKSko46nkxrtXMmlLF8oIj1pWz3rfPvszWhV2udiXzJ9AYnMVboEWEIiVIBl89k7qj+nkDYQ7o426nNYfgEXWS/NcvWlyMEWKRWS9O6CUrellr8k6itlQoUEeWSChUxCksa82YM+CQkJqnnX999/X6zgifSgkfIlCea0bt1adWUvrN+MdFuXTuvGcAK25/I9NY3n7b519b07RkOinb0beKpFRCem4thVabYrfV8i1Jun1OKuPXFTLQtHNsfpG9H4bmdWDwshf+By36JMGb3WBhKRcatbyVmVhMQmp+HC7RjV3JtIY+Wha5jx51l14tmhZnk12lmfJ5JEBHi62KF6BQcE3YtXF+561jet9gRE+pCekalKqjUBFsnk1HCys0KPehXRt2ElZGRmqma4+fVskfUylcim6N1TdKrInwY7duyI7777Dl27ds33cRnxJuM7dUmyXgYPHqwCPMHBwZgxY4b6+ceOHVNBkuwj7IozmUKCKytWrECtWrVw9+5d1dhXnkMaLrq7Z9Vc5iZd26VHQfbMFulTY0hSZdTzxqxRzzKlR8pg6OHIpKKudSqqRcQnp+HY1UiV9XLhdjTa1yiPV38/le/3SqbLS11q8KUnoocimSzNqrmpwLmcZDDYQpqyuy+3XlIT9sTTzatg1qCGHO1MZCCklFyCLSevRzHYQvQIAZbDwVkBln/O5QywOKsAiyf6NvJUn8Vsrf5rAyJTh4ShTSMqcrBFgg0yCeLpp5/G//3f/6kpE+LixYv4/PPPsWXLFvj7++t056QxokaDBg3QokULFXjZuHEjBg0apBoy7ty5EydOnCjW82YvXZLRo/L/5efnh+XLl+cIqGQnwR1NgMdQ/XTgqjrIuzvYqJGPpDsOtlboWKuCWoRMCjHU2kAiMn7SJ0oTbJHgOZm3lLQM/N8fp7D+5C3tdIWp3dmAnciQyIdAmUT0WI0KqjxdMs7kijoznYkeHGCRjDAVYDl7V33Oyh5gkUwxyWCRAIuNVf4ZKhJQkcoCueAtn8M0f3/6DLQUK9giUyX++OMPPP/882pUZ3aSDfLbb7+hWbNmKEnSj0WCLVICJCTQIqVNUmKUnTTblSwbKUEqCgcHBxV00TyvMYqIT8E32y+r26/1qg1nphSXKHl9DbU2kIhMp2/L4eBIldFQnAbwZFqkrHXiT8dwIChcjXb+ZFBDDGlhWJm1RATV1++HXQEq89mQrqwTGaK09AyVwbLxzG1sOXcHYXEpOSoMetariMcbVUJ7v4IDLLlpApuaC976Kh3KrlhNJfr166ca5f7zzz+qR4ucAEopTs+ePWFvn3dSi66Fh4erJryaJrhvvvkmxo0bl2MbCZrMnj1bjZQuKml8e+HCBZ2XQZWm2dsuIyYpTdX68ySs5KVnZBhsbSARGb9GVVxgY2mhru6EhCewLNRMSa+wMUsPq4l5DjaWmPtcc22GJREZDplOKUMTcvfy05wnspcfEVSA5ZAmwHL2DsLj/wuwuNrfD7Dcz2CxNpFpusXu4Fm2bFkMHDhQJz88Li5OBW00pC/LyZMnUa5cObW8//77KktFgisyDvStt95SU480P18a4ubXFLdq1arw9f0v7bpbt27qe15++WV1/7XXXlPBGNkuNDRU9WyRHiyjRo2CMbp0Jxa/HMoa9fxuv3qcXFEKytpYGWxtIBEZPztrSzT2dlFT0o4ERzDYYobO3YrGmKVH1MSFis62WDK6Jep7sVkykSGytLBQ54P5YS8/MvcAy8GgrADL1nN5Ayy96nmqDBbpeWQqAZbs9Dou5ejRo+jSpYv2vqZfigQ95s6dizNnzqhGtlFRUSrgItuuXr0aTk5Oxfo5UmoUFhamvX/jxg01wUjWVahQAW3atMHBgwcLnLRkyCS76KO/zyMjE+hd3xNt/fJv8Eu6Z6i1gURkOqVEEmw5HBKBIS1ZNmJOpF/PpJ+PIT4lHbUrZo129nLlaGciQyXngYX18otJSkV59vIjMwqwSOnrJlUidFe1u9BwkwBLfU+VwdLWRAMsBhNs6dy5swoWFESa7hZXfs8nWTHZrVq1CqZi+4VQ/BsQptLN33qco55LmyHWBhKRaWjpWw7YHaia5JL5WH3kGt5alzXaWa70SemQ1K8TkeFyekAvP3sbS7z751mMbueD6hUc9bKPRCU9FfdAoCbAcgeRCak5Aiy9G2QFWNpUN/0Ai8EEW+jRpxPMvD/qeWwHX1R1L/m+OUREVDqaV3OD9MW9Gp6A0JgkeDjb8aU3YXKxSPqvzbnf82FQ08r49KlGRW4MSESG2ctvdFsf/HslDCsOXMXPB6+if2MvvNylBmpWLF6mPpEhBlj8JcBy+ja2ns8ZYCnnYKMyWGSKUJvq5WBlRgGW7BhsMWLL/UNU48QKTraqlIWIiExr6lldT2ecvx2jSon6NfLS9y5RCV48eXPtaaw9flPd/1/XGnilRy1OoSIykV5+QWHx6FbHAzsuhuLPk7ew4dQtdZVf/tbreDrre/eJihVg2R8QpjJYtp6/i6hsARZ3CbA0yAqwyHQuKzMNsDxSsGXTpk2wtLREr1698pT8ZGRkoE+fPrrcPyqATKiYcz96/nqv2nC0ZdyMiMjUtPItp4It0iSXwRbTJL0cJv18XJUEW1qUwcdPNsAzrarqe7eISIe9/GRa6OLRLXH2ZjS+23lF9bHYePq2WnrVr4j/da2JBpXZAJsM94LA/sCw+xksdxGd+F+Apbzjfxkscs7CAEtOxf6ELuOWP/3003zTX+UxBltKx1dbLyM2OQ0NKjvj6WZVSumnEhFRaTfJXeYfgsMhkXzhTdDtaBntfAQX78Sqng4/DG+GLrU99L1bRFRCvfwkoDJ/RAtcuB2D73cFaBuIyiKZL//rVhNNvF35+pNhBFgCwtQUoW35BFg0PVha+7pzEq4ugy1XrlxBvXr18qyvU6dOjjHOVHLO34pRDfTEu/3qw8KiDF9uIiIT1NLXTX0NjU3SXikl0yAftiTQcicmSZUDLx3dkle2icyEZLr88GwzXLkbq4Iuf526pUqMZOlYqwKmdKuB5tXK6Xs3yQwDLP8G3MPG03ew7fwdxCT91/BZpmn1uR9gkQwWycSkEgi2uLi4ICgoCD4+PjnWS6DFwcGhuE9HxSQZRB/+fU6Neu7bKOsfOxERmSYPJzv8NLaVapYbl5QGWytLlZauuXpKxmnflXt48efjiEtOQw0PRywb0xJV3NjknsjcSJPcb4c1xZRuNfHDrkCsP3kTey/fU4tMI5vcraaa3kJUUpLT0lUDZ00GS2y2AItcCNAEWCTTlgGW4iv22doTTzyBqVOnYt26dfDz89MGWl599VX1GJUsGaV1MCgCtlYWmN6nDl9uIiITlpyarvq1vLTyeJ6Gi9IHgIzP70evY/raM0jLyFQNBBeMaAEXe2YsEZkzGQf91ZDGKujy4+4A/HHshpryIotcWJ3ctSba13Bn02zSWYBl3+WsJrfbLuQMsHhkC7C0YIDlkZXJlFSJYoiOjkbv3r1x9OhRVKmS1Svkxo0b6NChA9auXQtXV/OoM4yJiVFZPvJ6ODs7l9ofRvev9+B6RKLqXv5qz9ql8nOJiIyZPo7XupCYkoZ5e4LyHSUqJ+TSiJEZLsZDTrfm7AjA7O2X1f0nGnvhi8GNVLYSERnvsbok3IhMwLw9gfjtyA2kpGeodc2quqqeLp1rVWDQhYotKTUd+65kBVi2SwZLcs4AiwRXVIClmhtbVOgz2CLkW7Zt24ZTp06hbNmyaNSoETp27Ahzoo83hLm7A/HZPxdR0dkWO1/tDAdOICIiMtkTeKmdbjFzm8poyU0yXI6+3QM2VhyraCyjMt9edwa/Hb2h7r/Y2Q+v96zNE1oiEzhWl6Q70Ukq6PLr4WtITssKujSq4qKmF3Wv68GgCz0wwCIlaSrAciFUla5qyOfJPg0qqbYUzasywGJQwRYq/TcEaY7Y5YvdiE9Jx9dDGmMQJxAREZn0CXx4XDKaf7y9wMcPvdVNXfzwdClbqvtFxSONjSf9clxdUZR+gh8OaIDn2lTjy0hkIsfq0iCfAxbuDcLPB68hMTVdratXyVllusvYXQ7LoOwBlj33Ayw7cgVYPJ3t0Kdh1pjmZgywGE7Pljlz5uCFF16AnZ2dul2YyZMn62rfKJsvt1xSgZbG3q54skllvjZERCZOJg9JBktBmS1OdlZ47LNd8HG3x4AmlVX6rzSzI8NxNyYJo5ceUZOHylpb4vtnm6Jb3Yr63i0iMsJm6W/3rYcJnfywaF8wfjoQgvO3Y/DiL8dRq6IjXu5aU32AZgNT8w2w7L6kCbDcVZ8ZNSq52N3PYPFEU29msBhkZouvr6/q0eLu7q5uF/hkZcqoSUXmoDSj72dvRqP/9/9CflNrXmynplIQEZH59myZ3K0G2vuVx7CFB9V7g5CsifY1yqteIL0aeMKZY6L16tKdWIxZehi3opNQ3tEGS0a3RKMq5tHXjsicjtX6EBmfgiX7g7Fsf4i290b1Cg4q06V/Iy9YWbLE1DwCLKHYeOYOduYKsHhJgOV+D5am3q7MfNIjlhEZ+BuCxMKGzD+AIyGRGNDES42HIyIi8ziBl2lEP+4OxFL/4HynEUnmxN+nb2PDqVs4dT1K+33Sy6VrbQ880cQLXet4wI6Ti0qVf0AYJvx8TE14kA9Ay8e0gnc5jnYmMtVjtb5EJ6aqgIsEXuS2qOZuj5e61MDAppVhzaCLSQZY5H1/58VQJOQKsKgmt40qoUkVBliMNtjy4Ycf4rXXXoO9fc6ThsTERHzxxRd49913YQ5K6w3h79O38PLKE7CztlBNcb1cWZtPRGROJ/AJKWmwsrBQvT+ktCgtIyPfKUQhYfH469Qt/HnqFgJC47TrHW2t0LNeRRV4kcwXnnyXrHUnbuD//jiN1PRMtPRxw8KRLeBqb1PCP5XI+Bn7sVqf5P1hxYGrWLQvCJEJWUGXKm5lMalzDTzdvAqbqRuxxBRNBkveAEtl17J4vGHWmOYm3q5smGwKwRZLS0vcvn0bHh4eOdaHh4erdenp//0DMGWl8YYg0ctuX+3BzahETO1eE1O71yqRn0NEZMrM7QRe3tYv3I5V2S4SfJH3EI1yDjbqxEx6vHD6gO5f9x92BeDLrVmjnWXCw1eDGzOriKiIzO1YXRLik9Pwy6GrWLA3CGFxKdqMh4md/TCkhTePR0YUYNmlCbBcCNU2RdYEWOT9RQIsjau4MMBiasEWCwsL3L17FxUqVMixfufOnRg6dCju3bsHc1Aabwjf77yiTtrkILnj1c4oa2NZIj+HiMiUmfMJfEZGJk5cj8SfJ29h4+nbCI/POvkW8t7Sv7GXyniRqRbSd40eTlp6Bmb8eRa/Hr6u7k/oWB1v9K7DOnmiYjDnY3VJfFiXcdEyNjo0Nlmt83CyVQ12n21VlZ8pDDSLddfFrCa3ksGSPcAiWUrSAFkCLDL6m+/XJhhscXNzU79YzQEw+y9Zslni4uIwceJE/PDDDzAHJf2GIHX4Xb7crVLFvh3WRF2FJCKi4uMJ/H8BAf/AcBV42XLuTo5xkH4VHPBE48oq8OJb3oH/zIp5JfmllcfVJAhpUvz+E/Uxsq0PX0MiHqv1TrLkfz96XfX+uh2dpNZJw+4XOlbH8NbV4GBbpMG0VIIBFgmsaAIsSakZ2se8y0mJUCUVZGlYmQEWkw+2LF++XKXIPv/88/jmm29UoEHDxsYGPj4+aNu2LcxFSZ+8v/LbSaw9fhPNqrqqCUSMYBIRPRwGW/I/Ad91MVSVGu24GIqUtP9O8OSqmUw06tfIC54udvxnV4jQmCQ8v/wIzt6MUb3V5gxrip71PfmaEfFYbVCS09Kx5thN/Lg7ADcis0pL3eytMa5DdYxsW031A6PSC9BrAixSKpQ9wFK1nL02wNKgMjNOzbKMaM+ePWjfvj2srMw7ElqSJ+8nr0fhyR/2q9t/vtQejb05KpKI6GEx2PLgxopbz91VjXX3B4QhPSPrtEASWFv7llMZL9LnhU1ec7pyNxajlx5RPXHcHWywaFQLNK3qxj9UMng3b97EG2+8gc2bN6sBF7Vq1cLixYvRvHlz9XhBF/g+//xzvP766wU+75o1azBjxgwEBgbCz88PM2fOxMCBA4u8XzxWl7zU9AysO3ETP+4KQEh4glrnUtYaz7f3xej2Puo2lUyARS5sbDqdFWBJTssbYOnXqBLqezHAAnMPthw/fhzW1tZo2LChuv/nn39i6dKlqFevHt5//32V5WIOSuoNQX4dT831x/FrURjUrDK+HtJEZ89NRGSOeAJfdGFxyepq24aTt3D0aqR2vbVlGXSsWUGVGXWvW9HsU88PBoXjhRVHEZOUpsqulo1piWruLL8iwxcZGYmmTZuiS5cuePHFF9VwCwmOSIa6BEjEnTt3cnyPBGXGjh2LgIAAVK9ePd/nPXDgADp06ICPPvpIBVjWrVunJpT++++/aN26dZH2jcfq0i0r/ev0LXy/MwCB9+LVOidbKxVwkcCLm4N5fJ4rSVKqu+PCXfWeKmWm2QMsMp5bk8HCAItpK3awpWXLlnjzzTfx1FNPISgoSAVZBg0ahCNHjqBv376qxMgclNQbwp8nb2LKqpOwt7HErtc6o6IzU7iJiB4FT+Afzo3IBPx9+rbq8XLhdox2fVlrS3SXUdKNvdCpVgWzGykq79Ov/34aKekZaF4ta7SzTHkiMgZyDr9//37s27evyN/z5JNPIjY2Fjt27ChwGxmSIcdaCcxo9O7dW/V8/PXXX4v0c3isLn2SySjBgO92XsHlu3FqnYONJUa09cH4Dr5wd7TVw14Zf4BFGtLvvnwvR4muz/0AiywMsJiPYgdbJMAg2S0S/f7ss8/UFKItW7aoA/ewYcNw/XpWJ35TVxJvCNI5vOtXu1UDq9d61sLLXWvq5HmJiMwZT+AfXUBorMp2kVKjq/dTz4WknPdp4KkCL62ru8NSOsSaKDldmrcnCJ/9c1Hdl//v2UObcJQqGRW5SNqrVy/cuHFDtQaoXLkyJk2ahPHjx+e7vUwgrVKliurd+Oyzzxb4vFWrVsW0adPUojF79mx1Efbq1av5fk9ycrJash+rvb29OY1IT5Prtp6/g293BGiD6xJYf65NVYzvWB0eTrz4W1gp7o4LWWOa9+QKsEjmo5ThSoCFU//Mk9XDnGxkZGT9I9q+fTv69eunbsvBMSwsTPd7aEbm783qFC7z06VhFRERkSGo4eGEV3rWxrQetXD6RrTKdvn79C01UnTVketqkbGi0lRXSo0am9hoSkm5f/+vc/j54DV1f+xjvnj78boc7UxGR7LS586di1deeQVvvfUWDh8+jMmTJ8PW1hYjR47Ms70EWZycnFQWe2Gk9KhixYo51sn93CVJ2c2aNQsffPDBI/zfkK5YWJRB7waV0Ku+pwoczNl5RR3rF+4LxooDV/FMq6qY2MmPTdPvi1EBFslguYO9V3IGWKqrAEtWBkvdSk4m9V5IpZDZ0rVrVxVY6d69u6rfPH/+PGrUqKGi46NGjUJISAjMga6vlN6KSlRZLdKR+odnm6Fvo0o62U8iInPHzJaSSz8/FByuMl42n72D6MTUHPXoku0iS82KTjD20Zz/W3lCNTeUc+YZfevh+cd89b1bRA9Feiu2aNEC/v7+2nUSbJF2ANJ3Jbc6deqgR48e+O677x74vBKYeeaZZ7TrfvnlF/VZISkpa+RwbsxsMVzy8VCyNObsuKL6SAobSwsMaVlFBV2quNnDHAMs289n9WDZezlMlZJqVK/goPqvSICljicDLPQImS2SDjh8+HCsX78eb7/9tgq0iD/++APt2rUr7tPRfZKWLIGWVj7lVLoZERGRIZOSoXZ+5dXy4YAG2Hv5niozkpNRKTX6bmeAWupWclZBl/6NKxndCfq92GSMXX5EXeG1tbLAt8OaqKu/RMaqUqVKqpQou7p166pJQrlJX5dLly5h9erVD3xeT0/PPFksoaGhebJdspNsGlnI8Eg2RufaHqovl39gOL7dfgWHQyJUdt+qw9fxdPMqmNS5Bqq6G9cxvbjkIoImwLLvSs4Ai58mwNKoEmpXZICFdJTZUhCJWltaWqpJReZAl1dKj12NVBOI5IrZXy8/hgaVXXS2n0RE5o6ZLaWfCbLt/F38deqWujKamv7faYY0lB3QxEtd/Stv4I0XA0LjMHrpYdyITISbvTUWjWqp9p/ImEnfFemvmL1BrvRZOXToUI5sFzF69GicPXsWR48efeDzSoNcaaK7adMm7bo+ffrA1dWVDXJNaAqbZLpI8EUTcH+ySWW81MUP1Ss4wpQCLNu0AZac72E1PBy1U4RqVXRkiRCVXrDF3Ojq5F0aUg38cT9O3YjGkBZV8PnTjXW6n0RE5o7BFv2JSkhRJUZSanQwOByaM46srBh3DGhSGb3qV4STnWFdqDkSEoFxy4+qk24piVo2ppVqdEhk7KRcSDLRpVfKkCFDVM8WaY67YMEClbme/bgpWTBfffUVJk6cmOd5pL+LNNeVvitCAjUdO3bEzJkzMWDAAPz555945513OPrZBB0NicCcnQEqm1FIX/T+jb3wcpcaRls2Gp2QqhoES4Dl34CwHAGWmpoASyMJsBjn/x8ZUbAlPT1ddRf/7bffcO3aNaSkpOR4PCIiosjPtXfvXnzxxRc4duwYbt++jXXr1qnxctkj6lL/mV3r1q1x8ODBPM8l/xuPP/44/vnnnzzPk58ff/xR/Wz5ufXr11flUR06dCj1k/c1x27g1d9PwdHWCjtf68Ru30REOsZgi2G4E52kmupKxotcYNCQ0dHd6nioUqMudTz0Pt1H9vGV306phodNvF2xeFQLjj8lk/L3339j+vTpuHLlCnx9fVWz3NzTiCT4MnXqVHWeLOe7uXXu3Bk+Pj5YtmyZdp20FJAAizThlamlEnh5UGPd7HisNi4nr0fhux1XVD8rIRn6jzeohJe71lDlo8YQYNlyP8CyP1eARbJWNBksxhpAIiMNtrz77rtYtGiROjDPmDFD9W2RprjSw0UekyZbRbV582Y1MrpZs2Z46qmn8g22yMi5pUuX5mjAVa5cuTzPJQGgbdu2qed8ULBFak9HjBihAi7t27fH/Pnz1f+TNPuV0XWl9YYQn5ymmuLejUnGG73r4MXOfg/1PEREVDCewBue4LB4FXT58+RNBN6L166XCw8961dUGS/t/dxhZWlRavskp0ML9wXhk01Zo5171quIb4c1RVkb/QZ/iMwFj9XG6ezNaHy38wq2nLurXScZi//rWtPgWiNItuXWc3fVmGYJsKRl/PcxWPquZGWweKoJfER6CbZIpHrOnDno27evGgV38uRJ7TrJOFm5cuXD7UiZMvkGW6KiolQgpzCnTp1SI6glNVJSHh8UbJHsGAnwyOi77M3B5Hs06ZCl8Ybw1dZLqnlg1XL22PZKR9ha8YSOiEjXeAJvuOQU5PztGGw4dQt/nbyFW9H/TS1xd7BRJ77S46VZVbcSHbMsk5U+/Osclh+4qu6PbueDGf3qqXInIiodPFYbt4t3YtTnGskU0Xy6lKzF/3WrqbIE9SUyPkWVCG08cwf+uQIsMjlIM6ZZ+rEQ6X0akXQab9iwobrt6Oiogg1Cgh2S6aJru3fvhoeHh2qw1alTJ5WSKPc1EhIS1Ji577//XnVCfxApe5KypTfffDPH+p49e+ZpDPag8XSP4kZkAhbsDVK333q8LgMtRERkduRCS30vF7W80asOjl2LVP1d5KpjeHwKfjp4VS2VXcuiX+NKGNC4MupW0u3Uh8SUdExedUI1RBTv9K2LsY/5svEhEVEx1PF0xg/PNkNAaCy+3xmgguhSYiRLx1oVMLlrDbTwyVudUFIBli3nJMByGwcCw/MEWDRThPxMqLEvmUiwpUqVKqp+U8ptZOzz1q1bVZaIZJXoenybdDEfPHgwqlWrhuDgYBXM6dq1qwqWaH6WdFCXRl/SjKsowsLCVN+Z3KPo5H7ukXXZScaLNBPTlVmbLyI5LQNtqpdTqXZERETmTDJXWvqUU8u7/eupFG85Wd9y9g5uRiVi/p4gtcjVR+nvIovPIzatDYuT0c5Hcep6lOodM3tIE9UEkYiIHo6U4HwzrCmmdK+FH3YFYN2Jm6qZrizSGH1yt5poU91d5y9vxP0Ai2TWyMQkyVjUkB4yfRt6qgwWU5qcRCYYbBk4cCB27NihSnGmTJmiskoWL16smuVK4EOXZIycRoMGDdCiRQsVeNm4caNquLVhwwbs3LkTJ06cKPZz574qJqnMhV0pk0Zi0qcme2aLt7c3Hsbxq5HYePq26t79br/6vHpGRESUjbWlBTrX9lBL0sB07LwYqjJedl4KVSOZv952WS2Nq7ioKRiyVHS2K9ZrGHRPRjsfwbWIBLjaW2PhyBYq0ENERI9OJrh9ObgxJnetibl7AvD70RsqCCJLK59yKujSvob7I30OCo9LVr1iJMByIChngKWeBFgaVUKfBp4MsJDxBFs+/fRT7e2nn35aZbpI+Y1kuTzxxBMoSdKPRYIt0j1dSKAlMDBQlRhlJ812ZbKQlCDlVr58eVhaWubJYgkNDc2T7ZKdZNI8SuZOYkoaLC0sEJOUqqKrC0Y0x9lbMajnZfjduomIHjQ9bu3atarZuDweHh6uguBNmjTJ8cJNmDAB27dvx61bt1QZqmQlfvbZZ6hTp06BL/D777+fJ6vwQZmIZFpkOpGmpl7eQyXTRTJeJPNFphrJMnPTBbTxdccTTbzUibWrvU2+78GxSalqzHREfDJe+/2UCrR4lyurRjsznZyISPequttj1qBGeKlLDczbE4jfjtzA4ZAIPLf4EJpWdVVBl861KmiDLrmP12kZGbC3scoRYPnnfgbLwaCIHAGW+l7O2vcLCfYQGV2wJbc2bdqopTTICfz169dV0EVI35Vx48bl2Eb6ychkov79++f7HDLNqHnz5mpykWTpaMj9opYiFVdyajrm7QnCUv9gxCSmwbmsFUa19VEHHSIiYxAfH4/GjRtjzJgxKqCd3+My3U1KP3OPENWQY+/w4cNVGWpERIQKpEi/LCkTlSB4QerXr6+CNBr/z959gEVxNnEAH+lFQCn2ggV77733GrtGjRqN+hk1mmKMJrEkGjVGjTH23o3GFnvvHQuIigUroggiUkTafc8MucsBB3J6cO3/e56VK8veusB7e7PzzqS3Lpg2Zztr6latoCwvIt7KyTYHXrwfhslVTV5+3HGdGpbwoA6V8lPz0rnIIls2je/BnMnC607sUI48nHQ7DRoAAJIrkNOBfv6oPA1v7CVBlw0XHtGVR69owIqLVKGAC41tVYqqFs6ZarweUKeIdGw94PeMNl58TOcCQkktvkLl8v8bYCmX94OnlgLoJdjC03UySpvslsjISLp7967qPp9wc3cjbu3MC5+I80k9B1e4vfS4ceMkM0UZJOGCuJqK4vKJfJEiRVT3mzZtKt8zfPhwuc/Tgbj1M09Lql27Ni1evFimQQ0dOpR0jaOzPGj8fjgpG4fx4MHVuvkEcEjDosmitQAAhohraPGSFh5TGY/VaRk8eLDqtqenJ/38888SwOHv4a52abGysspQAfTMKmgOhokDJP3qeMry+GU0/ePzVKYa3XoWQYduBsuyrF81qccy98jdVO/BfA11epcKlN3OWq//DwAAc5LHxY4mdihLwxoXoyUnAmjtuUfk8yScomLjad7RuzI+q4/X/BkqUaGg8vldZAoS49tJGSx5qLAbAixguDL0KT+9NsrqOP2Li89m1KVLl6hx48aq+8qaKP369ZO2zL6+vrR69Wpp/8wBF15306ZN0nJaGzzViAvjqteC4SyZyZMnSzo814PZs2ePTFHSNU6D4+isJvw4slsAwBxxJsyKFSskMP6u+lc8dTRfvnwylZPrhU2dOpWKFi2aZQXNwfAVdHWgYY2Ky3L7eYQEXY7ffkG1i7nR6L+uavyelWcf0PAmXlm+rwAAQJTLyY7Gty1DQxsWo3XnH1Hd4u701eZrGg/NqrMP6Px3zWhihzLUpGRumZoEYAyyKbgyLGiNr5S6uLhI62tn57TrrvC8wqo//5f+npL3983ILTvSlwHAeHBgPWXNFiXOUuEAiqaaLWz+/Pk0ZswYCbZwrZZdu3alm9Wyd+9eio6OphIlStDz588lG+bWrVvk5+dHbm5uGc5s4YDOu8ZrMC18evMi8i3VmHI4zXXwHgxgfOfWYJq4O1w1fGYCE2Oh7x0wdVzYiecbasKP8/MAAOaCa7ZwIOb48ePk5eVF3bt3p5iYmDTX56lLPJ2U63E1a9ZMutGxVatWpfk9nAHDJ+rqC5hnUDCHvQ3egwEAjKQmFz4zgdkGW9q0aSORZqUpU6bI9B4lnpZTpkwZ3e+hkUtITJTCTprw41xhGwDAXPBVSw6yNGjQgLZs2SJZKpwlk1GOjo4SeFF2pQNID96DAQCMA8ZrMOtgy/79+5OlZXO7Tu4moRQfH0/+/v6630MjZ29jRcMaFaMvmnqporX8le/z4yiOCwDmPtVD/b3lXXjdmzdvqrrSAaQH78EAAMYB4zWYogy3wUlZ2gWlXjLO1tpSug5xMVz1nvH8OACAMUive5yylTN3dXv69Kk8rwy+K7vGBQQESIFzbvXs4eFBgYGBErS3t7eXzMm0usd9/fXX1L59e3mN4OBgqdnC8/q5kDpARuA9GADAOGC8BlODnsNZRJnBoiyGa4NyOQBgRNLrHrdy5UrauXMnDRgwQPV8z5495euECRNo4sSJZGdnRydPnqQ5c+ZQWFgY5c6dW6YSnTlzhnLlypVm97gnT55Qr1695DEO0tSqVYvOnTuXKd3jwHThPRgAwDhgvAaz7EZkaWlJz549k5Ndxu2XfXx8pOsE4y4R3JpTm9bPxgwV0wEAjAPGawAAw4exGgDMehpR//79pcsD4+4RQ4cOlWKFTJs59wAAAAAAAAAAZO7BlpTz4/v06ZNqnU8++YTMhTIhiKPwAABZjbMLubUtvBvGawDQF4zVGYexGgBMbbzO8DQiSI7rCBQsWBCHBQD0Ijw8nJydnXH0MwDjNQDoC8bqjMNYDQCmNl4j2PKeEhMTpesGR8AiIiIk8PL48WN8+MkinFGEY561cMwN65jjamnGYbzWL4wdON6mDmO1bmCs1i+M1Tjm5uB1Fp9boxvRe7KwsKACBQrIbeUPhX9guNKctXDMsx6OOY65scF4bRgwduB4mzr8jn8YjNWGAb/HOObmwDmLPrdbZPorAAAAAAAAAACYEQRbAAAAAAAAAAB0CMEWHeB22BMmTFC1xYbMh2Oe9XDMccxNAX6PccxNHX7HccxNAX6PcczNAX7PTf+Yo0AuAAAAAAAAAIAOIbMFAAAAAAAAAECHEGwBAAAAAAAAANAhBFsAAAAAAAAAAHQIwRYAAAAAAAAAAB1CsAUAAAAAAAAAQIcQbAEAAAAAAAAA0CEEWwAAAAAAAAAAdAjBFgAAAAAAAAAAHUKwBQAAAAAAAABAhxBsAQAAAAAAAADQIQRbAAAAAAAAAAB0CMEWAAAAAAAAAAAdQrAFAAAAAAAAAECHEGwBAAAAAAAAANAhBFsAAAAAAAAAAHQIwRYAAAAAAAAAAB1CsAUAAAAAAAAAQIcQbAEAAAAAAAAA0CEEWwDggzx48ICyZcuGowgAYMAwVgMAGAeM16YDwRbIkP79+8sH6qFDh6Z6btiwYfIcr5NyfV6sra0pd+7c1Lx5c1q+fDklJiam+1pRUVH07bffUtGiRcnOzo48PDyoUaNGtGvXLtU6np6eNGfOHJP66d29e5ecnJwoR44cqZ47fvw4Va1aVY4HH5eFCxemWufvv/+mMmXKkK2trXzdtm1bqnXmz59PRYoUke3w9k6ePJnseYVCQRMnTqR8+fKRvb29HHc/Pz+d/P9ev35N48ePp1KlSsnr58mTh5o1a0Zbt26V12V8u2XLluTu7i6/O1evXk21ncWLF8t+OTs7yzqvXr3Syf4BmAKM1ZkPY/W7x+qXL1/SiBEjqGTJkuTg4ECFChWikSNHUnh4eBb8hACMA8brzIfxOrkhQ4bImJ3WZyg+H2/durWss3379iz4CZk+BFsgwwoWLEgbN26kN2/eqB6LiYmhDRs2yIlUSq1ataKgoCCJzu7du5caN25MX3zxBbVr147i4+PTfB0O6PAf+Lx58+jWrVu0b98+6tKlC4WGhprsTysuLo569epF9evXT/Xc/fv3qU2bNvLclStXaNy4cXLSysEVpbNnz1KPHj2ob9++dO3aNfnavXt3On/+vGqdTZs20ahRoyTgwdvh7fGA+ujRI9U6M2bMoFmzZsmxv3jxogREOEgWERHxQf8/DojUqVOHVq9eTd999x1dvnyZTpw4Ifs8ZswY1Qk4B9rq1q1L06ZNS3Nb0dHR8rvFxwEAUsNYnXkwVmdsrH769KksM2fOJF9fX1q5cqW8lw8cOBB/sgAYr7MExuvkwW3+bMWfC/iCalo4CINsdR1TAGRAv379FB07dlSUL19esXbtWtXj69atk8f4OV4n5fopHT58mFMYFEuWLEnztVxcXBQrV65M8/mGDRvKNtQXpdOnTyvq16+vsLOzUxQoUEAxYsQIRWRkpOr5woULKyZPnqzo1auXwtHRUZE3b17F3Llzk21/woQJioIFCypsbGzked5GZhszZoyiT58+ihUrVsj/P+VzpUqVSvbYkCFDFLVq1VLd7969u6JVq1bJ1mnZsqWiZ8+eqvs1atRQDB06NNk6vN2xY8fK7cTEREWePHkU06ZNUz0fExMj+7Nw4cI09/3+/fvJfgaa/O9//5PjHRgYmOq5iIgIRVxcnMZtXrlyJc1tHj16VNYJCwtL97UBzAnG6syFsVr7sVrpr7/+kvfVlOM9gLnCeJ25MF7/N9Y+efJEkT9/fsX169fls9Ds2bNTHa+rV6/KZ6egoCAZ17dt25bJPyHzgMwW0MqAAQNoxYoVqvs8LejTTz/N8Pc3adKEKlasKCnIaeFsij179qSZTcHfW6BAAZo8ebJkzvDC+OoZpzV37tyZfHx8JJPj1KlTNHz48GTf/+uvv1KFChUku4KzLEaPHk0HDx6U57Zs2UKzZ8+mRYsW0Z07dyQKXL58+TT3lafhZM+ePd1l6tSp6R6TI0eO0ObNm+nPP//U+DxnrbRo0SLZY/z/vHTpkkTt01vnzJkzcjs2Npa8vb1TrcP3letwBs2zZ8+SrcNTkho2bKha533wtDHOiOrdu7fGaDofIysrq/fePgCkhrE6OYzV+h+rOYORp39ivAfAeI1z66w7t+Z1OeP9m2++obJly6aZNc4Z9pzZzp/DQHfwCQe0wn+sHKBQFm46ffq0/LEfO3Ysw9vgmh0cDEkL1+TgwcPNzU0CM/Xq1aOuXbtKyjJzdXUlS0tLqW+iPiBwEOXjjz+WqTLMy8uL5s6dK8GCBQsWSJ0QxtsZO3as3C5RooT8HzjAwtNleEqNspYI15rh6VE1atRIc1+rVaumsa6IOt7ftPDUKJ6zu3btWjkJ1YQDIFzzRh3f56lYISEhlDdv3jTX4ccZr5eQkJDuOsqvmtZ5+PAhvS9+7bCwMPm5A0DWwFidHMZq/Y7V/F73008/Sb0AAEgO43VyGK91O15Pnz5dAi9cgiAtfOGZp/t37NgRf546hmALaIWL4bVt25ZWrVolRZT4Nj+mDf6+9OYDNmjQgAICAujcuXMSCOHMj99//50mTZpEP/zwQ5rfx5kbXAhr3bp1yV6LI7qctVG6dGl5rHbt2sm+j+8rC0V169ZNbnMRWq4LwrVS2rdvn+aVOC4iW7x4cXpfn332mQSI+P+cnpTHS1lQVv1xTeukfExX62hD074CQObCWJ0cxmr9jdVcHJ3PFbhw+4QJE3S6bQBTgPE6OYzXuhuv+bMRf4bibP601t25c6d81uJ6jqB7mEYEWuNpQ1zsjgMu2kwhUrp586Z0xEkPZ5VwAVfOQDlw4IBMGeKrYjwdJi0cVOGrZpxpoly4WCxPBypWrFi6r6ccgLiwpL+/v0zp4cGeOy1xIEQ5XUfXqek8uHEBQQ7m8MLFAznVmm/zFC3GmTbKrBOl4OBgWYezf9JbR5mlwm/knA2U3jrKLKH01nkf3E0qZ86c8nMHgKyDsfo/GKv1M1bzdGC+cMHvhdwhj9/bASA1jNf/wXitu/GajyWfx3OmvvKzBmerf/XVV9LZVflZ5N69e9INVbkO4+Yk3P0TPgwyW0BrfOKkDHpwXRBt8B8011bhdDVt8BUxnjbD3Y9sbGxk4Wkx6qpUqSJtit+VacIZMynvq6fhcZClQ4cOsnz++efyHO8zb1/XqY5ca0X9/7Fjxw5J9+N5nPnz51dl3vzzzz/Jvo8DUPzayhNXXofrzqgfV16HUwIZHy9u9czrdOrUSbUO31emDHIAjAMu/FjlypXlMf45c9tp3qf3ZWFhIV2H1qxZI1c1U84t5a4WXBsG8/gBdAtj9X8wVmf9WM0ZLXyOwN/DV06VU3kBAOM1zq2z5tyap6hxaQR1PC7z41yOmtzqAAEAAElEQVTbjfGF7UGDBiVbh2vqcIkFzu6HD6TvCr1gHFJ2FwoPD5dFSVM3Iu6OwxWtuQK2t7e3YsqUKYrs2bMr2rVrp4iPj0+32xB3v7l06ZJ0Oti9e7eiZMmSiiZNmqjWad68uaJDhw6y7RcvXshj165dU9jb2yuGDRsmnRFu376t2LFjh2L48OGq7+MK3M7Ozorp06cr/P39FfPmzVNYWloq9u3bJ89zN6ClS5cqfH19Fffu3VOMHz9ethkSEqLICpq6EQUEBCgcHBwUo0ePVty4cUOxbNkyhbW1tWLLli3JujDx/4M7Cd28eVO+WllZKc6dO6daZ+PGjfJ9/P28nVGjRkmHoAcPHqjW4e/j19+6dascA+7axB2ZXr9+/UHdiF6+fCmdj7jK+apVqxR+fn7y8+F9KV68uKqjUGhoqPzs+GfO2+R95vv8e6TEt/kx7mjF65w4cULu8/cCmDuM1RirDWGs5veMmjVrSrfCu3fvyuPKJb33fwBzgvEa43VWjNcppdWNSB26EekOgi2QIWm1ck4v2KJsy8wf+j08PBTNmjVTLF++XJGQkJDua02dOlVRu3Zthaurq7RwLlq0qGLkyJHJAh5nz55VVKhQQWFra5tsMLpw4YIEYjiow4EEXoeDPOoDzKRJk6RVMgcwcufOrZgzZ47qeW5zxieIHJDh7+f2yocOHcqy3xJNwRZ27NgxReXKlaVtpqenp2LBggWp1tm8ebMEpTigwoPv33//nWqdP//8U44Bb6dKlSqK48ePJ3ue2z9z62tuAc3HtkGDBhJ0SU9G3hDYq1evpM20l5eXvD4fe/6d4GPOr6v8/6ds680L75MS39a0Dn8vgLnDWJ01MFanP1YfPXpU4/O88HsGAGC8zirmPl6nhGBL1srG/3xodgyAseD5idytSNmxCD4cd6biKUgYSgBAVzBW6x7GagDIDBivdQ/jtelAgVwAAAAAAAAAAB1CsAUAAAAAAAAAQIfQjQjMLi0PdItbxXEldAAAXcFYrXsYqwEgM2C81j2M16YDNVsAAAAAAAAAAHQI04gAAAAAAAAAAHQIwZb3xJ1XXr9+jQ4sAAAGDuM1AIDhw1gNAKYGwZb3FBERQS4uLvIVAAAMF8ZrAADDh7EaAEwNgi0AAAAAAAAAADqEYAsAAAAAAAAAgKEEW96+fau7PQEAAAAAAAAAMLdgy/79+6l///5UrFgxsra2JgcHB3JycqKGDRvSlClT6OnTp5m3pwAAAAAAAAAAphJs2b59O5UsWZL69etHFhYW9M0339DWrVsl+LJs2TIJthw6dIiKFi1KQ4cOpRcvXmT+ngMAGLE3sfEUG59IoZFv5Wt0bLy+dwkAAFLAWG248LMBAJMItkydOpVmzpwpmSvLly+XgEr79u2pWbNm1L17d5o8eTIdPXqU7t27R87OzrR69erM33MAACP1Ni6BFh4PoGpTDlLVnw/J10XHA+RxfThx4oSM6fny5aNs2bJJgF0dB9dbtmxJ7u7u8vzVq1fTbd3ZunVrjdtJydPTU9ZLuXz++eeqdTibMuXztWrV0sH/GgDAuMZqwM8GAIyLVUZWunDhQoY2lj9/fpoxY8aH7hMAgElfieOT998P31E99vpNvOr+kIZFycEmQ0OzzkRFRVHFihVpwIAB1KVLF43P161bl7p160afffZZutuaM2eOBEQy4uLFi5SQ8N+HluvXr1Pz5s3lddS1atWKVqxYobpvY2OToe0DAJjSWA342QCAccG7BABAFrK0sKAVZ+5rfI4f/7xx8Sz/eXAmCi9p6du3r3x98OBButu5du0azZo1S4IoefPmfefrenh4JLs/bdo0qQnGU1PV2draUp48eUib4u3qBdxfv36d4e8FADDUsRqS4GcDACYdbHny5Ant3LmTHj16RLGxscme4xNtAADQLCImTq6OasKP8/Nu2W2N7vBFR0dTr169aN68eVoFRpT4vWTt2rX05ZdfpsqMOXbsGOXKlYty5MihKsjO99Pyyy+/0KRJk97r/wEAYMpjtSnAzwYATDbYcvjwYerQoQMVKVKE/P39qVy5cnK1k+fpV6lSJXP2EgDARDjZWZOzvZXGk3h+nJ83RqNHj6Y6depQx44d3+v7ub7Lq1evpEaLOs644WlFhQsXpvv379MPP/xATZo0IW9vb8l40eS7776ToI16ZkvBggXfa78AwDyZ6lhtCvCzAQCTbP2sPIn96quvZG69nZ0d/f333/T48WO52phynj0AAPzn3otIOnMvhPrV9tR4WAbUKULxiYlGd8g40/HIkSNSr+V9cWc7DqxwkV51PXr0oLZt20pgn4v47t27l27fvk27d+9Oc1schOFi7eoLAIA2YuMTjHasDgwMpD59+pCbmxs5ODhQpUqVJECtFBkZScOHD6cCBQqQvb09lS5dmhYsWJDuNpcsWUL169ennDlzysJNMlLWdJw4cWKqgubvk+n4LgmJifIzMMafDQCYF62DLTdv3pQW0MzKyorevHlD2bNnl45E06dP12kHjIx0oWjUqFGqdXr27Jnu62bVmwEAgNKd5xHUY9E5+mnXTfq0XhH6oqmXXB1l/JXvD2tUzCgLLnKghbvR8TQffl/ghXGxXR6j3+Xhw4d06NAhGjRo0DvX5VownOVy585/RSsBAHSJs7XnHL5D/et40ogmxY1qrA4LC5OC5tbW1hKcvnHjBv32228yPqtnIu7bt0+mbvJ5Pd8fMWIE7dixI83t8nROnirK3UfPnj1LhQoVohYtWkhgR13ZsmUpKChItfj6+ur8/2hvYyU/A1N6HwUA06T1aOTo6KgqPMhBEj7B5oGVhYSE6LQDRka7UHB3DA72KHGU/l14n/nkXsnS0lKrfQcAyCj/ZxHUe+k5ComMJQ8nW8r2bycLLrDIc885JZqvxNlaG+c4NHbs2FSBkvLly9Ps2bMloP4uPMZzDRbOYHmX0NBQyabMSAFeAID3sezUfVp68j6dvP2CVn1ag0Y08TKasZovfPK0SfVzZ0/P5Bk6HCzhC6fKYPjgwYNp0aJFdOnSpTSngq5bty5VpsuWLVukvMAnn3yiepyD7VlxAZN/Bsr30dDIt+TiYE0PQ6MN+mcDAOZH62ALZ5acPn2aypQpIyfGPKWIo9Zbt25NlXXyoR0wMtqFglMktR3Ys+rNAADM242nr6nPsvP0MiqWyuZzprUDa1IOh/+CxsoCizbaJxrqDKeU3717V3Wfa6NcvXqVXF1d5erly5cvpSD606dP5Xmu18V4DFVfUuLv5fpeSk2bNqVOnTpJ+rpSYmKifCjgE39lRoz6fnEmIgfjObjC9cHGjRtH7u7ush0AAF3jqZ6/7L0lt3vWKER5XOwNZqzO6LTOli1bytT+48ePU/78+WnYsGFyYVKpXr16st6nn34qF045a4WnZ/7+++9aFUWPi4uT9wl1nHXI2+Tz95o1a9LUqVOpaNGimdI5TpnB4hMYTt9t9aUCOe1p5/B6Wm0DACAzaf2Owd2GePBkfBLcvHlz2rRpk6R185x7XVN2oShRooS8UQQHB2uMtvPJN2erfP311xQREfHO7SrfDPiDAE87CggISHd9fjPgNwH1BQAgPdcDw+njpeck0FKhgAutH1SLcjqmzs7TN76aWblyZVkYF5fl2z/++KPc55Nyvq/MPOExk+8vXLhQq9fhTMiUGZCcYciBHD7pT4kzDjmYz1da+T2AAzL8la/KOjk5fcD/GAAgtaev3tCI9VcoIVFBH1XKJ9OIjA2fz3L9FS8vL9q/fz8NHTqURo4cSatXr1atM3fuXLloyjVbOGOcs8jnz58vQRhtMho5kMO1W5T48wG/Dr8uZ748e/ZMCqdzRmJaneNcXFxUy/sWMq9cMIe8z/o8CaeQyP+CNwAA+pZNwRNTM4iDGOfOnZNIdo0aNSTAobMdyZaNtm3bRh999JHqMQ7icD0Y9S4U8fHxybpQ8GDOARO+qspFe7mAb/HixengwYNpvhbPYeWIPJ+0P3/+nH7++We6desW+fn5STExTTiwpKmVaHh4OIovAkAqPk9eUZ+l5+l1TDxVKphDUtFd7NG9Qh84OM4n8hivASAtMXEJ1H3RWfnAXiavM/39vzpkb2N8U1I4eFKtWjU6c+aM6jEOtly8eFEC1WzmzJly/sxf+Rybayjy+TOfh6sHT9IyY8YMmjZtmlwQrVChQrrlAooVK0ZjxoxJ1iEuvcwWDri8z1jd5veTdCPoNc3uUZE6VS6g1fcCAOh9GpGPj49M+eEoNcdneBDkuZoZGZTfF3ehUOJOFPzmwW8K3IWic+fO8rh6WiSvw5F8Xu/y5ctptqJWn7rEdQVq164tbwarVq3S+GbA0EoUADLq6uNX1HfZeYqIiaeqhXPSygHV0SYUAMBA8XntjzuuS6Alh4M1Lepb1SgDLYynXHLWijruNsTdQxk3tuDpmBxYUWYrcsCEp45y8OVd5/W8Dk8N4qzE9AItyjqPfJ6dVkFzvnCqvHj6oRqV9JBgyzH/Fwi2AIDxTSPidEGef3/y5ElJOedWz+rz7rNCRrpQcICFK7Br06niXW8GDK1EASAjvB+GUd+lSYGW6p45JaOFiyoCAIBhWnf+Ef116QlZZCOa27MyFXR1IGPFnYiUdbWUuB4Lnz8zzk7nxcLCItW0Ta6hlZ5ff/2VfvrpJ+lkxBc234WzVrjbUVYUNG9UMpd8PXH7hUwDAwAwqswWDrDs2bNHNbguX75caqlwAUOe6pMVMtKFgqcC8ZuINgO78s2gfv36OtpTADBHFx+8pP7LL1BUbALVKupKy/pVJ0dbtKAEADDkAPmkf/zk9tctS1KDEh5kzLiNM9dJ4eyT7t2704ULF2jx4sWyMM5M5wum33zzjXTv5CAMF9LlWitcl1GJOwxxTRauq6KcOsTT+devXy/djTjTnfFnAOXnAK6byB3o+OIs11jkafo8NYjrbWW2KoVykJOdFYVFx8k03sqFcmb6awIA6CyzhYsa8uCpxLVNuAvQixcv6H1xoIbTFnlR74DBxRL5OR60eX4pd6DgeaE8gKt3oeBii9zymQNBvA4Hg7j6Ohdu5Mi+egeMefPmqe7zdvmNhV/v/Pnz1LVr1yx7MwAA03QuIJT6/RtoqVvcjVb0r4FACwCAAQuOiKFh67wpLkFBrcrmof81LEbGrnr16jJFaMOGDTK9njNR5syZQ71791ats3HjRlmPH+MpR1x/ZcqUKVJMV4nPxYOCglT3uYBubGysnDPzBU3lwtOKlJ48eUK9evWikiVLynR/rh/DtR6VWTWZycrSgup7JdWS5KlEAACGwEqbArZcINfOzk41v1X5mHpnHm0KWnGQpHHjxqr7ynopHPTgSurchYIj7a9evZIBndflornKLhQ8iB8+fFha1XFwhotq8fzTCRMmSDpkWh0wlG8G/JiHh4e0rM6qNwMAMD1n7obQp6suUkxcopzsLfmkGtlZG+d8fwAAcxAbn0ifr7tMz1+/peK5stPM7hXlvNYUtGvXTpa0cFOJFStWpLsNvsipji9qvgsHcfSpYQkP2uP7jI7dfkGjm5fQ674AAGjVjYjndqZ8E1IGXNRvJyQkmMWRRXcLAFDOD/9s9SV6G58oBfoW9qmKQIuBwXgNAClN2HGdVp19SE62VrR9eF0q5pE1U+Ih88bqZ+ExVOuXw8QfTS6Nb0Zu2XVTfBcAINMzW44ePfreLwIAYIqO+QfT4DXecoW0aalcNL9PFbK1QkYLAIAh+9v7iQRa2KwelRBoMRF5XOyoVB4nuvUsgk7eCaGPKufX9y4BgJnLcLCFi2kBAECSwzef0//WXqbYhERqXiY3/flxFbKxynAZLAAA0IPrgeE0bpuv3B7ZpLiM32A6uCsRB1uO336BYAsA6N17t8ngrj/qU4a4RkrZsmV1tV8AAAbrgN8z+nz9ZSmq2LpcHprbqzJZWyLQAgBgyF5GxdKQNd4y7bNxSQ8a1Qx1PUyNTOc9fk+m+CYmKsiC+3kDAOhJhj8dnDx5UiqXK3FRWe76U6lSJVkqVKhAhw4dyqz9BAAwCPuuB9GwdUmBlrYV8iLQAgBgBOITEmnkhisU+OoNFXZzoDk9KuODuAmqWjin1OEJjYol38Bwfe8OAJi5DAdbuOVb3759U9Vx4fbJAQEB9MUXX0gHIQAAU7XL5yl9vv4KxScqqGOlfPR7j0rIaAEAMAK/HvCnU3dDyN7akhb1rUouDtb63iXIBJxlWrc4WkADgJEFWy5evEg1atRI9liBAgWkXbKnp6cEYs6ePZsZ+wgAoHc7rgbKVdGERAV1rpyfZnWvRFaYOgQAYPB2+wTRouMBcnt61wpUKo/2nW7AeDQs6SFfj90O1veuAICZy3CwJTAwkPLmzau6v2rVKsqTJ4/qvqurK4WGhup+DwEA9Gzr5Sc0etNVSlQQdatagH7tVpEsMQ8cAMDg+T+LoG+2XJPbn9UvQh0q5tP3LkEW1G1hVx+/orCoWBxvADD8YIuTk5NMGVLq3LkzOTg4qO7zc87OuFIAAKZl86XH9NXmaxJo6VWjIE3vUgGBFgAAIxD+Jo6GrvWm6NgEqlPMjb5tVUrfuwRZIK+LPZXM7UQKBdGJOy9wzAHA8IMtNWvWpNWrV6f5/MqVK2UdAABTsfHCIxrzt4+csPWpVYimfFQeBRUBAIwAd6L5ctNVuh8SRflc7OiPXpUx9dMMs1u4BTQAgMEHW7788kuZOvTNN99QcPB/cyD59ldffUVr166VdQAATMHacw9p7FZfCbT0r+NJP3Ush0ALAICRmHvkDh2+FUw2Vha0sG9Vcstuq+9dAj3UbVG2gAYA0AerjK7YuHFj+uOPP2j06NE0a9YsmTKULVs2Cg8PJysrK5ozZw41adIkc/cWACALrDrzgCbs9JPbA+sVoe/blpbxDgAADN/hm89pzqE7cvvnj8pRhQI59L1LkMWqFXYlRxtLComMJb+nr6l8ARf8DADAcIMtbNiwYdS+fXvasmUL3bmT9Cbm5eVFXbt2pYIFC2bWPgIAZJllp+7TT7tuyO0hDYrS2NalEGgBADASPG1o1Karcpunf3avhvNTc8QZTdwC+sCN53TMPxjBFgAw/GAL46AKZ7cAAJiaxSfu0dQ9t+T2sEbF6JuWJRFoAQAwElFv42nImksUERNPVQvnpB/bldX3LoGepxJJsOX2CxrR1As/CwAwzJotZ8+ezfAGo6KiyM8vKf0eAMBYzD92VxVoGdnUC4EWAAAjolAopKD57eeR5OFkS/N7V5HsBjBfjUrmkq9XHoXRq2i0gAaArJehd6FPPvmEmjdvTn/99RdFRkZqXOfGjRs0btw4Kl68OF2+fFnX+wkAkGnmHr5DM/b5y+3RzUrQl81LmFVGy4kTJ2SKaL58+eT/vX379mTPb926lVq2bEnu7u7y/NWrSSn6aX3gad26tcbtpDRx4kRZT33JkydPqu3xerxv9vb21KhRIwT0ASCVxScCaLdPEFlZZJNAS25nOxwlM5c/hz155cpOXB/35J0Qfe8OAJihDAVbOJDSsWNH+vHHHylnzpxUtmxZCb7wyXm9evXkBLxq1ar08OFDOnjwIPXt2zfz9xwA4APxB/lZB2/Lwnja0BfNzC/VmDMSK1asSPPmzUvz+bp169K0adPeuS0ulq5NoIrfT4KCglSLr69vsudnzJghRdl53y5evCjBGH7/iYiIyPBrAIBpO3UnhKbvS8pM/LF9Garu6arvXQIDgRbQAGDwNVusra1p+PDhsnDWysmTJ+nBgwf05s0bOUHnGi7crcjVFW9uAGA8gZbfDtymeUfvyv3vWpeiIQ2LkTniTBRe0qIMoPO4n55r165JYISDInnz5s3Qa3M3u5TZLOo/Iw7ejB8/njp37iyPrVq1inLnzk3r16+nIUOGZOg1AMB0PX4ZTSM2XJbshS5VClDfWoX1vUtgYFOJlpy8T8f/bQFtYWE+WasAYIQFcqtUqSILAICx4g/x0/bdokXHA+Q+t3YeVL+ovnfLqEVHR1OvXr0kAyWt4Ikm3NmOpwjZ2tpSzZo1aerUqVS0aNLP4v79+/Ts2TNq0aKFan1er2HDhnTmzJk0gy1v376VRen169cf9H8DAMMUE5dAQ9d6U1h0HJXL70xTOpUzqymg8G7VPHOSg40lvYh4SzeCXlO5/GgBDQBZB5XDAMDsAi1Tdt9UBVomti+DQIsOcIZjnTp1ZMppRnFwZfXq1bR//35asmSJBFZ4G6GhofI832ecyaKO7yuf0+SXX34hFxcX1cJd9ADA9Mbycdt8ye/pa3J1tKGFfaqSnbWlvncLDIytlSXVKeYutzm7BQAgKyHYAgBmdXI+6Z8btPTUfbn/00flqH/dIvreLaO3c+dOOnLkiEz50QZPXerSpQuVL1+emjVrRrt371ZNFVKX8ko1/xzTu3r93XffUXh4uGp5/PixVvsFAIZvzbmHtPVyIPGskD96VaYCOR30vUsGIzAwkPr06UNubm7k4OBAlSpVIm9vb9Xz3OyCSwMUKFBACo+XLl2aFixY8M7t/v3331SmTBnJMOSv27ZtS7XO/PnzqUiRImRnZyf1HLn0gKHUbTnmH6zvXQEAM4NgCwCYBZ6r/eMOP1p5JqnuyC+dy2Nuv45woOXevXuUI0cOqcHCC+NACncPyihHR0cJvPDUIqacjpQyiyU4ODhVtos6/iDg7OycbAEA03HxwUua/M8Nuf1tq1JUt3hS5gIQhYWFSUFzrre4d+9eaXLx22+/yfisnom4b98+Wrt2Ld28eVPujxgxgnbs2JHmITx79iz16NFDanhxfS7+2r17dzp//rxqnU2bNtGoUaOkztaVK1eofv36ElR/9OiRXn80DUskBVsuP3pF4W/i9LovAGBeEGwBALMItIzffl2uhHJCxIwuFahXjUL63i2TMXbsWPLx8ZGW0MqFzZ49m1asWJHh7XCdFT7xVxbX5aujHHDhLndKsbGxdPz4cZluBADm5/nrGBq27jLFJyqobYW8NLgB6m2pmz59ukyd5LG3Ro0a5OnpSU2bNqVixYolC5z069dPguH8/ODBg6XhxaVLl9I87py5yJ3gOHOwVKlS8pW3q57RyAXSBw4cSIMGDZJsGX6O9yWtrBke87mmlvqSGQq6OlAxD0dKSFRI5yoAAKMItsTExHzQi584cULaR3NxRE4J3759e7Ln+/fvL4+rL7Vq1Uq2Dr9RpFynZ8+e73xtQ0xzBIDMCbSM3epDGy48knTzmV0rUvfqqOGhjlPK1YMkXJiWbyuvRr58+VLu8xVS5u/vL/eVGSccEClXrlyyhRUqVEjGWSU+MVdvL/31119L4IRfj6+Odu3aVU62+UMA4/Gcr5Jy0VxOV79+/bq8L3Ba/Mcff4w/FwAzExufSP9b6y3FTkvmdpLAOQripp7WWa1aNerWrRvlypWLKleuLDWx1NWrV0/W4+lGPC3z6NGjdPv2bWrZsmWax54DNOrFyhmvz8XK5WcTGytTlVKuw/eV6+izvhZ3JWKYSgQABh1sSUxMpJ9++ony589P2bNnp4CApCKTP/zwAy1btkyrbUVFRUkkXf3kO6VWrVpRUFCQatmzZ0+qdT777LNk6yxatCjd1zXUNEcA0C2+ivXNFh/669ITCbTM7lGJulQtgMOcAl/N5BNyXtiXX34pt3/88Ue5zyflfL9t27ZynwPafH/hwoVaHUueahQS8t9VxSdPnkgHo5IlS0prZxsbGzp37hwVLvxf69YxY8bIeD1s2DD5AMEfDg4cOEBOTk74OQKYmcm7/GQqiJOdFS3qW5UcbbVuqmny+LycM0m8vLyk+PjQoUNp5MiRUoxcae7cuVJzhWu28LjL59p8EZKDMGnh4Hp6xcp5bE9ISNCqoHlW1tdS1m3hIrkcYAIAyApav0v9/PPPUrxwxowZEuRQ4nn2nDLO6YMZxQEOXtLDc+/f1UaUr3Jq02pUPc2RcZojvyHxmxNH2QHA+MUnJNLXm6/R9qtPydIiG83pUYnaV8yn790ySJwhmN7JJ2eT8KINTdt78CCpXo7Sxo0b37kdvmo9ceJEWQDAfP116TGtPfdIpoL+3rMSebo76nuXDBJfFOXANGcEMg6M+/n5yTnuJ598ogq2cGCbA+kc3OZMcw5o8xROLlaelowUK9emoDmf4/OSFWoUcSV7a0sKjnhLN4MiqEw+1PICgMyndWYLR8YXL15MvXv3JkvL/1rsVahQgW7duqXr/aNjx45JGmSJEiUkuMOFEVNat24dubu7U9myZSUtPSIiIs3tvU+aY1bOKwUA3QRaRm26KoEWK4tsNK9XZQRaAACMlM+TV/T99utye1TTEtSkVNoFss0dB0w4a0Ud109RZm+/efOGxo0bJxceeSo/n79zZyIufjtz5sw0t8sXNdMrVs7n4fy5QNuC5lnbAtpNbh+7ja5EAGCgwRZO4S5evLjGSHpcnG4rfHPWCwdSuNMFV1K/ePEiNWnSRAIfShz02bBhgwRleCoTt6XjdPS0vE+aY1bPKwWA9xeXkEgjN16hXT5BZG2Zjf7sXYVal08quAoAAMYlJPItDV3jLfVampXORSOapD4Hhf9wJyKuq6WO67Eop2fyuTovFhbJPwJwoITP5dNSu3btZMXKGU/pVBYr5+lIXAMx5Tp831AKmv/XAvqFvncFAMyE1tOIOHuEi8mqz6lnmzdvVs331xWOsitxwUVOi+TX3b17tyqgoj6VidfhOaq83uXLl6lKlSppblubNEflvFKuY6DEmS0IuAAYFj4ZH7HhMu33e042lha0oE8Valpa/1fUAADg/bIUh6+/TE/DY6iIuyPN6lGJLLgAF6SJ2zhzcIOnEXFr5gsXLkhGOi/M2dmZGjZsSN988w3Z29vLeTUXKufMdc52UeIpR1yfUTm9/osvvqAGDRpIt6OOHTtKm+hDhw7RqVOnVN/D58ncEprPwzk4w6/JGTVcN8YQNCzBRXL9yPthGL2OiSNnO2t97xIAmDitgy0TJkyQgZQzXDgCvnXrVomg8yC9a9cuyuzUSH5TuHPnTprrcIDF2tpa1tEUbHnfNMesnFcKANp7G59An6+7TIduBpONlQUt6lOVGpdK6j4AAADGZ9reW3Qu4CU52FhKQVx8OH636tWrS/c2vkg4efJk6QjHtQk5E1y9XhY/z49xtzk+t54yZUqyoAgHSdSzXziAw9/3/fffSyY5t5LmhhM1a9ZMdpE0NDRUXpcbVvBFUG5skfICrb4UcnOgou6OFBASRafvhCDrFQAML9jC8zt5cOWIOWeCcLcKDmr8888/1Lx5c8pMPIBzpXIOuqSFi4BxemRa66inOXbq1En1ON/nSD0AGJ+YuARpB3rU/wXZWlnQkk+qUYMSSenCAABgfHZee0pLT92X2zO7VaQSudGBLKPatWsnS3r1V1asWJHuNnh6fkpdu3aVJT1caJcXQ9WwpIcEW3gqEaYYA0Bme6+eeS1btpTlQ0VGRtLdu3dV9+/fv09Xr14lV1dXWbj7RJcuXSRwwl0suKAXZ6YogyTcRpRrurRp00Yev3HjBn311VcynYnnrCo1bdpUvocLgBlDmiMAaBdoGbzGm07cfkF21ha0rF91qlvcHYcQAMBI3Qx6Td9u8ZHbQxsWozaouwU60qhkLlpx+oGqBXR6JQQAAPQSbNGVS5cuUePGjVX3lTVR+vXrJy3qfH19ZXrSq1evJODC63JWjZOTkypL5fDhw/T7779L4IZrqLRt21amOql3SuKgDBfGNZY0RwDImDexCfTZ6kt06m6ItHRc3r861f632wAAABif8Og4GrLGm97EJVC94u70dYsS+t4lMCE1i7jKhZlnr2PI/3kElcqDFtAAkHmyKTisqwWev5leFJg7/ZgDLpDLXYnCw8Ol2BgAZK3o2Hj6dOVFmc/vaGNJKwbUoBpFXPFjgFQwXgMYh4REBQ1cdVGmeOTPYU+7RtSjnI42+t4tMLGxesCKCzLteGzrUpI5BQBgMJktXHRLHddHuXLlCq1atYomTZqky30DANAo8m08fbriIl148JKy21rRqk+rU9XCCLQAABizOYduS6CFa29xQVwEWiCzphJxsOWYfzCCLQBgWMEWTUVkuVgWt4TmKT4DBw7U1b4BAKQSERNH/VdclNaNTrZWtHpgDapcKCeOFACAETvg94z+OJJUx++XzuWpXH4Xfe8SmKiG/xbQv/QgTM4pnNACGgAyyX893T4Qt347dOiQrjYHAJDK65g46rvsggRanO2saO2gmgi0AAAYuXsvIunLv67J7f51PKlzlQL63iUwYZ7ujuTp5kDxiQo6fTdU37sDACZMJ8GWN2/e0B9//EEFCuDNEQAyr2hi36Xn6erjV5TDwZrWf1aLKhbMgcMNAGDk00K5IC5/reHpSuPbltb3LoGZTCVix28H63tXAMCEaT2NKGfOnMkK5HJ93YiICHJwcKC1a9fqev8AACgsKpb6Lj9P1wNfU04Ha1o3qBaVyYfC1AAAxozPIb/+6xrdDY6k3M62NK93ZbK21FnSNUCaGpb0oJVnHkiNILSABgCDCbbMnj07WbCFuxN5eHjINCIOxAAA6NLLqFjqvfQ83Qx6TW6ONrTus5po1QgAYALmH7tH+/yekbVlNprfuyrlcrLT9y6Bmahd1E0KMQeFx9Cd4EgqkdtJ37sEACZI62BL//79M2dPAABSCIl8S32WnqdbzyLIPbstbfisJnnhhAgAwOgdv/2CZh7wl9sTO5SlqoVxwQ6yjp21JdUq6ia/h9yVCMEWANBbsMXHxyfDG6xQocKH7A8AgAiOiKHeS87LFadcTrZSo6V4ruw4OgAARu7xy2gaueEKKRREPaoVpI9rFNL3LoEZalTS499gywsa3KCYvncHAMw12FKpUiWZOsRzGtPD6yQkJOhq3wDATD1/HUO9lpyjgBdRlMfZjjYMrkVF3B31vVsAAPCB3sQm0OA13hT+Jo4qFnChSR3LJpueDpCVRXIn/XODLj54KQWas9tqnfAPAJCuDI0q9+/fz8hqAAAf7Fl4UqDlfkgU5XNJCrQUdkOgBQDA2PFFu++2+qhqcC3oU1WmcwDoA7d/LuTqQI9eRtOZuyHUomwe/CAAIOuDLYULF9btqwIAaPD01RsJtDwMjab8Oexp4+BaVNDVAccKAMAErDj9gLZffUqWFtlo3sdVKF8Oe33vEpgxzqjiqUSrzz6kY7dfINgCADr33vlyN27coEePHlFsbGyyxzt06KCL/QIAM5zD//HSc/T45Rsq6GpPGz6rRQVyItACAGAKzgWE0pQ9N+X2d61LUe1ibvreJQBVsOU4WkADgCEEWwICAqhTp07k6+ubrI6Lcr4tarYAgLYehUZLRkvgqzeS1svFcHHFEwDANASFv6Hh6y9TQqKCOlbKRwPrFdH3LgGI2kXdycbKQs4/7r2IpOK50AIaAHTHQttv+OKLL6hIkSL0/PlzcnBwID8/Pzpx4gRVq1aNjh07psNdAwBz8CAkinouPisnOkXdHWnj4NoItGQxHsPbt29P+fLlk8D59u3bkz2/detWatmyJbm7u8vzV69eTXNbHIBv3bq1xu2k9Msvv1D16tXJycmJcuXKRR999BH5+ye1glXq37+/bEt9qVWr1gf+jwEgq7yNT6D/rb1MIZGxVCqPE03rXAEFccFg2NtYUs0irnKbuxIBAOg12HL27FmaPHkyeXh4kIWFhSz16tWTk+aRI0fqdOcAwLQFvIikHovP0tPwGCrmwYGWWpTHxU7fu2V2oqKiqGLFijRv3rw0n69bty5NmzbtnduaM2dOhj9IHT9+nD7//HM6d+4cHTx4kOLj46lFixbyeupatWpFQUFBqmXPnj0Z/J8BgL5N3OlHVx+/Imc7K1rct5p8uAUwtK5EDMEWAND7NCKeJpQ9e3a5zVc5nz59SiVLlpQiuimvSAIApOVucKRMHXoR8Za8cmWXqUMeTrY4YHrAmSi8pKVv377y9cGDB+lu59q1azRr1iy6ePEi5c2b952vu2/fvmT3V6xYIRku3t7e1KBBA9Xjtra2lCdPxrtEvH37Vhal169fZ/h7AUB3Nlx4RBsuPCaOv87tVZkKuaEOFxhm3ZafdhFduP+Sot7GkyNaQAOAvjJbypUrRz4+PnK7Zs2aNGPGDDp9+rRkuxQtWlRX+wUAJuz28wjquTgp0MJp5ZzRgkCLcYuOjqZevXpJdow2gRF14eHh8tXVNSmlW4mnqHIQpkSJEvTZZ59RcHBwutvhTEsXFxfVUrBgwffaHwB4f1cehdGEHX5y+6vmJVTZA5D5AgMDqU+fPuTm5iZT/itVqiRBbKWUUzOVy6+//prmNhs1aqTxe9q2bataZ+LEiamef9/3g6zEU5gL5LSn2IREOnsvVN+7AwDmHGz5/vvvKTExUW7//PPP9PDhQ6pfv76kdc+dOzcz9hEATMjNoNfUa/E5Col8S2XyOktGi1t2ZLQYu9GjR1OdOnWoY8eO7/X9XOvlyy+/lGmpHNRX4oybdevW0ZEjR+i3336TrJkmTZoky1xJ6bvvvpPAjXJ5/Pjxe+0TALwfDqRznRb+8NqiTG4a1qg4DmUWCQsLk2mf1tbWtHfvXukeymNnjhw5VOuoT8vkZfny5RIY6dKlS5rb5dpd6t9z/fp1srS0pG7duiVbr2zZssnW44YaxtICmh27nX4wHwAgU6YRcVR80KBB1Lt3b8qZM6c8xpksPIi/fPlSHsvoPH0AME9+T8Opz9LzFBYdR+XyO9PagTUph4ONvncLPtDOnTslGHLlypX33sbw4cMla/LUqVPJHu/Ro4fqNgdhuBg7T1vdvXs3de7cWeO2eNoRLwCQ9eISEunz9Zfp2eukWly/da9IFhY4P8wq06dPl2w+npap5OnpmWydlNkmO3bsoMaNG6eboZ4y43Djxo2SNZMy2GJlZWUU2SwpNSqRi9aeeyR1Wzj4j880AJClmS08ZYizWrhbxccff0yHDx9ONgBjUAKA9FwPDKePlyQFWioWcKF1A2sh0GIiONBy7949uXLKJ9q8ML5Kyqnn7zJixAgJ2Bw9epQKFCiQ7rpcC4aDLXfu3NHZ/gOA7kzdc1NqX2S3taJFfauRk501Dm8W4rGUg9IcBOHpl5UrV6YlS5akuT53F+Xg9cCBA7V6nWXLllHPnj3J0dEx2eM8NvNnBe5cys8HBASkuQ3OUOSaWuqLvtQp7kY2lhb0JOwNBYQkL9IOAJDpwZZFixbRs2fPaPHixfKVO0ZwpJxrtTx69Oi9dwAATN+1x6/o4yXnKPxNHFUulIPWDKpJLg44ATcVY8eOlawUbgmtXNjs2bOTXV1Nia8eckYLp6dzwIZPzt8lNDRUpgVlpADv+3oTG0+x8YkUGvlWvkbHxmfaawGYkm1XntCK00mFtGd2q0jFcyU1VICsw8GNBQsWkJeXF+3fv5+GDh0q3UJXr16tcf1Vq1aRk5NTmpmCmly4cEGmEXHGe8oLs/w6/Loc4OHPCzy9lMdtQ6+v5WBjRTXQAhoAdCybgs9238P9+/dljicPqlyIq2nTphIV7969O5kDjr7zGwPXA3B2dtb37gAYrMuPwqjfsgsU8TaeqhXOSSsGVMeVTgMTGRlJd+/eldt8FZQ7CnFKOWctFipUSKaKclCdu89xMUROH+cudJwqnla6OGc7btu2jT766CPVY/w+0alTJwmwsGHDhtH69eslhZ23p8Rjq729vewXF1zkDBkOrnA3pHHjxsm+3Lx5Uz4g6Hq8fhuXQPOP3aMVZ+7T6zfx5GxvRQPqFKFhjYqRrTVa1gKkN020y4IzFBOXSJ83LkbftCyFg6UHNjY2ktly5swZ1WMcbOF6V2fPnk21fqlSpah58+b0xx9/ZPg1hgwZItt/Vz2WqKgoKlasGI0ZM0ZqcmWkcxwHXPR1br30ZAD9vPsm1fdypzUDa2b56wOA6dG6QK4SX4H86aef5OSXT7wvXboknSi0ceLECWrfvr2kG/KJ+fbt25M9379//1RVzWvVqqVxWxwz4kKKmraTkrFWSwcwNpcevKRP/g208BWjVZ/WQKDFAPH4zUEWXhifFPPtH3/8UZWWzveVXSc4NZzvL1y4UKvX4alGISEhqvt89ZVPqnmqEQdTlMumTZvkeS6+yCfzXHSXOxH169dPvvIHhowGWrTNaOFAy++H70ighfFXvs+PI8MFQLOwqFgassZbAi0NSnjQl83/C55C1uIxtEyZMskeK126tMYs9JMnT5K/v3+qDJV3dZ7j8/6MfA9PMSpfvnya0z65thYHVdQXfVIWyT1//yW9iU3Q674AgJkVyNWE59dzijingPMcfW7JqQ2OeFesWJEGDBiQZgX0Vq1aJUtD54i9JnPmzNGqbgxXSz906JDqPp/UA4DunA8IpQErL1J0bALVLupGy/pXkzRdMDwc7EgvyZED37xoQ9P2ODj/rnXUcXYLp6NnFUsLC8lo0YQf/7wxOqoApJSQqKCRG69IrYtCrg40t2clskRBXL3hTkQcQFF3+/ZtqXWlqe5K1apV5Vw8o/766y/JRuHW0u/C63EWInctNQbFPLJT/hz2FPjqDZ0NCKEmpXLre5cAwMhp/cmHI+MrV66UhU+ceQCdP3++FOLiE2NtcCYKL+nhqPe7sk6uXbsmae+cIpnRefzaVkvXlOoIAJqduRdCA1deojdxCVSvuDst+aQa2dsgoAmGLSImTpXRkhI/zs+jTTlAcr8d8KeTd0LIztqCFvapisLnejZ69GipkzJ16lSZ2s/1VbjeIi/q+Dx28+bN0hZak08++YTy588vdVVSBmh4eqibm1uq7/n6668lY52nnwYHB9PPP/8sr8NZicaAL9o2LOlB688ndSVCsAUAsmwaEc+r5zmd3BaOi+VyO06OlB8/flwGZG0DLRl17NgxqabOqeOcOcODd8p0Rp6+NG/ePK2CJ9pUSze0Il4AhuzUnRD6dOVFCbRwOvnSfgi0gHHgrilco0UTfhxdVQCS23c9SKbYseldKlCZfKhhp2/Vq1eXelkbNmygcuXKyZR/zv7u3bt3svV4KhBnF6ZVAoAvrgYFBSV7jM/7T506lWbnoidPnsj2uAYXF9zlbPRz585pzKoxVI1KJE0lUraABgDIkgK5PGDyfH0eYNu0aUMWFha63RENxRR53n727NllkOaCvD/88APFx8eTt7e3ZLwoi3QlJCTQ0qVL09xOSnv37pUgDQdwuOUdR95v3bpFfn5+GiP1hljEC8AQHb/9ggavvkRv4xOpSalcNL93FbJDUVHQs4wWyOWaLQuPB0iNlpS+aOpFQxoWxVQ4gH/deR5BH/15mqJiE2hgvSL0Q7vkdUIAMmuszkyRb+Op8uQDFJegoCNfNaSiHuioBQBZMI2Io9WcYZKVOHtGiaPzXF2dAy+7d++WiDkXbeR2oVeuXNFqu+pTl7hwV+3ataVaOre/01QtnXFwRxngAYDUjt4KlgKJsQmJ1Kx0bvqzd2WytcLUITAe9jZW0nWIqXcj6l/HE92IANS8jomT8Z4DLTWLuNLY1ug8BKYhu60VVfd0pTP3QuUCEoItAJAlwZasDrRowvVYONiirGrOgRbubpEjR45k63GxXa4lw1OQMuJd1dIBIH2Hbjyn/63zlitBLcvmpj96VSEbK91mvwFkBW7vzBksXAw3LDqWnOys6PLDMPw+A/wrMVFBX/11jQJCoiivix392bsKWVtivAfTwV2JONjCU4kG1C2i790BACNmVO+OoaGh9PjxY1UR3LFjx5KPjw9dvXpVtbDZs2cn62CU0WrpGS2uCwD/2Xf9mSrQ0rZ8Xpr3MQItYNy4axYHCx2sLanpb8epz7IL5P0wTN+7BWAQ/jx6lw7eeE42lha0oE9Vcs+OrF8wLY1KJl1gPhcQSjFxaAENAEYabImMjEwWJOG6LHybi3Lxc1zV/OzZs9L1iLNUuMK5u7s7derUSdbngrg8vUh9YVwFnQvfKjVt2lQK6CrxdrmwL7/e+fPnqWvXrkZVLR3AUOzxDaLh6y9LoKV9xXz0e89KuMIJJsPJ3lq6abF15x/pe3cA9O6ofzDNOnRbbv/0UVmqVDB5ZjGAKfDKlZ3yudhJ/bmzAaH63h0AMGJ6DbZcunSJKleuLAvjeil8+8cffyRLS0vy9fWljh07SiFbDoTwVw6+ODk5afU6PNUoJCTEpKqlA+jbzmtPacSGKxSfqKBOlfPT7O4VyQqp5GBi+tRKel/Y7RNEL6Ni9b07AHrzICSKvthwhbitwsc1C1GP6oXw0wCTpGwBzY77v9D37gCAOdRsUeLWzxcvXkzVtefVq1dUpUqVd7ZQVteoUaN026rt379f293TuD3OjEnZ7g4A3t/2K4H05V9XKVFB1LVqAWn5aWmRDYcUTE6FAi5ULr8zXQ98TVu8H9PgBkkFdAHMSXRsPA1d602vY+KpcqEcNKE9Og+BaWtYIhdtuPCYjvkHE1FZfe8OAJhLZgsHLrjVsqa6J4GBgbraLwAwUFu8n9DofwMtPasXpBkItICJX+HsU7OwaioRFwcFMCd8EWvMFh+69SxC6rMs6F0VnebA5NUt7kZWFtnoQWi0ZHUBAGRqZgu3WVbPOHFxcVHd5+DL4cOHydPT8712AgCMw6aLj2jsVl9VGvnPHcuRBTJawMR1qJSPpuy+SQ9Do+n0vRCq75WUXg5gDpaduk+7fILkg+f83lUoj4udvncJINM52VlTNc+cdC7gpbSA9nR3xFEHgMwLtnz00Ueqq3wpC8laW1tLoOW3337Tfg8AwCisP/+Ixm3zlduf1C5MkzqUlfEAwBy6E3Wukp9WnX1Ia889RLAFzMaZeyH0y95bcvv7tqWpRhFXfe8SQJZ2JeJgC08l6lcHF5QBIBOnESUmJsrCnX6Cg4NV93nhKUT+/v7Url2799gFADB0a84+UAVaBtT1RKAFzE7vfwvlHroZTM/CY/S9OwCZLvDVGxq+/golJCqoc+X8+LAJZqfRv0VyuSMRWkADQJbUbOF2ydx+GQDMw4rT9+mHHX5y+7P6RejHdmWQ0QJmp0RuJ6rh6SofPDdeRBtoMG38wfJ/a72lA1eZvM40tXN5jPtgdkrmdqI8znYUE5dI5++/1PfuAIA5dCNiXJ+FF2WGi7rly5frat8AQM+Wngygn3fflNtDGxajb1uVxAk3mK3etQrRhQcvaeOFxzS8cXG0OgeTLYj7w/br5PMknHI4WNOivlXJztpS37sFoJ8W0CU8aNOlpK5EfBsAIFMzWyZNmkQtWrSQYEtISAiFhYUlWwDANCw8fk8VaBnRpDgCLWD2WpXLQ66ONvTsdQwdvsXtQAFMD3fd2uz9hLj2+R+9KlNBVwd97xKA3qcSHfd/gZ8CAGR+ZsvChQtp5cqV1LdvX+1fDQCMwrwjd2jmgdtye1QzLxrVrIS+dwlA72ytLKlbtQK06HiAfCBtWTaPvncJQKe8H4bRpH+Spo1+07IUikGD2avr5S6duAJCouhRaDQVckPwEQAyMbMlNjaW6tSpo+23AYCRmHPotirQ8lXzEgi0AKjpXSOpUO6J2y/kxBvAVAS/jpE6LXEJCmpTPg8NbVhU37sEoHfOdtZUpXBOuX38NjIaASCTgy2DBg2i9evXa/ttAGAE8/RnHfCnOYfuyP1vW5WiEU299L1bAAaFr2o2+Hfe/roLD/W9OwA6ERufSMPWXabgiLfklSs7zehaEfW5AFJMJTqGqUQAkNnTiGJiYmjx4sV06NAhqlChAllbWyd7ftasWdpuEgAMINAyY78/LTh2T+6Pb1OaPmuAq5oAmvSuWUgyWzZfekJfNi8h04sAjNnPu2/QpYdh5GRrJQVxs9u+V/8EAJPUqEQumrHPn87cS2oBjYLRAJBRWr+b+vj4UKVKleT29evXU1XtBgDjC7T8svcWLT4RIPe5tfOn9Yroe7cADFbTUrmkHSgXyt13/Rl1rJRf37sE8N62eD+h1WeTsrRm9ahERT2y42gCqCmd14lyOdlK5tfFBy9RywgAMm8a0dGjR9Ncjhw5ou3mAEDPgZafdt1UBVomdyyLQIsZOnHiBLVv357y5csnQfPt27cne37r1q3UsmVLcnd3l+evXr2a7u9U69atNW5Hk/nz51ORIkXIzs6OqlatSidPnky1vYkTJ8q+2dvbU6NGjcjPL6mAp75YWVpQzxoF5fa6c4/0ui8AH+J6YDiN2+Yrt0c29aLmZXLjgAKk0QKaYSoRAGRqsAUATIN8iN3pR8tP35f7UzqVo09qe+p7t0APoqKiqGLFijRv3rw0n69bty5NmzbtnduaM2dOhrMcN23aRKNGjaLx48fTlStXqH79+hKoefTovwDGjBkzZHoq79vFixcpT5481Lx5c4qIiCB96lm9EFlaZKMLD16S/zP97gvA+3gZFUtD1nhLvZYmpXLRKNToMhmBgYHUp08fcnNzIwcHB8lI9/b2Vj3PY7Sm5ddff01zm9yJVNP3cHkBbQLoxqpRyVzy9Zg/iuQCQMa916RcPuHdvHmznBBzd6KUV0ABwLAlJirohx3XpX0tfy6e1rk89aheSN+7BXrCAQ5e0tK3b1/5+uDBg3S3c+3aNQmM8HtE3rx53/m6vO7AgQOl8LoyULN//35asGAB/fLLLxIQ5Mc4GNO5c2dZZ9WqVZQ7d24p1D5kyBCN23379q0sSq9fvyZdy+NiR81K56L9fs9p/fmHNKljOZ2/BkBmiU9IpBEbLlPgqzfk6eZAs3tUIgsLTAU3BWFhYRIcb9y4Me3du5dy5cpF9+7doxw5cqjWCQoKSvY9vB6PxV26dEl3287OzuTv75/sMQ6qpAygc8CF92HRokXy3nLjxg0qVMi4zzHqeblLgP3eiyh6/DKaCrqiBTQAZEJmy8aNG2UA5YFz27ZtFBcXJ7d5CpGLi4u2mwMAPQRaOG1cGWiZ0aUCAi3wwaKjo6lXr16SgcLZJ+/CgXq+0tqiRYtkj/P9M2fOyO379+/Ts2fPkq1ja2tLDRs2VK2jCQdq+P1IuRQsmDTlR9f61EpqA731ciBFvY3PlNcAyAy/7ven03dDyd7akhb1rUYu9smbHYDxmj59uox5K1asoBo1apCnpyc1bdqUihUrplqHx2j1ZceOHRKcKVo0/cL4nMmS8nvTCqCXLl1aguW8LxxAN3b8N1KlUFLA6tjtF/reHQAw1WDL1KlTafbs2bRr1y6ysbGh33//nW7evEndu3c3+qg1gKlLSFTQmL99aOPFx8QXMWd1r0jdqmXOB1EwL6NHj6Y6depQx44dM7R+SEgIJSQkSJaKOr7PARam/JreOpp89913FB4erloeP35MmaFuMXcq7OZAEW/j6Z9rTzPlNQB0bZfPU1r0b52uX7tVoJJ5nHCQTcjOnTupWrVq1K1bN8lqqVy5Mi1ZsiTN9Z8/f067d++WIMm7REZGUuHChalAgQLUrl07mf6pTQA9Jc5A5MxD9cUYphIdRwtoAMisYAunIrZt21Z1hZHn8nOkm0+0uSU0ABhuoOWbzdek8wSnws7pWZk6VS6g790CEzm55+xGvoqprZT1XXjqUMrHMrKOOn5v4nR39SUz8LQLbgPN1p5/KPsFYMi4vtCYLT5ye3CDotSuQj597xLoWEBAgGSSeHl5ybTMoUOH0siRI2n16tUa1+epmU5OTqqpmmkpVaqU1G3h8X7Dhg0yfYgz3e/cuZPhALq+shB1RVkk98y9EHobn6Dv3QEAUwy2uLq6qgoT5s+fX9X++dWrV5JGDgCGOT9/9KartPVKoARa5vasTB0q4iQbdIMDLcqaAFZWVrIwnv/P3YM04c5GlpaWqU7Cg4ODVSfryhT19NbRt65VC5KNlQVdD3xNPk/C9b07AGkKfxNHQ9ZcoujYBKpb3I3GtCyJo2WCEhMTqUqVKpKJzlktXNvqs88+S3Mqz/Lly6l3797Jaq9oUqtWLSm6y8XUuZj5X3/9RSVKlKA//vjjvYPjWZWFqCtl8zmTh5Ot/A1dehCm790BAFMMtvAAe/DgQbnNU4e++OILGcR5rj7PCQUAwxKXkEhfbLxKO689JSuLbPTnx5WpbYV3Fy8FyKixY8eSj4+PtIRWLoynnHLdAE14Gip3qlC+nyjxfZ6OxLijBQdc1NfhVPXjx4+r1tE3V0cbals+6e9p7bmH+t4dgDRrdX256So9CI2m/Dns6Y9eVaSFOZgeLk5epkyZZI9x/RT1Lm9K3CmIC94qi5Rrw8LCgqpXr67KbMlIAF1fWYiZ0wIaXYkA4N20fqfl4oc9e/ZURaS//vprme/J6YfLli3TdnMAkIm4peeI9Vdot28QWVtmowV9qlKrcgi0QOp5+OpBEi5My7eVJ+cvX76U+1wMnfHJOd9XnlRzQKRcuXLJFsZ1vDhgosQBefX20l9++SUtXbpUrqxy7S+ejsqvyWnvyhNb7mzBV2i5IDtnUvbv319amX788ccG82NUTiX6x+cphUfH6Xt3AFL5/fAdOnwrWLKwFvapKkFCME08tSdlx6Dbt29LrZWU+Lydg96craItzljh9wFl57mMBNBNwX/BFhTJBTA0b2Lj5bNPaORb+RodawDNCxR6dPz4cUW7du0UefPm5Ynuim3btiV7vl+/fvK4+lKzZk2N20pMTFS0atVK43Y0+fPPPxWenp4KW1tbRZUqVRQnTpzQat/Dw8PltfgrgCGKiYtXDFx5UVH4210Kr3F7FIdvPtP3LoGBOnr0aKqxlhceg9mKFSs0Pj9hwoQ0t6lpLC5cuHCq7+GxmB+3sbGRsZjfF1KO7fw9efLkkfG6QYMGCl9fX4Mar3kfW84+Ln9ry08FZMprALyvg37P5HeTl82XHuNAmrgLFy4orKysFFOmTFHcuXNHsW7dOoWDg4Ni7dq1ydbj8ZAfX7Bggcbt9O3bVzF27FjV/YkTJyr27dunuHfvnuLKlSuKAQMGyOucP39etc7GjRsV1tbWimXLlilu3LihGDVqlMLR0VHx4MEDkzm3Dot6qygyNunv6UlYtL53BwD+FRMbr5h1wF9RfuI++fvkr3yfH9enpIn1WuAUwaCgIKlwri40NFQe4+JYGcXFdTmaPmDAAJnbr0mrVq2SpaFz5FwTLsyYXsFEdZs2bZKrpfPnz5crAIsWLaLWrVvLVVt0VAJTEBOXQMPWXaYj/17JXNy3qqqKPkBKXFclveKunE3CizY0be/BgwepHhs2bJgsaeFxfeLEibIYKt5Hzm75YYeftFTvX8czw+9HAJkp4EWk1OtifWsVpq5VURTd1PHUHs4E5OzzyZMnS3YhnyNzXRZ1GzdulHGaywBowlmGPFVIiWszDh48WDIauZgt14M5ceKEtJdW6tGjh3we4Nflzwqc5bhnzx6NWTXGKoeDDVUulJO8H4bJVKLeNU3n/wZgzBktC48HSBan0us38ar7QxoWJQcbrcMeOpGNIy7afAMPvDzQpgy2PH36lIoVK0Zv3rx5vx3Jlk3eHD766CPVY3xyz4P79u3b0/3ea9euSQu6ixcvSjpjyu2kVLNmTSkepl4sjOez8vdwZfSM4PZ0/GbDBb0MfY4pmF+gZcgabzp++wXZWlnQsn7VqZ6Xu753C0BvsmK8joiJo5pTD0vhxI2Da1Gtom6Z8joAGRX1Np4++vM03QmOpGqFc9L6z2pJ8B3AUBnLufUfh+/QbwdvU4syuWnxJ9X0vTsAZi82PpGqTTkoAZaUnO2t6NL45np7/8twiGfu3LmqoAjPsc+ePbvqOc5m4eg2t4XTtWPHjklgh7tcNGzYkKZMmZIs0MMdkDgqz3UAlJ0r0sPFFb29vaWgo7oWLVrQmTNn0vy+t2/fyqL+hgBgaN7EJtDgNZfo5J0Qsre2pGX9qlGd4gi0AGQ2Jztr6lgpP2248EgK5SLYAvrE19G+2XJNAi25nGxpfu8qCLQA6AhnCnOw5fTdEPmQhyAmgP7e6y49eEl5c9hrDLQwfpwviLlltyWDDrZwVwnlf2rhwoUynUh9ao+np6c8rks8tadbt26SfsgFG3/44Qdq0qSJBEu4gjnjgopceKtjx44Z2mZISIgEh1JWRuf7KSuoq+OMl0mTJn3g/wgg83ARqEGrLtGZe6HkYGNJy/tXxwc+gCzEU4k42LLf7xm9iHgrLUIB9GHRiQDa4/vs38LoVSiXc/ptfQFAuxbQ7tltKCQyli49fEl1iuGiFkBWu/b4FU3be4v8n0fQqW8bSwZLWpktfEFMXzIcbOFgB2vcuDFt3bqVcubMSZmN534q8bzPatWqSeBl9+7d0v1o586ddOTIEbpy5YrW2045n56DSOnNsee5r9w5Qz2zpWDBglq/LkBmpYsPWHmRLtx/SY42lrTy0xpU3dMVBxsgC5XL70KVCuagq49f0V+XHtPnjYvj+EOWO3nnBc3Yd0tu/9i+LFUtjPcCAF2ysMhGDUp40NbLgXTc/wWCLQBZ6EFIFP16wJ92+wTJfRtLC7ofEkUD6hRJVrNFiR+PT0wkG+2bMOuE1q969OjRZIEWzhLh1m9hYWGU2bgeCwdb7txJOpAcaLl3755MMbKyspKFcbFdLvioibu7u2TlpMxiCQ4OTpXtoo4zaXj+qPoCYAgi38ZTv+UXJNDiZGtFqwfWRKAFQM9toDnDJSFRq5JoAB/s8ctoGrHhCvGvHhfD7fPv7yMA6BZaQANkrRcRb+mH7dep2azjEmjhHInOVfLTka8bUtl8LjSsUTH6oqmXZLIw/sr3+XF9FcdlWr8yd/EpX748DRw4UAItDRo0oLNnz5KDgwPt2rUrzSCHLnCF88ePH0vQhXHdlUGDBiVbh/eNpzy1b99e4zZ4ylPVqlXp4MGD1KlTJ9XjfD+jU5EADMXrmDjqv/wCXX70ipzsrGjNwJpyZR0A9KN9xXz0064b9CTsDZ24/YIal0IXMMi64uhD13rTq+g4Kp/fhX7+qBy6YgFkkgZeHmSRjWQKw9NXbyhfDnsca4BMuqi85EQALTkZIE0IWOOSHjSmVSkqnfe/5Adba0vpOsRZxVyjhacOcUYLP65PWgdbNm/eTH369JHb//zzj7TyvHXrFq1evZrGjx9Pp0+fzvC2IiMj6e7du8mmKnGWjKurqyzc6pOzVDi4wq8zbtw4yUxRBkm4IK6morjcvplb3Sk1bdpUvmf48OFyn6cD9e3bV6Yl1a5dmxYvXiwt7oYOHart4QDQm/A3cfTJ8gsyZ9HF3prWDqxJ5Qu44CcCoEd21pbUtWpBWn76Pq07/xDBFsgSPBV63DZf8nv6mlwdbWhh36ryuwgAmSOnow1VLJiDrjx6Jd0fe9VAFhmALsXGJ9LGi49o7uE7Uh+JVSzgQmNbl6baxTR3fFRmsCiL4epr6tAHBVs4u0QZ4NizZ48UsC1RooRkuig7FmXUpUuXpAaMkrImSr9+/aQts6+vrwRxuP0zB1x43U2bNpGTk5NWr8NTjbgwrnotGP5/TJ48mYKCgqQeDP9feIoSgDF4FR1LfZddIN/AcMrpYE1rB9WUFDoA0L/etQpJsOXIrWAKfPWG8uOKJ2Sy1WcfSv0IvtI+r1dl/M4BZIFGJXIlBVv8EWwB0JXERAXt9g2imQf86WFotDxWxN2RvmlZklqXy2N0GZtaB1u4rsmNGzck+LFv3z6aP3++qgWzeoeijOApR3w1Ji379+/Xdvc0bo+zYlIaNmyYLADGJiwqlnovPU83gpKuYK4bVDNZGh0A6Fcxj+xUu6gbnQ0IpY0XHtFXLUriRwKZhut18dQ19l3r0lSnODqjAGSFRiU9aPahpBbQcQmJZG2p/6voAMbszN0QmrbvFvk8CZf77tlt6YtmXtSzekGj/fvSOtgyYMAA6t69uwRbOLLUvHlzefz8+fNUqlSpzNhHAPhXaORbCbTcehYhbQfXDapFJfNol+kFAJmvT63CScGWi49pZFMvoz1JAMP2LDyGhq27TPGJCmpXIS8Nqv/fFGoAyFxcG8nN0YZCo2LJ+2EY1SqqeWoDAKTvxtPXEmThWneMO6sOblBM3tMcbfVX3FYXtN57rqPC0264UC1PIeIuPYyzWrhgLQBkXhXu3kvP0e3nkeThZEsbPqtJxXMh0AJgiJqXyS1XZPjv9uCN59SmfFJhdwBdeRufQP9b500hkW+pZG4nmtG1gtGlVwOYQgvobVcC6Zj/CwRbAN6jg96sg7dp+9VA4skpVhbZpKvjiKZecg5lCt4rVNS1a9dUj3GdFQDIHMGvY6jXknN070UU5Xa2pfWf1ZKpCgBgmGysLCTtdd7Ru7T23EMEW0DnJv9zQ+pFONtZ0aK+VfXa2hLAnFtAJwVbgmlsa2T4A2TEy6hY+vPoXVpz9iHFJiSqujl+3aIEFXZzNKmD+F7vzIcPH5YlODiYEhOTDpDS8uXLdbVvAPBvmvjHS85RQEgU5XWxow2f1SJPd9MaiABMUc8aBenPY3fpzL1QuvciEgFS0Jm/Lj6mdecfESey/N6zMt4TAPSEM1v475Cnd/P5Wh4XO/wsANLwJjZBGggsPHaPIt7Gy2N1irlJoLJCgRwmedy0nkQ+adIkatGihQRbuMNPWFhYsgUAdOfpqzfUc/FZCbRwR5NNg2vjpBrASBTI6UCNS+aS2xvOP9L37oCJuPb4FX2//brcHt2sBNqLA+gRNypQfkg8fjsYPwsADeITEmnDhUfUaOZR+nW/vwRayuR1ptWf1pBGH6YaaHmvzJaFCxfSypUrqW/fvpmzRwAgnoRFy9Shxy/fUIGc9pLRUtDVAUcHwIj0qVVIWkBv9n5CX7csSXbW2nXtA1DH9VmGrvWWtOtmpXPT8MbFcYAA9KxRCQ8JgnLdlh7VC+l7dwAMhkKhoAM3ntOMfbekFALjzzRftyhJHSrmk7pHpk7rYEtsbCzVqVMnc/YGAFQFo3ouPkeBr95QIVcH2jC4lmS2AIBxaVgil/zt8t/ybp8g6lK1gL53CYz4yuDw9ZcpKDyGiro70qweFc3iRBXAGFpA/374Dp26gxbQAEqXHrykX/bekk5dLKeDNY1o4kW9axUiWyvzufCk9TSiQYMG0fr16zNnbwCAHoZGUY9FZ+XDWRF3R9o0BIEWAGNlaZGNPq6ZdKVz7fmH+t4dMGLT9t6icwEvpSUmF8R1trPW9y4BAJFMgeAPkjw1gotWA5izO88jaNCqS9R14VkJtNhZW0gW5vExjenTekXMKtDyXpktMTExtHjxYjp06BBVqFCBrK2Tv9nPmjVLl/sHYFbuh0RRr8Xn6NnrGCrq4ShTh3I7o9gagDHrVq0AzT54W07C/Z6GU9l8LvreJTAyO64G0tJT9+X2zG4VySu3k753CQDUgupcKHfH1afSlahGEVccGzA7QeFvaM7BO7TZ+zElKpL+LrpXK0ijmnmZ9WcZrYMtPj4+VKlSJbl9/XpSgTalbFyOGwDeC3cr4UBLcMRbKp4rO63/rCblcjLfwQnAVPDfcctyeWQaEXeQmdqpvL53CYzIzaDX9O3fPnL7f42KUevyefW9SwCgYSpRUrDlBY1phRbQYD7C38TRgmP3aMXp+/Q2PqlLccuyuemblqXk84y50zrYcvTo0czZEwAzT7nrteS8FD8smduJ1n1Wk9yz2+p7twBAR3rXLCTBlh1XAmlcm9KU3Vbrt18wQ6+iY2nIGm+KiUuk+l7uUlQQAAxPfS8P+Xoj6DUFv46hXGZ8JR/MQ0xcAq05+5DmHb0rARdW3TMnjW1dmqoWzqnv3TPemi3qnjx5QoGBgbrbGwAz5P8sQorhcqCldF5nKYaLQAtkpRMnTlD79u0pX758kqG4ffv2ZM9v3bqVWrZsSe7u7vL81atXU21jyJAhVKxYMbK3tycPDw/q2LEj3bp1K93X9fT0lO2lXD7//HPVOv3790/1fK1atcjY1C7qJlMDo2ITaNsVvG/CuyUkKuiLjVfp0cto6d4wt2dlScsGAMPD520VCiRNET0bEKrv3QHI1Pemv72fUNPfjtOUPTcl0OKVKzst/aQa/TWkNgItHxpsSUxMpMmTJ5OLiwsVLlyYChUqRDly5KCffvpJngOAjLvx9LW0dw6NiqWy+Zxp/aCa5Opog0MIWSoqKooqVqxI8+bNS/P5unXr0rRp09LcRtWqVWnFihV08+ZN2r9/v7T7a9GiBSUkJKT5PRcvXqSgoCDVcvDgQXm8W7duydZr1apVsvX27NlDxoaDRL1rFpbb6849lOMDkJ45h27T8dsvyNbKghb2qUo58d4AGcQXQvv06UNubm7k4OAg0/+9vb2TjUeall9//TXNbS5ZsoTq169POXPmlKVZs2Z04cKFZOtMnDgx1Tbz5MljNj+3zpXz05JPqlKLsnkoNPItxcYnUnRsvL53C0An+Lzl6K1gajv3JH21+Zo08sjrYkczulagfaMaULMyuVFSRAOt85jHjx9Py5Ytk5NuPvnmA3/69GkZYLl47pQpU7TdJIBZuh4YTn2WnadX0XFyNWTNpzXJxQHdJSDrtW7dWpa09O3bV74+ePAgzXUGDx6cLGPl559/lgAOfw9nvGjCGTDq+H2F123YsGGyx21tbU3ihL1rlQI0Y98tuvUsgi4/CqOqhVFEETTb7/eM/jhyV25P61KeyuVHUWXImLCwMDk/b9y4Me3du5dy5cpF9+7dkwujShy0VsfrDRw4kLp06ZLmdo8dO0a9evWiOnXqkJ2dHc2YMUMC6n5+fpQ/f37VemXLlpUmGkqWlubTeaR79YJSu4I/iL5+E0/O9lY0oE4RGtaoGNlam89xANNz9fErmrb3pnTEY052VvR54+LUv44n2eF3W7fBllWrVtHSpUupQ4cOqsf4hJoH2mHDhiHYApABPk9eUZ+l5+l1TDxVKpiDVn1ag1zsEWgB08CZMJzlUqRIESpYsGCGvic2NpbWrl1LX375ZaorI3ySzx8Y+MMCB2I4qM/30/L27VtZlF6/fk2GgIOp7Svmoy3eT2jduUcItoBGd4Mj6au/rsltPpHtVLkAjhRk2PTp02Xc5TFYPQCuLmXweseOHRKcKVq0aJrbXbduXapMly1bttDhw4fpk08+UT1uZWWV4eC4oY7V7+NNbDwtOh6gCpIyDrj8fviO3B7SsCg52KBWFxhfl9SZ+/1pt29SgNbGykLelziAmMMBmfiZMo3o5cuXVKpU6irb/Bg/BwDpu/IojHr/G2jhAlJrBiLQAqZh/vz5lD17dln27dsn04JsbDL2Zsx1Yl69eiU1WtRxxg2f5B85coR+++03mXrUpEmTZCfoKf3yyy8y1VW5ZDTgkxX61EqaSrTLN4jComL1vTtgYCJi4mjImksU+TZe2seOb1ta37sERmbnzp1UrVo1mY7JQenKlStLYCQtz58/p927d0tmizaio6MpLi6OXF2TZ+jduXNH6n9xsL1nz54UEBBglGO1tiwtLGjFmaT27Cnx41YWH1QmEyBLBUfE0Pfbfan5rOMSaOFrYF2rFqCjXzeSIv8ItGSc1n/5ac3r58f4OQBIm/fDl9R32QWKiImXit2c0eJkh4wWMA29e/emK1eu0PHjx8nLy4u6d+8u00szgqencmCFT9LV9ejRg9q2bUvlypWTIr6c7n779m35cJCW7777jsLDw1XL48ePyVBULOAi9Zl4Lj9nuAAoJSYq6OvN1+jeiyjK42xHf35chawt8QENtMPBjQULFsgYzPWzhg4dSiNHjqTVq1enmbHu5OREnTt31up1xo4dK1ntXLtFqWbNmvI6/Loc4Hn27JlMOwoNDTW6sfp9AqWcyaIJP87PAxg6DvTPOnibGv16jNaee0TxiQpqXNKD9n5Rn2Z2q0j5c9jrexeNjtb5bDxHk098eT5m7dq1Jd37zJkzMkAaY9FCgKxy4f5LGrDignQjqVXUlZb1q06OaP8KJkR5dZJP8rljEBdR3LZtm8zzT8/Dhw/lPYW7Hr1L3rx5pTg7Xz1NC9d44cWQC+WO2+ZL6y88ooH1ipAFOswAES04fo/2+z0nG0sLWtCnCnk4GebvMBg2blbBmS1Tp06V+5zZwnVVOACjPt1Hafny5RIo5zos2nwW2LBhg0zxVP8+9dpf5cuXl88JXIeLAzo8RdSYxmpt8YUzrtGiKeDCj+PCGhgyvgC04cIjmnv4jjTtYBUL5qCxrUpR7WJu+t49o6b1JROeL89XFTt16iQp3zx1iKPh/v7+UqUcjGt+Kf9xoWJ65jt7L5T6LU8KtNQt7kYr+tdAoAVMHhdQT2+6jxLXFuB0dw7kvwtfIeXgPgddjFXHSvkou62VzIU+cw8tQoGk69DMA/5yKCZ2KEuVC+XEYYH3wmNjmTJlkj1WunRpevToUap1T548KefvgwYNyvD2Z86cKYGcAwcOUIUKFdJd19HRUYIu6QXHTUVCYqIUw9WkX21POnHnBa05+0Ay2AAMBf8+7rz2lJrNOk4TdvpJoKWIuyMt6F2Ftg+rg0CLDrxXpSZO80bXIeP2Ni6BFh4PkHmkqJieuU7fDaGBqy5STFwi1fdypyWfVEPlbjAokZGRdPfuf0X97t+/T1evXpW5+IUKFZKgOp+oP336VJ7nk3PGRRB54bT1TZs2SWcK7jDEbUe5SKO9vT21adNGtd2mTZtKoH748OHJrsJysKVfv35SWDHlfnGnO+6QwR8guLPRuHHjyN3dXbZjrDijrVPl/LTm3ENad/4h1fNy1/cugR49Co2mkRuuEHcD71m9IH1csxB+HvDeuBORcoxW4ouknBGoafpm1apVM1wGgFtDc6c5nibE2TPvwsH2mzdvmsXFWHsbKykaylKeWw+o60ldFpyley8i6R+fIJrepYJ8oAXQ9+eTaXtvkW9guNx3z25Lo5p5UY/qBTGFVR+ZLRyV5lRwTZXCeZ7lxx9/nG4RLDCsjJb5x+5JhXRluqOyYjo/Hh2rec4paO/E7Rf06cqkQEujkh4ItIBBunTpkqSa88I43Ztv//jjj6qCi3xfmXnCRQ/5/sKFC+U+p5HzFVIOrBQvXlxqtfAVTZ5iqt41iNuPhoSEJHttnj7EgZxPP/001X5xy1BfX1/q2LEjlShRQgIy/PXs2bNSY8CY9a6V9IH6wI3n9Px1xuragOl5E5tAQ9Z6U/ibOEnZntSxrL53CYzc6NGj6dy5c5J9wkH09evX0+LFi+nzzz9Pth6fz2/evDnNrBaecsQ1VdSnDn3//fcy7Yi7G3E9Fl44KK709ddfS80uDtifP3+eunbtKq/DY7c54PbO3HXo0vjm5P19M/nK953trOmT2oXJwcZSppS3mnOClpwIoARkuYAe+D0Np0+WX5BmHRxocbSxpC+bl6Dj3zSSIv6oFaZb2RSc550BgwcPlrabPNhq8u2338qAynNCzQH/X7k2AQeanJ2dyZjw1KFqUw6mOa/04rhmdOpuCDnbW5Obow25OdrK4ynbsUL6jvoH05A13nK8m5bKRfP7VCFbK0scNoAsZqjjddcFZ+jSwzA5yRnZ1EvfuwNZjE+/Rm26SjuuPiX37Db0z4h6lNcFxQfhw+3atUsCJXyhlLsCcQD9s88+S7YOB2BGjRpFQUFBMj6m1KhRIwmqrFy5Uu7zba6vldKECRMkA1EZiD9x4oQE1TnLkWt3/fTTT6mmNRnbWK0rj19G03dbfeUcm3GA9deuFahEbuO+eADG8/v32wF/2n41KUvZ2jKphtzwJsUlqwX0HGzh1s5r1qyh6tWra3ze29tbsltSpi6mhwdkTknk7+XBngspfvTRR6rnuQUoF9VSx5XOOWKvNGTIELkyyunt3G6Uq55z+rqm9tRK/KYwadKkZI/lzp1bIvQZZcxvCFyjperPh9J8/tS3jWngykvk/zxC9Rj/QeZ0sCG37LZJAZjsNuTqaCN/nPxV+RgHZvgr1yMw5+DM4ZvP6X9rL1NsQiI1L5Nbukpwb3oAyHqGOl5vvxIoH7bzutjRyTGNyQqdZ8zKslP36addN8jSIhutG1STahVFEUIwb4Y6VusSf+z669Jj+nnXTYp4Gy8FsUc0KU5DGxVDRgFkipdRsTTvyF1ae+6hfC5hHSrmo69alKDCbpjOZjA1WziarZ4OnhLPode2ZVtUVJTMEx0wYIDMydekVatWMp9fycbGJtnzPNeUq6gr6wpwIIXrBnAKI6egp6Vs2bISpFFKb11T866K6RwwyeNiSzHxCRQaGSttwOISFBQc8VaWjOA3D2VARhWgcbQh1+w25O74b4BGLTjDqZWmEpw54PeMPl9/WY5Z63J5aG6vyngDBYBUWpXLQzn/saag8Bg66v9CArNgHs4FhNLUPTfl9vg2pRFoATATfK7bo3ohalgiF43f5kuHbwXTbwdv097rz2hG1wpULn/qLCOA98FlIZafuk+LjgdIYI9xk46xrUpT+QL4PTO4YAtHmnm+vaYCW4znhWobheYWcept4jThlnBcgDG96U1KnOLIhbs4gMOFFLndXFq4EGN629VU5Eu9q4am2jXGIiAkUiqj/3Hkv4KYSlzIS0EKWvVpTdVjMXEJEhXlJSTyrXzlIAxXrOYsGfn6721+Ljo2QSKn/AGCl4ywtbL4L0tGLWtGAjTqGTT/BmjsbQwzOLbXN4hGbLgifenbVchLs3tUQqAFADSys7ak7tUK0qITAXLFCcEW8xAU/oaGr78s9Rq4MxUXzwQA85LHxY6W9qsmnWC4C8yNoNfU8c/T9L+GxWhE0+KYdg7vLT4hkf669ITmHLqtukheNp8zjW1diup7eeDIGmqwpUGDBvTHH39QkyZNND4/d+7cTKk2fuzYMcmo4Xox3HaauyCllWHDmTKcBcPzUwsWLJjudnkeK3dV4mAOT03iQmJFixZNc/1ffvkl1dQjY3TMP5h+3n2TNg2uRZxIsvLMg3d2I+IPBPly2MuS0YJ/oVFvJSCTLECjCtL8F7Dh597GJ8oS+OqNLBnBmTAZzZrh+/x/yKxiw5YWFhQRE0fZ7awkHZxT8srld6bfulXEtAAASFevGoUk2MJtQbkrTSE3BxwxE/Y2PoGGrr1MIZGxVDqvM03rXMFksjoBQDv8t9+xUn6qU8ydJu70o92+QTTv6F3a55eU5VIFLeBByylq+/2e04z9tyjgRZQ8ViCnPX3TsiS1r5CPLCzwXmPQNVuuXLlCtWvXpnbt2tGYMWOoZMmS8vitW7ekaO7u3bul80SVKlXeb0eyZUtVs4VbiXIdFs6m4WlBP/zwA8XHx0uNFw6SKM2fP1/2iYMtXKuFC4Oll9Wyd+9eio6Olq4Wz58/l2wY/n/4+fmRm5tbhjNbOKBjTPNKuTBSuz9OSdcDbu01uEFRsvo3UMBTi+ITE8nB5r26gb83/vXjTBhlUEYVoOGAjDJ7Ri1rhp9XzjfUBteQUU1rckyj7sy/ARq+nZH6Ktw+m7s3qbf444yhQfWLyutx4AUA9M/Q6wD0XXaeTt4JoaENi8mVJzBdY//2oY0XH5OLvTX9M7wegmsARjRWZ0V29A87/OR8mGOwA+sWoa9alDTYbG4wHBcfvKRf9tyky49eyf2cDtY0oomXdD5Ecw4jCbYwDmJwe87Q0NBkj3OAYunSpdShQ4f33xENwZaUuIguB142btxInTt3Vj3Og3JwcLA8P3PmTAoMDKTTp09LO9KM4CANB2c4YMMV203xDYGnAnVdeIauB76W6ud/DalllH98/OvKNWTUpzFpyprhq4bK53hKj7ac7KxSFP9NHqCp4elKGy4+ormHU0/F+qKpl7T6y+rAFQAY53i97/ozGrrWW8aYM981McqxGd5t/flHNG6bb1JW6YAa1LAE0rkBjGmszgqvomNp8q4btPVyoNwv7OZA07tUQF0n0Oj28wiase8WHboZLPftrS1pUP0i9FmDpJbjoH9afRrkrBYulLtv3z6p0cIffDk7hAvSOjhkfupz3rx5JdjCU4DU8cDMi5eXl7SZy5kzpwRuevXqlaHtOjo6Uvny5VNt15RM2OEngRaOdM7vbbwtiDkox1k4vHi6v7uCNv+OctaJTGtSD8hoyJrhAE1YdKzMo4+IiZflfkhSGp46DrZwxyaegqUJZ7p83ri4Tv6/AGD6mpXORbmdben567cSeOG0cjAtlx+F0YSd1+X21y1KItACABrlcLChWd0rybQPDs4+DI2mnovPUZ9ahWhs69KSOQ3Atb9mH7xNW7yfEF9T5mz6HtUL0qimXpTLOWPJBpA1tP6Ltbe3p06dOpE+cEYNdzzioMu7PmCrT/l5F1735s2bmVJzxhBsuviINl16LFfTuDNO/gzWXjEFHJxxcbCWpWgGLiImJipkmlWyIEyKaUxcL4Zva+rmxPhxnprF2TAAAO/CLZ97Vi9Evx++Q+vOP0KwxcS8iHhL/1vrLR3qWpbNLbXRAADS07hULto/ugH9sucWbbjwiNaee0RHb72gqZ3LI1hrxsKj42j+8bu08vQDqXfJWpXNQ9+0KknFPLLre/dAA72GRyMjIyVDRonrsly9epVcXV1l4TbO3BKagyvcXWjcuHHSYloZ7AkICJC6LpxZ4+HhIdOHpk+fLgGhNm3aqLbbtGlT+Z7hw4fL/a+//prat28v7aJ5+hHXbOHUxX79+pGp8X0SLvM/2VfNS6AK9Ttw8aicjjayFM+V9qAVG5+YbvtszrwBAMionjUKSmHEC/dfSlpwidxOOHgmIC4hkT5fd1mylop5ONLMbhVREBcAMoSngfzSuTy1r5CXvt3qQ49fvqF+yy9Qt6oF6Pu2ZeRCIpgHLgex+uwD+vPoPbkozLikwdg2pVBI2cC9uwpoJrp06RJVrlxZFsb1Uvj2jz/+SJaWluTr60sdO3aUqUocCOGvZ8+eJSenpJNQrsly8uRJCawUL16cunfvLlOCuFCvesciblkdEhKiuv/kyROZYsRFfrn2i42NDZ07dy7NttbGKiwqlv63zlsCA5ymPqwRprboSkJionRv0oQf52LDAAAZldfFnpqWyqWq7QGmYcrum3ThwUtJ/V/8STUE4gFAa3WKu9P+UQ2kTTxnqW/2fkLNZx+nA37PcDRNHJc24KlCTWYeo6l7bkmgpUTu7LSsXzXaNKQWAi2mViAXjKeIF/9xfrryIh2//UKKa+0cXk+6H4DuaOpGlFb7bADQH0Mfr5V4vOarllyg+/y4piiybeS2XXlCozddk9uL+1alFmXz6HuXAAyasYzV+nTpwUsa87ePqrVv+4r5aGL7Mpi6bmL44/kx/xc0fd8tuvUsQh7L62JHo5uXoC5VCqDjqRFBsMVE3xC4aBLP/7eztqCt/6tLZfIZ3j6agujYeL23zwYA4x6v1WtGNZp5jB69jKbpXcpTj+qF9L1L8J6uB4ZTlwVnZE79iCbFpX0rAJjGWG0IU0r4HH/R8XtSHJUbN0zqUJbaVciLaYom4MqjMJq29xadv/9S7jvbWUnjjX51PMkOF3NNfxrRnj17aP/+/ake58f27t2rq/2CD3DUP5jmHknqrDTlo/IItGQiDqzYWFnIFQX+ikALAHxIzaiPayYFWLhQLhjvFF5u5c2BlkYlPWhUsxL63iUAMCH8gfvbVqVo++d1qVQeJ2naMGLDFRq8xpuCX8foe/fgPQW8iKRh67yp0/wzEmjhzxVDGhSlE2Ma05CGxRBoMZdgy9ixYykhIUFjuhM/B/r1+GU0jdp4lXhyGLeJ61K1AH4kAABGggsf2lhakM+TcPJ58krfuwPvMYV35MYr9CTsDRVydaDfe1RGujcAZIoKBXJImYBRzbzIyiIbHbzxnJrNOk6bLz2Wz2VgHDhANn6bLzWffYL2+D6TujxdqxagY183ou/alJZ24GBGwZY7d+5QmTJlUj1eqlSpZJ2FQD9phVwQl4snVSyYg35ol/rnBAAAhouz5FqXT6rtse4csluMzcwD/nTyTgjZW1vSor5V0S0EADIVZz9w9tw/I+pR+fwu9Domnr7Z4kP9VlykwFdvcPQNGJcgmHXAnxr+ekyyWTlYz4Xy935RXzrX5cthr+9dBH0EW3guJbdcTokDLdwJCPTnxx3X6Xrga5m7uaB3FbK1QpFWAABj06dWUme8HdcCVS0ewfDt9Q2iBcfuye3pXStQ6byoOQEAWYPHm23D6tDY1qUkAHPi9gtqMes4rT33UOqBgeHgLrErT9+nRr8eo7lH7tKbuASqVDAHbRxci5b1r06l8uC9w6yDLR06dKBRo0ZJO2X1QMtXX30lz4F+bLzwiP669IQsshHN7VkZ0VAAACNVrXBOae0YE5dI2y4/0ffuQAbceR5BX29O6jw0qF4R6lAxH44bAGQpK0sLGtqwmGRGVC2ck6JiE+j77dep15Jz9CAkqXsR6A8HvXZcDZSpXhP/uUGhUbFU1N1RLpBzoKxWUTf8eEyQ1sGWX3/9VTJYeNpQkSJFZCldujS5ubnRzJkzM2cvIV2+T8Lpx51+cps7HtTzcscRAwAwUtmyZVNlt6w9/whz7w3c65g4KUzJH2xqF3WTK8sAAPpSzCM7/TWkNk1oX0amNHKx1Va/n6ClJwNkqgpkvVN3QqjDn6foi41XpeOgh5MtTelUjvaPbkCty6OLlCl7r9bP/C0HDx6ka9eukb29PVWoUIEaNGhA5sRQ2tNx14N2f5ySeZnNSuemxX2rSkcLAAAwrPFa2w/wNacclvTiTYNrUU1c8TLYK5UcaDl08znlc7GTuglcdwcAzGOsNnSPQqNp7FYfOnMvVO5XLpSDfu1agYrnctL3rpmF64HhNH3fLanlxbLbWkmHoYH1i6CDqZl4r2ALGMYbAkenB6y8KPMyC7s5SEVyF3tr/HgAAAxsvH4f3231oQ0XHlP7ivnoj16V9b07oMHcw3do1sHbUiNh85DaUpweAMxrrDZ0/FFv48XHNGX3TYp8Gy8d775o5kWDGxQla0utJzlABrvDcsH0HVefyn1ry2zUu2ZhGtGkOALyZiZDf2Fz586lmJgY1e30Fsg6vx++I4EWO2sLWtinKgItAAAm5OMaSVOJ9l0PopDIt/reHUjh6K1gmn3ottz+uWM5BFrAYAQGBlKfPn1kir+DgwNVqlSJvL29k01V1LRwqYD0/P3339KR1NbWVr5u27Yt1Trz58+XEgN2dnZUtWpVOnnyZKb8HyHj+Gfbq0YhOjC6ATUu6UGxCYn0635/+ujP0+T3NByHUodCI9/SpH/8qMlvx1SBlo6V8tHhLxvRxA5lEWgxQxkKtsyePZuioqJUt9Na5syZk9n7C2oneXxFjU3tVB5dDwDgvZ04cYLat29P+fLlk5Oy7du3J3t+69at1LJlS3J3d5fnr169mmobQ4YMoWLFisnUUg8PD+rYsSPdunUr3dedOHFiqpP9PHmS2h6rX5Hj9XjfeNuNGjUiP7+kGlWmrnwBF6pYwIXiEhS081qgvncH1HCxyZEbrxDnBveuWYi6Vy+I4wMGISwsjOrWrUvW1ta0d+9eunHjBv3222+UI8d/WVdBQUHJluXLl8v426VLlzS3e/bsWerRowf17dtXygjw1+7du9P58+dV62zatEmaaIwfP56uXLlC9evXp9atW9OjR2hjbwi4lfDy/tVpVveKcoHW7+lr6jjvtLQffhufoO/dM2rRsfE078gdaeO84vQDed+u7+VOu0bUo997VqZCbg763kXQE0wjMsJUR05N4zot3BK0b63C9NNH5bL09QHAtPAJ+enTp6lKlSpyss1XKz/66CPV82vWrKH79+9LwOOzzz6Tk2i+Uqpu8eLFUji9UKFC9PLlSwmQcFCGv8/SUnMbel5ny5YtdOjQIdVjvC4Ha5SmT59OU6ZMoZUrV1KJEiXo559/luCQv78/OTk5mXxq+t7rQWRlkY3qFnen6NgEcrazpvjERMz11qOot/HUef4Z8n8eQVUKcbvO2jKNCMAQjB07VsZzbTJKeLyPiIigw4cPp7kOB1p4LOX3C6VWrVpRzpw5acOGDXK/Zs2a8j6yYMEC1TrcRIO3/8svv5j0WG1sgiNi6MftfrTP75nc98qVnWZ0rUCVC+XU964ZlfiERNp06THNOXSHXkQkZaCWzecshdLre/13LgPmy0rbb5g8eTJ9/fXXkpao7s2bN5J++OOPP+py/yCFmLgEGrrWWwIt3JP9+3alcYwA4IPwlUde0sJXMNmDBw/SXGfw4MGq256enhIUqVixonwPZ7ykxcrKKlU2i3pWC2dM8lXSzp07y2OrVq2i3Llz0/r16yWbRpO3b9/Kon4Cb6wal8xFfx69S19tvkav38STs70VDahThIY1Kka21pqDWJB5+Hfy2799JNDint2WFvSpikALGJSdO3dKJmK3bt3o+PHjlD9/fho2bJgEyjV5/vw57d69W8bW9HBmy+jRo5M9xq+jzGqPjY2VqUoc7FHXokULOnPmjMmP1cYml5MdLexblfb4BtGPO67TneBI6rLgDA2qX5S+bF6C7PD+8s73gv1+z2jGPn8K+LetdkFXe/q6RUlqXyEfmpWAitaXYiZNmkSRkZGpHo+OjpbnIHP/sH/Yfl3S/lwdbWh+7ypka4WTbQAwLDztdMWKFTJvv2DB9KdX3LlzRzJmeN2ePXtSQECA6jnOinn27JmcrCtxrYCGDRumefLO+AoqXx1VLu/aB0P1JjaeFhy7R38cuSuBFsZfuV7X/GP3JG0ZstbSk/dpl09SttGCPlUot7MdfgRgUHgM5cwSLy8v2r9/Pw0dOpRGjhxJq1ev1rg+B1k4S1AZ0E4Lj8Uc6FbH9/lxFhISQgkJCemuY6pjtTFrUz4vHRjdkD6qlI+4K/TiEwHU+veTdOH+S33vmsHiY9N5wRkauvayBFr4Mxm32T70ZUPqWCk/Ai3wYcEW/sDP8zpT4vmbrq6u2m4OtMCVxDd7PyHu7MydKXjuJQCAoeDCiNmzZ5dl3759dPDgQbKxsUlzfU455w8A/IFgyZIlckJep04dCg1NalGpPEHX5uSdfffdd5KGrlweP35MxsjSwoJWnLmv8Tl+3MrCQt6TIWucuRtCv+y9Kbd/aFeGqnvinAcMT2JiokzlmTp1KlWuXFkyADmrRX1qjzqu19K7d28paPsuKc//NX0myMg6pjZWGzsOFszpWZmW9atGuZ1t6X5IFHVfdFYyXnjaJCTxfxZBA1delGNz5dErsre2pJFNitPxbxrRgLpFcAEcPmwaEc/JVBYw5Hnz6gMnR7I524Wj55A5fJ68ogk7kopCft2ypMzfBwAwJHzC3rx5cym4OHPmTCmeyLUD0jqJV5+6VL58eapdu7ZMOeIrrV9++eV7nbwrs194MXYRMXGqjJaU+HGec//VX9cku6JecXeqU9yNCuREEb7MEPjqDQ3fcEWu/Haukp8+qZ3UKQrA0OTNm1c6BanjuincSSglruvC9a+4sO278HTPlEHu4OBgVTCcC6hzza301jHVsdpUNC2dmw54utIve27KBd7VZx/S4ZvBNK1LebOuP/L01RuaffA2/X35ibwHWFpko57VC9IXTb0oF7IbQVfBFp6TySe4n376qUwX4nQ/Jb5yyXP0+UQZdC8sKpb+t/aytGprXiY3/a9h2vUPAAD0RZkKzunrtWrVkiA9F9vt1atXhr7f0dFRgi48tYgpa7nwyTt/gMjIybspcbKzlhotmgIu/DhfjeR59ufvv6Sd15JaTBZ2c6A6xdwl+FK7mJusAzqolbbGm15GxVK5/M7SATC9YB+APnEnIg6gqLt9+zYVLpw6QLhs2TJpz8z1td6Fz/E5W1G9bsuBAwckG1H5WYC3xet06tRJtQ7f5+50YBy4S9G0LhWoXYV8NHarDz0Je0N9l12gHtUK0ri2peV5cxEeHUfzj92lFWceUGx8ojzWulweuehdzCO7vncPTC3Y0q9fP/nK8+p5IOeihpD5EhIV9MWmq3JVzdPNgX7rXhEneQBgFDhAr1788F143Zs3b0q7UOX7DQdc+GSd0+GVRRi56CN3KTJ1CYmJUgyXa7SkxI8nKhT058dV6My9EDp9N4SuPQmnh6HR9DD0EW24kNRqtUxeZ6pb3I3qFHenGp6u5GiL925tf4e/336dfAPDKaeDNS3sUxWFI8GgcTCEAyA8jYizCy9cuCDd4nhRx8VoN2/eLG2hNfnkk0+kuK6yi9AXX3xBDRo0kLGXgyc7duyQTnKnTp1SfQ9nJHJB9WrVqklwhl+T2z4j89341PNyp/2jGtCv+/1p5ZkH0nHn2O1gmvJReWpWJrfJB9hXnXkgxelfxyRd7KhRxFU6DFVBtybQktZnXVxEi0+G+eoj48GWCyFyyiK38Uxvfj5o7/dDt+nE7RdkZ20hXQ+47ScAgC7xNNC7d+8mK0zLbZu5DpeylTOfMD99mpQ9obxqyoEQXrggI6ehcyFbbtscGBgoJ+T29vbUpk0b1XabNm0qVzyHDx8u97mzXfv27eU1OFuFOxjxBwBlcJ+zB0aNGiUfGjhbhhe+zd3wPv74Y5P/JbC3sZKuQ8oaLZq6EXH2Ci9ftSgp047OB7yk0/dC6MzdUOmYcyPotSxLTt4na8tsVLlgTpluxFNRuaOdtSVaFqdn7flHtEVVK60KpmmBwatevbpkFHI9FO4gykFrzk7naZ7qNm7cKMHEtDIPecy3sPhvfOAADn/P999/Tz/88INM+eRxn2tvqbeH5ppb/Lo8nbRcuXK0Z88ejVk1YPg4OD+xQ1kpostd2LiWy6DVl6hjpXw0oX1Zk8uc5AvcWy8/kSlDT8Nj5LGSuZ3o29YlpTMgMhrhfWRTaFldjwdxbuvWpUsXOcHmIAtXML948SK1bdtW1QLO1PEHAk6X54Jezs7OmfIaR249p09XXpLbs3tUpE6VC2TK6wCAeTt27Bg1btw41eMc9Fi5cqUsAwYMSPX8hAkTJMjOQZhBgwZJ28+wsDCZ4sNXQH/88UcqWbKkan2ebtq/f3/5Hsbdh06cOCFdLDhIw1OPfvrpp2T1BvgtiqeuLlq0SLbNJ/Z//vmnnMQb0nidmbjrEBfD5WAKTy2KT0wkB5t3Xyt5EfFWlfVy+m6oZEiqc7SxlKt1HHjhqUel8jihi4Ia74cvqeficxSXoJArmkMxhRcgUxn7WG3q2R4chFhyMkDqlrg52tDkjuWoTfk8Rh+E4POMo/7BNH2vv1ykYHld7KQFducqBaRGC0CWBVt4ELx8+bJEtPnK5ZEjR6STBBdB5BNnc6kkntlvCI9Co6ndHyclfY0L8fGABgAA2sMJfNLJ5KOX0RJ04eALB2HCouOSHSc+eeYsGQ6+1C3mToXczLfYbvDrGGr7xykJWLUtn5fmfVzZ6D9QABg6jNWG79rjV/TNlmt0+3mk3G9ZNjf99FE5yuX07m5WhujyozCatveWqtU116T5vHEx+qS2J6aMgv5aP3NbOcZzNZUp4gULFpSrk9rgK5qcQp4vXz45idm+fXuy5/kKqLIDknLhK5/quKUdB344XZ2vjPI80lu3bmWoRSmnVnKXDC7oxRXZDaoY31pvCbRULpSDvm+bvKo8AACANvj9s7CbI31csxD92bsKeX/fnHaPrEfj25SmhiU8pIVlaFQs7fIJou+2+lKDX49SvelH6NstPlJ8NyQy47V3jB0XQvzfussSaCmROzvN6FoBgRYAACKqWDAH/TOiHo1s6kVWFtlov99zaj7rBP3t/UQ+IxqLey8i6X9rvanz/DMSaLGxsqAhDYvSiW8a0+AGxRBoAf3VbOGiVzyvvlmzZlKkcMGCBao5/tp2h4iKipIK6JyeztOSNGnVqpXUhFFKWROGAyU8D1VZV4DT07luAO8Pt6DThOeYch0ADrhwsV9OT+cWpDdu3JDtGEIxPp5jz1cZ5/euIgMAAACArlhYZKOy+Vxk+axBUQkwXH386t8pRyFym7tQcFFEXhhPM5JOR15uVKOIG2U30WK7P+26Qd4Pw8jJzooW9a2GosIAAGpsrSxlik2rsnkky8Xv6Wv6avM1+sfnqXRry5fD3qCzFuccvkObLj6WGi08Q6hLlQI0unkJg95vMKNpRD4+PhLc4MJZXHWc5+yzESNGSFGs9evXv9+OZMsmBb0++uijZJktr169SpXx8q794wAOF3vkjBdNeM5/lSpVVIEiVrp0aXltZdV1faU6rj//iMZt85U//rUDa0oHCQAAeH9ITdde5Nt4unj/ZVLw5V4o3Qx6nex5vqLJVzjrFkvqdMRZmHwCbuw2X3pM32zxkdvL+lWjpqVNu+sGgCHBWG184hISafGJAPr90B2KTUiUIPy4NqWpV42CBpURyDXPeD+XnrxPb+IS5LFmpXPRNy1LUck8TvrePTBhWl+WqlChAvn6+qZ6/Ndff00zk+RDCzfmypWLcuTIQQ0bNqQpU6bI/bQyZTgLhqcH8bQmTbhtKBdx5CK/6jgb5syZM+m2JFVvYcpvCJkxD3LiTj+5zX/8CLQAAIA+8Alz41K5ZGE8jejsvdB/C+6GSv0Xzv7gZe6RuzINqToX2/235gu3nObsGWPi+yScxm+/LrdHNfNCoAUA4B24o93njYtL7ZYxW3zo8qNXctH4n2tPaXqXCnqv/fU2PkEuZP9x5C69jIqVx/jiwNhWpahmUTe97huYB53lAHPtE13jqT3dunWTlnE8LYhbzTVp0kSCJba2tqr1eDrQmDFjJNhSqlQpOnjwYJotqLmuTEJCQqopT3z/2bNnae4LZ7xwR4zMwgPAsHWXJSrcokxuGtqwaKa9FgAAgDbcs9tS+4r5ZGGPpdhuUtbL2XshFBIZSyduv5CF5XCwpjqc9VLMXYIvnm4OBnWVM6XQyLdSK42nUzUtlYtGNvHS9y4BABiN4rmcaPPQOrTyzAP6df8tOhsQSi3nnKBvWpakfnU8s7yjT2KiQqY1zTzgT49fJnXiK+ruSGNalaSWZY2/gxKY8DQiDlTMnj2b/vrrL5lKxJki6rhuiq6mEaUUFBQkgZeNGzdKu2klnsoTHBwsz8+cOZMCAwOlO5KmABC3KM2fP79ksdSuXVv1OGfMrFmzJs3iupoyWzh7RhfTiHjOYP8VF+jknRAq4u5IO4bXJWc76w/aJgAAJEFqeubi0whul3nqDnc5CqXzAaEUFZuUpq2Uz8UuqcsRt5ku7mZQnSviExLpk+UXZN/5PXj753WlIwUAZC2M1abhYWgUffu3D50LSPpMWLVwTslyKZ4re5a8/sk7L6TDENeSYR5OtjS6WQnqXq0AWVmiDiYYeGYLZ3csXbpU6rVwpsn48ePpwYMHUlflxx9/pMyUN29eCbbcuXMn2eNcO4UXLy8v6VaUM2dOCdz06tUr1Tbc3d1lulPKLBYO1qRX4JczadSzaXTp90O3JdBiZ21BC/pUQaAFAACMBl8sKZXHWZZB9YvKHH6fJ6/o1J1QOn0vhK48CqOn4TG02fuJLMwrV3ZV8KVmUVe9vu/N2O8vgRYHG0ta1LcqAi0AAB+AO9+tH1SLNlx8RL/suSXTTdvMPSnTMwfXL5ppAY/rgeE0fd8t+UylnA7LMwU+rVeEHGxMs6A7GD6tf/PWrVtHS5YsobZt20rghQMaXIiWa7mcO3eORo4cmXlpvqGh9PjxYwm6vOsqm3oWijqeXsQdjHiqUadOnVSP831uG53VDt98LvPd2bTOFeRkFQAAwJjn8Fct7CrLF828KDo2ni4+CFN1OuJue3eCI2XhlHNOLy+f34Xq/Zv1UqVQzixru7nL56kUTWS/dq1IJXKjUCIAwIfiml29axamRiVz0bitvnT89guasc+f9vo+oxldK1DpvLr7vPMoNFqmC+289lTuW1tmoz61CtPwxsXJLXvmXCgHyLRgC2eElC9fXm5nz55dptGwdu3aSaaLNiIjI6VrkBLXZbl69Sq5urrKwm2cuSU0B1c4e2bcuHGSmaIMkgQEBEgbZy5u6+HhIdOHpk+fTvb29tSmTRvVdps2bSrfM3z4cLnPWTl9+/aVNtY8lWjx4sUyJWro0KGUlXhwGL3pqtzuV7swfVQ5f5a+PgAAQGbjK4oNS3jIwsKiYmU+vzL48iA0WlpN8zLv6F2ytbKg6p6uEnjhAAy3p86M+f7+zyKkoCMb0rAota2Q/oUcAADQTv4c9rRyQHX6+3IgTf7Hj3wDw6n9H6ekqC4vNlYWH1Rriwvfrjv/kOISkqpifFQpH33VoiQVdNVvYV6A9w62FChQQGqjFCpUiIoXL04HDhyQNsoXL17UeprNpUuXqHHjxqr7HARh/fr1k7bM3PVo9erV0v6ZAy68LgdXnJySrjxxTZaTJ0/SnDlzKCwsTKYBNWjQQOqxqHcsunfvnhTGVerRo4dkyUyePFn+L+XKlaM9e/bIFKWsEhOXIMX4XsfEU5VCOWh82zJZ9toAAAD6ktPRhtqUzysLC3z1RoIuZ/4tuPsi4i2duhsiywzyJ2c7K6r9b5cjXrjI4YcWNwx/E0dD1lyi6NgEqlvcjb5pUVJH/zsAAFDH43XXqgWogZc7fb/9Oh248Zx+P3yH9l1PynKpWDCHVgeMsyWXnbxPi04EUOTbeHmsvpc7fduqFJXL74KDD8ZdIJdbJnNBWM4y2bJli0wj8vT0lMyQ0aNH07Rp08gcfEgRLz7kX2/2ob8vPyE3RxvaNbIe5XWxz7R9BQAwZyi6aDz4/ZGnFyVlvSQV243492RaKY+znWS91P2301EeFzutu1QMXHWRjvq/kKuu/4yoR66OmjsYAkDWwVhtHmP8bt8g+nGHn3Ri5aTFzxoUlQK275o+yvXANl18LIEaDsqzcvmdaWyr0lTPyz2L/gcAmRxsSYnrtHAmCWe5dOjQgcyFtm8Ib2LjydLCgiJi4qRgE89d/HW/P03qUJbqFMcAAQBgKOM1kEF1CvIJDE/KerkbKoUWYxMSk61TzMMxqctRMXeqXdSNXBys030PdrS1khbVsw/dljotuBIKYBgwVpsPngI06Z8bqjornLE4vWsFmUKqPl472VlTfGIiXXoQRhN3+lFASJSsX8jVgb5uWZLalc8r9WEATDbYYq60eUN4G5dA84/doxVn7tPrN/HkbG9F/Wp70uAGRWUQAQAAwxivwbC9iU2gSw9fSuDlzL0Qmf+vfhbD59wcPJEpR8XcqbpnTnlc03vwkIbF5OIHABgGjNXm5+CN5zR+my8FR7yV1tBb/1eHlp26n2q87l/Hk7ovOkdh0bE0sklx+rhm4Q+q9wJgUMGWnTt3ZniD5pLdktE3BI7OLjweIClvKX3R1EuK8qEdGQBA5sEJvOl6FR1L56TYblKb6YAXSVc9lZb2q0bXHr+SIoop4T0YwLBgrDZPXENryu4b1LxMbvJ5Eq5xvB7RpLjU+SqQ0x4XqsH0gi0WFhYZLoCUkJBA5iCjbwix8YlUbcpBic6mxNHaS+ObIzILAJCJcAJvPoLC39AZDrzcDSG/oHDaNqwu1frlMN6DAYwAxmrz9jY+gapPOYTxGkxKhvJnExOTz4+GjOP5hpoCLYwf5+fRAx4AAODDcbH5LlULyMLXkkIiY/EeDABgBCJj4jFeg8nBZLdMxjVZOINFE34cNVsAAAB0j7NtXezxHgwAYAzwmQnMOtjSpk0bmTKjNGXKFHr16pXqfmhoKJUpU0b3e2jkEhITaUCdIhqf48e5wjYAAADgPRgAwFzhMxOYdbBl//799PZtUk9zNn36dHr58qXqfnx8PPn7++t+D42cvY0VDWtUTArxKTNc+Cvf58dRHBcAAADvwQAA5gyfmcCsWz9zkdxnz55Rrly55L6TkxNdu3aNihYtKvefP39O+fLlQ4HcNETHxpNVip7xCLQAAGQ+FF0EvAeDOQkMDKRvv/2W9u7dS2/evKESJUrQsmXLqGrVqqp1bt68KescP35cajOWLVuW/vrrLypUqJDGbTZq1EjW1ZT5vnv3brk9ceJEmjRpUrLnc+fOLZ8fMgJjNTCM12BKULMli3BghfvBczFc/opACwAYihMnTlD79u0lYM51LrZv357s+a1bt1LLli3J3d1dnr969WqqbQwZMoSKFStG9vb25OHhQR07dqRbt26l+7q//PILVa9eXYL3HMj/6KOPUmVI9u/fX15TfalVq5aO/udgLvAeDOYiLCyM6tatS9bW1hJsuXHjBv3222+UI0cO1Tr37t2jevXqUalSpejYsWNy8fSHH34gOzu7NLfL7wNBQUGq5fr162RpaUndunVLth4HbdTX8/X1zdT/L5gejNdgdt2ImPIkN+VjAABg3KKioqhixYo0YMAA6tKli8bn+eSdT6o/++wzjdvgK6a9e/eWq6I8xZSvcLZo0YLu378vJ+Sa8FXSzz//XAIuPBV1/Pjx8j384cDR0VG1XqtWrWjFihWq+zY2Njr5fwMAmBqe5l+wYMFkY6anp2eydXis5YyUGTNmqB5TZqqnxdXVNdn9jRs3koODQ6pgi5WVFeXJkydD+8rlCdRLFHBmCwCAWQZbeLYRX2G0tbWV+zExMTR06FDVCbH6YAkAAMajdevWsqSlb9++8vXBgwdprjN48OBkJ/Y///yzBHD4ezjjRZN9+/Ylu88fDjjDxdvbmxo0aKB6nN93MnryDgBgznbu3CmZiBwE4YB2/vz5adiwYapAOU8Z4mk/Y8aMkfWuXLlCRYoUoe+++06yCzOKpyX17NkzWWCc3blzR7IkedyuWbMmTZ06Nc1ADmc3ppx2BABglsGWfv36Jbvfp0+fVOt88sknZC6UpW4QhQcAfeCpN4aaXciZMBw44RN4vsKaUcqOdymvoHKaOwdhOA2+YcOG0g1PWT8sI1dLldvFeA0Apj5WBwQE0IIFC+jLL7+kcePG0YULF2jkyJES/ODz9ODgYIqMjKRp06ZJUJwzYTjw3blzZzp69KiMse/C2+RpRBxwUcfBldWrV0uNGK7lyNuvU6cO+fn5kZubW6rtcICH91N9rObsSIzVAGAy4zUXyAXtPX78mKMtWHAM8DuA3wG9/A6Eh4dnytDN2962bZvG5+7fvy/PX7lyRePzf/75p8LR0VHWKVWqlOLu3bsZft3ExERF+/btFfXq1Uv2+MaNGxW7du1S+Pr6Knbu3KmoWLGiomzZsoqYmJg0tzVhwgT8XeLvEr8D+B0w6bE6LdbW1oratWsne2zEiBGKWrVqye3AwEDZr169eiVbh8ffnj17Zug1Bg8erChXrtw714uMjFTkzp1b8dtvv2Vouzi31v/vKxYcA3P+HQjPhPE6w5ktkBynSD5+/FgiYBEREXL1lu87OzvjUGUBvuqBY561cMwN65jz2GNouGZL8+bNpSjizJkzqXv37nT69Ol0iy4qDR8+nHx8fOjUqVPJHu/Ro4fqdrly5ahatWpUuHBhSYPnK7GapLxaymnzXEeGr6xivM56GDtwvE2dIY3VefPmpTJlyiR7rHTp0vT333/LbS50znVVNK2TcvzVJDo6Wuq1TJ48+Z3r8hSj8uXLy9SijMC5tX5hrMYxNwevs3i8RrDlPXEr7AIFCshtZboR/8AQbMlaOOZZD8ccxzwtLi4usnh5eUnHoJw5c9K2bduoV69e6R60ESNGSJ0B7oqkHFfT+yDBwZb0Tt45XV5ZX0xJ2YkD47X+YOzA8TZ1hvA7zsXMU3Z1u337toybygLjXJQ8vXXSw+2heZqmpnICKfF63GK6fv36Gdp3nFsbBkP4PTY3OOame8wRbAEAgEzBs5LSK57Oz3OghQMyXJeFa7y8S2hoqFyN4KALAAAkN3r0aKmTwoVpObuQ66ssXrxYFqVvvvlGsga5EHnjxo2lZss///wj47AS13fh4rpcxFYd12nhQrqaarB8/fXX1L59e6m7wrVhuGYLX0VOWfcRAMBcINgCAGDmuFji3bt3Vfe5XfPVq1elUK2ylfOjR4/o6dOn8rzyiih3COKFCzJu2rRJ2jZ7eHhQYGCgFF20t7eX9qJKTZs2pU6dOsmUIcZtn9evX087duyQ1M1nz57J45wdw9/L+8UtpLkdNQdXuLMRF3zkNHjeDgAAJMdZKxzA5umUPNWHg9hz5syRaZ5KPH4uXLhQAilcPLdkyZIyzahevXqqdXjM50yTlNkvPNXowIEDGg/7kydPJJMxJCRE3gs4w/HcuXMZypgBADBFCLboAKerT5gwIVXaOmQeHPOsh2Nuusf80qVLcnVTSVnvhK9Grly5Uqb4DBgwQPU8t/tkvG8cDOGaLCdPnpQT+rCwMMqdO7dcMT1z5kyyrkH37t2Tk3Al7pjBGjVqlGx/uJNR//79ydLSknx9faW7xatXryTgwvvJgZ33nVeL3+Osh2OO423qDO13vF27drKk59NPP5UlLepZLkrcZUjZjVMTruViqsfUHOCY45ibA9ssHluycZXcLHklAAAAAAAAAAAzkDw/EAAAAAAAAAAAPgiCLQAAAAAAAAAAOoRgCwAAAAAAAACADiHYAgAAAAAAAACgQwi2AAAAAAAAAADoEIItAAAAAAAAAAA6hGALAAAAAAAAAIAOIdgCAAAAAAAAAKBDCLYAAAAAAAAAAOgQgi0AAAAAAAAAADqEYAsAAAAAAAAAAIItAAAAAAAAAACGCZktAAAAAAAAAAA6hGALAAAAAAAAAIAOIdgCAAAAAAAAAKBDCLYAAAAAAAAAAOgQgi0AAAAAAAAAADqEYAsAAAAAAAAAgA4h2AIAH+TBgweULVs2HEUAAAOGsRoAwDhgvDYdCLZAhvTv318+UA8dOjTVc8OGDZPneJ2U6/NibW1NuXPnpubNm9Py5cspMTEx3deKioqib7/9looWLUp2dnbk4eFBjRo1ol27dqnW8fT0pDlz5pjMYJpy2bdvX7L1jh8/TlWrVpXjwcdl4cKFqbb1999/U5kyZcjW1la+btu2LdU68+fPpyJFish2eHsnT55M9rxCoaCJEydSvnz5yN7eXo67n5+fTv6vr1+/pvHjx1OpUqXk9fPkyUPNmjWjrVu3yusyvt2yZUtyd3eX43D16tVU21m8eLHsl7Ozs6zz6tUrnewfgCnAWJ05MFZrN1a/fPmSRowYQSVLliQHBwcqVKgQjRw5ksLDwzPpJwRgfDBeZw6M18nHa3VDhgyRMTutz1D8Pa1bt5Z1tm/fnkk/IfOCYAtkWMGCBWnjxo305s0b1WMxMTG0YcMGOZFKqVWrVhQUFCSD3t69e6lx48b0xRdfULt27Sg+Pj7N1+GADv+Bz5s3j27duiWBhy5dulBoaKjJ/rQOHTokx0q5NGnSRPXc/fv3qU2bNlS/fn26cuUKjRs3Tk5aObiidPbsWerRowf17duXrl27Jl+7d+9O58+fV62zadMmGjVqlAQ8eDu8PR5QHz16pFpnxowZNGvWLDn2Fy9elIAIB8kiIiI+6P/HAZE6derQ6tWr6bvvvqPLly/TiRMnZJ/HjBmjOgHnQFvdunVp2rRpaW4rOjpafrf4OABAahirMw/G6oyN1U+fPpVl5syZ5OvrSytXrpT38oEDB+JPFgDjdZbAeJ08uM2frfhzAV9QTQsHYZCtrmMKgAzo16+fomPHjory5csr1q5dq3p83bp18hg/x+ukXD+lw4cPc5hVsWTJkjRfy8XFRbFy5co0n2/YsKFsQ31ROn36tKJ+/foKOzs7RYECBRQjRoxQREZGqp4vXLiwYvLkyYpevXopHB0dFXnz5lXMnTs32fYnTJigKFiwoMLGxkae521klvv378v+X7lyJc11xowZoyhVqlSyx4YMGaKoVauW6n737t0VrVq1SrZOy5YtFT179lTdr1GjhmLo0KHJ1uHtjh07Vm4nJiYq8uTJo5g2bZrq+ZiYGPl5LFy48J3/h/T873//k+MdGBiY6rmIiAhFXFyc1sfl6NGjsk5YWFi6rw1gTjBWZw6M1e8/Viv99ddf8r6achsA5grjdebAeJ16vH7y5Ikif/78iuvXr8tnodmzZ6c6blevXpXPTkFBQTKub9u2LZN+QuYFmS2glQEDBtCKFStU93la0Keffprh7+eMjYoVK0p6W1o4m2LPnj1pZlPw9xYoUIAmT56sygRhfPWM05o7d+5MPj4+kslx6tQpGj58eLLv//XXX6lChQqSXcFZFqNHj6aDBw/Kc1u2bKHZs2fTokWL6M6dOxIFLl++fJr7ytNwsmfPnu4yderUdx6XDh06UK5cueRKIe+DOs5aadGiRbLH+P956dIliouLS3edM2fOyO3Y2Fjy9vZOtQ7fV67DGTTPnj1Ltg5PSWrYsKFqnffB08Y4I6p3794ao+l8jKysrN57+wCQGsbq5DBW63+s5gxGnv6J8R4A4zXOrbPu3JrX5Yz3b775hsqWLZtm1nivXr0ks50/h4Hu4BMOaIX/WDlAoZwPefr0afljP3bsWIa3wTU7OBiSFq7JwYOHm5ubBGbq1atHXbt2lUAEc3V1JUtLS3Jycko2IHAQ5eOPP5apMszLy4vmzp0rwYIFCxZInRDG2xk7dqzcLlGihPwfOMDC02V4So2ylgjXmuHpUTVq1EhzX6tVq6axrog63t+08GDI03Z4nywsLGjnzp0ytWbVqlXUp08fWYcDIFzzRh3f56lYISEhlDdv3jTX4ccZr5eQkJDuOsqvmtZ5+PAhvS9+7bCwMPm5A0DWwFidHMZq/Y7VPA34p59+knoBAJAcxuvkMF7rdryePn26BF64BEFa+MIzT/fv2LEj/jx1DMEW0AoXw2vbtq0EA7iIEt/mx7TB35fefMAGDRpQQEAAnTt3TgIhR44cod9//50mTZpEP/zwQ5rfx5kbd+/epXXr1iV7LY7octZG6dKl5bHatWsn+z6+rywU1a1bN7nNRWi5LgjXSmnfvn2aV+K4iGzx4sXpffGx4wFO/Q2GB0+unaIMtrCUx0tZ9Er9cU3rpHxMV+toQ9O+AkDmwlidHMZq/Y3VXBydzxW4cPuECRN0um0AU4DxOjmM17obr/mzEX+G4mz+tNblC738WYvrOYLuYRoRaI2nDXGxOw64aDOFSOnmzZvSESc9nFXCBVw5A+XAgQMyZYivivF0mLRwUIWvmnGmiXLhYrE8HahYsWLpvp5yAOLCkv7+/vTnn3/KYM+dljj4o5yuk1mp6epq1aol+6zEmTbKrBOl4OBgCQBx9k966yizVPiNnLOB0ltHmSWU3jrvg7tJ5cyZU37uAJB1MFb/B2O1fsZqng7MFy74vZA75PF7OwCkhvH6PxivdTde87Hk83jO1OfPDbxwtvpXX30lnV0ZB1ru3btHOXLkUK3DuDkJd/+ED4PMFtAanzgpgx5cF0Qb/AfNtVXUszkygq+I8bQZ7n5kY2MjC0+LUVelShVpU/yuTBPOmEl5Xz0Nj4MsXEOFl88//1ye433m7es61VETjizz1CD1zJt//vkn2TocgOLXVp648jpcd0b9uPI6nBLI+Hhxq2dep1OnTqp1+L4yZZADYBxw4ccqV64sj/HPmdtOcwri++LpUTw1as2aNXJVM+XcUu5qwbVhMI8fQLcwVv8HY3XWj9Wc0cLnCPw9fOVUOZUXADBe49w6a86teYoal0ZQx+MyP8613Rhf2B40aFCydbimDpdY4Ox++ED6rtALxiFld6Hw8HBZlDR1I+LuOFzRmitge3t7K6ZMmaLInj27ol27dor4+Ph0uw1x95tLly5JRfHdu3crSpYsqWjSpIlqnebNmys6dOgg237x4oU8du3aNYW9vb1i2LBh0hnh9u3bih07diiGDx+u+j6uwO3s7KyYPn26wt/fXzFv3jyFpaWlYt++ffL8ihUrFEuXLlX4+voq7t27pxg/frxsMyQkRJEZuOsSd3S6ceOG4tatW4pff/1VYW1trZg1a5ZqnYCAAIWDg4Ni9OjRst6yZctknS1btiTrwsT/D+4kdPPmTflqZWWlOHfunGqdjRs3yvfx9/N2Ro0aJR2CHjx4oFqHv4+7D23dulWOAXdt4o5Mr1+//qBuRC9fvpTOR1zlfNWqVQo/Pz/5+fC+FC9eXNVRKDQ0VH52/DPnbfI+833+PVLi2/wYd7TidU6cOCH3+XsBzB3GaozVhjBW83tGzZo1pVvh3bt35XHlkt77P4A5wXiN8TorxuuU0upGpA7diHQHwRbIkLRaOacXbFG2ZeYP/R4eHopmzZopli9frkhISEj3taZOnaqoXbu2wtXVVVo4Fy1aVDFy5MhkAY+zZ88qKlSooLC1tU02GF24cEECMRzU4UACr8NBHvUBZtKkSdIqmQMYuXPnVsyZM0f1PLc54xNEDsjw93N75UOHDmXabwkHW0qXLi374uTkpKhatapizZo1qdY7duyYonLlytI209PTU7FgwYJU62zevFmCUhxQ4cH377//TrXOn3/+KceAt1OlShXF8ePHkz3P7Z+59TW3gOZj26BBAwm6pCcjbwjs1atX0mbay8tLXp+PPf9O8DHn11UGu1K29eaF90mJb2tah78XwNxhrM4cGKu1G6uPHj2q8Xle+D0DADBeZxaM18nH65QQbMla2fifD82OATAWPD+RuxUpOxbBh+POVDwFCUMJAOgKxmrdw1gNAJkB47XuYbw2HSiQCwAAAAAAAACgQwi2AAAAAAAAAADoELoRgdml5YFucas4roQOAKArGKt1D2M1AGQGjNe6h/HadKBmCwAAAAAAAACADmEaEQAAAAAAAACADiHY8p6488rr16/RgQUAwMBhvAYAMHwYqwHA1CDY8p4iIiLIxcVFvgIAgOHCeA0AYPgwVgOAqUGwBQAAAAAAAABAhxBsAQAAAAAAAAAwlGDL27dvdbcnAAAAAAAAAADmFmzZv38/9e/fn4oVK0bW1tbk4OBATk5O1LBhQ5oyZQo9ffo08/YUAAAAAAAAAMBUgi3bt2+nkiVLUr9+/cjCwoK++eYb2rp1qwRfli1bJsGWQ4cOUdGiRf/f3n2AVVW/cQD/yh4yRNyo4N649x6ppbnSNHPPzNRs/LWhZsOmOzXNWTkyZ6mVe+HeE0VwIYogQ/b8P+8PLwECgl7u4H4/z3Pi7ns42LnnvucdGD16NB4+fJj3a05EZMSi4xIQl5CE4IhY9TMqLgGG7MCBA+jatStKliyJAgUKqM+FtOQzoWPHjnB1dVX3nz17NtuJE507d870dTJKSEjAJ598Ag8PD9ja2qrPmenTpyMpKQl5xdj+NkREpoj7aiIydBY5edBXX32F77//Hq+88ooKtmTUp08f9dPf3x9z5szBqlWr8N5772l/bYmI8oHY+EQs2u+L5V5+CI9OgKOtBYY09cCY1uVhbWkOQxQZGQlPT08MGTIEvXr1yvT+Zs2aoXfv3hgxYkS2rzV79mwVaMmJb775BosWLcLKlStRvXp1nDx5Uq2DTIMbP348tM0Y/zZERKaG+2oiyjfBluPHj+foxUqVKoVvv/32RdeJiChfn4mTL/Nzdl9PvU2+1Guuj2pVDnZWOdo165RkosiSlQEDBqifN2/ezPZ1zp07h5kzZ+LEiRMoUaLEM9/3yJEj6Natmwr2C3d3d6xZs0YFXbLrJ5a2p1h4eDjy89+GiMiUcF9NRMaC04iIiHTI3MxMZU1kRm63yCR7ML+IiopCv379MH/+fBQvXjxHz2nevDl2796Na9eupQZrDh06hJdffjnL58yYMUNlvmiW0qVL5+i9TPlvQ0RkLLivJiJj8Vyn6O7evYutW7fi9u3biIuLS3efnLEkIqLMhcfEq2yJTO+LTsDjmHgULmidLzffu+++i6ZNm6pMlZz63//+h7CwMFSpUgXm5uZITExUDdklaJOVyZMnY+LEiekyW3IScHlswn8bIiJjwX01EeXbYIucYXz11VdVs0Jvb2/UqFFDpY1Lw8O6devmzVoSEeWTA0R7KwvVBySzL/Vyu4ONJfIjCdDv2bMHZ86cydXz1q1bh19//RWrV69WPVuk8e6ECRNUo15p2p4Za2trteSWbHtT/NsQERkT7quJyFjkOidazhhK89uLFy/CxsYGGzZswJ07d9REImmMSERET7vzKAq9FnrhkM9DDGrinukmkkasCXk4ZUefJNBy48YNODs7w8LCQi1Cmu22bt06y+fJ9LtJkyahb9++qFmzpuoNIxkyUiqkbYlJSepvYGp/GyIiY8J9NRHl28yWK1euqOaE6skWFoiOjkbBggXVKE5JDX/rrbfyYj2JiIzW6dshGLnqJIIi4vDzQV8sH9IQZgUKmNTEGwmYDB8+PN1tEjyZNWuWGimdXZ+XjFPwpJwoL0Y/21pZqL+BMKW/DRGRMeG+mojybbDF3t4+dcqDpHHLmUpJ7RZBQUHaX0MiIiP21/l7eO/3c4hNSEK1Eo6Y3beOmmgjk23eblNBlRZJSrRkTRjyl/mIiAj4+PikXvfz81MlPS4uLihTpgwePXqk+njdu3dP3S9lpkIa4aZdMpLnSlmqRrt27dCjRw+MHTtWXZdAjPRokcfJZ42UIUlvsKFDh+bJ7yl/A83fJvBxDFzsrRARk2DQfxsiIlOT2b46MjaR+2oiMu5gS+PGjXH48GFUq1ZNjeKUkqILFy5g48aN6j4iIoLqY7Vg3w18909K0KF91aKY07cO7K1TdruaEcKahqtWBj4cTkYtt2nTJvW6pgGt9E1ZsWKF6skyZMiQ1Pul7EdMnToV06ZNy/H7SAA/beB+3rx5+PTTTzFmzBgEBgaqIP+oUaMwZcoU5BXN32bpQT9sOXcPA5uUxYT2lfLs/YiI6Pn31XN2Xcfuq4GY1KkK+jTI2fQ5IiJdKJAs3whywdfXV53hrFWrlkrvfv/999UYzgoVKqh08LJly8IUyHQLGSkqUzIcHR31vTpEZEDiEpIweeMFbDh9V10f2swDH79SFeZmBfS9aibpeffXv5+4gw83nEctNydsHds8T9eRiMjUPe+++sttl7HkoB8GNC6Lz7vXyNN1JCLKs8yWx48fq7OO8fHx6uyiq6srFixYkKs3JCLKz0Ii4zD611M45vdIBVemvVpdHQCS8WlTpaj6ef5uGB6Ex6CYo42+V4mIiDKo6easfp73D+O2ISKDkuO89fPnz6NKlSro1KkTunTpojJZdu3albdrR0RkRPyCItFzoZcKtBS0tsDSQfUZaDFiRRys4Vk65SB+z9VAfa8OERFlomYpJ/XzSkA44hM5NY6IjDDYIpMkpEHhwYMHVe2+jHrWNDAkIjJ1R32D0WPBYRVwKeVsiw1vNUXryimZEWS82j/Jbtl9hcEWIiJDVNbFDg42FqqE99qDx/peHSKi3AdbJMAijQqbNm2KunXrYtmyZbh+/brq30JEZMr+OHUXA5YeQ2hUPGqXdsbmt5uhcnEHfa8WaUG7qsXUz0M+DxETn8htSkRkYMzMCqBGyZTslossJSIiYwy2yHQIyWzRKFy4MOzs7PDw4cO8WjciIoOWlJSM7//xxvvrzyE+MRmv1CyBtSMbq/ITyh+qlnBASScbxMQnwevGf1OSiIjIcEgjc02PLSIiowu2FChQQDXIlU7hskin8Iy3yZIbBw4cQNeuXVWzXXmtzZs3p7t/8ODB6va0S8bx0q1bt37qMZqRo9mRxr4eHh6wsbFBvXr1VHkUEVFOSZbDO2vPYP5eH3X97TblMa9fHdhYmnMj5iPymdK2KkuJiIgMWY0nfVuY2UJERjmNSCZEV6pU6anb6tSpk3pZDkoTE3OeZh0ZGQlPT08MGTIEvXr1yvQx0pB3+fLlqdetrKyeesyIESMwffr01Ou2trbZvu+6deswYcIEFXBp1qwZfvrpJ3Tu3BmXL19Ol71DRJSZh49jMWLVSZy9EwpL8wL4qkdN9K5fmhsrH5cS/Xr0tmqSq/msIyIiw8tsuRLwWPVusbLI8flkIiL9B1v27t2r9TeXAIcs2bG2tkbx4sWzfYyUMz3rMWnNnDkTw4YNw/Dhw9X12bNn459//sHChQsxY8aMTJ8TGxurFo3cZvEQUf4gzfeGLD8B/9BoONla4qcB9dC4XGF9rxbloSblCsPW0hwBYTG4dC889QwqEREZhjIudnC0sUB4TIL6nOZ+moiMKtgi04f0Yd++fShatCicnZ3VOnz55Zfqelq//fYbfv31VxQrVkwFb6ZOnQoHh8ybU8bFxeHUqVNqulJaL730Ery8vLJcDwnCfPbZZ1r6rYjIGO2/9hBjfzuNx7EJcC9sh2WDG6BckYL6Xi3KY1Ia1ryiK3ZefqCyW3gQT0RkWCTjsKabEw77BOOCfxj300RkEJ47x+7SpUs4f/586iLXtU0CJxJI2bNnD3744QecOHECbdu2TZdh0r9/f6xZs0YFZT799FNs2LABPXv2zLbRr5Q6SWAmLbl+//79LJ83efJk1adGs9y5c0dLvyURGYNfj97C0BUnVKCloYcLNo1pxkCLCWmf2rflgb5XhYjohfj7++PNN99MHXZRu3ZtdSJSQyaNjh07Fm5ubqo0v2rVqir7+1nkGLxatWoqK11+btq0Sad/KU0gXIItRERGldkiDWQnTpyoAh5CGtVGRUWp+nVNRFlKcdq3b6+1lXv99ddTL9eoUQP169dH2bJlsW3bttSAivRrSfuYihUrqsedPn1ajajOSsaa+2fV4csHhyxEZFoSk5Lx1fYrWHrIT13vWbcUZvSsCWsLNsI1JW0qpwRbzt0NQ2B4DIo62uh7lYiIci0kJET1K2zTpg127NihssVv3LihMsg13n33XdU+QLLG3d3d8e+//2LMmDFqoEW3bt0yfd0jR46o4/bPP/8cPXr0UIGWPn364NChQ2jUqJFO/lK1SqX8Dhc4kYiIjC2zRZrJDhgwIN1tsiP28/ODr68vxo8fn6Oo94soUaKECrZcv349y8dIgMXS0jLLx7i6usLc3PypLJbAwMCnsl2IyLRFxiZg1C+nUgMt779UCT/09mSgxQRJcMXzSQPGvd6B+l4dIqLn8s0336B06dJq+ETDhg1VMKVdu3YoX758usDJoEGD1MRPuX/kyJFqoMXJkyezfF3pf9ihQweVCV6lShX1U15XbteVmk8yW67eD0dsQs4HdhAR6T3YIhktslNOS9ILJfghO2IJxMjOOS8FBwer8h0JumRFypni4+OzfIxMM5JRzzt37kx3u1xv2rSp1teZiIxTQFg0ei86gl1XHqipBjLWeWzbipxEY+JTicSuKwy2EJFx2rp1q8oA7927t8pqkamiS5YsSfeY5s2bq8dJuZFkfsvJ1WvXrqFjx45Zvq58B5D+h2nJ47PrhyhtAWTgRNrlRZR2sVWN6+MTk3HtfsQLvRYRkU6DLbLDTRvAWLlyZboJQC4uLioYkhtSE3r27Fm1CMmSkcu3b99W973//vtq533z5k3Vk6Vr164qM0XSE4WkPcrIZ4m0y2O2b9+uPjzkg0NSJDUksj5//vzU61IO9fPPP2PZsmW4cuWKSpeU9xw9enSu1p+I8qeL/mHo/uNhXA4IR2F7K6wZ0RhdPUvqe7VIz9pWSSklOnQ9CDHxPGtKZAqi4xLUKOHgiFj1MyouAcZMstElE13K7qX8X459x40bh1WrVqU+Zu7cuarnipxUlZOUnTp1UhnuEoTJimSM57YfogyfcHJySl0k4+aFm+SybwsRGWPPFpnuI8EQyWQRGZvQyn2Ojo65enMJkkjNaNogiJDURfkguHDhgtr5h4aGqkCPPHbdunWpk4bkA2D37t2YM2eOCs7ITvqVV15R04ikVEhDgjLSGFdDakolMCSBmoCAANXrRQI1mt+NiEzXv5fuY/zas4iOT0TFogXVxKHSLnb6Xi0yANVLOqKEk40aAX3ENzi1jwsR5U+x8YlYtN8Xy738EB6dAEdbCwxp6oExrcvD2tI4+3YlJSWpzJavvvpKXZcTlJIVLsfdAwcOTA22HD16VGW3yLHxgQMHVM8WORbPrjdjbvshSqmR5thfSGbLiwZcZCLRIZ8gXPAPlYHQL/RaREQ6C7ZIcysJfEj9ZmZWrFiR6wZY8lqaBruZkYh7dmSHvH///me+j2S9ZCQfGrIQEQnZF0lvli+3X4HsllpUdMWP/evC0caSG4gU+dIg2S2/HbutphIx2EKUvzNaJNAyZ/d/PQAl4KK5PqpVOdhZ5fgw2mBIwESyVtKSaUMySUhER0fjo48+Ug1u5QSmqFWrlso8//7777MMtki2e277IebF8AlmthCRUZYRSeRZSoc++OADtfPUkMvvvfee6lieNjpNRGQs4hOT8PHmi/hiW0qg5Y1GZVRGCwMtlFG7JyOg91wJzPZkAREZN3MzM5XRkhm53cIsx4fQBkXK7L29vdPdJv1YNNnd0vdQFrMMv59kjEtWTFaaNGnyVD9EmWKk636ImmCL9/3HbJJLRHqX45C8lPDMmzdP9TeZOXOmKhmSs3xhYWGwsLBQ3cbbtm2bt2tLRKRl4THxePu30zh4PQiS7fzxy1UxrLkHG+FSppqWd4WNpRnuhcXgSsBjVCuZu/JZIjIOj2PiVSZLZuR2ub9wQe1mZeiCHMdLAETKiGQ08/Hjx7F48WK1CDm+b9WqlTq5amtrq4IwkkUu2e1y/K8hJUelSpVSfVeETCVt2bKlmnYk46G3bNmCXbt2qdHPuuRWyBbOdpYIjYpXAZdabv+NtCYi0rVc5T9K2Y00qf3jjz9SRytLg63XXnvthWssiYh07c6jKAxdcQLXAyNga2mOuf3qoEM1joCnrNlYmqN5BVc1kUhKiRhsIcqfHGwsVY+WzAIucrvcb4waNGigSoSkX4r0LvTw8FAnTPv375/6mLVr16r75bZHjx6pgMuXX36ZbpCEDJZIm/0iARx53ieffIJPP/1UjZKWPou5bTHwojRNcuUEyvm7YQy2EJFeFUhmHvRzkSZe0jldMnty2xiYiPTv9O0QjFx1EkERcSjmaI2lgxqgxpP0Y3qaNEj87rvvcOrUKdVYXA7Wu3fvnnr/xo0b8dNPP6n7pQH5mTNnULt27Uw3pXzsvPzyy/j777+fep2spuH973//w44dO1Q/gUqVKmHp0qWoV6+eXvbXa47fxuSNF1C7tDM2v/3f5Dsiyj/Co+Ox5KAv5u3xeeq+8e0qGm3PFkOmrX31t39fxYJ9N9C3QWl83auWVteRiCg3clRwKuOXcyoyMlJ1NSciMlR/nruHvouPqkCLTJjZ8nZzBlpysG/39PTE/Pnzs7xfegF8/fXXz9z+chY1uwkVaYWEhKjXtbS0VMGWy5cv44cffoCzs7PeR0CfuxuKh49j9bYeRJQ3ouMS8enmixjc1B3vtK2gMlmE/JRAi0wjYqDFcNVySzlxIpktRET6lKOQvNRluru7Y8SIEepsZMGCBZ96jBwAS5Pc5cuX49tvv0X16tXzYn2JiJ6bZFTM3+ODH3ZeU9fbVy2GOX1rw96aZyefpXPnzmrJyoABA7Kc/pbWuXPnVN3/iRMn1FSMZ5H6fylTlc8WDfk8yk5sbKxa0p4t1aZijjYqTf2Cfxj2Xg1EnwYsoyXKTw3Tx/x2Cnu9H+JmcKTKenynbUXVo0VKhxKSkox27LOp0GSpXnvwGDHxiar8k4jIYDNbJJAiza6mTJmCQoUKqUBKhw4dVP+W5s2bw9XVVaVz37p1S3Ui1xx0ExEZitiERLy3/lxqoGV4cw/8NKAeAy06FBUVhX79+qnsGBkTmhNbt25F/fr10bt3bxQtWhR16tTBkiVLsn2ONGyUVHTNkhc9xTRTiXZffaD11yYi/UhKSsaHf5xXgRZphP1pl2pwdbCGlYWZaoYrP5nRYvhKOdvCxd4KCUnJuHr/sb5Xh4hMWI6CLZK+PXbsWFy9ehXHjh3DyJEjUaNGDdWFvHXr1qpOX2rqf/vtN3U7EZEhCYmMw4Clx7HxtD/MzQrgi+418EmXauoy6X4KhgTvc8rX1xcLFy5Uzdj/+ecf1aBx3LhxajJGVqSxo9T8a5Y7d+5A2yQrSkgTRjlzSkTGn/n4xbYr2HQm5XNiQf+6qO/uou/VoucgZaqa7BbJQCQi0pdc587XrVtXLURExsD3YYSaOHQzOAoO1hb4sX9dtKxURN+rZXIkQ2XPnj2qcW5uJCUlqcwWGVMqJLNF+oJJAEZKXDNjbW2tlrwkvX6ksfKD8Fgc9Q1G68opmS5EZJykoeqyw37q8ve9a6FtFU6mM2a1SjnhwLWHuHA3FEBZfa8OEZmoHGW2EBEZoyM3gtFjgZcKtEha8YYxTRlo0RMJtNy4cUM1trWwsFCL6NWrl8qQzIr0dalWrVq626pWrarGjur7zKnmy9ieq4F6XRciejGrj93Gd/94q8tSOtSjjhs3qZH7L7NFuz27iIhyg8EWIsqX1p+8g4HLjiEsOh51yqSM6K1UzEHfq2WyJk2ahPPnz+Ps2bOpi5g1a1a65rcZySQib++UL0Ea165dQ9my+j9T2V7Tt+VKoCpBICLjs+NCAD7ZfEFdfrtNeQxr7qHvVSItTiTSNMklItIHjuAgonzX4PCHnd74ce8Ndf2VWiXwQ29PTiN4QREREfDx8Um97ufnpwImLi4uKFOmDB49eqSyTe7du6fu1wRIpBFu2iUjea6Hx39fbtq1a4cePXqoPmFp+7xIGVGfPn1w/PhxLF68WC361rS8K6wtzOAfGq2aMFYt4ajvVSKiXPDyCcL4tWeRlAz0a1ga779UmdsvnyjhZIPC9lYIjozDlYBw1ClTSN+rREQmiJktRJRvyNmrd9acSQ20vNO2Aub1rcNAixacPHlS9UuRRUycOFFdlil1mp4scv2VV15R1/v27auuL1q0KFfvI6VGQUFBqdcbNGiATZs2Yc2aNaoB++eff47Zs2ejf//+0DdbK3M0r+CqLrOUiMi4nL8bihGrTiIuMQmdqhfHF91rqvJAyh/kb1nzSXbLRTbJJSI9KZD8ArnPMTExsLGxgSkKDw9XI0Vl0oWjI89mEunbw8ex6sD57J1QWJoXwIyetfBaPdbdU97ur6XXw0ebLqhStU1jmnFzExmBGw8j0HvRETyKjEOTcoWxfEgDBuXz4b76h3+9MW+PD3rXc8N3vT21so5ERHma2SKTIeTMoox9LliwoBrLKT799FMsXbo0ty9HRPTCvO8/RvcfD6tAi7OdJX4Z1oiBFtKJtlVS+rbIv72giFhudSIDdz8sBgOXHleBlhqlHLF4YD0GWvKpmhz/TETGFmz54osvsGLFCnz77bewsrJKvb1mzZr4+eeftb1+RETZ2n/tIXot9FJ9Mzxc7VV2QeNyhbnVSCeKO9moL2ySI7qXU4mIDFpoVBwGLD2mPi/KudpjxZCGcLCx1PdqUR7RlBFdD4xgk1wiMo5gy6pVq1RjQqmXNzc3T729Vq1auHr1qrbXj4goS78cvYWhK04gIjYBjTxcsGlMUxVwIdKldk9GQMtUIiIyTFFxCRiy4oT64l3M0RqrhjWEa0Frfa8W5aHijjbqb5yYlIzLARwBTURGEGzx9/dHhQoVMi0vio+P19Z6ERFlSQ6cpv95GZ9uvqgu96rrpkqHnO3+y7Yj0pV2T0ZAH7z+ELEJHDFKZGjiEpLw1q+nceZ2KJxsU0pN3QrZ6Xu1SBdNckul9H65cDeM25uIDD/YUr16dRw8ePCp29evX586pYKIKK9ExiZg5KqTWHbYT13/oGNlfN+7FqwsOFyN9KNGSScUdbBGZFwijvk+4p+ByIAkJSXj/fXnVMmpraU5lg1ugErFHPS9WqQjNd2c1c8LnEhERHpgkdsnTJ06FQMGDFAZLpLNsnHjRnh7e6vyor/++itv1pKICEBAWDSGrTip0oGtLczwQx9PdKlVktuG9MrMrIDKbllz/A52X3mAlpWK8C9CZABk4Ob0vy5j67l7sDArgIVv1kW9soX0vVqkjya5zGwhIj3I9angrl27Yt26ddi+fbtKz5syZQquXLmCP//8Ex06dMibtSQikycHSjJxSAItrgWtsHZkYwZayGC01fRtuRqovuARkf7J2N8VXjfVZQnOt66cUvJHpqNWapPcx4iOY5knERl4Zovo2LGjWoiIdOGfS/cxYe1ZRMcnolKxglg6qAFKu7DengxH8wquKtvqbkg0rj2IQOXiLFMg0ncD9Zk7r6nL07pWQ7fapfgHMUHFHG1QxMEaDx/H4nJAGOqVddH3KhGRCWGTAyIyWJIhsOSAL0b/ekoFWlpUdMUfbzVloIUMjq2VOZpVcFWXd115oO/VITJpf52/hylbLqrL49pWwOBmHvpeJdKjWiwlIiJjCbaYmZmpkc9ZLURE2hCfmISPNl3El9uvQKoy3mxcBssHN4CjjSU3MBmktlVSShT2XOUIaCJ9kalg7647qz43+jcqg3c7VOIfw8TVeBJsOc8muURk6MGWTZs2qaa4mkX6t0yaNAklSpTA4sWL82YticikhEXHY8jyE1hz/DYKFAA+7VINn3erAQtzJuOR4Y+APn07BMERsfpeHSKTc/ZOKEb9cgrxicl4pWYJTO9WQ/UXpPRkyMWbb76JwoULw87ODrVr18apU6dS75dtltny3XffZbspZ8+ejcqVK8PW1halS5fGu+++i5iYGIPp23KRwRYiMvSeLd26dXvqttdee02NhJbAy7Bhw7S1bkRkgu48isKQFSfgExgBOytzzO1bB+2rpTQfJTJkJZxsUb2kIy7dC8de74d4rZ6bvleJyGT4BD7GkOXHERWXqHoozXzdE+ZmDLRkFBISgmbNmqFNmzbYsWMHihYtihs3bsDZOWVEsggICEj3HHmcHN/36tUry+3/22+/qZOvy5YtQ9OmTXHt2jUMHjxY3Tdr1iwYwkQiOa6IikuAndVztawkIso1re1tGjVqhBEjRmjr5YjIBJ26FYKRq04iODIOxR1t8POg+qnpv0TGoF2VoirYsufqAwZbiHTkXmg0Bi49jpCoeHi6OWHRgHqwtmBpe2a++eYblXWyfPny1Nvc3d3TPaZ48eLprm/ZskUFZ8qVK5fl3+DIkSMqiPPGG2+kvma/fv1w/PjxLJ8TGxurFo3w8HDkhaKONijmaI0H4bG4fC8c9d3ZJJeIdEMrOfnR0dGYN28e3Nx4Fo+Ins/Wc/fQb8lRFWiR7IDNbzdjoIWMTruqKVlYB64FIS4hSd+rQ5TvhUTGYeCy47gXFoNyReyxfEhDFLRm5kJWtm7divr166N3794qq6VOnTpYsmRJlo9/8OABtm3b9szM9ebNm6tSJE1wxdfXF9u3b8crr7yS5XNmzJgBJyen1EWCQHmd3XL+blievQcRUUa5/jQqVKhQuvpXmRby+PFjVfP566+/5vbliMjEyT5k3h6f1BGd7asWw9x+tZnmS0ZJDug1Y0aP+QWjRcUi+l4lonwrMjYBg5+UnZZwssEvwxrBxd5K36tl0CQIsnDhQkycOBEfffSRCo6MGzcO1tbWGDhw4FOPX7lyJRwcHNCzZ89sX7dv3754+PChCrrI53pCQgLeeustVVqUlcmTJ6v1SJvZklcBl5qlnLHrSiD7thCRYQdbpO4ybbBFphMVKVJElRFJIIaIKKdiExIxecMFbDzjr66PaOGBSZ2rss6ejJaZWQG0rVwU607ewe4rgQy2EOURyRwb/espnLsTCmc7S/wyrCFKOdtyez9DUlKSymz56quv1HXJbLl06ZIKwGQWbJEeLP3794eNjU22r7tv3z58+eWXWLBggfpO4OPjg/Hjx6sBGp9++mmmz5EAjyy6UNPNUf3kRCIiMuhgi6bZFRHRi3gUGYfRv5zC8ZuPVHBlerfq6N+oLDcq5YupRCrYcvUBpnatxmkoRFqWmJSMib+fxcHrQaqR+vLBDVChqAO3cw5I8KNatWrpbqtatSo2bNjw1GMPHjwIb29vNQDjWSSgMmDAAAwfPlxdr1mzJiIjIzFy5Eh8/PHH6uSsPmn6v914GKEyouxZakZEhhJsOX/+fI5fsFatWi+yPkRkAuRgZ+iKE7gVHAUHawsseLMuMwAo32he0RVWFma48yga1wMjUKkYvwQSaYuUqEzbegl/nQ+ApXkBLHqzHuqUYWZ1TkkTWwmgpCWTg8qWffpkx9KlS1GvXj14eno+83WjoqKeCqiYm5urv5cs+lbUwUY13r8fHqOamDf0YJNcIsp7OQoz165dW6UZys/sFnlMbhw4cABdu3ZFyZIl1Zm/zZs3P5VFI7enXRo3bpzpa8mOvHPnzpm+TkbTpk176nUzdl4norxx5EYwei7wUoEWt0K22DimKQMtlK/IWNGm5Qury1JKRETaM3vXdfxy9Bakon1mn9poWYl9kXLj3XffxdGjR1UZkZT6rF69GosXL8bbb7+d7nHSP2X9+vWpmSoZScmR9FzRkON5KUVau3Yt/Pz8sHPnTpXt8uqrr6qgiyGo6ZaS3XLBn01yiciAgi2y05SGWvIzu0UekxuSXijR8vnz52f5mE6dOiEgICB1kc7mmZk9e3auUrWrV6+e7nUvXLiQq3Unotz7/eQdDFh6DGHR8ahTxllNHKrIs/5G4VnB8Y0bN6Jjx45wdXVV9589ezbL18pNcDzj5Ap5zoQJE2AsU4l2X3mg71UhyjdWet3EnN3X1eXpr1ZHV8+S+l4lo9OgQQNs2rQJa9asQY0aNfD555+rY2jpy5KWBE1kXy3jmzNz+/Ztdfys8cknn+C9995TP6VMSaYXyWfCTz/9BEOhmUh04W6ovleFiExEjsqIMkst1AY52JYlO9I461lZJ+fOncPMmTNx4sQJVYuaExYWFiafzRIdlwBzMzM8jomHg40lEpKSOAGG8kRSUjK+/9cbC/bdUNe71CqB73t7wsbSMM52Uc6D40OGDEGvXr0yvV/S02Wc6IgRI7J9rdwGx4Xs3+Xsq7GUqratUhTSEvL07RDVn4gTUohezJaz/pj25yV1eUL7ihjQxJ2b9Dl16dJFLdmRXiuyZNcQN+Nx9dSpU9ViqJjZQkQG3yBX4/LlyyqqHRcXl+52SRfUJtmZFy1aFM7OzmjVqpXqdC7X09aIStRdsmNyUwp0/fp1dYZWgjnSNV3SKcuVK5fl42NjY9WSNr3SmMXGJ2LRfl8s9/JDeHQCHG0tMKSpB8a0Lg9rfgEmLYqOS8R7689i+4X76vq4thUwoX0lNbWFjMezguPSGFHcvHlT68HxiIgIddZ1yZIl+OKLL575eEPYX8tUlKolHHElIBz7vAPRs66bzteBKL/Yf+0h3vv9HKT1x6AmZTG+XUV9rxIZIU1mi29QJCJiE1CQTXKJyNCCLVIq1KNHD1V2I2cmNU2vNGcpExMTtbZycmAvZ0kls0bKlKT2s23btjh16lTqqDipPW3atCm6deuW49eV4MqqVatQqVIlPHjwQB28y2vI6LvChVPq7DNLX//ss8+QXzJaJNCiScUVEnDRXB/VqhwzXEgrAh/HYMSqlNGc0sjw65610Ksev3SaqucNjksvgVdeeQXt27fPUbDFUPbX7asWVcEW6dvCYAvR85HsMJlcl5CUrMqGpnatzglf9FxcC1qjpJMN7oXF4JJ/GBqVy/yYn4hIW3I9h238+PHw8PBQQQo7OzsVoJBa/vr16z+VUviiXn/9dXWALTWl0itgx44dqmP6tm3b1P1bt27Fnj17VEp6boM4kgYvY+nk4F3zeitXrszyOdIELCwsLHW5c+cOjJWUDklGS2bkdgs9j+ej/OHq/XD0+NFLBVqc7Szx67BGDLSYuOcJjkvfgNOnT6sASk4Zyv5aSok0Z+XjEpL0sg5Exuz6g8dqcl10fCJaVHTFD709mRVJWhkBzSa5RGSQmS1HjhxRAY4iRYqoEW+yNG/eXB0Ijxs3DmfOnMmbNQVUyrlkuUgJkJD1uHHjhioxSksCKS1atMhx8Mfe3l4FXjSvmxnJpNFk0xg76dEimSyZkdvl/sIF88fvSvohZRNjV59RabrlXO2xbHADuLva889hwjTB8dx8RkiQRAL8//77L2xsbHL8PEPZX3u6OaszqUERsThx8xGaVXDV9yoRGY27IVEYsPQ4QqPiUbu0sxrxLCPViV5ELTcn/Hv5AYMtRKQTuf7UkjKhggULqssydeLevXvqsgRBvL29kZeCg4PVwbemzn/SpEk4f/68mnqhWcSsWbOwfPnyHL+u1PZfuXIlx/0DjJ00w5UeLZmR2+V+ouf1y5Gb6kykBFoal3NRo50ZaKG0wXFppCiLJjjeunXrTDeQlIwGBgaiXr16qc/Zv38/5s6dqy5rs2w1L0hforZVUsbS7uJUIqIcC46IxcClx3E/PAYVihbE8sENYM/+GqTNzJa7HP9MRAaY2SIlPRLgkGay0vvk22+/hZWVlZoSkV2D2ayaHvr4+KRel74sEjBxcXFRy7Rp09SBuARBpOniRx99pAI80jNGSM1/ZnX/ZcqUUaVOGu3atVPPGTt2rLr+/vvvq7IkeZwcyEsPAGmgOGjQIJiCxKQk1Qw3bc8WjUFN3FWfDbdCdnpZNzJeiUnJ+GLbZSw/nNIg9bV6bviqR02eiaTU4Pjw4cPTbQ3JKJTguOyPMyP7bukPlpZMQ6pSpQr+97//wdzc8KdZta1SDL+fvKv6tkzpUo29JoieQQL1Q1acUE1Mpb/GqqENUcjeituNtN4kVzONk4jIYIItn3zyiRrxKSRIIaPjpGRHGsuuW7cuV6918uRJtGnTJvX6xIkT1U8JeixcuFAdZEsj29DQUBVwkcfKezg4OOTqfeRsalBQUOr1u3fvqiaNcpuUQzVu3BhHjx7NsxHXhsbWygLDW3ggKTkZK4/cTJ1GJIGWwU3d0eeno2hXtSg+6FgZluZM2aWcHRyPW3MGe64GqusfdqqMt1qV5xfLfCS74LgErh89eqQm1GmyHTWZjpqg+PMEx2VfLwH+jGWf8nmT8XZDJX0mrMzNcPtRFG48jECForn7/CIyJbEJiRj1y0mcvxuGQnaWWDWsEUo62+p7tSgfkTJ5mRbnHxqNi/7haFKeTXKJyACCLbVr11ZnJWX8ZqFChdRtkskiI6DlIFtu00wkyilJHddMM8rMP//8g9zK7PUyjiKVhoum7pNNF/FKrRI48VF79UVZIvtxiYlYcfim+kIgi/QYmNevDrNcKFv3QqMxbOVJNXXF2sIMs16vjZdrmkZJninJLji+YsUK1ZNFsk40+vbtq35OnTpVZSk+b3Dc2EnpgxzMS5PcXVcCGWwhyiY78t11Z3HYJxh2VuZYMaShKiEiyovslpRgSxiDLUSUpwokZxftSGPUqFEqq0T6m8hZx2HDhqkzkKZKyo6cnJzUpAtHR0cYWy10/S93Qf7yRye3RXGn9GeN/r4YgA/+OI/HMQlwsrXEd6/VwkvVcz6mlUyH1DwPW3kCgY9jVSPQnwfVV40MiQyJvvfXq47cxJQtl9DQ3QW/j26i8/cnMnRyKPrx5otYfey2ygSTpurNK7KhtKnR1b76x70++O4fbzVKXE4qEhHllRzXiPz000+4f/++6s0iP1966SW4u7tj+vTpKnWcjIeUekigpXpJx6cCLaJTjRLYPq4FPN2cEBYdj5G/nML0Py9zdCml88+l++jz0xEVaKlczAGb327KQAtRNiOgT956hJDIOG4jogxm7rymAi2SID27b20GWkgnfVsks4WIKC/lqiGHjN4cMGCAmiohtftyeenSpaqcqGPHjvj999/zbk1JazRTMdpXLZblY0q72GH96KYY1jyll8Kyw37ovcgLdx5F8S9h4uQM5OIDNzD611OIjk9Eq0pF8MdbTVhuRpQFaThepbgDkpKBfddS+hoRUYrlh/0wb09KP6gvutdgGSrpLNjiFxSJ8Jh4bnEiyjPP3f1UGhp+/vnnqh+K9ECRen5pOkuGLSY+EQeupfRD6FAt62CLsLIww6ddqmHJwPqqnOjc3TC8PPegKjMi0xSfmISPNl3AV9uvquyoAY3LYumg+uzmT/QM0nRcyFQiIkqx+Yw/Pvvzsrr8XodK6N/INAYVkH7JdCu3QimZ3cxuIaK89EKjZvbu3auaIw4ePBiJiYkYMWKE9taM8sSRG8EqG6GEk40qI8oJCcpsG9ccdco4qz4uo389jWlbL6mpAWQ6pKRs8PLjWHP8jkr1ljG207tVhwUnVhE9U7snmYTSKFeClkSmbq93IN5ff05dlkmIY9tW0PcqkQlmt0jvOSIigwm2SH8W6dMipUPSIPfWrVtYsGABAgICsGjRorxZS9KanWlKiHIzPUrS4H8f1QQjW5ZT11d43cRrC4/gVnDKGHDK324HR6HngsOpUyKWDKiPoc09ONqZKIdquzmjsL2VClif8HvE7UYm7dStR3jr11NISEpG99olVfA+txMtiV5ETbcnwRb2bSEiQwi2rF69Gh06dFBBFmmW+/rrr+PatWvYv38/Bg4cCFvbpxutkmFJSkrGbk2w5RklRJmxNDfDRy9XxbLB9eFsZ6k+oLrMPYRt51lWlN8PirsvOIwbDyNVRtT60U2e698PkSkzMyuANk8a5e6+ylIiMl3e9x9jyPITiIlPQuvKRfBdb0/1/weRXjJbGGwhIkMItkipUMGCBbF582bcuXMHM2bMQIUKTPk0JhfvheFBeCzsrczRuJzLc79O2yrF1LSi+mUL4XFsAt5efRqfbr6o+sFQ/rLlrD/6LTmGR5FxqFHKEZvfbobqJVMOUIgod9qn9m15oBpNE5kaabI/cNkxhMckoG4ZZyzoX1edyCHSV7DlVnAUwqLYJJeI8kaOP+Hu3r2LTZs2oUuXLjAz4wejMdp5OSWrpVXlIrC2MH+h1yrpbIs1Ixvjrdbl1fVfjt5CzwVeqrM7GT/5Ijhn13WMX3tWjfx+qVoxVUZWzNFG36tGZLSaVywCK3Mz3AyOUpliRKYkKCIWA5YeUyd9KhUriGWDG8DOykLfq0UmytnOCqVdnjTJvce+LUSUN3IcNSlaNOWMHBl/sCW7kc+5IWej/tepClYMaQAXeytcDghHl7kHsfXcPa28PumHND6e+Ps5zNp1TV2XPj2L3qzHg2KiF1TQ2gKNnmQV7rmasj8mMgWPY1IarEugsZSzLVYNbaS+7BLpU61SzuonS4mIKK8wRcWEUnev3n8MKYtuU1m7gbPWlYuqsqKGHi6IjEvEuDVnMHnjBZYVGSEpF3rz52PYdMYf5mYF8FWPmqpPD+vpibRDE+zexRHQZCKkxHjkqlO46B+umkT/MqwhijsxS5L0rwYnEhFRHmOwxURoGuPWd3dBIXvtn02SA6fVwxvhnbYV1FjgNcdvo/uP0lQ1QuvvRXnDJzACPRYcxombIXCwscDKIQ3xRqMy3NxEWtT2SZPcU7dCEBoVx21L+VpiUjImrD2LI77BKrNrxZCGKFekoL5Xy+T5+/vjzTffROHChWFnZ4fatWvj1KlTqdtFJkNltnz33XfZbrvQ0FC8/fbbKFGiBGxsbFC1alVs377dYLd3LU4kIqI8xmCLidCcRe2gpRKizFiYm+G9lypj1dCG6uyVZNJ0nXcIm8/459l7knZ4+QSp0c7SKE5qmDeNaYrmFV25eYm0rLSLHSoXc1BfQvdfe8jtS/m699fHmy7g70v3Va+ixQPrpY7bJf0JCQlBs2bNYGlpiR07duDy5cv44Ycf4OycUlIjAgIC0i3Lli1TwZZevXpl+bpxcXFqaunNmzfxxx9/wNvbG0uWLEGpUqVgqGo8afh/+1EUg99ElCdy3ZlMRj+fOHFCRcMzRrPr1q0LX19fba4faUF4TDyO+gary7oY2duiYhHsGN8C49aewVHfR5iw7iyO3AjGtFerw9bqxRrzkvb9fuIOPtp0AQlJyWo6xOKB9eFa0JqbmiiPtKtaFN4PHqsgeLfahvtFhOhFfPePN9aeuKPKl+f2q42m5RnANwTffPMNSpcujeXLl6fe5u7unu4xxYsXT3d9y5YtaNOmjfoOkBUJyDx69AheXl4qkCPKli0LQ+ZkZ4myhe3UiSYpc+NJJiLSe2aLRKwTE58e8RsbG6vSEsnw7Pd+qL5IVyhaEB6u9jp5z6KONvhteGOMb1dRlRWtO3lHlRX5BD7WyfvTsyUlJePrHVfx4Ybz6t9HV8+SWD2iMQMtRDoItoh93oGIT0zi9qZ85+eDvliw74a6/GWPmuhUo4S+V4me2Lp1K+rXr4/evXur4Rd16tRRGShZefDgAbZt24Zhw4Y983WbNGmiyoiKFSuGGjVq4Kuvvsr0O0Pa7w7h4eHpFn31bTnvH6rz9yai/C/HmS2yE9X4559/4OT0Xyqo7Eh37979VGScDMOuK9qdQpRT0mD13Q6V0MjDBePWnlVncrvOO4zPu9fAa/XcdLoulF50nEwcOosdF++r6+PaVcS77SUwVoCbiiiP1S5dSE1wk4bUJ2+GoEn59JmiRMZsw6m7+GLbFXX5g46V0a8he38ZEslAX7hwISZOnIiPPvoIx48fx7hx42BtbY2BAwc+9fiVK1fCwcEBPXv2fObr7tmzB/3791d9Wq5fv64CLwkJCZgyZUqmz5kxYwY+++wz6FOtUk7Ydj4AF/05/pmItK9AshTV5oCZWUoSjHwZy/gUSReUQIvUfHbp0gWmQKLvEnAKCwuDo6MjDJWcNa33+U6ExyRgw1tNUK9sythRXQt8HIN3153FYZ+UcqZedd3weffqHCesj79FeAxGrDqJc3fDVB39N6/VRI86DH5R/mWI++v3fj+HDafvYnhzD3zSpZq+V4dIa834R/5ySvUkGib/tl+pyiC+gbGyslKZLVLuoyHBFmkRcOTIkaceX6VKFdWLZd68edm+bqVKlRATEwM/Pz+Ym6eUjM+cOVM11ZW+L1lltsiSdl8tJU663FdLz7o3fj4Gt0K2OPS/tjp5TyIyHTkuI0pKSlJLmTJlEBgYmHpdFtlRSiMsUwm0GJMTNx+pQIs0rJWzqfpS1MEGq4Y2wsQOlVT9tnzJeHX+YVx7wLIiXbp6P1yVc0mgpZCdJX4d3oiBFiI9lhLtuZrSvJwoPxxvjPnttAq09KxTCh+/zECLIZJJQdWqpQ/wytSg27dvP/XYgwcPquP74cOH5+h1JeCiCbRoXvf+/fuqeW5mJJtGgippF12r/qSM6G5INEIiOSGOiPTcs0Ui1q6ubHJmLHZdDkwdNyplPfok7y/lKtIXpKiDtRo1/Or8Q6pBaw4TrOgF7PUOxGsLj+BeWAzKudpj05hmaOihn0wnIlPXoqIrLM0LwDcoEr4PI/S9OkQv5EpAOIauOIHYhCR1vPHNa7VgpudjDsqcTCKSAEpa165dy7SZ7dKlS1GvXj14enrm6HV9fHzUSdi0rytBGMmmMVROtpZwL2ynLl9gKRER6XsakZD+LLJoMlwydiMnwyABjJ1X7utsClFONS5XGNvHt1BlRQevB6kGrUd8g/FF9xqwt36uf5L0DKuO3MS0rZeQlAw0KVcYi96sp7rwE5F+ONhYqn2h7AN3XwlEuSIF+acgo3Q7OAoDlx3H45gENHAvhB/fqAtL81yfyyMdeffdd9G0aVPVvLZPnz6qZ8vixYvVkpaU9Kxfv161CMiM9HeRsc7Sd0W89dZbqtRo/PjxeOedd1TPFnkPKVEydDXdnHEzOEoFW1pWKqLv1SGifCTXn4bSyOqll15SwZagoCCEhISkW8hwXHsQgTuPomFlYabOohoSGS28ckhD1TxPTn5tOuOPrvMPqbNjpD2Szi1BlilbUgItfeq7YeXQhgy0UK4dOHAAXbt2RcmSJVUPhs2bN6e7f+PGjejYsaPKfJT7z549m20guHPnzpm+TkZyIN+gQQPVoFEmZ3Tv3v2ps7LGSjIAxO6rKU3MiYyN9GMbsOwYHj6ORZXiDvh5UAPYWv1XRkKGR/anmzZtwpo1a9TEoM8//xyzZ89WjW3TWrt2rdpX9+vXL9PXkbKjtL1YpNfKv//+q3q/1KpVSwVZJPAyadIkGLqapVLKly7cZZNcItKuXKcRLFq0CCtWrMCAAQO0vCqUV1OImldwNchGtJJi/HabCmjg7oJxa87A92Gk6icytWt19GtYmk31XlBEbILarpqeEP/rVAWjW5XjdqXnEhkZqVLJhwwZgl69emV6v6SRyzjRESNGZPtacmCf08lX+/fvVxMt5AuCTLX4+OOPVcD/8uXLsLfXzSj7vCIT4j778zJO3AxBWFQ8g6BkVMJj4jFo2QncCo5SzUVXSSDflhmTxkB6LD6rz+LIkSPVkpV9+/Y9dZuMfj569CiMTc1Szuony4iISNty/Q1cmlxJ+iEZvp2X9TPyObekb4iUFcko4n3eD/HRpguqrOirHjVUqj3l3r3QaFU/f/X+Y1hbmGHW67Xxcs0S3JT03CQTRZasaALwN2/ezPZ1zp07pyZUyNlPqeV/lr///jvd9eXLl6sMl1OnTqFly5Y5nnBhiEq72KFSsYIqC3HftUB0q11K36tElCMx8YkYvvKkykZ1LWiFX4c1QlFHG249MkrVn2S2+IdG41FkHFzsDbfHDBHl8zIi6Ui+evXqvFkb0mpq79k7oepy+ydTLwyZfLAtG9QAkzpXUY10/zx3T00runSPKZ25df5uKLr9eFgFWqRca92oJgy0kEGIiopSKenz589H8eLFn+s1ZCSocHFxybb0SEY9axZJbzdUbaukBMM5lYiMRUJiEt5ZcwbH/R7BwdoCK4Y0hLurcWeZkWlztLFUgwMEs1uISK+ZLTExMaqJ1q5du1RNpqVl+swDOWNJ+rfnSkrpiGdpZ6M52yRlRaNblVcN9t5ZfQZ+QZHoscALn3aphjcblWH5Sw78ffE+Jqw7g5j4JFU/v3RwA5Ryts37Px5RLhozduvW7bm2l/QPmDhxIpo3b656DWRl8uTJ6nFpM1sMNeAiwfBF+2+orD75EmvBxqJkwOT/Qck+lcxZ6Qe3ZFB91HgyOpfImMm/Y5kOd+FuKFqxSS4R6SvYcv78edSuXVtdvnjxYrr7clqDT7rr19LBCLJaMqpX1gXbxrXAB3+cw64rgfh080Uc9Q3GjJ411dkHyvwAePEBX3z991XIFO3WlYtgXr86LMMig7F161bs2bMHZ86cee7XGDt2rPoMOnToULaPs7a2VosxqFOmEArZWSIkKh4nb4WoCUVEhko+Y34/eVc1tpfPGP57pfyilpsTtp67x8wWItJvsGXv3r3aXQPSuui4RDVO1NBGPudGIXsrLBlYH0sP+eHrHVex7XwALvqHYX6/uqjpxrNoacUnJqmA1NoTd9T1gU3KYkqXajxDTgZFAi03btyAs3NKI0INabbbokWLTJstpiWjRCVgI1OR3NzckF9I2WSbykWx8Yy/KiXil1cyVIsP3MBP+33V5a971kLH6s9XCkhkiDQZWpxIRER67dlChu+QTxBiE5LUdIDKxRxgrCRTaniLcvh9dBNVCiMTD3ot9MJKr5sqk4OgJpgMXn5cBVrkTOO0rtUwvVsNBlrI4Mj4T8lKkZHQmkXMmjVLNb3Nivy/LhktMlpaAjYeHh7Ib9o9aWKuyUgkMjTrT97BV9uvqsvSW61PA8MsyyN6XtVLOkIS9O+FxSAo4r8G60REL+K55gHLFIn169fj9u3bajpRWnJATPq1K80UovxQ2lW3TCFsH9cC7/9xTtWJT916CUduBOOb12qZ9JjJW8GRauLQjYeRsLcyx7w36qQ22yTStoiICPj4+KRe9/PzUwETaVRbpkwZPHr0SH0m3Lt3T93v7e2tfkoj3LRLRvLctAGUdu3aoUePHirAImTsszRl37JlCxwcHHD//n11uzS+tbXNH/2IWlZyhYVZAfg+jFS9qjzYbJQMiHzuTtp4QV0e2bKc6q1GlN/I9EvZ98p+WJrkSsYhEZHOM1vWrl2LZs2a4fLly9i0aRPi4+PVZTnjKAe/pF+JScnYffVJvxYjLSHKjJOdJRYPqKfKYyzNC+DvS/fRZd5BnHsyccnUnLz5SDUPlkBLCScbrB/dlIEWytt/cydPok6dOmoR0oBWLk+ZMkVdlxIfuf7KK6+o63379lXXFy1alKv3kVKjoKCUMkixcOFCNYGodevWalS0Zlm3bh3y00F+o3Ip05V2M7uFDMgx32C8vfq0OrZ4rZ4bJneuou9VIsoztZ6UEl28y0mYRKSnzJavvvpKpX3L2UY5yzhnzhx1VnLUqFHqAJj0S8Y9B0XEwcHGAg09sh6NaowkS2docw/UK1sIY9ecxp1H0XhtkRcmd66KIc3c80UWT05sOeuPD9afR1xiEmqWcsLSQfWNZuIUGS8JdmRXvjd48GC15EZmr3fz5s1nPiY/alelGA77BGP3lUBVPkmkb5fuhWH4ypOIS0hSmbJf96xpMp+zZLp9WzafvYfz/gy2EJGeMlvkrKPmzKVMe4iMjFQfvjLSU0ZCk35pav5bVy4Ky3w6QlTGWf/1Tgt0rlEc8YnJmP7XZYz65ZTqX5KfyZfO2buuYfzasyrQ0rF6Mawb1ZiBFqJ8oN2TyXEnbj5CWHT+3peRcZSpDlp2Ao9jE9SJm/lv1GEvMMr3armlNHCXgQxERNqQ62/jUp//+PFjdblUqVKp459DQ0MRFRWllZUibfRryd+1ptKrZUH/upjerTqszM3w7+UHeHnuQZy5HYL8KCY+Ee+uO4vZu66r66NalcPC/vVgZ/VcbZeIyMCULWyPCkULIiEpGQeuPdT36pAJCwyPwZtLj6kmoVVLOOLnQfVhY2mu79Ui0lmT3ICwGDx8zCa5RKSHYIuM6Ny5c6e63KdPH4wfPx4jRoxAv379VGPD3JARnl27dkXJkiVVdszmzZvT3S8p6XJ72qVx48ZZnvXv3Llzpq+TmQULFqjyJxsbG9SrVw8HDx6EsbsZFInrgRGq0aJktuR38rce2MQdG8c0RdnCdvAPjUbvRUew5IBvvio9CI6IxZs/H1OprfK3lVRuKZ0yk/FDRJTvslvYt4X0RbKqBi47rsp05XN15dAGcLQx3Ub0ZFrsrS1QvkhBdZnZLUSkl2DL/PnzVeNDMXnyZLz//vt48OABevbsiaVLl+bqtaQEydPTU71mVjp16oSAgIDUZfv27Zk+bvbs2TmuJZbGihMmTMDHH3+MM2fOqACSBGpkkkZ+KCGSRoumNKVHamz/fKc5XqlVQp0V/nL7FVVnHhKZflKWMfIJjFCNcE/eClF9eFYObYi+Dcvoe7WIKI/6toh91x4iITGJ25h0KjouEcNXnsDV+49RxMEavwxthKIO7AdGpkV64YnzbJJLRFpg8TxlRBpmZmb48MMP1fI8JMAhS3akL0xm40LTOnfuHGbOnKlGUuekSa88dtiwYRg+fHhqoOaff/5RUy9mzJiR6XNiY2PVohEeHg5DDbZIIztTI2fe5vergyblCqseLruvBuKVuQfVOOR6ZY2zUfBhnyC89esphMckoIyLHZYNro8KRR30vVpElEfqlnGGs50lQqPicfp2aL5rck6GKz4xCWNXn8aJm08C+0MaokxhO32vFpFegi2bzvir8c9ERDrPbDE3N0dgYOBTtwcHB6v7tG3fvn0oWrQoKlWqpMqVMr639ImREibJjnlWUEbExcXh1KlTeOmll9LdLte9vLyyfJ4EYWS0tWYpXbo0DEloVJw6SDLVYIuQzKY3G5fFpjFN4eFqj3thMejz01Es2n8DSUnGVVa07sRtDFp2XAVaZPqS/E4MtBDlbxbmZmjzpASUpUSkK/L5OGnDBXWSwtrCDEsHNUC1ko78A5BJqumWktlywT9U36tCRKYYbMmqF4ZkfVhZWUGbJOvlt99+w549e/DDDz+ozJW2bdumyzCRKUhNmzZFt27dcvSaQUFBSExMRLFi6QMScv3+/ftZPk9KpsLCwlKXO3fuwJDs836IxKRkVCnugNIupn02qnrJlLKiVz1Lqm3y9Y6rGLryBB4ZQVmRHPTO2HEF/9twQZVEdatdEr8Nb4TCBa31vWpEpANtqzwJtlx9+qQGkbbJMZ185mw4fRfmZgXw4xt1mVFFJq1aCUdIS7wH4bGqWTQRkU7KiObOnZuaPfDzzz+jYMGUBlJCghfS7LZKlSrQptdffz31co0aNVC/fn2ULVsW27ZtUz1itm7dqgIx0ncltzL2d5EDjux6vkg5kyyGaqcJlxBlpqC1Beb0rY0m5Qtj2tZLKhj18pyDmNuvjsEeSEq9vEwc+vtSStBvfLuKmNC+Yo57ERGR8WtVuYhqhC39mmT8rkwpIsori/b7YslBP3X5m1610L4ajyHItGma5MrACSklaufIvkVEpINgy6xZs1KDEosWLUpXMiQZLe7u7ur2vCT9WCTYcv16yvhbCbTcuHEDzs7O6R7Xq1cv1fRWSpAycnV1VeueMYtFypMyZrsYi9iEROz3ThkVygOl/0iQol/DMqhd2hlvrz4N34eR6LfkKCZ2qIS3WpU3qGk+cvZk+KqTqiGbjLL+9rVa6F6nlL5Xi4j00H9KAsJeN4Kx60oghjX34N+A8qxc9Zu/r6rLH79cFa/Vc+OWJnpSSpQabOFJTCLSRRmRn5+fWlq1aqUa0mquy+Lt7a0azDZq1Ah5SfrCSPmOpgnupEmTcP78eZw9ezZ10QSGli9fnulrSGBIRj1rxldryHUpRzJGx3wfISI2QU0PqPWkizr9p2oJR/w5tjl61imlyoq++8cbg5YfR1DEf+Vo+nT5Xji6/3hYBVpc7K3w24hGDLQQmTBNKdGeqykZi0Ta9vfF+5i88YK6PLpVeYxoWY4bmSjDRKILnEhERLru2bJ3714UKlQoXQmRBDlCQlKas+ZGREREuiCJBG7ksoxglvtkrPSRI0dw8+ZNlaXStWtXlZnSo0cP9XhpiCvlRWkXUaZMGXh4/Hc2sF27dunGS0+cOFGVQi1btgxXrlxRfV/kPUePHg1j9N8UoqIGla1haGmhP/TxVBkjNpZmOHg9SJUVHbkRrNf12ns1EL0XealmvuWK2KtGuA3cDbPMiYh0Q1MOKoH08Jh4bnbSKvncG7f2DKRv/Ov1S+N/nSpzCxOlUSu1SS4nEhGRjoMtEyZMwNKlS1MDLS1btkTdunXVdJ7Mynayc/LkSdSpU0ctmiCIXJ4yZYoq9blw4YJqfCuTiAYNGqR+SvDFwSF342+l1Ega46btBSPjnqdPn47atWurfjPbt29XJUrGRsq6dl1mv5aclhX1qV8aW8c2R4WiBRH4OBb9fz6Kubuvq4wXXVtx2A/DVp5AZFwimpYvjE1vNWN/BiKCu6s9yhexV02yD1xLKREl0oaL/mEYseok4hKS8FK1YviyRw32BTNB/v7+ePPNN1G4cGHY2dmpY2GZ1Jn2eCmz5bvvvsvR669du1Y9vnv37jBG1Uo4qSa5cpz4gE1yiUgXPVs01q9fr3bQ4s8//1RZJ1evXsWqVavw8ccf4/Dhwzl+rdatW2c53UhIaVJuZfZ6so4ZjRkzRi3G7nJAuMqKsLU0R7MKrvpeHaNQqZgDto5thilbLuGPU3cxc+c1HPMLxuzX66hSrLyWkJiEz/+6jJVHbqnrcmbxix41YGme69gnEeVT0ifgxkNf7LkSiC61Sup7dSgf8AuKxKBlx1XZceNyLqphvIwbJ9MimejNmjVDmzZtsGPHDhQtWvSp/ocBAQHpniOPGzZsmOqJ+Cy3bt1SmenSO9FY2VqZo2JRB3g/eKxKiYpVY5NcIno+Zs/TN0XKd4Rkg/Tu3VtlnMhOWDJRSLd2XU4ZD9qioitsLP9rWkzZs7OywPe9PfFDb08VqDrsE4zOcw7Cy+e/DKi8IAe5clZRE2iZ1LkKvu5Vk4EWIkqn3ZO+LXu9A/WSeUf5i5ydH7D0GIIj41C9pCOWDKzPYwYT9c0336hsdOlt2LBhQzXgQsrty5cvn/oYOc5Pu2zZskUFZ8qVy763j2S89+/fH5999tkzHytiY2MRHh6ebjEUNZ70bTnPUiIi0mWwRSb2XL58We1Q//77b7Rv317dHhUVlW5CEem4XwvHNT6XXvXc8Oc7zVC5mINqmNt/6TGV6ZIXX278Q6Px2kIv7PV+qPrGLHqzrmpMyNHORJRRvbKF4GRriZCoeJy+nfueaEQaYVHxGLj0OO6GRMO9sB1WDGkIBxtLbiATtXXrVtSvX1+dLJWsFinfX7JkSZaPf/DgAbZt26ZOqj6LlOcXKVIkR48VM2bMgJOTU+oiQSBD69sipXdERDoLtgwZMgR9+vRRzWjlS2KHDh3U7ceOHUOVKlWee0Uo9wLColXzrgIF/pteQblXoagDNr/dDH0blIZUoUkPF+nlIuOYteXcnVA1cejq/ceqVGndyCboVCNlqhYRUUZS3tG6chF1efeVlAxGotyKjkvE0JUnVDlEUQdr/DKskU7KZclw+fr6YuHChahYsaIq15fhEOPGjVPtADKzcuVK1SuxZ8+e2b6utBGQno7ZBW4ymjx5MsLCwlIXmThqcJktd8OybXlARKTVYMu0adPUJJ+RI0eqHau1dcqHtmS1yChm0h3NAXjdMoXgWpAHTy9an/t1r1qY07c27K3McdT3EV6eexAHr794c8q/Lwbg9cVH8PBxLKoUTwnseJb+rzaaiCirvi1i95MMRqLciE9MwpjfTuHUrRA42lioQEtpFztuRBOXlJSkBlt89dVXKqtl1KhRGDFihArAZEYmd0ppkI1N1n1LHj9+rPo5SqBFpobmlHyHcHR0TLcYimolHGFuVkBlPT8Ij9X36hCRqTTIFa+99tpTt8m0INLXyOeUA3J6cd1ql1JnM97+7bTKQhm47Djebl0BE9pXzHUjQTkT8tMBX3y946q6Lmep579RFwWtn+t/OyIyMa0qFVEH+9cDI3A7OAplCvOLMuVMUlIyPvzjfGrZ6rLBDVC5eO4mOVL+VKJECVSrVi3dbVWrVsWGDRueeuzBgwfh7e2NdevWZfua0mBXhlF07do1XVBHWFhYqNdI2xPGeJrkFlTHgufvhqK4U0q/SiKi3Hiub327d+9WS2BgYOrONG0EnPJeZGwCvHyC1eUO1VhCpE3lixRU2SfT/7qM1cduY/5eHxz3e6QmNxR3yllHehmr+enmi1h3MiUldnBTd3zySlVOfiCiHJOeLQ3cC6lMu91XH2BIMw9uPcpRoP+LbVew6Yy/CtYt6F8X9d1duOVIkUlEEvxI69q1ayhbtuxTW0jKgurVqwdPT89st560Ecg4JOOTTz5RGS9z5swxqF4suVGzlJMKtkjflpeqM9hCRDooI5IO4y+99JIKtgQFBakRcmkX0o0D1x4iLjFJNbuT4ABpl0x2+qpHTRVgkUyU4zdTyor2eQfmqBnh4OXHVaDFrADw2avVMe3V6gy0kFE7cOCAOmtZsmRJ1a9r8+bN6e7fuHEjOnbsqFLI5f6zZ89m+2Wwc+fOmb5OZhYsWAAPDw+Vxi4H/nK21VRoMhcl4EuUEwv23cCyw37q8ve9a6FtFWa/0n/effddHD16VJUR+fj4YPXq1Vi8eDHefvvtdJtJJgOtX78ew4cPz3TzDRw4UPVcEbJvll6OaRcZJS29XuSylZWVUf4Jaj5pksuJRESks8yWRYsWYcWKFRgwYMBzvym9uJ1pSog4zSbvvOpZUp3ZGLv6NC7dC8fg5SfwVuvyeK9DpUyDJ7eCIzFkxQn4PoxUvV+kbKgNmxdTPhAZGanObkqT9F69emV6v5wxlQkXUv+fndmzZ+d4vyXp6xMmTFABF3n9n376SQVqZCpemTJlkN91qlEcZQvboVkFV9U7wNHGEglJSWp8PVFGko353T8pWQufdqmGHnXcuJEonQYNGmDTpk0qUCLTgySQLftk6cuS1tq1a1VgvF+/fpluwdu3b8PMLNfnbI2KHP8JyWyRbcHjbSLKrQLJuWyxXbhwYRw/ftzoai+1TSL+MqZOuqfruqFXQmISGny5S40EXTuyMRqXK6zT9zdFMfGJ+Gr7Faw6cktdr1+2kErNdrCxgLmZGR7HxKOgjQUO+wThy21XER2XgKWDG6BqCcNp9kakLXLAKQfr3bt3f+o+qduXg/czZ86gdu3aT91/7tw5dOnSBSdOnFC9A7J6HY1GjRqpZo5pmzdKfwF5jowNzUxsbKxa0u6vJY1dH/vrFxUbn6hKGVceuYnw6AQ42lpgSFMPjGldHtaW5vpePTIgOy4E4O3Vp5GUDLzdpjw+6MgJkWRc9HlsndWxX/Wp/yAxKRlek9qipLOtvleJiIxMrkPSkk4oKYekP6dvh6pAi7OdpfrST7opK5rerUZKgMXaQm1/yWxZuP8G6n+5E/W+2KUCYGduh+KPt5rgz3eaM9BClEFUVJQ6Szp//nwUL/7s+ve4uDicOnVKla6mJde9vLyyfJ4EYeSAXbMYa78ACdpKSci8PT4q0CLk55zd19XtUXEptxF5+QRh/NqzKtDSr2EZvP9SZW4UIi0c+1UqltJY+oJ/GLcnEeVarvOQY2JiVG3nrl27UKtWLVhaWqa7f+bMmblfC3quKURtKxdlHxAde7lmCVQv6Yh7odFYfthPfQnSkC9Bct2sQAGMalVO16tGZBS9Apo2bYpu3brl6PHSFywxMRHFiqXvOSHX79+/n+XzJD1+4sSJT2W2GBvJmlvuldJ7IyO5/e02FXS+TmR4ZFLKiFUnVR+3zjWK44vuNVjuQKQlNUs54kpAOC7cDUNHNsklMviTVOZPKg4cDKTsOtfvfv78+dTU8IsXL6a7j7WMurHr8pN+LdXY9E4fyha2RwknW4z69VSm9/NLENHTtm7dij179qjyotzK+NnyrNp5a2trtRg7OVjQZLRkJLfL/YULGv/vSc/vxsMI1UssMi4RTcsXxuy+tdUEIiLSXt+W30/eZWYLkRGUXS/a76u+hxlS2XWugy179+7NmzWhHB9Y+QZFwsrcDC0rFeFW0xN+CSLKHQm03LhxQ02oSEua7bZo0QL79u176jky2cjc3PypLJbAwMCnsl3yIzkrIwcLmQVc5Ha5n0xXQFg0Bi49jkeRceoL4eKB9WFtwT4+RNpU0805tYyITXKJDDejZdF+X1VmraEpuxZScaCvDJcXaiN+9+5d+Pv7a29tKMdZLY3LF1YjiUm/X4Iywy9BRE+bNGmSyoyUkdCaRcyaNQvLly/PdJPJuFAZ9bxz5850t8t1KUfK7xKTktRZmcwMauKO07dD1BduMj0hkXEq0OIfGo1yrvZYMaQBjwmI8kCV4g6wMCuggpr3wmK4jYkMQHJysprQeOZ2iGoOL9nO2ZVdW+hxclquv60nJSXhiy++wA8//ICIiAh1m4ODA9577z18/PHH+X4MnKH0a+lQtai+V8Wkab4EpY2gasjtUiNo9WKxTCKDIvt7H5//ehT5+fmpgImLi4sawfzo0SM1CvTevXvqfm/vlPGz0gg37ZKRPFemF2m0a9cOPXr0wNixY9V16b0yYMAA1K9fH02aNFE9w+R9Ro8ejfzO1spCpb+KtGmxg5u6q6X3oqMIjozF9695sqzUhEhj5KErT+B6YASKO9pg1bCGLCcjyuMmuZdV35ZQlOJEIiKdVRHceRSNOyFRuPMoCndDotXPlOvRiI5PVI+rXMwBNUo5GWzZda6DLRJQWbp0Kb7++ms0a9ZMRZYOHz6MadOmqea5X375Zd6sKSE4IhanboWoLdGuav5PoTfGL0GGUBtIlBdOnjyJNm3apF7XNKAdNGgQVqxYoXqyDBkyJPX+vn37qp9Tp05Vnw85JaVG0hhX4/XXX0dwcDCmT5+OgIAA1KhRA9u3b0fZsmVhCmRfIumv0gw3bcM3Octqa2WG0IfxGL7qJIY0c8ekzlVYRpLPxSUkYfSvp9XkOydbSxVocStkp+/VIsrXpExPBVv8w9CpRgl9rw5RvhATn6iyM1MCKNG4myaQIj9Do+Kzfb607pMTDm6FbFHEwdpgy64LJEu0JBdKliyJRYsW4dVXX013+5YtWzBmzBiTKSuS6RYyUjQsLAyOjo46ec/1J+/ggz/Oq2k428a10Ml70rPPMFoYWNdrItL//loXYhMS8e3f3lh6KCV1Vj4b5vWrg3JFCup71SgPJCUlY8K6s9h67h5sLc3x24hGqFumELc15RuGuq/+9egtfLL5IlpUdMUvwxrpe3WIjEJiUjLuh8ekBFMyCag8eByDZ0UhCtlZorSLHUoXsoObi636mXLdFqUK2aaeYMqsZ4vG+HYV9dqzJdfvKqniVapUeep2uU3uo7wvIWrPrBaDofkfV5OaxtIhItIVOcj4tEs1NKtQGO+vP49L98LRZd4hNfq3Z103/iHyETkvNv2vyyrQIv0jFr5Zl4EWIh1mtoiLbJJLlO5zKTgyLjWQklLq819myr3QaMQnZh9NsbMyfxJAsVVZmppAivrpYpfjXmSGXHGQ62CLp6cn5s+fj7lz56a7XW6T+yjvUq0OXEtJre/Akc9ERPRE2yrFsH1cC0xYdwZHfR9h4u/ncOh6EKZ3r8GmqfnEvD0+WOF1U13+oY8nWldm3zYiXalSwgGW5gUQEhWv+kbIl0AiUxARm5AuM0UTULn9pIdKVFxK35SsWJgVUBkoGQMqZZ4EVVzsrVRz27wsu9Z3a4dcB1u+/fZbvPLKK9i1a5dqVigbyMvLC3fu3FF19JQ3jtwIVo2ASjjZqFRxIiIijeJONvhteGMs2OuDWbuuYeMZf5y5E6rKiqRxHBmvX47ewsyd19TlaV2roVvtUvpeJSKTyyKUJrmSPSjZLQy2UH4qR/aXIEqa5rN30zSllQBjdiROUszBRgVSUkp90memFHe0gbmZdoIpxlpxkOtgS6tWrXDt2jX8+OOPuHr1qkoh6tmzp+rXIv1cKG/sTFNCpK0IIBER5R9yQPNOu4poVK4wxq89A7+gSPRc4KUa50oDXX52GJ+/zt/DlC0X1eVxbStgcLPMR4ETUd6q5eakgi3n/cPQuSab5JLx9E15oOmbogmo5LJvirP0TXmSmZLaMyWTvimUuefqFCNBFU4d0m1TvN2aYAtLiIiIKBsNPVywY3wL1VB95+UHqteH140gfPuap0rZJeNw8PpDvLvurDoQ7t+oDN7tUEnfq0RkslIyBO+ozBYiQyFJDzKdMG1migRRUnqnRKlpP8/qmyIN19MGUmS6j6Yprdyuz0k+JhVsuX79OqZMmYKffvrpqQ7h0jX8rbfewhdffIFy5crlxXqatIv3wvAgPBb2VuZoXM5F36tDREQGztnOCosH1FMlKF/8dQW7rgTi5TkHMbtvbTQuV1jfq0fPcPZOKEb9ckodJL9SqwSmd6vBzCQiPapVyln9PH83TH3BZaYg6Uqk9E3RNJ59pOmX8l9QJTIHfVNKOttmmpkiPwtrsW8KvUCw5bvvvkPp0qUzHcUmY9rkPnnMwoULc/qSlEO7LqdktbSqXISpWkRElCNy8DSwiTvqlS2Ed9acge/DSLyx5CjeaVsR49pV1GkdNeWcT+BjDFl+XDUebF7BFTP7ePJvRaRnlYoXVE1yw6LZJJe0Ky4hSWWgpM1MSemdklL6I5krz1LM0TrdWGS3NJkp0jfFwlz/vUtMVY6DLQcOHMAvv/yS5f19+vTBG2+8oa31ojR2XglUPznymYiIcqt6SSf8ObY5pm69hD9O3cWc3ddxxDcYc/rWRgknW25QAyKjMgcsPa6aEnq6OeGnAfV4koXIAEhfiirFHXHBP0xlt7BJLuWUtIOQ3ii3g6MybUR7P/zZfVOcbC1V4CRlik/6RrSlnG1ho+eJO6SFYMutW7dQtGjWowZdXV3VRCLSLkkPuxIQDjkB2YajHomI6DnYW1vg+96eKlPi400XcNzvETrPOYjvX/NkLzADIWcvByw9hoCwGJQvYo/lQxqqvxsRGU7fFgm2yCLlfURCysokQJ4xMyVlTHK0mvYTl5iU7caysTRLl5mS0jvlSVNaFzs4sm+K0crxp7iUCt24cQNly5bN9H4fH59MS4xIOyVE9d1dUIiNDYmI6AV0r1MKnqWd8c6a07joH47hq06qSUUysYgTBfRbkz9kxQnceBiJEk42WDWsEZsZExngRKI1x4EL/qH6XhXSc9+UjI1on9U3Rcp2SzrbpGamZGxE61qQfVNg6sGWli1bYt68eWjbtm2m98+dOxctWrTQ5rqRBFuelBB1qFqM24OIiF6Yh6s9NrzVFN/+7Y2lh/yw/PBNlekyr18dlCtSkFtYx2ITEjH611M4dycUhews8cuwhiotnIgMS001kQi4wCa5+bJvipRxZsxMkbIf6Z0SnIO+KUUdrNNlpqSU+6Q0pZUgOvummKYcB1smT56MJk2a4LXXXsOHH36IypUrq9uvXr2Kb7/9Fv/88w+8vLzycl1NTnhMPI76BqvLHPlMRETaIlksn3aphmYVCuO938/h0r1wdJl3CF90r4Gedd24oXUkMSkZE38/h4PXg2BnZa5KhyoUdeD2JzJAlYo5wMrcDOExCWoiTNnC9vpeJcpl35SMmSmaRrTSNyXpGX1THG0sUKawXaaNaCVLhX1T6IWCLXXq1MEff/yBoUOHYtOmTenuK1y4MH7//XfUrVs3py9HObDf+yESkpJV7baciSQiItKmtlWKYcf4lpiw7gyO+j5SX/wP+QTh82412C9EB3X+07ZewrbzAWrKiTTDrV06ZbwsUV7y9/fH//73P+zYsQPR0dGoVKkSli5dinr16qn7sxoDKydXP/jgg0zvW7JkCVatWoWLFy+q6/JaX331FRo2bIj8wsrCDFVKOKgGudK3hcGWvBEdlwBzMzM8jomHg40lEpKSYGdl8cz9aaj0TckiM+VuDvumqD4paTJTpGdKSu8UO9Wklii3ctV5rUuXLqpR7t9//616tMg/bNlBv/TSS7Czs8v1m1P2dl1J6dfSoVpxbioiIsoTxZ1s8Nvwxvhxrw9m77qGjaf9ceZ2qCorkoaQlDdm77qOX47egnyvnfV6bbSoWISbmvJcSEgImjVrhjZt2qhgiwy/kJ6Mzs7/BfoCAgLSPUceN2zYMPTq1SvL1923bx/69euHpk2bwsbGRgVm5PvBpUuXUKpUKeSnUiIVbLkbhi61Sup7dfKd2PhELNrvi+VefgiPToCjrQWGNPXAmNblkZScjNuZZKZoGtFGxCbkqG+KCqKkaT6raURbpKB1loFGoudVIFkiJpRr4eHhqmlwWFhYnjQGjk9MQr3Pd6pUxQ1vNUG9si78KxERGeD+Oj+R3i3j155RE3EkXX7yy1UwuKk7D0C1bKXXTTWKW3zerToGNHHX9lsQZWrSpEk4fPgwDh48mOMt1L17dzx+/Bi7d+/O8XMSExNRqFAhzJ8/HwMHDsz0MbGxsWpJu68uXbq0Qe+r1x6/jUkbL6Bp+cJYPaKxvlcn32W0SKBlzu7rT933TtsKKtA18pdT2b5GEembkiEzRVP2w74ppA9m0KMDBw6ga9euKFmypDqQ27x5c7r7Bw8erG5PuzRunH7HNmrUKJQvXx62trYoUqQIunXrpvrIZGfatGlPvW7x4oaVPXLi5iMVaClsb4XapQvpe3WIiMgENPRwwfZxLdChWjGVcv3Zn5cxYtVJhOSgOSDlzJaz/pj2Z0qgZUL7igy0kE5t3boV9evXR+/evVVWi7QJkBKgrDx48ADbtm1TmS25ERUVhfj4eLi4ZH2ycMaMGSoQrlkk0GLoaro9aZLrH6Yy/El7pHRIMloys/LITTSv6IqyLraoXtIRnaoXx4gWHpjerTqWD26AXRNb4urnnXDi4/bYOKYZ5vStg/c7VsbrDcqgaQVXFWxhg1oyuWBLZGQkPD09VdQ7K506dVLpjJpl+/bt6e6XmtDly5fjypUrqkmv7PgkbVEi6tmpXr16ute9cOECDMmuyylTiNpWKarS3oiIiHShkL0VFg+oh89era6yW2QqXuc5B3HsScN2en77rz1UDYnlO9qgJmUxvl1Fbk7SKV9fXyxcuBAVK1ZUx82jR4/GuHHjVL+VzKxcuRIODg7o2bNnrjNopHyoffv22Q7fkCwWzXLnzh0YRZNcC+knkoBbwVH6Xp18wfdhBGbtvIYH4TGqdCgzcnt0XCL2f9gW28a1wKIB9fDxK9UwsIk72lQpqhqLs0EtGX3PFm3r3LmzWrJjbW2dbdbJyJEjUy+7u7vjiy++UAGcmzdvqoyXrFhYWBhcNouGBIx2XrmvLnMKERER6ZpkfA5q6o767oXwzuoz8A2KRL8lRzGuXUW807YiTwI8h9O3QzD6l1Oq8X1Xz5KY2rU6y7NI55KSklRmizSvFZLZIn1VJACTWbnPsmXL0L9/f9WHJaekX8uaNWtUH5fsnifH+LIYE0tzM1Qt4ahGtZ/3D4M7B1g8N+l7s3C/D3ZcvI9CdlYY1aqc6tGSWcBFbpdmuUTGRq+ZLTkhO2pJc5RGvCNGjEBgYErGR1aZMpLl4uHh8cxUxOvXr6vyJXls3759VaQ/O1JTKrWkaZe8cj0wQjV9ksh5i4quefY+RERE2ale0gl/vtMcveq6qbGY0tT1jSVHERAWzQ2XC9cfPMbQFScQHZ+IlpWK4IfenjBj1irpQYkSJVCtWrV0t1WtWhW3b99+6rHS18Xb2xvDhw/P8et///33KpDz77//olatWsiPapZK6Sdz0T9M36tidOSEspdPEN78+Ri6zj+E7Rfuq0y/OqWdER4dr5rhZkZul6lERPk+2CJlPJJ2mJHcJt3KtUmyXn777Tfs2bMHP/zwA06cOIG2bduma6YlFixYgIIFC6pFJiXt3LkTVlZWWb5uo0aNVLqkrLPUqd6/f191Tw8ODjaIutKdl1OmEDWv4PrMUWdERIbQY2vjxo3o2LEjXF1d1f1nz5596jWep8dWQkICPvnkExUYl+eVK1cO06dPV2dnSTfsrS3wQx9PzHrdE/ZW5jjm9wgvzzmI3U8m5lH27oZEYcDS42osqYx2XvRmXXUyhUgfZBKRBFDSunbtGsqWLfvUYzXjoCVjPCe+++47fP755+pYXLJn8qtapZxTMzMoZ5KSkvH3xQB0//Ew3vj5GA75BKkMyR51SuHvCS2wdHADFHeyVVOHpLxSMlmE/JTrcju/E5ExyvWnvdRgZtYPRSKVcp82vf7663jllVdQo0YNdZAvwRz5QJBGXWlJeuOZM2ewf/9+VYPap08fxMTEZBvEkfF1NWvWVLWkmteTulRDqCvVBFvaVy2WZ+9BRKTNHltyvxzEf/3111m+xvP02Prmm2+waNEi9b7yPElPlwP6efPm8Q+oYz3quOGvcS1Qo5QjQqLiMWzlSXz25yXEJmTfI82UBUfEYuDS47gfHoMKRQuqRo78wkD69O677+Lo0aMq+8THxwerV6/G4sWL8fbbb6d7nGRwr1+/PsusFik5kmNjDdk3S2Bcyo6krF9OZMoSERGB/KZGKafUzBYJIlDW4hKS8PvJO2g/az9G/3oa5+6GwdrCTPWs2vd+azX2vkrx/yZPWVuaq3Kikx93wKlP2qufcl1uJzJGuU6bkPKbjOmHokqVKmqnndepjxJ5l3VIS5NtIoEWmVYko+Y2bdqEfv365eh17e3tVeAl4+vqo6408HEMzt4JVZfbVS2a5+9HRKSNHlsDBgxQP6VfljZ7bB05ckRlwEjgXfM86QVw8uTJLN8ns3GipB0ervbY8FZTfLPDG8sO+2H54ZtqXPT8N+qq++g/EbEJGLLihOp3U8rZFr8Ma6iaDxPpBVr8PAAAKlNJREFUU4MGDdQxsgRKJEtQsgZnz56tTlymtXbtWhUQz+pYWsqOzMzM0mWZx8XF4bXXXkv3uKlTp6opoPlJxWIFVcDgcWwCbj2K4r4vE5GxCVhz/DZ+Puings3C0cZCNbQd3MwdrgWz/k6lCUgXfvIYK8PvekGkvWCLBDWkv4kc8KYlgRYJWuQlKfORjBIJumRHPhwylhplRx4rZ0xbtGgBfdtzJaUnjaebE4o55rwZGRGRMclpj63mzZurzBbJapTeXefOncOhQ4fUl4Psyj4/++yzPFpzsrYwx5Su1dCsQmG8v/4cLt0LR5e5B/FFjxoq+4Wgsn1GrjqJ83fD4GJvhVXDGqKEky03DRmELl26qCU7EhxPGyDPrKdiWtkF2vMbTZNcOTl6/m4ogy1pPIqMwwqvm1jpdRNh0fHqtqIO1hjewgP9GpZhk1syObkOFb766quYMGECbty4kS7Q8t5776n7ckNSC6WuX1Pb7+fnpy5LtFzue//999VZTdmBy05dSomkH0CPHj3U4yXoIwfVp06dUs+Rx0oJkdT1v/zyy6nv065du3Sp7/K6UnIk73fs2DEVhZczn4MGDYK+7XpSA9+hGkuIiCj/yW2Prf/973/qzKpkT1paWqrJGfIZlF3mojGOEzVG7aoWw47xLdHIwwWRcYl4d905TPz9rDqjacoSk5IxYe1ZeN0IVj1uVgxpgPJFCup7tYhIi2q5/VdKRIB/aLQqK2329R7M3X1dBVrcC9thRs+aOPi/NhjZsjwDLWSScp3ZIrXynTp1Uge+bm4pZ7Du3r2rskKkA3luSBp4mzZtUq9PnDhR/ZSgh4ygu3DhgmpkGxoaqrJZ5LHr1q2Dg4ODepyMk5NO6XKGMyQkBMWKFUPLli3h5eWlJhhpSGAoKCgo9bqsrxyoy23SpFFKj6R+NbPmYLok8+MPXk9ZT458JqL8SFLVO3TogICAAPWZIQHyw4cPZzkeVPb5v/76q+orUL16dRWQl2CLNOrNKkBujONEjVVxJxusHtEYP+71wexd17DxtD/O3g7F3H51UvsamBLJrP1k80U1ytTK3AyLB9ZHLbeUZppElH9o9m+SvWbqk9YW7ffFlrP+aqy9kL5eb7WqgE41iqsmuESm7LnKiCSYIWcjJZ1bskhktJsEOXKrdevW6sAkK5lNPUpLDrZlOtKzZExtlDpUQySduWMTkuBWyBaVi6UElIiI8pPc9tj64IMPVPP1vn37quvSX+vWrVsqq9EQshEJ6mB6XLuKaFyuMMavPaN6lPRc4IWPXq6CQU3d1XQqUzFz5zXVp0B+5dl9a6NZBVd9rxIR5WFmi5RRSpNcUxvlfuZ2CBbuu4F/nwz1EE3LF8ZbrcuraaqmtN8nys5zzRWW/4FkgoQspD270kwh4k6KiEzBs3psRUVFpWvCKMzNzTn62QA19HDB9nEt8OGG82qq3rQ/L+OQTzC+e62WSTSGXX7YD/P2pAwK+LJ7TbxcM/v+ckRkvCoUKQgbSzPVCNsvONIkSgXl8/rA9SAs3OeDo76PUm/vWL0YRrcqjzplCul1/YiMNtgyd+5c1SRL0rzlcnbGjRunrXUzKRIV332V/VqIyDBJH620E+c0PbZcXFxQpkwZPHr0SPXOunfvnrrf29tb/SxevLhapMeWlARJkF7KN/39/dVY58x6bElfrrFjx6rr0qvryy+/VO8hZURnzpzBzJkzMXToUJ1vA3o2CaosHlAPq47cwpfbrqg+ZC/PPYjZr9dGo3KF8+0m3HzGH5/9eVldfv+lSnijURl9rxIR5SELczNUK+GI07dDVd+W/BxskT5U2y8EqEyWywEp0/0szAqgR51SaixzhaLMxid6oWDLrFmzVJ29BFvkclYkG4PBludz9m4ogiLi4GBjoc4OEhEZkux6bK1YsQJbt27FkCFDUu/XlP1oxn4+b4+tefPm4dNPP8WYMWMQGBioykdHjRqFKVOm6Og3p9ySYwEpH6rvXgjvrE4pK+q35CjGt6uEsW0r5Lsa/r3egWoqkxjc1B1vt6mg71UiIh2oWcpJBVukb0u32qXy3TaPiU9Ufbh+OnADt4Kj1G22luZqqpBMFyrpzAlrRM9SIDm7pimUJZleJH0HZNKFo6PjC2+pb/++igX7bqCrZ0nM61eHW56IyED315RzMploypZL2HD6rrouk4ukl0l+GYN86tYj9P/5GGLik9C9dknM7FPb5Ho3EJnqvvqPU3dVoFVOkv4+qgnyi8cx8fjt2G0sPeSHh49Tynyd7SxVMHlQE3eTKAsl0tvo5+nTp6sa+oyio6PVffR8pL5dtK/63xleIiIiY2ZvbYEf+nhi1uueagzyMb9HeHnOQey+8l9TRWPlff8xhiw/oQItrSsXwXe9PRloITKxzBZxyT9MtQMwdkERsfjun6to+vUefL3jqgq0lHCywZQu1eA1qS0mtK/EQAtRXme2SGNCGdmZNu1bBAcHq9sSExNhCrQZfb8ZFInW3+9T9Y+nPukAJztLra0nEZGpM7azpfmVX1Ak3llzGhf9U2r+hzRzx6TOVWBtYQ5jc+dRFF5b5IUH4bGoW8YZvw5vBDur55o5QERGuq9OSExCzWn/Ijo+EbsmtkKFosbZt0X2Z4sP+OL3k3fUVFRRvoi9anor5VFWFrk+N09ET+T6yEBiM5lNypEx0NIokXJPGggKSUNkoIWIiPIjD1d7bHirKb7Z4Y1lh/2w/PBNHPd7hPlv1FX3GdPZ3wFLj6lAS6ViBbFscAMGWohMtUluSUecuhWCC/6hRhdsuXo/XDW9/et8gGqCKzxLO2NM6/LoULUYM/WIdBlsKVSokAqyyFKpUqV0ARfJZpFJFaNHj9bGOplssEVGPhMREeVXksUypWs1NKtQWPU6uHQvHF3mHsQXPWqgRx03GEMvg0HLjuNmcBRKOdti1dBGcLZj/wIiUy4lUsGWu+HoYSQtF0/cfKSCLHuuBqbe1qKiK8a0roDG5VwyPalORHkcbJEJEpLVIuM2P/vsM5Xmp2FlZQV3d3c0aZJ/mkPpSmhUHE7cDFGXO1RjsIWIiPK/dlWLYcf4lhi/9ozq4/LuunM4eD0In3erofq8GOpkjhGrTqoAUWF7K1U6VNzJRt+rRUQG0LdFMlsMmXyHk8lpC/bewMlbKd87JKbycs0SeKtVedR48nsQkXbl+IhGxnsKDw8PNGvWDBYWhnkwZGz2eT9UqXtVijugtIudvleHiIhIJyRQsXpEY8zf44M5u6+pEaNnb4dibr86BnfgL70ZJDB01PcRClpbYOXQhkZV+kREeaOW25MmuffC1fG8oY22l32XlAkt2n8DV+8/VrdZmZuhV71SGNmyPPdjRHks1x2PHBwccOXKldTrW7ZsQffu3fHRRx8hLi5O2+uX7+1kCREREZko+WIyvn1FrBnRWE298A2KRM8FXlhx2E+diTUEsh4fb7qIfy49UF9SFg+sZ3DBICLSj3JFCsLOyhxRcYnwfRhhUJl4q47cVAM4Jqw7qwItMhFuVMtyOPi/NpjRsxYDLUSGGGwZNWoUrl27pi77+vri9ddfh52dHdavX48PP/wwL9Yx34pLSMJ+74fqcnuWEBERkYlqVK4wto9roXqXxSUmYdqflzFi1SmEROr/JM63/3hj3ck7kBPWknXTtLyrvleJiAwoYFy9ZMrkpAv+YfpeHYRFx+PHvT5o9vUeTNlyCXdDolXZ4wcdK8NrUjtMfrkqijmy/JHIYIMtEmipXbu2uiwBllatWmH16tVYsWIFNmzYkBfrmG8d8wtGRGwCijhYoxbPkhERkQkrZG+FJQPrYVrXaiqDRJrHvzz3II75ButtnX4+6KsaSYqvetREpxrF9bYuRGSYNJlu5+/qL9gSGB6DGduvqCDLd/94IzgyTjXxnt6tOg5Paou321TgxFMiYxn9nJSUMoN9165d6NKli7pcunRpBAUFaX8N87FdlzVTiIpyvBoREZk8mYIxuJkH6ru7YNyaM6qsqN+SoxjfrhLGtq2g034IG07dxRfbUsqmP+xUGX0bljH5vw8RZd235aIeMltuBkXipwO+an8lWYGicjEHvNW6PF6pVQKW5rk+r05E+gy21K9fH1988QXat2+P/fv3Y+HChep2Pz8/FCvGaTq5CVrtTA22cLsRERGlPVP85zvNVRr8htN3MWvXNXjdCMKcvnV0MgFo95UH+HDDeXV5eHMPNa2DiCi7iUS6bJIrgZ2F+29gx4UAJD1pb1W/bCGMaVMebSoX5fhmImMNtsgI6P79+2Pz5s34+OOPUaFCBXX7H3/8gaZNm+bFOuZLlwPCcS8sBjaWZmhWgfXfREREackI6B/6eKJZhcL4ZPNFNSK685wD+L63pxodnVdO3HyEMb+dVl+aetYphY9ersovLkSUJQ/Xgqr5bGRcIm48jEClYg55dqL2iG+wKm08eP2/aoK2VYqqTJYG7i78KxEZmFznltWqVQsXLlxAWFgYpk6dmnr7d999h5UrV2p7/fKtXZcD1c8WFYvAxtJc36tDRERkkHrWdcNf7zRXTShDouIxbOVJTP/zMmITErX+XlcCwjF0xQnEJiSpLzDfvFaLZb6U7/j7++PNN99E4cKF1ZAL6cV46tSpdOV8mS1yrJ8d6d1YrVo1WFtbq5+bNm2C6TTJzbu+LUlJyfjn0n30WOCFN5YcU4EWec/utUtix/gWWDa4AQMtRAZKa4V8NjY2sLS01NbL5XvS+E90YAkRERHRM8erbhzTFEObeajryw77oddCL/gFRWpty90OjsLAZcfxOCYBDdwL4cc36rLfAeU7ISEhaNasmTpm37FjBy5fvowffvgBzs7OqY8JCAhItyxbtkwFW3r16pXl6x45ckRNKB0wYADOnTunfvbp0wfHjh2DKaiZB31bZGrp+pN30GHWfoz65RTO3gmFtYUZBjQui73vtcbsvnVQtUTKJCQiMkwFkiUnLRcSExMxa9Ys/P7777h9+zbi4tKPZXz06BFMQXh4OJycnFSGj6Nj7nZ0AWHRaDJjDwoUAE583B6uBa3zbD2JiEzdi+yvyTCby3/wxzmV5SKp+1/0qIEeddxe6DUDH8eg96IjuBUchSrFHbBuVBM42fIEEuU/kyZNwuHDh3Hw4MEcP6d79+54/Pgxdu/eneVjJNAi+1oJ4Gh06tQJhQoVwpo1a/L9vnrzGX9MWHcWdcs4Y+OYZi/0WlFxCVh7/I6ahiYtB4SDjQUGNimLwU091BRTIsqnmS2fffYZZs6cqaLVsjOcOHEievbsCTMzM0ybNi1v1jKf2X0lpYSobplCDLQQERHlQvtqxbBjfEs08nBRPRLeXXcO7/1+DpGxCc+1HcNj4jFo2QkVaCntYotVQxsy0EL51tatW9Wwi969e6No0aKoU6cOlixZkuXjHzx4gG3btmHYsGHZvq5ktrz00kvpbuvYsSO8vLyyfE5sbKwKsKRdjD2zRXoyJjyZCpRbIZFxmL3rmhrfPP2vyyrQIoGVSZ2rwGtSW3zQsQoDLUT5Pdjy22+/qZ3y+++/DwsLC/Tr1w8///wzpkyZgqNHj+bNWubTEiJOISIiIso9mUi0ekRjvNu+EmTwh0ws6jrvEC7dy10Kf0x8IoavPKl6tUiW6S9DG6GoY95POyLSF19fXzVJtGLFivjnn38wevRojBs3DqtWrcr08dKP0cHBQZ1Yzc79+/efmkoq1+X2rMyYMUNlsmiW0qVLw1h5FLZHQWsLxMQnwedhRK4z3j//6zKafbMHs3ddV1l7ZQvb4aseNXHwwzYY3ao8HGyYaUdkEsEW2WnWrFlTXS5YsKDKbhFdunRRkW/Knpx58/IJVpc7VCvKzUVERPQcpEHk+PYVsWZEY5RwsoFvUCR6/OiFlV431dSOZ5Gzz2NXn8Fxv0dwsLbAyqEN4O5qz78F5WtJSUmoW7cuvvrqK5XVMmrUKIwYMUIFYDIj/VpkCqn0ZnwW6euSlvx/mPG2tCZPnqy+R2iWO3fuwFiZqSa5KaVPF3LYJNcnMAIfrD+Hlt/uxdJDfoiKS0S1Eo6Y168O9rzXGm80KsMhGkSmFmxxc3NTzbKEjH3+999/1eUTJ06o7uOUvYPXHyIuMQnuhe1QvkhBbi4iIqIX0KhcYWwf10Jli8rn69StlzDyl1MqJT8r8iVw8sYLKtPUysIMSwbVT50mQpSflShRQk0KSqtq1aqqD2NG0tfF29sbw4cPf+brFi9e/KkslsDAwKeyXdKS7w3SmyXtYsxqlkrZh1x4RpPcc3dCMfqXU6rx7fpTdxGfmIzG5VywcmhDbBvXHF09S6pgMhGZYLClR48eqQ2yxo8fj08//VSlIg4cOBBDhw7Ni3XMVy74h8PF3kodFGYX7SciMiQHDhxA165dUbJkSbXv2rx5c7r7N27cqOrzXV1d1f1nz5596jXkDGr58uVha2uLIkWKoFu3brh69eoLjyklKmRvhSUD62Fa12qwMjfDzssP8PLcgyprJTNf77iqvuTI95n5/eqgcbnC3IhkEmQSkQRQ0rp27RrKli371GOXLl2KevXqwdPT85mv26RJE+zcuTPdbXJCtmnTpjAVmr4tt4IjMw3wygnXN5YcRbcfD+PvS/chCXgvVSumJq2tHdkErSoV4XcDonzGIrdP+Prrr1Mvv/baayrTRZpfSZbLq6++qu31yzei4xJgbmaGvg1K4+025REWHa/vVSIiyrHIyEh1wD1kyJBMx3/K/XIQL00XJSU9M3LQLunoZcqUUZPrpKm6NFT08/ODubl5tmNK27Rpo6ZcSEPHGzdupBtTSiQkyDe4mQfqu7tg3Jozqqyo7+Ij+OzV6uhV1w0W5mZ4HBMPe2sL1CtbSGWXjmpVDi9VL84NSCbj3XffVQEQKSOSYRfHjx/H4sWL1ZKWNKtdv369GgudGTnJWqpUKdV3RXMCtmXLlvjmm29UIH3Lli3YtWsXDh06BFMhk4gk6NusgiuCImLhaGOpyhVP3ArB9/94p2a8WJgVQLfapTC6VTlULOag79UmIkMa/Uy5H08XG5+IBftuYLmXH8KjE+Boa4EhTT0wpnV5WFtm/gWDiMiQv9Ru2rRJjQPN6ObNm/Dw8MCZM2dUBkp2zp8/rwI4Pj4+KuNFW2NKZcKFLGn319J40RjHidLz90ebsuUSzt4Jxe+jGmOF102sPHIz9TN4UBN3jGxZjk0nyST99ddfql/K9evX1f5aJotmDJJL8GXChAmqdYAc72bUunVruLu7Y8WKFam3/fHHH/jkk09UE17Zp3/55ZfPbKybX0Y/a4735+/1eWpfM7ipO/r8dBT3QqPRt2FpDG9RDqWcbfW9ukRkKMEWGROXU6aS3ZLTDwTJaFm03xdzdl9/6r7x7Sqqs2p2VrlOMCIiMupgi2TCyEG5nP2UUiIrK6tMHye9BaQ86e7du9i/f786kzpmzJgss2eEZMx89tlnT91urAfw9PxuBkWqSUXz9vg8dR8/g4kMizEHW7I73n+nbQW8UrOEmnQmrQSIyHTk6Ft+ZgfUWR2AJyYmvug65StSOiQZLZmR299uU0Hn60REpC8LFizAhx9+qIItVapUUTX+WQVa0o4plTOvH330kUp5lzGl0lhR0tgzI2ds5fEZM1vI9JR0tlVnmTPDz2Ai0sXxvuyD3mlbUTXjJiLTYpbTMXE5WRhoeZrUh0sqYWbkdrmfiMhUSM8WyXqRLBVpri49A2JiYrQ2pjQ/Trig58fPYCLSBe5riCgzDLHmMQcbS1WzmRm5Xe4nIjIVkiIuQRZppCj1/VJCJCVJ2hhTSpQRP4OJSBe4ryGiFwq2vPzyy6qGUkOaXoWGhqZeDw4OfuqAmIDEpCTVDDczcntCUhI3ExGZLGkblraZ7YuMKSXKiJ/BRKQL3NcQUWZy3Jn1n3/+SXdALKPd+vXrlzp+MyEh4akDYgJsrSzU1CHBaUREZKwiIiLU1CANGdd89uxZuLi4pI5ylmyTe/fuqfs1nwfFixdXi/ReWbdunRr1XKRIEfj7+6vPEVtbWxXM12jXrh169OiBsWPH5mpMKVFm+BlMRLrAfQ0RvdDoZzMzM9y/fx9FixZV1x0cHHDu3DmUK1dOXX/w4AFKlixpMn1bctsxPSouARZmZqqmU1INJaOFU4iIyFjs27cPbdq0eer2QYMGqdGfsgwZMuSp+6dOnaqmA0kQZvjw4Th16hRCQkJQrFgxVUo0ZcoUVK5cOfXxMkp08ODB6jm5GVOaXydckHbwM5jI8OWHfTX3NURkMMGWAwcO4LvvvlMH3wEBAU+NEpUD7pUrV6Z7TqNGjXD06NHU69IscdeuXepAvmDBguoMqJwtlSkXz5qIIe8t71u9enXMnj0bLVq0MKkPBCIiU8D9NRGR4eO+mohMtmeLjHWWJeNtL0JGf3p6emL+/PlZPqZTp04qIKJZtm/fnu7+evXqYfny5bhy5YoqdZLYkaSpZxf0kVT2CRMm4OOPP1ZTMSTI0rlzZzZcJCIiIiIiIiLdZrZIQEJGaoo///wTbdu2hb29vbou/Vz+/vvv5y4jksBNZpkt0oR38+bNOX6d8+fPqwCO9BYoXz6lV0pGkh0jo0TTjg6V6Rby3jNmzMj0OfL7pe1ZI9H30qVLM7OFiMjA8WwpEZHh476aiEy2Qa7U5af15ptvPvWYgQMHIi/6BEjpkjTibdWqlZqCpCllyixTRrJcpKZfAiGZiYuLU2VLkyZNSne7ZMN4eXlluR4ShPnss88y/WAgItI1KeV80exCU6E5p8D9NRHpGvfVOcd9NRHlt/11joMtEsTQNcmk6d27txrxKZMvPv30U5VNI8ESTYaNpv/Khx9+qIIt0qtl586dsLKyyvQ1g4KCVPaNNGdMS65LT5qsSHNGacqoIZM0ZNR1VkEdIqK8xH5ROff48WP1k/trItI17qtzjvtqIspv++scB1v04fXXX0+9XKNGDdSvX18FXrZt24aePXum3te/f3906NBB9XT5/vvv1XjQw4cPw8bGJsvXzhi1kmh6dpEsCe6kDfBIM947d+6oCJh8OMhBvFxns1zd0JRxcZvrDre5YW1z2fdQzkjzdu6v9Yf7Dm7v/I77au3gvlq/uK/mNjcF4To+tjboYEtGJUqUUMEWGf+ZlkwFkqVixYpo3LgxChUqpPq/9OvX76nXcHV1hbm5+VNZLIGBgU9luzyrh42bm5u6rAnSyB+MwRbd4jbXPW5zbnNjw/21YeC+g9s7v+O/8RfDfbVh4L9jbnNT4Kij7+05nkZkCIKDg1UUSoIu2ZEslbTNbNOS8iKZYCSlRmnJdRkbTURERERERERktJktERERamqQhvRlOXv2LFxcXNQybdo09OrVSwVXbt68iY8++khlpvTo0UM93tfXV41xlua2RYoUUX1UvvnmG9ja2uLll19Ofd127dqp54wdO1Zdl94rAwYMUGVJTZo0weLFi9XY59GjR+thKxARERERERFRfqLXYMvJkyfRpk2b1OuaBrQy+UjGMl+4cAGrVq1S458l4CKPleCKpp5KerIcPHgQs2fPRkhIiCoDatmypZoqlHZi0Y0bN1Rj3LS9YCRLZvr06arPi/SD2b59uypReh7Sy2Xq1KnperpQ3uI21z1uc27z/ID/jrnN8zv+G+c2zw/475jb3BTw33n+3+YFkjVz1oiIiIiIiIiIyLR6thARERERERERGToGW4iIiIiIiIiItIjBFiIiIiIiIiIiLWKwhYiIiIiIiIhIixhs0YIFCxbAw8NDTUeqV6+empBEz3bgwAF07doVJUuWRIECBbB58+Z090vvZhn/LffLOO/WrVvj0qVL6R4TGxuLd955R40Et7e3x6uvvoq7d++me4xMqpJR305OTmqRyzLhytTMmDEDDRo0UNO8ZFpX9+7d4e3tne4x3ObaJVPVatWqBUdHR7XIqPkdO3Zwe+sJ99XPh/tq3eP+Wve4vzYs3F8/H+6vdYv7at1baGzH1jKNiJ7f2rVrky0tLZOXLFmSfPny5eTx48cn29vbJ9+6dYub9Rm2b9+e/PHHHydv2LBBJmIlb9q0Kd39X3/9dbKDg4O6/8KFC8mvv/56cokSJZLDw8NTHzN69OjkUqVKJe/cuTP59OnTyW3atEn29PRMTkhISH1Mp06dkmvUqJHs5eWlFrncpUsXk/v7dOzYMXn58uXJFy9eTD579mzyK6+8klymTJnkiIiI1Mdwm2vX1q1bk7dt25bs7e2tlo8++kjtL+RvwO2tW9xXPz/uq3WP+2vd4/7acHB//fy4v9Yt7qt1b6uRHVsz2PKCGjZsqP5gaVWpUiV50qRJL/rSJiVjsCUpKSm5ePHi6n8YjZiYmGQnJ6fkRYsWqeuhoaHqfy75UNbw9/dPNjMzS/7777/VdQmAyWsfPXo09TFHjhxRt129ejXZlAUGBqrtsH//fnWd21w3ChUqlPzzzz9ze+sY99XawX21fnB/rR/cX+sH99fawf217nFfrR+FDPjYmmVELyAuLg6nTp3CSy+9lO52ue7l5fUiL23y/Pz8cP/+/XTb1traGq1atUrdtrLt4+Pj0z1GUsZq1KiR+pgjR46o1K9GjRqlPqZx48bqNlP/G4WFhamfLi4u6ie3ed5KTEzE2rVrERkZqVIeub11h/vqvMN/x7rB/bVucX+tP9xf5x3ur/Me99W6lWgEx9YMtryAoKAg9UcuVqxYutvluvyh6flptl9221Z+WllZoVChQtk+RvqTZCS3mfLfSE54TJw4Ec2bN1c7F8FtnjcuXLiAggULqp396NGjsWnTJlSrVo3bW4e4r8473G/kPe6vdYf7a/3j/jrvcH+dt7iv1p0LRnRsbZHr346eIs1dM/7PlvE20t22zfiYzB5v6n+jsWPH4vz58zh06NBT93Gba1flypVx9uxZ1VRrw4YNGDRoEPbv38/trQfcVxvWtuW+Ome4v9Yd7q8NB/fXhrVtub9+Nu6rdaeyER1bM7PlBUgHY3Nz86ciXIGBgU9F1Ch3ihcvrn5mt23lMZJuKt2is3vMgwcPnnr9hw8fmuzfSLpvb926FXv37oWbm1vq7dzmeUOi5xUqVED9+vVV13pPT0/MmTOH21uHuK/OO9xv5C3ur3WL+2v94/4673B/nXe4r9YtKyM6tmaw5QX/0DLqeefOnelul+tNmzZ9kZc2eTJKW/6hp9228j+GRC0121a2vaWlZbrHBAQE4OLFi6mPkfo9qZ88fvx46mOOHTumbjO1v5FEYyXqvnHjRuzZs0dt47S4zXX3d5CRc9zeusN9dd7hv+O8wf21YeD+Wve4v8473F9rH/fVhiHZkI+ttdAA2KRpxtMtXbpUdS6eMGGCGv188+ZNfa+awXv8+HHymTNn1CL/FGfOnKkua8ZmSydp6R69ceNGNbqrX79+mY7ucnNzS961a5ca3dW2bdtMR3fVqlVLdZGWpWbNmiY5+vmtt95S23Pfvn3JAQEBqUtUVFTqY7jNtWvy5MnJBw4cSPbz80s+f/68Gk8n3c7//fdfbm8d4776+XFfrXvcX+se99eGg/vr58f9tW5xX617k43s2JrBFi348ccfk8uWLZtsZWWVXLdu3dRRupS9vXv3qiBLxmXQoEHqfhnfNXXqVDXCy9raOrlly5bqf5q0oqOjk8eOHZvs4uKSbGtrq/4nuH37drrHBAcHJ/fv31/NXJdFLoeEhJjcnyezbS3L8uXLUx/Dba5dQ4cOTd03FClSJLldu3apHwbc3rrHffXz4b5a97i/1j3urw0L99fPh/tr3eK+WveGGtmxdQH5z4sn7xARERERERERkWDPFiIiIiIiIiIiLWKwhYiIiIiIiIhIixhsISIiIiIiIiLSIgZbiIiIiIiIiIi0iMEWIiIiIiIiIiItYrCFiIiIiIiIiEiLGGwhIiIiIiIiItIiBluIiIiIiIiIiLSIwRaiJ27evIkCBQrg7NmzBrNNrl69isaNG8PGxga1a9fW9+oQEekd99VERMaB+2sydQy2kMEYPHiwCnZ8/fXX6W7fvHmzut0UTZ06Ffb29vD29sbu3bvzzQcdERkv7qufxn01ERki7q+fxv016RKDLWRQJIPjm2++QUhICPKLuLi4537ujRs30Lx5c5QtWxaFCxfW6noRET0v7qvT476aiAwV99fpcX9NusRgCxmU9u3bo3jx4pgxY0aWj5k2bdpTJTWzZ8+Gu7t7ukh+9+7d8dVXX6FYsWJwdnbGZ599hoSEBHzwwQdwcXGBm5sbli1blmnpTtOmTdWHU/Xq1bFv375091++fBkvv/wyChYsqF57wIABCAoKSr2/devWGDt2LCZOnAhXV1d06NAh098jKSkJ06dPV+thbW2tfqe///479X7JRjl16pR6jFyW3zsz8hwJyMjvKAGZLl26qA8SDQ8PD/WzTp066nVk/XLy/pqMmN9//x0tWrSAra0tGjRogGvXruHEiROoX7++2gadOnXCw4cPU58n26thw4YqI0fWqVmzZrh161am605Exon7au6ricg4cH/N/TXpD4MtZFDMzc1VgGTevHm4e/fuC73Wnj17cO/ePRw4cAAzZ85UwQoJRBQqVAjHjh3D6NGj1XLnzp10z5NgzHvvvYczZ86ooMurr76K4OBgdV9AQABatWqlAhMnT55UwYkHDx6gT58+6V5j5cqVsLCwwOHDh/HTTz9lun5z5szBDz/8gO+//x7nz59Hx44d1Xtdv3499b0k2CPrIpfff//9TF8nMjJSBXYkACKlRmZmZujRo4cKpojjx4+rn7t27VKvs3Hjxhy9f9p0y08++QSnT59Wv1O/fv3w4YcfqucfPHhQBXamTJmiHivBLAlyyTaS1zxy5AhGjhxpsmVgRPkV99XcVxORceD+mvtr0qNkIgMxaNCg5G7duqnLjRs3Th46dKi6vGnTpuS0/1SnTp2a7Onpme65s2bNSi5btmy615LriYmJqbdVrlw5uUWLFqnXExISku3t7ZPXrFmjrvv5+an3+frrr1MfEx8fn+zm5pb8zTffqOuffvpp8ksvvZTuve/cuaOe5+3tra63atUquXbt2s/8fUuWLJn85ZdfprutQYMGyWPGjEm9Lr+n/L65ERgYqNbnwoUL6X6vM2fO5Or9Nc/7+eefU++XbSW37d69O/W2GTNmqG0rgoOD1f379u3L1ToTkfHgvpr7aiIyDtxfc39N+sXMFjJI0rdFskOkZOd5SVaIZHloSMlPzZo100X6pewmMDAw3fOaNGmSelkyOaRc5sqVK+q6lPXs3btXlc9olipVqqj70pbuyHOyEx4errJupMQmLbmuea+ckvd94403UK5cOTg6OqaWDd2+fVsr71+rVq1021Ck3Y5ym2YbSnmWlHBJlkzXrl1V9otk0xBR/sR9dc5xX01E+sT9dc5xf03awmALGaSWLVuqL+wfffTRU/dJACU5WRIo/hMfH//U4ywtLdNdl1KWzG7TlNtkR1MGI4+VIIJM9km7SOmNrLOG9CvJiYzlNfJ75bbkRtZHypyWLFmiyqNkyWlj3py8f9ptprkv421pt+Hy5ctV+ZCUYK1btw6VKlXC0aNHc/U7EZFx4L4657ivJiJ94v4657i/Jm1hsIUMloyA/vPPP+Hl5ZXu9iJFiuD+/fvpAi7aHGucNjAgPUgkm0WTvVK3bl1cunRJNeOtUKFCuiWnARYhGSglS5bEoUOH0t0uv2vVqlVz/DoSZJFMFOmp0q5dO/XcjJOcrKys1M/ExEStv39WpBnv5MmT1evVqFEDq1evfuHXJCLDxH31s3FfTUSGgPvrZ+P+mrSJwRYyWFKq0r9/f9UsNy2ZpiPTb7799luV5vfjjz9ix44dWntfeb1NmzapqURvv/22Cl4MHTpU3SfXHz16pJrESuNZX19f/Pvvv+r+tMGMnJBGvJLSKdkf3t7emDRpkgoajR8/PsevIc1+pRRq8eLF8PHxUU2BpVluWkWLFlWThDTNfMPCwrT2/hn5+fmpIItktsgEItk2Mr1IGwEcIjJM3Fc/G/fVRGQIuL9+Nu6vSZsYbCGD9vnnnz9VMiRf3BcsWKCCIp6enirokdWknueN+ksQQl5bpu1s2bJFjXAWkg0iE4YksCJlTpK1IcEJJyendP1hcmLcuHFq0pAs8uEnwZCtW7eiYsWKOX4Nec+1a9eq7BtZl3fffRffffddusdI35m5c+eqqUiy/t26ddPa+2dkZ2englS9evVS5UMyiUjGYI8aNeq5X5OIDB/31dnjvpqIDAX319nj/pq0qYB0ydXqKxIRERERERERmTBmthARERERERERaRGDLUREREREREREWsRgCxERERERERGRFjHYQkRERERERESkRQy2EBERERERERFpEYMtRERERERERERaxGALEREREREREZEWMdhCRERERERERKRFDLYQEREREREREWkRgy1ERERERERERFrEYAsREREREREREbTn/yapcA6kF4FbAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "g= sns.relplot(\n", + " data=calculations_df_long,\n", + " x='natoms_output',\n", + " y='Value',\n", + " row='run',\n", + " col='ElasticConstant',\n", + " kind='line', # Use 'line' if you want line plots\n", + " marker='o',\n", + " facet_kws={'sharey': False, 'sharex': True},\n", + " height=2.5,\n", + " aspect=1.5\n", + ")\n", + "\n", + "g.set_axis_labels(\"Number of atoms\", \"Elastic Constant Value (GPa)\")\n", + "g.set_titles(row_template='MD Steps = {row_name}', col_template='{col_name}')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "cd3ad7b7", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "pyiron-latest", + "language": "python", + "name": "pyiron-latest" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From 9342377fc397466295d61021b6d9e214d1f25274 Mon Sep 17 00:00:00 2001 From: Prabhath C Date: Thu, 15 Jan 2026 17:36:29 +0100 Subject: [PATCH 4/4] Add ADIS notebook, add testing for pressure moving average --- .../elastic_constants/MD/MD_08-10-25.ipynb | 322 +- .../MD/MD_13-01-26_ADIS.ipynb | 1705 +++++++++ .../elastic_constants/MD/MD_15-01-26.ipynb | 3175 +++++++++++++++++ .../MD/thermal_expansion_data.txt | 21 + 4 files changed, 4986 insertions(+), 237 deletions(-) create mode 100644 hackathon/elastic_constants/MD/MD_13-01-26_ADIS.ipynb create mode 100644 hackathon/elastic_constants/MD/MD_15-01-26.ipynb create mode 100644 hackathon/elastic_constants/MD/thermal_expansion_data.txt diff --git a/hackathon/elastic_constants/MD/MD_08-10-25.ipynb b/hackathon/elastic_constants/MD/MD_08-10-25.ipynb index e4d4339..58a5183 100644 --- a/hackathon/elastic_constants/MD/MD_08-10-25.ipynb +++ b/hackathon/elastic_constants/MD/MD_08-10-25.ipynb @@ -108,11 +108,7 @@ "output_type": "stream", "text": [ "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/__init__.py:63: UserWarning: calc_static_with_qe(), evaluate_with_qe() and optimize_positions_and_volume_with_qe() are not available as the import of the module named 'pwtools' failed.\n", - " raise_warning(module_list=quantum_espresso_function, import_error=e)\n", - "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/__init__.py:41: UserWarning: calc_molecular_dynamics_phonons_with_lammpslib() is not available as the import of the module named 'dynaphopy' failed.\n", - " raise_warning(module_list=lammps_phonon_functions, import_error=e)\n", - "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/__init__.py:94: UserWarning: calc_molecular_dynamics_phonons_with_lammpslib() is not available as the import of the module named 'dynaphopy' failed.\n", - " raise_warning(module_list=lammps_phonon_functions, import_error=e)\n" + " raise_warning(module_list=quantum_espresso_function, import_error=e)\n" ] } ], @@ -174,20 +170,7 @@ "execution_count": 5, "id": "b07fbd51", "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/potential.py:324: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df_pot[\"Config\"] = config_lst\n" - ] - } - ], + "outputs": [], "source": [ "potential_name_str = \"2001--Mishin-Y--Cu-1--LAMMPS--ipr1\"\n", "\n", @@ -198,7 +181,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "id": "33410d3d", "metadata": {}, "outputs": [ @@ -214,7 +197,7 @@ " 'Citations': \"[{'Mishin_2001': {'title': 'Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations', 'journal': 'Physical Review B', 'volume': '63', 'pages': '224106', 'number': '22', 'doi': '10.1103/physrevb.63.224106', 'publisher': 'American Physical Society (APS)', 'url': 'https://doi.org/10.1103%2Fphysrevb.63.224106', 'year': '2001', 'author': ['Y. Mishin', 'M. J. Mehl', 'D. A. Papaconstantopoulos', 'A. F. Voter', 'J. D. Kress']}}]\"}" ] }, - "execution_count": 7, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -233,7 +216,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "id": "92ee7631", "metadata": {}, "outputs": [], @@ -261,7 +244,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "id": "2c46da55", "metadata": {}, "outputs": [], @@ -275,32 +258,14 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "id": "f3dcce5a", "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/potential.py:324: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df_pot[\"Config\"] = config_lst\n", - "--------------------------------------------------------------------------\n", - "WARNING: There was an error initializing an OpenFabrics device.\n", - "\n", - " Local host: cmti001\n", - " Local device: hfi1_0\n", - "--------------------------------------------------------------------------\n" - ] - }, { "data": { "text/plain": [ - "Atoms(symbols='Cu4', pbc=True, cell=[3.6150000810785805, 3.6150000810785805, 3.6150000810785805])" + "Atoms(symbols='Cu4', pbc=True, cell=[3.61500008107858, 3.61500008107858, 3.6150000810785805])" ] }, "execution_count": 9, @@ -328,7 +293,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "id": "6ce6b4ba-ed90-4d53-a502-549e2980a481", "metadata": {}, "outputs": [], @@ -352,29 +317,17 @@ }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 11, "id": "e49c9a2b", "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/potential.py:324: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df_pot[\"Config\"] = config_lst\n" - ] - }, { "data": { "text/plain": [ - "3.61500008107858" + "np.float64(3.61500008107858)" ] }, - "execution_count": 60, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -406,7 +359,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 12, "id": "6da5fde2", "metadata": {}, "outputs": [], @@ -433,7 +386,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 13, "id": "66091ecb", "metadata": {}, "outputs": [], @@ -465,7 +418,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 14, "id": "fdd3131b", "metadata": {}, "outputs": [], @@ -504,7 +457,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "id": "a1655241", "metadata": {}, "outputs": [], @@ -546,25 +499,10 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 16, "id": "ee98fe5d", "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/potential.py:324: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df_pot[\"Config\"] = config_lst\n", - "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/helpers.py:29: UserWarning: Warning: setting upper trangular matrix might slow down the calculation\n", - " lmp.interactive_structure_setter(\n" - ] - } - ], + "outputs": [], "source": [ "elastic_constants_list_0, tensor_dict_0 = calculate_elastic_constants_at_0K(\n", " structure=relaxed_unit_cell, \n", @@ -575,7 +513,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 17, "id": "8d66bf8b", "metadata": {}, "outputs": [ @@ -621,25 +559,10 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "id": "11aa1585", "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/potential.py:324: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df_pot[\"Config\"] = config_lst\n", - "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/helpers.py:29: UserWarning: Warning: setting upper trangular matrix might slow down the calculation\n", - " lmp.interactive_structure_setter(\n" - ] - } - ], + "outputs": [], "source": [ "elastic_constants_list_0_r5, tensor_dict_0_r5 = calculate_elastic_constants_at_0K(\n", " structure=relaxed_unit_cell.repeat(5), # 500 atoms\n", @@ -650,7 +573,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 19, "id": "c33bfe89", "metadata": {}, "outputs": [ @@ -688,25 +611,10 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 20, "id": "afdb1be8", "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/potential.py:324: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df_pot[\"Config\"] = config_lst\n", - "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/helpers.py:29: UserWarning: Warning: setting upper trangular matrix might slow down the calculation\n", - " lmp.interactive_structure_setter(\n" - ] - } - ], + "outputs": [], "source": [ "elastic_constants_list_0_r5_s_0d0005, tensor_dict_0_r5_s_0d0005 = calculate_elastic_constants_at_0K(\n", " structure=relaxed_unit_cell.repeat(5), \n", @@ -717,7 +625,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "id": "ce937595", "metadata": {}, "outputs": [ @@ -727,7 +635,7 @@ "array([169.8, 122.5, 76.2])" ] }, - "execution_count": 43, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } @@ -739,25 +647,10 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 22, "id": "7f31c5dc", "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/potential.py:324: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df_pot[\"Config\"] = config_lst\n", - "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/helpers.py:29: UserWarning: Warning: setting upper trangular matrix might slow down the calculation\n", - " lmp.interactive_structure_setter(\n" - ] - } - ], + "outputs": [], "source": [ "elastic_constants_list_0_r5_s_0d00005, tensor_dict_0_r5_s_0d00005 = calculate_elastic_constants_at_0K(\n", " structure=relaxed_unit_cell.repeat(5), \n", @@ -776,7 +669,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 23, "id": "ad42bff1", "metadata": {}, "outputs": [ @@ -786,7 +679,7 @@ "array([169.9, 122.6, 0. ])" ] }, - "execution_count": 45, + "execution_count": 23, "metadata": {}, "output_type": "execute_result" } @@ -806,25 +699,10 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 24, "id": "9ae7a71e", "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/potential.py:324: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df_pot[\"Config\"] = config_lst\n", - "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/helpers.py:29: UserWarning: Warning: setting upper trangular matrix might slow down the calculation\n", - " lmp.interactive_structure_setter(\n" - ] - } - ], + "outputs": [], "source": [ "elastic_constants_list_0_r5_s_0d0001, tensor_dict_0_r5_s_0d0001 = calculate_elastic_constants_at_0K(\n", " structure=relaxed_unit_cell.repeat(5), \n", @@ -835,7 +713,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 25, "id": "a3af7799", "metadata": {}, "outputs": [ @@ -845,7 +723,7 @@ "array([169.9, 122.6, 76.2])" ] }, - "execution_count": 47, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } @@ -882,7 +760,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 26, "id": "abfe2e9f", "metadata": {}, "outputs": [], @@ -923,27 +801,10 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 27, "id": "07218d2f", "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/workflows/elastic/symmetry.py:32: DeprecationWarning: dict interface is deprecated. Use attribute interface instead\n", - " SGN = dataset[\"number\"]\n", - "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/potential.py:324: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df_pot[\"Config\"] = config_lst\n", - "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/helpers.py:29: UserWarning: Warning: setting upper trangular matrix might slow down the calculation\n", - " lmp.interactive_structure_setter(\n" - ] - } - ], + "outputs": [], "source": [ "elastic_dict = fit_elastic_constants(\n", " structure=relaxed_unit_cell,\n", @@ -954,7 +815,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 28, "id": "2b379a68", "metadata": {}, "outputs": [ @@ -975,7 +836,7 @@ " 0. , 76.24914297]])" ] }, - "execution_count": 50, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } @@ -986,7 +847,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 29, "id": "9d40a4ab", "metadata": {}, "outputs": [ @@ -996,7 +857,7 @@ "array([169.7, 123.6, 76.2])" ] }, - "execution_count": 51, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" } @@ -1033,7 +894,7 @@ }, { "cell_type": "code", - "execution_count": 86, + "execution_count": 30, "id": "d35b8305", "metadata": {}, "outputs": [], @@ -1126,7 +987,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 31, "id": "0982c65f", "metadata": {}, "outputs": [ @@ -1136,7 +997,7 @@ "array([ 200., 400., 600., 800., 1000.])" ] }, - "execution_count": 53, + "execution_count": 31, "metadata": {}, "output_type": "execute_result" } @@ -1148,7 +1009,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 32, "id": "d35d730e", "metadata": {}, "outputs": [], @@ -1158,7 +1019,7 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 33, "id": "46199553", "metadata": {}, "outputs": [], @@ -1168,47 +1029,10 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 34, "id": "641d2fe7", "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/potential.py:324: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df_pot[\"Config\"] = config_lst\n", - "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/potential.py:324: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df_pot[\"Config\"] = config_lst\n", - "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/potential.py:324: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df_pot[\"Config\"] = config_lst\n", - "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/potential.py:324: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df_pot[\"Config\"] = config_lst\n", - "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/potential.py:324: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df_pot[\"Config\"] = config_lst\n" - ] - } - ], + "outputs": [], "source": [ "for temp in temps:\n", " equilibriated_cells_dict[temp] = equilibriate_structure_at_finite_temperature(\n", @@ -1222,21 +1046,21 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 35, "id": "2eaf66a3", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "{200.0: Atoms(symbols='Cu500', pbc=True, cell=[18.13009526549904, 18.13009526549904, 18.13009526549904], momenta=...),\n", - " 400.0: Atoms(symbols='Cu500', pbc=True, cell=[18.189762350319793, 18.189762350319793, 18.189762350319793], momenta=...),\n", - " 600.0: Atoms(symbols='Cu500', pbc=True, cell=[18.25254286101205, 18.25254286101205, 18.25254286101205], momenta=...),\n", - " 800.0: Atoms(symbols='Cu500', pbc=True, cell=[18.32136441717797, 18.32136441717797, 18.32136441717797], momenta=...),\n", - " 1000.0: Atoms(symbols='Cu500', pbc=True, cell=[18.396310570465143, 18.396310570465143, 18.396310570465143], momenta=...)}" + "{np.float64(200.0): Atoms(symbols='Cu500', pbc=True, cell=[18.130646984904782, 18.130646984904782, 18.130646984904782], momenta=...),\n", + " np.float64(400.0): Atoms(symbols='Cu500', pbc=True, cell=[18.189313754955023, 18.189313754955023, 18.189313754955023], momenta=...),\n", + " np.float64(600.0): Atoms(symbols='Cu500', pbc=True, cell=[18.25279552326005, 18.25279552326005, 18.25279552326005], momenta=...),\n", + " np.float64(800.0): Atoms(symbols='Cu500', pbc=True, cell=[18.321649201369205, 18.321649201369205, 18.321649201369205], momenta=...),\n", + " np.float64(1000.0): Atoms(symbols='Cu500', pbc=True, cell=[18.397855499885452, 18.397855499885452, 18.397855499885452], momenta=...)}" ] }, - "execution_count": 58, + "execution_count": 35, "metadata": {}, "output_type": "execute_result" } @@ -1247,7 +1071,7 @@ }, { "cell_type": "code", - "execution_count": 78, + "execution_count": 36, "id": "f45c3fa6", "metadata": {}, "outputs": [ @@ -1257,7 +1081,7 @@ "array([ 200., 400., 600., 800., 1000.])" ] }, - "execution_count": 78, + "execution_count": 36, "metadata": {}, "output_type": "execute_result" } @@ -1268,13 +1092,33 @@ }, { "cell_type": "code", - "execution_count": 87, + "execution_count": 45, + "id": "14ff4ad3", + "metadata": {}, + "outputs": [], + "source": [ + "expansion_ref_df = pd.read_csv('./thermal_expansion_data.txt', delimiter=',', header=None, names=['Temperature', 'Expansion']).sort_values(by='Temperature')" + ] + }, + { + "cell_type": "code", + "execution_count": null, "id": "585b271d", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAHFCAYAAAAqg1fhAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAaA9JREFUeJzt3XlcV1X+x/HXV1ZxKzeQ3KBNjUwDLTRTx8Q0y1JHK9dcJlJTYSrXFp2KLHPIXMhSy3FMm1wyh0qaEHUkV7RSs5pUyiCCFFKM9f7+uD+/+g1QUPjeL/B+Ph4+hnvuufd+7j0yfjr33HNshmEYiIiIiEi5q2F1ACIiIiJVlRItERERkQqiREtERESkgijREhEREakgSrREREREKogSLREREZEKokRLREREpIIo0RIRERGpIEq0RERERCqIEi0Ri9lstlL92bJlC1u2bMFms/H+++9bHXa5OndfW7ZssToUl/P2229js9k4duyY1aFcllWrVhEdHV3sPpvNxnPPPefUeESczd3qAESqu8TERIftv/3tb8THx/PZZ585lLdp04Z9+/Y5MzRxAffccw+JiYk0adLE6lAuy6pVq/jqq6+YPHlykX2JiYk0bdrU+UGJOJESLRGL3X777Q7bjRo1okaNGkXKnSk7OxsfHx/Lri/nNWrUiEaNGlkdht3Zs2epWbNmuZzLyr/jIs6iV4cilVBeXh4zZszA39+funXrctddd3HkyJEi9T799FN69OhB3bp18fHxoXPnzvznP/9xqPPcc89hs9nYt28fAwcO5Oqrr+baa68FoGXLlvTt25dNmzbRvn17atasSevWrdm0aRNgvtZq3bo1tWrVomPHjuzZs8fh3Hv27OHBBx+kZcuW1KxZk5YtW/LQQw9x/PjxK7r/b7/9locffpjGjRvj5eVF69atWbhwoX3/77//Tvv27bnuuuvIzMy0l6empuLn50e3bt0oKCgAYOTIkdSuXZuDBw/So0cPatWqRaNGjZgwYQLZ2dkO1124cCF33nknjRs3platWtx88828/PLL5OXlOdTr1q0bQUFB7N69my5duuDj40NgYCAvvfQShYWF9nqFhYU8//zz3HjjjdSsWZOrrrqKtm3b8tprr9nrlPTqcNmyZdxyyy14e3tTv359HnjgAQ4fPuxQ59y9fffdd/Tp04fatWvTrFkz/vrXv5KTk3PJ53yu/detW0f79u3x9vZm1qxZpX4W3bp149///jfHjx93eA1+TnGvDr/66iv69evH1Vdfjbe3N+3ateOdd965ZKwirkqJlkglNH36dI4fP85bb73FkiVL+Pbbb7n33nvtyQPAypUrCQsLo27durzzzju899571K9fn169ehVJtgD69+/Pddddx7/+9S9iYmLs5QcOHGDatGlMmTKFdevWUa9ePfr378+zzz7LW2+9xYsvvsg///lPMjMz6du3L2fPnrUfe+zYMW688Uaio6P55JNPmDNnDikpKXTo0IH09PTLuvdDhw7RoUMHvvrqK1599VU2bdrEPffcw8SJE+1JgLe3N++99x5paWmMGjUKMJOaIUOGYBgG7777Lm5ubvZz5uXl0adPH3r06MGGDRuYMGECb7zxBoMHD3a49v/+9z8efvhh/vGPf7Bp0yZGjx7NK6+8wqOPPlokztTUVIYMGcLQoUPZuHEjvXv3Ztq0aaxcudJe5+WXX+a5557joYce4t///jdr1qxh9OjRnDp16qLPICoqitGjR3PTTTexbt06XnvtNb744gtCQ0P59ttvHerm5eVx33330aNHDz744ANGjRrF3//+d+bMmVOq571v3z6efPJJJk6cyMcff8yAAQNK/SwWLVpE586d8fPzIzEx0f6nJEeOHKFTp04cPHiQ+fPns27dOtq0acPIkSN5+eWXSxWviMsxRMSljBgxwqhVq1ax++Lj4w3A6NOnj0P5e++9ZwBGYmKiYRiGcebMGaN+/frGvffe61CvoKDAuOWWW4yOHTvay5599lkDMJ555pki12vRooVRs2ZN48cff7SX7d+/3wCMJk2aGGfOnLGXb9iwwQCMjRs3lnhv+fn5xunTp41atWoZr732WpH7io+PL/HYc3r16mU0bdrUyMzMdCifMGGC4e3tbfz666/2sjVr1hiAER0dbTzzzDNGjRo1jM2bNzscN2LECANwiMcwDOOFF14wAGP79u3FxlFQUGDk5eUZK1asMNzc3Byu27VrVwMwdu7c6XBMmzZtjF69etm3+/bta7Rr1+6i97t8+XIDMI4ePWoYhmGcPHnSqFmzZpG/A8nJyYaXl5fx8MMPF7m39957z6Funz59jBtvvPGi1zUMs/3d3NyMI0eOXLTexZ7FPffcY7Ro0aLY4wDj2WeftW8/+OCDhpeXl5GcnOxQr3fv3oaPj49x6tSpS8Ys4mrUoyVSCd13330O223btgWwv5LbsWMHv/76KyNGjCA/P9/+p7CwkLvvvpvdu3dz5swZh3Oc66n4o3bt2nHNNdfYt1u3bg2Yr4UuHMd1rvzC14KnT59mypQpXHfddbi7u+Pu7k7t2rU5c+ZMkddcFzIMwyHu/Px8wHwl+J///IcHHngAHx8fh/19+vTh999/5/PPP7efZ9CgQTz22GM8+eSTPP/880yfPp2ePXsWe80hQ4Y4bD/88MMAxMfH28uSkpK47777aNCgAW5ubnh4eDB8+HAKCgr45ptvHI738/OjY8eODmVt27Z1eD4dO3bkwIEDjBs3jk8++YSsrKwSn8k5iYmJnD17lpEjRzqUN2vWjD/96U9FeittNhv33nvvReO4mLZt23LDDTcUKS/Lsyitzz77jB49etCsWTOH8pEjR5KdnX3R3jARV6VES6QSatCggcO2l5cXgP213c8//wzAwIED8fDwcPgzZ84cDMPg119/dThHSV+11a9f32Hb09PzouW///67vezhhx9mwYIFjBkzhk8++YRdu3axe/duGjVq5PCK8Y8SEhKKxH3s2DEyMjLIz8/n9ddfL7K/T58+AEVeSY4aNYq8vDzc3d2ZOHFisddzd3cv8kz9/PwAyMjIACA5OZkuXbpw4sQJXnvtNbZt28bu3bvtY8P+eD9/PB+Y7XRhvWnTpjF37lw+//xzevfuTYMGDejRo0eRsW4XOhdPce3l7+9v33+Oj48P3t7eReK4sJ0uprjrlPVZlFZGRkaJ93Vuv0hlo68ORaqghg0bAvD666+X+GWXr6+vw/aFg5TLQ2ZmJps2beLZZ59l6tSp9vKcnJwiSd4fBQcHs3v3bocyf39/8vPzcXNzY9iwYYwfP77YYwMCAuw/nzlzhmHDhnHDDTfw888/M2bMGD744IMix+Tn55ORkeGQHKWmpgLnE6YNGzZw5swZ1q1bR4sWLez19u/ff9F7uRh3d3ciIyOJjIzk1KlTfPrpp0yfPp1evXrxww8/FPvl57l4UlJSiuz76aef7G1fXor7e1ERzwLMeyvpvoByvzcRZ1CiJVIFde7cmauuuopDhw4xYcIES2Kw2WwYhmHvbTvnrbfechi0X5w6deoQEhJSpNzT05Pu3buTlJRE27Zt7b1oJQkPDyc5OZldu3bx9ddfM3DgQP7+978TERFRpO4///lPhx6vVatWAeYr0nP3Azjcj2EYvPnmmxeNobSuuuoqBg4cyIkTJ5g8eTLHjh2jTZs2ReqFhoZSs2ZNVq5cyZ///Gd7+Y8//shnn33GwIEDyyWeiynLs/hjL97F9OjRg/Xr1/PTTz/Ze7EAVqxYgY+Pj6aDkEpJiZZIFVS7dm1ef/11RowYwa+//srAgQNp3Lgxv/zyCwcOHOCXX35h8eLFFRpD3bp1ufPOO3nllVdo2LAhLVu2JCEhgaVLl3LVVVdd9nlfe+017rjjDrp06cJjjz1Gy5Yt+e233/juu+/48MMP7RO9vvXWW6xcuZLly5dz0003cdNNNzFhwgSmTJlC586dHcZPeXp68uqrr3L69Gk6dOjAjh07eP755+nduzd33HEHAD179sTT05OHHnqIp556it9//53Fixdz8uTJy76Xe++9l6CgIEJCQmjUqBHHjx8nOjqaFi1acP311xd7zFVXXcXTTz/N9OnTGT58OA899BAZGRnMmjULb29vnn322cuOp7TK8ixuvvlm1q1bx+LFiwkODqZGjRrFJtEAzz77LJs2baJ79+4888wz1K9fn3/+85/8+9//5uWXX6ZevXoVfWsi5U5jtESqqKFDhxIfH8/p06d59NFHueuuu5g0aRL79u2jR48eTolh1apVdO/enaeeeor+/fuzZ88e4uLirugfzHMz5AcFBTFz5kzCwsIYPXo077//vv2+vvzySyZOnMiIESMcBo3PnTuXtm3bMnjwYIcpFDw8PNi0aRNxcXH069eP+fPnM3bsWP71r3/Z67Rq1Yq1a9dy8uRJ+vfvz+OPP067du2YP3/+Zd9L9+7d2bp1K+Hh4fTs2ZOZM2fSo0cP+xi1kkybNo233nqLAwcOcP/99zNhwgRuuukmduzYUWKCVp7K8iwmTZrEwIEDmT59OrfffjsdOnQo8bw33ngjO3bs4MYbb2T8+PHcf//9fPXVVyxfvpwnn3yyIm9JpMLYDMMwrA5CRMQqI0eO5P333+f06dNWhyIiVZB6tEREREQqiBItERERkQqiV4ciIiIiFcTyHq1FixYREBCAt7c3wcHBbNu27aL1ExISCA4Oxtvbm8DAQIc12QAOHjzIgAEDaNmyJTabjejo6CLnyM/PZ+bMmQQEBFCzZk0CAwOZPXu2w2KvIiIiIlfK0kRrzZo1TJ48mRkzZpCUlESXLl3o3bs3ycnJxdY/evQoffr0oUuXLiQlJTF9+nQmTpzI2rVr7XWys7MJDAzkpZdess/s/Edz5swhJiaGBQsWcPjwYV5++WVeeeUVXn/99Qq5TxEREameLH11eNttt3Hrrbc6zOfTunVr7r//fqKioorUnzJlChs3bnRYIy08PJwDBw4UuwZWy5YtmTx5MpMnT3Yo79u3L76+vixdutReNmDAAHx8fPjHP/5RDncmIiIiYuGEpbm5uezdu9dhaQ6AsLAwduzYUewxiYmJhIWFOZT16tWLpUuXkpeXd9F5Zy50xx13EBMTwzfffMMNN9zAgQMH2L59e7GvGc/JyckhJyfHvl1YWMivv/5KgwYNyn3pEhEREakYhmHw22+/4e/vT40aFf9iz7JEKz09nYKCgiLrrfn6+trXGPuj1NTUYuvn5+eTnp5e4qK4fzRlyhQyMzNp1aoVbm5uFBQU8MILL/DQQw+VeExUVBSzZs0q1flFRETEtf3www80bdq0wq9j+RI8f+wNMgzjoj1ExdUvrvxi1qxZw8qVK1m1ahU33XQT+/fvZ/Lkyfj7+zNixIhij5k2bRqRkZH27czMTJo3b84333xD/fr1S31tKX95eXnEx8fTvXv3UvdqSsVRe7gOtYXrUFtY78MPbUyf7kZKym9AM+rUqeOU61qWaDVs2BA3N7civVdpaWlFeq3O8fPzK7a+u7u7fUX70njyySeZOnUqDz74IGCuxXX8+HGioqJKTLS8vLyKLI4LUL9+/TJdW8pfXl4ePj4+NGjQQP8H5gLUHq5DbeE61BbWWrcORo0Cs2/G7Jhx1rAfy7469PT0JDg4mLi4OIfyuLg4OnXqVOwxoaGhRepv3ryZkJCQMv3Fzc7OLvJe1s3NTdM7iIiIVDEFBTBp0rkky/ksfXUYGRnJsGHDCAkJITQ0lCVLlpCcnEx4eDhgvq47ceIEK1asAMwvDBcsWEBkZCRjx44lMTGRpUuX8u6779rPmZuby6FDh+w/nzhxgv3791O7dm2uu+46AO69915eeOEFmjdvzk033URSUhLz5s1j1KhRTn4CIiIiUpG2bYMff7Tu+pYmWoMHDyYjI4PZs2eTkpJCUFAQsbGxtGjRAoCUlBSHObUCAgKIjY0lIiKChQsX4u/vz/z58xkwYIC9zk8//UT79u3t23PnzmXu3Ll07dqVLVu2APD666/z9NNPM27cONLS0vD39+fRRx/lmWeecc6Ni4iIiFOkpFh7fcsHw48bN45x48YVu+/tt98uUta1a1f27dtX4vlatmzJpaYGq1OnDtHR0RedzkFEREQqvxKGfTuN5UvwiIiIiFSEs2fhgjnRLWF5j5aIiIhIeUtLg3794PPPwc3NHBRvszl/ULx6tERERKRKOXQIbrvNTLKuvhr+8x9Yuxauucb5sSjREhERkSolIwN++gmuu85Mtrp2hf794dgx2LAh36mx6NWhiIiIVCldusAHH0BICDRseL7czQ3uuMO57w7VoyUiIiKVWmEhzJoFX311vuzuux2TLKso0RIREZFK6+xZeOgheO45uOceOHPG6ogc6dWhiIiIVEq//GJ+WZiYCB4eMHs21KpldVSOlGiJiIhIpfP112YP1vffw1VXwfr10K2b1VEVpVeHIiIiUqnEx0NoqJlkBQaaXxa6YpIFSrRERESkEjEMeOUVOHUKOnUyk6wbb7Q6qpIp0RIREZFKw2aDVavgqafMiUgbNbI6ootToiUiIiIu7fffYcWK89tXXQVz5oC3t2UhlZoGw4uIiIjL+uUXuP9+2LHDfF04caLVEZWNEi0RERFxSUeOQJ8+578sDAqyOqKy06tDERERcTlbtpz/sjAgwOzR+tOfrI6q7JRoiYiIiEtZsQLCwuDkSTPZ+vxzaN3a6qgujxItERERcRlHjsAjj0BeHgwaZH5Z2Lix1VFdPo3REhEREZdx443w6quQlgbPPw81KnmXkBItERERsVR6OmRnQ/Pm5vbkyZaGU64qeZ4oIiIildk338Dtt0Pv3ub0DVWNEi0RERGxxNatZpL1v/+ZPVq//GJ1ROVPiZaIiIg43T/+AXfdZX5ZeNtt5peF119vdVTlT4mWiIiIOI1hwHPPwfDh5peFAwdCfDz4+lodWcVQoiUiIiJO8/zzMGuW+fPUqbBmDdSsaW1MFUmJloiIiDjN6NEQGAhvvglRUZV/+oZL0fQOIiIiUqFOnTLXKgTw94eDB8Hb28qInKeK55EiIiJipW3b4LrrYNWq82XVJckCJVoiIiJSQf75T/PLwowMiImBwkKrI3I+JVoiIiJSrgwDZs+GoUMhNxf694ePP67647GKY/ktL1q0iICAALy9vQkODmbbtm0XrZ+QkEBwcDDe3t4EBgYSExPjsP/gwYMMGDCAli1bYrPZiI6OLvY8J06cYOjQoTRo0AAfHx/atWvH3r17y+u2REREqqWcHBgxAp591tx+8kn417/Ax8fauKxiaaK1Zs0aJk+ezIwZM0hKSqJLly707t2b5OTkYusfPXqUPn360KVLF5KSkpg+fToTJ05k7dq19jrZ2dkEBgby0ksv4efnV+x5Tp48SefOnfHw8OCjjz7i0KFDvPrqq1x1bqSeiIiIlFluLvTqZU5G6uYGb7wBL79cPXuyzrH0q8N58+YxevRoxowZA0B0dDSffPIJixcvJioqqkj9mJgYmjdvbu+lat26NXv27GHu3LkMGDAAgA4dOtChQwcApk6dWux158yZQ7NmzVi+fLm9rGXLluV4ZyIiItWPpyeEhsK+ffD++xAWZnVE1rMs0crNzWXv3r1FkqGwsDB27NhR7DGJiYmE/aHVevXqxdKlS8nLy8PDw6NU1964cSO9evXiz3/+MwkJCVxzzTWMGzeOsWPHlnhMTk4OOTk59u2srCwA8vLyyMvLK9V1pWKce/5qB9eg9nAdagvXUdXbwjDAZjN/fu45eOQRCAgwZ353Nc5uA8sSrfT0dAoKCvD9w5z7vr6+pKamFntMampqsfXz8/NJT0+nSZMmpbr2999/z+LFi4mMjGT69Ons2rWLiRMn4uXlxfDhw4s9JioqilnnprK9QHx8PD7V9cWzi4mLi7M6BLmA2sN1qC1cR1Vsi61bryEurgVPP/05np7nPys8fNjCoC4iOzvbqdezfMJS27kU+P8ZhlGk7FL1iyu/mMLCQkJCQnjxxRcBaN++PQcPHmTx4sUlJlrTpk0jMjLSvp2VlUWzZs3o3r07DRo0KPW1pfzl5eURFxdHz549S92rKRVH7eE61Bauoyq2hWFAVFQN5s1zA+D48T5MmuT68zdkZGQ49XqWJVoNGzbEzc2tSO9VWlpakV6rc/z8/Iqt7+7uXqZkp0mTJrRp08ahrHXr1g6D6v/Iy8sLLy+vIuUeHh5V5pemslNbuBa1h+tQW7iOqtIWubnwl7/AO++Y23/9K0REuOHm5mZtYKXg7Odv2XcAnp6eBAcHF+lGjYuLo1OnTsUeExoaWqT+5s2bCQkJKdOD69y5M0eOHHEo++abb2jRokWpzyEiIlIdnTxpfln4zjvml4WLF8PcuebPUpSlrw4jIyMZNmwYISEhhIaGsmTJEpKTkwkPDwfM13UnTpxgxYoVAISHh7NgwQIiIyMZO3YsiYmJLF26lHfffdd+ztzcXA4dOmT/+cSJE+zfv5/atWtz3XXXARAREUGnTp148cUXGTRoELt27WLJkiUsWbLEyU9ARESk8vj+e+jTB44cgTp14L334O67rY7KtVmaaA0ePJiMjAxmz55NSkoKQUFBxMbG2nuWUlJSHObUCggIIDY2loiICBYuXIi/vz/z58+3T+0A8NNPP9G+fXv79ty5c5k7dy5du3Zly5YtgDkFxPr165k2bRqzZ88mICCA6OhohgwZ4pwbFxERqYQKCuCXX6BZM/j3v+Hmm62OyPVZPhh+3LhxjBs3rth9b7/9dpGyrl27sm/fvhLP17JlS/sA+Yvp27cvffv2LXWcIiIi1d3118NHH5mJVik/9K/2qvFcrSIiInIx5peF8Mkn58s6dlSSVRaW92iJiIiI68nNhUcfhbffNsdjHTmiBOtyKNESERERBydPwoABEB9vrlP40ktKsi6XEi0RERGx+/57uOce+PprqF0b1qwxvzSUy6NES0RERABITIR+/cwvC5s2hU2b4JZbrI6qctNgeBEREQFg5UozyWrfHnbuVJJVHtSjJSIiIgBER0PjxuaSOrVrWx1N1aAeLRERkWoqLw9efx3y881tDw949lklWeVJiZaIiEg1dOoU9O4NEyeaPVhSMfTqUEREpJo5etT8svDwYahVC8LCrI6o6lKiJSIiUo3s3An33QdpaeDvb65Z2K6d1VFVXXp1KCIiUk28/z5062YmWe3amUmXkqyKpURLRESkGvjlF3jkEfj9d/O14bZt5lxZUrH06lBERKQaaNQI/vlP+M9/YN48cHOzOqLqQYmWiIhIFZWZCcnJcPPN5vZ995l/xHn06lBERKQKOnYMOnWCu+4yfxZrKNESERGpYnbtgttvh0OHzFeEmZlWR1R9KdESERGpQtatM78s/PlnaNtWaxZaTYmWiIhIFWAYMHcuDBwIZ89Cnz6wfTs0a2Z1ZNWbEi0REZEq4M034cknzYRr/Hj44AOoU8fqqESJloiISBUwZAh06ADR0eZC0e6aV8AlqBlEREQqqV9+gYYNwWYz1yz873/Bw8PqqORC6tESERGphHbvNufHeuGF82VKslyPEi0REZFKZv166NrV/LLwX/8yl9UR16RES0REpJIwDHP5nAEDzC8L777bXLPQ29vqyKQkSrREREQqgfx882vCv/7VTLjCw+HDD6FuXasjk4vRYHgREREXZxhmL9bGjebA97lzISLC/Flcm3q0REREXJzNBv36gY+POfN7ZKSSrMpCPVoiIiIuqqDAXKsQYNQoc0yWv7+1MUnZqEdLRETEBX3wAbRvb86VdY6SrMrH8kRr0aJFBAQE4O3tTXBwMNu2bbto/YSEBIKDg/H29iYwMJCYmBiH/QcPHmTAgAG0bNkSm81GdHT0Rc8XFRWFzWZj8uTJV3gnIiIiV84wzNndH3gAvvwSXnnF6ojkSliaaK1Zs4bJkyczY8YMkpKS6NKlC7179yY5ObnY+kePHqVPnz506dKFpKQkpk+fzsSJE1m7dq29TnZ2NoGBgbz00kv4+fld9Pq7d+9myZIltG3btlzvS0RE5HLk58Pjj5sD3Q0DHn3UcUJSqXwsTbTmzZvH6NGjGTNmDK1btyY6OppmzZqxePHiYuvHxMTQvHlzoqOjad26NWPGjGHUqFHMnTvXXqdDhw688sorPPjgg3h5eZV47dOnTzNkyBDefPNNrr766nK/NxERkbL47TdzwPvCheZA91degcWLNdt7ZWfZYPjc3Fz27t3L1KlTHcrDwsLYsWNHscckJiYSFhbmUNarVy+WLl1KXl4eHmX42zh+/Hjuuece7rrrLp5//vlL1s/JySEnJ8e+nZWVBUBeXh55eXmlvq6Uv3PPX+3gGtQerkNt4Tou1RYnTkC/fu588YWNmjUN3n67gAceMMjPd2aU1YOzfx8sS7TS09MpKCjA19fXodzX15fU1NRij0lNTS22fn5+Punp6TRp0qRU1169ejX79u1j9+7dpY43KiqKWbNmFSmPj4/Hx8en1OeRihMXF2d1CHIBtYfrUFu4jpLaIivLg/T0O7nqKndmzNiJl9cpYmOdHFw1kZ2d7dTrWT69g+0PE4EYhlGk7FL1iysvyQ8//MCkSZPYvHkz3mVYs2DatGlERkbat7OysmjWrBndu3enQYMGpT6PlL+8vDzi4uLo2bNnmXo1pWKoPVyH2sJ1lKYtQkLA3R1atuzk5Oiql4yMDKdez7JEq2HDhri5uRXpvUpLSyvSa3WOn59fsfXd3d1Lnezs3buXtLQ0goOD7WUFBQVs3bqVBQsWkJOTg9u5SUsu4OXlVeyYLw8PD/0fmItQW7gWtYfrUFu4jgvbYv58c43Cv/zF3Ne6tYWBVSPO/l2wbDC8p6cnwcHBRbpR4+Li6NSp+Gw+NDS0SP3NmzcTEhJS6gfXo0cPvvzyS/bv32//ExISwpAhQ9i/f3+xSZaIiMjlKiiAhAQbW7deQ0KCjZwc88vCSZNg3DhzCgepuix9dRgZGcmwYcMICQkhNDSUJUuWkJycTHh4OGC+rjtx4gQrVqwAIDw8nAULFhAZGcnYsWNJTExk6dKlvPvuu/Zz5ubmcujQIfvPJ06cYP/+/dSuXZvrrruOOnXqEBQU5BBHrVq1aNCgQZFyERGRK7FunZlQ/fijOxDCvHlmL9bvv5v7X3wR9E9P1WZpojV48GAyMjKYPXs2KSkpBAUFERsbS4sWLQBISUlxmFMrICCA2NhYIiIiWLhwIf7+/syfP58BAwbY6/z000+0b9/evj137lzmzp1L165d2bJli9PuTUREqrd162DgQHM+rAudS7KeeAKeesr5cYlz2Qzjj38FpDSysrKoV68e6enpGgxvsby8PGJjY+nTp4/GobgAtYfrUFtYp6AAWraEH38suU6zZnD06Pm1DMU5MjIyaNiwIZmZmdStW7fCr2f5EjwiIiJVzbZtF0+yAH74wawnVZsSLRERkXKWklK+9aTyUqIlIiJSzko7TWMp59mWSszyCUtFRESqkl27zOkbLsZmg6ZNoUsX58Qk1lGPloiISDl5800zeTpxwuytstnMPxc6tx0drYHw1YESLRERkSv0++8wdqw5y3tuLtx/P3z9Nbz/PlxzjWPdpk3N8v79LQlVnEyvDkVERK7Ajz+aSdPu3WZv1QsvwJQpUKOGWd6vH8TH5/PRR/vp3bsd3bu7qyerGlGiJSIicgU8PMxXhfXrw7vvQliY4343N+ja1eDMmRN07XqLkqxqRomWiIhIGRnG+bFWvr6wcSM0aGBOUipyIY3REhERKYPTp2HwYFi58nxZcLCSLCmeEi0REZFS+uYbuO02+Ne/YMIEyMy0OiJxdUq0RERESuGDD6BDBzh0yJy6ITYW6tWzOipxdUq0RERELqKgAJ5+2pyyISsL7rgD9u2DTp2sjkwqAw2GFxERKUFBAdx7L3z0kbk9cSLMnWt+aShSGurREhERKYGbG7RrBzVrwj/+Aa+9piRLykaJloiIyB+cPXv+57/9DZKSYOhQ6+KRykuJloiIyP/LzTVfD3brBjk5ZpmbG9x4o6VhSSWmMVoiIiJASgr8+c/w3/+a2598AvfdZ21MUvmpR0tERKq9//4Xbr3V/N+6dc2Z3pVkSXlQoiUiItWWYcCCBearwtRUuOkm2LPH/NJQpDwo0RIRkWrrb3+Dxx+H/HxzWZ3PP4frr7c6KqlKlGiJiEi1NXQoNGoEr74K774LtWtbHZFUNRoMLyIi1cqxY+cXgA4MhO++M8dliVQE9WiJiEi1UFgIL75ovhr8+OPz5UqypCIp0RIRkSovKwsGDIAZM8zxWP/5j9URSXWhV4ciIlKlHToEDzwA33wDnp6wcCGMGWN1VFJdKNESEZEq6/33YeRIOHMGmjaFtWuhY0ero5LqRImWiIhUSbt2mTO9A3TvDqtXQ+PG1sYk1Y8SLRERqZI6djRfEV59tTkI3l3/4okF9NdORESqjL17zakbGjQwt994A2rosy+xkOV//RYtWkRAQADe3t4EBwezbdu2i9ZPSEggODgYb29vAgMDiYmJcdh/8OBBBgwYQMuWLbHZbERHRxc5R1RUFB06dKBOnTo0btyY+++/nyNHjpTnbYmIiJMtXQqdOsHDD0NBgVmmJEusZulfwTVr1jB58mRmzJhBUlISXbp0oXfv3iQnJxdb/+jRo/Tp04cuXbqQlJTE9OnTmThxImvXrrXXyc7OJjAwkJdeegk/P79iz5OQkMD48eP5/PPPiYuLIz8/n7CwMM6cOVMh9ykiIhUnJwcefdR8TZibCzVrwu+/Wx2ViMnSV4fz5s1j9OjRjPn/72yjo6P55JNPWLx4MVFRUUXqx8TE0Lx5c3svVevWrdmzZw9z585lwIABAHTo0IEOHToAMHXq1GKv+/GFM9UBy5cvp3Hjxuzdu5c777yzvG5PREQq2I8/mvNj7doFNpu5duG0aerJEtdhWaKVm5vL3r17iyRDYWFh7Nixo9hjEhMTCQsLcyjr1asXS5cuJS8vDw8Pj8uKJTMzE4D69euXWCcnJ4ecnBz7dlZWFgB5eXnk5eVd1nWlfJx7/moH16D2cB1VvS0SEmw8/LAbv/xi4+qrDVasKKBXL4OCgvOvDl1FVW+LysTZbWBZopWenk5BQQG+vr4O5b6+vqSmphZ7TGpqarH18/PzSU9Pp0mTJmWOwzAMIiMjueOOOwgKCiqxXlRUFLNmzSpSHh8fj4+PT5mvK+UvLi7O6hDkAmoP11EV26KgwMbjj/+JX36pTUDAKaZM2U1BQTaxsVZHdnFVsS0qm+zsbKdez/KvDm02m8O2YRhFyi5Vv7jy0powYQJffPEF27dvv2i9adOmERkZad/OysqiWbNmdO/enQbnPm8RS+Tl5REXF0fPnj0vu1dTyo/aw3VU9bZo1gwWLy7k73+vhY9PN6vDuaiq3haVSUZGhlOvZ1mi1bBhQ9zc3Ir0XqWlpRXptTrHz8+v2Pru7u6Xlew8/vjjbNy4ka1bt9K0adOL1vXy8sLLy6tIuYeHh35pXITawrWoPVxHVWmLb7+F/fvPT0LaoYP5xwU+oC+1qtIWlZmzn79lfzs9PT0JDg4u0o0aFxdHp06dij0mNDS0SP3NmzcTEhJSpgdnGAYTJkxg3bp1fPbZZwQEBJT9BkRExGk2bTKTqiFDYOdOq6MRKT1L/zMgMjKSt956i2XLlnH48GEiIiJITk4mPDwcMF/XDR8+3F4/PDyc48ePExkZyeHDh1m2bBlLly7liSeesNfJzc1l//797N+/n9zcXE6cOMH+/fv57rvv7HXGjx/PypUrWbVqFXXq1CE1NZXU1FTOnj3rvJsXEZFLKiyEZ5+Fe++FzExztvfmza2OSqT0LB2jNXjwYDIyMpg9ezYpKSkEBQURGxtLixYtAEhJSXGYUysgIIDY2FgiIiJYuHAh/v7+zJ8/3z61A8BPP/1E+/bt7dtz585l7ty5dO3alS1btgCwePFiALp16+YQz/Llyxk5cmTF3KyIiJTJyZMwdCj2Ae4TJsCrr4Knp7VxiZSF5YPhx40bx7hx44rd9/bbbxcp69q1K/v27SvxfC1btrQPkC/JpfaLiIi1DhyA/v3h++/B2xuWLIFhw6yOSqTsLE+0RERE/uijj8wkq2VLWLcOLnhRIVKpKNESERGX89RT5vis8HC4yFzSIi6v8nwTKyIiVVZqqrle4bm5JGvUgOnTlWRJ5aceLRERsVRiIgwcCD/9BIZhjscSqSrUoyUiIpYwDFi8GLp2NZOs1q3hr3+1OiqR8qVES0REnO7sWXjkERg3DvLyzB6tnTvhxhutjkykfOnVoYiIOFVyMtx/PyQlmWOxXnoJnngCLnPJWhGXpkRLREScqkYNOHECGjaE1auhRw+rIxKpOEq0RESkwhnG+R6rpk1h40Zo0kTL6UjVpzFaIiJSobKyYMAAc+LRc267TUmWVA9KtEREpMIcPmwuBL1+PfzlL3D6tNURiTiXEi0REakQa9eaSdaRI3DNNfDvf0Pt2lZHJeJcSrRERKRcFRTA1KnmlA2nT5vzZO3bZ74uFKluNBheRETKTV4e3HMPxMWZ25GRMGcOuOtfG6mm1KMlIiLlxsMD2rQBHx9z6oZXX1WSJdWbEi0REbliv/9+/udXXjFfFQ4ebF08Iq5CiZaIiFy2nBx47DHo1ct8bQhmr5aW0hExqUNXREQuy4kT5oD3zz83JyONj4ewMKujEnEt6tESEZEy27oVbr3VTLKuusqcukFJlkhRSrRERKTUDANeew3+9CdIS4O2bWHPHujd2+rIRFyTEi0RESm1mTNh8mRzrqwhQyAxEa691uqoRFyXEi0RESm1YcOgfn2YPx/+8Q9zGgcRKZkGw4uIyEUlJ59fALpVK/j+e6hXz9qYRCqLcu/ROnz4MIGBgeV9WhERcbLCQpg1C667DhISzpcryRIpvXJPtHJzczl+/Hh5n1ZERJzo5Em47z547jlzfqxPP7U6IpHKqcyvDiMjIy+6/5dffrnsYERExHpffAH9+8P//gfe3hATAyNGWB2VSOVU5kTrtddeo127dtStW7fY/adPn77ioERExBqrVsGYMXD2LLRoAevWmfNlicjlKXOidf311xMREcHQoUOL3b9//36Cg4OvODAREXGurVvNKRsAevaEd9+FBg2sjUmksivzGK3g4GD27t1b4n6bzYZhGFcUlIiIOF+XLmaiNW0afPSRkiyR8lDmHq1XX32VnJycEvffcsstFBYWXlFQIiLiHLt3ww03mF8S2mywYgXU0AyLIuWmzL9Ofn5+tGjRotwCWLRoEQEBAXh7exMcHMy2bdsuWj8hIYHg4GC8vb0JDAwkJibGYf/BgwcZMGAALVu2xGazER0dXS7XFRGpSgzDHOTeubM50P3cfx8ryRIpX+XyKzVu3DjS09PLfNyaNWuYPHkyM2bMICkpiS5dutC7d2+Sk5OLrX/06FH69OlDly5dSEpKYvr06UycOJG1a9fa62RnZxMYGMhLL72En59fuVxXRKQqOXsWRo+Gxx4zp25wd4eLvKgQkStQLonWypUrycrKKvNx8+bNY/To0YwZM4bWrVsTHR1Ns2bNWLx4cbH1Y2JiaN68OdHR0bRu3ZoxY8YwatQo5s6da6/ToUMHXnnlFR588EG8vLzK5boiIlXF8ePmWKzly83eqzlz4F//gpo1rY5MpGoqlyV4Lmfwe25uLnv37mXq1KkO5WFhYezYsaPYYxITEwkLC3Mo69WrF0uXLiUvLw8PD48KuS5ATk6Ow9i0c4llXl4eeXl5l7yuVJxzz1/t4BrUHq6hoAC2bClg69Zr8PIqoFs32LLFxtChbmRk2GjQwGDlygJ69DDIz7c62qpPvxeuw9ltYNlah+np6RQUFODr6+tQ7uvrS2pqarHHpKamFls/Pz+f9PR0mjRpUiHXBYiKimLWrFlFyuPj4/HRqqouIS4uzuoQ5AJqD+skJjbhrbduJiOjJhDCvHnQoMFZ8vJqkJXlTmDgKaZO3UVOzlliY62OtnrR74X1srOznXq9ckm0fvvtt8s+1mazOWwbhlGk7FL1iysv7+tOmzbNYVb8rKwsmjVrRvfu3Wmgb6AtlZeXR1xcHD179ixVr6ZULLWHtdavt/Hyy2788UXDr796YxjQo0ch69bVombN7tYEWE3p98J1ZGRkOPV6V5Ro5eXlkZqaSnZ2No0aNaJ+/fqlPrZhw4a4ubkV6UVKS0sr0tt0jp+fX7H13d3dS53sXM51Aby8vIod8+Xh4aFfGhehtnAtag/nKyiAv/6VIkkWgGHYsNngm29s1KpVAzc358cn+r1wBc5+/mUeDH/69GneeOMNunXrRr169WjZsiWtW7emUaNGtGjRgrFjx7J79+5LnsfT05Pg4OAi3ahxcXF06tSp2GNCQ0OL1N+8eTMhISGlfnCXc10Rkcpg2zb48ceS9xsG/PCDWU9EnKNMidbf//53WrZsyZtvvsmf/vQn1q1bx/79+/nmm29ITEzk2WefJT8/n549e3L33Xfz7bffXvR8kZGRvPXWWyxbtozDhw8TERFBcnIy4eHhgPm6bvjw4fb64eHhHD9+nMjISA4fPsyyZctYunQpTzzxhL1Obm4u+/fvZ//+/eTm5nLixAn279/Pd999V+rriohURikp5VtPRK5cmV4d7tixg/j4eG6++eZi93fs2JFRo0YRExPD0qVLSUhI4Prrry/xfIMHDyYjI4PZs2eTkpJCUFAQsbGx9glRU1JSHOa2CggIIDY2loiICBYuXIi/vz/z589nwIAB9jo//fQT7du3t2/PnTuXuXPn0rVrV7Zs2VKq64qIVEYnT5auXim+GxKRcmIztDDhZcnKyqJevXqkp6drMLzF8vLyiI2NpU+fPhr74ALUHtaYMwemTz8/w3txbDZo2hSOHkVjtJxMvxeuIyMjg4YNG5KZmUndunUr/HpabEFEpAr4/Xczyerc2Uyo/vgR9bnt6GglWSLOdFmJ1u7duxkyZAgBAQHUrFkTHx8fAgICGDJkCHv27CnvGEVEpBhnzpz/ecYM2LjRHOj+/vtwzTWOdZs2Ncv793dujCLVXZmnd9iwYQODBg2iR48eTJo0CV9fXwzDIC0tjc2bN9O5c2fee+89+vXrVxHxiohUe2fOQEQE7NoFn38O3t7meoX33mvu798f+vWD+Ph8PvpoP717t6N7d3f1ZIlYoMyJ1syZM5k9e3aRJWwAJk+ezJw5c5g+fboSLRGRCpCUBA89BEeOmK8DP/0U+vYtWs/NDbp2NThz5gRdu96iJEvEImV+dfjdd9/R/yJ9z/fffz//+9//rigoERFxVFgIf/873H67mWT5+5ecZImI6yhzonXttdeyYcOGEvd/8MEHBAYGXklMIiJygdRU6NMHIiMhNxfuvx+++AL+9CerIxORSynzq8PZs2fz4IMPkpCQQFhYGL6+vthsNlJTU4mLi2Pz5s2sXr26ImIVEamWwsPhk0+gZk2zV+svfyn6VaGIuKYyJ1oDBgxg69atvPbaa8ybN8++ZqCfnx+hoaEkJCQQGhpa7oGKiFRX0dHmZKSLF0ObNlZHIyJlcVmLSoeGhiqZEhGpIAcPQlwcTJ5sbrdsCQkJVkYkIpfrshItEREpf4Zh9lr99a/mBKRt2kBYmNVRiciVKNNg+LvvvpsdO3Zcst5vv/3GnDlzWLhw4WUHJiJSnaSnm4Pcx483k6y774ZbbrE6KhG5UmXq0frzn//MoEGDqFOnDvfddx8hISH4+/vj7e3NyZMnOXToENu3byc2Npa+ffvyyiuvVFTcIiJVxn/+A8OGQUoKeHrCyy/D449DDS2SJlLplSnRGj16NMOGDeP9999nzZo1vPnmm5w6dQoAm81GmzZt6NWrF3v37uXGG2+siHhFRKqUv/0Nnn3WfG3YujW8+656skSqkjKP0fL09OThhx/m4YcfBiAzM5OzZ8/SoEEDrUguIlJG111nJlnh4fDqq+DjY3VEIlKerrhjul69evj5+dmTrJ9//pnZs2dfcWAiIlWRYcBPP53ffugh2L3bHASvJEuk6in3EQCpqanMmjWrvE8rIlLpnToFDz4It94KaWnny0NCLAtJRCqYhlqKiDjB9u3m2Kv33oOMDNi2zeqIRMQZlGiJiFSg/HxzsHvXrpCcDNdeC//9LwwYYHVkIuIMmrBURKSCHDsGQ4bAuekHR4yA11+HOnUsDUtEnKjMiVZkZORF9//yyy+XHYyISFXy0ktmklW3LsTEmAPfRaR6KXOilZSUdMk6d95552UFIyJSlbz8MmRlwYsvmusVikj1U+ZEKz4+viLiEBGp9HbtghUrzNeDNpvZk7VqldVRiYiVyjwYvlOnTrz88st8/fXXFRGPiEilU1AAUVHQuTMsXAhLl1odkYi4ijInWn/5y1/YuXMnHTp04IYbbuDJJ59k27ZtGIZREfGJiLi0H3+Enj1h+nTzC8NBg2DgQKujEhFXUeZEa+TIkaxdu5b09HSio6PJyspi8ODBNG7cmJEjR7J+/Xqys7MrIlYREZeyfr05N1Z8PNSqBcuXw+rVcNVVVkcmIq7isufR8vLyok+fPrzxxhv89NNPbNq0iWuuuYZnnnmGhg0b0rdvX/773/+WZ6wiIi5j9mzo3x9+/dWc2T0pCUaONMdmiYicU24Tlt5222288MILfPnll3z55Zf06NGDlJSU8jq9iIhLCQsDDw+YMsWcgPT6662OSERcUblMWJqTk4OXl5d9+9prryUiIqI8Ti0i4hIKC+HLL81XhQC33w7ffQfNm1sbl4i4tsvq0frkk08YOXIk1157LR4eHvj4+FCnTh26du3KCy+8wE8XLk0vIlLJ/fwz3HOPmVx99dX5ciVZInIpZUq0NmzYwI033siIESOoUaMGTz75JOvWreOTTz5h6dKldO3alU8//ZTAwEDCw8M1S7yIVHoffQRt28LHH5vbhw5ZG4+IVC5lSrRefPFF5s6dy08//cSyZcsIDw/n3nvv5a677mLQoEHMnj2b+Ph4/ve//1G3bl1WrFhxyXMuWrSIgIAAvL29CQ4OZtsllrRPSEggODgYb29vAgMDiYmJKVJn7dq1tGnTBi8vL9q0acP69esd9ufn5zNz5kwCAgKoWbMmgYGBzJ49m8LCwrI8DhGpwn7/HSZPhj59IC0Nbr4Z9uwxp28QESmtMo3R2rVrV6nqXXPNNbz88suXrLdmzRomT57MokWL6Ny5M2+88Qa9e/fm0KFDNC+mT/7o0aP06dOHsWPHsnLlSv773/8ybtw4GjVqxIABAwBITExk8ODB/O1vf+OBBx5g/fr1DBo0iO3bt3PbbbcBMGfOHGJiYnjnnXe46aab2LNnD4888gj16tVj0qRJZXgiIlIVHToEDz8MBw6Y2xMnwpw54O1tbVwiUvmUeYxWYGAgGRkZ5XLxefPmMXr0aMaMGUPr1q2Jjo6mWbNmLF68uNj6MTExNG/enOjoaFq3bs2YMWMYNWoUc+fOtdeJjo6mZ8+eTJs2jVatWjFt2jR69OhBdHS0vU5iYiL9+vXjnnvuoWXLlgwcOJCwsDD27NlTLvclIpXbhg1mktWoEWzaBK+9piRLRC5Pmb86PHbsGAUFBVd84dzcXPbu3cvUqVMdysPCwtixY0exxyQmJhIWFuZQ1qtXL5YuXUpeXh4eHh4kJiYW+eKxV69eDonWHXfcQUxMDN988w033HADBw4cYPv27Q51/ignJ4ecnBz7dlZWFgB5eXnk5eWV5palgpx7/moH11AV2iMyEk6dqsHjjxfi5weV9VaqQltUFWoL1+HsNiiX6R0uR3p6OgUFBfj6+jqU+/r6kpqaWuwxqampxdbPz88nPT2dJk2alFjnwnNOmTKFzMxMWrVqhZubGwUFBbzwwgs89NBDJcYbFRXFrFmzipTHx8fj4+NzyfuVihcXF2d1CHKBytQeX3zRkA0brmPq1F14eppjNTt3hn37LA6snFSmtqjq1BbWc/bqNZeVaB06dKjEZOictm3blupctj9Mo2wYRpGyS9X/Y/mlzrlmzRpWrlzJqlWruOmmm9i/fz+TJ0/G39+fESNGFHvdadOmERkZad/OysqiWbNmdO/enQYNGlziLqUi5eXlERcXR8+ePfHw8LA6nGqvMrVHbi4891wNXn21BoZh49ChPkyfXnU+iqlMbVHVqS1cR3kNfyqty0q0evToUewi0jabzZ7UXOr1YsOGDXFzcyuSsKWlpRXpkTrHz8+v2Pru7u72ZKekOhee88knn2Tq1Kk8+OCDANx8880cP36cqKioEhMtLy8vh0lZz/Hw8NAvjYtQW7gWV2+Pb781B7yfG5r5l7/AE0+44eHhZm1gFcDV26I6UVtYz9nP/7ISrZ07d9KoUaMrurCnpyfBwcHExcXxwAMP2Mvj4uLo169fsceEhoby4YcfOpRt3ryZkJAQ+4MLDQ0lLi7OYZzW5s2b6dSpk307OzubGjUcvwNwc3PT9A4i1YBhwIoVMH48nDkDV18Nb71lrlsoIlLeLivRat68OY0bN77ii0dGRjJs2DBCQkIIDQ1lyZIlJCcnEx4eDpiv606cOGGfjys8PJwFCxYQGRnJ2LFjSUxMZOnSpbz77rv2c06aNIk777yTOXPm0K9fPz744AM+/fRTtm/fbq9z77338sILL9C8eXNuuukmkpKSmDdvHqNGjbriexIR1xYVBTNmmD936wb/+Ac0bWppSCJShVk2GB5g8ODBZGRkMHv2bFJSUggKCiI2NpYWLVoAkJKSQnJysr1+QEAAsbGxREREsHDhQvz9/Zk/f759Di2ATp06sXr1ambOnMnTTz/Ntddey5o1a+xzaAG8/vrrPP3004wbN460tDT8/f159NFHeeaZZ5x38yJiiaFD4e9/N78sfOopcKt6bwpFxIWUOdHq2rUrnp6e5RbAuHHjGDduXLH73n777WKvv+8SnwINHDiQgQMHlri/Tp06REdHX3Q6BxGpGvLz4dNP4e67ze3mzeH776FOHWvjEpHqocwTlsbHx3PVVVeVqm5xA+ZFRJzl2DHz9WDv3hAbe75cSZaIOEuZEq3WrVuzatUqcnNzL1rv22+/5bHHHmPOnDlXFJyIyOVavRpuuQX++18zsTp71uqIRKQ6KtOrw4ULFzJlyhTGjx9PWFgYISEh+Pv74+3tzcmTJzl06BDbt2/n4MGDPP744yW+EhQRqSi//WauTXhu5MHtt8OqVRAQYGlYIlJNlSnR+tOf/sTu3bvZsWMHa9asYdWqVRw7doyzZ8/SsGFD2rdvz/Dhwxk6dGipXy+KiJSX3bvNubG++w5q1DC/LnzmGXC39LMfEanOLuv/fjp16uQwL9WFfvjhByIjI1m2bNkVBSYiUlZHj5pJVrNmsHIl3Hmn1RGJSHVX5sHwl/Lrr7/yzjvvlPdpRUSKdeE8w4MGQUwMHDigJEtEXEO5J1oiIs6yYQMEBcHPP58ve/RRc7Z3ERFXoERLRCqd7Gx47DF44AE4fBheesnqiEREiqchoiJSqRw4AA89ZCZYAE8+Cc8/b21MIiIlKXOi1f8SK6+eOnXqcmMRESmRYcD8+eayObm50KSJuTj0XXdZHZmISMnKnGjVq1fvkvuHDx9+2QGJiBTntdcgIsL8+d57YelSaNTI2phERC6lzInW8uXLKyIOEZGLGj0ali2D8HBzfJbNZnVEIiKXpjFaIuKScnLM2d3/8hczqapTB/bt0+SjIlK56P+yRMTlHD5sDng/cMBMuCZONMuVZIlIZaPpHUTEZRgGvPEGBAebSVbDhnDttVZHJSJy+fTfhyLiEjIyYOxYWL/e3O7ZE955x/y6UESkslKPlohYbvt2uOUWM8ny8IC5c+Hjj5VkiUjlpx4tEbGcp6e5jM4NN8C778Ktt1odkYhI+VCiJSKWyM4GHx/z544dYeNGcyHoWrWsjUtEpDzp1aGIOJVhmGOvWrSAL744X967t5IsEal6lGiJiNOcOgUPPwwjR0J6OixYYHVEIiIVS4mWiDjFjh3Qrh2sXg1ubuZC0IsXWx2ViEjFUqIlIuWmoAASEmxs3XoNCQk2CgogPx9mz4YuXeD4cQgIML8ynDHDTLhERKoyDYYXkXKxbh1MmgQ//ugOhDBvHjRtCv36wcKFZp2hQ82f69a1NFQREadRoiUiV2zdOhg40BzofqETJ2DRIggJMZOwoUOtiU9ExCp6dSgiV6SgwEyi/phkwfmyn3821y4UEalulGiJyBXZtg1+/LHk/YYBP/xg1hMRqW6UaInIFUlJKd96IiJViRItEbkiv/9eunpat1BEqiMNhheRy7Z2LTz66MXr2Gzm14ddujgnJhERV2J5j9aiRYsICAjA29ub4OBgtl1iIEdCQgLBwcF4e3sTGBhITExMkTpr166lTZs2eHl50aZNG9avX1+kzokTJxg6dCgNGjTAx8eHdu3asXfv3nK7L5Hq4PbbzWVzgoPNhMpmc9x/bjs6WnNmiUj1ZGmitWbNGiZPnsyMGTNISkqiS5cu9O7dm+Tk5GLrHz16lD59+tClSxeSkpKYPn06EydOZO3atfY6iYmJDB48mGHDhnHgwAGGDRvGoEGD2Llzp73OyZMn6dy5Mx4eHnz00UccOnSIV199lauuuqqib1mkUjMMiI8/v33NNbB3L+zeDe+/b25fqGlTs7x/f+fGKSLiMgwLdezY0QgPD3coa9WqlTF16tRi6z/11FNGq1atHMoeffRR4/bbb7dvDxo0yLj77rsd6vTq1ct48MEH7dtTpkwx7rjjjiuKPTMz0wCM9PT0KzqPXLnc3Fxjw4YNRm5urtWhVGk//GAYPXsaBhjGpk3F18nPN4y4uDwjMnK3EReXZ+TnOzdGcaTfDdehtnAd6enpBmBkZmY65XqW9Wjl5uayd+9ewsLCHMrDwsLYsWNHscckJiYWqd+rVy/27NlDXl7eRetceM6NGzcSEhLCn//8Zxo3bkz79u158803y+O2RKocw4B//AOCgiAuDry9IS2t+LpubtC1q8Gdd56ga1dDrwtFpNqzbDB8eno6BQUF+Pr6OpT7+vqSmppa7DGpqanF1s/Pzyc9PZ0mTZqUWOfCc37//fcsXryYyMhIpk+fzq5du5g4cSJeXl4MHz682Gvn5OSQk5Nj387KygIgLy/PnuSJNc49f7VD+UtLg/Hj3fjgA/O/yTp0KGTZsgJuvBFKetxqD9ehtnAdagvX4ew2sPyrQ9sfRs8ahlGk7FL1/1h+qXMWFhYSEhLCiy++CED79u05ePAgixcvLjHRioqKYtasWUXK4+Pj8fHxKTFecZ64uDirQ6hS9uzx5fXX25OZ6YGbWyEPPniE/v2/5X//M/jf/y59vNrDdagtXIfawnrZ2dlOvZ5liVbDhg1xc3Mr0nuVlpZWpEfqHD8/v2Lru7u706BBg4vWufCcTZo0oU2bNg51Wrdu7TCo/o+mTZtGZGSkfTsrK4tmzZrRvXt3+7XFGnl5ecTFxdGzZ088PDysDqfKyMuzkZnpzk03GSxfXkC7dtcB15XiOLWHq1BbuA61hevIyMhw6vUsS7Q8PT0JDg4mLi6OBx54wF4eFxdHv379ij0mNDSUDz/80KFs8+bNhISE2P/ihoaGEhcXR0REhEOdTp062bc7d+7MkSNHHM7zzTff0KJFixLj9fLywsvLq0i5h4eHfmlchNriymVkwLn/bhg4ENasgX79bHh5lf25qj1ch9rCdagtrOfs52/p9A6RkZG89dZbLFu2jMOHDxMREUFycjLh4eGA2Yt04au88PBwjh8/TmRkJIcPH2bZsmUsXbqUJ554wl5n0qRJbN68mTlz5vD1118zZ84cPv30UyZPnmyvExERweeff86LL77Id999x6pVq1iyZAnjx4932r2LuJIzZ2DCBLjxRselcgYNgmL++0JERErJ0jFagwcPJiMjg9mzZ5OSkkJQUBCxsbH2nqWUlBSHObUCAgKIjY0lIiKChQsX4u/vz/z58xkwYIC9TqdOnVi9ejUzZ87k6aef5tprr2XNmjXcdttt9jodOnRg/fr1TJs2jdmzZxMQEEB0dDRDhgxx3s2LuIgdO2DECPjuO3N70yYYO9bamEREqgrLB8OPGzeOcePGFbvv7bffLlLWtWtX9u3bd9FzDhw4kIEDB160Tt++fenbt2+p4xSpanJy4Lnn4OWXobDQnFx02TLo2dPqyEREqg7LEy0Rcb79+2H4cPjyS3N7+HB47TXQ4ggiIuVLiZZINfTWW2aS1agRLFkC999vdUQiIlWTEi2RasIwzi/yPGeO+b/PPAONG1sXk4hIVWfpV4ciUvEKC83Xgvfea/4MUKsWLFigJEtEpKKpR0ukCjt+HB55BOLjze1168z5sURExDnUoyVSBRkGLF8ON99sJlk+PrBwIVwwE4qIiDiBerREqpjUVPjLX+DcIgqdOsE778B1l149R0REypl6tESqmAcfNJMsT0946SXYulVJloiIVZRoiVQx8+ZBhw6wZw9MmQJublZHJCJSfenVoUgl99FHcOwYPPaYuX3rrbBz5/mpHERExDpKtEQqqd9+gyeeMCcc9fCAO+4wB7+DkiwREVehREukEtq6FUaOhKNHze1x4+Daay0NSUREiqFES6QS+f13mDED/v53cwqH5s3h7behe3erIxMRkeIo0RKpJAoKoHNn2LfP3B41yky46ta1Ni4RESmZEi2RSsLNDR5+GE6cgDffNJfUERER16bpHURc2KFDkJR0fnvyZLNMSZaISOWgREvEBRUWmvNh3XqrOQFpdrZZ7uYG9etbG5uIiJSeXh2KuJjvvzcXgt661dwODDQTLR8fa+MSEZGyU4+WiIswDHNOrLZtzSSrVi144w2IjYWGDa2OTkRELod6tERcwG+/weDB5izvAHfeCcuXm71ZIiJSealHS8QF1K5tTt/g5QWvvgrx8UqyRESqAvVoiVgkIwM8PaFOHXPJnGXLIDMT2rSxOjIRESkv6tESscCmTXDTTRARcb7smmuUZImIVDVKtEScKCsLRo8258H6+WdITDTHZ4mISNWkREvESeLjzS8Kly0zXxX+9a+wd6/56lBERKomjdESqWBnz8K0afDaa+Z2QIC5EPSdd1oaloiIOIF6tEQq2OnTsGqV+fOjj8IXXyjJEhGpLtSjJVIB8vPB/f9/uxo1MnuwatSAu++2NCwREXEy9WiJlLMvv4QOHeC9986X9emjJEtEpDpSoiVSTgoKYM4cCAmB/fvh6afNMhERqb4sT7QWLVpEQEAA3t7eBAcHs23btovWT0hIIDg4GG9vbwIDA4mJiSlSZ+3atbRp0wYvLy/atGnD+vXrSzxfVFQUNpuNyZMnX+mtSDX23XfmuKupUyE315y+ISEB3NysjkxERKxkaaK1Zs0aJk+ezIwZM0hKSqJLly707t2b5OTkYusfPXqUPn360KVLF5KSkpg+fToTJ05k7dq19jqJiYkMHjyYYcOGceDAAYYNG8agQYPYuXNnkfPt3r2bJUuW0LZt2wq7R6naDAMWLYJbboEdO8ypGpYtgw8+AD8/q6MTERGrWZpozZs3j9GjRzNmzBhat25NdHQ0zZo1Y/HixcXWj4mJoXnz5kRHR9O6dWvGjBnDqFGjmDt3rr1OdHQ0PXv2ZNq0abRq1Ypp06bRo0cPoqOjHc51+vRphgwZwptvvsnVV19dkbcpVdju3TB+PGRnQ/fu5visRx4x58kSERGxLNHKzc1l7969hIWFOZSHhYWxY8eOYo9JTEwsUr9Xr17s2bOHvLy8i9b54znHjx/PPffcw1133XWltyLVWMeO5sSjr70Gn34KLVpYHZGIiLgSy6Z3SE9Pp6CgAF9fX4dyX19fUlNTiz0mNTW12Pr5+fmkp6fTpEmTEutceM7Vq1ezb98+du/eXep4c3JyyMnJsW9nZWUBkJeXZ0/yxBrnnr8z2iEtDZ56yo1ZswrsSVVUlPm/BQUa/A7ObQ+5OLWF61BbuA5nt4Hl82jZ/vCOxTCMImWXqv/H8oud84cffmDSpEls3rwZb2/vUscZFRXFrFmzipTHx8fj4+NT6vNIxYmLi6vQ83/+eRMWL76FzEwPDh/+hWef/bxCr1fZVXR7SOmpLVyH2sJ62dnZTr2eZYlWw4YNcXNzK9J7lZaWVqRH6hw/P79i67u7u9OgQYOL1jl3zr1795KWlkZwcLB9f0FBAVu3bmXBggXk5OTgVsynYtOmTSMyMtK+nZWVRbNmzejevbv92mKNvLw84uLi6NmzJx4eHuV+/lOnICLCjX/+03zTHhRksGRJfW65pU+5X6sqqOj2kNJTW7gOtYXryMjIcOr1LEu0PD09CQ4OJi4ujgceeMBeHhcXR79+/Yo9JjQ0lA8//NChbPPmzYSEhNj/4oaGhhIXF0dERIRDnU6dOgHQo0cPvvzyS4dzPPLII7Rq1YopU6YUm2QBeHl54eXlVaTcw8NDvzQuoiLaIi4ORo2CH380Z3Z/6il47jkbXl5q80vR74brUFu4DrWF9Zz9/C19dRgZGcmwYcMICQkhNDSUJUuWkJycTHh4OGD2Ip04cYIVK1YAEB4ezoIFC4iMjGTs2LEkJiaydOlS3n33Xfs5J02axJ133smcOXPo168fH3zwAZ9++inbt28HoE6dOgQFBTnEUatWLRo0aFCkXKq39euhf3/z5+uug3fegf/P10VERErF0kRr8ODBZGRkMHv2bFJSUggKCiI2NpYW/z/KOCUlxWFOrYCAAGJjY4mIiGDhwoX4+/szf/58BgwYYK/TqVMnVq9ezcyZM3n66ae59tprWbNmDbfddpvT708qt969ISgIunY1Z3yvVcvqiEREpLKxfDD8uHHjGDduXLH73n777SJlXbt2Zd++fRc958CBAxk4cGCpY9iyZUup60rVlZMDb74J4eHmgtDe3rBzJ+hbBxERuVyWJ1oirmD/fhg2DL76Cn77DaZNM8uVZImIyJWwfK1DESvl58MLL0CHDmaS1agRtGljdVQiIlJVqEdLqq0jR2D4cNi1y9x+4AGIiYHGja2NS0REqg71aEm19N570K6dmWTVqwf/+AesXaskS0REypd6tKRaCgoCw4CePWHZMmja1OqIRESkKlKiJdWCYUBSEtx6q7ndpo35RWHbtnCRFZ9ERESuiF4dSpWXmgr33WcOeN+583z5LbcoyRIRkYqlREuqtPfeg5tugk2bzLmxDh2yOiIREalOlGhJpVZQAAkJNrZuvYaEBBsFBWb5r7/CQw/B4MHmz+3awZ498MgjloYrIiLVjMZoSaW1bh1MmgQ//ugOhDBvnjmofeRIWLoUUlLAzc2cfPTpp8HT0+qIRUSkulGiJZXSunUwcKA5yP1CJ07A88+bP994I6xYAR07Oj8+ERERUKIllVBBgdmT9cckC8wymw2uusp8VVi7ttPDExERsdMYLal0tm2DH38seb9hwMmTZqIlIiJiJSVaUumkpJRvPRERkYqiREsqHQ+P0tVr0qRi4xAREbkUJVpSaRgGLF4Mo0ZdvJ7NBs2aQZcuzolLRESkJEq0pNKw2SAhAX77Da67ztz+48zu57ajo82pHURERKykREtc2u+/mxOOnhMdDQsWwNdfw/vvwzXXONZv2tQs79/fqWGKiIgUS4mWuKzPPoObb4bw8PNlfn4wfrzZW9W/Pxw7BnFx+URG7iEuLp+jR5VkiYiI69A8WuJyMjLgiSfg7bfN7exs+OUXaNSoaF03N+ja1eDMmRN07XqLXheKiIhLUY+WuAzDgJUroVUrM8my2WDcOHMh6OKSLBEREVenHi1xCSkpMGIExMWZ20FBsGQJhIZaG5eIiMiVUI+WuITatc0B7l5e8OKLsHevkiwREan81KMllvniC7PnqkYNqFMH3n0XGjeG66+3OjIREZHyoR4tcbqsLHj8cWjXDpYuPV/eubOSLBERqVrUoyVOtWEDTJgAJ06Y2199ZWk4IiIiFUqJljjFjz+avVgbNpjb110HMTHQo4elYYmIiFQovTqUCvevf0GbNmaS5e4O06eb47OUZImISFWnHi2pcC1awOnTcPvt8Oab5gB4ERGR6kA9WlLusrPhP/85v92xo7kY9H//qyRLRESqF8sTrUWLFhEQEIC3tzfBwcFs27btovUTEhIIDg7G29ubwMBAYmJiitRZu3Ytbdq0wcvLizZt2rB+/XqH/VFRUXTo0IE6derQuHFj7r//fo4cOVKu91VdxcWZ6xP26WPOi3VOly7mNA4iIiLViaX/9K1Zs4bJkyczY8YMkpKS6NKlC7179yY5ObnY+kePHqVPnz506dKFpKQkpk+fzsSJE1m7dq29TmJiIoMHD2bYsGEcOHCAYcOGMWjQIHbu3Gmvk5CQwPjx4/n888+Ji4sjPz+fsLAwzpw5U+H3XFX98gsMGwZhYfD99+aSOWlpVkclIiJiMcNCHTt2NMLDwx3KWrVqZUydOrXY+k899ZTRqlUrh7JHH33UuP322+3bgwYNMu6++26HOr169TIefPDBEuNIS0szACMhIaHUsWdmZhqAkZ6eXupjqqLCQsNYvtww6tc3DDAMm80wJk40jKws58WQm5trbNiwwcjNzXXeRaVEag/XobZwHWoL15Genm4ARmZmplOuZ1mPVm5uLnv37iUsLMyhPCwsjB07dhR7TGJiYpH6vXr1Ys+ePeTl5V20TknnBMjMzASgfv36Zb6P6sww4N574ZFH4Ndf4ZZb4PPP4bXXzJneRUREqjvLvjpMT0+noKAAX19fh3JfX19SU1OLPSY1NbXY+vn5+aSnp9OkSZMS65R0TsMwiIyM5I477iDoIiO1c3JyyMnJsW9nZWUBkJeXZ0/yqqPQ0Bp89lkNnn66kEmTCvHwAGc/jnPPvzq3gytRe7gOtYXrUFu4Dme3geXTO9hsNodtwzCKlF2q/h/Ly3LOCRMm8MUXX7B9+/aLxhkVFcWsWbOKlMfHx+Pj43PRY6uSr7++Gjc3g+uvPwVAq1Y2oqO98fU9S1yctbHFWR2AOFB7uA61hetQW1gvOzvbqdezLNFq2LAhbm5uRXqa0tLSivRInePn51dsfXd3dxo0aHDROsWd8/HHH2fjxo1s3bqVpk2bXjTeadOmERkZad/OysqiWbNmdO/e3X7tqiwzE2bOrMGSJTVo1Qp2787H09PqqEx5eXnExcXRs2dPPDw8rA6n2lN7uA61hetQW7iOjIwMp17PskTL09OT4OBg4uLieOCBB+zlcXFx9OvXr9hjQkND+fDDDx3KNm/eTEhIiP0vbmhoKHFxcURERDjU6dSpk33bMAwef/xx1q9fz5YtWwgICLhkvF5eXnh5eRUp9/DwqNK/NIYB69aZy+ekpJhlt98OhYUeuNptV/W2qGzUHq5DbeE61BbWc/bzt/TVYWRkJMOGDSMkJITQ0FCWLFlCcnIy4eHhgNmLdOLECVasWAFAeHg4CxYsIDIykrFjx5KYmMjSpUt599137eecNGkSd955J3PmzKFfv3588MEHfPrppw6vBsePH8+qVav44IMPqFOnjr0HrF69etSsWdOJT8C1/fCDuQD0xo3m9vXXwxtvQPfu1sYlIiJSWViaaA0ePJiMjAxmz55NSkoKQUFBxMbG0qJFCwBSUlIc5tQKCAggNjaWiIgIFi5ciL+/P/Pnz2fAgAH2Op06dWL16tXMnDmTp59+mmuvvZY1a9Zw22232essXrwYgG7dujnEs3z5ckaOHFlxN1yJHDkCISHm0jkeHjB1qrlGobe31ZGJiIhUHpYPhh83bhzjxo0rdt/bb79dpKxr167s27fvouccOHAgAwcOLHH/uQH0UrIbbjCXzsnJgSVLzEWhRUREpGy0KIoAcOYMzJplDnoHsNng/fdh61YlWSIiIpfL8h4tsd7HH8Njj8GxY+ayOQsXmuVXX21pWCIiIpWeerSqsZ9/hocfht69zSSreXNzMWgREREpH0q0qiHDgKVLoXVrePddqFEDIiLg4EG45x6roxMREak69OqwGoqKghkzzJ/bt4c334TgYGtjEhERqYrUo1UNjRkDzZrB3Lmwa5eSLBERkYqiHq1qYNs2+OADM7ECaNwYvvsOl1lCR0REpKpSj1YVdvIk/OUvcOed8OqrZrJ1jpIsERGRiqcerSrIMOC992DSJPPLQoCxY82ES0RERJxHiVYVc+wYjBsHH31kbrdqZc7s3qWLpWGJiIhUS0q0qhDDgHvvha++Ml8NTp9urlHo5WV1ZCIiItWTxmhVITYbvPKK+YrwwAF49lklWSIiIlZSolWJnT4NkZEQE3O+7O67YcsW85WhiIiIWEuvDiupf//bHIuVnAx168LgwefXJrTZrI1NRERETOrRqmRSU82kqm9fM8lq0QJWr9YC0CIiIq5IiVYlUVhofj3YqpU5dYObGzzxhLk+Ye/eVkcnIiIixdGrw0ri66/hscfMhCs42FyfsH17q6MSERGRi1Gi5cIM4/x4qzZtYOZMqF8fJkwwe7RERETEtenVoYtKSIC2bc1Xg+fMmmXO9q4kS0REpHJQouVifv0VRo+Gbt3MiUefftrqiERERORyKdFyEYYBq1ZB69awbJlZ9uij538WERGRykdjtFzA0aPmQPdPPjG327SBN96AO+6wNi4RERG5MurRcgHr15tJlpcX/O1vkJSkJEtERKQqUI+WRX7/Hby9zZ8nToT//c8c6H7DDdbGJSIiIuVHPVpO9ttvZkJ1661msgXg7g4LFyrJEhERqWqUaDnRxo3m+Kv58+HwYdi0yeqIREREpCIp0XKCn36CAQOgXz/48UcIDITNm2HgQKsjExERkYqkRKsCFRbC4sXmlA3r1pkTjU6dCl9+CT17Wh2diIiIVDQNhq9ANhts2ABZWdCxo7ko9C23WB2ViIiIOIsSrXJ29izk5UHdumaitXgxxMaa82Rp6RwREZHqxfJXh4sWLSIgIABvb2+Cg4PZtm3bResnJCQQHByMt7c3gYGBxMTEFKmzdu1a2rRpg5eXF23atGH9+vVXfN2SbN9uo6DA/Pmzz8z1Cf/61/P7AwO1CLSIiEh1ZWmitWbNGiZPnsyMGTNISkqiS5cu9O7dm+Tk5GLrHz16lD59+tClSxeSkpKYPn06EydOZO3atfY6iYmJDB48mGHDhnHgwAGGDRvGoEGD2Llz52Vf92Luv9+d5s2he3fo0QO++w4+/hgyM8v+PERERKSKMSzUsWNHIzw83KGsVatWxtSpU4ut/9RTTxmtWrVyKHv00UeN22+/3b49aNAg4+6773ao06tXL+PBBx+87OsWJzMz0wAMyDTMlQrNPxMmGEZmZqlPI+UgNzfX2LBhg5Gbm2t1KGKoPVyJ2sJ1qC1cR3p6ugEYmU76x9qyHq3c3Fz27t1LWFiYQ3lYWBg7duwo9pjExMQi9Xv16sWePXvIy8u7aJ1z57yc65ZW48YQHW2OzxIRERGxbDB8eno6BQUF+Pr6OpT7+vqSmppa7DGpqanF1s/Pzyc9PZ0mTZqUWOfcOS/nugA5OTnk5OTYtzPt7waz7GVpabBpUz533GGUeB4pf3l5eWRnZ5ORkYGHh4fV4VR7ag/XobZwHWoL1/Hrr78CYBjO+bfa8q8ObTabw7ZhGEXKLlX/j+WlOWdZrxsVFcWsWbOK2dPMYev++0s8hYiIiLiIjIwM6tWrV+HXsSzRatiwIW5ubkV6kdLS0or0Np3j5+dXbH13d3caNGhw0Trnznk51wWYNm0akZGR9u1Tp07RokULkpOTndJQUrKsrCyaNWvGDz/8QF29t7Wc2sN1qC1ch9rCdWRmZtK8eXPq16/vlOtZlmh5enoSHBxMXFwcDzzwgL08Li6Ofv36FXtMaGgoH374oUPZ5s2bCQkJsXfFhoaGEhcXR0REhEOdTp06XfZ1Aby8vPDy8ipSXq9ePf3SuIi6deuqLVyI2sN1qC1ch9rCddSo4Zxh6pa+OoyMjGTYsGGEhIQQGhrKkiVLSE5OJjw8HDB7kU6cOMGKFSsACA8PZ8GCBURGRjJ27FgSExNZunQp7777rv2ckyZN4s4772TOnDn069ePDz74gE8//ZTt27eX+roiIiIi5cHSRGvw4MFkZGQwe/ZsUlJSCAoKIjY2lhYtWgCQkpLiMLdVQEAAsbGxREREsHDhQvz9/Zk/fz4DBgyw1+nUqROrV69m5syZPP3001x77bWsWbOG2267rdTXFRERESkPNsNZw+6rmJycHKKiopg2bVqxrxTFedQWrkXt4TrUFq5DbeE6nN0WSrREREREKojlax2KiIiIVFVKtEREREQqiBItERERkQqiREtERESkgijRukyLFi0iICAAb29vgoOD2bZtm9UhVSlRUVF06NCBOnXq0LhxY+6//36OHDniUMcwDJ577jn8/f2pWbMm3bp14+DBgw51cnJyePzxx2nYsCG1atXivvvu48cff3TmrVQ5UVFR2Gw2Jk+ebC9TWzjPiRMnGDp0KA0aNMDHx4d27dqxd+9e+361hfPk5+czc+ZMAgICqFmzJoGBgcyePZvCwkJ7HbVHxdi6dSv33nsv/v7+2Gw2NmzY4LC/vJ77yZMnGTZsGPXq1aNevXoMGzaMU6dOlS1YQ8ps9erVhoeHh/Hmm28ahw4dMiZNmmTUqlXLOH78uNWhVRm9evUyli9fbnz11VfG/v37jXvuucdo3ry5cfr0aXudl156yahTp46xdu1a48svvzQGDx5sNGnSxMjKyrLXCQ8PN6655hojLi7O2Ldvn9G9e3fjlltuMfLz8624rUpv165dRsuWLY22bdsakyZNsperLZzj119/NVq0aGGMHDnS2Llzp3H06FHj008/Nb777jt7HbWF8zz//PNGgwYNjE2bNhlHjx41/vWvfxm1a9c2oqOj7XXUHhUjNjbWmDFjhrF27VoDMNavX++wv7ye+913320EBQUZO3bsMHbs2GEEBQUZffv2LVOsSrQuQ8eOHY3w8HCHslatWhlTp061KKKqLy0tzQCMhIQEwzAMo7Cw0PDz8zNeeukle53ff//dqFevnhETE2MYhmGcOnXK8PDwMFavXm2vc+LECaNGjRrGxx9/7NwbqAJ+++034/rrrzfi4uKMrl272hMttYXzTJkyxbjjjjtK3K+2cK577rnHGDVqlENZ//79jaFDhxqGofZwlj8mWuX13A8dOmQAxueff26vk5iYaADG119/Xer49OqwjHJzc9m7dy9hYWEO5WFhYezYscOiqKq+zMxMAPsioEePHiU1NdWhHby8vOjatau9Hfbu3UteXp5DHX9/f4KCgtRWl2H8+PHcc8893HXXXQ7lagvn2bhxIyEhIfz5z3+mcePGtG/fnjfffNO+X23hXHfccQf/+c9/+OabbwA4cOAA27dvp0+fPoDawyrl9dwTExOpV6+ew8oyt99+O/Xq1StT21i6BE9llJ6eTkFBAb6+vg7lvr6+pKamWhRV1WYYBpGRkdxxxx0EBQUB2J91ce1w/Phxex1PT0+uvvrqInXUVmWzevVq9u3bx+7du4vsU1s4z/fff8/ixYuJjIxk+vTp7Nq1i4kTJ+Ll5cXw4cPVFk42ZcoUMjMzadWqFW5ubhQUFPDCCy/w0EMPAfrdsEp5PffU1FQaN25c5PyNGzcuU9so0bpMNpvNYdswjCJlUj4mTJjAF1984bAw+DmX0w5qq7L54YcfmDRpEps3b8bb27vEemqLildYWEhISAgvvvgiAO3bt+fgwYMsXryY4cOH2+upLZxjzZo1rFy5klWrVnHTTTexf/9+Jk+ejL+/PyNGjLDXU3tYozyee3H1y9o2enVYRg0bNsTNza1INpuWllYke5Yr9/jjj7Nx40bi4+Np2rSpvdzPzw/gou3g5+dHbm4uJ0+eLLGOXNrevXtJS0sjODgYd3d33N3dSUhIYP78+bi7u9ufpdqi4jVp0oQ2bdo4lLVu3Zrk5GRAvxfO9uSTTzJ16lQefPBBbr75ZoYNG0ZERARRUVGA2sMq5fXc/fz8+Pnnn4uc/5dffilT2yjRKiNPT0+Cg4OJi4tzKI+Li6NTp04WRVX1GIbBhAkTWLduHZ999hkBAQEO+wMCAvDz83Noh9zcXBISEuztEBwcjIeHh0OdlJQUvvrqK7VVGfTo0YMvv/yS/fv32/+EhIQwZMgQ9u/fT2BgoNrCSTp37lxkmpNvvvmGFi1aAPq9cLbs7Gxq1HD8Z9TNzc0+vYPawxrl9dxDQ0PJzMxk165d9jo7d+4kMzOzbG1T+nH9cs656R2WLl1qHDp0yJg8ebJRq1Yt49ixY1aHVmU89thjRr169YwtW7YYKSkp9j/Z2dn2Oi+99JJRr149Y926dcaXX35pPPTQQ8V+vtu0aVPj008/Nfbt22f86U9/0mfT5eDCrw4NQ23hLLt27TLc3d2NF154wfj222+Nf/7zn4aPj4+xcuVKex21hfOMGDHCuOaaa+zTO6xbt85o2LCh8dRTT9nrqD0qxm+//WYkJSUZSUlJBmDMmzfPSEpKsk+zVF7P/e677zbatm1rJCYmGomJicbNN9+s6R2cZeHChUaLFi0MT09P49Zbb7VPOyDlAyj2z/Lly+11CgsLjWeffdbw8/MzvLy8jDvvvNP48ssvHc5z9uxZY8KECUb9+vWNmjVrGn379jWSk5OdfDdVzx8TLbWF83z44YdGUFCQ4eXlZbRq1cpYsmSJw361hfNkZWUZkyZNMpo3b254e3sbgYGBxowZM4ycnBx7HbVHxYiPjy/234gRI0YYhlF+zz0jI8MYMmSIUadOHaNOnTrGkCFDjJMnT5YpVpthGMZl9MyJiIiIyCVojJaIiIhIBVGiJSIiIlJBlGiJiIiIVBAlWiIiIiIVRImWiIiISAVRoiUiIiJSQZRoiYiIiFQQJVoiIhfo1q0bNpsNm83G/v37y3TsueOuuuqqColNRCofJVoiUiWdS3pK+jNy5MgSjx07diwpKSkEBQUBcOzYsSKJ12+//Ua3bt1o1aoVP/zwA2CulRYdHV2BdyUilY271QGIiFSElJQU+89r1qzhmWeecViQuWbNmiUe6+Pjg5+fX4n7f/nlF3r37g3A9u3badiwIQB+fn7Uq1fvSkMXkSpEiZaIVEkXJkr16tXDZrNdNHkqrR9++IGePXvSpEkTNm7cSJ06da74nCJSdenVoYhIKR05coTOnTvTqlUrPv74YyVZInJJSrREREpp+PDhXHvttaxduxYvLy+rwxGRSkCJlohIKfXr14/t27ezdu1aq0MRkUpCY7REREpp+vTptG3bliFDhmAYBoMHD7Y6JBFxcUq0RETKYObMmbi7uzNkyBAKCwt56KGHrA5JRFyYEi0RkTKaOnUqbm5uDBs2jMLCQoYMGWJ1SCLiopRoiYhchieffBI3NzdGjBhBYWEhw4YNszokEXFBGgwvIlXeyJEjOXXq1GUf37JlSwzDoF27dg7lkZGR5OfnK8kSkRLZDMMwrA5CRMRVdOvWjR07duDp6UliYiI333xzqY+tXbs2+fn5eHt7X1FiJyJVhxItEZELnDhxgrNnzwLQvHlzPD09S33sd999B4CbmxsBAQEVEp+IVC5KtEREREQqiMZoiYiIiFQQJVoiIiIiFUSJloiIiEgFUaIlIiIiUkGUaImIiIhUECVaIiIiIhVEiZaIiIhIBVGiJSIiIlJBlGiJiIiIVJD/AzVmKwQRoqFWAAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAHFCAYAAAAqg1fhAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAel1JREFUeJzt3Qd8Tef/B/BPJCEEMWLEXrX33pvYe+8apTatTVtqtoqqvalard2iRglq771jBSVBgpB5/q/v43fzvze5iYTkzs/79bquc+5zz3nueW5yvnmmg6ZpGoiIiIgo3iWK/0MSEREREQMtIiIiogTEGi0iIiKiBMJAi4iIiCiBMNAiIiIiSiAMtIiIiIgSCAMtIiIiogTCQIuIiIgogTDQIiIiIkogDLSIzMzBwSFWjwMHDqiH/P+PP/6ALdF9LnkmQytWrFDX5u7du1Z5adasWYNZs2YZfU0+13fffWfyPBGZkpNJz0ZEURw9etRg+/vvv8f+/fvxzz//GOwvWLAgzpw5wytoZxo2bKi+Ix4eHrDWQOvSpUsYPHhwlNfkc2XJksUs+SIyFQZaRGZWvnx5g+106dIhUaJEUfabUmBgIJIlS2a285Ph90EeluLt27dImjRpvBzLnN9xIlNh0yGRFQoJCcGYMWOQKVMmpEyZErVr18b169ejpNu7dy9q1aql0kjgVKlSJezbt88gjTTdSBOO1Ja1atUKqVOnRu7cudVrOXLkQKNGjfDnn3+iRIkS6gZboEABta1r1pJtV1dXlC1bFqdOnTI4tmy3a9dOHUfeK8/t27fHvXv3Punz37x5Ex06dED69OmRJEkSlYe5c+dGvP7u3TuV3zx58sDf3z9i/5MnT5AxY0ZUr14dYWFhal+3bt2QPHlyXL58WV0r+SwS2PTv318FnPrkHFWrVlXnlXRFihTBDz/8oMpDnxy/cOHCOHnyJKpUqaKufa5cuTB16lSEh4dHpJP/T5w4Efny5VPXJ1WqVChatCh+/vnnDzYdLlu2DMWKFYOLiwvSpEmD5s2b4+rVqwZpdJ/t1q1baNCggfp/1qxZ8dVXXyEoKOiD11lX/ps2bVLXU841fvz4WF8LuQ5//fWXKm/9ZvCYmg6l9qtp06bqeyjnK168OFauXPnBvBJZKgZaRFZo9OjR6ua1ZMkSLFq0SAUejRs3jggexOrVq1G3bl0VZMmNasOGDeqG7OnpGSXYEi1atFCBye+//44FCxZE7D9//jxGjRqFESNGqBuum5ubSvvtt9+q80+ePBm//fabCmjkpiw1HjoSHEgQIX10/v77b0ybNg2PHz9GmTJl4Ovr+1Gf/cqVK+r9ckP+6aefVNAnzWsDBw6MCALkBi2f9+nTp+jevXtEUNOxY0domoa1a9fC0dEx4pgSHEggIoHWli1bVJC1cOFCtG3b1uDct2/fVgHer7/+qs7bo0cP/Pjjj+jdu3eUfEpQJ+fr1KkTtm3bhvr166vrKOWiI4GJBBoSfEpAsn79enXMly9fxngNpkyZotIVKlRIlYkEZhcuXECFChXUd0GffLYmTZqoz7Z161Z1PWbOnKnKIjYkAB82bJi6vrt27ULLli1jfS3mzZungnsJbqWZUPeIjvyxULFiRRX0zp49W302aTKXgFGuFZFV0ojIonTt2lVzdXU1+tr+/fs1+bFt0KCBwf4NGzao/UePHlXbb9680dKkSaM1btzYIF1YWJhWrFgxrWzZshH7vv32W/Xeb775Jsr5smfPriVNmlR7+PBhxL5z586p9B4eHuo8Olu2bFH7t23bFu1nCw0N1V6/fq0+388//xzlc8nzh3h6empZsmTR/P39Dfb3799fc3Fx0Z4/fx6xb/369eq4s2bNUp8vUaJE2u7du6Ncb0mjnx8xadIktf/w4cNG8yHXMiQkRFu1apXm6OhocN5q1aqp9x4/ftzgPQULFlT512nUqJFWvHjxGD/v8uXL1bG8vb3V9osXL1SZRP4O3L9/X0uSJInWoUOHKJ9Nvh/65L358uXTPkTKXz7b9evXY0wX07Vo2LChOo4xkjf5/um0a9dOfQb5LPrq16+vJUuWTHv58uUH80xkaVijRWSFpIZCnzQ3CV2T3JEjR/D8+XN07doVoaGhEQ+p1alXr55q0nrz5o3BMXQ1FZFJ003mzJkjtqWZTtcspN+PS7dfv1nw9evXqiZMasqcnJzUQ5qv5NyRm7n0yT1YP9/y0DUJSm2cNJPJufVflxopef3YsWMRx2nTpg2+/PJLVSMjTXRSE1inTh2j55TaJ31SWyNkYILO2bNn1bVPmzatqhFzdnZGly5dVE3ijRs3DN4vtTjSnBq5nPSvj7wuNYZ9+/ZVNX4BAQH4EKkRklpDqeXRJ02CNWvWjFJbKc1zUtsZUz5iImnz5s0bZX9crkVsyQAQqXmTz6JPPqs048ZUG0ZkqRhoEVkhubnpk35KQtds999//6ln6XMlN0D9hzQZSSAjgZi+6Ea1SXOjvsSJE8e4X4Id/WBlzpw56NmzpwokTpw4oYI86QOl38QYmZeXV5R8SzOkn5+fCqp++eWXKK9LoCUiN0lKU5k0n0mQJ81fxshrka+pBEpCzinu37+v+lv5+PioprpDhw6pz6LrGxb580Q+nq6c9NNJU+L06dNVcChNi/IeCTQi93XTp8uPsfKSPnu613UkIJWm1Mj50C+nmBg7T1yvRWxJ3qP7XLrXiawNRx0S2SB3d3f1LAFJdCO7MmTIYLCt30k5PkifLem7I325Ro4cGbFfOmFHDvIiK1WqlLpxR77ZSpAltSedO3dGv379jL43Z86cEf+XmjNJKzUyEnxKwCf9lCKT48pNXD84kj5WQrdP+m7J8aTfUPbs2SPSnTt3Dh9LAryhQ4eqh/TLksELUusm/egePHhgdOSnLj/S1y2yR48eRZR9fDH2vUiIa6H7bNF9LhHfn43IFBhoEdkg6YAsI9ik47h07DYHuUFLzZmutk1HOtDrd9o3JkWKFChdunSU/VJrVqNGDdVsJU1aulq06PTp00fVvkhN2rVr11QNn3QEHzJkSJS00qFfv8ZL5n/SNZHqPo/Q/zzy+RYvXoz4IOUl+ZNaIplzSmrwpCN4ZNLhXUYoSqf61q1bR+x/+PChanqTYyS0uFyLyLV4MZHavM2bN6vASleLJVatWqWCTk4HQdaIgRaRDZJ+UFKbJX20pPZIbr4yDP/Zs2eqT5A8z58/P0HzIKMdZfi/jESTmgiZKkCaBJcuXaqCio8lTVWVK1dWTVfS/0qO++rVKzWFwfbt2yMmepWAToKR5cuXq9F58pCgU/qMSSCq339KAjYZwSh9ymREo/Rxkz5d0pwn5xLSt0vSyQjB4cOHq6Y3uYYvXrz46M8ifadkGggJKqU5VfpNyQhNqSX67LPPjL5Hrt24ceNUzZf0iZL8SG2cjLiUJkKpQUxocbkWMu2D1HzJ61JTKXPEGQuiheRdakElmP7mm29U87QEwDIiU0YdyohXImvDPlpENkqmFZCO3BI8yJB7mWtr0KBBari+1ByYgtQKyU1TbsYyJYT0PdqzZ88n3TB1M+RLgDJ27Fg1hYVMLSDLEuk+18WLF1XtlASa+p3GpT+U1ITJtA36UyhIHy+5wUveZA4nmVqgV69eaqoLnfz582Pjxo0qmJDPMmDAADVQQNJ+LLk2Bw8eVDVvErzI55HPoOujFh3p2yWBpATNzZo1UwGkBJISIEYXoMWnuFwL+c5JoC+BodRISSAbHZkKRD6DPEvTsHw2mcZDgmUZ0EBkjRxk6KG5M0FEZC4SiEmQJgEpEVF8Y40WERERUQJhoEVERESUQNh0SERERGSrNVqyFpbMeyOjZWREikx8FxPpJCrpJL0s0qq/JpuQNbJkhmsZiSRDkGUEj7E5c6TTqZxXhknLcSZMmGCw2CsRERGRVQdasoCqzBczZswYNS+ODNeW4dQy740x3t7eavZnSSfpZRSLjCyS0S86skyDBE5Tp06NmNk5MpkZWwI0mbFalgGRYcMyBF2GwxMRERHZRNNhuXLlULJkSYP5fGS9NBnSK6vTRybz32zbts1gjTQZFi1DnI2tgSW1WhLIyUNfo0aN1KzYMp+PjtSCyYR4shI9ERERkVVPWBocHIzTp08bLM0hZE4cmUfFGAmm5HV9slSFBEyylllM887okwkIpUZLFj6VpTkkUDt8+LDRZkb9ZUPkoSPNjDIRpCwZEd9LlxAREVHCkPolmeRYVh+QCXRtNtCShV9lGY7I663Jtm6Nschkv7H00udKjhfdorjGasZkHTaZdE/WTZN8TJo0Sc1yHB2pYZOZl4mIiMj6PXjwAFmyZLH9JXgi1wZJpBlTDZGx9Mb2f6hvmCzNIbNWy2zKshCqNC9KdCszSUc3E7Ms/KojgVq2bNlUrZgsE0HmI7WZMgO6zLId21pNYnnYA/5sWA6WhfnI0qrFizvh/XrlEisEAMiq1lQ1BbMFWrL2mdQmRa69evr0aZRaKx3p3G4svZOTU8SK9rEhSzlIk2W7du0i1uKSNcak1iq6QEsWRo28OK6QICsu56aE+QUm/eukHBhomR/Lw3KwLCwHy8J8DhzA/4IsQ6bq9mO2UYeyIKlM0yBri+mT7YoVKxp9j6xaHzn97t271QKlcbnBysjEyO2yEvRxegciIiLb8vjP02Y9v1mbDqUprnPnzipQkiBq0aJFamoHGUmoa67z8fHBqlWr1LbslykZ5H2y4Kt0jpeO8GvXrjXoZH/lypWI/8v7pWkwefLkyJMnj9rfuHFj1SdLmv6k6VCmipgxYwa6d+9ulutARERECWDbNnjMksXO98IuA622bdvCz89PTRb6+PFjFC5cGDt27ED27NnV67JPf04tmWBUXh8yZAjmzp2r+lTJavEyNYPOo0ePUKJEiYjt6dOnq0e1atVwQOoPATVf1rhx49C3b1/V9CjH6d27N7755huTfn4iIiJKIFu3Aq1bwzusg/To/l//LNMze2d4CXbkYcyKFSui7JOA6cyZM9EeT+bO+tDUYNIBTqZyiGk6h/giIxqlbZ4Sjlxf6af37t07db3tmTShSzM4EZFd27oVWqvWmBA6Ct/h/2cMkG5Zpp491OyBlq2SYE867r98+dLcWbGLay0DJWSoLuc0A1KlSqWuB68FEdmlLVsQ3KoDeoctxAp8rnaNGgWULAkMGQI8fGja7DDQSiC6ICt9+vRqRBxveglHBjG8fv1a9cMzxeRzlhxwykAPaQ4XsZ1XjojIZmzeDP/WPdEybBv2oTYcHTXMm+eAL754/3Lz5sCff4aiWTPTZYmBVgKQ5itdkMWpH0wTaMnAB1lo3J4DLSGLpAsJtuT7x2ZEIrIbmzZJ52/4hWXFhSRl4Oqk4fffHVC//v8nkZ4VlSubtu2QgVYC0PXJkposIlPTfe/ke8hAi4jswsaNgMyNGRqKXB0qYHtfVzgndVDNhebGQCsBsbmQzIHfOyKyKxs34u82SxEeXhv1O6YFVq5EOQsaFMRAi4iIiKzTH39gSZvd6KNtg4tTKE6McEZBCwqyhH13aCGbJVODyOg7U7h+/boa5SerwX+qLVu2qIl1pclP1t/8888/1bxwXLWAiMiQtuF3jG1zA720RQiDE1q0S4w8+SwryBIMtMhAt27dVNNT5Ee9evWs6krJZLiy4LcpjBkzBv369YuXBUpl4txWrVqpqSq+//57NGrUSF1/WQCdiIjeC17zB7q0C8IkbbTaHjcmHCtXJULixLA4bDqkKCSoWr58ucE+YwtqW/roO90IvIT08OFDbNu2LcbJb2UUqgRLHxoRKVNUyGhBT09PtVqBzueff65WM+jUqVO85p2IyBq9XLYJLXqkxX7UgJNDKBYuSoTuPS233shyc0ZmI0GVNIXpP1KnTq1ek2WMZEHwQ4cORaT/6aef4O7urpZMEtWrV0f//v3VQ5rvZIqLsWPHGszYv3r1arXGpdQCyfE7dOgQMf+T7jwSnOzbt0+lk5F0sti4NNPpnD9/HjVq1ICbm5tat7JMmTI4depUtE2H8+fPR+7cuVX+8+XLh19//dXgdTnfkiVL0Lx5c3W+zz77TAVRMdmwYQOKFSuGLFmyROzTnVua/QoWLKiu571799QUFMOHD0fmzJnh6uqKcuXKRSwLJc+6GrGaNWuqvOhea9KkCU6cOIE7d+7EoRSJiGzQ+vX4ped5FWSlcH6Lv/5ysOggS1h27myJBBlv3pj+Ec9rDUgQJX2HZDFwf39/FexI09nixYsNJshcuXKlWhbn+PHjaj3KmTNnqiBGR4IOaRqT90u/JG9vb9VsGZkcWwI5CaDkePoLf3fs2FEFOHKO/fv3qyBGlqAxZvPmzRg0aBC++uorXLp0STXRSU2RvE/f+PHj0aZNG1y4cAENGjRQ53j+/Hm01+PgwYMqEIxMJg6dMmWK+syXL19Wc1rJ+f7991+sW7dOHb9169aq9vDmzZsGQeTGjRtV0Cr7hKz9Ke/XD26JiOzOunVAhw4YpU1C988O4dCxxKhb3/L6ZEWh0Ufx9/eXCEbz9fWN8trbt2+1K1euqOcIr19LyGP6h5w3Drp27ao5Ojpqrq6uBo8JEyZEpAkKCtJKlCihtWnTRitUqJDWs2dPg2NUq1ZNK1CggBYeHh6xb8SIEWpfdE6cOKGu56tXr9T2/v371fbevXsj0vz1119qn+66pkiRQluxYoUWFhamvXjxQj3rLF++XHNzc4vYrlixotarVy+Dc7Zu3Vpr0KBBxLYce+zYsRHbr1+/1hwcHLSdO3dGm+9ixYoZXBvdueVY586di9h369YtdSwfHx+DtLVq1dJGjRql/i+fQd4nnz0yud7fffedFhtGv38mFBwcrG3ZskU9k3mxLCwHy+LTHPnuby3Ewfn9fe3zzzVN7/d9XMl9W37Xyn3cFFijRVFIc9y5c+cMHtLZW0ea3qTpT2pe3r59a7R/Uvny5Q3mc6pQoYKqudEt+nz27Fk0bdpU1dZIk5nUlIn79+8bHKdo0aIR/9fVmOmaGIcOHYqePXuibt26qsbs9u3b0Zbm1atXUalSJYN9si37ozufNO9J3vSbNCOTzy8z0kcm10j/WLIQusRyefPmVUsF6R5eXl4x5ltH+ptJLRkRkb1Z0P0EKn9XC/20X6B93h2Q1hErWgWEneFNRWbrfv3aPOeNIwkwZIqBmBw5ckQ9S7OaPOQ9sfXmzRsVHMlDArZ06dKpAEs6gUuToj79pkBd4Kab6uC7775TfbukL5Q8pk6dqprlpI9VbCbylMAn8r7ITY/yekxTK0jftBcvXhgNjPSPLceQKRtOnz4dZbZ2Cbg+RK6xXCciInsRHg6ManoZP/xZVm2HfFYI4Qt7wdGKgizBQMtU5KYbh2DEkkkNzJAhQ1S/LOkM3qVLF9VpXX9U3bFjxwzeI9vSuVyCjGvXrsHX11cFRlmzZlWv6zqxx5XUEEmfMem71adPHzVa0ligVaBAARw+fFjlVT9YlP2fQua4unLlSqzSSW2e1I5VqVIlTud49+6duuZyDCIie/DuHdCt+l2sP15IbU8otQVjjzeBg6N1BVnC+nJMCS4oKAhPnjwxeEhgJCRYkI7wUhslnbslsJHO5dJhXZ/MAyVNe9LBe+3atWp6AumMLmSEoDStyT4ZSScj+6RjfFxIk52MapSReTKiTwI5CdaiC5yGDRumRgMuWLBANWHOmDEDmzZtwtdff41PIbVwR48ejWgSjSkglI71EujJeaXz/8mTJzFt2jTs2LEjxvfKZ5ORi9L8SkRk6/z8gDrFnmL98RxwRjBWVV+GcSesM8gSrNGiKHbt2mUwglDIdAhSEzVp0iTcvXsX27dvV/tlagYZWScj9erUqYPixYur/RJQSDBUtmxZVYs1YMAAfPHFF+o1aQKToGf06NFqRGLJkiUxffp0NY1BbMkx/fz81Hn+++8/NYVEixYt1KhBY5o1a4aff/4ZP/74IwYOHIicOXOqIFHXN+xjychEaW7cu3evCrpiIuebOHGiGvno4+Oj8izBkxwjJhKoSpDGRcqJyB6aC+uV8cUp7/Rww0tsargMNbcNtqo+WZE5SI94c2fCGgUEBKj5m6SmR26YkZt6pMZCbubGOkrbOgleJOCKaRLP+CT9n6Q8UqZM+cFJQRPCvHnzsHXrVvz999/xfuxnz54hf/78qrZOvk+xYe7vX0hIiKql0wWhZD4sC8vBsoilVauws+s69Mcv2NZ6NQqtGxfvQZb8kS79a2WKIrlvJDTWaBF9Iqmpkw7xstZhfCzDo08CJgnkYhtkERFZowB/DSnnTQVGj0Z9GSneayYSL5ht1TVZOtb/CYjMTCZSlYlV4zvIEtL0Kus2EhHZql9mhSGvRwBujV76fsfQoTYTZAnWaFG80y0dQ0REFFN/rGGDgjBjjqyl64bfHDrh21/SAXrzNtoCBlpERERkUm/fAp1bBmLjzvdzPU5x/gYjNpYFGjeyuZJgoEVEREQm8+wZ0LT2axy9kByJEYTlbkPQYV8PoFQpmywFBlpERERkEvfvA7UqvMGtR8mRCi+wNcdgVPX6XiZYtNkSYKBFREREJuG+aRHSPiqKUGTAjgoTUWDnbMDNzaavPgMtIiIiSvie7yNGINn06dgOd4S164SMqxbIArM2f+UZaBEREVGC0DRg5g8hCFi5Gd9dna72pZs4WM2XpdYAtgO2MUkFUSSyxE+qVKlMcl1kPUdZikgmLE1osjajLCFERGTpZAnYgT0D8dVIZ4y/2gZHnKoCv/0GjBljN0GWYKBlBV9UmZZq7dr3zx9Yu/iTdevWDQ4ODlEe9erVgzWRST5v3LhhknPJZKX9+vWLmLBU5hGTa5Y6dWq1HI6+EydORFxTHV16ecgSQrK0U4kSJTB8+HA8fvzY4P2yT9ZMlBnjiYgs1Zs3QIu6rzBn2fvpG35M+g0q7P0e6NAB9oaBlgXbtAnIkQOoUeP9d1OeZVv2JyQJquQGr/+QhY2tSdKkSZE+ffoEP8/Dhw+xbds2fP7551Fek8Br8+bNBvuWLVuGbNGMrpGasUePHuHkyZMYMWKEWqi6cOHCuHjxYkQa+Ux169bFggULEuDTEBF9uv/+A2qUDsC2f1IgCd5hQ/r++PpsRzhUq2qXl9fsgZZuHTdZ/LZUqVI4dOhQjOm9vLxUOkmfK1euKDecy5cvo2XLlsiRI4eqIYhuYWMfHx906tRJLQidLFkytQjy6dOnYSkkmGrVSm7khvt9fN7vT8hgK0mSJKopTP8htTO62pfEiRMblNNPP/2kFujU1b7IotL9+/dXD2m+k2s8duxY6K9fvnr1apQuXVoFI3L8Dh064OnTp1Fqefbt26fSSRlVrFhRBSM658+fR40aNVQNkAQvZcqUUYsvR9d0OH/+fOTOnVvlP1++fPj1118NXpfzLVmyBM2bN1fn++yzz1QQFZMNGzagWLFiyJIlS5TXunbtqgIrnbdv32LdunVqvzESRMm1yJs3L9q1a4d///0X6dKlw5dffmmQrkmTJlYX+BKRfbh2DahQ5DVOXkuJtPDFvoID0friN0C+fObOmn0GWuvXr8fgwYNV08vZs2dRpUoV1K9fH/dlog0jpLmkQYMGKp2kHz16tOqvsnHjxog0gYGBKgCbOnWqumkZIwsAV6pUCc7Ozti5cyeuXLmiggVT9OmR6tToHrpWJmkeHDTofSfCyHT75HX9ZkRjx0sIEkRJmXXu3FmtfC7BjpTf4sWL4eHhEZFu5cqVag3A48ePY/bs2Zg5c6YKYnSCg4Px/fffq/dv2bJFla00W0Ymx5aykQBKjte9e/eI1zp27KgCHDnH/v37VbOalKkxUrM0aNAgfPXVV7h06RJ69+6taqHkffrGjx+PNm3a4MKFC+q7Jud4/vx5tNfj4MGDKhA0Rq6RBKS677N8T+UPgJIlSyK2tXJ9+vRRAZd+ECrrHz548AD37t2L1XGIiExC03B63BZ4P0uOXLiNI3XHo9Kpn+WvSPsuAM2MypYtq/Xp08dgX/78+bWRI0caTT98+HD1ur7evXtr5cuXN5o+e/bs2syZM6PsHzFihFa5cuVPyru/v7+EPJqvr2+U196+fatduXJFPUf2PlQy/mjQ4H2a/ftjTqd7SDodd/eor3+Mrl27ao6Ojpqrq6vBY8KECRFpgoKCtBIlSmht2rTRChUqpPXs2dPgGNWqVdMKFCighYeHG1xz2RedEydOqOv56tWr/12D/Wp77969EWn++usvtU93XVOkSKGtWLFCCwsL0168eKGedZYvX665ublFbFesWFHr1auXwTlbt26tNdBd9PfVbdrYsWMjtl+/fq05ODhoO3fujDbfxYoVM7g2+nmXPDVr1kwbP3682l+jRg3t559/1jZv3qxeN5Y+Mjm3vHb8+PEo370DBw4YzVNM3z9TCA4O1rZs2aKeybxYFpbD5stCPlf37urmsxxdtad9v9U0vd/JlkTu2/I7VH6XmoLZpneQGg1pqhs5cqTBful/cuTIEaPvOXr0qHpdn6enJ5YuXYqQkJBoazMik+YgeV/r1q1VU2TmzJnRt29f9OrVK9r3BAUFqYdOQECAepbzykOfbMt9Ozw8XD1iW4n4/j2aah6MTWWjj48cX7clnasNR3FEPfeHSR6k1kqadPWlSZMm4nhSs7Rq1SrV3Jo9e3bMmDEjyrnKlSunjqVrLpRtqZmSa+Po6KhqJKX2SGq0pMZI9/67d++iYMGCEdvSR0n3/wwZMqjnJ0+eqKbCIUOGoGfPniovlStXVrVPefLkMfjsuuerV6+qtPr5lKZIqW3T36d/PqlRkqZNOV9011KaA6WpVf91/XNLLZ3kU5pG5fsrtbi6ZtfIeTT2fQn7X7Wl7vsk5Hzi9evXRvMl+yS97lqbmu7nIfLPBZkey8Jy2GpZyK/4hbOC0Gp7N3gc3ggtUSJ0nlUK4X36IER+f4Ul8Aiuj2DqMjBboOXr66tuIrqbp45sy43NGNlvLH1oaKg6nn7TVUzu3Lmj+usMHTpUNT/KSDBpgpQbWJcuXYy+Z8qUKSowiEyanqQ/jz4JRKTZUm6EElDqi9znSp/cEyV+c3OTYkn+wc/h5haIgIBQ9f9z56K+/r9YMM5fQLkOxjqS64JL8c8//6hnPz8/1YSl30dJykOOo59eAhLdMWQkngS60r9KykH6d0mnculbJ826kkaagIWk1R1Ht0+25SEBTOPGjbF7927VcVyaiyXobtSokXqfBBu698r/JVCOnCf9NLq862/rzht5n440N8v3Uv91XT5lugcJAOU80kwpgwzkjwH9axE5vYw61HfufwUr/dx06XXNiPK9M5Yv+c7JOaRZUz6PuezZs8ds5yZDLAvLYUtlERbmgGWzP8NfXgWwCiPglWQ3LgwbhP9kwM+OHbBUgf/7nWs3E5bqD3MXcuOLvO9D6Y3tj4n8xS/9aiZPnqy2ZSi9dKKXm350gdaoUaNUYKYjN7isWbOqYEFugvrkJi99aJInT6467etLmfLD+fP0BLJkeV+zpWlRP5eDgwaJazw9k6ngLLbHjQ0JBCRQTBnDAW/fvq36Ti1cuBC///47BgwYoH556IIEef+ZM2cMjiF9nqRzuXSql5pMCdCmT5+urqG4Jj0oAbi6uqr36YJXqVHSHUdeE3Jddfukv5OUn9RISn8mqTGS2iO57vKd0KWTWjI57xdffBGRJ8mj7NfPp9Ri6W/LMeRY0V0P+R7J9dB/XT/vEohJX60ff/wRf/31l0on5xC69xj7rEKCJemwX7VqVdXvUEdGJUo5SV8t3bEif/9kv7wv8vfPFCTIlu9DnTp1Yl3LTCwLW2drPxevXwOdGr/Gjn9TwwHh6JRyG5z37EWpEiVg6fz8/Owj0JJaDGnWiFx7JX+tR6610pFaImPp5cYeOdiJidR8yQ1WX4ECBQw61UcmtTy6Jht98gMT+YdGaup0cyJFrqGIDXnLzz+/H10o8aN+p/j38aSMppRzx/+Eb5JvqRHR73wt5BpLmclnk1Fz0oTbo0cPNGzYEEWKFFGd3YcNGxaRXgJNmVxTOp1LQDNnzhzVdCjXQzqEy8i/uXPnquBIOqdPmjTpf589kcF1i/x/3bPUTsn5WrVqpZovZTSidJiXWjFj75G00sldRqzWqlUL27dvVx3kpSZMv4yMlVlM5Si1VNIkKQG/rpkuct4nTpyoOurLd1T3vYicTkitrFx7qdmSoPCHH35Q+zZt2mRwfukcLwNCdIFnZJJWzmPsu2lK5j4//T+WheWwhbKQAeaNqrzEmdup4YK3WJNtFJof/gr43x/Ols7ZxNffbKMO5UYrN73I1aiyLX1njKlQoUKU9NJsJLUKcblwMuJQf5oAIZNbyg3bUrRoAfzxB5A5s+F+qcmS/fJ6Qtm1a5cKRvUf0gQmJCCSflSLFi2KCH5lNKFM36Br5hJSMyg1MlLrIpN5Sq2XrjZJpiyQ6RekNkwCXmnyk9qtuJCgRv4qkfPkz59fjUaUoMdY865o1qwZfv75Z1WzVKhQIVUbJxN/Sn+0TyEjE+W7JwFbTN91CVI/VOsqU05kypRJ/VzINaldu7YKQiP/USBTO8TUn5CIKKFcuQKUL/QKZ26ngjueYX+ZEWh+cYLVBFlmoZnRunXrNGdnZ23p0qVqlNTgwYPVCLe7d++q12X0YefOnSPS37lzR0uWLJk2ZMgQlV7eJ+//448/DEbEnT17Vj08PDy0r7/+Wv3/5s2bBiPcnJyctEmTJqn9v/32mzru6tWrE3zUYVyFhr4fXbhmzftn2bZ0Mupw0KBBJjufsVGHpjR37lytbt26JjnXn3/+qUZvhoSERJuGow7Jbka6WRFbKIvwkFCtgoe3GtX+Ga5rt9qMej/a0Mr42suoQ90yKVIrMWHCBDXZpYz42rFjR0TNkuzTn1NLJjaV16UTtDQ7yV//MmpMmot0ZGZt6bOjIzUl8qhWrZqaBFPIxJbSbCT9ruTcclyZ2FRGrVkaaY36xEoXSmBSUyed+KXJT7cMT0J58+aNqomTplwiIpMJDIRDp0747fFZfIWfsHjsfaSdMMmu1iz8WGb/bS2dmOVhjDQvRSYBk/T5iY70/9GfgTw6MjJNHkSfSoIeGRxgCtLPjIjIVOR2enq3H0p/00AWa0XOxImxaUUQ0H4wC8FaAi2yPbqaQyIisl4y3VTfDi+x7I9U2IL0aJwmDbBlC1ClirmzZlUYaBEREZGBV6+A1rWe4++TaZAIYXicrihw+Ccgb15eqThioJWAYtOEScTvHRFZEpnDsWHF5zh/Pw2S4Q3W5fsOjQ8NlyHj5s6aVTLrotK2SjfVhKlnnyXS/95Z+1w9RGR6Fy9oKF/QXwVZGfAEXrW+R+OzExhkfQLWaCUAmeNJZgTXXyolLjPXU9zITP8y0afMiP4xE8TaUg2qBFnyvZPvnznWOSQi63XvZjAqlw5FQIgb8uMqdvbeihzzJr+fRZs+GgOtBCITeYrIM6xTwgQYMjmqLDvDgPb9+ou67x8RUay8fIlsvVuic0hzXEQRbJl+G6m/GsmLFw8YaCUQueHLjOqyOLOtrdZuaeT6ygLKsrafvTeXyednTRYRxZZ0JX534z6StqgPhytX8LPrKYSu2YAkTbrzIsYTBloJTG56vPEl/DUODQ1VCyjbe6BFRBRbwcFA75a+8Nl9B38F34Bzpkxw/OsvOBYvzosYjxhoERER2Rl/f6Bl1WfYdyEdEqEK/s3VBdW9xr9fUJfiFQMtIiIiO/LgAdCgnC8uPU4HV7zGhpLTUH3/TCBlSnNnzSYx0CIiIrIT506HoWG1V3j0xh0eeIQ/my9DyfXfSAdPc2fNZnHMJhERkR3Y++dbVCkXjEdvUqEQLuHYyC0ouXEMg6wExkCLiIjI1v33H9KN7AmHsBDUdNiPw0tvINuUvjJE3tw5s3lsOiQiIrJlV64ADRui2N27OJjyIQpumYzENVqYO1d2gzVaRERENigoCOhe/zH+LTsEuHsXyJMHxU8tQeIalcydNbvCQIuIiMjGvHgBeBZ/guW7PNDqzQoElqsBHD0KfPaZubNmd9h0SEREZEPuemtoUNYXV30zIgUCsKrqUiT7ewfg4mLurNkl1mgRERHZiFNHQ1C+oD+u+qZDZjzE4c+Xoc7+0QyyzIiBFhERkQ34c91rVKsciv/epUJRnMexqV4oumwwkIi3enPi1SciIrJ23t5Y3fsgAsOToq7jXhz64ymyjOho7lwR+2gRERFZuX//BZo1w/KA1yiRchyG7msI59LFzJ0r+h/WaBEREVmhd++Aed1OILxGLcDXF0lLFMCIy10YZFkYjjokIiKyMn7PwtGs1H0cflAWjzAWE5udBlavBlxdzZ01ioSBFhERkRW5c+Ud6pd/jhuvcsANL1GzXQbgt43s9G6h2HRIRERkJU7s9EP5YoG48SoTsuEe/v1+P2qu7cUgy4Ix0CIiIrICW2d5o3rDZHgWmgYlHc/h2MZHKDS2ubmzRR/AQIuIiMjCPVm1G+2GZMRbLSkauB6A16nk8GhRwdzZolhgoEVERGSpNA2YMQMZu9XDUvRAn8zbsNW7GJIXz2PunFEsMdAiIiKyQG8DQnCnw1jgq69UwNWhV3LM964Pp3SpzZ01igMGWkRERBbm2c2XqJn1Jqqv641HyKRqtbBwIeDsbO6skbUFWvPmzUPOnDnh4uKCUqVK4dChQzGm9/LyUukkfa5cubBgwQKD1y9fvoyWLVsiR44ccHBwwKxZs2I83pQpU1S6wYMHx8vnISIi+hQ3995DhUL+OBZQEK+RHPd/WAcMGQI4OPDCWiGzBlrr169XAc6YMWNw9uxZVKlSBfXr18f9+/eNpvf29kaDBg1UOkk/evRoDBw4EBs3boxIExgYqAKwqVOnImPGjDGe/+TJk1i0aBGKFi0a75+NiIgoro7MPYsKdZPjdkh25HC8jyObn6L8sCq8kFbMrIHWjBkz0KNHD/Ts2RMFChRQtU9Zs2bF/PnzjaaX2qts2bKpdJJe3te9e3dMnz49Ik2ZMmXw448/ol27dkiSJEm05379+jU6duyIxYsXI3VqtncTEZF5/dHvH9TsXwB+WlqUTnYFx84kQf5m+VksVs5sM8MHBwfj9OnTGDlypMH+unXr4siRI0bfc/ToUfW6Pk9PTyxduhQhISFwjkPbdb9+/dCwYUPUrl0bEydO/GD6oKAg9dAJCAhQz3JeeZD56K4/y8EysDwsB8vCSsoiPBybWm9A++0doSERGnmcxK+n88HVPSl/ryUAU98rzBZo+fr6IiwsDBkyZDDYL9tPnjwx+h7Zbyx9aGioOp6Hh0eszr1u3TqcOXNGNR3GlvTlGj9+fJT9+/fvR7JkyWJ9HEo4e/bs4eW1ICwPy8GysNyycHz3DqVmzoTn8WsogJIonucBWk55C68Tj8yWR1sXGBhoX2sdSkd0fZqmRdn3ofTG9kfnwYMHGDRoEHbv3q061MfWqFGjMHToUIMaLWnmrFGjBtKmTRvr41DC/HUiv7zq1KkTp1pNShgsD8vBsrDssgj29kGyts3hcO4ctMSJcXDWeaTo0Zp93hOYn58f7CLQcnd3h6OjY5Taq6dPn0aptdKRzu3G0js5OcU62JHmSnmPjFzUkZq1gwcPYs6cOap5UPIVmfT3MtbnS35geHO3DCwLy8LysBwsC8sri/92n0fjRuHoFFIFA9P5wGHzZqStVMnc2bMLzib+g9xsgVbixIlVsCMRfvPm/79Wk2w3bdrU6HsqVKiA7du3G+yTmqnSpUvH+sLVqlULFy9eNNj3+eefI3/+/BgxYoTRIIuIiOhjhYXJ1EQOOHgwM1xdHZDpyh40GpwH3lpO3HXMhq57hsKtWA5eYBtl1qZDaYrr3LmzCpQkiJKpFmRqhz59+kQ01/n4+GDVqlVqW/ZLrZO8r1evXqpzvHSEX7t2rUEn+ytXrkT8X95/7tw5JE+eHHny5EGKFClQuHBhg3y4urqqGrHI+4mIiD7Fpk3AoEHAw4dyuy2t5h11QE1ocETupI+w83AKBlk2zqyBVtu2bVVb6YQJE/D48WMV6OzYsQPZs2dXr8s+/Tm1ZGJTeX3IkCGYO3cuMmXKhNmzZ6sJSnUePXqEEiVKRGzL1A/yqFatGg4cOGDiT0hERPYcZLVq9X65Qn0SZMm/Y37JgM9KshXF1jlout7kFCfSGd7NzU2NdmRnePN3MpUAXCazZX8582N5WA6WhXmbC3PkkJos46/L+K0sWWQiboA9VkxLKnikn7i/vz9Spkxp+0vwEBER2RpZTS66IEtIFceDB+/TkW1joEVERBTPHj+O33RkvRhoERERxaeQENz9xXCEfHRiOc82WTGzT1hKRERkK8L/e4bx5XZgwr2u/9sj3aAdou2jVYXrRds81mgRERHFgxcHzqNxjosRQVb9Ek/UqiWRFy7Rbc+axY7w9oCBFhER0Se6MPlPlK6ZAjve1YSLwzusmuKDHWcy4o8/gMyZDdNKTZbsb9GCl90esOmQiIjoY4WGYm/bxWi6qQsC4YocSZ9g0y5XlKj6PrqSYEoWO9m/PxQ7d55D/frFUaOGE6d0sCMMtIiIiD6Gr6/MvI1i/1xAWjRElVyPsOZ4bqRxN2wsknmyqlXT8OaND6pVK8Ygy86w6ZCIiCiOXh0+D5QuDfzzD9K5vsWh+Zfx143PogRZRPxGEBERxcHR8buRv0o6rLxXDciTBzh+HNn71GdNFRnFpkMiIqJY0EJCsbD+Fgzc1wQhSIzZKcei01F3OLqn5vWjaLFGi4iI6APePvBFj+x78eW+VirIapnvEg7cy8Ugiz6IgRYREVEM7u24jCp5HmH543pIhDBM63QRv18tjBSpHHnd6IPYdEhERBSNF4v/QJkvquIZ0iNtoudYv9AftXoW4fWiWGONFhERUWShocCwYUj9RWv0wQKUSnkDp886olbPnLxWFCcMtIiIiPS8uusHnxqdgOnT1fa3I4Jw+FFuZC/qxutEccamQyIiov+5tuUamrdxgmvI1zicdDdcVi6EY+vWYG8s+lis0SIiIgKw+avDKNs8E66F5METx8y4t+4o0Lo1rw19EtZoERGRXQsLDsO4al6Ycqym2q6a+gI2HMmKDPk9zJ01sgEMtIiIyG753XqB9uXvYI/f+yBrSOlDmHaoIpxd2FhI8YNNh0REZJ8uXkSvYiewx68UkiIQawYexYyTVRhkUbxijRYREdmfDRuAzz/HjMB08EmyBYtXJ0PRVhXMnSuyQQy0iIjIbgS/DcPeLqvQ4I/uajtH3Xw4tiYbHNKmMXfWyEax6ZCIiOzCo8svUD3TdTT843P8hQbA8OHAjh0MsihBsUaLiIhs3qEVt9GmZwo8CSsIN7yEw4gRwNSq5s4W2QEGWkREZLM0DZjT8yyGLiuMUDijsPM1bN6oIU9jBllkGgy0iIjIJgW+CkPvChew+nIJtd0uw34sOVEUrtnSmjtrZEfYR4uIiGzPixfYWXWKCrIcEYoZ1bdhzYMqDLLI5FijRUREtuXSJaBZM7S8fRujnRKjzshSqP59E3PniuwUAy0iIrIJ4eHAz93Po9PvTZEu8B6QPTsmbakLFC9u7qyRHTN70+G8efOQM2dOuLi4oFSpUjh06FCM6b28vFQ6SZ8rVy4sWLDA4PXLly+jZcuWyJEjBxwcHDBr1qwox5gyZQrKlCmDFClSIH369GjWrBmuX78e75+NiIhMw/95GJrnv4qhK4uhfeAShNeoBZw6xSCL7DvQWr9+PQYPHowxY8bg7NmzqFKlCurXr4/79+8bTe/t7Y0GDRqodJJ+9OjRGDhwIDZu3BiRJjAwUAVgU6dORcaMGaMN1vr164djx45hz549CA0NRd26dfHmzZsE+6xERJQwLh8NQJmsT7DtZgEkwTt0qOuHRLt3Ae7uvORk302HM2bMQI8ePdCzZ0+1LbVPf//9N+bPn69qnSKT2qts2bJF1FIVKFAAp06dwvTp01UtlpCaKnmIkSNHGj3vrl27DLaXL1+uarZOnz6NqlU55JeIyFr8PuMBPv86Dd5omZEVD7Dp+8soPbatubNFZP5AKzg4WAU2kYMhqVk6cuSI0fccPXpUva7P09MTS5cuRUhICJydnT8qL/7+/uo5TZrol2AICgpSD52AgAD1LOeVB5mP7vqzHCwDy8Ny2HJZhIYCY9vexozt+dV2LZfDWLUlGdLVrGWRn9eWy8LahJi4DMwWaPn6+iIsLAwZMmQw2C/bT548Mfoe2W8svTT9yfE8PDzinA9N0zB06FBUrlwZhQsXjjad1LCNHz8+yv79+/cjWbJkcT4vxT9pBibLwfKwHDZXFuHhyLxqC7ZuH6c2+7svg+ePiXHyXQpgxwNYMpsrCysUGBhoX6MOpcN65MAn8r4PpTe2P7b69++PCxcu4PDhwzGmGzVqlArI9Gu0smbNiho1aiBtWk5+Z+6/TuSXV506dT66VpNYHrbIJn82Xr6EY9euSLRzJzbjDK40GIoWf7QHnMx+O7O/srBSfn5+Jj2f2b6Z7u7ucHR0jFJ79fTp0yi1VjrSud1Yeicnp48KdgYMGIBt27bh4MGDyJIlS4xpkyRJoh6RyQ8Mf2gsA8vCsrA8LIetlMXS7x8hdM589H66E3BxQZHFI1CkUydYE1spC2vmbOLrb7ZRh4kTJ1bTNESuRpXtihUrGn1PhQoVoqTfvXs3SpcuHacLJ7VgUpO1adMm/PPPP2p6CSIiskzSPba3pzd6fpMJ/Z9+g0sZawP//gtYWZBF9smsda3SFNe5c2cVKEkQtWjRIjW1Q58+fSKa63x8fLBq1Sq1LfvnzJmj3terVy/VOV46wq9du9agk/2VK1ci/i/vP3fuHJInT448efKo/TK1w5o1a7B161Y1l5aulszNzQ1JkyY1w5UgIiJjHtwLR6uKj3DiUU44IBzjc65EwaNrgAzpeMHIKpg10Grbtq1qK50wYQIeP36sOqPv2LED2bNnV6/LPv05taTmSV4fMmQI5s6di0yZMmH27NkRUzuIR48eoUSJ9wuICpn6QR7VqlXDgQMH1D6ZPkJUr149yjQP3bp1S/DPTUREH7Z/awDatgnHs+AsSI3nWNtsAzw39JC2H14+shpm7z3Yt29f9TBmxYoVUfZJwHTmzJlojyczwus6yEfnQ68TEZF5zfr6Ib7+KSPC4ITiDuew6cc7yPnV+9YOImti9iV4iIiIDCxfjuCf56sgq3PyTfj3Xwfk/KoFLxJZJbPXaBEREQntXRAcBg0EFi3CMACFSjujwd+D4JAmNS8QWS3WaBERkdn9ufwpqqS7iteLfpOJEeEwYQIaHv+GQRZZPdZoERGR2YSHAxO63sb41bkBpMdPScfi280lZH01lgrZBAZaRERkFi/8wtGp4h3suPF+6p3+6dZj1OF2QN4cLBGyGQy0iIjI5C4cDkALzze4HZgHLniLhdXWosuuDmrGdyJbwj5aRERkUn/Pv4MKVZ1wO9ADOXAXR8btQpcD3RlkkU1ioEVERKazejWKDK2DlJo/PF28cGrvS5SY0JwlQDaLgRYRESW4Ny+CZf0zoHNnZHp3B/9WGYW/7hVG2lrFefXJpjHQIiKiBHVs21Pky/gSG+Y9e7/jm2+Qa/9SOKZPyytPNo+BFhERJQhZ7WzBkOuo2jQVfILTY7rjCIRv+xMYPx5wdORVJ7vAUYdERBTv3r3V0LfqRSw/VVRtt3Tbg+UH8yBR0VK82mRXGGgREVG8unfpFVpW+Q+nXxZFIoRhSqk/MOxgEzgkS8orTXaHgRYREcUb38PXULp6eviG5UFa+GLdoGOoPbONWlaHyB6xjxYREcWPtWvh7lkKXcOWoZTzBZze8hC1ZzVikEV2jYEWERF9klfPQ/Bfr7FAhw5AYCCm1tyDw3cyIXtTTt1AxECLiIg+2rWDT1Euy0O0WFIfwXAGRo+G0+4dcMnizqtKxBotIiL6WJu/v4Sy1ZPi6tucuOuQE/fm7QAmTeLUDUR62BmeiIjiJCwkHOPqHMMUr4pqu6rrKWzYkwYZKtTmlSSKhIEWERHFmt+tF2hfwRt7fN8HWYML/I0fjlaBs1syXkUiIxhoERFR7Jw4ga7VX2HP21pIikAs7XUc7RfW5ahCohiwMzwREX14LZ05c4DKlTHj7ZcomeQSjm14gPaLajDIIvoA1mgREVG0gv1e4WDLn1Hba5zaztuyKE4tyQqHVG68akTmqNG6evUqcuXKFd+HJSIiE3u07yqqZ7kJT69R2JeoDjBzJvD77wyyiMwZaAUHB+PevXvxfVgiIjKhQ6N3olTt1Dj6riRSOLxG8I8/A4MHs6mQKKGbDocOHRrj68+ePYvrIYmIyEJogW8xp9ZmDD3WGqFwRuHk3ti8zw15yhYwd9aI7CPQ+vnnn1G8eHGkTJnS6OuvX7+Oj3wREZGJBV68jd7VrmL1iw5qu12RS1jyb0G4puC4KSKTBVqfffYZhgwZgk6dOhl9/dy5cyhVqtRHZ4iIiMxg0yZs6fQXVr9dCkeE4sc+dzB4XmE4OLA0iD5FnP9MkSDq9OnT0b7u4OAATYYCExGR5QsJkT4hQMuWaP92GYZmWoe9G15gyPy8DLKIzFGj9dNPPyEoKCja14sVK4bw8PBPzRcRESWw8HsPMLf67+h8dxlSyR/KX3+Nnya3BJydee2JzFWjlTFjRmTPnj2+zo958+YhZ86ccHFxUbVlhw4dijG9l5eXSifpZRqJBQsWGLx++fJltGzZEjly5FC1a7NmzYqX8xIR2RL/TfvQ4rOLGHh3KDo7rYO2eQvw448MsojiWbz0cOzbty98fX3j/L7169dj8ODBGDNmDM6ePYsqVaqgfv36uH//vtH03t7eaNCggUon6UePHo2BAwdi48aNEWkCAwNVADZ16lQVFMbHeYmIbEZYGK70nYOyLbNga0gDJHEIQrPvS8GhWVNz54zINmnxIEWKFNrt27fj/L6yZctqffr0MdiXP39+beTIkUbTDx8+XL2ur3fv3lr58uWNps+ePbs2c+bMTz6vMf7+/tIRTfP19Y31eyhhBAcHa1u2bFHPZH4sDwsui//+0zYUmaC54pUmv/2zJvfTTh5+Z+5s2gX+XFgOuW/L/Vvu46YQL0vwfEznd5nYVDrVjxw50mB/3bp1ceTIEaPvOXr0qHpdn6enJ5YuXYqQkBA4x6JfwcecV0i/NP2+aQEBAepZzisPMh/d9Wc5WAaWh2UICwMOHAjDwYOZkSRJGKokOoJvW1zBT2/eL6VTo8BjrN7rjnTp+LNjCvy5sBymvleYba1DaWoMCwtDhgwZDPbL9pMnT4y+R/YbSx8aGqqO5+HhkSDnFVOmTMH48eOj7N+/fz+SJUv2wfNSwtuzZw8vswVheZjP0aMeWLKkCPz8kgIojRkzgEzIg2C8n3S0Ta0zaNv3IU6e5AhxU+PPhflJFyOrC7RevXr10e+VDuuRa8ci7/tQemP74/u8o0aNMpgVX2q0smbNiho1aiBt2rRxOjfF/18n8surTp06sarVpITF8jCvzZsd8MMPjojc0PAYHtDggMH93uKHmUUAyINMhT8XlsPPz896Ai354kgtkESH6dKlQ5o0aWL9Xnd3dzg6OkapRXr69GmU2iYd6dxuLL2Tk1Osg52POa9IkiSJekQmN3be3C0Dy8KysDzM01z41Vfyh2PU1zQkgoODho3bkmL6z4CjoxkySPy5sACmvmfHedShLLGzcOFCVK9eHW5ubmoahQIFCqhAS6Z96NWrF06ePPnB4yROnFhNqxC5GlW2K1asaPQ9FSpUiJJ+9+7dKF26dKwv3Mecl4jIGsgsNQ8fRv+6pjngwYP36YjIAgOtmTNnqsBq8eLFqFmzJjZt2qSW3Llx44bqqP7tt9+q/lLShFOvXj3cvHkzxuNJU9ySJUuwbNkyXL16VS3tI1Ms9OnTJ6K5rkuXLhHpZf+9e/fU+yS9vE86wn/99dcGnd0lT/KQ//v4+Kj/37p1K9bnJSKyRo9vBMQu3eMEzwoR6cRliGKrVq20CxcufDDdu3fvtLlz52qLFy/+YFpJJ9MwJE6cWCtZsqTm5eUV8VrXrl21atWqGaQ/cOCAVqJECZU+R44c2vz58w1e9/b2VsM2Iz8iHyem88YGp3ewHBw2bVlYHuYRtt9L65NspZq24UOP/fvNlEk7xp8L+53ewUH+iYi6KNakM7w0ncooRnaGNy/pK7hjxw41mS37y5kfy8PEwsIQ/v0kNB5fGjvQ4H875dd61ME9Mt4nSxaZ/Jl9tEyNPxeW1Rle+mv7+/sjZcqU1jEzPBERmcGjR0Dt2kg0/luUwzEkdQxCnx4hagR15EHUum1ZlYwd4YlM56MCLens3rFjR7VWYNKkSdU8UvJ/2Xfq1Kn4zyURERkI3roTPoU9ZVZSwNUVY1bmw4VrSTB/iTP++APInNkwvdRkyf4WLXghiSx6eoctW7agTZs2qFWrFgYNGqSmRJDWR5keQUYAVqpUCRs2bEDTplw3i4go3gUH4+aXM9B+WW2E4lccK9YHLhtWwTFvXuT5XxIJpuRX8P79odi58xzq1y+OGjWcWJNFZA2B1tixYzFhwoQoS9gIWah52rRparFnBlpERPHs9m2sqr0Kfe8OwxskRxqXN7i26CCK500cJak0D1arpuHNGx9Uq1aMQRaRtTQdyjQJLWKoe27WrBlu3779qfkiIiI9Acs3onP+k+h6d7wKsqoV8sX5m64oXjZqkEVEVhxo5c6dWzUfRmfr1q3IlSvXp+aLiIhEYCBONpuEkt2LYXVoOzgiFN9/7Y99591VvysisrGmQ2k2bNeuHby8vFC3bl3VR0tGuMiSNjK7uvTTWrduXcLklojInly6BK1NWwy/Oge3kQfZUr7Emm3JUamam7lzRkQJFWi1bNkSBw8exM8//4wZM2ZErBko6xDKEjkSgMkzERF9JJnecMkSYOBAOLx7hxXphmN8ya2YsS4TUqXiVSWyJh+1qLQEUgymiIgSgL8/djWei1OHAjEW7wBPT2RftQrL0qfn5Sayl0CLiIjiX9Dhkxjd8DxmBIxW2xW/KIKa81sDiTi3NJG1itNPrywUfeTIkQ+me/XqlZrmYe7cuZ+SNyIi+xAejhsjlqJiFUfMCOipdvVv9QQVf27LIIvInmq0WrdurSYrTZEiBZo0aYLSpUsjU6ZMcHFxwYsXL3DlyhUcPnxYrTvXqFEj/PjjjwmXcyIiG6A9fYZf66xE3wt93s+NlfgVli93QJMOGc2dNSIydaDVo0cPdO7cGX/88QfWr1+PxYsX4+XLl+o1GXlYsGBBeHp64vTp08iXL1985I+IyHbt349+je5hfuDXarN6Xh+s3pcJmbNEXRCaiOykj1bixInRoUMH9RCy+vXbt2+RNm1aODs7J0QeiYhsS2iozJUDTJyIqlobLEInjO/vi5GzMnMGdyIb88k9LN3c3NTUDrog67///lNzbRERUVTht71xp2w74Pvv1TQO7Xokx7XzwRjzS0YGWUQ2KN6Hssi8WuPHj4/vwxIRWb0nc/5AvXzeqHh2Dp4mzwWsWaPmy8pTNJm5s0ZECYTTOxARJTR/f+xsthBdD3TDM6RH0kTvcGbOEdRrn4HXnsjGMdAiIkpAQfuPYFSzK5gZMFxtF83wBOv2uKNAEQZZRPaAs+ARESWE0FDcGPALKtZMgpn/mxtrQKvHOH43IwoU4d+4RPYizj/tQ4cOjfH1Z8+efUp+iIisn7c30KkTph/pijMohbRJXmH5Skc0buth7pwRkaUHWmfPnv1gmqpVq35sfoiIrNtvvwF9+wIBAfgpxV2ElKiFiWtyI3Nmc2eMiKwi0Nq/f3/C5ISIyJr5++N42xlY9Xd6zEEAHCpVQorVq7E8Rw5z54yIrCnQqlixIpo1a6aW4MmfP3/C5IqIyIqEHz6CH5scxNgXYxEKZxRvnA29NtUHnNgXi8jexbkz/BdffIHjx4+jTJkyyJs3L4YNG4ZDhw5B07SEySERkaUKDcXjr6bDs0ogRr4YqYKsNjV90XpVYwZZRPRxgVa3bt2wceNG+Pr6YtasWQgICEDbtm2RPn169drmzZsRGBgY18MSEVmXu3exo+hIFJ3RFXtRG8kcg7Dkl7dYt9cdqVKZO3NEZPXTOyRJkgQNGjTAwoUL8ejRI/z555/InDkzvvnmG7i7u6NRo0b4999/4ze3RESWYM0aTMu/HA2vTocv0qFYthc4dTEJevRPCgeuB01ECTGPVrly5TBp0iRcvHhRPWrVqoXHjx/H1+GJiMwvIADo3Bno2BHVg3bBySEUA7v549j11ChQwNyZIyJLFC89NYOCglQNl07u3LkxZMiQ+Dg0EZFF0I4cxc22Y5H34T9AokQo900DXG8P5MrrZu6sEZGt1Wj9/fffqj+WBFTOzs5IliwZUqRIgWrVqqlaLWlKJCKyCaGh8B89DR0r30XRh3/hYiZP4NAh4NtvkSsvRxUSUTwGWlu2bEG+fPnQtWtXJEqUSI043LRpkwq8li5dqgKtvXv3IleuXOjTpw9niSci63b3Lo6X6osSU1pjrdYeoQ7OODFyk8xzY+6cEZEtBlqTJ0/G9OnTVY3VsmXLVDDVuHFj1K5dG23atMGECRPUhKa3b99GypQpsWrVqg8ec968eciZMydcXFxQqlQpNVVETLy8vFQ6SS8B3YIFC6KkkVGRBQsWVM2Z8iwjIfWFhoZi7Nix6rxJkyZVx5G8h4eHx+VyEJENC1+9BlPzr0DlC3PhjVzIke41Dh9xRI8BycydNSKyInGq9z5x4kSs0snowx9++OGD6davX4/BgwerYKtSpUpqBGP9+vVx5coVZMuWLUp6b29vNdKxV69eWL16tRrV2LdvX6RLlw4tW7ZUaY4ePaqmm/j+++/RvHlzFWRJEHj48GHVYV9MmzZNBWgrV65EoUKFcOrUKXz++edwc3PDoEGD4nJJiMjWvH6Nx5+PRuc/mmAfOqhdbRu9xsLVyeHG7lhElNB9tKT2x8/PD/FhxowZ6NGjB3r27IkCBQqoebmyZs2K+fPnG00vwZEEYJJO0sv7unfvrmrZdOS1OnXqYNSoUWrmenmWEZCyX0eCsaZNm6Jhw4bIkSMHWrVqhbp166qAi4jsmKzlWrIkVv+RBPtkbiznYCxdFIa12xhkEdHHiXNPzrt37yIsLAyfKjg4GKdPn8bIkSMN9kvAc+TIEaPvkQBJXtfn6emp+oeFhISojvmSJvKIR0mjH2hVrlxZBW03btxQs9ufP39e1XjppzE2slIeOjJRq5DzyoPMR3f9WQ6WwSrLQ9OQaN48JBoxAg7BwRiSeQPulB6Mvt+nR/784QgNtc5uBVZZFjaKZWE5TP3zYLYhMzKzvARsGTJkMNgv20+ePDH6HtlvLL30uZLjeXh4RJtG/5gjRoyAv7+/qvFydHRU+ZDRku3bt482v1OmTMH48eOj7Jc+aTLqksxvz5495s4CWWF5OL96hRQ/bMXCi02xBA54UbYszg4YgHopTuHOHaiHtbOWsrAHLAvzM/XqNR8VaEkfquiCIZ2iRYvG6lgOkaZRljUTI+/7UPrI+z90TOkbJn281qxZo/ponTt3TvUVy5QpkxpRaYw0QQ4dOtSgRkuaOWvUqIG0adPG6rNSwv11Ir+8pMlYajXJvKyqPP49gl8/P4jWL1YgEK7wqJkfk3cWRR0bmd7dqsrCxrEsLEd8dX9K0EBL+jwZW0RaghldUPOh5kVZpkdqkyIHbE+fPo1SI6WTMWNGo+mdnJwigp3o0ugfU6alkCbLdu3aqe0iRYrg3r17qtYqukBLRjDqT8qqI7+8+AvMMrAsLItFl0dYGPy/m4kvJ2XGWu0ntatmmQAM+bU0nBPD5lh0WdgZloX5mfpn4aMCrePHj6uRfp8iceLEapoG+WtLRgfqyLZ0VDemQoUK2L59u8G+3bt3o3Tp0hEXTtLIMfT7aUmainrz3ki1ocwDpk+CPk7vQGQHHj/G8SaT0P7UUDVtg6NDGCZ+G4phY1PC0dHcmSMiW/NRgZaM/EufPv0nn1ya4jp37qwCJQmQFi1ahPv376v5uXTNdT4+PhHzccn+OXPmqPfJFA/S8V06wq9duzbimDI9Q9WqVdUUDhKwbd26VU2iKp3ddWTuL+mTJZ9Dmg7Pnj2rRkDKCEYismF//421rTehy6s5CIUzcri/wtrtKVC+PCMsIkoYZl0/Qua7krZSmSxUFqAuXLgwduzYgezZs6vXZZ8EXjoywai8LrVVc+fOVX2qZs+eHTGHlpCaq3Xr1qkJSceNG6eWCZI+Wbo5tMQvv/yiXpM5uKRZUY7Tu3dvfPPNNya+AkRkEjLKaOxY4IcfUAlZkdzxLTzrvsXCtSk5NxYRWVagJcvsSLNffJFgRx7GrFixwuj5z5w5E+MxZV4seURH1mWUqRxims6BiGyEtzeuNB2FghfXq81s/Zrg3IDEyJbXBTbS552IbCnQkukMYutDIwiJiBJS0NpNGN7tKWYHr8OfrhoarmoLtGiB93XmREQWNjO8zMYuUyLIZKMxuXnzJr788kvVT4qIyOTevsW1dt+hfIecmB38vs/nyZ4LVZBFRGSxNVrSL0om++zXr5+aoV06sUv/Jlng+cWLF2p+Lel0fvnyZQwYMCDaJkEiooSiXbmK5XXXYoDPCDU3lnvSN1i+JgkaNUvFi05Elh1o1axZEydPnlRL5EgHc6ndkiV53r59q+bFKlGiBLp06YJOnTohVSr+UiMiE9I0+M9djd6DXbA+bILaVauEH1b9mRaZMrEkiMiKRh3KyD79ean0PXjwQE2/sGzZsk/NGxFR7Mjao19+iX/WBGI9Nr+fG2tUIIZ/nxaRpswjIjKpeP8V9Pz5c6xcuTK+D0tEZNzp00DJksCaNWjuuB3jav6Lw4cdMHJSCgZZRGR2/FuPiKyTpuHR+MVoW+YOntx+LTMpAwcPYsK+Sihfkb/aiMgymHXCUiKij+Lriz8bzEO3k33hB3cEe2TD5rOfAWnS8IISkUVhoEVEVuXd7oMY0eImZr95v5JD8SzPMHVPWSAN5+wjIhsItFp8YB6aly9ffkp+iIiMCwnBtf5z0G5RDZxHD7VrcMenmLo0PZIk4UUjIhsJtNzc3D74ukzxQEQUb27dglejH9Hg+gw1N1Y6lwCsWO2MBi0/fXF7IiKLCrSWL1+eMDkhIopM02TRU2DAAJR844DMiYYhe6EUWPV3Bnh48HIRkeXj0BwiskwvXuByva+gde8OvHmDFNVK4cCxpPj7HIMsIrIe7AxPRBYn7B8v/NDiGMb5/4CfEgGDJqYDhg9HJkdHc2eNiChOGGgRkeUICcGjr35C51/K4B+MULvONxwFbWQ6OHBQIRFZIQZaRGQZbt16PzfWzdFqbixXp3eYOwfo8gWDLCKyXgy0iMi8NA3vlqzGiH6vMDtkhtpVIucLrNuVGnnzsnCIyLox0CIi83nxAujdG1d/v4l5OKF2De31CpN/Sc25sYjIJjDQIiLzOHgQ6NQJePAAJZycMLvBPmTvWQcNGqdgiRCRzWCgRUSmFRKClyOnYsCMHBiGVCiaJwmwZg2+LFOGJUFENoeBFhGZzq1bONJkKjpcHYt7yIELqavj7OnUSJQyOUuBiGwSAy0iSniahrDlqzD1y7v4NngBwuCEXBleY/G2rEiUkgVARLaLM8MTUcJ68QI+Tb5E7R7ZMDb4WxVkdWj2BmdvJEfZsrz4RGTbWKNFRPEmLAzw8nLAwYOZ4erqgBqOB3Grwzeo+GQjniMtXBMHY95CJ3Tu6soJSInILjDQIqJ4sWkTMGgQ8PCh/FopjRkzgCzIiZlwR7GkN+CfrSjWbnPl3FhEZFcYaBFRvARZrVqprlgGfJAZbfA7ls98h3bdknJuLCKyO+yjRUSf3FwoNVla5ChL+sDLrxgHB4yblBRO/LOOiOwQAy0i+iSHDklzofzP+KrPEn89ePA+HRGRvWGgRUSf5NH2U7FK9/gxLzQR2R8GWkT0cQIC8KzDICyc8SZWyT08eKGJyP6YPdCaN28ecubMCRcXF5QqVQqHPtC+4OXlpdJJ+ly5cmHBggVR0mzcuBEFCxZEkiRJ1PPmzZujpPHx8UGnTp2QNm1aJEuWDMWLF8fp06fj9bMR2Sz5OS1WDGFr1+MiCqveWO8fUTk4AFmzAlWqmDyXRET2HWitX78egwcPxpgxY3D27FlUqVIF9evXx/37942m9/b2RoMGDVQ6ST969GgMHDhQBVY6R48eRdu2bdG5c2ecP39ePbdp0wbHjx+PSPPixQtUqlQJzs7O2LlzJ65cuYKffvoJqVKlMsnnJrJaQUF4NXgcUK0acPcuMuZIit+mPcL06Q5wcJCHYXLd9qxZgKOjWXJMRGRemhmVLVtW69Onj8G+/PnzayNHjjSafvjw4ep1fb1799bKly8fsd2mTRutXr16Bmk8PT21du3aRWyPGDFCq1y58ifl3d/fX/0J7+vr+0nHoU8XHBysbdmyRT1TAjp/XtuUfbCWHk+0zWiqaZ9/Lj8IES9v3KhpWbJI1/f/f2TN+n4/mQd/NiwHy8JyyH1b7t9yHzcFs9VoBQcHq6a6unXrGuyX7SNHjhh9j9RWRU7v6emJU6dOISQkJMY0+sfctm0bSpcujdatWyN9+vQoUaIEFi9eHI+fjsiGhIXB77tf0LHEZbS4NxNPkQFzii4Gli0DUv7/QoUtWqhKLuzZE4qhQ0+pZ2/v9/uJiOyV2Wa28fX1RVhYGDJkyGCwX7afPHli9D2y31j60NBQdTwPD49o0+gf886dO5g/fz6GDh2qmh9PnDihmiClT1eXLl2MnjsoKEg9dAICAtSzBHi6II/MQ3f9WQ4J4O5d7Gi6BH2uDsYTeCARwvB1vzcYNzVVtNe7YsUQvHnjg4oVCyI8XEN4eEJkjGKDPxuWg2VhOUx9rzD7FILSr0OfTHoYed+H0kfe/6FjhoeHqxqtyZMnq22p0bp8+bIKvqILtKZMmYLx48dH2b9//37VmZ7Mb8+ePebOgu3QNKTeeRRLlhbGr2HT1K4cqZ+g78hryJvPH/v2ffgQLA/LwbKwHCwL8wsMDLSPQMvd3R2Ojo5Raq+ePn0apUZKJ2PGjEbTOzk5qdGDMaXRP6bUfMloRH0FChQw6FQf2ahRo1QNmH6NVtasWVGjRo2Ic5P5/jqRX1516tRRAxzoEz19Cscvv8Tu7cH4FdPggHAM6fES381MCxeXSiwPK8KfDcvBsrAcfn5+9hFoJU6cWE3TIDfI5s2bR+yX7aZNmxp9T4UKFbB9+3aDfbt371a1U7obrKSRYwwZMsQgTcWKFSO2ZcTh9evXDY5z48YNZM+ePdr8SrOiPCKT8/LmbhlYFp9O27YdDr16qmCrnrMzvqlyGJ7fVUDFKmlYHlaMPxuWg2Vhfqa+Z5t1egepIVqyZAmWLVuGq1evquBIpnbo06dPRC2SflOe7L937556n6SX9y1duhRff/11RJpBgwapwGratGm4du2aet67d6+aRkJHznPs2DHVdHjr1i2sWbMGixYtQr9+/Ux8BYgsxKtX2FN/Boo3zQafp05A4cLAiRMYv68yKlbhvAxERFbZR0vmu5IqvAkTJuDx48coXLgwduzYEVGzJPv059SSiU3ldQmU5s6di0yZMmH27Nlo2bJlRBqpuVq3bh3Gjh2LcePGIXfu3Gq+rnLlykWkKVOmjJrEVAI5Obccd9asWejYsaOJrwCR+b3afRTDWnlj4av3TePji2zEohPFARcXc2eNiMjqmb0zfN++fdXDmBUrVkTZV61aNZw5cybGY7Zq1Uo9YtKoUSP1ILJbwcH4p+tKdF9XB/dQQe0a0OIhpqwqDzDGIiKyjUCLiEzv9YkrGNHgIub59VLbOZI/w/K1SVG9URYWBxGRLa11SEQmJJNa/fQTZlT8HfP82qpdX3rewcXH6VC9UXIWBRFRPGONFpG9uHMH6N5dVmbH10iKQ+5NMGJudtRuk8vcOSMislkMtIhsXXg4Dn+9BYt/eYtloYfg6OqKZDNmYE+v4v+/6jMRESUIBlpENuzttXsYW/cEZj5oCQ2JUC7PU/Td1QTIndvcWSMisgvso0VkizQNx0ZuQfGCwZjxoLUKsj4vdxkdjg9ikEVEZEKs0SKyMe9u3Me3nkcx/W4rhMMRHs6+WDwnCA2/KGTurBER2R0GWkS2QhZYX7YM3fqkwvrQ9yMKO5e+gp935kNqd87uTkRkDgy0iGzBw4dAr17Arl0YhaI4mrgifpkVhiZfGi6eTkREpsVAi8iaaRrOTPgTp6ftQa+3u2T1cxSb2Bm3+qeHswtrsYiIzI2BFpGVCr77CBPrHsTkm63ggHooXfA5SvwxBihQAKZdm56IiKLDQIvI2mgazk/+C12/zY7zYe3UrtZFriLL3ysAD/5IExFZEv5WJrIiIQ+eYGrdfzDhWmuEwhlpHV9i3tQAtPm6gLmzRkRERjDQIrIGmgZt7TrU6podh0I7qF3NC1zD/N25kSFLKnPnjoiIosEJS4ks3dOnQKtWcOjYAS1D1yO1oz9+m3IfGy/nR4Ys7I1FRGTJWKNFZMGuztyFN+Ono7T/PsDJCQNGp0H7L5IhfWY3c2eNiIhigYEWkQUK+88XM+ruwrgLrZAFeXC+UEe4/roAiUqUQHpzZ46IiGKNgRaRhbk+Zw8+H5IKR0M7qe28ucMR+PchuGZObO6sERFRHLGPFpGFCHv2HDNL/YriAyrjaGgZpEz0CkvHeeOvm3mRjkEWEZFVYo0WkQUI2LgHDdunxOGQzmq7To6bWLI7G7J9ltPcWSMiok/AGi0ic3rzBujbFyla1YVbyDMkd3iDhSO98fedz5DtsyQsGyIiK8caLSIzubPpHFIP64nUd07DAcDiHscR9HVt5MjPWiwiIlvBGi0iEwsPCsH8BttRtGUeDLnTH8icGdi9Gx5LvkeO/C4sDyIiG8IaLSITurfvFno098O+V43Vtne6cnh74iKSZkrNciAiskGs0SIyAS0sHIvb7UPh2hmw71U5JEUgfu56BvufFGCQRURkw1ijRZTAHp9+hG51H2H381pqu1KqS1i+zR2fVSnJa09EZONYo0WUkNauReKalXHheWa44C1+an4YXs8K4bMqGXndiYjsAAMtogTge/MFtLbtgA4dkDbAG+vyfYdzOx5j6KbKcHSSMYZERGQPGGgRxSNNA1YNu4g8+RJhzQZHwNER+O47VLs4B/nq5+K1JiKyM+yjRRRPntwJxBe1bmP73SJqe1WyPuiwfzAcypbhNSYislNmr9GaN28ecubMCRcXF5QqVQqHDh2KMb2Xl5dKJ+lz5cqFBQsWREmzceNGFCxYEEmSJFHPmzdvjvZ4U6ZMgYODAwYPHhwvn4fssxZr7cTbKPRZkAqynBGMSeW346/HpRhkERHZObMGWuvXr1cBzpgxY3D27FlUqVIF9evXx/37942m9/b2RoMGDVQ6ST969GgMHDhQBVY6R48eRdu2bdG5c2ecP39ePbdp0wbHjx+PcryTJ09i0aJFKFq0aIJ+TrJdT31C0KrQFXQYlxvPw1OjhPNFnF5wCqOPNoZTymTmzh4REdlzoDVjxgz06NEDPXv2RIECBTBr1ixkzZoV8+fPN5peaq+yZcum0kl6eV/37t0xffr0iDTyWp06dTBq1Cjkz59fPdeqVUvt1/f69Wt07NgRixcvRurUnCySPsL167hSawA2XS0IJ4RgfOHfcfxBZhTpXZGXk4iIzBtoBQcH4/Tp06hbt67Bftk+cuSI0fdIbVXk9J6enjh16hRCQkJiTBP5mP369UPDhg1Ru3btePpEZC9CQzRg7lygRAlUv74QP7mMwcnJe/HNxdZwzpDG3NkjIiILYrbO8L6+vggLC0OGDBkM9sv2kydPjL5H9htLHxoaqo7n4eERbRr9Y65btw5nzpxRTYexFRQUpB46AQEB6lkCPF2QR+ahu/6mKIcty15gxJAw7H37E3LhLcJr18aART2BLFn4PTBDeVDMWBaWg2VhOUz9u8nsow6lI7o+TdOi7PtQ+sj7YzrmgwcPMGjQIOzevVt1qI8t6TQ/fvz4KPv379+PZMnYF8cS7NmzJ8GOHRDgjN+mZMTfV9/P5j450RgM7H4M3g0aABcuvH+QycqD4oZlYTlYFuYXGBhoH4GWu7s7HB0do9RePX36NEqNlE7GjBmNpndyckLatGljTKM7pjRXyraMXNSRmrWDBw9izpw5qtZK8hWZ9PUaOnSoQY2W9CerUaNGxLnJfH+dyC8v6Zvn7Owc78ffvvIFhvd3wpOgNEiEMAzPsBJj/iqHJEW7oEC8n836JXR5EMvCGvHnwnL4+fnZR6CVOHFiFezIL+TmzZtH7Jftpk2bGn1PhQoVsH37doN9UjNVunTpiF/okkaOMWTIEIM0FSu+76AsHeMvXrxocIzPP/9cdZwfMWKE0SBLyFQR8ohMzsubiWWI77J44ReOQQ1v4tfj+dR2AVzBih6HUXb+53KyeDuPreLPhuVgWVgOloX5mfqebdamQ6khkukXJFCSAEmmWpCpHfr06RNRi+Tj44NVq1apbdkvtU7yvl69eqmO70uXLsXatWsjjinNglWrVsW0adNUwLZ161bs3bsXhw8fVq+nSJEChQsXNsiHq6urqpWKvJ/s2NWrmF//EH6994Wqxfra4zeM31oCLmW+MHfOiIjIipg10JL5rqQKb8KECXj8+LEKdHbs2IHs2bOr12Wf/pxaMrGpvC61VXPnzkWmTJkwe/ZstGzZMiKN1FxJZ/exY8di3LhxyJ07t5qvq1y5cmb5jGRlZMDD1KnA5Mn4Khg445geXw0IRoXpHd8vp0NERGRNneH79u2rHsasWLEiyr5q1aqpEYMxadWqlXrE1oEDB2KdlmzX3zMuY/63T/D764lwRiiSNGyIP+aVBLJlM3fWiIjISpk90CIyt4AH/vja8wIWX60CoBDmJh+JwUsKA23ayBBWc2ePiIisGAMtsmv7xh9G9+9z4H6YBFnAwIJ70WvXECArJx4lIqJPx0CL7NLrG48wvN55zPeur7ZzOj3Ash/9UH0wVwogIqL4w0CL7Et4OLBwIXoOTI/1oe8HUfQtdQzTdhVHcves5s4dERHZGAZaZD+uXAG++AL491+MR16cdymFObPDUatXeXPnjIiIbBQDLbJ9QUE41Oc3nFh1DV+F/wskT458k/vjcp+sSOTMKRuIiCjhMNAim/Z2778Y0+YmZr3oprYrVNRQcd1AIGtWJDJ35oiIyOYx0CLb9PIljnZbiG5bm+EGKqld3Wt4o9CmH4BUnLKBiIhMg4EWWbWwMMDLywEHD2aGq6sDalTXEPL7FnzT6zF+evM1wuGITMleYPFyJzRok9Pc2SUiIjvDQIus1qZNsrYl8PChfI1LY8YMIIuLL5K9K4gbeL9QeRfPJ5i1NiNSpzZ3bomIyB4x0CKrDbJklSVNM9zv8y4NNKSFW5K3WLXaEU1aZTRXFomIiBhokXU2F0pNVuQgS2hIBAcHDcndk6Lh+0otIiIis+HAK7I6hw5Jc2H0r2uaA3x83qcjIiIyJwZaZHUen34Uu3SPEzwrREREMWKgRdYjLAzPvpuLZcOuxiq5h0eC54iIiChG7AxP1uHaNTzp+BUKn1kJP7ir3ljvRZ0Ty8EByJIFqFLF5LkkIiIywBotsvye7z/8ABQvjoxndqCW00EUzeKHaVMloHJQQZU+3fasWYAjV9chIiIzY40WWazQC1fwS+O/0f7+DGREEFCvHhZNL4tkedPC2RnI85luHq3/f4/UZEmQ1aKFOXNORET0HgMtsjyhoTgz5Ff0mlsMZ7QhOOqcAxsWvgS6dYObXhWWBFNNmwL794di585zqF+/OGrUcGJNFhERWQwGWmRRAk9dwbeNT2Pmk84IgxNSOb2G5+Rq0LqlidJMKKR5sFo1DW/e+KBatWIMsoiIyKKwjxZZhtBQ7Om+BoXLJMX0/wVZbcrexdX7rujxtfEgi4iIyNKxRovM7+JF/NZkPTrdnag2s7g8w/wFidCoaw5z54yIiOiTsEaLzCckBJg4EShVCk3u/owcie5hQJ1ruPKfOxp1TcuSISIiq8caLTKLuzuvYuHnRzHpv2+QCBpSNKmPSzOSwDV3dpYIERHZDAZaZFKhb0Mwu/l+jPu7EgJRALmSXUCvxWWB9u3hyo5YRERkYxhokcmcW38dPT8Pw+m3ddV21bSXUXXLGKByOpYCERHZJAZalOACXwZjfMMT+OlIeTWa0M3BHz/2uI4eC8ogkSOHExIRke1ioEUJ6/hxdKz7GlsCaqnNVpmPYPaOz+BRtCyvPBER2TyOOqSE8erV+/VxKlTAqIBRyJboAbYOO4zfH1SAR1E2FRIRkX1gjRbFK00D1o84g6eLt2Lgy9lqX9kuBXBralI4e1Tm1SYiIrti9hqtefPmIWfOnHBxcUGpUqVw6NChGNN7eXmpdJI+V65cWLBgQZQ0GzduRMGCBZEkSRL1vHnzZoPXp0yZgjJlyiBFihRInz49mjVrhuvXr8f7Z7M39089RaPMZ9D+x5IY9nI0rmeuCezeDaxcCWcPd3Nnj4iIyL4CrfXr12Pw4MEYM2YMzp49iypVqqB+/fq4f/++0fTe3t5o0KCBSifpR48ejYEDB6rASufo0aNo27YtOnfujPPnz6vnNm3a4Pjx4wbBWr9+/XDs2DHs2bMHoaGhqFu3Lt68eWOSz21rwkI1/Nz+GAqWSYYdj0siMYIwttIB5Ly0HahTx9zZIyIiMh/NjMqWLav16dPHYF/+/Pm1kSNHGk0/fPhw9bq+3r17a+XLl4/YbtOmjVavXj2DNJ6enlq7du2izcfTp081uRReXl6xzru/v796j6+vr2bPzm/11sqmuKy9bzTUtCrJT2tXN142aR6Cg4O1LVu2qGcyP5aH5WBZWA6WheWQ+7bcv+U+bgpmq9EKDg7G6dOnVU2SPtk+cuSI0fdIbVXk9J6enjh16hRCZDmXGNJEd0zh7++vntOkSfPRn8fuBAfDf9x0VG6aBideFURK+GNBqz044FcU+VsUNHfuiIiI7LszvK+vL8LCwpAhQwaD/bL95MkTo++R/cbSS9OfHM/DwyPaNNEdU9M0DB06FJUrV0bhwoWjzW9QUJB66AQEBKhnCfB0QZ69cDh+HI59+sDt8mWMhi9OpG+EmX94IFP56giDhjATXw/d9be3crBULA/LwbKwHCwLy2Hqe4XZRx06RFp2RQKfyPs+lD7y/rgcs3///rhw4QIOHz4cYz6lA/348eOj7N+/fz+SJUsGe/DuWSg2jU+OAQ+/R2VcRpCbG2p+HoIC1Xxx7rkfzu24ZNb8SX87shwsD8vBsrAcLAvzCwwMtI9Ay93dHY6OjlFqmp4+fRqlRkonY8aMRtM7OTkhbdq0MaYxdswBAwZg27ZtOHjwILJkyRJjfkeNGqVqvvRrtLJmzYoaNWpEnNtWSSy7cfRZDJmZA/+Fp8cVZMLZTtOR6MdpKJE2LUpYwF8n8surTp06cHZ2NnNuiOVhOVgWloNlYTn8/PzsI9BKnDixmqZBbpDNmzeP2C/bTZs2NfqeChUqYPv27Qb7du/ejdKlS0fcYCWNHGPIkCEGaSpWrGhQwyVBlkz7cODAATW9xIfIVBHyiEzOa8s39wen/kPfJg/x5+P3M7nnd76F+T+8g9PglbA0tl4W1oblYTlYFpaDZWF+pr5PmLXpUGqIZPoFCZQkQFq0aJGa2qFPnz4RtUg+Pj5YtWqV2pb9c+bMUe/r1auX6vi+dOlSrF27NuKYgwYNQtWqVTFt2jQVsG3duhV79+41aBqUqR3WrFmjXpO5tHQ1YG5ubkiaNKnJr4MlCgsJx/wuRzFqXVG8Rik4IxijKx3EqO0VkSR1HnNnj4iIyCqYNdCS+a6kCm/ChAl4/Pix6oy+Y8cOZM+eXb0u+/Tn1JKaJ3ldaqvmzp2LTJkyYfbs2WjZsmVEGqm5WrduHcaOHYtx48Yhd+7car6ucuXKRaSZP3++eq5evbpBfpYvX45u3bqZ4JNbuOvX8WeLlRhwZbLarOh6HotXJkbBlrXNnTMiIiKrYvbO8H379lUPY1asWBFlX7Vq1XDmzJkYj9mqVSv1iI6uAz1FEhwMTJsGTJyIJsHBaOFYDrWbp0DvNdWQyNmRl4uIiMjaAi2yDAfnXcJ3w99g85vpcEMwHOrXx8b5xYH/1S4SERFR3DHQsnMv7wdgeP2LWHylktqemHQyflyaBmjXTubJMHf2iIiIrBoDLTslraebRp5A/+nZ8ST8fZD1Rd4DGLOrA5AztbmzR0REZBMYaNkhn5OP0K/JA2x98n6AQD7n21j0gz+qDjYcHEBERESfxmxrHZIZhIUBs2fj24p7VJAlUzaMq7wf5/7LhKqDS7JIiIiI4hlrtOyEduYsHHp/AZw6hSlwx5PUeTBteQYUalrD3FkjIiKyWQy0bFzQ8zeY3PBfXD/+Auu0UzIrK9JNm4g/e1UAErFCk4iIKCEx0LJhh384gl5j0uNaaF213b/mFVT+7UtZENLcWSMiIrILDLRskP/1JxjZ4AIW3HkfYGVI9Ay/jHiISpPGA5yxgYiIyGTYdmRLwsOxuc8uFCwQHhFk9ShyAlfvJUPrySU4LRYREZGJMdCyFZcu4V3Fmhi6MB8eaZnwWZL72L/4FpZcKIvUWVzNnTsiIiK7xEDLyoW/eYvwUWOAEiXgctwLC1yGYFSdUzjvmxnVe+Yxd/aIiIjsGvtoWbGrS4/gi/7O6PDuOb5EKNC8OTxnz4ZnlizmzhoREREx0LJOQQ+eYmrDQ5h8sRGCkQR3EmVF9/UNkKRVY3NnjYiIiPSw6dCaaBqOjNqOkjme47uLLVWQ1SDHZRy9mJxBFhERkQVi06GVCDh1A6OaXMb8x02hIRHSOT3H7O9eoO3oQhxNSEREZKEYaFm6d++AKVNwa/JOLAg9qoKsbqUvYfqf+ZE2Qxpz546IiIhiwEDLgr3bfRAuA3oBN25Alnz+If9yFB/bCLU6FjZ31oiIiCgW2EfLAoU/88OiSiuRzTM/Lt9wer9kzoYN+OpKD9TqyOVziIiIrAVrtCyJpuH6j9vwxZh0OBjaVe36peB8LPi3KJAqlblzR0RERHHEQMtCBF+5hR8aH8LEO+0RBBckcwjExAFPMXBGVcDR3LkjIiKij8FAy9yCg3Fs4G/otagMLmmfq1318t7G/O1ZkSNvDnPnjoiIiD4B+2iZ07//AiVL4vDCy7ikFYa780v8NuM/7LiWGznyJjZr1oiIiOjTsUbLHF6+xMsh45FqxSy1OdjdDwGVu2LgosJwT+dgliwRERFR/GONlilpGp4s3Iq2Gb1QfkVvvEMSoHt3OF27hAmbizDIIiIisjGs0TIRzfsuljXZgq8vdcVLpIYjQnHwxxOo+3VRU2WBiIiITIw1WgktNBQ3RyxBzTz30PPSYBVklfR4hJPHwhlkERER2TjWaCWgsGMn8UPzoxj/5As1ZUPSRO/w/dcBGDQpE5x45YmIiGwea7QSQkAAMHAgElUoB68neVWQVaeQDy7dSIKvpqVnkEVERGQnWK8Sz16v3Y7wr4Yh5ePrkPGD85vtxuHaFdGpb2Y4cEAhERGRXTF7jda8efOQM2dOuLi4oFSpUjh06FCM6b28vFQ6SZ8rVy4sWLAgSpqNGzeiYMGCSJIkiXrevHnzJ583OocPOyAsDMDDh9hR4XsU6lAUXz8eCuTODezejZybZ6Bzv5QMsoiIiOyQWQOt9evXY/DgwRgzZgzOnj2LKlWqoH79+rh//77R9N7e3mjQoIFKJ+lHjx6NgQMHqsBK5+jRo2jbti06d+6M8+fPq+c2bdrg+PHjH33emDRr5oSsaV6jSvZ7aHhsHO4jO/amaoVXRy4Cdep85JUhIiIim6CZUdmyZbU+ffoY7MufP782cuRIo+mHDx+uXtfXu3dvrXz58hHbbdq00erVq2eQxtPTU2vXrt1Hn9cYf39/TS4fIM/hmlxJB4RqX3V9pr1+HevDUDwIDg7WtmzZop7J/FgeloNlYTlYFpbD19dX3b/lPm4KZqvRCg4OxunTp1G3bl2D/bJ95MgRo++R2qrI6T09PXHq1CmEhITEmEZ3zI8574dJ5ysN6TMkwrSl7nB1/cjDEBERkU0xW2d4X19fhIWFIUOGDAb7ZfvJkydG3yP7jaUPDQ1Vx/Pw8Ig2je6YH3NeERQUpB46/v7+//tfQMS+//4D/vwzFJUrS7BMpiJBdmBgIPz8/ODs7MwLb2YsD8vBsrAcLAvL8fz5c/WsaZp9jDp0iDQUTz545H0fSh95f2yOGdfzTpkyBePHjzfySlaDrWbNoj0EERERWQj549zNzc12Ay13d3c4OjpGqUV6+vRplNomnYwZMxpN7+TkhLRp08aYRnfMjzmvGDVqFIYOHRqx/fLlS2TPnl11oDdFQVH0AgICkDVrVjx48AApU6bkpTIzloflYFlYDpaF5ZAWqWzZsiFNmjQmOZ/ZAq3EiROraRX27NmD5s2bR+yX7aZNmxp9T4UKFbB9+3aDfbt370bp0qUjmowkjRxjyJAhBmkqVqz40ecVMlWEPCKTIIs3d8sg5cCysBwsD8vBsrAcLAvLkShRIttvOpQaIpl+QQIlCZAWLVqkaoj69OkTUYvk4+ODVatWqW3ZP2fOHPW+Xr16qY7vS5cuxdq1ayOOOWjQIFStWhXTpk1TgdPWrVuxd+9eHD58ONbnJSIiIrL6QEvmu5I20gkTJuDx48coXLgwduzYoZrkhOzTn9tKJhiV16W2au7cuciUKRNmz56Nli1bRqSRmqt169Zh7NixGDduHHLnzq3mzSpXrlysz0tEREQUHxxkjod4OZKdkRGI0kFeat2MNSkSy8Je8WfDcrAsLAfLwn7LgoEWERERka2udUhERERkqxhoERERESUQBlpERERECYSBFhEREVECYaD1kebNm6emm3BxcVEToB46dCh+S8bOyYiQMmXKIEWKFEifPj2aNWuG69evG6SRAbPfffedmuYjadKkqF69Oi5fvhxldMmAAQPUigCurq5o0qQJHj58aOJPY3tlI8tVDR48OGIfy8J0ZG7BTp06qdUwkiVLhuLFi+P06dMsCzOQdXZlKiG5F8jvoFy5cqlpg8LDw1keCezgwYNo3Lix+v0vv4+2bNli8Hp8/U568eKFmndTJieXh/xfVoaJE5negeJm3bp1mrOzs7Z48WLtypUr2qBBgzRXV1ft3r17vJTxxNPTU1u+fLl26dIl7dy5c1rDhg21bNmyaa9fv45IM3XqVC1FihTaxo0btYsXL2pt27bVPDw8tICAgIg0ffr00TJnzqzt2bNHO3PmjFajRg2tWLFiWmhoKMvqI5w4cULLkSOHVrRoUfW9Z1mY1vPnz7Xs2bNr3bp1044fP655e3tre/fu1W7dusWyMIOJEydqadOm1f78809VFr///ruWPHlybdasWSyPBLZjxw5tzJgx6ve/hDKbN282eD2+7g/16tXTChcurB05ckQ95P+NGjWKU14ZaH2EsmXLqgLSlz9/fm3kyJEfcziKhadPn6ofJi8vL7UdHh6uZcyYUf0w6bx7905zc3PTFixYoLZfvnypAmIJjHV8fHy0RIkSabt27eJ1j6NXr15pn332mfqlVK1atYhAi2VhOiNGjNAqV64c7essC9OSPwC7d+9usK9FixZap06dWB4mhEiBVnz9HEhFihz72LFjEWmOHj2q9l27di3W+WPTYRwFBweravq6desa7JftI0eOxPVwFIdFQIVuEVBvb2+1MLh+OcjEc9WqVYsoBymnkJAQgzRSjSwrAbCs4q5fv35o2LAhateubbCfZWE627ZtU0uHtW7dWjWplyhRAosXL2ZZmEnlypWxb98+3LhxQ22fP39eLffWoEEDtc2fDfOIr+suy/xJc6H+yjLly5dX++JyDzHrEjzWyNfXF2FhYciQIYPBftmWgqX4J3+wyPqU8ktNfgiE7lobK4d79+5FpJFFxFOnTs2y+kSyrNWZM2dw8uTJKK+xLEznzp07mD9/vvp5GD16NE6cOIGBAweqm0iXLl1YFiY2YsQI9Udg/vz54ejoqO4NkyZNQvv27dXr/Nkwj/i67vIsf9BEJvvicr9noPWRpPNd5GAg8j6KH/3798eFCxcMFgb/lHJgWcXNgwcP1GLtu3fvVoM/osOySHjSyVpqtCZPnqy2pUZLOvhK8CWBFsvCtGQd3dWrV2PNmjUoVKgQzp07pwaJSM1I165dWR5m5hAP9wdj6eN6D2HTYRzJ6AT5yyVyNPv06dMo0TN9OhkRIs0l+/fvR5YsWSL2Z8yYUT3HVA6SRpp6ZdQIy+rjSRW7XFcZXevk5KQeXl5eakF3+b/uerMsEp6HhwcKFixosK9AgQK4f/+++j9/Lkxr2LBhGDlyJNq1a4ciRYqoEWlDhgxRI3NZHuaTMZ7uD5Lmv//+i3L8Z8+exel+z0ArjqSqUW44e/bsMdgv2xUrVozr4Sga8heD1GRt2rQJ//zzjxo+rU+25YdAvxzkh0YCAF05SDk5OzsbpHn8+DEuXbrEsoqDWrVq4eLFi+qvdd1DalU6duyo/i9D2lkWplGpUqUo05xI/6Ds2bOr//PnwrQCAwORKJHhbVT+ENdN78DyMI/4uu4VKlRQTcPSRK9z/PhxtS9O9/tP7u5vx9M7LF26VI1KGDx4sJre4e7du+bOms348ssv1QiRAwcOaI8fP454BAYGRqSRESWSZtOmTWr4bvv27Y0O382SJYsaAi/Dd2vWrMnpHeKB/qhDloVpp9dwcnLSJk2apN28eVP77bfftGTJkmmrV69mWZhB165d1fQAuukd5HeRu7u7Nnz4cJaHCUZBnz17Vj0klJkxY4b6v26apfi6P8j0DjKdjYw2lEeRIkU4vYOpzJ07V81nkzhxYq1kyZIR0w5Q/JAfHGMPmVtLfwjvt99+q4bxJkmSRKtatar6gdL39u1brX///lqaNGm0pEmTqh+Q+/fvs5jiOdBiWZjO9u3b1Vw+8p2XaWUWLVpk8DrLwnTkpi0/BzLHn4uLi5YrVy41t1NQUBDLI4Ht37/f6D1Cgt/4/Dnw8/PTOnbsqObkkof8/8WLF3HKq4P8Ez+VdURERESkj320iIiIiBIIAy0iIiKiBMJAi4iIiCiBMNAiIiIiSiAMtIiIiIgSCAMtIiIiogTCQIuIiIgogTDQIiLSU716dbVgrDxkiaG40L0vVapUvKZEpDDQIiKbpAt6ont069Yt2vf26tVLrXtWuHBhtX337t0ogderV69UUJY/f348ePBA7ZP3zJo1ywSfjoishZO5M0BElBAk6NFZv349vvnmG4MFmZMmTRrte5MlS6YWpY3Os2fPUL9+ffX/w4cPw93dXf1f3uPm5hZPn4CIbAEDLSKySfqBkgQ/UiMVU/AUW1J7VadOHXh4eGDbtm1IkSLFJx+TiGwXmw6JiGJJasQqVaqkmgt37drFIIuIPoiBFhFRLHXp0gW5c+fGxo0bkSRJEl43IvogBlpERLHUtGlT1SdLAi0iothgHy0iolgaPXo0ihYtio4dO0LTNLRt25bXjohixECLiCgOxo4dCycnJxVshYeHo3379rx+RBQtBlpERHE0cuRIODo6onPnzirYkqCLiMgYBlpERB9h2LBhKtjq2rWrCrYk6CIiioyd4YnI5sks8C9fvvzo9+fIkUP1ySpevLjB/qFDhyI0NJRBFhFFy0GT3x5ERKTIsjpHjhxB4sSJcfToURQpUiTWVyZ58uQq8HJxcfmkwI6IbAcDLSIiPT4+Pnj79q36f7Zs2VTAFVu3bt1Sz9KkmDNnTl5XImKgRURERJRQ2EeLiIiIKIEw0CIiIiJKIAy0iIiIiBIIAy0iIiKiBMJAi4iIiCiBMNAiIiIiSiAMtIiIiIgSCAMtIiIiogTCQIuIiIgICeP/AKumpwtPlNlFAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1285,7 +1129,10 @@ ], "source": [ "# plt.plot(temps, [((structure.get_volume()/(len(structure)/4))**(1/3)/a_0)-1 for _, structure in equilibriated_cells_dict.items()], \"--o\", color=\"blue\")\n", - "plt.plot(np.concatenate(([0], temps)),np.concatenate(([0], [(((structure.get_volume()/(len(structure)/4))**(1/3))/a_0)-1 for _, structure in equilibriated_cells_dict.items()])), \"--o\", color=\"blue\")\n", + "\n", + "plt.plot(expansion_ref_df['Temperature'], expansion_ref_df['Expansion'], color='red', label=\"Expansion (ref)\")\n", + "\n", + "plt.plot(np.concatenate(([0], temps)),np.concatenate(([0], [(((structure.get_volume()/(len(structure)/4))**(1/3))/a_0)-1 for _, structure in equilibriated_cells_dict.items()])), \"--o\", color=\"blue\", label=\"Expansion (MD)\")\n", "# plt.scatter(0, 0, marker=\"o\", s=20, color=\"blue\")\n", "plt.xlim([0, 1000])\n", "plt.ylim([0, 0.018])\n", @@ -1293,7 +1140,8 @@ "plt.title('Thermal-expansion ratio')\n", "plt.ylabel(\"L(T)/L(0)-1\")\n", "plt.xlabel(\"T [K]\")\n", - "plt.grid()" + "plt.grid()\n", + "plt.legend()" ] }, { diff --git a/hackathon/elastic_constants/MD/MD_13-01-26_ADIS.ipynb b/hackathon/elastic_constants/MD/MD_13-01-26_ADIS.ipynb new file mode 100644 index 0000000..71dc943 --- /dev/null +++ b/hackathon/elastic_constants/MD/MD_13-01-26_ADIS.ipynb @@ -0,0 +1,1705 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "66c56017", + "metadata": {}, + "source": [ + "# Temperature dependent elastic constants" + ] + }, + { + "cell_type": "markdown", + "id": "01efc9ce", + "metadata": {}, + "source": [ + "## Multiple methods to calculate elastic constants:\n", + "\n", + "1. Fitting elastic energies from static calculations\n", + "2. Calculating stresses using MD calculations\n", + "3. Quasi-Harmonic approximation" + ] + }, + { + "cell_type": "markdown", + "id": "37118728", + "metadata": {}, + "source": [ + "# Implementation" + ] + }, + { + "cell_type": "markdown", + "id": "63483b9c", + "metadata": {}, + "source": [ + "## Overview" + ] + }, + { + "cell_type": "markdown", + "id": "917cf0e8", + "metadata": {}, + "source": [ + "Assumption: Cubic cell" + ] + }, + { + "cell_type": "markdown", + "id": "1ad4f2b8", + "metadata": {}, + "source": [ + "### 0K Elastic constants" + ] + }, + { + "cell_type": "markdown", + "id": "13ecec3c", + "metadata": {}, + "source": [ + "Step 1: Get relaxed structure at 0K\n", + "\n", + "Step 2: Calculate elastic constants C11, C12 and C44 at 0K\n", + "\n", + " Step 2.1: Calculate deformation gradients for a strain value (system specific)\n", + "\n", + " Step 2.2: Static calculation for relaxed and strained cell for each elastic constant\n", + " \n", + " Step 2.3: Get the difference in stresses on both the cells\n", + " \n", + " Step 2.4: Calculate the elastic constants using the below equations\n", + "\n", + "Step 3: Check against fit elastic constants - fitting the energy vs strain curve" + ] + }, + { + "cell_type": "markdown", + "id": "6adc2626", + "metadata": {}, + "source": [ + "### Temperature Dependent Elastic constants" + ] + }, + { + "cell_type": "markdown", + "id": "fac6cfcd", + "metadata": {}, + "source": [ + "Step 1: Get relaxed structure at 0K\n", + "\n", + "Step 2: Calculate elastic constants C11, C12 and C44 at specific temperature\n", + "\n", + " Step 2.1: Finite temperature equilibriation of the relaxed structure\n", + " Step 2.1.1: Calculate lattice constant using an NPT simulation (Nose Hoover)\n", + " Step 2.1.2: Equilibriate structure using an NVT simulation (Langevin)\n", + "\n", + " Step 2.1: Calculate deformation gradients for a strain value\n", + " \n", + " Step 2.2: NVT simulation (Langevin) for equilibriated and strained cell for each elastic constant\n", + " \n", + " Step 2.3: Get the difference in stresses on both the cells\n", + " \n", + " Step 2.4: Calculate the elastic constants using the below equations\n", + "\n", + "Step 3: Convergence studies to calculate good range of parameters:\n", + "\n", + " ```\n", + " input_params_scale = {\n", + " \"cell_scale_value\" : [3, 5, 7, 9],\n", + " \"run\" : [5000, 10000, 20000, 30000, 40000, 50000],\n", + " \"temperature\" : [500],\n", + " \"strain\" : [0.005],\n", + " \"seed\": [1357],\n", + " \"thermostat\" : [\"langevin\"]\n", + " }\n", + " ```" + ] + }, + { + "cell_type": "markdown", + "id": "74747b46", + "metadata": {}, + "source": [ + "### Deformation gradient tensor $F$\n", + "\n", + "#### $C_{11}$ deformation\n", + "Uniaxial strain $\\varepsilon_{11} = \\varepsilon$, all other $\\varepsilon_{ij} = 0$. \n", + "$$\n", + "F = \\begin{pmatrix}\n", + "1 + \\varepsilon & 0 & 0 \\\\\n", + "0 & 1 & 0 \\\\\n", + "0 & 0 & 1\n", + "\\end{pmatrix}\n", + "$$\n", + "\n", + "$$\n", + "C_{11} = \\frac{\\Delta\\sigma_{11}}{\\varepsilon}\n", + "$$\n", + "\n", + "\n", + "#### $C_{12}$ deformation\n", + "Biaxial strain $\\varepsilon_{11} = \\varepsilon_{22} = \\varepsilon$, all other $\\varepsilon_{ij} = 0$. \n", + "$$\n", + "F = \\begin{pmatrix}\n", + "1 + \\varepsilon & 0 & 0 \\\\\n", + "0 & 1 + \\varepsilon & 0 \\\\\n", + "0 & 0 & 1\n", + "\\end{pmatrix}\n", + "$$\n", + "$$\n", + "C_{12} = \\frac{\\Delta\\sigma_{33}}{2\\varepsilon}\n", + "$$\n", + "\n", + "#### $C_{44}$ deformation\n", + "Shear strain $\\varepsilon_{23} = \\varepsilon_{32} = \\varepsilon$, all other $\\varepsilon_{ij} = 0$. \n", + "$$\n", + "F = \\begin{pmatrix}\n", + "1 & 0 & 0 \\\\\n", + "0 & 1 & \\varepsilon \\\\\n", + "0 & \\varepsilon & 1\n", + "\\end{pmatrix}\n", + "$$\n", + "$$\n", + "C_{44} = \\frac{\\Delta\\sigma_{23}}{2\\varepsilon}\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "5715e211", + "metadata": {}, + "source": [ + "## Comparison with Reference" + ] + }, + { + "cell_type": "markdown", + "id": "d44fb404", + "metadata": {}, + "source": [ + "We compare our values with the paper - [M. Krief, et. al., Physical Review E, 103, 063307, 2021](https://journals.aps.org/pre/abstract/10.1103/PhysRevE.103.063307#s4)\n", + "\n", + "Potential used: Copper [Mishin potential](https://www.ctcms.nist.gov/potentials/entry/2001--Mishin-Y-Mehl-M-J-Papaconstantopoulos-D-A-et-al--Cu-1/)" + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOEAAAEZCAYAAADR3DE4AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAP+lSURBVHhe7P13eBTl/j/+P2c3ZdN774X0EBIILfQoSCiCKOKhKQiKDcuRgwePFStiQTmKCooUpaqASgm9hyQEQhJSSO+9bbLZ9vr98c3Oj90kEJAo5/15Pa4r16XMzE67556Z59xzj0BEBMYYY4wxxhhjjDHGWJ+RGP4DY4wxxhhjjDHGGGPszuIQjjHGGGOMMcYYY4yxPsYhHGOMMcYYY4wxxhhjfYxDOMYYY4wxxhhjjDHG+hiHcIwxxhhjjDHGGGOM9TEO4RhjjDHGGGOMMcYY62McwjHGGGOMMcYYY4wx1sc4hGOMMcYYY4wxxhhjrI9xCMcYY4wxxhhjjDHGWB/jEI4xxhhjjDHGGGOMsT7GIRxjjDHGGGOMMcYYY32MQzjGGGOMMcYYY4wxxvoYh3CMMcYYY4wxxhhjjPUxDuEYY4wxxhhjjDHGGOtjHMIxxhhjjDHGGGOMMdbHOIRjjDHGGGOMMcYYY6yPcQjHGGOMMcYYY4wxxlgf4xCOMcYYY4wxxhhjjLE+xiEcY4wxxhhjjDHGGGN9jEM4xhhjjDHGGGOMMcb6GIdwjDHGGGOMMcYYY4z1MQ7hGGOMMcYYY4wxxhjrYxzCMcYYY4wxxhhjjDHWxziEY4wxxhhjjDHGGGOsj3EIxxhjjDHGGGOMMcZYH+MQjjHGGGOMMcYYY4yxPsYhHGOMMcYYY4wxxhhjfYxDOMYYY4wxxhhjjDHG+hiHcIwxxhhjjDHGGGOM9TEO4RhjjDHGGGOMMcYY62McwjHGGGOMMcYYY4wx1scEIiLDf2SMMcYYY6yvlZSUQKFQwN3dHRYWFoaD9bS2tiInJwcNDQ3w8/ODp6cnTExMDEfrQi6XIycnB1VVVbC1tYW/vz8cHBwglUoNR70rtbe3o66uDnZ2djA3N4cgCIajMMYYY+x/BIdwjDH2FysoKMCvv/6KzMxMdFcFGxsbw8rKCl5eXoiJiUFkZCSsrKz0xmlubsaxY8dw6NAhKBQKvWEA4OzsjAkTJmDkyJHQarW4dOkSfv31V1RUVHSZp0wmw7BhwzB58mRIpVIcP34cBw4cQFtbm954AGBnZ4f4+HiMHTtWvPltaWnB8ePHkZiYiLa2NvH3TU1NMXz4cCQkJMDW1lbvdyoqKrBnzx78/PPPyM7OBhEhLCwMEyZMwJAhQ3DlyhWo1WrMmjVLnFalUuH8+fP4/fffUVtb22U9BEFAQEAAJk+ejPDwcL1hOkSEsrIyHDp0CPv370d6ejpqa2shkUjg6uqKiIgIjBkzBgMGDEBaWhoaGhowY8YM+Pv7G/5Ut0pLS7Fr1y7Y2dnhwQcfhLm5ueEoXZSUlGDfvn24ePFit+vk5+eHyZMnIyIi4o7cfGdkZGDv3r3Iz8/vdn4SiQRmZmZwd3dHbGwsoqOjYWNjozfe9YqKirBnzx6kp6d3+b0b0e2vqVOnIiQkBIIgoKKiAnv37sXFixehVqv1xjc2NsaIESMwfvx4ODo6iv/e0dGBxMREHD16FE1NTeK/29nZYfLkyRgyZAgaGxuxd+9epKamQqVSieOgczlMTEwwbtw4jBs3DlKpFPv27cOZM2e6PbZuxNbWFlOnTsXgwYNhamqKlJQU7Nu3D6WlpXrjSSQSxMXFYfTo0UhNTcXJkyfR0tKiN44gCAgMDMT06dMRGBgIQRBQX1+PX375BSkpKVAqleJ4UVFRmDp1Kry8vPR+oydEhCNHjuDQoUOoq6szHHxDxsbGuOeeezB27FjY2dkZDu4VtVqN5ORkbNy4Efv27cOkSZOwbNmyHo+ztrY27NixA19++SWMjIxgZWWFvLw8DBw4EC+++CKio6NhbGxsOBkqKyvx3Xff4fvvv0d+fj7UajUEQYCVlRWmTZuGF198EeHh4TAyMjKc9LZoNBqcO3cO69evR3p6OlQqFaysrDB9+nTMmjULbm5uvTqGVSoVLly4gF9++QVJSUlwcXHBmDFjMGXKFLi7u0Mi+f9eZNHNb+PGjThx4gTq6+vh4uKCqVOn4rHHHoOfn1+3QaNGo8HZs2exceNGnDx5EvX19XB1dRWn8/X17XY6AMjPz8eGDRuQmJgolsFRo0Zh0aJFCA4O1tuWWq0WiYmJOHjwoN6x2R0HBwfMmzcPQUFBt7w/tFotzp07h6SkJDzwwAPw9PQUt1F+fj7Wr1+PxMRElJaWwsnJCcOHD8fChQsRGRnZY4jb3NyMH3/8Edu2bUNzczM6OjoQEhKCJUuWYPjw4ZDJZIaTAACuXbuGb7/9FocPH0ZpaSlcXFwwfPhwLFq0COHh4d2W0+upVCocPnwYW7duxYIFCzBs2DCYmprqjVNWVobvv/8eY8eOxaBBg3pcB8YYY3cpYowx9pfSarVUV1dHGzdupOjoaBIEgSwsLGjMmDH0yiuv0NKlSyk+Pp4cHR3JxMSEwsPD6eOPP6bKykq931EqlZSWlkaLFy8mS0tLAkA+Pj701ltvUUlJCWk0Gr15VlZW0qeffkqBgYEkCAJZWlrSrFmzKCkpiTo6OsRxW1tb6eeff6aRI0eSVColAGRra0vPPfcclZSUiONdT61WU3JyMs2cOZNkMhkNHjyYNm/eTI2NjXrjabVaSk1NpVmzZpGzszNNnz6dNm3aRL///ju99957NGTIEDI2NiZLS0taunQpVVRUdJm+rq6ONmzYIG47Y2NjmjBhAh08eJDa2tr0xr9edXU1ffbZZxQaGkoWFhY0dOhQev311+nXX3+lEydO0KZNm2j27Nnk6upKgiCQiYkJzZ07l65evWr4U93SarW0f/9+Gj16NM2ePZsyMjIMR+lRS0sL7dq1i0aMGEESiYQkEgkNGTKEtm7dSk1NTYaj/ylarZaqqqrok08+oaCgIAJAZmZmNHr0aPrnP/9Jy5cvp4ceeoj8/f3J1NSUvL29admyZXT16lXSarWGP0dERM3NzbRt2zYaMmQISSQSMjY2pqFDh9LSpUvp1VdfFf+WL19OS5YsoZEjR5KdnR0NHTqUDhw4oPe7tbW1tHr1agoICBD378yZM+nChQukVqv15quj0Wjo0qVL9I9//IOsra1pwoQJlJiYSAqFQhxHpVJRRkYGLV68mOzt7QkAOTs702uvvUaFhYV6x4tSqaTz58/TAw88QGZmZiQIAgUFBdHChQv11uff//43LV26lKZMmULu7u7k7u5OX331FbW0tIjLpfsdc3NzEgSBoqKiaOfOnWJZ1Wg0dO7cOZoyZQrJZDISBIEGDhxI27Zto+bm5i7bXC6X09atWyk6Oprc3d3ptddeo4KCAr3l7w2tVktFRUX04osvkrOzMwEgBwcHeuihh+iVV14R13HFihX0z3/+k2bPnk1BQUFkYWFB//znP6m4uNjwJ2+qubmZdu3aRZMmTSIbGxsSBIEkEgktXryYrl27Zjg6UeexsXLlSvLy8qKhQ4fSsWPHqKmpiV577TVydXWloUOHUmJiol4dRkR06dIlmjZtGllYWJBEIiFBEAiA+CeVSmnWrFmUmZnZZRvfDoVCQZ9//jmFhYXRs88+S/n5+aRWq2nv3r00ZMgQmjZtGqWkpPRYhqmzLJw+fZoeeugh8vb2pqeffpquXLlCKpXKcFTq6OigL7/8kkJCQig4OJiGDBlCnp6eZGxsTBKJhCZNmkRpaWld5tfR0UFr166l4OBgCgkJoaFDh4rTSaVSmjx5Ml2+fLnb8nT48GEaMmQI3XfffXTu3DlSKpWUlZVF06ZNo+joaNqzZ49eHVxfX09z5swRz089/QmCQEOHDqWLFy92Wd6b6ejooA0bNtCSJUvo4sWL4rbSaDT0448/UmhoqHgeu35+Xl5etGXLFmptbTX8SSoqKqIHH3yQwsPDafv27SSXy6mxsZGWLVtGfn5+tGrVKmpoaNCbRqPR0JYtWygoKKjb+Xl7e9O2bdtILpfrTaejVqvpwIEDNHHiRLKwsCBnZ2f67bff9Oqw6+Xl5dGTTz5JO3fu7PE3GWOM3Z04hGOMsb9Jfn4+Pf3002RsbEy+vr70+eefizc+Go2GMjMz6cknnyQrKyuysbGhxYsXU0FBgd5vKJVK2rlzp3ijkZCQQCkpKXrjXO/KlSv0yCOPkEQioX79+tG3337b7c2WWq2mQ4cO0ahRo0gikZClpSUtWbKESktLDUcVpaen09y5c2ncuHF04MCBbn+3vLycXnnlFXJzc6NFixZ1WZ9r167Rc889Ry4uLrRgwQLKz8/XG65TUFBATz/9NMlkMnJxcaF3332XmpubDUcTZWdn05NPPkk2Njbk5+dHH374IdXU1BiORkqlkvbv309jx44lmUxGs2bN6nWYVl9fT2+99RY5OjpSaGgo/fDDD6RUKg1H61FtbS2tWLGCbGxsyMLCgl566SUqLy83HO2OyczMpEceeYSMjY2pX79+9MMPP+gFGeXl5fSf//yH3NzcyNTUlGbOnEkpKSk9BhbV1dX00ksvkbW1NdnZ2dF7773X5UZVRy6X0+eff04zZ86kP/74o8tvVlVV0csvv0x2dnZkbGxMjz/+OOXk5OiNY6i5uZlef/11Gj58OG3evJna29sNRyGtVku7du2i6OhokkgkFB8fTydPnuwyf+o8Br/88kvy9/cnqVRKCxcu7HEZNBoN7d+/n6ZPn05fffVVl7K4f/9+GjZsGEmlUho6dCgdPny4S0i+c+dOGjBgAEkkErrnnnvozJkz3S4XEVFGRgY9+OCDtGTJkh6XqbdOnDhBcXFxYvB7/PjxHuebk5NDc+bMoRUrVlBRUZHh4B7V19fTV199RePGjSNfX18yNzcXA4obhXAajYY2b95MoaGhZGRkRE888YQ43q+//kr9+/cnqVRKM2bMoPT0dHG58/Pz6YknnqBly5bR5cuXqbm5mQ4ePEj33HMPyWQycd4+Pj60a9eubsvKrdBqtbRt2zYKDw+nhIQESktLE/evWq2mNWvWkJ+fHz366KOUm5vb7fZta2ujtWvXUmBgIIWEhNBPP/0khrmGtFot/fjjjzR37lzau3evGMLU19fTihUryMXFhSwsLOijjz6iuro6cTqNRkNbt26lOXPm0G+//SZOV1dXR6+88go5OzuThYUFffzxx1RfXy9OR53njnHjxlFwcDD99ttvetvs2LFjFB0dTYMHD6YzZ86IQdiRI0do4MCBFBcXR0uWLKF//etftHz5cr2/hx56iBwdHbt96HIzHR0d9PHHH9MDDzxASUlJemHlsWPHaPjw4fT444/T/v376fLly/Tzzz/T9OnTycrKigRBoPDwcDp9+rRePd3U1ESLFi0iZ2dnWr16td6DpPLycpoyZQp5eHjQli1b9MKvI0eO0JAhQ2jx4sV08OBBunz5Mu3evZvuv/9+srS0JEEQKDIyks6fP98lVC0pKaG1a9fSBx98QOPHjydzc3NycnK6YQhHnee1mTNn6oX6jDHG7n78YQbGGPubGBkZwczMTHz15vrXlCQSCUJDQ/HMM89g6tSpkMvl+OOPP7Br1y69V+SkUinMzc1hamoKqVQKMzOzLq+uXM/ExARmZmbiK3i6/zYklUoxfPhwLFiwAAEBAZDL5Th58iSOHj3a5XU+dL66c/ToUZSXl2POnDkYM2aM+DqQDhEhPz8fKSkpMDY2RlhYGFxdXfXG8ff3x+LFi5GQkACFQgG5XK43XEe37FKpFKamprC0tOzxNZ+ioiJ89dVX2Lp1K6ytrfH000/jiSee0HulUUf3qt3LL7+M2NhYaDSaLq9F9iQvLw8XLlxAQ0MDCgsLce7cOZSXlxuO1iNjY2NYWlrC1NRUfCW5p1ee7gRTU1OYm5tDKpWKr6FeXxbc3NywYMECTJkyBVKpFEePHsXBgwfR2Nio9zs6JiYmsLS0hImJSbe/dz1zc3MMHz4cISEhhoMAAE5OToiPj0dYWBg0Gg3S0tKQm5sLjUZjOKqorq4OZWVlCAsLw4ABA7rddoIgwMLCQjxGrKyseuxjSxAEWFtbw8zMTPz/nkgkEsTExGDAgAHi+NcbOHAgYmNjYWlpifz8fGRlZaG1tVUcLggCBg8eLE6flZWFjIyMHst/TU0NACAmJqbLMXSrzM3NxXJwo32GzuNz+PDhsLe3v6VXj7VaLWJjY7FlyxacPHkSM2fOhKWlpeFoXeTn52P37t0oKCiAVCqFo6OjuH1dXV3F12GPHj2KY8eOobGxEQqFAnv27EF0dDReeOEF8XX+e++9Fy+99BLCwsLEuqm1tRVNTU29PsZ7UlRUhO3bt6O6uhrx8fHw8vIS5yGVSjFu3Dj4+/vj0KFDOHXqlN6+R+dyfPjhh3jnnXcgkUjw/vvvY+rUqT1uo7KyMuTn5+Ppp5/G+PHjxdfe7ezssHjxYgwbNgxEhOzsbL156aZ77rnncO+994rT2dvb48knn8TQoUPF6a4vewqFAlu3bsWVK1cwdOhQhIWF6R1fMTExiI2NRV5eHnbv3o3a2loolUqcPn0a8+bNw65du/Df//4X77//Pt577z3xb+XKlYiMjISDgwMGDRrUpduFG9FqtdiyZQt2796NOXPm6L1W3NLSgp07d2LatGl49913MWHCBERGRmLatGnYuHEjFixYABsbG+Tm5uLYsWN62+jgwYNITEyEu7s7Ro8erbcPXFxckJCQAK1Wiw0bNqC4uBharRYtLS3Ytm0bHnroIbz77ru49957ERkZienTp2PTpk2YP38+rKyskJ2djaNHj3Y5rj09PfHUU09h2bJlmDdvHmxsbG54HOoEBQXh4YcfxhdffIGzZ8+Krwczxhi7u3EIxxhjfxNdUHEjXl5eGDp0KOzt7VFbW4v09HRUVlaKwwVB6HKxbvj/hnTTdDft9czNzTF+/Hg8/PDDsLa2RnZ2Nnbs2IHLly/rjafVapGamoqjR48iJiYGCQkJPfZR09DQgNraWnR0dKClpaXbm4agoCDcd999cHV17bZfOhist247drcubW1t2L9/P37++WcolUqMGzcOU6dOhbW1teGoIqlUKvaRZ2Nj06sb9Pb2dqSmpqK9vR0hISEgIly4cAGXLl2CVqs1HL1b16/HzfbNndCbeTg7OyMkJAR2dnZoaGhAVlYWqqqqDEcDbrIfuhMYGIj7778foaGhhoMgCAKio6MxdOhQWFtbIycnB+fPn0dtba3hqEBnwJuRkYGqqipERkbesG+069dbIpHc8BjszTbSsbOzw/33348hQ4Z0CcIdHBwwbNgweHt7o76+HhcuXEBFRYXeOG5ubhgyZAhcXV1RXV2NpKQkvWNdR61W4/LlyzA3N0dISEiPQU1v3WwbXE8qlWL8+PGIj4/v0s/jjTg4OIiBoZ2dHdzc3LoNK69HREhKSkJWVhY6OjpgbGwMa2trMWw3NzeHTCaDRCJBQ0MDTpw4gYqKChgbG2PWrFmYPXs2XFxc9H7T398fbm5uYlhjZmYGS0vLHvs/662kpCRkZmbC1tYWwcHBXT4w4eHhgcDAQLS1teHYsWOoqqoSQ0y1Wo1NmzZh48aNUCgUeO655zB69Ogbbh+5XI6JEyciPDy8S13r4OAALy8vyGQyWFhY6K1bW1sbEhISEBoa2uWhxfXT6UJZnfz8fJw5cwZKpRIDBgzo0kekhYUFoqKiYG5ujsOHD6OwsBD19fUIDw/Hgw8+CGdnZ73xdaqqqpCcnAwnJyeEhIR0G5z3JDk5Gd988w1iY2MxbNgwvf43s7OzYWpqiilTpsDBwUFvOisrK8yZMwf+/v4gIuTm5ornmdbWVuzfvx91dXWIiIiAq6ur3naQSCSIjo6Gk5MT0tLSkJqaCoVCgatXr8Lc3BxTp07t0k+ilZUV5s2bBx8fH2i1WuTm5qK9vV1vnOsZGRn1us4BgPj4eLi6uuKzzz5DYWFhr883jDHG/j69u+pijDH2tzAyMoKlpSVkMhk0Gg1aWlq6PEXvS66urpg+fTri4+NBRDh9+jS2b9+uF4aUlJTgt99+g1QqxYwZM7rc+F7PyMgIRkZGqKurw8mTJ3Hp0qUuLWp0reT8/Pz+9LpevXoVBw8eRGlpKTw9PREXFwcfHx/D0bqwsbFBbGwsAgMDexXClZSUICsrCzExMfjHP/4Bd3d35Obm4ty5cz0GR/8LjI2NYW5uDhMTE2i1WqhUqhu2RrsV1tbWiImJgY+PT7c3nU5OThgxYgQCAgLQ2tqKU6dOIScnp0t5QWfLlwsXLkAmkyEqKuqWWtTcKUZGRoiKikJwcHCXYEQQBAwYMABBQUGQSqVITU1FTk6OXqtSIyMjDBo0CIGBgWKIm5OT06X8VVZWIiMjA76+vj1uu74UEBCAqKioLkHMnSaXy5GWlobq6moQEQRBgJGRkRgYGhsbw9jYGIIggIhw+fJlFBYWQqPRwMXFBZaWll22jVKphEqlAhFBIpFg2LBhCA8Pv6Xwx1B7ezsuXLiAmpoaODs7w9nZuUvAZWVlBW9vb8hkMly8eBGlpaXicZScnIwtW7agrKwM8fHxuOeee266bYODgxEdHd1tAKtUKtHS0gIbGxv0799f74HDjabTPRixsbHpcgylpaWhuLgYMplMDOquJ5FI4O/vD0tLSxQWFiIrKwsWFhaYPn063N3du+wHnczMTBQUFCAqKgru7u69DkNbW1vx3XffoaGhAePGjesSCKtUKkyaNEnvAw3X8/b2hqenJ4yNjaHRaMQ6pbCwEOnp6VAqlejXr1+3Qai7uzscHBzQ2tqKc+fOQS6XQ6lUdvloxvV8fHzE+Rkez3+WjY0NJk6ciEuXLmHnzp1dWlkyxhi7+3Q9UzDGGLtraDQayOVyKBQKSCQSWFhY6D3x72uCICAiIgKzZs1CaGgo6uvr8fvvv2P//v1QqVRoa2vD0aNHkZmZiYkTJyI6OtrwJ0SCIMDNzQ0+Pj4gIpw4cQLvvfceTpw40SXYiYiIwDPPPIOxY8fq/futUCqVuHLlCq5cuQKtVgsvLy8EBQV1CUi6o2uJNWPGDPj5+RkO1qPRaHDp0iU0NDRg8ODBuPfee9G/f3/I5XKcP38eWVlZ3QZH/wva29tRU1MDuVwOExMT2Nvbd2nlc6vUajV+/PFHbN68+YZf5hQEATExMRg4cCDMzMyQnp6OpKSkbr+ymJeXh6ysLAQGBopfEv0rHT9+HF9//TWuXr1qOEjk7e2NqKgo2Nvbo7CwEBcvXkR9fb3eOPX19WhuboZWq0V+fr5Yrq6XmZmJhoYGBAcHd/tKdV8pLi7G6tWrcfbs2b+ktU1DQwNKSkrEVkqGrRKlUqn4KjUA1NbWoqysrMcv2mq1WiQnJ6OwsBCCIGDKlCn45z//iaCgoD9VXurr61FYWIi2tjY4OzvDwsKiy+9JJBK4uLjAzMwMlZWVKC0tRUdHB9ra2sQvRFtaWuLee+/t9RdUe5KZmYn8/Hw88MADuOeee7oN3Lqjm27GjBmIj48Xp1OpVMjMzBQDOjs7u27DMkdHR1hbW6OtrQ05OTk9tmLW0X2hVaFQIDY29oatkw1duHABJ0+ehLu7OwICArrU6cOGDcPYsWN7XHeJRCIGup6enmKomJ+fj5qaGhgZGcHFxaVLmIrOVn+Ojo6QSqXIyMhAU1MThg8fjrFjx/ZYN14/Py8vry4tZf+s2NhYODo6YseOHcjPz+9yPmWMMXZ34RCOMcbuYnV1dcjOzkZTUxMcHR0RHh5+w5ZmfcHExARjxozBzJkzYWdnh+zsbOzcuROXL1/GlStXcPjwYYSEhGDixIldboYMBQQEiH0mKZVKHDhwAIsXL8Ynn3zS42uOt6u1tRWFhYWorq6GkZERPDw8bmnb2draIjAwEE5OToaD9FRVVSEtLQ22trbo378/goKCMHjwYNjZ2SEzMxNJSUn/k60TdK2LTp06hfr6enh6emLgwIF/ug+y+vp65ObmdgmguuPh4YG4uDjxNc5Tp07h2rVreuOoVCokJydDLpejf//+N91fd5pKpcLVq1dRXl5+w7DV3NwcgwYNgpeXF+RyOZKSklBcXCxOo2tR1dTUBDMzM7GlTUlJid44SUlJsLa2RnBwcJcWSX0pPz8fRUVF6OjoMBzUJ+rq6lBXV9djyyHDUE4ul6O8vLzbV/3kcjk2bdqETz75BPn5+TA2NhZbOf3ZQPH65bSxsYFMJusSogmCABsbG5iYmKCtrQ0VFRVQKBRiP5JNTU3w8PBAY2MjnnvuOXh7e8PMzAyenp549NFHce7cuV5t97y8PHz99deIj4/H888/D09Pzy7L0p3c3FysW7cO48ePx/PPPw8PDw9xWFtbGyorK6FQKGBhYdHlFVcdS0tLcZteH572pLq6GikpKXB0dERoaGivy7JGo8GxY8dQXV2Nfv36wdrautvWZzfS3NyMuro6sTWuhYUFtFotioqK0N7eLr763N16ymQycZ5VVVWor6+/aeilm5+NjY34UOFOcnFxgZeXFwoKCnDy5MlujwHGGGN3j1s7azHGGPvLNDc34+DBg9i7dy8EQcDQoUMxadKkHlvCERGUSiXq6upQWVnZ7V9dXR0UCsUNw4LuODk5YerUqRg/fjwA4PTp0/jyyy+xdetWdHR04IEHHoCbm5vhZF1YWlpixowZePrpp+Hp6QkiQk5ODl599VU88sgj2LNnT48tWW5Va2sr6urq0NHRASMjI1hbW/fYUuF2ERGuXr0qfhDAy8sL1tbWiI2NRXBwMGpra3Hu3Dnk5eUZTnpXa2howLZt27BixQocO3YMLi4uWLBgASZNmtSrm2WVSoVLly5hx44d2Lx5MzZv3oxNmzZh7dq1eOGFF7Bly5ZuW7QZkkqlGDx4MKKiomBkZISUlBSkpqbq3eBXVFQgNTUVrq6u3faRdacUFBRg79694vps3rwZ3377LV5++WV8+umnKCwsNJyki/DwcLFT+/T0dGRmZoo3zEVFRcjNzcWYMWMwatQoyGQyXL58GZmZmeIxUVxcjLy8PAQGBvY6YLkV9fX1SExMxJYtW8R1/P777/H222/jlVdeQWpq6p8OrXpLoVCgo6Oj1/PTaDRoa2vTC+20Wi1+/vlnTJ48GU899RQuX74MtVoNuVyObdu24emnn8axY8d6FXD1pKmpCXK5HFqtFjKZrNvgBp3hjVQqhUKhQENDA1QqFbKyslBeXg6NRoOSkhKcPn0a4eHheOONN/D000/DzMwMW7Zswbx587B3794eX89vaWnBli1bMHv2bGzbtg1ffPEFvvvuO1RWVt6wrm9ubsbmzZvxj3/8Azt27MAXX3yB77//Xq/Puvb2djQ0NECtVuu9AmxI90EZdAZsSqXyhvPOyMjAtWvXEBkZqddP383U1NQgLS0NCoVCDCtv1ZUrV1BaWophw4Zh4MCBYp1WU1MDpVIJqVTabZiKztfGTU1NIQgCmpqa0NraetMymp6ejrKyMowYMQIxMTF3vCWcjY2NeD5NTk6+aQDKGGPs78UhHGOM3QXa29uRlZWFw4cP48CBA/j8888xe/ZsLF++HHV1dZg2bRpWrFiBiIgIw0lFKpUKe/fuxahRo+Dm5tbt37Bhw7Bly5abPrnvTmhoKGbNmoWIiAjU1dXhhx9+wKFDhxAfH49BgwYZjt4jR0dHPPXUU1izZg1GjhwJY2NjdHR04OjRo1i8eDFWrFiB/Px8w8lumUqlgkKhgFarhUQigbGxca9v9HqrublZ/Nqr7mZOEASEhoYiNjYWZmZmSEtLw4ULF+5YuNgXKisr8cUXX+CBBx5ATEwM/P39MX/+fJSVleGJJ57A7t278eKLL/bYwbqh9vZ2HDt2DJ988gneffddrFy5Em+99RZWrlyJ3bt3o7q62nCSHvn5+WH48OFwc3NDZWUlTp8+jeLiYqAzBE1PT0dpaSkiIiLg7e1tOPkdQUS4dOkSvv76a/Grjm+99RbefPNNrF+/Hrm5uTe9EUdnH4sDBgyAs7Oz2Cm9LvBIS0uDXC7H6NGjER8fD2dnZ1RUVOiNc+nSJfHjH4YdwN8JpaWl2LJlC95//3288847ePvtt/Hmm29i9erVf3kZ7ujouGmQcz2tVguFQqFXt+n6fZs3bx5iY2P1QngiQmpqKjZs2ID8/Pxez8eQSqUS+/a7Uaf6utcRiQgdHR1QqVQoKipCS0sLjIyMsHjxYvz3v//Fyy+/jAULFuCjjz7CunXrMHDgQBQWFmLt2rW4evVql7o7KysLr776Kj799FPk5uZCpVKhpqYG77zzDlatWtXjF5ozMzPx6quv4rPPPkNeXh5UKhWqq6vx9ttv46OPPhI/CqLRaKBUKqHVaiHt/IJud3SvBuvWz3A5r6fRaHDu3Dm0t7cjNja2S59uN1JZWYmqqipIJBLY2trecp3e2tqK33//HRYWFli4cKFen3Xt7e3i+aKnfXn9a9DX9zHYk5aWFuzbtw/W1tZYtGgRXF1du/3dP0MQBDg7O0MikSAnJwcNDQ29qo8YY4z9Pbo/kzLGGPtLNTQ0YPv27Vi4cCEWLlyINWvWoLGxEbNnz8aOHTvw7bffYsCAAYaT6TE2Nsb48ePx66+/4tKlS93+7du3Dw8++GCPrTVuxNjYGCNGjMBDDz0Ee3t7GBkZYciQIRg/fvwtP9k3NzfHtGnTsHXrVrzxxhvw8/ODIAioqqrCf//7X/zzn//EhQsXbnhzczMSiUS8WdJ2flSgp1fbbld+fj7y8vLg7++PwMBA8d9dXFwQGxsLHx8flJWVia8V3q3MzMwQGhoKf39/tLW1obm5GZGRkVi1ahU++ugjDB48+Jb2sbW1NZYuXYozZ84gMzMTV69eRW5uLkpLS/H7778jPj6+1zfPpqamGD58OCIiIkBEOHfuHNLS0sQO6JOTk2FqaoqoqKhb6lfqVgiCgGnTpmHv3r3IyMjA1atXkZOTg5KSEly6dAkLFizo1ccgTExMMHDgQPj6+kKtVuPChQu4du0aamtrxa9EhoWFYcSIEQgMDIRGo8H58+eRn5+PhoYGJCcnw9nZGf369euTFn/9+/fHd999h/T0dGRlZSE7OxsFBQUoLi7G22+/DU9PT8NJ+oyRkdEt11O6oOt6rq6ueOyxx7B371588cUXiI6OFltsabVanD9/HlevXr3t1nASyf//i8A3Cj50dZnQ+YEJIkJLSwtUKhXs7OwwcODALmHUiBEjkJCQAAcHB1y6dAkpKSldWsOFhobis88+w4ULF5CZmYkPPvgAAQEBUKlU2LlzZ4/haVhYGNasWYMLFy4gKysL77//Pvz9/aFSqbBjxw4kJyeLfZFeH7D1xHD9DPfD9aqrq5GcnAwHBweEh4ffUmu2hoYGtLa2QhCEHlur3cixY8eQkpKCxx9/HMOHD9er167/0EdP+1Kr1YrrqiujN1qGI0eOIDU1FUuWLMGQIUP65LhFZ2s4IyMjNDc3Qy6X33BfMcYY+3v1fIZkjDH2l3F3d8frr7+OwsJClJaWIjc3FydPnsTnn3+OCRMm9Oo1SkEQYGVlhcDAQPTv37/bv6CgINjY2NzwpuFGLCws4ObmBisrK0ilUpibm9/SDZQhDw8PLFu2DJs3b8aMGTNgZmYGhUKB/fv344svvkBOTo7hJL0mk8lgZWUFIyMjaDQatLe33/aNdnc6OjqQmpqKsrIySCQSpKWl4fjx4zh+/DhOnz6Njo4OuLi4QKPRICUlBRcvXrzjIeCdYmNjg/j4eLz++utYtGgRPDw8cOnSJXzzzTdISkq6Yzd0UqkUsbGxGDdu3C19VCAoKAhDhgyBo6MjioqKcPbsWZSXlyMvLw+ZmZno16/f3/JBBnS21Js4cSL8/f0NB3UrKCgI4eHhsLCwQE5ODi5duoTk5GQUFxcjKCgI7u7uCAoKwoABA2BtbS2Ok5qaipKSEvTr169Xr37fSdbW1pgyZQr69+/fbWf1fUEmk8HU1PSGYc71jI2NYWFh0WO4a2VlhUcffRSffvophg4dKq5HQ0PDDT/ocDO6OlAikUClUvUY3iiVSmg0GhgZGcHCwgLGxsZiyzIzMzPIZLIu62piYoLBgwfDyckJra2tyMvLu2H/kq6urnjxxRfx6quvwt/fH9XV1UhPT0dLS4vhqHpcXV3x0ksv4dVXX4Wvry+qqqqQnp6O1tZWmJiYwNLSElKpFGq1Gmq1utv6QNX55WQigrW1dY8tyXDdq6gRERHw8PDocZ91R6FQQKlUQiKR3FL5QOcr5d999x2mTJmChx9+uMtXaHX9wOke2nS3nhqNRhxmbm5+wyCwoKAAGzZswAMPPICZM2f2Kqi/HbptIQiCeJ7rbtkZY4zdHXp/5mKMMcb6gJGREYYPH46PP/4Yzz//PBwdHaFQKHDq1CkcOXLktoMzCwsL8WuFuletevMxgN4qLS1FUlISTp8+jXfffRfTpk3D/fffL/4tXboUZ8+eBREhPz8f586du+Mfn7jTrKys8PDDD2P69OmwsLDA0aNH8e23397wq5+3ysLCAiNHjhRf1+0NKysrjBgxAiEhIVCpVDhz5gzS0tLEj15ERUX1+lXZO03o/IrrqFGj4ODgYDi4C0dHR8TExMDV1RXNzc04e/Ysfv31V2i1WoSGhsLGxga2traIjY2Fh4cHmpqacO7cOezduxcajQZBQUF9djN/I97e3hg/fjx8fHx6DB3uJAcHB7HFbXeISC9oMDMzg5ub203LVFxcHB5++GG9jw/cSpBjyM7ODjY2NpBIJGhra+vxFVq5XA6VSgVTU1M4OTlBJpPB3NwcUqkUGo2mx/DOzc0N9vb2EAQB9fX10L362hOJRIL77rsPMTExMDY2Rm1tLZRKpeFoXUgkEkycOFGcTtc/mrm5ORwcHGBsbCz209fd+l3/kMPV1bXH/aB7FbWtre2WX0VFZ9iqKxPdLUdPmpqasGbNGoSFheHxxx/v8gEXiUQCd3d3yGQyqDq//N3dPlGpVOJrq/b29uK+N9TY2IiPP/4YAwYMwKJFi2Bvb284yh2lOyZ1Lb5vZdswxhj7a3U9azDGGGN9oKioCMePH+/xtUwvLy88/vjjmDlzJmQyGWpqapCTk9OrDvy7Y2FhgYCAALi7u4OIUFxcjMLCwm5vrG6VRqMRW4qsWbMGtbW1aGxs1PtraGjA3r17MWLECLS1tSEpKQkZGRl3/c2R7ouM99xzD7RaLX755Rf88MMPKCsrMxz1tgiCgMjISAwYMKDHj4x0JzIyEoMHD4a1tTWys7Oxd+9eHDp0CM7OzggPD7+l12XvNB8fH8TGxvYqCJRIJBgwYAD8/f0hCAKOHj2KvXv3ws3NDQEBAeLrbdHR0QgNDYWxsTGOHj2Kn3/+GU5OTvD39+8xmOpL1tbWGDFiBLy9vf+SEM7Ozg4eHh5imKPVavXCBcNWWfb29mKIciO61pje3t4wMjKCpaUlHBwcbvs1QUdHR3h4eMDU1BT19fXdPjQgInGYg4MDvLy8YG5uDg8PD5ibm6Ojo0Psv9KQmZmZ2Mqpu7CnO05OTggJCYGlpeUNW6QZ0k2na6mna2EVEBAAS0tLtLa2orW1tdv+3pqamtDW1gZjY2MEBgb2eGzrXkW1tbW95VdR0bk9TExMoNVqxb7qbqatrQ1r1qyBubk5Fi9eDDc3t263ib+/P2xtbaHRaNDY2Nhty2XdhzW0Wi38/f1hb2/f5bXptrY2fPLJJ7C2tsYTTzwBZ2fnbud3p2g7+0MkIshkMpiYmPTp/BhjjP05vTubM8YYY39Sa2srTpw4gRMnTnR7c4PO13IHDhwIV1dXaDQaseXF7ZBKpWJwY2pqiqKiIpw/f/6OtEarra1FamoqZDJZj6/oCdd9oMHCwgJXr17FuXPn0NDQYDjqbWtvb8eOHTvw008/obGx0XDwbYuKisJjjz2GQYMGoaWlBZs3b8aOHTvu6DzQWSZ27tyJP/7444av2aEzZBkxYgT69euH1tZW7NixAxcuXBC/Sns30Gq1OHz4MLZv347S0lLDwSJ/f39ERkbC2toa9fX10Gg0CA8Ph4uLiziOl5cXoqOj4eDggJqaGrS1tSE4OLhXQV9fy87Oxvr165GZmdlnobK1tTWio6PFAIOIoFarxdDl+g83CIKA8PBw+Pn59SpMs7W1FV897NevH/z9/W8a3vXE2toaoaGhsLa2RmVlJRobG7sEQ0qlEmVlZWhvb0dAQAC8vLxgYmICPz8/ODg4oKOjA5WVld3WdboWf0ZGRr1q6YfOusfExARmZmZwdXXt9boZTmdiYgKJRILIyEg4ODigubkZVVVV3bbGq6ioQHNzMxwcHBASEtLjcupeRQ0PD4e3t3e3deeN2NrawsLCAlqtVvwq7Y0oFAqsXbsWra2t4qv2PQVUAQEB8Pb2hlarRXFxcbctCOvr61FTUwOJRIKYmBhYWlrqDVcoFFizZg0UCgWefPLJHgO/O03Xck9Xtnsb2DLGGPvrcQ3NGGP/D+qrG+cbsbCwQGNjIw4fPozc3FzDwUBnKyETExMYGRlBJpPBwcGhy03OrfDx8cGECRMQGhqKlpYWJCYm4tixY93eRBqqra3F8ePHcfnyZb0bPSISPzYQEBAAX19fvemu5+zsjCFDhsDPzw+NjY04d+4csrOzDUe7bRkZGeIHLHrTb6ChnsqBRCLBuHHjMG/ePPj5+aGsrAzr16/H/v37uw0KbldKSgoOHz6M5ubmm4YnQudrnzExMTA3N0drays8PT0xYMCALn07/V1KSkqwd+9elJWV3bBlno2NDaKjo8UvMwYHB4v9xOnIZDIMHjwYvr6+kEgk8PPzQ1hY2B1/FVUX8vRWe3s7fv75Z2RnZ0Ny3UcJ/ozulkEQBAwZMgTBwcEwMTGBWq2GXC4XA/z29nax9ZiVlRVGjx4NDw8PNDQ0YM2aNXjwwQfxn//8B1lZWV1abimVSiiVSlhaWmLy5Mnw9/e/7dBCKpVi+PDh8PHxQXV1NUpKSrr0L1dfX4+CggJoNBqMGDFCDGaCg4MRFhYGdB7L3bX6bWlpgVwuh52dHcLCwnpVH8rlcpSVlcHR0REDBgzo1TS4bjonJye96SIjIxEeHg6NRoOcnBy0tbXpTadSqZCRkYGWlhYMHDgQwcHB3ZZ/3auocrkcsbGxt3Xcurq6iqF7fX19jw900Lmfv/32W1RWVmLx4sXw9vbusp/lcjm+//571NTUwMXFBSNHjoSlpSWuXLmC5ubmLuUyNzcX1dXV8PDwwNChQ/Va/CmVSqxbtw41NTVYsmRJt4GfXC7H+vXr72jXCESEmpoaaDQa+Pr6ws7Orst6MsYYu3twDc0YY38T3etVWq0WGo0GHR0dN7yh6I62swNpXZ9Cule0eqIbBwYdTPeW4fyUSmWvAi10hnBWVlY4ceIENm/ejOrqasNR0NLSgsLCQtTX18PPzw8DBw7s9kZNrVaLy65Wq9HR0dHlRhud/c2NGzcOCxYsgI+PDzIyMrB27Vrs37+/21YO6LyhycnJwerVq7F3716xNYhOXV0dTp48iZaWFrE1U0+kUinCw8MRGRkJiUSCy5cv49y5c922+rq+DPRmn+Tl5WH9+vXIy8uDl5fXLbco0Wg00HR2pK4rC9eHjWZmZpg+fTpmzpwJBwcHZGVlYd26dTh58mS32/pWy3BOTg42bdqEqqoqeHp69mr53dzcMGLECPj6+sLU1BSxsbEICgrq9Q0nEUGpVIrLeKM+rogICoVCLN/djXO9xsZGbN68GRcvXoSrq+sNy4UgCOjfvz8CAwNhaWmJgQMHwsfHp8t6hIaGIjw8HNbW1oiMjIS3t3eXV9/+LJVK1evX+lQqFfbu3Yt9+/bB1tb2tvq5UqvVaG9vF/eBbjt3V2769euHyZMnw8vLC2q1GhUVFeLXQevr69HS0gIiQlxcHMaMGQNbW1scPHgQ69atw+7du/Huu+9i4cKFSExMFIMxIsKVK1dQWVmJKVOmYMqUKeJ61NTU4IMPPsD48ePxn//8BwUFBTfd7+j8qmx8fDwEQUBycnKX1q7p6enIyclBcHAwxo0bJ87PwcEBkyZNgoeHB06fPo3s7Owu9dLVq1dRU1ODwYMHIyoqCmZmZiAiVFdXo6Wlpdv9pvuC79SpUxEVFSUG3Fqt9qbTZWdnY9q0aYiMjBSnc3R0xIwZM+Di4oKzZ8+ioqJCb/ry8nKxZfCMGTPg6uraJXzCda+i2tjYIDIy8rYeHNja2iIiIgIymQyFhYVdAkEdjUaDjRs34ty5c7j33nuhUqmQl5eHnJwc8S8lJQVvvvkmCgsLQUSQSCSYPn06wsLCkJOT0+WruR0dHThx4gSam5vF8XT1lkajwYYNG5CUlIT77rsPCoWi2/m99tprKC0t7bFc9bb+v55cLkd5eTkEQcDw4cN7Hboyxhj7e/TuqpUxxtgd19TUhLKyMqhUKrS2tqK8vPymX7Ez1N7ejvLyctTX14s3WOXl5d1exFPn0/KysjIQkTj/9vZ2w1F7pFvO5uZmKJVKVFVVoaamxnC0bslkMtjZ2UEul+Prr7/GG2+8gczMTPFmTi6XY//+/dixYwfMzMwwY8YMjB07tkswgc4vGlZUVECpVKK5uRmlpaXdtiJBZ6ujuXPn4tVXX0VYWBjOnz+PZ555Bi+//DJOnDiB+vp6MZzJyMjAO++8g6eeegpEhGeeeQYhISHib6nVapw5cwa///47FApFj/0eXc/a2lrs2LyyshIHDx7EpUuXuuyjuro6FBcXQy6Xo729Henp6UhOTkZhYSFKSkpQWFiIjIwMHDhwAG+99RZmzZqFrVu3wsXFRa+T+d6qqalBZWUlVCoVmpqaUF5eLgYcOs7Ozpg7dy4SEhJgYmKC06dP45NPPsGZM2e6BHE1NTUoLi5GW1sb2tvbkZmZifT0dFRUVKC2thY1NTUoKirCqVOn8O6772L27NnYtm0bXFxcev3KlkQiweDBgxEdHY2AgAAMGjRI7xXOm1GpVCgtLUVDQwOICGVlZaisrOw2AGptbUVhYaHY/1N+fj4uX76M4uJi1NTUoLa2FuXl5bh48SK+/fZbPPLII1i1ahWkUim8vb1v2rLP29sb4eHhCA4ORnR0dJeO4tG5/QcOHIigoCD079//jr+KqluvmpoaaLVaVFZWIi0tDdeuXUNNTQ3q6upQVVWF7Oxs/Pzzz1i8eDGef/55lJWVwc/P75Zb5RERMjIyxP4UdTIyMlBYWNglgJJKpXjooYcwY8YMODo64sqVKygtLRXLV11dHcLDw/Hkk08iLCwMUqkUFhYWYp9YWq0W586dw9KlS/HNN98gOzsb27Ztw9dff42RI0di+fLlel/VTUpKwtatW5GYmIhPPvkE27ZtQ21trd4ydcfMzAzz5s1DXFwcEhMTxQ8PAEBlZSW2bdsGhUKBRYsWoX///np9+k2YMAEPP/wwmpub8c033+Dq1avisXXt2jX8/PPPsLGxwcKFC+Hr6wtBELBv3z6MGzcOAQEBePnll5GbmytOc/XqVXz11VcYNWoU5s+fr1eu9u3bhzFjxiAwMBDLli1DXl6e3nRffvklxowZg3nz5nX5evGECRMwc+ZMFBQUYN++fWJLLqVSiR07diAzMxMPP/wwxo4d22MIlJWVhWvXriEkJAQ+Pj69Ct4NSaVS3HvvvfD09EReXl63r/9qtVr8+OOP+OCDD/Djjz9i4sSJCA0NRXBwsN7foEGDsHHjRkRFRYlluV+/fnjmmWdgYmKCTZs2obS0VPz9kydP4o8//sDgwYMxb9488aMSWq0WmzdvxgcffICffvoJ48eP73F+W7ZsQUxMTLcBpEajQUFBATo6OtDR0YHGxsYu9Wx3qqurUVhYCDc3NwwbNqzXrx8zxhj7mxBjjLG/1LVr1+jNN9+kAQMGkKmpKQEgAGRra0ujRo2ijz76iAoKCgwn09PU1EQ///wzTZ06lVxcXEgQBAJARkZG5OvrS48//jgdO3aMtFotqdVqSk5Opueee45CQ0PJyMiIAJAgCGRvb0/jx4+nH374gZqamgxnQ0REWq2W0tPT6bXXXqORI0eSra2tOD9TU1MKDw+nRYsW0a+//kpyudxwcpFCoaAtW7bQ/fffT3PmzKH4+HgKCAiguLg4uv/++2nQoEHk4OBAgwcPpu+//77L8iiVSjp58iQ9++yzFBUVRTKZTNx21tbWNHz4cHr77bcpIyNDbzodtVpNV65coVdeeYWCgoLIyMiIBEEgc3NzcnZ2Jnt7e3Jzc6PZs2fT4cOHqb29XW/6yspKWrVqFQUGBpJEIiGZTEaDBg2iNWvWUFlZmd64REStra20Z88emjlzJrm7u4vbzNjYmAYMGEDr1q2juro6KikpoU8//ZSGDh1KlpaW4jr15s/FxYVWrVrVZVvdSHp6Oi1fvpzCwsLIxMREryzcc889tH79eqqqqhLH12q1dPToUYqPjyepVEoSiYR8fX3pX//6F2VnZ1NhYSGtWrWKYmNjycLCossy3ujP0dGRVq1aRY2NjXrLeCMdHR303//+l1566SVKTU01HNytqqoq+uabb2jKlCnk5uZGEomEAIjrMnPmTNq5cyc1NDRQS0sLbd68mRISEsjR0VHcb735MzIyosWLF1Nubq7hInSh1Wpp165d9O9//5uSkpJIq9UajkJERElJSbRs2TI6ePAgqVQqw8G3RavVUmJiIi1cuJC8vb1JKpV2WZee/gRBoBEjRtCpU6d6XGZDJSUl9MYbb9CwYcPIzs5O3P7X/6adnR3FxsbS6tWrqby8XG/6xsZG+vjjjyk8PJzuuecemj9/PoWHh9PEiRMpMTFR71htaWmhTz/9lIKCgvTWSxAEsrCwoPHjx9POnTu7LXOpqak0YcIEkslkJJFI6NFHH6W8vDzD0XqUn59PS5cupUGDBtGSJUvozTffpHvvvZdGjRpF27Zto+bmZsNJiDqX+csvv6Tw8HAKCwujxx9/nJ5//nkaNmwY3X///XT8+HFSKBTi+CkpKXTPPfeQqakpCYJALi4uNG7cOJoyZQrNnTuX9u7dSy0tLXrzICJKTk6mcePGdZlu8uTJNG/ePPrtt9+6nU6nubmZPvvsM4qJiaGHH36Y3nnnHZo9ezZFRUXRO++8Q5WVlT2WCbVaTStXriQfHx/65JNPqL6+3nCUXmtra6OXX36ZgoODaceOHV3OO7/99huFhYV1KWeGf4Ig0MSJEyk3N1dvuTUaDf322280evRoio+PpzfffJOef/55ioiIoIULF9LVq1dJrVaL4+/Zs4eCgoJ6Nb9JkyZRQUGB3vwaGxtp/fr1NHfuXHJ2diaJREKCIFBwcDA9++yztGnTph7LDhHRzp07ycfHh5YtW/antitjjLG/hkCGj+IZY4yxPkBEqKioQGtrq9hSqLq6GhkZGSgvL4eJiQmCgoIQHBzcqxZmf0Z7ezsKCgqQnZ2NxsZGyGQy+Pj4ICQk5LZesWN/rfr6eigUCtjZ2fXYAfz/gsbGRrS3t8PGxqbHMq9QKFBXVwdra+tbbnn2f01NTY3Yd5qvry/69evX43arqalBZmYmiouLgc6+xCIiIuDs7HzDV3o7OjpQUVGBtWvXwtraGo8++ugtffhD17rw0qVLaGlpgZ+fH6KiomBjY3PT1p5NTU24ePEiioqKYGJigqioKAQEBHTbv1pzczMuXbqEa9euAZ0ftYmMjLzp+jU3NyMtLQ35+fkQBAFubm7o378/nJycbjjd9aqrq5GSkoLKyko4ODiILVJvNL1Wq8W1a9fQ0NAgflW0u1bOvZWVlYVnn30WoaGhWL58+W21Br6ZtrY2XLx4EXl5eTAxMRFb4N5OC76+0tLSgmeeeQaFhYX47LPPEBkZecP9wBhj7O/HIRxjjDHGGGOdiouLsWbNGowYMQL33ntvt68Osr/fnj178MUXX+D555/HuHHj/p98DfPHH3/EJ598guXLlyMhIeH/yW3AGGP/a27/ERRjjDHGGGP/h9TX12Pz5s3w9/fH0KFDOYC7i02aNAmzZs3C3r17UVBQ0KVvuP/rkpOTsWHDBjz55JOYMGECB3CMMfY/glvCMcYYY4yx/+cpFAps2rQJZmZmmDBhQrcfy2B3F5VKhS1btiA7OxsLFixAQEDAn3rN9X9FWloaPvroI9x///2YNGlSj69lM8YYu/twCMcYY4wxxhj7n6TVanH06FFcvnwZDz30EDw8PG7a/97/spKSEmzZsgUTJkxARETEXdVHHWOMsZvjEI4xxhhjjDHGGGOMsT72f7+9NmOMMcYYY4wxxhhjfzMO4RhjjDHGGGOMMcYY62McwjHGGGOMMcYYY4wx1sf6rE84tVqN9PR0fPDBB4aDGGOMMcYYY4wxxhj7S0yePBkPPvggZDKZ4aC/VJ+FcBqNBrm5udi4caPhIMYYY4wxxhhjjDHG/hIjR45EfHw8TE1NDQf9pfoshGOMMcYYY4wxxhhjjP1/uE84xhhjjDHGGGOMMcb6GIdwjDHGGGOMMcYYY4z1MQ7hGGOMMcYYY4wxxhjrYxzCMcYYY4wxxhhjjDHWxziEY4wxxhhjjDHGGGOsj3EIxxhjjDHGGGOMMcZYH+MQjjHGGGOMMcYYY4yxPsYhHGOMMcYYY4wxxhhjfYxDOMYYY4wxxhhjjDHG+hiHcIwxxhhjjDHGGGOM9TEO4RhjjDHGGGOMMcYY62McwjHGGGOMMcYYY4wx1sc4hGOMMcYYY4wxxhhjrI9xCMcYY4wxxhhjjDHGWB/jEI4xxhhjjDHGGGOMsT7GIRxjjDHGGGOMMcYYY32MQzjGGGOMMcYYY4wxxvoYh3CMMcYYY4wxxhhjjPUxDuEYY4wxxhhjjDHGGOtjHMIxxhhjjDHGGGOMMdbHOIRjjDHGGGOMMcYYY6yPcQjHGGOMMcYYY4wxxlgf4xCOMcYYY4wxxhhjjLE+xiEcY4wxxhhjjDHGGGN9jEM4xhhjjDHGGGOMMcb6GIdwjDHGGGOMMcYYY4z1MQ7hGGOMMcYYY4wxxhjrYxzCMcYYY4wxxhhjjDHWxziEY4wxxhhjjDHGGGOsj3EIxxhjjDHGGGOMMcZYH+MQjjHGGGOMMcYYY4yxPsYhHGOMMcYYY4wxxhhjfYxDOMYYY4wxxhhjjDHG+hiHcIwxxhhjjDHGGGOM9TEO4RhjjDHGGGOMMcYY62McwjHGGGOMMcYYY4wx1sc4hGOMMcYYY4wxxhhjrI9xCMcYY4wxxhhjjDHGWB/jEI4xxhhjjDHGGGOMsT7GIRxjjDHGGGOMMcYYY32MQzjGGGOMMcYYY4wxxvoYh3CMMcYYY4wxxhhjjPUxDuEYY4wxxhhjjDHGGOtjHMIxxhhjjDHGGGOMMdbHOIRjjDHGGGOMMcYYY6yPcQjHGGOMMcYYY4wxxlgf4xCOMcYYY4wxxhhjjLE+xiEcY4wxxhhjjDHGGGN9jEM4xhhjjDHGGGOMMcb6GIdwjDHGGGOMMcYYY4z1MQ7hGGOMMcYYY4wxxhjrYxzCMcYYY4wxxhhjjDHWxziEY4wxxhhjjDHGGGOsj3EIxxhjjDHGGGOMMcZYH+MQjjHGGGOMMcYYY4yxPsYhHGOMMcYYY4wxxhhjfYxDOMYYY4wxxhhjjDHG+hiHcIwxxhhjjDHGGGOM9TEO4RhjjDHGGGOMMcYY62McwjHGGGOMMcYYY4wx1sc4hGOMMcYYY4wxxhhjrI9xCMcYY4wxxhhjjDHGWB/jEI4xxhhjjDHGGGOMsT7GIRxjjDHGGGOMMcYYY32MQzjGGGOMMcYYY4wxxvoYh3CMMcYYY4wxxhhjjPUxDuEYY4wxxhhjjDHGGOtjHMIxxhhjjDHGGGOMMdbHOIRjjDHGGGOMMcYYY6yPcQjHGGOMMcYYY4wxxlgf4xCOMcYYY4wxxhhjjLE+xiEcY4wxxhhjjDHGGGN9jEM4xhhjjDHGGGOMMcb6GIdwjDHGGGOMMcYYY4z1MQ7hGGOMMcYYY4wxxhjrYxzCMcYYY4wxxhhjjDHWxziEY4wxxhhjjDHGGGOsj3EIxxhjjDHGGGOMMcZYH+MQjjHGGGOMMcYYY4yxPsYhHGOMMcYYY4wxxhhjfYxDOMYYY4wxxhhjjDHG+hiHcIwxxhhjjDHGGGOM9TEO4RhjjDHGGGOMMcYY62McwjHGGGOMMcYYY4wx1sc4hGOMMcYYY4wxxhhjrI9xCMcYY4wxxhhjjDHGWB/jEI4xxhhjjDHGGGOMsT7GIRxjjDHGGGOMMcYYY32MQzjGGGOMMcYYY4wxxvoYh3CMMcYYY4wxxhhjjPUxDuEYY4wxxhhjjDHGGOtjHMIxxhhjjDHGGGOMMdbHBCIiw39kfUetVqO4uBhZWVmor6+HTCZDYGAgQkNDIZPJAABKpRJFRUWQSqXw9/c3/Al2m9RqNUpKSnDlyhV4eHggMjISxsbGhqP9n9LR0YH8/HxcuXIFbW1t8Pb2RlRUFOzt7Q1H/X9Gc3MzMjMz0djYiP79+8Pd3d1wFMb6HBGhuroaV65cQVlZGSwtLREREQE/P7//8/USY4z9X9Tc3Ixz585BIpFg0KBBsLGxgSAIhqPdtQoKCpCamorAwECEhYXxuYgxxvoIt4T7C2i1WlRUVOCDDz5AdHQ0IiMj8a9//Qv79+/Hnj17sHjxYoSHh2Px4sU4cOAAzp8/j5dffhmJiYmGP9Vr1dXV+Pe//w0HBwfIZDLIZDI4Ojpi8eLFaG1tNRy9z1VUVOBf//qX3vI4Ozvj6aef/kuWR6lU4sSJE5g+fTqmTZuG6dOn48svv4RKpTIc9f8EtVqN5ORkzJkzB7GxsVi2bBn27NmD5cuXY8yYMVi3bh3a29sNJ7tlSqUSR44cwZgxY2BhYQGZTAYzMzMMHDgQP//8s+Hof7vy8nKsXr0aEyZMwP3334/FixcjJSXFcDTG+lR1dTU++ugjxMXF4cEHH8T333+PdevWISEhAU899RTS09Nxtz8fKykpwbJly+Dh4SHW6VZWVliyZAny8vIMR+9TDQ0N+OSTTxAdHQ1bW1txedzc3PDZZ5+hqanJcBKRVqvFnj17MGnSJDg7O8PMzAwymQzm5uZYvHgxcnNzDSf50y5fvownn3wS3t7eevVmXFwcjh49etfve3Zn6a7XQkNDYWVlJZZfb29v7Nq167bO1c3NzXjttdfg4+OjV6aXLFmC4uJiw9HZHVBTU4MlS5bggQcewH333YfnnnsOpaWlt308NzU1YenSpXBxcdHbh8uWLUNDQ4Ph6H/aiRMnMHnyZDz88MMYM2YMNm7ciLa2NsPR/lIqlQpnz55FfHw8LC0txboyJCQE69evv+1t+2c1NjZi48aNGDVqFAYNGoRBgwYhNjYWDz30ULf3bg0NDfj+++/1xh80aBASEhKwYcMGnD17FrNmzUJsbKze8Ot/948//hDXV6FQ4I8//sDEiRPFaWJjYzF79mycPHlSnG97ezv27duHCRMmdPnd3vw99NBD2L9//3Vrwv4MIsLly5fx6KOPws7OTjyu3dzc8Oqrr970uK6srMS7774Lb29vcVo7Ozs88cQTKCwsNByd3eWkb7zxxhuG/8juHF1F+eijj2L79u0wNjbG66+/jq+++goPP/wwHnjgAcydOxdBQUH46aefsHr1amzYsAFNTU0YO3YsBg4caPiTvWJhYYHo6GhIJBKcOHECSqUSUqkUoaGhuO+++2Bqamo4SZ+ysrLCgAEDoNVqcerUKSiVShgZGSEsLAwTJkyAiYmJ4SS3pb6+Hr///juys7MRHBwsPoFsaGjAnj17sHv3bqhUKnR0dEAqlWLs2LGwsrIy/Jn/aUSE3NxcfPDBB9i1axfs7OywcOFCPP3008jNzcWRI0dQUlICf39/9OvXz3DyWyKVSuHt7Y3g4GBcuXIFhYWF0Gg0cHBwwOjRoxEWFmY4SZ/TaDRIT0/HH3/8AUtLSzg4OACd2yUjIwPfffcdcnJyoNFooFKp4OnpiUGDBkEi4WcSt6K5uRmJiYlIT0+Ht7f3HTuG74SmpiYcPHgQV69ehZeX1121bHK5HFu3bsVnn32G4uJi3HPPPVixYgUcHR1x6tQppKSkQCaTITIyEpaWloaT3zVsbGwwbNgwSCQSXL58GY2NjSAiREZGIi4uTjzu/gpmZmYYNmwYJk6ciJqaGmRmZkKhUMDY2BgjRoxATEwMZJ0tzQ0JgoDg4GDMmDEDxsbGSE9PR0NDA7RaLfr3748RI0bc8XVxcXHB5MmTERISgszMTJSUlECj0cDFxQXx8fHw8/P7S1vPqFQq7N27F9nZ2XB0dIS5ubnhKKwPWVhYID4+Hvfee694HlUqlZDJZJg4cSKCgoJuuUWSqakp4uLi0NraivT0dDQ3N0Or1SIqKgqjR4+GjY2N4SR3HaVSiU2bNqGqqgqurq53TT1+/PhxHDp0CD4+PnrHyrlz5/DNN9+guroaWq0WdXV1GD16NDw9PSGVSvV+ozdkMhnGjRuHyspKpKeno62tDVqtFoMHD8aoUaNgZmZmOMlt02q1WLduHRITE6FQKNDR0QGNRoMJEyb8peehuro6/P7778jJyUFwcDCkUik8PT0xePBgFBUVISMjAxqNBpaWloiLi8PAgQP/0rpSRyaTITw8HP3790d6ejpOnDiB0tJSlJeXw8jICHFxcXrnHDMzM4SHhyM6Oho5OTk4ceIE7O3tsWTJEsycORO+vr4YPHgwKioq8Mcff6C4uBgVFRWQSqWYO3cuVq5ciYiICHFdjYyMEBgYiCFDhqCoqAhHjhyBp6cnnnrqKYwePVosbw0NDfj999+xdetWlJWVQSaTYcyYMRg9ejRaWlpw/PhxlJWVQS6Xi6Fbe3s7kpOTUVBQACsrK0yYMAF+fn7iurDbJwgCXFxcMGjQIKhUKly4cEG8VomOjsaIESNueFxbWloiPDwcRkZGSE5ORktLCwRBQFhYGEaPHg1bW1vDSdhdjO86+5BcLsdPP/2ExYsXIzMzE3Z2dliyZAmeeuopvYPMzMwMCQkJ+O677xAfH3/HwgBTU1P4+/vf8ID+K8lkMvj6+vbZ8rS1teHw4cP44IMPkJ2drTfMyMgI1tbW4oWs7v//6jDyr9De3o5Lly7h+PHjUKvVkMlksLe3R0VFBVJTU6FWq9HU1ITS0lLDSW+LRCKBnZ0dvLy8DAf9LQoLC/HNN99gx44dXZ4qyWQyvddDdP9/p465/1eoVCocO3YMn332GVJSUu6qFqVKpRKJiYlYs2YN0tLS7qplQ+frPqdOnUJpaSmkUins7OzQ0dGBK1euoKqqCu3t7aiqqkJzc7PhpHcdc3NzuLq6wtra2nDQ38La2hpOTk63Va+bmJjAxcXlL30o4+zsDHt7+7+9/jl9+jS++OILnDlz5rZaXbE7w87ODo6OjrccuPXEyMgIvr6+sLCwMBz0P+GPP/7Ap59+iitXrtw19XheXh5WrlyJo0ePor29Xa8llrW1NWQymXh9YWVlBQsLiz91fBsbGyMwMPC26rRb5eDgoFf27mRZ7A25XI5Dhw7hww8/RG5urrhtBUGApaUl3N3d/5bArSfGxsaIiIjAgw8+CEdHR6Dz4WRycjKSk5MNR4exsTFCQkIwceJEBAYGYurUqZg+fbpYZtzc3HDPPffA29sb6FxvW1tbhIaGdhuaC4IAU1NTmJmZISgoCM899xwSEhL09llzczMKCgpgZmaGhQsXIjExEZ9//jnGjh0LpVIJjUYDAHBycsI999yDRYsW4fPPP8cbb7wBNzc3ODo6wsXF5bq5sjvBysoKrq6uPT4cvBELCwu4ubl1WybY/5bbPzOwG+ro6MDp06fx9ttvo7q6GkZGRggPD8esWbO6fSKma6X29ttvY8CAAXfVieZOEgShT9ZNpVIhJSUFq1ev7jZcsra2xsSJE7Fw4UIEBQVh/PjxeOqpp+54C4e7QVtbGwoKCtDY2Ah0bnNjY2O4u7sjMjISFhYW6Nev3223sjQkCAIkEkmf7NdbVV1djR07dmD79u1QKpV6w4TOFi8LFizA2LFjERUVhXnz5iEhIeGuWPb/FUSE1NRUfPvtt0hLSzMc/LciIly4cAHr16+/K1/pJCKUl5eLLZ/QGWLb29sjJCQELi4ucHd3R3R0NFxdXQ0nvyvdbcfO7Z5j/o56TLesf+U8DV29ehVffvklkpOTxTLJ/h66MninSCSSv7xM3ykXL17E6tWrkZ+fD61Wazj4b1FfX4/3338fSUlJ6OjoMByMqKgoPPfccxgwYACioqKwfPlysdXK7dLtw74mkUgwZ84czJo1CwEBAZg0aRKee+65v+xGX6lUIjk5GR9//DHKy8sNBwN34bkGndfbJSUlaGlpATpbFBYUFODAgQPddrWjVqvR3t4ONzc3jB49Wq9RgrGxMVxcXODp6Smuq0KhQH19fbfXMmq1Grm5ubhy5QrGjRuH8ePH620jIkJ9fT3q6+sxa9YsvPXWW/D19YVKpUJpaSny8vJARJBIJHB1dUVYWBgkEglsbGwwfPhwxMXFwcXFRQwY2Z3zZ8/9tzsdu7v0fc3+/yAiQmVlJb788ksUFBSAiGBhYYHBgwffsLWQkZERIiIi/tIT3/8FarUa6enpePfdd5GcnNztyUoikcDf3x+ffPIJsrOzsWvXLgwdOtRwtP8TlEolmpub9UIoobO58oYNG1BQUIDdu3ffsRDubtHY2Ihdu3Zh7dq1XVrA6Zibm2PKlClITExEWloaXnnlFb7AuAW6V3r/+9//4tChQ3fVTTsR4dKlS1i7di2OHDlyVy2bDhGhtbUVcrlcr56ytLTEk08+iZSUFFy8eBFPPfXUX9oii/2/qbi4GB9//DEOHjzILeDYXSMvLw+vv/46kpOTuzxM+7u0trZi1apV+OWXX8TAxZCJiQkWLlyI5ORkpKWlYf78+X/pq5x/lqurK9auXYu8vDzs3bsXMTExfypA7C2VSoXLly/jvffeQ0pKSrfX8HcjIkJdXR2KiooQFBQEZ2dnoPNa9Ny5c0hPTzecBHK5HBUVFXBxcUFQUJDeMEEQYGNjA09PT6Dz99vb21FTU9NtEF1ZWYkjR47A1NQU//jHP7q8iqhUKlFbWws3NzfMnz9fXD65XI5r166hoqIC6HxrytvbG76+vkDncjg4OCAyMhKenp7/U2WYsf8lHML1AYVCgXPnzuH48eMgIgiCAAsLC/Tv3/+mTbvNzc0xZswYjB07ttukW6PRoLy8HCdOnMD+/fuRlJSEuro6w9Fui0ajQXV1NU6fPo2TJ0+ipKSk24r/r9De3o6srCwkJiYiMTFR7OPHkFqtxsWLF7F8+XIcPHjwjt14K5VK5Ofn4/jx4zh//jyqq6sNR7kplUqF4uJinDx5Eunp6X/qJoeI0NzcjLS0NBw9ehRXrlzp8fe0Wi2USmW3FzKmpqZwcnLqdZ8/RISGhgYkJSXh6NGjyM3N/VOvhWi1WtTU1ODcuXM4cOAAzpw5g/Ly8huWM93TvKSkJJw4cQKFhYVQq9Vobm5GRUUF1Go16uvr8cMPP2DlypUoKyvrdt1vle4C68KFCzhx4gSuXbv2p24Iri8P58+fR1VV1Q3XW61Wo7S0FKdPn8bp06dRVlZ2w/G7o6svzp49i4sXL4qtI7ujUqlQWFiIEydOICUlBQ0NDVAqlaiurhafxF66dAnvvfcetm/f3u3xaEij0aCiogKnT58WPzqj6y/nVmg0GpSWluLMmTNIS0vr0tE+dbbOe++997B79+5uWylcT6vVoqqqCmfPnsXp06dRXl4ulqOamppbrkd02+7kyZM4d+4cKisre1xHtVrd7TGkezXV1ta229bS3VEoFMjJycGxY8eQkpLS4xPznrS0tODSpUs4duwY8vLyumy3hoYGXLx4EUlJSbe83+rq6pCUlCQe4zfbplqtFqWlpTh16hROnTqFsrKym06jVCqRl5eH1NTUmx5PhogIFRUVSE5ORn5+fpd1v5m2tjZkZmbi6NGjuHjxIpqamm667Zubm3Hp0iVcuXKl21YSf1ZrayuuXLmCQ4cO4ciRI8jNze3xOM3Pz8ebb76J7du337BeuJ5Wq0VZWRnOnDkjvlKtVqsNR7shIkJpaSlOnDiB8+fPdymzGo0GhYWFOHPmDK5evdrjee7P6OjoQEZGBo4ePYrMzMwu85DL5bh8+bJYdm+2jlqtFsXFxTh16hROnz4tnpduRrccFy9eFPshvBW6Ouz48eMoLi7utl7pCwqFApcvXxbX9WbHKQDU1tYiKSkJx44dQ25ubo/n0szMTCxduhSJiYld9ktPWlpakJqaisOHD/d4rXgjTU1NOH/+PM6cOYPa2tou+6GpqQlvvPEGvv76a9TX1+sNux26uu766/jb2f+GKioqcOLECZw6dUoMbqqqqlBfX/+nf/tGlEqleB4pKirqVXnQ0Wg0+Pzzz7F8+XIcOnTolpeTOh9s6Y7X3lz/KRQKZGVl4ejRo0hNTb3trh901zfNzc2YNWsWRo4cCUEQoFarkZeXh4MHD+qVRd21bFlZGQIDA8VQ7Hrm5uZwc3MT7xU7OjrQ0NDQpUy3t7cjKSkJKSkpmDp1Kvr37683HJ2h8NixY7Fy5UrExMSI/97Q0IDs7GwxTLaxsUFQUJDeA2lbW1uMHj0a48aNu60uhHTXz+fPnxevL26lftJoNKisrMTZs2fF69Ge6K6tT5w4gQsXLqCurg5KpRI1NTXd3h9rtVrU1taK9+n5+fm3tGxqtRolJSXi/AzrBKVSiYKCApw5cwbZ2dld9t2N6K7ZT58+jaSkJNTU1Ny0PN9Mc3MzLl++jGPHjiEjIwNyudxwFPZ3IXbHVVVV0RNPPEESiYQAkEQioZCQEDp27JjhqN1SqVRUVlZGpaWl4r/J5XL65ZdfaMyYMeTn50f33XcfxcXFkZWVFVlbW9OUKVPo0KFDpNFoxGlaW1tp06ZNZGNjQwDI0tKSHnvsMWpubhbHISJSKpWUkpJCs2fPJnd3dxo+fDhFRkaSjY0NTZw4kQ4cOEBNTU30448/UlBQENna2pKNjQ05OjrSxIkT6erVq5SVlUWPPPIIubi4kI2NDdnY2JC7uzs98cQT1NjYSEREzc3NtH79enF5rK2tafHixdTS0kJERBqNhkpKSujNN9+k0NBQGjBgACUkJFBISAiZmpqSr68vLVu2jPLz88Xxr1y5QgkJCeK21m1vmUxG9vb2NHr0aNq+fTs9//zzesvm4eFBTz/9NDU0NOhti8bGRtq0aRMNHjyYXF1dafTo0TRkyBByd3enOXPm0IULF0ir1RIRUWVlJa1cuZI8PDzEbeLq6kpz586lxMREmjt3LllaWpIgCCSTyWjkyJG0b98+vX10MxqNhq5du0b/+te/yNfXlwICAujee++l4OBgCgkJoXfffZcqKyuJiKitrY12795NwcHBZGpqSoIgEACSSqVkZmZGLi4uNH/+fCovLzecTRcajYZycnLopZdeIm9vbwoKCqLRo0eTj48PjR8/ng4ePKi3Hrr9LwgCCYJAERERtHPnTnF4e3s7HTt2jGbMmEGBgYE0duxYGjVqFDk5OZGlpSWNGTOGtm7dSq2treI0Wq2WSkpK6O233yY/Pz/y8fGhIUOGUGBgIAUFBVFcXBwtW7aMioqK6JtvviF3d3dxnQGQsbExWVpakre3N73wwgv0448/0ogRI8R9ZWNjQ0OHDqWdO3eK+5SISK1W05UrV+i5556jwMBAiomJoZiYGLK3t6eRI0d2Wc6bkcvl9Pvvv1NCQgL5+/vTsGHDKDAwUNwf58+f19uWcrmcfvvtN7rvvvvI3d2dhgwZQnFxceTp6UmTJ0+m33//nRQKBVFneV23bh2FhYWJ62VnZ0czZsygHTt20Msvv0wuLi4kCAIZGRnRgAEDaP369eIxR53H/8mTJ2n69Onk6upKkZGRFB0dTX5+fhQZGUmTJk2iHTt2UGZmJi1YsIBMTEy6HGs2NjYUFxdHP//8M2m1WmptbaU9e/bQxIkTKSQkhOLj42nYsGFkb29PNjY2NGnSJNqzZw+1tbUREVF9fT2tWbOGQkJCxPWwt7enRx55hHbs2EFLly4lJycnEgSBjI2NadCgQbRp0yZxP2RkZNCcOXO6LJuZmRnZ2NjQqFGjxGMvOzubXnjhBbFcx8bGkr+/P4WHh1NcXBytXr26Sx3Zk+bmZtq+fTuNGTOGPD09KS4ujgYPHkxeXl40c+ZMOnbsGHV0dBARidvPyspKrK8EQSBTU1OysrKi2NhY2rlzZ6/qh+bmZtq6dSvFxcWRt7c3xcXFUXh4OAUHB9N7771H5eXlpNVq6eTJk/TAAw+Qk5OTWOYjIiLoiy++oG+//ZZiY2PJ2NiYBEEgS0tLmjNnDqWmplJ9fT19+eWXFBERQVKplARBIB8fH1q5cqXeeUmj0dDGjRspODhYPOYeeOABeuqppygoKIgkEgkJgkD29vb0+OOPU1paWpf1U6lUdOLECZo5cyZ5eHjQoEGDaNCgQeTj40OLFi2iy5cv6x2f1Fle1q5dS/379ycTExOSSCTk5eVFy5Yto0cffZTs7e0JANnZ2dFHH30knoOos7zv37+fEhISxPrZysqK5syZQ//85z8pJCRELD+PPfYYZWdn6827sbGRvvnmGxo4cCD5+vrSyJEjKTg4mMLDw2nNmjVUXV2tNz517vslS5aQq6srSSQSMjIyori4OHrrrbdo7NixZGRkRIIg0KBBgygxMbHL+t5Mbm4uLVu2jMLCwmjIkCE0fvx48vf3JzMzM+rXrx+99dZbVFhYKP5uRUUFPfHEE+K5+PqyaG1tTeHh4bR9+3bx+FQqlXTgwAGaMmUKubm50bBhw2j48OHk4eFB48ePp3379onHYktLC3344Yd6dZKtrS3NnTuXfvnlF1qyZIl4LAuCQAEBAbRu3Tqqr6+nS5cu0dy5c8nOzo4EQSATExMaP348HT58WKzzeiM7O5vmz59P7u7uYrl3d3enTz75hDZv3kxjx44lMzMzscxOmDCBTp48Sa2trbRt2zYaMmSIeA51cHCgF154gfLz87vsF6VSSXv37qUJEyaQq6srjRw5koYOHUpubm40adIkSkxMFLfh9aqqqujNN98kf39/MjIyIolEQoGBgfTBBx/Q5MmTycLCggCQs7Oz3n7QSU9Pp4ULF5KbmxsNHDiQhg8fTm5ubjR9+nRKSkoipVIpjrtx40by9/cXy/Tjjz9ORUVFer9nqKOjgz7++OMu+3D69On07bff0ujRo0kmkxEAMjExoQkTJtDx48e73UdpaWn06KOPkouLC8XExFB8fDy5u7tTTEwMfffdd3rXYEVFRTRlyhRx3+jKpZmZGVlbW1N0dDSdPHlSXL+amhp66623yM/Pj/r160fx8fFiHbJ7926Sy+VERHTgwAEaNmwYOTg4iOUhPDycfv/9d1q1ahUFBASIx6CzszO99dZbVF1dTVqtlhQKBa1YsYIcHBz0lsnY2JisrKzI1dWV1q1bR59//jlFRESQnZ2dOI9hw4ZRamoqqdVqos7tun37dhoxYgQFBwdTQkICDR06lCwtLcnKyoqmTp3a7XZcu3YtOTk5ifvwhRdeoLq6OnF4YWEhPf744+To6EgRERHiNeugQYMoNDSUNm7cKG6L7jQ0NNCTTz5Jbm5u4rLb2trS888/T/X19XTt2jW6//779c4jjo6OtG7dOtq5c6d4HgFAZmZmNGfOHMrLy+tS13dn586d5ODgQMJ1127XX8OPHTuWzp07R8XFxfTMM8+I5xRfX1/66KOP6Mcff6To6GjxPOXq6kovvPAClZSUGM6KGhoa6Pvvv6eYmBhyd3enUaNGUUREBIWEhNDq1aupqanJcJIbampqoo0bN9KcOXMoKSmJvvnmG3J0dBTrlfj4eLp06ZI4fkdHB/3xxx80Y8YMvevj69XV1dHHH39M1tbWBICsrKxo4cKFVFNTI46j1WopPT2dFixYQE888YR4D9AbWq2Wzp49S6NGjRLr4IiICNq2bVuX+u12aDQayszMpKVLl5KXlxeFhobSyJEjycfHhxISEujIkSOk0WjEbRcREaF37aq73lyxYgW5urqS0HntGhERQV9++aXetZlSqaSzZ8/SzJkzydXVlSIiImjgwIHitevEiRNpy5Yt4nqp1WpKT0+np556iry8vMRrPh8fH7r//vvp+PHjpNFoqKqqij766CMKCAgQl83JyYnmz59Pv/zyCy1evFg8R0mlUoqIiKCvv/6aGhsbKSkpif7xj3+QlZUVCYJAFhYWNHnyZDp69Kje8dDU1ESrV6/Wu1Z5+OGHxesEQRBIIpGQt7c3vfLKK1RQUCBOq1AoaNOmTRQQECAec4899pjeOEREZWVltGrVKgoNDaWAgAAaOXIk9evXj4YMGaJ3/cz+PhzC3WG6m7y4uDjxpCKVSikmJkavMr4Vra2t9MMPP5CLiwsFBwfToUOHxH///vvvyd7eniQSCQUEBNCPP/6oN93NQrjGxkZau3YtOTs7k5ubG3388cfU3t5Op06dotDQULGCOXjwILW1tdHPP/9Mbm5u4klm1KhR4k1KbW0trVy5Urw4s7S0pLlz54oXWTcK4bRaLRUWFtKiRYvIxsaGZs6cSZWVlaTVaqmgoIAWLlwohkkJCQmUnZ1NWq2W6urqaPfu3fTwww+TVCoVK7N58+bRjh07KDExkWpra6m6uprefPNNcdmsrKxowYIFVF9fL26LiooKevXVV8nKyoq8vLzos88+I6VSSdeuXaNHH32UTExMKCoqinbv3i1Wpo2NjfTll1+Sra0tASCZTEaRkZE0fvx4GjBgAA0fPpwsLS0JABkZGdGIESPo7Nmz4jxvRK1WU1JSEk2cOJFMTU1p5MiRdPbsWVIqlXTw4EHq378/WVpa0syZMyk7O5vUajWVlJTQDz/8QPfff79Y/lxcXOjJJ5+kXbt20blz56i9vd1wVno0Gg1dvHiRpk+fTjKZjMaMGUNnz54VgxInJycaNGgQ7du3T5zmRiGcQqGgvXv3Uv/+/SkgIIC++uorUqvVpFAo6Ndff6Xw8HASBIG8vLzo/fffFy8WKyoq6I033iAHBwdKSEigtLQ00mq1lJubS88++yx5enrS0qVLqaqqiq5evUrvvfceBQcHiyevqKgo+vDDD+nXX3+ltLQ0UigUdPLkSRozZozecv7444/iSbqlpYW2bNlCYWFh5OTkRMuWLaO6ujo6f/483XfffSSRSCg4OJjWr19PKpVKXP+eFBcX0/Lly8ne3p6ioqLop59+Eo9nHx8fMjY2poSEBLpw4QJRZ7jwxRdfkLe3Nzk6OtLy5cuprq6OysvL6dVXXyVra2vq168fff755+IJVKFQ0LZt2ygkJERc97CwMLr33nspOjqahg0bRs7OzuI6R0VF0fbt20mj0ZBWq6XTp0/TfffdRx4eHvTmm29SU1MTtbe30969e2nEiBEUHR1N27dvp7q6OkpMTKRHH32UrKysxONoxowZ9MMPP9ChQ4eotLSU5HI5ff/99xQcHEz9+/enn376iTQaDcnlctqwYQMFBgaSIAgUFBRE69atE8ujQqGgjRs3Ur9+/cSLm/79+9O4ceNo4MCBNHToUHJ0dBTXY9CgQfTLL7+QRqOhuro6OnjwIM2ePVs83qytrWnWrFn0ww8/UGJiIpWVldG1a9foqaeeIgcHB5o/fz5lZ2eTRqOh1NRUmj17Nvn6+tJ7773XqxCuurqaVq5cSe7u7uTm5kbvv/8+NTY2UmFhIT3zzDNkaWlJkZGRtHHjRmpra6OmpiY6d+4cvfTSS+Tl5SXWCePGjaMvvviCDhw40O2Ng6GGhgZatWoVeXl5kbu7O3300UfU1NREJ0+epPHjx5OjoyOtWLGCKioqiDoDoNmzZ5OpqSkBIFdXVxo2bBgNHjyYhg8fTqGhoeIwc3Nzmjt3Lj311FM0bNgwiouLI19fX/EGx93dnT799FPxZsUwhJNIJGRra0szZsygL774gp599lny9vYmofNCetq0aZSUlCQebyqVinbv3k2DBw8mc3NzevLJJykvL4+Kiopo8eLFZGtrSzNnzqSLFy+K619XV0dvvPGGeKHq7OxMCxYsoPfff5+mTp1KLi4u4g2hYQinUqlo27ZtFBMTI97o3XffffTee+/R448/TkFBQWIA0F0IV1tbS//5z3/I1dWVvL296ZtvvqGWlhY6ePAgDR8+nJydnemDDz7Qu2G6vi7V1UsrVqyg5cuX05AhQ8RQVlembzWEy8zMpJkzZ5KtrS29+OKLYsCSmZlJM2bMIJlMRiYmJrRgwQK6evUqUee1wZkzZ2jRokXk7OwslsVp06bRunXr6LfffqPi4mJSq9XU3t5O//3vf6lfv35kYWFBr7zyCpWWllJLSwutWLGCnJ2dyd3dndasWSMGA2q1mtavX09BQUHi8Tp48GCKjY2lIUOG0LBhw/SO5aCgIFqxYgUlJCRQXFwcxcTEiHWMIAg0ceJESklJuaXtUltbS0uWLBGvNywsLGjcuHE0YMAAGjlyJEVGRpK5ubm4r6dNm0ZLly6luLg4Gj16NAUEBIihvpmZGb3++ut6N7ttbW20evVq8vHxIUtLS3r77bepqqqKmpqa6Pnnnyd7e3vy9PSkb7/9Vi8ErqysFMu2IAjk6elJL774Ir377rs0ZswYcnBwEK9lugvhTp8+TaNGjSJTU1OaPn06ZWRkUGtrK7300kvk6OhII0eOpHPnzonnp9sJ4ajz2N6yZQsFBASI+6lfv340YMAAWrx4Ma1YsYKioqLEEF93nXh9gPT7779TdHQ0GRsb08yZMyknJ4fUajV988035OPjQxYWFvTyyy9TWVkZabVaam5upsOHD9ODDz4o7n9jY2N69NFHaePGjbR//36qqakhjUZD5eXlNGfOHLKysqLg4GA6cuQIdXR0iOdWT09P2rFjh3g9cenSJRo6dCgZGRkRAHJzc6P77ruPoqKixGBQt90tLS1p7dq11NTURGq1mi5cuECvv/66+EBLEAQaPnw4rVu3jnbv3k3Xrl0jlUpFf/zxB/Xr148knQ9ZIiIi6MKFC6RSqUitVtMXX3xB7u7uFBwcTKdOnSKlUklqtZo+//xz8be9vb1p3759etvxRiFcdXU1Pfjgg2RhYSEGMlqtljIyMmjChAlkb29P69evv2EIR52BxrJly8TtLpFI6IknnhDn09TURA8//LBeeP3ggw9SSEgI3XPPPRQSEiLWuxKJhBYuXEi1tbWGs+kiLy+P1qxZQzNnzhS3v+78vGPHDjp8+DDV1tZ2CeEcHBwoLi6O+vfvTyNHjhQf+gAgR0dHWrZsmV7IUF1dTe+99x7Z2dmRj48Pff7559Te3k4nT56k2NhYcnV1pddee+2Wgoni4mJ6/fXX6YUXXqDGxkZKS0ujiRMnktB57e3l5UUfffSReCzqHm49+OCDlJ6ebvhzRJ0PYTdt2kSurq6EznuKGTNmUGFhoThOTU0NffzxxzRx4sReN+7QaWtro59++ol8fHzE/Th+/Hi9c+zt0mg0lJSURFOmTCGZTEbjx4+nCxcuUG1tLa1atYocHR1p+PDhdODAAaLOUPLXX3+lsLAwEjqvXYOCgsTjMi4uTu+YCwsLo02bNpFarSatVivOy9XVlf79739TQ0MDKRQKOnDgAI0ZM4YiIyNp8+bNpNVqSa1W0+nTp2nixIkkk8lo8uTJlJqaStXV1fTOO++Qg4MDjRo1ihITE4k6z5EbNmwgb29vQufDhsjISBo7diwNGDCgyzlswIAB9Pzzz9P06dMpNjaWBg4cKD7kMzY2pmnTplFaWpq4rQxDOKlUSu7u7vTYY4/Rl19+SfPnzyd7e3sSOh8SLl68WGyA0psQ7tq1a/Tss8+SlZWVeA3f1tZGP/74I4WGhlK/fv3oq6++uun9IOtbHMLdYSqVis6fPy8+TUfnxe3QoUMpJyfHcPSb0oVQkyZNEk88r7/+OnV0dJBaraaUlBSKjo4WK+v777+fqqqqiHoRwrW1tdGuXbvIzc2NjI2NafTo0eJFUkpKCg0aNEg8Ib766qukUCjo1KlTFBYWJlbe14dwra2ttHnzZrKzsxPn19sQTnfT7+HhQVKplAYMGCBWhk1NTbRu3TrxyZCbmxt99NFHYhBWVVVF//nPf8SLK1dXV3rvvff0njq0tLTQxo0bxQrPMIRrbGykr7/+mhwcHMSwTHdSamxspK+++opsbGzEddaFJu3t7fTLL7+IN9WCIJCfnx99+umnJJfLqaioiJ5++mlx2Tw9PWn16tV6y9YdXdj02GOPkZGREdna2tIzzzwj3vzm5ubSvHnzSCKRkL29PT3zzDPixVJxcTG98MIL4gWJn58fffnll72+gSktLaXly5eTTCYT59vQ0EAdHR20b98+CgkJIQsLC5ozZ44YGtwohCsqKqKlS5eSkZER2djY6F0opqen04MPPkhC5036uHHj6MKFC6TRaOjYsWPiTeqiRYvEcq2b7oknnqAXXniBGhoaSKvV0vHjx2nIkCEkdAY48fHxdP78eb11y8zMpDlz5ogXcteHcLoWMoMGDSKJRELDhg0TA+/Lly+Ly2ltbU1PP/203o12d+rq6uijjz4iBwcHMjc3p8cee4xKSkqoo6ODdu7cKdYR/fr1o6+//pra2tpox44dYigZExMjtizr6Oigbdu2iReaMTExtGvXLjFIO3z4sF7w7+LiQsuXL6fy8nKqqamhlStXikGxnZ0dvfzyy1RfX0/19fX04Ycfkr29PYWEhND3338vls329nbasmULPfTQQ7Rjxw7SarXU2NhIq1atEo8je3t7euWVV/TC7KysLJo3bx4ZGRmRo6Mj/fvf/6ba2lrSdgZ+EyZMEC9Mrr8Y1Wq19Mcff9DgwYPF9XBzcxNvfnXHua7+sLe3p//85z9i/dLQ0EArV64U6x9dXakbrlarafv27RQREUH29vb06quvisut7Ww1NnfuXPrggw9uGsK1tbXRN998IwaKo0aNokOHDpFWq6X29nZat24d+fr6kkQioZEjR9KBAwdIo9GQRqOhrVu3ivvexMSEHn300S6trXqiUqlo586dFB0dTRKJhEaMGEEHDx4krVZL+fn5tGjRIjIzM6P+/fvTjh07SKVSUU1NDb388svizZWRkRGNHz+ejhw5QkqlkhITE2n06NHisWtpaUnz58+nS5cuUUdHB3333XdiyGZkZETz5s2jrKwsoh5CuISEBDpz5gxpOx+SrFixQmwdYG1tTa+++qoYEKamptL06dPJ2NiYvLy8aN26dSSXy0kul9P7779Pbm5u5ODgQO+//z7V1dWRRqOhn376ifr3709CZwuZF198kYqLi4muO051oaJhCHfx4kW6//77xeBgwoQJ4rI2NDTQq6++qneze30Ip1Kp6Pvvv6fQ0FCSSCR07733itNmZ2fTzJkzydTUlGJjY2n//v2kVquptraW/vnPf4otPfz9/Wnz5s3U1tYmhhwRERHitr/VEE6tVtPatWvJ39+fJBIJjR07lk6cOEFqtZpaW1vp1VdfFUM2Ly8v+uGHH8SbcY1GQ59++ql4M2ZiYkIvvfSSuC2p87j4+eefxdCyX79+tHv3bjEg2L17t7gvgoODaefOneJF/ZEjR8T6WOi8dnnrrbeovLycWltb6ZVXXhGXTdLZEmzDhg3U2NhIJSUlNHv2bLFFmLu7O23evPmmQcL11Go1vfPOO+JDQ6HzRunXX3+ltrY2yszMpIkTJ4pBm+6BiO5B1/79+8X1FgSB4uPjKTU1lbRaLWm1Wvrpp5/Em8fQ0FA6ePCg2EJL99aA0HnjqGu9rFar6bPPPhODaUtLS1q9erV47j579izFxcWJ1wuGIVx5eTk98sgjZGlpSRYWFrRq1Sqxbl2/fj35+fmRiYkJ/etf/xJbvN9uCEdEdPLkSYqJiRHDEXt7e/rqq6/E42nnzp3iQxOJREKPPPIIXbt2jbRaLV2+fJnGjBlDJiYmZGlpSV999ZV4/XL58mUaPny4eE2wdu1a8Tc1Go344AoAmZqa0ocffqh3juno6KC33nqLnJ2dSSKR0Jw5c8R1Sk5OpoEDB4r13NWrV0mj0VBFRQVNmjRJrBuMjIzokUceER/EbNmyhXx8fMTyOn36dCoqKhKPxT179pCfn584/IEHHqDi4mK9YzUzM5OGDBki7r/rQ7ji4mIaO3YsmZiYkIWFBX3yySfi9rhw4QJFRkaKDzseeeQRvTcWbhTCbd++nTw8PMjU1JQ+/fRTvXPXhQsXaNiwYfT999/36tj59ttvxbpaYhDCqdVqevnll8WHXIIg6LVMvHLlCkVFRYllJTAwkFJSUkjd2QrwRtLS0mjFihXidnN3d6cPP/xQ7zr5+hAOnfc7EyZMoJSUFLGFWb9+/cRjOT4+njIyMoiuu9fx9fUlY2NjGjFihPhWS3Z2Ns2ePZukUilFR0eLAdHNaDQaunDhAs2fP5+++uor0mq1VF9fT5999pl4jWJqakqTJ08WzyEFBQX0r3/9i55++mm98ny9jo4O+u2338RrBF1IpmvEoXsIP2XKFPrggw+6tJq8maqqKnr77bfFutXa2pqeeOKJm17P9kZhYSG98MILYivGl156iRobG6mjo4N27dpF/fr1I0tLS1q4cKEYvJ8+fVq8/gBATk5O9MILL1BpaSnV1dXR6tWrxWs6GxsbevbZZ6m2tpYaGxvps88+I0dHR7E1ta68KBQK2rVrF82YMUNsCZefn0/PPPMMmZqakqOjI73yyivU1NRECoWCfvzxRwoICCArKytasmQJlZeXk0ajof3794v310LnA5O33nqLamtrqbKykl577TXxeNA9NN6wYQPJ5XLKzMwUr4MBUEhICH333XfiMhqGcGZmZjR//ny6du0aUec93uLFi8X6ysfHhz799FNqa2u7aQjX2NhIn3zyCbm5uZGpqSk98sgjlJWVRVqtlk6dOkXjx48nIyMjSkhI6HKPxP5a3CfcHUZE6Ojo6PIOuCAIve7n53pEBIVCIfY309raKvYDJ3R+nlr36XK1Wi3233Qz1PnxiE2bNqGyshKmpqbw9fWFi4sLJBIJrK2t4ezsLM7Dycnppl9zEQQBRkZGt/UlJ61Wi9bWVigUCrGfhaSkJGi1WkgkEshkMnH7tbe3o6SkpMc+RXrS03JrtVoUFRVhx44dqK+vh5GREezt7cX+EUxNTcXPQatUKmRlZWHXrl16/ZXoftvU1BQxMTF46KGHYG5uDktLSwQEBIifoVYoFKiurr5p/wNtbW24cOECDh48CLVaDTMzM7i6usLCwgLo7Mjd29sbRkZGaGhoEPsB+bPUajWys7Nx4MABdHR0iP1TWFpawsjICDY2NrCyskJbWxsyMjJw+fJlw5/oQqlUoqWlRdzHV69eRWFhIYTOr7bq+pvQaDRobGxEVVWV2BdZTU0N5HI5zp07h4MHD6KjowOCIMDX1xdTpkxBYGDgLZW3G5Xf8vJy/PHHH7h8+bL4NVndh1QsLS3h7OwMIyMjmJqawtraGiYmJoY/IdJqtbhy5Qp+/fVX1NfXw8rKCj4+PrCzsxPLl62tLSQSCSwsLGBra4uSkhIcPHgQOTk5EDo/Ta87Bo2NjeHs7AxnZ2cQEbKzs/HHH3+grKwMMCjbEokE/fv3x7Rp0+Dm5gYLCwt4enrCzs4O6OxjpLGxEW1tbWhubkZ5eTna2tpQXFyMAwcOICMjAwAgk8kwePBgTJgwAdbW1uLv34xCoYBcLodWq0VjYyOysrJQVlbWbX1VV1fXpb7SrYtEIsHAgQMxZcoUuLi4wNLSEp6enuJHa3Tr0dt+gxQKBSorK9HQ0IDGxkYcPXoUp0+fhkqlgiAICA8Px3333QcvL6+blqm8vDwkJiaK5djBwQEODg7iOrq6usLe3h7U2Y9eYmLibfUraaiyshInTpxAbm4uAMDJyQmOjo4QBAGWlpawtbWFkZERCgsLcfHiRdTX13cp8w4ODpgwYQIGDRokfo3NxcUFUqkURARvb29MnjwZERER4nGgm4dWq0VDQ0OPHZNLpVK4ubmJ49vZ2SE2Nha+vr4QBAEtLS04e/YscnJyoFAocOrUKaSmpkKtVovlXVdGbG1tYWZmhoaGBiQnJ6OkpERc//z8fBARXF1dERUVBScnJwCAp6cnAgMDxXryekqlEqdOncLly5ehUqlgZmaG6Oho+Pj4QOjsEDskJET8LUOlpaVin0cA4ObmBjs7OwiCACsrK9jY2MDIyAi5ubm4dOkSmpqacPnyZZw/f17szyY8PBzBwcGQyWSQSCQICQmBl5fXbV0boLPObGlpgUKhgFarRXZ2ttgPnFQq1TtvNjc3o6ampsu1yY1UVlbit99+Q25uLohIPC/q6j53d3fY2dlBIpEgLy8Pv/32G0pKSoBuzrcDBw5EQkICXF1dYWZmBi8vL739NH78eIwdOxY2NjawtbWFu7u7eN5sa2tDfX39LZ3zDcu9qakppk6disGDB8PMzAyOjo5wcXER18Xa2hoPPfSQWO49PDzg4OAgHhf19fXieay8vBy//vqrWBYcHBxgb28vdmKvq6cEQUBOTg727duHyspKFBcXi3WB7lgbMGCA+BGWgIAA+Pn5iXWkoZMnTyI1NRVyuRzm5ubw8PCATCaDIAhwdnaGTCaDWq3GiRMnUFpaekt9c3XHcBuGhYVh+PDh4vkgKioKXl5eMDY2hlarxalTp3D16lW0trZi165dyMjIgFKphKWlJVxdXcVt7eTkBGdnZxgbG6O5uRk//fQTCgsLe728ubm5OHToEBoaGiB0Xg/o+rm1t7eHlZUVBEFAWloaMjIyxP4er18fZ2dnPProo/Dx8YFEIkFgYKBYlokI1dXVXT6gczOGZf56bW1taG1thVarRVtbG06fPi3Wo6ampmIfYESE4uJisazdiFarRW5uLtrb26FUKrF161ZkZmaK15dRUVGYPn26eP1+MxLJjb+ke/0wqVSK+fPnIzo6GsbGxnB1ddWry5qamu5IP3fdEQQBrq6umDZtmjh/Nzc3uLu7QxAEaDQaNDc3i9cWVVVVOHDgAEpKSiCVSuHg4CBeW5mbm8PR0RFEhLKyMpw4caJXdWRHRweKioogl8sREREBofMcMnToUERHR0MQBCiVSmRmZuLYsWNQq9WoqqpCWVkZQkJCevz4npGREWxtbcVzi0ajQVNTk9hvZ3FxMfbt2yfWVz3VFT2pr69HZmYm2tragM6+30JCQrp81OFWqVQqZGZm4vDhw+jo6ICFhYV4z3L9vYNcLseVK1dw5coVw5+ARCJBaGgoZsyYAQ8PD5ibm8PT0xP29vZA5zm8oaEBcrkcra2tKC8vh1wuR3l5OQ4cOCDej+juwxISEsT7tsuXL+Po0aN69ZG5uTmMjY31li09PR1ZWVld6j6pVIro6GhMmTIFDg4OsLCwgJubm1h3y2QyDBs2DBMnToS5uTlsbW3h4eEh7h+5XI76+voe7/1kMhlcXV3F63R3d3fExsaK/QZWVlbi/PnzKC4uNpiyq7y8PBw7dgxVVVUwNjaGk5OTWJ6sra1ha2sLrVaLq1evIjU19ZbOq+zOuvGdBrtlgiDAxMSkS8VIRLd1MpJIJHBxccHEiRNhbW0NR0dHjB8/vscvOmq12l51CKxSqXDt2jWkpaWBiCCVSsWbHkEQ4OnpiX//+99YsWIFPvjgAzz22GM3vTH9M0xNTREeHo5hw4bBzMwM/fr1w+jRo7udJxFBo9Hc1vbsjkKhQHZ2NtLT00FE4klQFw5JJBKYm5uLF3m6zrW7+4y6ruLWVd5CZzCp+//eLntjYyNSUlJQVVUFdG4fe3t7cXsYGRnB2toaxsbGoM5ANSkpqVcXDzfS1taGvLw8FBUVieVCd8OoWxfdhXRdXR1yc3Nvui7Ozs6Ii4uDl5cXHBwcMHjwYAQEBADdXORrNBpoNBpIJBKYmJjAyMhIDLSef/55LFy4EKdOnYKpqSkmTZqEp5566pYCop5otVqUlJQgNTUVKpUKUqkUlpaW4lehPDw8sGDBArz55pt499138cwzz9xwvnK5HFlZWeLNq4mJCWxtbWFqagqJRIKYmBi88soreP311/HOO+9g4sSJKCgowMWLF6FWq7vMH50nad1Na3t7O65evSqGMYau364SiUQvHNeVQY1GI+5PiUSCtrY2bN++HbNmzcKHH36I4uJiBAYGYuHChRg/frzefroRLy8vDBkyBK6urnBzc+vyVeju9ndPDNdDKpWKF/lEBLVafcPpr2dYps6cOYPFixfjhRdewMWLF2FlZYV//OMfeOSRR7oNcXQ0Gg2ysrKQkZEhbkMrKyu9j51cX1/oOssvLCy87lduT1lZGXJzc9HW1gahM/DTHY9SqRTGxsbiviwqKkJtba3hT0AQBL2bLYlEovf/1w8XOh8eGZadmx3zOoIgwMPDAy4uLhAEAUSEoqIiFBcXo7KyEtnZ2eIy6sI33bx1+0o3TWVlJf5/7N13eBRV2z/w75b0Te+990ZJaKGjgBRBARXBggUVy2NDUV9FfURFfVARRKQ36b0LSK9JICG99143yfbduX9/uDu/7CaBgKI+73s+18Wl2Z2dnT1z5sw595xSVlaGwsJC/vcbGlOm99vuGCajNnyftbU1PDw8er3yW0lJCYqLi6FUKiEQCGBpack3nMViMZ/2HR0dKCkpQWNjI7Kzs1FZWQlO/zDJELTqzbXE6R9aNDc3o6mpyeifVCqFVquFubk5Bg8ejKioKFhbWyMxMRGxsbHdTqRtuF7oDoIK+fn5yMnJ4SdydnR0NNq3tbU1bGxsIBQKwXEc0tLSUFZW1m0dxDSPdc5X3b3f+W+O44zynUKhQEtLS5d0aW5uhkql6vE3GvI0OpWLPX2noawx/K3T6fj0y8nJQW5uLt+QdXJy4gOGAGBjYwNra2sIhULodDokJyejqqoKOTk5KC8v5x8mubu7w9nZmQ/e3YpKpcL169fR1NQEIoKZmRl/b4b++jFcLxUVFaiuru6xwXe3DGlkYG9vDxcXF/74m5ubUVhYiOLiYly7do2f8N7W1hZ2dnZ82W1hYQGJRAKRPsCZk5ODvLy8Xi+OkpWVxS8KItAHUgzHZWZmBjMzMwgEArS2tva4OEnnMg768935t91JOdcbvr6+GDNmDOzt7eHq6opx48bxgRjDMRhwHNfr7zb8diJCcnIyJk+ejHfffRf5+fkQCoWYP38+JkyY0G2Z8EeZpp9pXVej0fR4Lf4ZOp8vgUlHB0OZodNP8J+ens6Xw53vm4a/hfqyu7i4uFcL1bS1taGkpATW1tb8qqJCoRBBQUEYP348rK2tQfrFf06dOoXCwkJUVFRALpcjJibG6Ng7E+gf6ri7uwP6dJTJZGhqakJbWxvOnDmDvLw8PPLIIwgMDDT9+C3p9JP+5+XlAZ3al1FRUb0qg25FJpOhoKAAFRUVIH07ysrKir/OzMzM+DRvaGhAUVFRt3m8c54ynNPOdT7DORWJRPx5UygU2L9/Px599FEsWrQIpaWlCAgIwDPPPIOJEyeio6MDBQUF/KIdYrHYqF1jKDOICHV1dSgpKelybIbjMpw3w7F1Po+G/XV+3/A3p2+bm+63J5aWlvDy8uID6Gq1mq873YpWq0VJSQkKCwtBndpwnesq5ubmEAgEaG5uRmlp6T1ZJIrpne5LAeauCfU9WwzRcegLDrVafdcrkjg6OuLdd99FWVkZsrKy8Oqrr6Kurg5r1qzBggUL+J4rd0KlUqG4uJhvkAj1DVxDgWJpaYmkpCT8+9//xuzZs41+z70gEokQGxuL3bt3o6KiAidOnED//v2RmpqKL7/8Et99912PvS/+KKVSifLycr7CKDDp0Wf421CIaTQa1NfX872Q/mxEBKlUiuLiYuh0Or4wN3w/ugmsyGQy/unpH6FQKPieUdD3Dvvoo4/4Hjfjx4/HtWvX+G0bGhpuW3G2s7PD008/jczMTOTl5eGLL74Ax3HYsWMHPv74Y/z666+mH4GZmRkCAwMRFxfHV9Sbmprwyy+/YMqUKXj22WeRkpLyp1XwVCoVKisrUVlZCdKvaNz55m9ubo7+/fvjvffew3PPPQcvLy/TXRhpb29HWVkZv4qnYV+G82Vvb48HH3wQH330ESZMmACRSITa2lq+h4Qhz3WuVHbOA5x+dac/uoKxYRn6zk+Qs7Oz8f7772P8+PFYsmTJHffgcnZ2xptvvonc3FxkZmZi/vz5kMlk2LBhAz777DNcvHjR9CN/CUtLS0RERCA0NBRCfaOlpqYGP/74IyZMmIC33noL2dnZt81ThmukWb+qY0/nylCp5TgOtbW1qK2tve2+b4WI0NDQwK/ex3Ec9u3bh6FDh8LZ2RkhISF8OanT6dDc3HzXq779mQyBGkP6yGQytLa28j1dDU9h09PT8dhjj8HFxQWurq547bXX+B5vUqkUzc3NqKio4IMQ0J9TQ8X+dpqbm1FfX8+XV+bm5rDs1FPsVkj/oKNZv8ogx3HYtGkTEhIS4OzsjPDwcKxbtw4ymQw6nQ6NjY2or69HdXU1XyYbKsO9beyUlpZi7ty58Pb2houLi9G/YcOG4cyZMwCA4cOH48CBA6isrMT27dsRExODixcvYuHChdi6dWu3q8P1BumDn53T28zMzCi9DPleoA+w1tXVoba29p4+WVcoFPjss88QHh7eJV1CQkKwbt26e5rvOY7r0lA3BGANxGIxH5AwlDM1NTUoLCw0OjYbGxuj+/qtdHR0oLa2lg8o1dXV4emnn4aPjw+cnZ0xffp05OTkgPQjJhobG+/peYD+GjIE06C/jzY3N6O8vBz19fV8MLa78tHQEIQ+oFFaWtptsMwUx3EoLS2FXC4H6RvlixYtQkhICH8/O3v2LDQaDbRaLWpqau55OvSGtbU1Fi1ahLy8PBQVFeGZZ55Ba2srVq1ahXfffReFhYV3fC8XCoUYPHgwPDw8INLXkxoaGvDdd99hyJAhWLBgAf8Q4P8qQ497wyqTCoUCBw4cQFRUFJydnRETE4Nly5bxQfaWlpYuq6+bIn19tKioCAEBAUadIhwcHDBkyBBER0dDIBBAqV9J+OjRoyguLoaNjQ3/ELo7An0QztPTky8/5HI5amtrkZGRgePHj6N///4YPXq06UdvSy6Xo6SkhA+UmZubw9fXF0FBQaab3jG5XI6amhp+ZEJ5eTkWLFjAtx0mT56M1NRUfts/Wj45OjoiJiYG3t7efN01Pz8fCxcuxNixY/Hll1+itrYW0Nc5amtr+WMrLS3FW2+9xR/btGnTkJaWxm/7R4/tzyDQP1wwPCQkIrS1tRndj7ujUqlQX1+PlpYWEBHa29uxbNkyvnwcMmQIdu3aBY7j+J6FLAj392FBuD+ZUCiEs7MzwsLC+AoG6Z9kGLpG3w1DBT4lJQUzZ85EQkICNm3ahD59+hj1Muktnb6Ls6Gg0el0UCqVf/qT0ztlZmYGjUaD1atXY8SIEZgyZQrKysqQlJRk9KT5z6TVatHR0cH/doHJE3HTRjbphxwbAlX3gkajMQqoGYJCBkJ9rx5DxV+n0/FDEv4IrVYLhUIBnb53kZ2dHWbPno0zZ87g8uXLuHbtGjIzM5Gbm4srV67gjTfe6NV5EQqFMDMzQ15eHubNm4dBgwbh66+/hqurK6Kjo003h0AgQEREBF588UUMHTrUKO2bm5vxyy+/YN68edi/fz9/rH+ETqeDTCbjb9KGG9TdpqdKpUJbWxufp7RaLZRKZbc9RNDp/HUOaBoC49Cnh+FpnYFKpYLsDofLmLK0tMTYsWPx3HPP8ZU+dOrt9emnn+J//ud/UFhYaPrRWxLpg44pKSl4+umnMXToUKxdu5YfLvh3EAgEGDBgAJ5//nn07duXv3ZIH2BZsWIFXn/9dZw5c+aWjRadTge5XM6fK8O12Tlob3qulEolFArFHzpXpJ+aoHMeSUxMxE8//YTLly/jypUruHHjBt+rZNWqVYiPjzfax9/B8OS1c1ml0WigVCqh1A+jJCJ4eXlh4cKFOH/+PC5fvozU1FRkZWXxw+MnTpwItVoNpVLJp6OZmVmvg1pKpRJyuZwvL0QmPTduxZD2ncuD4cOHY8OGDXzap6Wl8Wm/dOlSBAUFQSaT8WWAIfDQuRz/s1hZWaG9vR0//PADhgwZgjlz5qC9vR0RERF3/QDNUG9Rq9V8ene+L8Ik2AR9mdT5/vG/VXt7u1Evn87XPzoFK03TRSqVGn2u83VxOxqNBgqFgi+brK2tMX/+fJw4cQKXL19GcnIyf72kpKRg+vTpve7lebcM96jOdV2NRsNPLdI533T+nYb6QOf7jUw/hUFvGILd0Je3Dz/8MA4dOoTLly/j6tWryMjIQG5uLvLy8vDBBx/0OHLkrybUT/Vy4cIFPProo+jXrx927tyJxMTEXg8ZNZWQkID33nsPAQEBRve0pqYmLFmyBE8//TSys7P/11+TPeE4DiqVii+7xWIx+vfvj61btxrdNw0PDVevXn3bHmZarRaVlZWor69HTEyMUU9ssViM0NBQjBs3DhYWFiAiVFZWYufOnbhx4wb8/f17nPLAwNLSEq6urvwDJqVSiczMTBw5cgQcx2HmzJl3dW1LpVLk5ubyDxAkEglCQkLg4eFhuukdM207ODo6Ys6cOTh79ixfPhnaDhcvXsTLL7/cqx7sPbGwsMCoUaPw0ksv8YE46MuSgoICfP7553j33XeRl5fX5dicnJwwd+7cbo/t/PnzmDt37h86tj+LmZmZ0XFw+t6dt6pH6nQ6qFQqvt5hZmaGiRMnYs+ePXz5mJ6ejtzcXKSnp+Pf//73bTsVMPdO7+7+zB2RSCQYPHgwf/FwHAepVIqSkhLTTXtFp9MhLy8Pc+fOxaRJk3Dy5EnMnj0b+/fvx/Tp042GQd2JzpVnQ++uvzMiLpfLceDAAUyYMAFvvPEGOjo6sHTpUixbtgx9+/a9J40X9NBDwbSQM/R+QKdGdm+CT3dLrO/KbUAmw5nJZFhYd7/hbohEIlhZWfFpzem77/v4+CAsLMzoX1BQEJz182DdChGhtLQUCxcuxMSJE7Ft2zYMGzYM27dvx4svvthjhcTc3ByjRo3CypUr8a9//QseHh5GN9qbN29i48aNdxwg6o5pIEWj0aC5uZmfy+lOGRonhv3J5XI0NDTwQT5TQn1QtXPghn5fOIf/23ADNjDTz6d3u/S/HTc3N7z66qtYuXIl7rvvPqN8LZVKceTIEezZs6fXQWciQnZ2Nt566y1MmzYNR44cwUMPPYQtW7bgiSee4Of3+DtYWVlh2rRpWLlyJebMmWOUfzUaDS5evIgdO3bw81p1R6gfvnIn58pcP0XBHzlXApPhp9BXfB0cHBAaGmp0bYaGhsLb2/ueDEG6U6YVR3Nzc1hbW8PKyoofTgL9b7GysoK/v3+XsiYgIAASiaRLEMgQwOsNgcnDFdNzdisC/fDTzmmv0Wjg7Ozcbdp7enrCstNwF3S6h/T2O3tLJpNh3bp1mDx5Mt5//31YWVlh+fLl+PzzzxEbG3vX9wTDb+7NfbHzue18Tv+3sra27pIuptd/d+liWoe5k/xgKO87Xy/m5ubdXi/BwcGwt7e/5+eB9PUSw28Q6keCWFtbG/V0M00f0tdfOn/OcL30RueetaQfaeLt7d0lHUJCQuDq6tol3f8ueXl5mD17NmbMmIEjR47g5ZdfxtatWzFlyhR+Hrs7JRKJ8Pjjj2PHjh2YMWOG0X44jsOZM2ewZs2ae9o79J/McL82lN2G/Oro6Nglvxjum53L+e7IZDKUlJRAoH9YbMrZ2RnDhw9HmL4zhkwm4wM9MTExt207WFpa8nM8Ql8PO3HiBC5duoQpU6YgKirK9CO3RfpektnZ2dDqh3E7OzsjMjLyltNv9JZp20GnHzLaU9vBycnprvJ7Zy4uLnjhhRewZs0aPPDAA0b1nfb2dpw4cQI7duyAUqmEZade7zr9NCK+vr7dHltvp4y41zrXIw33Y2tr61sem0g/TNdQP+U4DgL9nKGmvzUkJISf65r5e/TujsfcEWtra4wcORJxcXH8xSKXy5Gamtrr7vYymYyfmLW0tBTvvfcetmzZAp1Oh7i4OLz00ku3nJPqdsz0E70bCi21Wo2SkhJ+ouG/mkKhwMmTJ/Hmm28iLS0N9vb2mDRpEiZMmNDritndsrS0NJok2rRiaagwGgpDsVgMF/2kzveCQN8d3TBhMLoJwnH6+QUMx2hlZQUvL68/lCegTwsXFxf+5q9SqVBXV9erOTJ6Ul5ejqVLl2Lp0qVoaWlBREQEnnjiiVt2gdfpdKirq0NpaSmCg4OxePFiHD9+HPPmzTOaI6G8vPxPCcKZmZnB0dGRn6NFp9OhqqqKn1fhTlnpJ/42VOYMlTZD93hTFhYWcHd3h4t+Qnt0asihmzxoqEB5eXn9oetDrp87rL29HZMmTcLOnTuxceNGjBo1in+I0NLSgoKCgl4Pa8vNzcU333zDDwtLSEjAI488Ah8fH9NN/1IajQaVlZWorq5Gnz598OOPP+LAgQOYNWsWX+lSKBQoKiq6ZRDOSr9IioODAwT64SKdA+LdnSvDohq3qjzdjkC/0IHhe6Gfl7HzsK9/Io1GA5VKxVcGnZ2d4eHhwU8WbKgstre3o66ursdgr0C/WImNjQ3/+zv3cLgdiUQCW1tbviJu6I3XOVjaE8Nxd27g1tfXo7GxscfPW+gXl+j8ME55i96wpry9vfHxxx/jt99+w4ULF4z+bdy4EYmJiVCr1di0aRO++OILZGRkwN7eHjNnzsTAgQNv25C8HYFAAF9fX6MGSed8bvjbtEzq7Rx9d8vCwgIvvPACDh061CVdjh49ioceeuiueon0llAohJ+fH+zs7IzSpfN9QttprkqBQABX/UIEHh4esNQvpAB9vae3+cHKygrOzs78eVWr1fwcU38XQw9vQ56wsbGBl5cXAgIC4Kxf1AIm9zLD353rLxL9oju9ybNCoRCenp5GDzUqKyvR1tZm9B3/NCUlJfjXv/6FAwcOQCaTISkpyejec7fy8/NRW1uL+Ph4bNmyBUeOHMHUqVP5+qxOp0NKSkqv2h7/G4lEIn6xF4F+caHW1tY/NJ2MoU7k7OwMb29v07dhZmaGiIgIjB07Fmb6ucYE+sUkugvambKwsICLiwt/Dg1DJGNiYjBx4sS7qvMZ6j9FRUUgIgiFQnh4eCAyMvIP5T8DQ/lkKPuVSiXq6upuO7T3bikUCpSXl0MqlWLs2LHYunUrfvnlF9x///38MbS2tiI/Px8ymczo2BQKBerq6v7xgWlDz3/o7yMuLi781DE9MbRlDHUVnX56jO7mB2b+fnd+JTO3JRKJEBAQgGeffZYPishkMly+fBnZ2dmmmxvR6edkevbZZ/Hxxx9DqVTiypUrOH36NDiOg5l+FaI/2pvEwsICYfoeBoYLtby8HMeOHeO7sXZHYDIxL7p5On6nDE9oDh48iNLSUhARP9lpbyplt0L64RG3YmlpidDQUISHh/NpIZfL+c9xHAeFQsFXdiUSCaKiou5qGHBvOTo6om/fvnB0dOR/Q+ehh1qtlh/uKNA38vv37/+He75YW1sjKCiI73WmUqlQWFiI9PR0o+00Gg2Ki4tx48aNW6avWq1GZmYmjh07BqV+xT5DI/xWlEolzpw5gx9++AHV1dUQi8WIi4vD119/jZ9//hlxcXGASSOwJ6ZBku6YmZnBz88PEREREOrnCysvL8e5c+d6HXzqzN7eHmFhYfwQT5VKhYyMDFy+fLnbRpehzIiOjoZQP8m50mTooUKh4IcoW1paIiQkBKGhoZ32cucqKyuxceNG7NmzB2q1Gvb29pgxYwY2btyIN998k89/t0s/dBpSlJycjHPnzkGtVvPB/r97OJBOv1ra3r17sWHDBjQ0NMDc3BxDhgzBihUrsHjxYj4tb/dbxWIx/yRRqJ94XWkylF8mk0GmnwPU2toaERER8Pf377SXu+Pt7c2vnkj6uaZu3ryJhoYGo+3q6+uRnp6Ompoao9f/DlKpFFKpFDr9gitRUVEIDg6Gq6srgoKC+FXZOjo6kJaW1mXiYblcjps3b6KkpATe3t7w9vaGWD8BfUtLC5qbm7u9pky5urrC39+fD9AY5qXp3Dv1VveygIAA+Pn5wdzcHKSf/D4jI6PLNBM1NTVIS0uDTCbjewtDX2Y3NDT0ure54R49ePBgJCUlGf3r06cP7O3tUVpaipMnT6K8vBxEBHt7e7i7u9+2p8XtcPon8CEhIQgJCeHvK3K53CjoKZPJ+CG+QqEQsbGx8Pf3v6dP1g1BsAEDBnRJl4EDB/Ir/d5LUVFRRquYyjoNO4Y+LxuGjgqFQvTt2xe+vr6IjIyEi4sLf49paGjoEjzqKQ9aWVkhOjoa9vpVVzmOw5UrV1BeXm6U/zmOw40bN1BUVNTrAPXdMsztaKiHeHt7Izg4GEFBQYiPj+evNYV+qgXD71Sr1ejo6IBOP+dtUFAQIiIiblt/MeTLyMhIuLm58emYl5eHzMzMLj3Ni4uLcf369XseqNTcZgECIsLRo0eRlpYGpX5hl8DAQNja2napT98JnU6H1atXY8uWLejo6IBIJMLQoUOxfft2fPnll3w9rjfl4z+VIWB7t0QiEdzd3fngF+lXvr106RJ/jza83tjYiGvXrnUp0zvTdXpA6+/vzz+4NeXq6oqRI0ciMDAQAoEAVlZWCAoKgp+fn+mmXYjFYjg5OfHtPLFYjPj4eMyaNeuu234dHR0oLCzkHwRbWlrC39+/V8fTGzY2NggKCuIfNiqVSuTn53dZBVWtVvNtilu1HW6npqYGmzdvxtatW6FWq2FnZ4epU6diw4YNeO+99/jV6TmO44/N8ABfqV+Mz7Q9rlKpkJ+fj4yMjD+U5/4MOp0Ora2tfBBTIpH0qh5paMsYtuM4jl+EsXMgnvRzvqanp//jg5H/m9196c/ckkQiwUMPPYQXXngBlpaW0OmHlC5evLjHhpFKpcK5c+fwxhtvQKVS4dVXX4VGP0zUULnQaDSorq5GQ0MDlPp5AiorK013xTOtGBj+FovFCAoKwtSpU/meCM3Nzdi8eTMOHDjAV5bkcjmOHTuGhQsXQiqVwsbGBhKJhK8EdnR08L2kOjo6kJOTw1d4qJvVCzmT4ReG/1cqlUYTl8vlchQXF0Oln+g3JSWlx4qUaWBQq9VCKpWiqakJO3fuxOLFi4Fu0sJAJBIhKCiIf4Ku1U/kargRazQaNDY2QiqVQiQSISQkBFOnTjV62t7TvqF/71bvd0cikWDgwIH8CrFy/aSnhqCM4UmORqOBra0tBgwYgOHDh/Of71yp1+l0UHea1+dWzM3NERERgeHDh/MV3IKCAmzcuJG/YSkUCvz222/48ssvkZeXxweNTBsShvNvmOiW9MGcxsZGVFVVQalUori4mF+pyZRCoUBGRgYuXbrE79vKygr9+vXD6NGjYaFfMdYQ0BPqF6uA/vvlcjna29uRmZmJ//znPzh27JjR/g1I/5QyKCgI9913Hz88trW1FYcPH8bWrVv5yppKpcJvv/2G//znP8jNzTXZ0/9nYWGBvn37Yvjw4fwxFRUVYfPmzbhw4QL/exobG7F582asXLkSLi4uuP/+++Hn5wedToeWlhb+6ZXhb0NAMDAwEGPGjOErULc7t6bvd86TtbW1uHLlitHqnd7e3hg5ciTCwsJgZWUFd3d3vueHqNMwW7Vajfb2drS2tmL//v34+uuvcfPmTbS3t4P0weO6ujrU19dDLpcjLy/vtsPyTY/VlOn7hr9vdWy7du3C8uXLUVBQgJSUFH6lNOivtaFDh2LAgAGwsLCAm5sbHzjpSUREBEaPHg1PT08+TxuGLhvKD0O5GBERgVGjRsHT09NkL79fpxqNxqiMvBVvb28MGjSIP+8dHR04dOgQjh07xufRkpIS/PDDD9i3bx9U+pUiTdPsdu7mM+jUYDL8Hp1Oh8LCQv4e5evri1GjRiEwMBA2NjYYMmQIIiMj+TLk3Llz2LNnD99LQSqVYv369Vi7di3q6uoQGBiIhIQE/hqtra1Fbm4un/YlJSXIzs7mg9WGPKjT6WBnZ4dBgwYhKCgIAoEAcrkc2dnZfKOksbERN2/e5Fekhr7sN/wWf39/DB48mD+PbW1t2LlzJ86ePcvfn/Pz8/H111/jxIkT0Gq1SExMNJozKCcnByUlJdBoNNBoNEhPT0dJSQl0+p5UWq0W2jtYwVQqlaK1tZVvMLS0tKC6uhoKhQIVFRXIy8u7ZdBP3GlxH51+nliFQoGDBw9iyZIlkMlkGDduHL/6X2NjI1pbW/k0adKv1Er6Of3Gjx/fY5l0uzx1u/fvVHf7u93fpnp638/PDxMnTuR7wdTX10MqlfJliiG4RkTw9fXFxIkT4enpiaioKPTv359/OFtWVobc3Fz+2s3KyjJazZPTz03K6XuRDh8+HJGRkXwg2DAlg2GidbVajR07duDbb7/lJ+Q35C0D0zrYnaitrUVlZSUf3EtLS0NpaSk0+hXFx4wZg5CQENja2uLhhx9GSEgIxGIx2tra+GAd9PfWxsZGaPVD0KdPn47g4GA+eCruNFWKTt8YVavV2LhxI7799ls4OzsjKSmJn++wqakJK1asQFZWFn8tpKam4v3330dOTg6fX7vLE53d6j3TwG5rayuUSiVSU1Px9ttvo7q6usfPExGqqqr4+hsRoaioiH+QevXqVTQ0NBjVoQwM59D0NQOtVotDhw6hrKyM387MzAwPPfQQwsPD+UZ5bwLjfyR90M37pn/3RGgyZ6BGo0Fraytfh//666+BO9gfOv0Wgb4H2n333cff15ubm3H06FEcPHgQOv1Dt4KCAnz77bfYu3cvn/e6097ejvT0dJSXl/MB9e5YWFggOjoao0ePhkgkgoODA6KionoM2nUmFovh4ODAD9n08fHBQw89hP79+5tu2muNjY1IT0/n7wfW1tbw8fH5w6NnDAy/NykpiW875ObmYvPmzXxdWS6X4/jx4/jmm29QWFjYY9qZ6um8NzQ04MqVKygqKuJf8/DwwKhRoxAZGQkrKyt+FEJcXBwGDRrE1zUyMzPxyy+/ID8/H9A/SDly5Ai+/fZbFBcXQ6Af5WBgyE+mx2L6t6nbvW9gqDsZru0O/Uq9hvpJeHg4Ro8eDTc3N8Bkv52PTSAQICwsDEOGDOHzWlVVFfbu3Yvz58/z33P16lV89913OHfu3C3zO3OPEXNPNTU10eeff06Ojo4kEAjI0tKSRo4cSYcPHyaFQkFEREqlki5fvkwvvfQSBQQE0PPPP0+VlZVERCSXy2nnzp3k4uJCAAgAWVpaUkxMDN13330UHh5OXl5eJBAISCAQkJubG73wwgu0b98+qq+vpw8//JDMzMwIAFlYWND48eOptLSUiIh0Oh3l5+fTjBkzSCQSEQASCARkZ2dHI0eOpLlz59KkSZNo/PjxdPXqVSIiqq2tpTfeeIPEYjEBIBsbGxoxYgS9+eabNH78ePL09CRzc3MCQCKRiEJCQuiHH36gmpoaqqurowULFvDHY2lpSZMnT6aysjKqqqqiV155xeg4nJycaNiwYTRo0CAKDw8nGxsbAkDm5uYUFxdHn332GWVnZ1NbWxutXr2aHB0dCQAJhUJycXGhhIQEGj9+PF24cIEaGhro888/JysrK/67p0yZwqcFx3FUUlJCL774IllaWlJISAht2LCBOI6j8vJyevnll8nMzIxCQkJo9erVpNFoiIhIKpXSzz//zH+3mZkZjR49mm7evElERNXV1bRgwQI+Tezs7Oi5556j5uZmuh2VSkWnTp2iQYMGkaWlJY0bN44yMzNJo9HQuXPnaMCAAWRpaUnjx4+n5ORkIv3vyMzMpOnTp5NAICAA5OzsTG+88Qa1tbWZfkW31Go1nT59moYMGcLvQyQSkY+PD40ePZoGDBhA0dHR9NVXX5FMJiOtVktnz56lwYMH89v7+/vTt99+S3K5nI4fP07x8fH8e+bm5hQSEkIjR46k2NhYCgwMJKFQSADI1dWVpk2bRj///DMtW7aMfH19aeTIkXTq1CnS6XTEcRylpqbS5MmTycPDg95//32SSqVERJSZmUmPPvoovy9LS0sKCgqiIUOG0Lvvvkv19fV0+fJluu+++/hjCQgIoO+++47UajUREZWUlNDrr7/O5zUAZGtrS4MGDaI5c+bQlClTaMKECbR7927SarUmKWdMo9HQ6dOnafTo0fwxCYVC8vDwoAceeIDmzJlD9913Hz377LOUnZ1NREQ1NTX06aefkouLC3l5edHnn39OHR0d1NDQQIsWLSJHR0fy9vamTz/9lM9DarWadu7cSREREXw5kJiYSAcPHiSO46ilpYWWLFlCbm5ufPpPnz6dsrKyKC8vj5599llyd3enN998kyoqKoiIqKOjg37++WcKDAykwYMH06FDh4jjOFIqlbR582YKDQ3lv8vZ2Zmio6NpwoQJtHXrVtq0aROFh4fzaWxpaUnR0dE0bNgwio2NJR8fHz49fHx8aNasWbRv3z5qaWmhTZs2Ge07KSmJjh07RhzHUXNzM33xxRd8WWhubk6zZs2i3NxcIn05unbtWgoODuY/7+rqStHR0TR58mTauHEjffrpp+Tl5UUPP/wwXb16lXQ6Hel0Ojpx4gQNHz6cAgIC6Pvvv6eOjo5OZ7J7ZWVl9NZbb5GjoyMFBATQjz/+SHK5nKqrq2n+/PlkZ2dHgYGB9P3331NraysREbW3t9O3335L3t7efH4YNWoU/fbbb8RxnOlXdKuqqormz5/PlzmGMrt///40atQoCg0NpZkzZ1JKSgpxHEd5eXn05JNPkoWFBQEge3t7+uCDD6iuro6IiC5fvkzjx4/nz4m/vz/99NNPJJPJSKfT0e7du6lv3778dw0dOpROnDhBHMeRTqejDRs2UHh4OInFYjI3N6ehQ4fS8ePHSafTUWFhIT377LMkkUjIycmJ3nvvPf7eRvr7208//cSfc8N5jYyMpDFjxlBUVBQNHTqU9u7dSyqVioiIsrKyaObMmWRlZUUCgYDCwsLok08+oZ9++okmTpxIbm5uRvegoUOH0saNG6mhoYFaWlro448/Jk9PTwJADg4ONHfuXFq/fj09//zzFBwczN8jBAIBBQYG0ieffEKFhYWk1WqprKyMXnjhBbK3t+e3cXBwoIEDB9KIESMoKCiInn32WcrKyuLTZ8eOHdS3b18SCoVkZmZG48ePp59//pkWLlxI/fv3J4lEwqe9nZ0dzZkzhy5dukRyuZxPp54UFRXxaWE4Hg8PDxo2bBglJiZScHAwSSQSAkBisZiGDRtGX3zxBRUUFBDHcbRv3z7q27cvf73Y29tTbGwsDR06lLZt20YymYykUin9+9//Jh8fH7K3t6cvv/yS6uvrSS6X02effUZeXl7k5OREn3zyCVVXVxPp6xbr16/vUib99ttvpNVqSalU0qJFi/jrQCAQ0PTp0ykjI4M4jqOGhgZ68cUX+XS2srKijz76iGpqakyToEfNzc00b948cnBw4PPCSy+9RCUlJUREVFpaStOmTSNLS0sCQBKJhL7++mtqbGwkIqJLly7R0KFD+bpOcHAw7d+/n6+3tbS00HvvvUfu7u7k4OBAS5cupebmZpLL5fT++++Tm5sbOTs709dff00NDQ38cV29epVGjhxJZmZmJBAIqE+fPrR06VJaunQpDR06lJydnfnvFIvFNHHiRDp48CC1tbURx3G0Z88eio2N5etKQqGQgoOD6b777qP4+HiKjIykLVu2UHt7OykUCvrggw/I1dWVT+exY8fSzZs3SafT8cfUkwsXLlD//v3577KysqKhQ4fS6tWrae3atTRo0CAyNzcnoVBIw4YNo6tXr/J1I51ORxs3bqSwsDAyMzOjuXPnUnl5ORERbd26lYKDg8nc3JyeeeYZKi4uNir/1q1bR35+fnzecXJyon79+tHQoUPpzJkzpFKpKDs7m+6//37+/An05f2oUaMoKSmJvL296cMPP+TLuYyMDBo8eDCftvb29rR+/Xpqb28nIqIDBw5QSEgIXw5FRUXR5cuX+d+TlpZGiYmJ/OctLCyob9++FBkZSStXrqS2tjY6efIkhYeHG93fjh07RkqlktasWUOenp78/sViMSUkJFBSUhL17duXnJ2d+c+5u7vTnDlz6OTJk9TS0kIvv/wy2dra8r9zypQpVFZWRhqNht544w1ycHCgGTNmUH5+Pn9eT58+TeHh4eTi4kLbtm27bXmi1Wrpgw8+IDs7O/57Jk6cSBUVFcRxHHV0dNBjjz3GlzVCoZBef/11amlpIdKXRZ3TVyKR0ObNm/nr5Vaqq6vp559/5q/VznX4Bx54gC5cuEDZ2dk0ZcoUPv3c3d1p4cKFpFKpSKPR0JkzZyguLo4/9vDwcNq+fTuRvl5cWlpKr776Kn8fNJR3AwYMoFGjRlFYWBg99thjVFhYaHp4PLVaTRcuXKBRo0aRi4uL0e/vjlwup127dlFgYCAlJCTQqVOnTDfpFsdxlJWVRY8++ijZ2trSE088wdfN7oZUKqU1a9aQr68vn37Ozs709ttv8/XnP4NKpaJjx47RwIEDjfK5n58fjR49mhISEiguLo6+++47kslkpFar6eDBgxQdHc1f6/Hx8bR7927iOI6kUimtWLGC3N3dCfr21aRJkyg9PZ2KioropZdeIldXV3r55ZeprKyMiIhkMhlt3LiRgoODqX///rR3717iOI5UKhUdPHiQEhISjI4tICCARo8eTf369aM+ffrQ8uXLSS6Xk0wmo3Xr1pG/vz+fJ4cPH06nT58m0rftFy9ezNfDLCws6NFHH+Xro8XFxfTKK6/w+c3FxYX+53/+h68LSqVS+s9//kNOTk5kZmZGEomEHnroIUpLSyOO4+jKlSs0adIkEovFFBQURN9++y3fhmtsbKTPP/+cnJycCPp728SJE+natWtE+vxz/fp1euSRR/i6kEAfH0hKSqKkpCQKDw+nt956y6g+xvz1WBDuL6BWq+natWs0a9YsPhgnEonIxcWFgoODycHBgSwtLSkhIYE2btxodNPiOI5qamrorbfe4gMDAoGAXFxc6IUXXqCrV6/SwoUL+QtdIpHQtGnT6Ny5czR//nyjYAL0lajJkyfzBYVOp6Py8nKaP38+ubi48IWTQF+hefHFF41uSlqtltLT0+nBBx/kb7ZCoZC8vLzojTfeoJ9++ok8PT3J09OThg0bRo8//jh98skndOzYMXrjjTe6HI+NjQ09/PDDlJWVRZcuXaIRI0bwFT5zc3OKiYmhZcuW0cWLF2nMmDEkFApJKBSSr68vffHFF9Te3k4cx1FhYSE988wzfDqYm5vTwIED6dChQ1RSUkKvvvpql++WSCQ0Y8YMKigoMErrL7/8koKDgykgIIAee+wxvmE3ZswYOnLkCB98qa2tpU8//ZQ/p4b9WlhY0OjRo2nnzp307rvv8o0gQ7o6OTnRs88+ywcAb0WtVlNqairNnj2b3NzcKCEhgZ588klKSEggT09PevnllykvL49IfwM8efIkJSUl8YFOw3dKJBIaPHgwLV26lK903oparabLly/TQw89xFe6DOmakJBAmzZtIqVSSSqVik6cOEGDBg3izxv0eSIoKIiWLl1KDQ0NtGTJEr4CKtA3XB999FE6duwYrVixgjw8PEigD1Lff//9dOjQIVq/fj3169ePBg4cSBERETRy5Eh6+OGHKTY2lry9ventt9/u0qDftWsXxcbG8t/j4uJCr7zyCuXl5dHhw4cpMTGxy3GGhITQihUr+P1UV1fT4sWLKSgoyOh6cHR0pJkzZ9Lly5d71YAh/fVy/fp1euqpp8je3p7fn0gkouDgYPr000+73ASbmppo7dq11K9fP/Lx8aEHH3yQpk6dSn5+fjRgwABav349fzOWSqW0cuVKCgoK4ivw6FTB/+mnn+ibb74hb29vozxqY2ND06ZNo02bNtGrr75KsbGx1K9fP4qNjaUpU6bQ2LFjydvbmwYMGEDbtm0jpVLJH19paSkfBDKUZX369KH169eTTCajyspK+vDDD8nV1ZU/D66urvT888/TyZMn6bPPPuPLGhsbG5o+fTodP36cvv/+ewoICOjyOwYPHkxr1qyhRYsWGTVioA+Qzpw5k1JTU4n0FZ/XX3+dHBwc+GPr378/bdmyhT+viYmJ1L9/f4qKiqKxY8fSlClTKDQ0lIKDg+mLL77gG229UVdXR99//z1FR0dTYGAgTZs2jSZMmEA+Pj40YsQI2rVrFx/QKykpofnz55Obm5vRbzBUUl944QU+cHY7NTU19MUXXxidd4FAQO7u7vT6669Tbm4u6XQ6OnfuHE2aNIlvqBq2c3Nzow8//JC2bt1K48eP58tNdLomli5dSj/99BP17duXL+uhrwgPHjyY9u7dSwqFgjZs2EDjx4+nr776io4dO0bPPfccjRgxgh599FEaNGgQ2dvbU1xcHK1YscIoGGEgk8lo69atfIPecIw2NjY0ZcoUOnPmDB8kN0hPT6cnn3zSKBjm6upKr776Ks2dO5e8vb3Jzc2NBg4cSI8++ih9/fXXlJ+fT0RE9fX1tGjRIgoICODPg6WlJU2dOpXee+896tu3L9nb21NMTAxNnjyZ3n77bbpw4QJ/DVRUVNAHH3xAvr6+Rmnv5eVFH3zwQZeAglKppB07dtDAgQP5clkoFFJ8fDx98skn9MADD5CdnR0FBQXRmDFj6LnnnqNdu3b16kGNVqulAwcO0JAhQ/h9i8ViSkxMpM2bN9OePXto2LBhJBKJSCAQUEhICK1cuZLfd3NzM3300UdGD/JMtyF9UH7jxo00YMAA8vb2pilTptDDDz9Mvr6+1KdPH1q9ejU1NTUR6QPNX3zxRZdrWSQS0ZAhQ2jv3r20cOFC8vPzM3rfwsKCpk+fTgcOHKC5c+eSk5MTf34E+vL39ddf54Not5Kbm0uPP/44H7gw/LO2tqZ58+bRoUOHaMaMGV3uzc7OzrR48WLatGkTDR8+vMt1ER4eThs3buQbru3t7bRq1Srq06cPeXt707Rp02jq1Knk6elJ/fv3p82bN/ONrs4uXrxIDzzwAFlbW/Pf7e3tTZ988gnNmDGDnJ2dydvbm4YOHUqzZ8+m5cuXU21tLZG+znb8+HEaPXq00b1ZLBbT0KFD6ciRI3zwdMGCBeTu7t6lvBk3bhxfB7wV0yBcUlISffLJJxQXF8eXCYYHmteuXetynRoecIwdO5acnZ1p7Nix9MQTT1BQUBAFBATQZ599RjU1NV3KvPr6epo7d65RUCY6Opr27t1LMpmM387wgMFQ3hu2DQoKouXLl/N5+Pjx49S/f/8u9SIXFxdatmwZrV+/nqKjo7vUDeLj4+nYsWOkUChIrVbTsmXL+HxryC+ff/451dfX8w+AOudpgUBAoaGhdOjQIaqsrKQXX3yRP1aBvi74yiuvUFZWFr3yyit8eWZubk6PPfYYpaSk0Ny5c43qDoZzOHXqVKqqqqI333yTBg0aRAkJCRQSEkKTJ0+mhx9+mLy9vcnb25t++OGH2wZaWlpa6Pnnn+cDcJ2/56GHHqLk5GSaNGmSUX6D/tzPnTuXLly4QCNHjuTLb8Nvd3d3px9++MHonHVHp+8QMGfOHP6as7CwoMGDB9P+/fvp/PnzNGLECKP7kEAgIE9PT5o/fz7t37+fEhISutQdYmJiaP369UT6+n1FRQUtXLiQr2+iU/tl/vz5XepinbW3t9OWLVsoMDCQ/6yFhQXFx8fTihUr+IdEpgoKCmju3Lk0ffr0XtX5DcrKyuj111+nQYMG0bFjx0zf7pXGxkZauXIl9e3bl2xsbIzykEDfLujTpw998sknVF9fb/rxu6JSqejcuXM0efJko3qHhYUFDRo0iK9PtrW10fr16yk0NLTLfaJPnz60bNky/kF85+O2tramSZMm0aZNm+jNN9+kmJgYSkhIoOjoaHrwwQdp/Pjx5OPjQ/369evSnlYqlXTq1CmaMGGC0bFZWlrS0KFDaefOnaRUKqmuro4WL17cpb5pbm5OY8aMoS1bttBnn33WpWyVSCT0+OOP065du/jryfC+QP+A7O2336by8nKSSqX03Xff0ZgxY2jVqlV08OBBmj59Oo0cOZIee+wxio+PJ1tbWxoxYgTt3LmTv4Zqamrok08+6VKPtLCwoEmTJtHFixeJOgVy582bR87Ozvy2IpGIwsLC6JtvvvnTzjlz9wTU276SzB9GRGhtbcW1a9eQm5uLpqYmcBwHLy8vJCQkoE+fPj3OgaZWq5GXl4f09HTY2tqif//+/ETnHR0dSE1NRUVFBUJCQtCvX78e99MTjuPQ2NiIlJQUNDQ0wN3dHbGxsd1OOgp9192MjAwUFBTw85d5eHigpaUFra2tCAwM7NJ9/3aICFKpFCkpKaiurkZAQAD69u0LW1tb6HQ61NbW4urVq+A4Dv369esysb9hDoKSkhK4uroiNjaWH65wJwzHkZ6ejrKyMlhZWSEyMhIRERG96tJ/L2i1WlRVVSEtLQ2tra1wd3dHXFzcPV9aWqPRoKamBllZWZBKpQgICEBMTMwdT3yt0WhQWlqKtLQ0CAQCxMbGIjg4GGKxGHK5HDk5OcjLy4Onpyf69esHGxsbVFdXo7W1FREREVCr1SgoKEBBQQHMzMwQGxuLoKCgLt3ZST/PTlZWFhQKBUJCQhAUFHTH542I0NTUhIyMDFRWVsLe3h7R0dEICAi443wN/fmrqKjghwP4+voiKiqqx5VhoR/2kJubi4KCAggEAoSGhv5pK1kZtLW1obKyEhKJBN7e3nza1dXVwcvLC3Fxcd3OQaJSqVBSUoKioiLY2dnxcx11fr+goABZWVmwtLREXFwc/Pz8IBKJ0NbWhszMTJSVlcHf3x9xcXF3nJ9uxTDMubi4GI6OjoiIiICzszPUajXKyspARAgMDIRMJuOHx0okEsTHx8Pb27tLnuqN1tZWZGdno6SkBGKxGBEREfxQ3ntJKpUiNzcXZWVlsLGxQUxMDHx8fO4qj96tqqoqcBwHd3d3mJubQ61WIz8/H9nZ2eA4DiEhIQgPD79tWdx5eDrHcYiMjERQUFCP85tptVqUlpbi5s2b4DgO8fHx8PX15YdvGCbB7w7p5wVKT09HY2MjwsLCEBkZiY6ODrS3t8PV1dVo4v3uNDc3Iycnhy8fYmNj4enp2WP+6ejoQFZWFoqKiuDm5sbf72tra2Fvbw8XF5e7Pm/19fW4fv06mpubERISgqioKEgkEpB+2NvNmzchFovRt29feHl5GX2PTqdDcXExCgoKYGVlxZdL3f0OwxDegoICcByH0NBQ/rv+L5PJZMjMzOSHRUVERCAiIuKWK9drNBp+LjMrKyskJCTAxcUFpaWlkEgkcHNz46cK6Y4h/2dlZUGlUiEkJOS233mnLl68iH/9619IS0uDTqfDsGHDsGLFCri5ufFD+qOjo+Hh4XHLvKvTT8eSnZ0NmUwGPz8/9OnTx2iRGVM6nQ45OTl8OR4bG8vPh2eqtrYWGRkZaGhogKenJ/r27dvjtn9URUUFP89VfHz8Hc1BqNPpkJ6ejqysLNjZ2SExMZH/vFwux6VLl1BTU4PIyEjExsbyw9hv5fr16/wCATKZjC9jHB0dMXDgQDg7O3d7Lf8TKRQK5Ofno6ysDK6uroiJibntfeNOcRwHqVSKnJwclJWV8Xmrp7bOH6VSqVBUVISWlhYkJib2um3W0dGB9PR0SKVSjB49usd72T+VRqNBVVUVsrOz0dbWhqCgoD/1XtHe3o7KykpYWlrCz88PjY2NyM7ORk1NDTw8PBAXF9fjXMRqtRqVlZV8eRQcHPyn161vxzBVCxHBx8cHAv0qujk5OcjPz4eFhQUiIiIQEhLSq3KgJzqdDg0NDcjJyUFdXR08PDwQHR19y7YH89dhQTiGYRiGYRiGYXg9BeGioqLuSYCLYRiGYf6v+O94PMIwDMMwDMMwzN+C9KsNMgzDMAzzx7AgHMMwDMMwDMMwPEPQzTBgRiaTQSaTdVmtk2EYhmGYO8OCcAzDMAzDMAzDAPr5uVJSUtDY2MgH4YqLi3Hx4kW0tbWZbs4wDMMwzB1gc8IxDMMwDMMwDAOFQoEVK1bg119/RUdHh9F7YrEY0dHRmDdvHiIiInq9KAHDMAzDMP8fC8IxDMMwDMMwDMMwDMMwzD3GhqMyDMMwDMMwDMMwDMMwzD3GgnAMwzAMwzAMwzAMwzAMc4+xIBzDMAzDMAzDMAzDMAzD3GMsCMcwDMMwDMMwDMMwDMMw9xgLwjEMwzAMwzAMwzAMwzDMPcaCcAzDMAzDMAzDMAzDMAxzj7EgHMMwDMMwDMMwDMMwDMPcYywIxzAMwzAMwzAMwzAMwzD3GAvCMQzDMAzDMAzDMAzDMMw9xoJwDMMwDMMwDMMwDMMwDHOPsSAcwzAMwzAMwzAMwzAMw9xjLAjHMAzDMAzDMAzDMAzDMPcYC8IxDMMwDMMwDMMwDMMwzD3GgnAMwzAMwzAMwzAMwzAMc4+xIBzDMAzDMAzDMAzDMAzD3GMsCMcwDMMwDMMwDMMwDMMw9xgLwjEMwzAMwzAMwzAMwzDMPcaCcAzDMAzDMAzDMAzDMAxzj7EgHMMwDMMwDMMwDMMwDMPcYywIxzAMwzAMwzAMwzAMwzD3GAvCMQzDMAzDMAzDMAzDMMw9xoJwDMMwDMMwDMMwDMMwDHOPsSAcwzAMwzAMwzAMwzAMw9xjLAjHMAzDMAzDMAzDMAzDMPcYC8IxDMMwDMMwDMMwDMMwzD3GgnAMwzAMwzAMwzAMwzAMc4+xIBzDMAzDMAzDMAzDMAzD3GMsCMcwDMMwDMMwDMMwDMMw9xgLwjEMwzAMwzAMwzAMwzDMPcaCcAzDMAzDMAzDMAzDMAxzj7EgHMMwDMMwTA847vd/RKbvMAzDMAzDMMydERCxaiXDMAzDMIwplQr46SegvR147DEgJMR0C4ZhGIZhGIbpPRaEYxiGYRiG6aSuDjhxAnBzA2prAaEQsLP7/fXBg4GYGNNPMAzDMAzDMMztseGoDMMwDMMwnVha/j4E9eBBoLwcaGgAjh4F6ut/f49hGIZhGIZh7gbrCccwDMMwDGNCpQKys38PxEmlwJgxwJAhgL09IBCYbs0wDMMwDMMwt8eCcAzDMMxfioiQl5eH3377DbW1tSAimJmZoV+/fhgxYgRsbW1NP2KksLAQv/32GyorK0FEEIvFiI2NxYgRI+Ds7Gy6+V9Gp9OhrKwMp06dwtmzZ5GQkIAnn3wSTk5Oppv+4+Tl5eHMmTOoqqpC52qBubk5Bg0ahEGDBqGoqAjnzp1DQ0MD/75AIEBYWBhGjhwJHx8f/vXucByHQ4cOYfny5YiKisIrr7yC4OBg0816RaVS4ezZszh+/DguX76MhoYGjB8/Hi+++CKioqIg6BQlI+LQqixGectJNHTchEbXAbHICq428fB3Ggt7y0AIBSKj/ZeVAYsXA0olMGgQ4O0NnDz5e6+4114DRoww2vxvpVQqkZ6ejqNHjyIjIwMzZ87EhAkTYG1tbbopNBoNzp07h+TkZMhkMv51gUAAT09PjB07FkFBQRAIBOjo6MCvv/6KzMxMaDQaAICFhQX69OmDU6dO4fr165g3bx4mTZoEGxubTt/y3+nixYuorKzEsGHD4OXlZfr2HamqqsKpU6dw+PBhJCQkYPbs2fD09DTdDNCfk5ycHJw6dQqnT5/GhAkTMGPGjL+1LPunaVOWo7T5KOplN6HRtkEktISLTSyCnCfAzjIAQoHY9CMMwzAM848l+vjjjz82fZFhGIZh7hWBQABnZ2cEBAQgJycHP//8Mw4dOoSamhqEhYUhICDA9CO89vZ27NixA4sWLcKRI0cglUrxwAMPYNKkSXBwcDDd/C9VW1uL48ePY926dbhy5QqioqIwePDgboMh/zTOzs7w8vJCamoqVq9ejRMnTsDBwQGzZs3CkCFDYG1tDQ8PD0gkEuzfvx+bN2+GSCTCgw8+iHHjxsHNzc10l12o1Wo+MCEUCpGYmHjbwF13NBoNdu7ciRMnTmDKlCmYNWsWSktLcfr0afj4+CAqKgrm5uYAgFZFEdKqlyO9ejnq2lMg19RCqW2GXFOPRtlNlDQfhVRZClsLH1iZ/f+gh7U10L8/MHYskJUFVFcDjzwCPPwwEBAAWFh0OqC/WVZWFg4cOIBt27ahtLQUSUlJiI6O5tOgM5FIBHd3d1RUVGD9+vXYvXs3kpOTkZCQgCeeeAIBAQF8ANPc3BxBQUEoLS3F6tWrUV1djSlTpiAgIABHjhxBamoqoqKiEBsb+1+Rx29FJpNh1apV2L9/PyIiIuDn5weRyDgw21stLS04ceIEVq1ahXPnziEyMhKDBg2CnZ2d6aYAgIKCApw8eRIbNmxAWloaEhIS0K9fv//6NP0zyNX1SKn4BjeqlqKuIwVydS2U2hYoNA1okmeiqHE/WuR5cLQOh7nYHgKwLqoMwzDMPx8LwjEMwzB/OYFAAGtra+h0OmRkZKC0tBRyuRweHh7o27cvLHqIcuTl5WHHjh24ceMGxGIxRo4ciVmzZv3hnit/BltbWwQFBaG5uRnZ2dmIi4v7rwnCCQQCSCQSqNVqZGRkoK2tDdOmTcOECRMgkUgAfQ/GzMxMnDt3DsOGDcPHH3+MpKQkWPZykjSxWIygoCAMGTIEkyZNQnR0NMTiO+/BUlJSgnXr1oHjOIwdOxZRUVGIj4/Hfffdh0GDBsHJyQkCgQCtikKkV69EResZcKQ13Q0AgEgLqbIYcnU97Cx9YWXmCgAQiX5fiMHSEujoAJycgLAwwMPjnxWAAwAPDw+EhIQgLy8PNTU1GD58eI9BOOiDa9HR0bC2tkZubi4aGxsRHByMgQMHdul9pdPpcPbsWSiVSrz99tsYN24cPD09ERUVhQceeABjxoyBm5ubUc/D/0ZZWVlYv349UlJS4OPjg+joaD7f3ykrKyvExMSgtrYWGRkZiImJweDBg3sMwrm4uCAuLg4lJSUoKCjAgAED0L9///+KcuNekqvrcaX8M9S0XYaOfu+J2RWhXVWBZnkOXGxiYWHmwAJxDMMwzD8eW5iBYRiG+VsIBAKYm5vD1dUVLi4uaG1txeXLl5Gbm2u6KaAfgpieng6pVIrIyEiYm5vD0tKyx2DD30EgEPD//tsIBAI+PUUiEczMzCAU/l5NICIkJydj3bp1CAkJwRtvvIGwsDDTXdyWq6srRo4cifj4+F4H70yVlZWhpKQEGo2GT+vg4GAMHToUXl5eEAgEaFdVIrNmLarbLsHZOhp9vF6Gp+1A013xqtsuIbtuM1oVRUavi8W/zwU3YQLg+nt87h/pTvOcmZkZHn74YUybNg1OTk44cuQITpw4gdbWVqPtrl27htTUVEycOBGDBw+Gubk5hEIhYmJiMHr0aHh6et7R9/4T6XQ6nDt3DrW1tVCr1Th58iRKSkqg0+lMN70jhmunN4RCIUQi0X99Wv5Z1DoZrpZ/gYaONFiI7TEmZBkcrEJNN+M1ybORWvENZKpq07cYhmEY5h+n9zUEhmEYhrkHvLy8MHDgQHh6eiIjIwOXLl2CQqEw3QyVlZXIy8uDp6cnQkN7bpAxfw5DQIDjOFy6dAnffvst3Nzc8PLLLyMkJMR0878EEaGlpQUdHR2mbxmpabuKJnkOAEKzIgeZtWtR33EDZkIbWIqdYCF2hEhoBXTqNfP7Z7JBxBnt638re3t7PPHEExg2bBja2tqwZcsWpKamQqv9vddgfX09du/ejcDAQIwaNarHnlz/7SoqKpCXl4cHH3wQcXFxyM3NRXJyMtra2kw3Zf4iVdLzaFOWgCMtFJomnC95H23KEv316whLsRPEQiujXm/1sjQ0yrKg5ZRG+2IYhmGYfxo2HJVhGIb521RWViI/Px8+Pj6wsLDAjRs3YG1tjdjYWKN5xrRaLS5evIicnBzExsbyQz6jo6MxfPhwODo68tsSEQoLC7FhwwYsWbIEu3btQmVlJVxdXeHo6AiBQAC1Wo3s7Gxs3boVeXl5sLS0xK+//oovv/wSBw4cAAD4+voa9bJrbW3FkSNHsHz5cmzYsAEHDhxAY2MjPD09+cUklEolrl27hhs3biA2NhZeXl7YsWMHvvrqK+zbtw8ajQY+Pj6wsrLi98txHPLy8rB27Vp8++232L17N2pqauDq6goHBwcIBAJoNBrk5uZi69atyMzMhK2tLVJTU/HNN99g3bp1qK+vh7e3NywsLHDlyhX88MMPWL58OTIyMuDq6gpXV9de9bIpKyvD2bNnUV9fj6SkJPTp0wcXL17Ed999Bz8/P7z88ss9LqbAcRwKCgqwY8cOVFZWoq2tDatXr8bmzZthbm4OX19ftLW14ddff8Xp06dhbW1tdFwKhQJnzpzB999/j5UrV+LMmTMAAHd3d1haWiIzMxObN2/Gvn37kJOTg7a2NpSWluLixYvo6OiAu7s7rKysoNS0oLjpIBpk6fojI/TzeQ0SC2/4OYxBjOcz8LIfjHDX6XC1iYNcXQuFtgkcaWAhcoC9VRAsxH884NTQ0IDdu3djxYoV2LBhA44cOQKFQgFPT09+qKFKpUJqaio2b96MxsZGAMDOnTvx1Vdf4eTJk5BIJPDw8ICZmRm/XyJCQUEBfvnlF/z44484cOAAOjo6kJOTg/r6+tsOR+3M2dkZFhYWyM7Oxs2bN2FmZobo6GjY2dlh165dKCgowMMPP4zY2Fi+ZxfHccjPz8e2bdtQU1PDpzvHcSgsLMTWrVuRlpYGiUSC8+fP4+uvv8Yvv/wClUoFb2/vLsMsa2trsW3bNixduhRr1qzB8ePH0dHRAQ8PD9jY2PD5o6GhAUeOHMG+fftga2uLsrIyfP/99/jxxx9RXFwMb29v2Nvb9yqfGxARjh8/jqqqKkydOhVKpRI3b96EWq1GYmJij0Nta2trsWnTJqxfvx779+9Hamoqampq4Obmxi9ScfHiRVy7dg0xMTEIDg7Gvn37sHjxYmzbtg0KhQK+vr58Wmi1Wpw+fRqZmZn8cFS5XI79+/dj27ZtOHz4MC5cuID29nZ4eHjA0tISHR0d2Lt3L7799lusXbsWV69eha2tLVxdXfn8UldXhwMHDmD//v1wcXFBXl4e/vOf/+Cnn35CVVUVfH19YWtraxRwv379On788UesX78emzdvRlpaGtzd3eHk5ASRSMQvsLJx40YcOnQIx48fN/p34sQJKBQK2NnZYf/+/fjll19w+PBhnDp1CuXl5fD09ISNjQ2Ki4uxadMm7N69GwUFBQgMDISNjQ044pBZ+zNaFUUg/B4Qvy9sBZrlOYjxeAZhrtPhaz8C4W6PwsM2EVJlMdRaKQACkQ5utn1hLrq7ocQMwzAM81dgQTiGYRjmb1NZWYnc3FyEhobCw8MD169fR1NTE/z9/RETE8NPjl5XV4dff/0V5ubmGDJkCNLT05GVldUlCKdUKnHo0CHs2LEDoaGhePDBB9Ha2orVq1cjNTUVgYGBsLKywvbt2/Hhhx9i165d6OjoQFZWFq5du4b29nZcvnwZFy5cgKOjI6KioiAWi1FZWYklS5bg5MmTePLJJ/HKK69Aq9Vi1apVKCsrQ0xMDOzs7Pgg3PXr16HVapGamoqCggJoNBpcvXoVZ8+ehYODA6Kjo2FmZgaFQoF9+/Zh7969iIyMxKRJk9DQ0IDVq1fj5s2bCAoKgpWVFfbs2YOFCxdi27ZtkEqlyM7OxvXr1wEAOTk5OHLkCJqampCSkoJTp05BLBajtrYWR44cQWNjIyIjI+Hi4mKU9t3pHIQbMGAAampq8NNPPyEsLAyvvvpqjwG4oqIiLFmyBO+88w4OHz4MpVKJq1evYs+ePUhLS4O5uTny8/Px0UcfYdmyZWhvb8eAAQPg7+8PgUCA8vJyrFy5EoWFhZg4cSJiY2Nx7tw5rFmzBlqtFhEREbCzs4ODgwPa29uRn58PPz8/TJkyBYMGDUJISAicnZ0hFovRKMtApfQs5Jp6/vi87IdArWuDUGCGSulZ3KhaiuKmg7Axd4ezJBYKTSNU2hYQCE7WEbC1uPMFIzorKirCwoULkZubi5deegnPPfcc6urqsGLFCigUCkRERKCtrQ0///wzFi5ciGPHjkGj0eD8+fMoKChAU1MTzp49i+TkZAQGBiIgIAAikQharRYHDhzA119/DTc3N7z55ptISkrC4cOHcfz4cRARRo0a1esgnEAggK+vL1paWpCdnY2cnBx4e3tDqVTi4MGDSEpKwpgxY/hgUVZWFr766issWLAAhw4dQmBgIPr27QuRSIR9+/bhgw8+wMaNG6FSqXD9+nVcv34dbW1tSE5OxtGjR+Hs7IywsDB+KPLFixfx/vvvQ6lU4rXXXsPTTz+N9vZ2LFmyBGfOnEFAQAA8PT2RkpKCf//73/j2229RXFyM+vp6nD59Gq2trcjPz8fBgwfR1taGmJgYo4D87bS0tGDbtm0IDw/HiBEjYGlpieTkZBQUFCA6OhohISFd0rGmpgaffPIJRCIRXn31VUyZMgXJycm4ePEi4uLi4OHhAXQKwtnY2ODEiRMoKysDx3FITk7G4cOH4erqyqdFd0E4FxcXyOVy7Nq1Cz4+PpgzZw4GDBgAa2tr5OXl4csvvwQATJ8+Hb6+vti5cyc2bdoENzc3BAUF4dq1a1i4cCGWLl2Kqqoq1NbW4uTJk5DL5cjMzMSBAwegVqsRFxcHOzs7cByHbdu2YeHChRg6dCjeeecdDBo0CJs3b8aBAwcQHR0NDw8P6HQ6bNmyBRqNhp+HMT4+HrW1tdiwYQNycnLwwAMPICYmBh4eHti2bRt27NgBNzc3PP/88/D19YVQKISTkxMaGhr4BVZCQkIgEonQpixFYdM+KLXNfJqHuExBddtFOFtHIb9hF7LrNiC/YSfMRRIEOI1DizIfal075Jp6BDiNNVpkhWEYhmH+adhwVIZhGOZvJ5FIkJiYiL59+6KqqgoXL15ERUUFoO+tkpubi7q6OsTFxfW4EicR4dKlSzh27Bj69u2LRx99FAMGDMDs2bMxZswYpKam4tChQyAizJw5E0899RQcHBxQW1uLkSNHYuvWrdi6dSteeeUVKBQKpKamor6+HkSElJQUnDx5EiKRCC4uLrCxsUFcXBx8fX2RlpaG3NxcEBF/LHK5HEqlEk8//TR27dqFzZs346WXXoJGo8H169dRU1MDjuNw7tw5nDhxAgMGDMCMGTMwcOBAPPnkkxg2bBiuXLmCo0ePgojw+OOP4/nnn4enpydaW1sxbtw4rFq1CqtWrcL7778PT09PHDx4EPb29vj+++/xww8/YPHixUhKSkJGRgZycnLAcb0fZqlWq7F79258+umnKCsrQ2xsLB9c6E5wcDDeeOMNPPLIIxCLxairq8NTTz2FU6dOYeXKlZgzZw5ee+01zJ8/H9HR0UafbWtrwy+//ILGxkY88sgjGDlyJB544AHMnj0bTk5O2L9/P5KTk+Hg4IC+ffsiPDwcVlZWcHZ2Rr9+/TBs2DCEhITwgR0NJ4eWUxl9R3c40qK0+TiIdLCz9AcAaDk5dHT7z94Kx3E4c+YMLl26BGtrazg6OsLW1hYDBgyAo6Mjrl69irKyMnh4eODFF1/EQw89BEtLS1RVVeHJJ5/Eli1bsH37djz22GOora3FjRs3+Lnarl27hjVr1iAqKgqzZ8+Gt7c3goKC8OSTTyI+Pv6O5iEzsLGxwcyZMzF8+HC0t7fj559/xscffwx3d3eMGDEC9vb2/LbR0dH48MMPMW3aNKPXraysMGPGDDz//PPw9/dHXl4ehgwZgp9//hl79+7FO++8A4lEgsuXL6O2thbQrwr63XffwdzcHM888wyioqL4IbKPP/44MjMzsXz5cn6xgjfffBP9+vVDXV0dJBIJFi9ejB07duDHH39EfHw8rl27hqKiImg0PU3i31V6ejo6OjoQGRnJ56+4uDjIZDKcPn0adXV1ph9BSkoKcnNzERgYCCcnJ9ja2mLWrFno169fl4AdEaGkpAQvvvgitmzZgp07d+KNN96AjY0NLly4wJcv3UlLS8P27dvx3HPPYcGCBQgODoZIJEJzczO+//57ODs74/HHH0diYiKmT5+Oxx9/HDqdDps2bUJxcTGSkpLwzjvvIDo6GtXV1XB0dMTSpUuxbds2LF++HKGhoTh//jzKy8uh1Wr54cf19fXw9PSEpaUlQkND0a9fP5SWluL69euQyWTQ6XQICQnBnDlzcP/99yMhIQH29vZ8T70nn3wSQ4YMgZWVFby9vTFjxgx4eHigpKQEjY2NfDmk0+mQnZ2NxMREhIeH82mn1rWDqDfz8REKm/bBTGQDS7EzBAIRdJwSOk4NQvdpyjAMwzD/BHdeW2MYhmGYeyA0NBRDhw6FjY0NUlNTce3aNeh0OkilUmRkZMDa2hr9+vXrMdDQ3NyMS5cuoaysDDKZDOfPn8epU6eQnZ0NIoJKpUJubi6qqqogEolgZWUFGxsbxMfHY8CAAbCysoJEIoG3tzckEonR3GM+Pj4YNGgQ+vbtywcBRSIRRCIRZDIZOjo6jBrTNjY2GDJkCBITE2FmZgZbW1v4+/vD1tYWUqkUcrkczc3NuHDhAqqrqyGVSnHu3DmcOnWKX5hCoVAgJycHNTU1EAqFsLKygoWFBYKDgxEeHg4LCwsIhUJ4eHjAxcUFnp6efDABABwdHeHq6gqlUonm5mao1Wr++G6no6ODH1JaVFSEH374AYcOHYJS2fN8S+bm5pBIJLC1tcXAgQMRFxeHyMhIPPbYYxgwYAAsLCwgkUhgZWVlNMQvJycHKSkp6OjoQFFREU6dOoXTp0+jqakJVlZWKC8vR15e3m3ngTMQQARBL6s3HGkhgBBCwe89Lu/ksz0RCAQICgrCoEGD0KdPH/58iEQiCIVCtLW1QS6XA/oVYw35MCkpCTExMbCwsIC9vT0/HLq5uRkKhQLt7e04fPgw6uvrERsba9Sz0c3NDW5ubkbDVu9EcHAwZs+ejejoaGRlZUGhUGDMmDEICAgw3RRmZmaQSCTdfpe1tTXMzMwQExODgQMHwsHBAWKxGIGBgbC3t0djYyMfyDFcmxEREXB3d+fzhKWlJcaMGYPg4GBcvHgR169fh0Kh4PO/h4cHRo4cyS/C4e3tDTc3N8jlcrS1tfV6QQWlUonz58/D398fQUFBEIvFcHNzw4gRI+Dq6oqLFy8iOzsbKpVxUFapVKKpqQnHjh1DaWkpOI6Dt7c3hg8fDleT1TsEAgFGjx6Nvn37wsrKCmKxGBEREXxadHc9ERHOnDmDDRs2YPLkyRg7dqzRSq1Xr15FRkYGNBoN0tLS+OtFo9HA3NwcOTk5KC4uhkqlgpWVFczNzeHl5WW0kq2vry9cXFwgk8nQ1tYGjuMgkUjQp08fDB8+HH5+fvzKxWZmZnw5rNVqYWFhgUmTJiE4OBhisRgKhQLr169HcnIyBg0ahEcffdQobw4bNgzx8fEoKSnBhQsX+Ln2amtrUVBQgPj4eKP5BgUCkdFcjbdDpIVQIObnhxMIhHfwaYZhGIb56/2xmibDMAzD/EkcHR0xaNAgxMTE8HN91dTUoLCwEBUVFQgPD4ePT8/DBBsaGlBcXIyamhpcv34dx44dw7Fjx3D+/Hk4ODjg2Wefxbhx4245wbxAIIBYLIZAIIBOpwPHcRAIBEhISMCyZcvw4YcfwtXVFSkpKfx8SVqt9rYNf6FQCHNzc4jFYn6/dXV1KCkpQXV1tdHxXrhwgR+6dd999/HzzfVELBbzDebODCsuajQaKJXKO+oJ5+TkhH/9619YsmQJEhMTkZmZiSVLluDXX3+9bU8joVAICwuLbo/JFMdxKCoqQmVlJcrLy3Hu3Dk+HQoLC5GUlITnnnsOUVFRPQZfTVmI7WEm+n1ertvxtBsIQIgOVQ1g+KzQeM6yOyUQCDBq1CisW7cOr7zyCmxtbXH+/Hls3rwZBQUF0Gq1RueiuznHhEKhUT4kIlRWViInJwcikQiurq6wsLDgtxfc4eqopgx5PDY2FtbW1ggLC4OPj0+vzqGB4Ri6Ow7DSruG397W1oacnBy0t7d3G9Dz9/eHn58f5HI5CgoKbrlIglgs5ucq02q1PfYsM2UoVyIiIuDo6Mhfx4MGDUJYWBhqampw9uxZfq4+g5iYGPj6+mLv3r2YPXs2tmzZAoVCgQEDBvQ4h1xnhmtDo9F0uSY5jsPx48fx5Zdfok+fPkhISDBaRZjjOGRkZKC5uRn5+fk4deoUf73U1tbioYcewpw5c/gAZU/MzMz4ssiQZhKJBB9++CHWr1+P/v37o6GhAWvXrsXJkyfR1tbGbycUCuHq6sr3XDt58iT27t0La2trvPDCCwgODja6Vt3c3DBhwgRIJBIcPnwYlZWV/O+wsrIy6sUKANZmLhAJugZ4u+Mm6Q8BRFBqm8CRFpZiZ4gFFncUxGMYhmGYv1rvarQMwzAMc48JBAJEREQgKSkJIpGIn2cpPf33CfYNvcp6IpfLIZVK4e/vj3nz5uHrr7/u8u+FF15AUFCQ6Ud7RaFQ4MSJE3j//fdx/vx5DB48GPHx8bds7N6KTCaDVCpFcHAwXn755S7H+tVXX+G5556Dv//vQyX/iN4GJjozMzPDhAkT8N577yExMRHXr1/HkiVLcPr0aWj1K2j+URzHQSqVQqPRYPTo0fjoo4+6pMOiRYswfvz42wYjDZysI+BgFQShoGsASSS0gK/9CMR6PofB/p8gwPEB1HdcR7M8BwDgKomHnVWg6cfuSkdHB/bs2YMFCxYgNzcXo0aNQkhIyF3nl+bmZjQ3N4PjOIhEorveT096CqDdCyqVClKpFEqlEkqlsksQ29raGs7OznzPwdsFfu8Upx8KfvbsWTzxxBPw9PSEg4MDHBwckJiYiFOnTkEul+P06dN84NQgIiIC7777LgYOHIicnBzMnTsXzz77LK5cuXJHvU27Q0Sor69HcXEx1q5di6ysLKPv1mq1aG7+fa606dOn47PPPutyvfz73//GwIEDjQJbd6KoqAiffPIJlixZgsjISAwdOtSoJ15npaWlWL16NaqrqzF79mwkJSXBqtOiM9AHlEePHo2oqChkZWUhOTkZra2tuHbtGqKjo+Hm5mYUtLM2d4eLJLbHYLi/432I9piDgX7vo4/XPOQ37kKHqhoA4OswEhbi/z9MmmEYhmH+iVgQjmEYhvnHcHFxweDBgxEeHo6CggJs27YN169fR0BAwG2DZ0TE9zCrrq6+q8BTT6qqqvDll19i+fLlGDFiBL9IwR8JWhiOt6amBrW1tX/q8f5ZxGIxJkyYgHfeeQf9+vXD5cuXsWTJEly6dKlL4ORuGNJALpejsrISUqnUdJM7JhKaw8UmHrYWfkavE6dDadNRlLWcRKuiGIWNe3C57BNUt10EgYONmQecrSJhKe79xP49KS4uxoIFC7Bjxw5MmzYNzzzzDLy9vf9QfjF8VqFQQC6X/ynp/3cRiUQwNzeHVqtFa2trl+CVQN8j1czMDFZWVhDpF2j5s1RXV+PmzZt49913UVlZiY6ODqN/Bw8eRN++fVFQUIArV66gpaWF/6xAIMCIESOwceNGvPnmm3BxccHevXvx0ksv4fTp012Gr94JkUiEhx9+GJMnT0Zubi6WL1+O4uJivmwwXC/t7e0oLy+HQqEw3cVd4zgOu3btwpw5cyCRSLBgwQIMHjy4x2CeUqnEhg0bcPXqVSQmJuKRRx7pcfEXPz8/jBs3DmKxGIcOHcKNGzdQV1eHqKioboPrfg5jYGHmZPoyChr3oFp6Ca2KQpS2/IrTha+htv0aONJAKBDB12EEzMW/D/9mGIZhmH8qFoRjGIZh/haGBiXHcSAiEBFEIhFiY2MxZMgQqNVqHDt2DFVVVUhISOjSw8KURCKBvb09qqqqkJGRgfb2dqP31Wo1kpOTcenSpS6N/luRy+U4cOAAv4Lp4MGD72iYXk9sbW1hb2+PiooKZGZmdpnzTK1W48qVK7h69eodHe+fzRCIe+211xAZGYnTp0/jP//5D1JSUv5w4FAkEsHR0RFisRg3b940CjgY1NbW4syZMyguLjZ6/VY87QbC024QPyw1peI/yG/chWZFLspbT6Gi9Tc0yNKh1v0+zFEoMIO/01i42sab7OnOtbe3Y9OmTTh9+jQGDRqE2NjYPyWIJJFIIJFI0NzcjMrKyj81APNXs7W1hZ+fH6ysrFBcXIyWlhaj867VaiGXy2FtbY2goKBuAzV/xOXLl6FSqRAeHt7t8PR+/fqhb9++EAgEOHnyJMrLy/mho/n5+SgvL4e7uzsWLVqEPXv2YOLEiSguLsbx48fR0NBgurs7IpFIMG/ePCQlJeHo0aPYvHkzv0CEmZkZXF1dwXEcLl26hIaGhi7XS2lpKY4fP95lGO3tpKen4/vvv4e5uTnuv/9+ODl1DYJ1dubMGezevRsWFhaYO3cuQkJC+B5tTU1NRsFIoVCI8ePHIzw8HMnJydi8eTNsbGzg7+/fZTELAHCV9IGP/TCYi34/78fznkGzPBfN8hxUSM+gvPUU6tpToOFk/GfCXB+FvVUwP78jwzAMw/xTsSAcwzAM87dRq9Vob283arB5eHhgyJAhfOPbsCKmAcdx/Lxqhn8A4OrqirCwMKjVahw8eBC//fYbP4xNo9Hg/PnzOHv2LMzMzLpt+PWktbUVRUVFaGpqMurJpNFo+HmdOvdUMf3XWeft3N3dERoaCoVCgX379uH8+fNGx3v69GlcvHgR5ubmtzxe0+821d1rPdHpdPwcZIZ0hX7RhSlTpvDzTR0/fhzff/890tPTu91/d6+hm2MVCoUIDQ2Fn58f0tLSsHv3bhQVFfHbNzU1Yc+ePSgtLeWDJbdKXwNzkQTRHk8h2OnB284PJxSYIcLtMYS5zoCl+NaBh95oampCYWEh36vPkGfUanWX+eBwi7SCyXve3t4IDg6GUqnEuXPnUFpayr9vyIu32tftGM555//2pLv07+61zu91ZmFhgaSkJPj7+yMrKwv5+flGZUBDQwOqqqoQFRWFvn379jgcErfI9z1pamrC2bNn4e/vD39//24DpE5OThg+fDg8PT2RlpaGlJQUPqifk5ODK1euoLW1FQKBAImJiXjjjTcQHh6O9vZ2PmBuOKY7OTaD4OBgvrftmjVrcOjQIUilUgiFQsTFxcHZ2RlnzpzB3r17jYJtNTU1WLduHTQaTY892NBDmuXl5aGmpsaohyXpF7QxlLcGlZWVWL16NSoqKjBr1iwMGzYM1ta/Dx+VSqXYt28fqqurjT4THByMcePGQavV4sCBAwgNDYWjY/e9ToUCEeI9X0KQ8yQ+EHcr4W4zEek+60/pxcowDMMw9xoLwjEMwzB/C61Wi9raWuTm5qKsrIzvCWZmZoY+ffpg8ODBiIuLw5AhQ2Bv///n+Wlvb0dzczNUKhWam5v5YIejoyOGDx+Ofv36ISUlBa+99hqeeeYZ/Pvf/8bcuXPx3XffwcfHB/Hx8dDpdFAoFF0amBqNBu3t7ZDL5dBoNNDpdDA3N4e1tTWUSiV+/fVXbN++HXv37sXq1auRnp4OqVSK9PR0XL9+HXV1dVAqlVCpVJDJZPzqh1qtFh0dHVAqlfz3Ojk5YdSoUYiPj8fVq1cxb948PP/88/jss8/w7LPP4scff0RAQACio6Oh0+kgl8uhVqv5QJmBSqWCSqWCQqGATCbjf4tarYZKpeIDlaaNblMcx/HpqVKp0NraatTbysbGBlOnTsXYsWMhEomwb98+fP3113wgTqvV8nN8tbe3d1n5kYggk8kgl8shl8v59yMjIzFq1CjY29tjzZo1mD17Nt555x189NFHmD17NrKzszFgwAC4uLiA0w/FM3zPrXoImotsEeP5DBJ83oaLTQyEJpO9CyCEs3U0BvgtQITbLFiZORu9f7csLCxgbW2Njo4O7Nu3D3v37sX27duxdu1aFBYWorGxEampqUhPT0dTUxMUCkWXAJ1arUZbWxv/G3U6HZycnDB+/HiEhobiwIEDWLRoEc6fP4+ysjLs2bMHqampqK2txaFDh3DixAl+7rDeMqzyq9Pp0NLSArlc3m2e0Wg0fN5WKBRGc5bJ5XJ+gQPDbyEitLa2Gv0WABg8eDBmzJgBIsLu3btRWFjIB31+/fVXyGQyPP7444iIiIBAIOhyvRqOzZCnVCoVv3hAT4gIv/32G9LS0uDm5tZjDzuBQIDIyEh4eHigra0NBw8eRElJCTiOg1Kp5BcOMfwWMzMz2NvbIy4uDg4ODvz1qtOvKto5nxquL4VCAaV+wRStVsuXN4Z8MHz4cDz77LOwtLTE4sWL+TQZOHAgRowYAYFAgE8//RSzZs3CwoUL8d5772HGjBkQCoVISEiARCLpMc3a29shk8n4fEf6hRnMzc2RlpaGX375BceOHePngGxvb0dhYSEuXLiA4uJirFu3DpcuXUJCQkKX1VCTk5NRVFQETr+ojYFIJMKECRMQGhqK0NBQxMfHw8am5wC5UChGvOdL6O/zFlysu16/AOBoHYYBfgsQ6zGHBeAYhmGY/xqijz/++GPTFxmGYRjmXuE4DpmZmVi6dClWrVqFtLQ0FBQUoLS0FI6OjvDy8oKtrS0EAgH8/PwwcuRISCQS1NbWYufOnViyZAkuXLgApVKJ6upq5ObmQigU8j2FAgIC0NDQgKysLFy/fh3Xrl2Dk5MTXnnlFUyYMAEKhQJHjhzB+vXrkZubi6amJiiVStja2iIlJQVr165FTk4OmpqaoFarERYWBj8/P1RWVuLy5cs4deoUmpubMWnSJLi5ueHSpUvIzs4GEaGgoAB79+5FeXk5GhsbodPpYGtri4sXL2Lt2rXIzs7mv8/f3x99+vSBn58ff7ypqam4du0a3N3d8dprr2Hs2LGQyWQ4fPgw1q9fj8zMTP7zjo6OyM/Px5o1a3DhwgXU19ejubkZtra2kEql2Lp1Kw4fPoyqqio0NzdDLBbzaWsqLy8Pq1evxqpVq5CdnQ2FQoHS0lIUFhbCxsYGHh4eKC4uxp49e/Dbb7+hpqYGKpUK2dnZOHPmDDIyMviVGisqKlBVVYXGxkY4OjrC1dUVUqkUhw4dwurVq3Hjxg00NjaipaWFH5YYFxcHGxsbFBYWIjMzExcvXkRhYSHGjh2LefPmISwsDKWlpdi+fTs2bdrE99qprq6GTqeDq6trt72lREJzOFiFINBxPDxsE+FgFQIXmxh42yUh2uMZRHk8AWfrCIiF/3+l0T/KxsYGlpaWKCwsxOXLl3HixAnodDpMnz4dAoEAV69eRU5ODpycnJCRkYHdu3ejtLSUH1ookUjw66+/YvPmzSgtLUV9fT2EQiECAgL4/FJTU4OTJ09i9erV2LZtG1xcXCAQCGBnZ4cBAwZgyJAh8Pb27tWw6fLycvzyyy/49ttvcf78ebS3t6O6uho5OTmoqqqCq6srHB0dIRQKkZWVhXXr1mHPnj2oqqpCbW0tlEolnJ2dce3aNaxevRoZGRmoq6tDR0cH3NzckJ6ejlWrVuHmzZtoaGiAXC6Hn58fPDw80K9fP3h4eODUqVM4fPgwbty4ge3bt6O8vBwvvPACxo4dCxsbG9y8eRMrV67E6dOnUVtbi+bmZjg6OqK1tRVr167FqVOn0NDQgMbGRri6usLb29to9VjoA0+rV6/GN998g4yMDFRUVECj0SAgIIAvb6APMp48eRJr1qzBlStX0NHRgdLSUhQUFMDNzQ1tbW04ffo0Lly4gOrqaly9ehV79+7F4MGD8cgjj8DCwgK//PILNm/ejPLyclRXV0OlUsHDwwOXL1/GTz/9hMzMTDQ2NqKjowNqtRq7d+/G3r17UVNTg8bGRqhUKri4uKCpqQmpqakoKCjAqVOnUFpaiqCgINx3333QarUoKChARkYGzp49i9raWjz11FN45pln4ObmhuvXr2PZsmW4dOkS6uvr0dTUBFdXVzQ0NOCnn37ChQsX0NjYiIaGBnh5eaFfv35oaWlBZmYmTpw4gStXriApKQnDhg1DVlYWzp8/D51OB5FIhI0bN6KsrAwikQiXLl3C1q1bsXHjRixduhQrV66El5cXRo8e3aWnm0Qiwc2bNxEbG4v77ruv26HAnQkEQjhYBSPIeSLc7RLhYBUKZ+toeNkNQYzHs4jxeBrONtEQCXvuKcwwDMMw/zQCutUjQ4ZhGIb5L6RWq1FdXc03PD09PW+5smpvdHR0oLq6Gubm5vD09ISFhQUfsLCysoKXl1evgh7dUalUqK6uRktLC1xdXeHh4fGHj/e/kVQqRXl5OYgIvr6+cHBw+EOLGfydpFIpqqurYWtrC3d3d5iZmaGlpQU1NTVwdHSEm5tbt0Mhe0OlUqGsrAxyuRze3t6wtbWFUqmEpaXlLYch/lOpVCpUVFSgtbUVbm5u8PDwuOUQ7L+TRqOBUCiETqdDVVUVOjo64OXlxQcq/0qNjY0oLy+HpaUl/P39YW1t/YeuF47jUFFRAZlMBl9fX0gkEhARSktLoVar4evre8vea7dTVVWFTz75BFOmTMHo0aNvO88nwzAMw/xvxIJwDMMwDMMwDMPcU/v27cPFixfx4osvIigo6A8FDBmGYRjmv9Vf+8iOYRiGYRiGYZj/9To6OnD9+nWUl5ejsLAQ+/btQ58+feDq6soCcAzDMMz/WSwIxzAMwzAMwzDMn4bjOPz888+YNGkSQkND0bdvX2g0GgwePLjbeSkZhmEY5v8KFoRjGIZhGIZhGOZPIxQKERMTw8+fOX78eCxYsAD+/v6sFxzDMAzzfxqbE45hGIZhGIZhmD+dRqMBEcHMzIwF3xiGYRiGBeEYhmEYhmEYhmEYhmEY5t5jw1EZhmEYhmEYhmEYhmEY5h5jQTiGYRiGYRiGYRiGYRiGucdYEI5hGIZhGIZhGIZhGIZh7jEWhGMYhmEYhmEYhmEYhmGYe4wtzMAwDHOXtFot6uvrUVFRAQcHB4SGhkIoZM82/gnUajUqKyvR2toKb29vuLm5/Skr88lkMpSWlkIulyMwMBAuLi6mm/yfx3EcmpqaUFxcDDs7OwQGBsLS0tJ0s3+89vZ2lJSUoKOjA8HBwXB3dzfdhGFuSalUorKyEjY2NnBxcYGZmZnpJkaICA0NDRAKhbC3t+92e47jUFlZCZ1OBw8PD1haWvZYtimVSpSXl0MoFMLLywvW1tamm3SroqICRAQPDw+Ym5sbvdd5n97e3rCysjJ635RGo0FdXR0cHBxgY2PT47H+X9HW1obc3FyYmZkhKioKFhYWppswvcRxHKRSKYqLiyEQCBAbG9vtNcMwDPNPw4JwDMP8YzQ0NODIkSM4cuQIqqurIRQKYWlpCXNzc9jZ2WHgwIEYP348QkND//aKfGVlJbZt24aNGzeCiLBgwQI8/vjjvT4uhUKB1NRU7NixAxkZGdDpdPDx8cHUqVPxwAMPwNbW1vQjfyqlUokzZ87g0qVLGDVqFEaMGPG/JoBYVFSEnTt3oqmpCc3NzVAqlXjttdcwcOBAfpvW1lacOXMG+/btQ0lJCYgI1tbWEIvFsLa2Rp8+ffDAAw8gNjYWYrEYarUa165dw08//YRTp05h3LhxeP/99xEWFmb03X8mjuOQkpKCo0ePIioqChMmTICNjY3pZvdUfn4+1q5di0uXLoGI+Pxt+H+BQAAiAsdxcHZ2xrRp06DVavHzzz+jrq4O8+fPx1NPPfWnHrdKpcK1a9ewf/9+ZGRkQC6XQyKRIDExETNmzEBERASysrKwe/dupKSkoKOjA87OzpgwYQIefPBBeHh4mO7SCBHhxo0bWLduHfbt24fExER8+OGH6Nu3r+mm/zhKpRLnz5/HwYMHkZubC4VCAQcHB4wYMQLTpk1DQEAAOI5DcnIydu3ahZs3b8LS0hLTpk3DxIkT7yioXFhYiM2bNyMgIACTJk26o8/+FTiOw/Hjx3H27FlMmDABAwcO/MsCHtXV1Vi1ahUKCwsRFRUFlUqFhoYGPPbYYxgwYIDRcahUKpw7dw7Hjh3DiRMnUFNTg48++gizZ8+Go6Mjv51CocDOnTtx7NgxBAQEwMnJCbm5uRg9ejQmTJgABwcHfluNRoO9e/fi4MGDcHd3h1QqBRFh3rx5iIuLg1gs5rc1deXKFXz88ceYNGkSZs2axR+DRqPB7t27cejQIXh5eaG5uRkA8OqrryI6Otpon3V1dTh69CiOHj2K8+fPw93dHcuXL8eAAQNu+d0G7e3tfF2gvLwcOp0OwcHBePrppzFw4MD/yqC+SqXCgQMHsHz5cqSmpuLdd9/FK6+8YnTe/gkyMjKwZcsWpKSkQKVSwd7eHlOmTMHjjz/+p5bjf1RraysOHz6MlStXorCwEM8//zz+53/+hwXhGIb5ryD6+OOPPzZ9kWEY5u9gY2MDHx8f1NXVYf/+/QgKCsLixYvx9NNPQy6XY+nSpTh27Bh8fHwQHBzc64DXvWBnZwdXV1e+x8D06dPh7e1tulmPzMzM4OPjA6FQiKNHj6K1tRWzZ8/GzJkzb9uz4M/Q1NSEPXv24JdffoGjoyMSEhK69Hj4b1RfX4/NmzejoaEBjz/+OIgIra2tiIuLg6+vL7+dpaUl/P390djYiMOHD8PBwQHvvfce3nrrLTg6OuKXX37BL7/8AolEgoiICFhYWMDb2xs6nQ7FxcXo378/Ro8efU8bgyqVCkeOHMGaNWtAROjTp49Ro/xeIyJcvHgRJ06cQP/+/fH+++/jueeeQ1tbG06cOIF+/frhyy+/xNNPPw2VSoWqqioMGTIEo0ePRkVFBdRqNSZOnIjIyMg/9VoVi8Xw9/eHRCLB6dOnkZmZiUceeQTz5s1DYGAgRCIRPDw8YG9vj9OnTyMjIwOPPPIInnjiCbi6uprurguBQABPT09YWFggJycHMTExGDVqFOzs7Ew3/ccRi8UIDg6GUCjEsWPHUFpaimeeeQZz5syBh4cHBAIBhEIhfHx8YGlpieTkZIwePRqPPPIInJ2dTXd3S+fPn+eDrf369YO7u/ufep7/KIVCgQ0bNmD79u3w8PBAdHR0r3uC/RGlpaV4//330dbWhvnz5+Ohhx7CiBEjUFlZiV9//RX+/v5GaWU4Z/Hx8UhOToZSqcQjjzyC8PBwPmClUCjw3XffYf/+/XjxxRfx9NNPY/jw4XBzc8P69ethZ2cHPz8/mJmZQaVSYdmyZTh48CC/7ZgxY3D27FkUFRUhIiIC9vb2Jkf9u5SUFCxYsADl5eWYOXMmfwxKpRI//PADDh8+jFdeeQVPPfUUxowZg99++w3FxcWIjo42enAkkUjQp08f2Nvb4+zZs4iMjMTUqVN7nccsLCwQExMDqVSKPXv2QKvV4qOPPsLgwYP/skDqn00sFiMyMhLNzc0oKCjAzJkzERkZ2aug5F/J3d0dAQEB2Lx5M7KysvDCCy/gySef/EcF4KC/h/v4+ECtVqO4uBjTpk1DbGys6WYMwzD/SP87uj0wDPO/hlKpRFNTE8zMzBAeHg5/f384Ojpi/PjxmDRpEoqKinD48GG0tLSYfvQvRUSor69HdXU1fHx84OPjY7rJbWk0GkilUsjlcgQFBaFPnz73pELOcRyqq6tRWFgIrVYLAHBxccHs2bOxbNkyzJo1CxKJhN9eoVCgtLQU1dXVnfbSexzHoaqqCkVFRfz3/RUMPccyMjIQFRWFuLg4vPTSS1ixYgUGDx5sujlUKhVaWlqg1WoRFhaGoKAgWFlZYdiwYZgwYQJaWlpw4sQJlJSUAPqhqGVlZRAIBAgKCjJKs3vB0tISDz74IJYuXYqXXnrJKIj4V1AoFGhvb8cjjzyCd999F9HR0ejo6EBxcTE4jkNoaCjc3Nzg5uaGsWPHYsqUKfDz80NdXR0qKyvh6ekJb2/vexKYMQRXOzo6EBYWhoEDB3bpiSWVStHR0QE/Pz/Exsb2GHjojlarRWFhIZRKJQIDA/9xvVVuxVA2tbe3IyYmBv379+82gNjS0oKAgAAkJibeVXB3xIgR+OKLL/DBBx/8I3onm7K2tsbzzz+PZcuW4dFHH4WTkxP/nk6nQ25uLurr68FxnNHn/giFQoHVq1cjJycHkydP5gOiQqEQERERKC4uxo0bN9DR0WH6UTQ3N6O5uRkBAQHw8/Mzeihy5MgR7Ny5E8OHD0f//v354H9AQAAA4MKFC2hqagIRYc+ePdi+fTvGjRuHfv36wcLCAhKJBP7+/rhx4wbKysq6LZfT09OxYcMGVFVVISgoiD8GjuOwe/dubN++HRMmTECfPn1gbm7O7zM1NbXHfVZVVUGtVvMBuTvBcRxqa2uh0WgwYMAABAQE/Nf3clIoFMjMzISrqysCAwP/sb+npaUFMpkMXl5eGDRo0D828Nne3o7CwkLY29sjNDTU9G2GYZh/LBaEYxjmH4OI0NjYiNzcXNja2iIyMpJ/um5mZgYbGxt+DhCVSmX68b+USqVCeXk5WltbERoaatTA66329nYUFxejo6MDQUFB9yTIQkRIT0/HypUrcfXqVX7IqUgkQlhYGMaPH4/g4GB+e4VCgaNHj2LVqlWoqanptKfeMQzlW7lyJVJSUv7SIa7Nzc1ISUmBUqlEaGjobRs4jY2NKC4uhlgsRmhoKN9LSiQSwcbGBmKxGC0tLWhvbwf0vQdLSkpgb2+PoKCgexIwNeXt7Y3777//tkPI7gWO49C/f3+MGjWKD0JVVFSgtLQU9vb2CAkJ4YM7rq6uSExMhLe3N0pLS9HY2IjAwMB7No+aWq1GQUEB6uvrERoaCh8fH6MgkFarRX5+PmpraxESEgIfHx+IRCKjfdxKW1sbCgoKYGlpiYCAgL+kB9WfRS6XIz8/nw/CeXl5dQmQqdVqFBUVwcPDo9v3e8PBwQHjxo1D//79/7HpExISgkmTJiEgIIAviziOw8GDB7F69WpUV1ff1W/vSWZmJs6fPw8fHx+EhYUZ9ZQ1NzeHQqFAWVkZ5HK50ecAICcnB3V1dYiKioKTkxN/XM3NzTh8+DB0Oh369u1rFMwSi8UwMzNDUVER2traUFhYiC1btsDZ2RlJSUlGwVexWIy6ujrU1NRAo9HwrwNAVlYWdu3ahZCQEEgkEsTGxsLZ2RkCgYAfduzm5oakpCSjHm9isRi1tbV8sKwzhUKBtLQ0fu6zO80jUqkUmZmZ0Gq1iI+Pv+dTNPwVamtrUVhYyM8xeSdl0l8pPT0dTU1NiIiIgLe39z/yODmOQ2NjI4qKiuDn53dXD0IZhmH+Ln9d64hhGOY2tFotKisrUVxcDA8PD0RFRfENp9bWVpSUlMDc3BwBAQFdenbodDrU1dUhJSUF+fn5qK6uRkZGBhoaGoy2g74BWlpaigsXLiArK6vbgJ5Op0NtbS1SUlJQUFDQZX+GSduFQiHCwsJgZmaGpqYm3Lx5E+Xl5b3qXdHY2Ii8vDyYmZkhJCSED3QQEdrb21FWVsb3bmhubkZOTg5qa2uN9sFxHGpqanDp0iWkpaWhtrYWjY2NUKvVUCgUOHLkCN5++21cvnzZKMhnSK/S0lIoFApAP5RzxYoV+OSTTyCVSuHp6QkiAhGhpaUFJSUlfA9EIoJcLkdDQwPa29v5vw8ePIi3334bKSkpPVaK29vbcfPmTaSmpvLzCvWGTCZDVlYWLly4gNLSUr7nBRFBp9OhvLwcubm5kEgkcHNzu+U5ICJUVFSgqKgIzs7OCAkJ4YfbqNVqtLS0QK1Ww9nZmW/0VldXo7q6Gt7e3vD29uYDGZmZmZBKpYA+Xaurq5GTk8P/NiJCTU0NCgoK0NbWxh+D4ZgvXryIrKws1NbWorm5mW/MEhGamppQWlrK778znU6HqqoqXLp0Cenp6Xyw0EChUCArKwsXL15EaWkp6urq0NraCurlVLASiQSRkZHw8vIC9N9XWFiIyspKBAQEGPVM8fT0RFRUFGxsbPgekIGBgbCzs0Nraytu3ryJkpKSLg11g5aWFly/fh3p6elGadSTlpYWFBQUQK1WGwVQDVpbW1FQUACFQoGwsLAeg4HNzc1ITU3FzZs3jb63pqYGpaWlfG8+mUyGzMxM5OfndwmgkH4y/eLiYrS3t0OpVBpduwYKhQLZ2dm4evUq6urqwHEcNBoNysrKUFlZCbVazW+r1WrR1tbGl01qtRr5+fkoLy832q47dXV1KCwshEgkQnh4eLe93FpaWtDQ0AAvLy+jBwgymYy/zokIUqkUWVlZ/PF2Zgj6GLblOI4P0hrKFMN1VlZWBqVSafR56PNUaWkpLl++jLKyMqP8QUSoq6tDcXExZDIZFAoFiouLjfJwbW0tX/bV1dWhoaGBTzPDddf5eKRSKZYuXYoFCxZAo9HA3t6e/56MjAw0Nzfz+25oaEBOTg4/n9rtEBHy8/NRV1cHX19f2NnZGQX4Wltb0d7eDrlcDp1OZ/RZjUaDmzdvQqfTGT18gr7cKS0thZ2dHTw8PIweLshkMn6/arUaR48eRV5eHgYNGgRPT0+jhyByuRxyuRzt7e1GvdZyc3Oxbds23H///XyejIyMhEQiAcdxOHLkCPLz8zFkyBB4eHh02adCoUBbW1uX31RbW4u8vDy4u7vD39//jntTGcpnOzs7REdHdztNQ0dHB65fv47k5GS0tbUZnSdDoL6uro6/n5eVlfHXT3NzM389Gz4nk8lQV1cHhUJhtC+pVIrLly/jypUraGpqQkVFRZd6A8dxKC8vx6VLl1BbW4uSkhLcuHEDMpmM3yY/Px+NjY2Ii4vrcXhnTU0NLly4gPz8fKPrwXB9VVVVQavV8nmmsLCQ347jOBQUFBi9dqdUKhWSk5OhUqkwYMAA2NraGuXjsrIynD59GtnZ2WhqakJ9fT1/7g1pUFxcDK1Wi46ODuTm5nZJK5VKhbS0NKSkpKCtrQ0NDQ1IT0/v9sGfUqlEXl4eLl++bFT/UavVqKioQGNjI8LDw/+reiszDMOAGIZh/iFaWlrou+++I29vb3ryySepqqqKiIhqa2tp0aJF5O/vTzNmzKCsrCz+MxzHUXFxMX3++ef04osv0k8//UQff/wxDR8+nCZMmEBXrlzht5XJZPTrr7/Sa6+9Rl988QVt3LiRnn/+eXrnnXeovr6e319hYSEtWrSIXnrpJfrpp59o4cKFNGzYMJo0aRJdu3aNiIhyc3PpueeeoylTptDVq1fp4MGDNHr0aHJycqIJEybQ9evX+e/tjk6no1OnTtGQIUNo0KBBdOzYMVKr1XTlyhV66qmnyNPTkyZMmEBnz56lHTt20NChQ8nJyYlmzpxJ+fn5REQkl8tp+/btNH36dProo4/o008/pREjRtC7775LFZZqNAoAAD3SSURBVBUVdOjQIXrwwQfJ09OTQkNDadasWbRu3TravXs3jRs3jry8vGj+/PnU1NRElZWV9P3331NiYiK5urpS//796c0336TNmzfTO++8QwEBATR16lRKS0sjIqLm5mb66quvKCkpidavX09SqZT27dtHkyZNIg8PDwoLC6PZs2fTgQMH+N9cW1tLK1eupFdeeYU+++wzmjlzJr344otUVFTEb9OdhoYGWrt2Lc2bN49WrFhBP/zwA02ZMoUWLlxItbW1lJGRQR988AENGDCAXFxcKCoqiqZMmUJffPFFj/tWKpW0Zs0aCgsLo2nTpvG/i+M4unLlCk2ePJkiIiJo1apVpFAoSKPR0JYtW2jUqFH09ddfU1ZWFi1cuJCCgoLI29ubFi1aRMnJyfTll19Sv379KCwsjFauXEkKhYJaWlro008/pbi4OPruu++oo6ODOjo6aOXKlfTII4/QokWL6L333qOhQ4fS4sWLqb6+ns6dO0ezZ88md3d3mj17NmVnZ/PHrtFo6OLFi/Tuu+/Sxx9/TFu3bqUXX3yR/vWvf1Fubi4RERUXF9Pbb79NTz31FH3//fc0a9YsGjduHB0+fJg4juP3dSeam5vpgw8+IG9vb3rttdeorKzMdBOqqamh1157jSZOnEgnTpyg3377jaZNm0ZOTk40dOhQOnHihNH3l5eX0zfffENvvPEGLVq0iCZPnkwffPABVVZWGu3XVHJyMk2YMIEiIyNp69atpFarjd5PT0+nqVOnUmhoKK1fv57kcrnR+2VlZbR48WJ68803adGiRTRhwgRauHAhVVdXE8dxdODAAf5aWrFiBT388MPk7+9PTk5O9Oqrr1JhYSFpNBpKTk6mf/3rX+Tn50dPPfUUHThwgObMmUPOzs70yiuvUElJCbW1tdHmzZvp1Vdfpa+++opmzpxJTz75JG3evJkWLFhAQUFB9Pzzz1NBQQF/fBcvXqQvv/ySkpOTieM4Sk9Pp8mTJ9PEiRPpypUrtzyHJ0+epCFDhlBiYiL9+uuvpNVqTTeh5ORkevvtt+nEiRP875g7dy55enrS6NGj6dy5c7Rr1y667777yN7enqZPn07p6enEcRzduHGDXn/9dfLx8aExY8bQlStXKD8/n/79739TaGgoTZkyhW7cuEEcx1FDQwO98MILlJiYSPv27SOlUklERFqtlk6fPk3/+te/aNGiRfTaa6/R+PHj6dChQ9TR0UGXLl2iF154gTw9PWnevHl0+PBhmjFjBjk6OtKCBQuooqKCtm/fTlOnTqXPPvuMPvvsM0pMTKSFCxdSUVER7d+/n8aPH09OTk70/vvvU1VVFTU1NdH3339PgwcPJmdnZxowYADNmjWL3nrrLRo4cCB5enrSsmXLqKWlhXQ6HX3zzTcUHh5OX331FTU0NJgmYRccx9HPP/9MISEhNH/+fP7+ZXhv6dKlFBISQp988gnV1dUZfba6upoeffRRGjx4MJ09e5Y0Gg3/XnJyMiUlJdGoUaMoLS3N6NxfvHiRBgwYQA8++CCdPn2aHnnkEQoPD6d9+/aRQqHgt5PL5fT6669TYGAgrVmzhtra2oiIqKCggD744AP67bffqK6ujp5//nkaMmQInTt3jjQaDVVXV9O0adMoLCyMDh482GWfr7zyCgUEBND69eupvb2df4+I6NixYxQTE0MvvfTSba/n7mzZsoUCAwNp9OjRlJ2dbfS7m5ub6dtvv6V58+bRsmXLaMyYMfTaa69RZWUlNTQ00IYNG2jgwIHk7+9P+/btoxUrVlBwcDAFBwfT6tWrad68eeTq6koPP/wwlZaWEsdxpFKpaP78+RQbG0snTpwglUpFpE//8ePH0wcffEDLly+nIUOG0OOPP07l5eX8MeXl5dHLL79M8+fPp02bNtGbb75J8fHx9Nhjj1FFRQWR/p6/aNH/a+++w9ss78X/v+W9996W5RE7Tpw4y2QnkAmcJIyUUQiUVaCcQptznS/QNi0HLkopI6GFMDsogUASRpOQxEmcSXbieC9Z3tuyLMmSrPH8/pHur50B9FyHHvr73q/r4h8wj6RHz9D9eT7jWWXChAnKrl27xLngUVFRoTz66KPK008/rTz33HNKUVGR8tFHHyldXV3KH//4R2XKlClKZGSk8u677yr19fXKgw8+qMTHxytZWVnKsWPHFJ1Opzz88MNKfHy8kpGRoRw4cOCy6+K30dLSosyZM0dJSEhQvvjii3Hn7MaNG5WFCxcqmzdvVp588kmxP/V6vbJr1y5l9erVSkhIiPLCCy8o+/fvV6ZNm6aEhIQob731ljIyMqI4HA5l+/btytq1a5VXXnlFeeONN5TbbrtNufbaa5VrrrlGKSsrE+9jeHhY2bFjh3L//fcrzzzzjPLoo48qK1asUMrLyxXF/bvgt7/9rVJcXDzud4YkSdK/ApkJJ0nS98bg4CC1tbXo9XrOnDnDE088wQ033MDKlSspKyvjySef5LXXXiM/Px/cT13Ly8v57W9/S09PD7/85S+5//77mTdvHiqViri4OJH9pdfref/993njjTdYtGgR69evZ+LEiQwODlJRUUFbWxsul4vz58/z29/+loGBAbG92bNno1KpiI+PJyUlRWSfdXR0EBcXh06no729XUy0M5vN35jh5cnq6OrqIjU1VfSHmTZtGrfeeivZ2dkkJyeLMp9f/OIXLFq0SGQz4M6QOHz4MAA333wzjz76KA899BA5OTlER0dz3XXXcfvtt5OTk8M999zDm2++ybp165g/fz7z5s0jMTGR7OxswsPDSU5O5tZbb2Xp0qUUFhbym9/8hhdffJHbb7+dpUuXkpubS1pampgs2dbWxvnz5wkKCkKtVhMWFsayZctYu3Ytubm53HfffWzevJkbbrgBgLq6Op599llOnDjB/fffz1133UVKSgrDw8OXZXCNpdVqef7559m7dy933HEHDz74ILfddhtTpkxh//79lJWVkZ+fL6bTZmVl8dBDD/Hhhx/yn//5n6jV6ks3Ce7MhqamJgwGA15eXjQ3N/P555/zq1/9ikcffZSWlhYee+wxbrnlFgICAjCZTCLz0cvLixMnTlBcXMyzzz5LVlYWer2e1NRU1q9fz4YNG4iPj6e8vJyenh7Cw8NZtWoVS5YswdvbG5fLRXNzM0ePHiUsLIxbbrmFxx9/nHXr1ol9OWvWLBYuXEhaWhpZWVnExcWBOyvgk08+YePGjeTk5PDzn/+cGTNm4HA4uHDhAjqdDpd7+uXFixeZMmUK9957L48//jg33ngjMTEx/+3yu+7ublG+q9ForliC3dnZSUdHBwkJCWi1WhobG/npT3/KAw88gMvlYmhoSGRNnDt3jqeffpqOjg4efvhhbr31VmJjYxkaGros22wsT7ZHW1sbXV1dPPfccyxcuJA5c+aIf+68807KyspISkoiIyNjXFngmTNn+D//5//Q19fHI488ws0330x0dDR6vZ6RkRGRdWaz2eju7iYkJISNGzdSWlrK8uXL2b9/P1999RUOh4Np06Zxww03kJeXR2hoKHV1deTm5nLDDTeQn5+PyWTi2WefZefOndxyyy088MAD5OTkYDQaSUlJ4d5772XmzJkMDQ2JjKve3l62bt3KoUOHRBZNXl6e6DH2daVhTqeTuro6ent7ycnJuWIpmaIoNDY2EhoaSmJiIj4+PuK6k5WVRX5+PlVVVbhcLp566ikWL16MxWIR2SxFRUUsXbqU5ORkJkyYQFxcHNnZ2fzkJz9h5cqVDA8P09/fj8s9MXflypWkpqZit9txuVxYrVbefvttXnjhBUpKSnjssceYNWsWdrudoaEhVCoVJSUlXH/99aI8sqKigunTp7N8+XLy8vIYGRlh9+7d+Pv7c/3117N+/XruueceCgoKiIyMZOnSpcycOZPk5GRyc3MJCwsjKiqK++67j7lz51JQUMBvfvMb3nvvPV588UV+//vfo9FoOHXqFD09PahUKtauXcuSJUvw9/e/LMvrSlQqFTExMQQEBNDb2yuy73Df286fP4/D4SA1NfWyrK7m5mZaWlpQq9UkJiaO+84iIiIIDQ3FZDKNyzhzuVycPXuWnp4e0tPT6e3tFdmbl/aU82R4AYSGhuLj40NzczPvvfce8+bNY+bMmfT19VFfX09GRoY4LrRaLTqdjpSUlMu2aTKZxL4KCwsb955dLhcXLlzAYrFQWFj4D/fPHB0d5dy5cxiNRoqKisaV5+p0Oh599FEqKyt54oknuP3220lKSqK3txebzUZ0dDS33HILU6dOJSsri4aGBux2O9dffz3z5s1j1qxZrFq1ioSEBIqKikSmV0tLC6dOnSIhIYGUlBR8fHxwuVzs2LEDg8HAypUreeCBB1i/fj3Tp08nMDAQlUrFyZMnefjhh8nJyeGpp57izjvv5JprrsFgMDBx4kTx2Y1GIxUVFcTHx4shGh47d+7kgQceoKCggP/4j/9g8eLFeHl50dfXR3BwMHfddRcTJ04kLS2NyMhItm/fzoMPPsgdd9yBn58fnZ2dfPjhh6xbt467774bLy8vTCYTrq/JBr+a2tpa2traSElJQaPRiPfZ1dXF1q1b0Wg03HTTTfzyl79k7dq1olx/+fLlrFy5koSEBIKCgjh8+DB33HEHc+fORa1W43K52LhxI6+88gqPP/44jzzyCPfee69osxAdHU1mZia4s3k3bdrEG2+8wZ133skjjzxCXl4eJpNpXJZufX09kZGRaDSacZ9BkiTp+04G4SRJ+l7wlATV1NSg0Wj48Y9/zOTJkykvLyczM5M//vGPPPDAAyIYgXvh8t5779Hd3c3dd99NYmIiTqeTkZERfNwT56KiorBYLJSWlvLhhx9SXFzMddddh7e3N9nZ2Tz99NM8++yzFBYWotVqeffddxkYGOCHP/whCQkJOJ1OLBYLvr6+ZGVlERkZidVqpbW1FYPBgNPpxG6382//9m+EhITQ0dFBTEyMKOG7Gk85ncPhQKPRiHI5i8VCe3s7drsdb29vvL29ue666/Dz88NoNJKQkDCu9M7TQP7ChQsEBQUxa9YsrrnmmnGBI0VR0Gg0YuHn6W0WERFBTk6OWDz19/fT0tJCTEwMGRkZqFQqMfVybIP60dFRqqqqqKmpITU1VQQ6TSYTOp0OlUpFVlaWeD2dTsfmzZupqqpi9erV5OXlceHCBWpra8nPzxfNxS/V09PDX/7yF06cOMHy5cuZPn06KpUKHx8fAgMDMRqN4r0ZjUY6OzsJCAggLS3tG0ufPL15VCqVOD727NmDoiisX7+enTt38tBDD4lS1L6+PnQ6HV5eXoyMjJCZmcm8efNE+WhycjIhISF4eXlRUFDAhAkTaG5uptk91CElJYU5c+YwceJEUYZkt9vFfgwNDWXu3LlMnToVPz8/TCYTra2t4jgOCwvD5XJx+PBh3n//fTIyMli2bBnBwcEkJyfzk5/8hJdeeonZs2eDOyCg1+u5cOEC7e3tqNVqFi1adNV9/U0URaGlpYWWlhbi4uLIysq6rJxKURR0Oh16vR6r1YqPjw8LFiwgISGBrq4uIiMjRR+k2tpaXn31VfR6PatXryY1NZXjx4/T2dnJpEmTSExMHLftscxmMw0NDRgMBlatWsWrr77Km2++Kf7ZuHEj1157LUFBQeTk5IzreVZdXc3LL7/MyMgIq1evJjk5maNHj9Lb28vkyZNJSEhgcHCQxsZG+vr6SE5OZu7cuSQnJxMXF0dmZiY+Pj6MjIzgcDhwuVy0t7fjcDgYGBggPz+fhx9+mPfee4/bbruNTz75hKNHj7Jy5UqmTZtGVVUV58+fJzc3F7VaTVRUFDExMZhMJkwmEw6Hg3PnztHS0oLZbGZkZASXy4Wvry/p6eksXLiQ1NTUqwZSjUYjDQ0Noi/ilaZRWiwWWltbiY+PF9cSl8tFU1MTLpcLh8NBZGQkc+bMISgoiOHhYVJTU0UgxFOWPDo6Oq7cNSQkhLS0NGw2G319fYyOjqJSqUhJSaGkpET0ady2bRvvvvsu11xzDQsWLGBoaIjS0lLi4+PJz88nMDAQl8tFi3sISnd3N9OnT+eRRx7hb3/7G3fffbcoPausrKSmpgaHw8GiRYuYNm0aQUFB6N3l856Fveda1NfXN64XnicAMHHiRHEPaGtrw+FwkJiYSElJCVOnTv3W/cgmTZqERqPh5MmTnDp1SgQNNm/eTGlpKdHR0WRnZ48LwimKQkVFBUNDQ+Tn5xMRETHu+01OTqa4uJje3l727NlDb28vo6OjfP755/z5z3/GYrFQVFTEwMAAg4OD4r43tmy0s7OT9vZ2IiMjxfn49ttvM3v2bGbPnk1QUJBot1BQUCD2b1NTE3q9Xtz7Lt1mR0cHUVFRl5XJDg0NUVFRQUhICLm5uZcFHb9Jb28vNTU1eHt7jyvd7OvrY8OGDeh0Ou655x7S0tI4duwYtbW1zJ07V/SxGxoaor29HX9/f3Guv/zyy7z77rtMmDBBHOu5ubkiQH/s2DG0Wi0TJkwYt/9UKhVtbW2cPHkSs9nM9OnTWbx4MSEhITQ2NvKLX/wCtVrNTTfdJNpkDA0NERISQkFBgdh+W1sbWq2WvLw8YmJixPaPHDnCL37xCyZPnszq1avx8fFh27ZtBAUFMWPGDAIDA8X9JykpiYqKCq6//nrS0tLo6OggPj6eiooKVqxYQVZWFm1tbURHR4tA4j/C5R5uNDw8zKRJk4iNjR33nQOcOHGCpqYmvL29WbNmjZjw6nQPOwkPD6eurk48GNy1axeLFi3i888/Z/Pmzdx///1MnjwZHx8fbDabKCPWaDTExsYyODjIli1b+Pjjj1mzZg0lJSXodDrKysrIzs6moKAAl8slStUzMzO/9n4hSZL0fSSDcJIkfS94+ii1t7eTlpbGwoULWbhwIdnZ2dTV1XH+/PlxPVqGh4fZv38/J06cEJkNuHvU6HQ6nE4nubm5+Pv7iywnHx8fFi1aJBpEh4SEUFRUxJQpUxgZGaG0tJQzZ84wd+5ckW1nNpvR6XQoikJOTg7+/v4MDw/T1NTE4OAg8fHxYjJje3s7PT093/ij0BNwrKurIzg4mJycHLHIGxoaQqvVYjAYiImJEU/S29raMJvNYoGFuw/XzJkzMZvNfPTRR1y8eJGMjAzy8vJQqVQi2BYZGUlWVhYqlQpFUejs7KS1tZXU1FTS0tLA/eO7vb2d7u5u0tPTRcab0WhEp9Ph4+ODWq0WT92PHz+OXq9HrVaLqZSehUJUVBRqtRqVSiX268GDB5k6dSoTJkwQi/Bp06bxox/96IpT8+x2O0ePHuXLL78kNzeXOXPmiEWexWJBr9djt9vx9fXFy8sLvV4vAj2XNum/lKIotLa20tzcTG5uLj/96U/ZtGkTf/jDH3jmmWe49dZbx21DURQ6Ojpob2/HZrORm5vLjBkzMJvNaLVa/P39ycrKEsdVXFwcubm5GAwG0besu7sbb29vUlJS8PLyIj09nenTp9Pd3c1HH31EQ0ODmNCqUqnEAsOzL319feno6ODvf/87RqORkpIS8R35+/szadIkpk6dKgKBkydPJj8/nwMHDvDZZ5+BO5tqbBD7H+Hpf9fd3U1WVhZpaWmX7WOLxSLOi+DgYIqLi9FoNLS3t4uMz+TkZEwmEzt27ODChQvMnj2bpKQk3n33XT755BNWrlzJTTfd9LWZM319fSKAOnXqVKZNm0Z+fr74JzY2FqPRiEqlQqPRiOPTaDTyySefUFFRwdy5c4mPj+ett95ix44drFq1ilWrVhEcHEx7ezs6nY64uDjmzZsnehtarVaGhobw9/cnMjJSBEsbGxtFHzBPRpzL5WL//v3s2rWL/Px8Jk+eTFlZGb///e/Jzc3l3nvvJSUlhYCAAKKiorBarRgMBmpqajCZTKSnp+Pn54fZbBYBPqPRSGZm5mVTYMfy9EALCAgQwdtL9fX1YXD3fPT8d6PRSH19PRaLRRxPcXFxNDU1YTab0Wg0IthmMBioq6sjMDAQtVotAiReXl7i+NK7eyo6HA7q6urIyckhLS2N6upq/va3vxESEsL8+fPp7u5mw4YN2Gw2Hn30USZOnIhKpWJ4eFj0z8rMzCQ3N3dcY/+YmBjmzZuHw+Hg3XffpbKykuzsbDIzM/H39xcB48zMTBISEsSDhubmZnp6ekSA0nMMh4WFMXnyZMxmM/X19ZjNZnp7e1GpVCQlJX3rIFJWVhbr168nPT2dRx99lGnTpnH33Xfz2WefYTabWbp0KVlZWeOCIyaTicrKSnx8fMjLy7vs2A8MDOTHP/4xN9xwA2+//TYlJSUsXbqUt956i7a2NoqLiykuLsZiseByua44SMSTHZmbm4uiKLz++utoNBqRldnW1saxY8dwuVwkJSVhs9mw2WxiemxmZuZl2/RMl83LyyMhIWHcZ2pra6O5uVk0zB8boPs2GhoaaG1tJS4uDo1GQ0BAAC6Xi48++ohDhw6xdOlS0tPT+eijj3jxxRe59dZbufXWW8W9RKfT0dHRgdFoZM6cOcTGxorv2mazUV5eTnh4uDjP+vr6+Pvf/47NZmPSpEnis3p5ebFs2TIiIyN5/fXXOXPmDLGxsRQWFqJSqXjzzTfp6upi9erVIsvYs31PANjz2WtqatDr9RQWFortDwwMsHHjRiwWCzfddBMWi4WnnnqKc+fO8etf/1oM5KmrqxNZ8SUlJWg0Gnp7e9G6J1UXFxeTnZ0tgswajeayjMpvw2g0cu7cOVwulwgAeiQmJrJs2TLa29t5+eWX6evrY+rUqSQlJYl7cGVlJSaTiUmTJo07zhsbG9m0aRN5eXksXLhQPCTr6OhA6+6lOXHiRLy8vDh//jx/+9vfUKvVLFiwgKNHj/L8888TFRXFU089RUxMjPi9aDAYyMvLu+J1TpIk6ftMBuEkSfpeGHZPI7RarajVapKSkkhLS2PWrFkMDAxw4sQJ0Tjdk3Gzf/9+QkNDmT17tiiT6e7u5ty5cwQGBpKVlYXdbqeuro6amhoyMzOvWJ6oKArNzc0cOHCA8PBwrrnmGrG9zs7OcWWXnuCWZ3JiUVERarUas7uhud1uF+VPV+NwOMRTcU+5lOdps6ckyNfXl4KCArKzszG6h0D4+PiIQCBAUFAQCxYsYPny5Zw/f54PPvhAlBwp7qbknZ2dpKSkiMw8q9VKc3MzBoMBtVotMmEs7ql9Nptt3OK9v78fnXsaZnp6OqOjo1RWVopFhif45AnueYItniBkS0sLR44cobe3l9raWl566SUaGxt5+umnefLJJ0Ug6VL9/f2cPn0ao7scaWxmoec9eYKLfn5+9PT00N/fT2Ji4jcGmsxmM01NTfT19ZGZmXnFgNJYdrsdnbvkOCcnh6lTpxIcHCwafSckJIjMQYDg4GCysrLw9/dHp9PR29tLZ2cnQUFBIqATGhrKihUrmDdvHkeOHGHHjh0MDAzAmCBhZ2cnaWlpJCcno7ibvldWVpKUlERWVtZlGQpjZWVlsXr1ahISEti2bRuHDx/GMaYZ+z9Kr9fT2NiIzWa76qCDwcFBtFotNptNLAo9WVNGoxGNRkN0dDR1dXUcP34cg8HAmTNnePHFFzGZTDz//PM89NBDV8zeGssTYImJiblicMATYI2IiCArK0sENWpqavjqq68wGo2cOHGC3/3ud9hsNn73u99x//33ExUVheIu1RwYGGDOnDkUFBSIhaxOp6OpqYn09HQ0Go047pqamvDy8mLq1KkkJyeD+xgtKyujs7OTtrY2Xn31VY4cOcJPf/pTNmzYQHZ2NiqVCn9/fyIiInA4HHR0dIhF/oQJE1AUBbPZjM3dKD0sLIz09PSvXVh3d3fT29srSvHHluF61NfXA5CQkCCuJT09PTQ3N2O1WpkxYwbp6eni2ukJwHuCbR0dHTQ3N5PsHlDiWWirVCoiIyPx9vbGYDAwOjpKdXU1o6OjotH/gQMHqK2txWq18u677/LOO++wYsUKNm3aRElJybjSt6amJvz8/JgxY8Zlgze8vLy4/vrrWbRoERcvXmTr1q10dHSA+/ypra0VC3RP8NDz70dHR9GMmeyL+73nuyd4eo7X6upq4uPjxwXrvo1rrrmGXbt2UV1dzVdffcVPfvITVCoVEydOZOXKlZd9ls7OThoaGoiLi7vqAIPk5GQ2bdpETU0Np0+f5p133iEsLIzQ0FBREmg2m/H29iYuLm7cNqxWK6dOnWJ0dJR58+ZRXV3Njh07+NGPfkR2drYoX33ttdeora3l3nvvZc2aNZSXl2MwGPDx8SEuLm5cKarVauXkyZPY7Xbmz59/2TlbVVVFb28vhYWFl2X2fROXu5R1cHBQTOf08fGho6OD3bt3Y7FYqK2t5Ve/+hVarZbXXnuNf//3fxfBaZfLxcWLF+nr62PixInk5eWN2x+9vb00NDSQmppKfHw8Xl5eHDp0iObmZqKiosjOzh739zNnzuS2225jaGiI1157jba2NhRFobKykv379zNhwgQKCgrE/tFqtZw5c4a0tDRiY2Px9vbG6XRy7tw5/P39xcNB3Nl3Z86cwdvbm61bt/Lss88yadIktmzZIoJVLnebjKGhIfLy8igqKsLf35+amhpxv50+fTr+/v40NDQwMDDAlClTLstU/jZaW1tpaGggKiqKiRMnjvvOvb29ueeee5gxYwZffvklW7duHdc2QKvVin04f/588RldLheffvopzc3NLF++fFxp8eHDhxkYGMDLy4vc3Fz0ej0HDx5Eq9Wi1+vZtGkTu3fv5qGHHmLTpk1kustVTSYT9fX1eHl5ieCdJEnSvxJ51ZIk6XthYGCA6upq/P39ycnJISwsjOjoaFEKdPHiRRoaGmBMUKS5uZmMjAzxw8xisXD27FlOnTolFoiep/kjIyPExcVdtmC/dHuZmZmiZG9kZISzZ89y5swZkpOTSUpKwumeftnR0UFRURElJSXiKbBWqyU0NJS8vLyv/VFoMpnEj8z09HSRjeZwOGhtbaWjo4Pi4mJmz56Nl5cXAwMDtLS0EBUVRVZWlvhbh8NBeno6a9asIS8vj0OHDnH06FEURcFms9Ha2orRaCTLXUqEO9jZ3NyMt3tyoueHuicDLyAggOzsbHx8fERgzRPIS0hIQKfTUVtbi7e3N4mJiSIYZLPZRAldVlYWERERKIpCe3s7zc3NFBcXs2HDBv74xz/yi1/8guLi4q8tlfF85vDwcNRqtfhBb7fbqa2tpbW1lWnTplFUVCQm342MjJCamvqNU9I85YZOpxO1Wv2NQbvh4WG0Wi1BQUHMmTOH1NRUUS7X399PVlbWuMxHlbsELyYmRgRxLRaLKJN1OBw4nU6ys7O56aabSE5OZt++fZw7d058d1r3RMisrCyio6NR3L3CPBmSVwvyulwunE4nXl5ezJ8/n1WrVtHX18eePXtoa2u79M+/tc7OTrRaLSEhIajdfesu1dHRQVtbG4WFhcyYMYMgdyljU1MT/v7+aNwTaLVaLZ2dnSxcuJBnnnmG119/nfXr15Ofn/+1xwTu77++vp6uri7UajWpqanjglIud7+4zs5OMjMzSU1NFcdyY2Mj3d3dXHvttfzXf/0Xb7zxBj/72c/Iy8sT2/BkQvn6+lJUVDQuSH3kyBH0ej2LFy9G4+5BpNPpaGtrY/LkyRQWForj1BOoUqvV/PznP2fz5s0899xzzJ07d9w1yMvLi+DgYJxOJ2VlZSiKQmZmpnhds9nMqVOnMBqNZGdnf+2xrSgK/f39mM1mUlJSrhg8slqtVFVVkZSUNC7bs6mpiY6ODmbOnElxcTFBQUH09/ej1WqJjY0lbUw/MK1WS39/P9nuqbRjX8PTb8xkMtHV1UV5ebkoOTcajdTV1eHv788DDzzAa6+9xsaNG1mzZo24Pnk0NjbS1dXFzJkzycvLGxcMsLt7y8XGxnL33XdTUFDArl27OHfuHDabDYvFQk1NDb6+vmRnZ4sgrMlkoq6ujpCQkMv6BAKkpaWRmJhIe3s71dXV9Pb2kpaWdsVj/Zt4eXkRHx9PT08Pf/jDHzAajTzyyCOiDG8sz/Gcl5d3xfK/sSIjIwkMDOTtt9/mxIkT3H777SxbtozQ0FD8/PwICAggNDR03DlRV1fH6dOnmThxIrNnz+a6667j7bffZteuXezevZvdu3fz8ssvk5uby6pVq3jzzTd56aWXyMvLIzAwEH9//8u2WVtby+nTp5k8eTKzZ88el703OjrK+fPnReDxHw0GGY1GysvLsdlsTJs2TWS3NTU10drayvTp09mwYQNvv/02v/zlL5k4ceK4TDur1cqFCxfw9/dnyZIllx1bTU1N9Pb2kp+fT2hoKI2Njeh0Oux2O9nuXqw+7vJKp9OJj48P69atY86cORw7doyysjLMZjOnT5+mr6+P4uJiwsPDUblLtT/77DOam5spKCgQn31wcFCcd55rksvd089qtXLPPffw4osv8tZbb7Fu3TqRVYf7uL1w4QIRERHceOONhIWF4XQ6OXPmDH5+fuL8URSF8+fP4+PjM+5a9I+orKykp6cHjUZDWlqa+M5HR0dRFIWkpCQef/xxoqOj+dOf/oTOXXUAUF5ejl6v5/rrrydxzGRek8nE8ePHCQsLo6ioSHxX3d3dbN26lcDAQBISEkhPTxdlzGlpaTz55JNs2rSJF154gYULF4prgOKe1l5bWytaI0iSJP2rufqdXpIk6Z/E4XDQ2dlJfX09cXFxYlHs5+dHTk4OhYWF6HQ6zpw5g9Pdg21wcBCr1UpMTAzBwcEo7uyh06dP4+fnR0ZGBn5+fgwNDYF7cW6321HGlLSOjo5iMpmwWCwMDAxgs9mIiYkRmV2tra2cOXMGf39/UbbiKfey2Wyih5SiKCIrKjU1lejoaDo7O7FarWM+5f81MDBAXV0dXl5eoiyKMcE5T3lJYmIiLpdLBMIy3b2NampqKC0tpaysDJVKRWFhIUuXLkVxZ785nU4ROPL29iYtLQ29Xs/g4CD9/f3iaXVycjIDAwOYTCZ6e3tpa2sjPj6eiIgIOjs70ev1tLa2YjabycjIwGKxUFdXh9Fd6peenk5gYCDt7e309fWh1Wrx8/MjJSVFvJ6nJC0sLGzcQs1ut2MwGDCZTGP2zP81OjqKzWYjNDSUyMhIsSDp7Ozkq6++IiYmhjVr1pCYmIjFYqGjowNFUUhNTf3GRZ8noBQeHo5Go/nGfk+97obnycnJIuNhZGSE5uZmXC4XarUaq9VKX1+f+H/i4uJITEykt7eXiooKgoODxfewd+9eTp06hZeXFzNnzmT+/PnYbDZ6enpwuVwiUOrn50d6ejoWi0Ucx4qi4HQ6cY1puO1wOMRAgdraWnbv3i0ywRYvXkxBQQE9PT3o9XpwB5RGRkbGnQtfx+VyoXX3ykpNTUXtLku+9G+am5sZHh6msLCQVHefQM95kZiYSExMDD09PfT19eFyuQgPDx8XkBodHUWv12MZ09D+Up4S35GREbKzsy8LoHoyaoeHh8nNzSUxMRGVuwzbarXicrmIiIgYV2Y19nU9x3F0dLS4hgCcPn2aQ4cOMXv2bBH08GSKWSwWpkyZMi4QO/b4DQkJEcevZwFpMplQFAWVSkVwcDAmk4nOzk4yMjJISkoiLCwMHx8fKisruXjxIhqNRuzTq1GpVAQFBeHn54eiKFf8fisrK0WZpidzyG63U1NTg91uZ8aMGeJztLa20tXVRVZWFr6+vnR1dTE8PExtba0IIo+OjjI0ZthGQEAAPj4+GAwGvvzySxISEsjNzcXX1xe73Y7VasXf3198Pg+DwYDBYMDhcGC326msrMTpdDJt2rRxmWNOp5PPP/+c06dPY7VaKSoqYtGiRXh7e9Pn7kPX399PU1MTsbGxJCYmMjg4yMjICN3uwSKpqamEhITQ09Mz7liLjo4mPT2dwcFBDh06JLJqnU4nRqMRu90u/vbbqK+v51e/+hUtLS08/fTTrFix4rJrk8Ph4OLFi9hsNgoKCq5Ymj+W0WjkpZdeYtu2bdxxxx089NBDxMXF4eXlhcY9xGLsfc5qtfLFF19gNpu58847UavVZGVlsWDBApYtW8ayZctYsmQJISEh+Pj4cN1113HLLbcwe/ZswsLCyM7OJjg4+LJtfvbZZ1gsFu666y4yMjLGBQ49Wc8xMTHjHqBcjcVi4f333+fjjz9mcHCQtrY2GhsbiYqKoqioSFwjLBYLo6OjREVFERAQIM4pl8tFr3soA+4syrq6OjQaDfn5+eNe3+VyUVVVhdPdrsJqtXLw4EECAwPFPd1ut9PZ2UlpaSl79+7FZDKRmJjI2rVrCQ4OpqWlBYu7d6uXl9e4UlxPr9OgoCDy8vIwu/s6trS00NbWJnoeVlRUYDabMZlMeHt7Ex0dPS7I6flN4nQ6xf6YNGkS+fn5+Pr6MugeKJWVlUVhYSF+7p6xlZWVIrOxqamJkZERDAbDtzp2HQ4HJ0+exGKxUFxcTFhYGCqVCofDwdtvvy0eXM2bN48FCxZgMBjEtdxms3Hq1CnCw8OZM2fOuH0+PDxMT08PkZGRoq+gw+Fg3759DA4OolarRaZtT08PVquV4ODgccFTz2+aoaEhHA4H3d3ddHR0oFarCQoKora29qq/JSRJkr6PZBBOkqT/dSaTidraWjo7O4mNjRWlhyqViuTkZGbNmsXIyAhfffUVnZ2deHl5ERAQgNOdldbX10dtbS1Hjx7Fx8eH4OBgHA4H+/fvR6/Xk+xumt/Q0CBKlnp7e9m5cycHDx4E9+Jx7PZqamo4duwYPj4+YmFz4MAB6urqRFaU5wm83W6no6ODoaEhwsLCqK+vp6am5rKMB8b0XquqqiIkJITk5GTxg3VgYEAsPjwZE1arVfSD8/f3p7a2Fq1WS319PadPn2Z4eBhfX19CQkKIi4sT/Y88wbbQ0FBGRka4ePEiKpWKvr4++vv7iYuLQ6/XU1FRgcvloq2tjR73JM/Ozk50Oh0Oh4Ouri4URcHb25tjx45hdA+HsNls+Pn5UVNTQ0dHB3q9Hp1OR6h7il9FRQU+Pj7ExsaKEsTKykrsdjvd3d18/PHHfPrpp5jd0x8v5QkSOp1OzGYziqJgMpnYt28fPT093H///VxzzTWo3P2jOjs7CQ0NJS0t7WszSUbdky+bmprEtNuv+3vFnc3X29uLWq0W5aR6vZ6WlhaCgoIwmUycPXsW45gpr+Hh4SQmJtLS0sLIyAg5OTkieFdeXk55eTlmsxk/Pz9CQkJISEgQi+mBgQG6urqIjY0V+3J0dFRk1zU0NNDS0oKiKAwPD7N7925KS0sxm8309fWJxtmKohAQEEBERASJiYlERERw7tw57rzzTpYvX86ePXvGBfOuxmAwUFFRQWdnJ0lJSZdlPzGmxNfb25ucnBzCw8NRFIW2tjb6+/vF+66trSUxMXFcdqsnA/Qvf/kLBw4c+NogXGtrK/X19Xi7++tdGkDV6XRismdqaqoIanh5eZGUlERISAgXLlxAq9XicDhoaWnhT3/6E2VlZVjdA1daW1vFglGlUlFeXs6f//xnJkyYwIMPPkh6ejqMCQiGhoYyYcKEcRlTMTExxMXFodVqqaqqwmw2Mzw8zLZt29i+fTu9vb3ibwMCAoiMjGTZsmUUFhaKa5jL5eLcuXNkZWUxYcKEcYv0qyksLGTixIlUV1eLcm6P+vp6/vSnP5GSksKUKVNEgHFoaIj6+nqioqJETzJFUcQiPiIiQkz6HRkZoa2tjTD3oJDq6moM7gnDuPsT+vj4cPjwYUJCQpgyZYr4jjzXu+HhYc6dO8fAwAB2u53Dhw/z3nvvodVqwZ01VF9fT2xs7GW94Gw2G1VVVZw5cwaDwYCvry+hoaHExcURGxsrHpR4esk1Njai1Wqx2+2iBD05OZmKigp63T3fPIKCgkhPT6erqwuj0ShKQ3//+98zbdo0nnvuOVHu/3Vc7n6Ajz32GE6nU2T7jX0I4dHX10dlZaXor/d1vee0Wi0///nP2b9/P0899RTr168naczQkZkzZ5KRkUGtuxTX5XLx5ZdfcvDgQe6++26uvfbay4KAuINqFy9eFNmqY9/DrFmzyMjIoKamRmxz165dlJWV8aMf/YjFixdfll1eU1NDi3vSa1xc3BXvg2M1NzezefNmnn/+eWpra8WxtnDhwnFBtOTkZKKjo7lw4QKN7sEgg4ODvPXWW+zdu1fcS+rr6+np6WHGjBnEjBmAwJhM2qCgIIKCgkTvMbPZjEqlIjY2ln379mFxt2c4ePAgBvfU4rCwMCIiIkRGc3BwMKOjo2i1Wqzukt8LFy4AEB8fz+DgoHhfnodXGo2GI0eOYDabRaamy+WirKwMvV6P0+mksrKSF198kYaGBpxOJ1VVVQwODorAqEqlQqfT0dLSwtSpU8Vn7OnpQafTkZuby8mTJ6mtrWX79u0UFRVx33330dPTc8XAvEdXVxfnz58HdzsDT8aaxV1hcO7cOUZHR/Hz8yM8PJwE95Aoz2tXV1eTl5eHRqMZ9537+fkR6B4u0d7ezsjICB9++KF4mKRWqwkICGDv3r0YDAbS3AMnvvrqK0ZHRzEYDOzdu5d33nmH4eFhkeU/PDxMXFwctbW1dHR0XPHYliRJ+r7y3rBhw4ZL/6UkSdI/S1dXF++//z5vvfUWra2t2Gw2EXyLiYnB19cXq7v/zLlz5+hxDz6Ij4+nvr6eHTt2sHXrVvr7+0VG0c6dO/H29mblypVMnTqViIgInE4nu3fvZufOnRw9epTTp0+TnZ3NkiVLCAoKwuVyUVdXx/bt28UT+fnz52M2m9m1axe+vr6sWLGCkJAQdu7cSXBwMGvWrCEqKorR0VEqKirYuXMnvb29FBUVsXTp0ssyAMxmMwcOHODVV1/l+PHjWCwWbDYbUVFRJCUlUV9fz65du0hJSWHVqlWEhYVhd0/Q3L17N4ODg8ycOZP8/HwOHTrEvn376O/vp7GxkbNnz1JSUsLq1asJDAykubmZ3bt3c/78eVJSUli+fDlxcXG0t7dz4MABKisrSU9PF5//7Nmz7Nq1i76+PpFd4nL3ovn73/9OY2MjU6ZMYcWKFTQ3N7N37170ej0lJSXMnz+flpYWvvzyS8rLy0lLS2P58uXExsaK8rlDhw7x4YcfsmXLFk6dOsXkyZO58cYbiXIPmbhUSEgIISEhVFdXU1VVhcFgYP/+/QwPD7Nu3Trmzp0rghI6nY7S0lIiIyNZuXLlZeVHHgMDA2zfvp3XX3+d6upqLBYLTqdz3GLiUjabjbKyMs6fP8/cuXMpKSnBx8dH9Pw6cuQIoaGhLF26lDz3QAzcAeRm92TUVatWiUbeXV1d7N27l4MHD4ogaE1NDddddx1LliwhICAAvV7PsWPHOHbsGFFRUWKqqSdj8tChQ+zevVuUHycnJ7N48WIiIiKorKzks88+o7q6Gr1ez5EjR3C5XKxdu5ZJkyZhNps5c+YM9fX15OfnM3HixKsukm02G0eOHOF3v/sdn3zyicgcMpvNBAcHi/MTd3bh559/DsCKFStEiXVVVRWlpaXU1NRQVFTEtddei0ajwWq1ionFH3zwAZWVlcydO5fFixdfsfzPbrdz/PhxXnnlFQ4cOIDBnUUZGhpKcnIyVquVzz//nBdeeIHDhw9jMpkwm834+PiQkJBAaGgosbGxmM1m9u7dK47F6upqFixYwKJFiwgNDcXsnrza39/P6Ogohw8f5sCBAyxatIh169aRnJwsvuP6+no+/fRTEhISWLly5bg+eWFhYfj6+nL27Fm2bNnCli1bKC0tRaPRcOONN4rtqFQqtFotKpWKZcuWiV5xg4ODNDQ0sGLFClauXHlZsPFqwsPDyc3Npbe3lz//+c/s2bOHkydP8sEHH/DBBx8wbdo07rjjjnE9Fuvq6tixYwdqtZqlS5eKDLkLFy5w4MABmpqaWLhwITNnzsTLy4sjR45w/PhxHA4HS5YsIScnR5w7AwMDnD17loULF3LbbbeN2yd+fn7ExsZSV1fHRx99xEcffcS2bdvw9fXl5ptvFhnQ1dXVbN++ndzcXJYuXTqu35jRaGTPnj18+eWXDA8Pi4cl1157LcuXLyc8PJyenh727dvH+fPn0Wg0LFq0iOjoaE6dOsXevXtpbGxk/vz5zJo1a9zCXaVS0dnZyeDgID/4wQ9EQLShoYFjx44REBBASUnJZf3PPEwmE0eOHGHTpk1cuHCB2267jccee4ycnJzLzrGenh6++OILXnnlFUpLSzGZTPj5+eHv709sbKy4dzgcDiorK3nnnXfYunUr06ZN46mnnmL27NmXBezCwsJQq9Xs27ePAwcOsH37dsrLy7nvvvtYs2bNVbPs2tvb+etf/0pYWBg33XQT8fHx4hj3tAPYs2cPZWVlbN++nYsXL/Lggw+Ke5RHeXk5H3zwARs3bqSmpgZFUfDx8SEyMpLw8PCrBpE9D5eqqqpQFIW9e/eSkZHBz372M9RqtTi2PPeKgwcP8v7774shDQsXLmTFihUiMPzxxx9TWVnJ7bffzoQJE8aVqjrdZd9lZWWcPHmSVatWsXDhQiorKzl48CCtra384Ac/ID8/n8OHD/P555/T29tLX18f27Zto7i4mNtvv52YmBgCAwM5duwYO3bsYMuWLSiKws0338ypU6c4fvw4QUFB3HXXXSQmJlJVVcXevXtpaGhg6tSpYkBUWloaOp2OTz/9lC1btvDBBx/Q39/PunXrKCwsxMvLi7/+9a+0tLRwzz33kJmZibe3N3v27OHgwYOsXbtWPAzs6Ohg27Zt4lq7evVqLBYLe/bswWQysWTJknFlrmOdPn2aX//61xw+fJiRkRFGRkYIDQ1FrVZjMpnYunWreGB58uRJvvrqKx566CFKSkrw8/PjxIkTbNmyhVWrVjFv3rxxv30897TS0lLef/99du3aJYZp7dixg6qqKkZGRli5ciULFiwgPDycU6dOiWv0vn37iI+P54c//CHx8fGMjo5SU1PDzp07GRgYQKPRsGLFisvOMUmSpO8zlfJ1j0UkSZK+pxRFwWg00tHRgY+Pj+hZZDKZMBgMREREjMs8cDqdDA4O0t7eLjIexvYE8myvvb0dPz8/UlNTRYnH8PDwZdu7lMViYXh4mICAgKsudv67LBYLBoNBZDVZrVYsFgve3t4MDQ0xPDxMYmLiuMWhw+EQgYSEhASR9TI6OipKSBITE8UP15GREfr7+/Hz8xMZWbhLSQYHBwkPDxfBLat7SqSfn5/IFnI4HPT19WG328e9Hu59OzAwQE9PD2FhYeNe95t4Mm+sVitJSUlER0ePC5YpikJpaSmbN29m1qxZ/PjHP/6nPBFXFIWhoSHsdjsRERHjPi/u/VZaWoqvry/XXnutWDCPuMtGvby86O/vF59rbK8v15jyqri4uHGLbcVdztje3o6Pjw+pqanjAjSerA3cAW5/f3+SkpLEse5yufjss884dOgQN954IwsXLrzioux/yqi71NPf359wd98kxnxGT5ZcrLuB+XfN5XLR09PDwMAAsbGxxMTEXPF1DQYDne5hGmMHGPyjhoaGRJZGYmLiFbczODgojiPPf/dkzoWFhf23jmeXO+O2urqawcFB4uLiKCwsvGqw+UpsNhsDAwOEhIQQGhoqvrv+/n6MRiMxMTGEjCm1xR2IGhgYICoq6qqBQ6t7siHu7Kbg4OBvfQza7XaGh4cJDAykv7+f4eFhcf54PpfT6aS9vR1fX19iYmLEuWmz2ejo6CA0NJSoqKjLvnen08knn3xCcHAws2fPFte7vr4+fv3rX5OXl8fatWuJvWSwgodOp8NsNotz8tt+pq+jd7cEiI+P/9bniNPppK+vT2QsfZv/55s4nU56e3sJCAggLCzsf2SbY426+8g1NzeTnp5OYWHhVe+3fX19dHR0iH3ybe8lHgaDgZ6eHlJSUggMDETlnmja4y6Z9BzT3d3dREREYDAY6OrqEiX1Yz+7JwM8JiZG3Nf0ej1Go5H4+HhxPo+Ojoo2EJcee06nE51Ox8jICBkZGZedU9+W59oWFBREaGgoXl5eOJ1ONmzYgMVi4T//8z9FgP0fYbPZxG8qTysOTxnot32fLpeL1tZW9O6J6mFhYSjuLPMgdwm9J6CruLPe29ra8HO3ZBgbSMX9m6izs5OQkJBxgX5JkqR/FTIIJ0mSJP3LslqtfPDBBxw/fpy77rqLefPmXfon/3Se3joDAwPMnDnze7VIaG9v58svvyQmJobrrrvuvxXgkaT/Pzp9+jQtLS2UlJSIMk+Xy8WePXtoampi+fLlqN0TsiXpX8HFixf5+OOPueOOO8jOzv4fD55KkiRJ/z0yCCdJkiT9S2ltbeWzzz7D39+fGTNm8MUXX+Dv78/9999/1VLU75rRPfnR19cXi8VCV1cXRUVFYnLv94HFYuHixYv4+vpSUFBwxawsSfp/hSf7KigoCLt76vLMmTPJzMwUWXXNzc3odDry8/OJi4uTATjpX8bQ0BCHDx9m+vTpxMfHf+sMWEmSJOm7J4NwkiRJ0r+Uuro6Xn31VfR6PTk5OQQGBnLzzTej0Wgu/dN/mmPHjvHMM89QXl7O7bffziOPPIJarb70zyRJ+p6or6/niSee4MSJE6xevZonnniC3NxcGayQJEmSJOk7JYNwkiRJ0r8URVHo7u6mrq6O4OBgJkyYcNX+Qf8sVqsVrVaLoijfOOVQkqT/fS6Xi9raWpxOJ5mZmf/r1xBJkiRJkv7fIINwkiRJkiRJkiRJkiRJkvQdkzn3kiRJkiRJkiRJkiRJkvQdk0E4SZIkSZIkSZIkSZIkSfqOySCcJEmSJEmSJEmSJEmSJH3HZBBOkiRJkiRJkiRJkiRJkr5jMggnSZIkSZIkSZIkSZIkSd8xGYSTJEmSJEmSJEmSJEmSpO+YDMJJkiRJkiRJkiRJkiRJ0ndMBuEkSZIkSZIkSZIkSZIk6Tsmg3CSJEmSJEmSJEmSJEmS9B2TQThJkiRJkiRJkiRJkiRJ+o7JIJwkSZIkSZIkSZIkSZIkfcdkEE6SJEmSJEmSJEmSJEmSvmMyCCdJkiRJkiRJkiRJkiRJ3zEZhJMkSZIkSZIkSZIkSZKk75gMwkmSJEmSJEmSJEmSJEnSd+z/Az5bLWN36JhBAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "id": "07144a24", + "metadata": {}, + "source": [ + "![image.png](attachment:image.png)" + ] + }, + { + "cell_type": "markdown", + "id": "0f95f937", + "metadata": {}, + "source": [ + "## Imports" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "ab2a0224", + "metadata": {}, + "outputs": [], + "source": [ + "from ase.build import bulk\n", + "from ase.atoms import Atoms" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "314284cf", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/__init__.py:63: UserWarning: calc_static_with_qe(), evaluate_with_qe() and optimize_positions_and_volume_with_qe() are not available as the import of the module named 'pwtools' failed.\n", + " raise_warning(module_list=quantum_espresso_function, import_error=e)\n", + "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/__init__.py:41: UserWarning: calc_molecular_dynamics_phonons_with_lammpslib() is not available as the import of the module named 'dynaphopy' failed.\n", + " raise_warning(module_list=lammps_phonon_functions, import_error=e)\n", + "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/__init__.py:94: UserWarning: calc_molecular_dynamics_phonons_with_lammpslib() is not available as the import of the module named 'dynaphopy' failed.\n", + " raise_warning(module_list=lammps_phonon_functions, import_error=e)\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from atomistics.workflows.elastic.workflow import (\n", + " get_tasks_for_elastic_matrix,\n", + " analyse_results_for_elastic_matrix\n", + ")\n", + "\n", + "from atomistics.calculators import (\n", + " evaluate_with_lammpslib, \n", + " get_potential_by_name, \n", + " calc_molecular_dynamics_npt_with_lammpslib, \n", + " calc_molecular_dynamics_nvt_with_lammpslib\n", + ")\n", + "\n", + "from atomistics.calculators.lammps.libcalculator import (\n", + " calc_static_with_lammpslib, \n", + " calc_molecular_dynamics_langevin_with_lammpslib\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "0640a5d2", + "metadata": {}, + "source": [ + "## Create bulk sample with a guessed lattice constant" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "4ce06b81", + "metadata": {}, + "outputs": [], + "source": [ + "unit_cell = bulk('Cu', 'fcc', a=3.6514, cubic=True) # 4 atoms" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "1007230a", + "metadata": {}, + "outputs": [], + "source": [ + "repeated_unit_cell = unit_cell.repeat(5) # 500 atoms" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "b07fbd51", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/potential.py:324: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " df_pot[\"Config\"] = config_lst\n" + ] + } + ], + "source": [ + "potential_name_str = \"2001--Mishin-Y--Cu-1--LAMMPS--ipr1\"\n", + "\n", + "potential_df = get_potential_by_name(\n", + " potential_name=potential_name_str\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "33410d3d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'Config': ['pair_style eam/alloy',\n", + " 'pair_coeff * * /cmmc/ptmp/pyironhb/pyiron_latest_env/share/iprpy/potential_LAMMPS/2001--Mishin-Y--Cu-1--LAMMPS--ipr1/Cu01.eam.alloy Cu'],\n", + " 'Filename': ['potential_LAMMPS/2001--Mishin-Y--Cu-1--LAMMPS--ipr1/Cu01.eam.alloy'],\n", + " 'Model': 'NISTiprpy',\n", + " 'Name': '2001--Mishin-Y--Cu-1--LAMMPS--ipr1',\n", + " 'Species': ['Cu'],\n", + " 'Citations': \"[{'Mishin_2001': {'title': 'Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations', 'journal': 'Physical Review B', 'volume': '63', 'pages': '224106', 'number': '22', 'doi': '10.1103/physrevb.63.224106', 'publisher': 'American Physical Society (APS)', 'url': 'https://doi.org/10.1103%2Fphysrevb.63.224106', 'year': '2001', 'author': ['Y. Mishin', 'M. J. Mehl', 'D. A. Papaconstantopoulos', 'A. F. Voter', 'J. D. Kress']}}]\"}" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "potential_df.to_dict()" + ] + }, + { + "cell_type": "markdown", + "id": "b02f41d3", + "metadata": {}, + "source": [ + "## 0K Relaxed Structure" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "92ee7631", + "metadata": {}, + "outputs": [], + "source": [ + "def get_relaxed_structure_at_0K(\n", + " structure: Atoms, \n", + " potential: str, \n", + " lmp_optimizer_kwargs : dict = None\n", + " ) -> Atoms:\n", + " \n", + " df_pot_selected = get_potential_by_name(\n", + " potential_name=potential\n", + " )\n", + " \n", + " result_dict = evaluate_with_lammpslib(\n", + " task_dict={\"optimize_positions_and_volume\": structure},\n", + " potential_dataframe=df_pot_selected,\n", + " lmp_optimizer_kwargs=lmp_optimizer_kwargs\n", + " )\n", + " \n", + " structure_relaxed = result_dict['structure_with_optimized_positions_and_volume']\n", + "\n", + " return structure_relaxed" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2c46da55", + "metadata": {}, + "outputs": [], + "source": [ + "lmp_optimizer_kwargs={\n", + " 'min_style':'cg',\n", + " 'ionic_force_tolerance':1e-8,\n", + " 'pressure':np.zeros(6) # add anisotropy\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f3dcce5a", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/potential.py:324: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " df_pot[\"Config\"] = config_lst\n", + "--------------------------------------------------------------------------\n", + "WARNING: There was an error initializing an OpenFabrics device.\n", + "\n", + " Local host: cmti001\n", + " Local device: hfi1_0\n", + "--------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "text/plain": [ + "Atoms(symbols='Cu4', pbc=True, cell=[3.6150000810785805, 3.6150000810785805, 3.6150000810785805])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "relaxed_unit_cell = get_relaxed_structure_at_0K(\n", + " unit_cell, # 4 atoms\n", + " potential_name_str, \n", + " lmp_optimizer_kwargs\n", + ")\n", + "\n", + "relaxed_unit_cell # 4 atoms" + ] + }, + { + "cell_type": "markdown", + "id": "115a15d0", + "metadata": {}, + "source": [ + "## 0K Lattice Constant" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6ce6b4ba-ed90-4d53-a502-549e2980a481", + "metadata": {}, + "outputs": [], + "source": [ + "def get_lattice_constant_at_0K(\n", + " structure: Atoms, \n", + " potential: str, \n", + " lmp_optimizer_kwargs : dict = None\n", + " ) -> float:\n", + "\n", + " structure_relaxed = get_relaxed_structure_at_0K(\n", + " structure=structure, \n", + " potential=potential,\n", + " lmp_optimizer_kwargs=lmp_optimizer_kwargs\n", + " )\n", + " \n", + " a_0 = structure_relaxed.get_volume()**(1/3)\n", + "\n", + " return a_0 # Angstrom" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "id": "e49c9a2b", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/potential.py:324: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " df_pot[\"Config\"] = config_lst\n" + ] + }, + { + "data": { + "text/plain": [ + "3.61500008107858" + ] + }, + "execution_count": 60, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a_0 = get_lattice_constant_at_0K(\n", + " structure=unit_cell, \n", + " potential=potential_name_str,\n", + " lmp_optimizer_kwargs=lmp_optimizer_kwargs)\n", + "\n", + "a_0 # Angstrom" + ] + }, + { + "cell_type": "markdown", + "id": "00afafda", + "metadata": {}, + "source": [ + "We get the same lattice constant at 0K as the reference paper!" + ] + }, + { + "cell_type": "markdown", + "id": "487ad8a1", + "metadata": {}, + "source": [ + "## 0K Elastic Constants" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "6da5fde2", + "metadata": {}, + "outputs": [], + "source": [ + "def get_strain_tensor_cubic(\n", + " structure : Atoms, \n", + " strain : float = 0.005\n", + " ) -> dict:\n", + "\n", + " deformation_gradient_dict = {\n", + " 'C11': np.eye(3,3) + np.array([[ strain, 0, 0], \n", + " [ 0, 0, 0],\n", + " [ 0, 0, 0]]),\n", + " 'C12': np.eye(3,3) + np.array([[ strain, 0, 0], \n", + " [ 0, strain, 0], \n", + " [ 0, 0, 0]]),\n", + " 'C44': np.eye(3,3) + np.array([[ 0, 0, 0], \n", + " [ 0, 0, strain], \n", + " [ 0, strain, 0]])\n", + " }\n", + "\n", + " return deformation_gradient_dict" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "66091ecb", + "metadata": {}, + "outputs": [], + "source": [ + "def get_elastic_constants_from_stress_tensor(\n", + " tensor_dict : dict, \n", + " strain : float\n", + " ) -> list[float]:\n", + "\n", + " elastic_constants_list = []\n", + "\n", + " for constant_str, diff in tensor_dict.items():\n", + " if constant_str == 'C11':\n", + " constant = diff[0, 0] / strain\n", + " elastic_constants_list.append(abs(constant))\n", + "\n", + " elif constant_str == 'C12':\n", + " sigma33 = diff[2, 2]\n", + " constant = (sigma33/ strain) / 2\n", + " elastic_constants_list.append(abs(constant))\n", + "\n", + " elif constant_str == 'C44':\n", + " sigma23 = diff[2, 1]\n", + " constant = sigma23 / (2 * strain)\n", + " elastic_constants_list.append(abs(constant))\n", + "\n", + " return elastic_constants_list" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "fdd3131b", + "metadata": {}, + "outputs": [], + "source": [ + "def get_stress_tensor_at_0K(\n", + " structure : Atoms, \n", + " potential_dataframe : pd.DataFrame, \n", + " deformation_gradient : np.array\n", + " ):\n", + " \n", + " structure_strained = structure.copy()\n", + " relaxed_cell = np.array(structure_strained.get_cell().tolist())\n", + "\n", + " strained_cell = deformation_gradient@relaxed_cell\n", + " structure_strained.set_cell(\n", + " strained_cell, \n", + " scale_atoms=True\n", + " )\n", + " \n", + " relaxed_dict = calc_static_with_lammpslib(\n", + " structure=structure, \n", + " potential_dataframe=potential_dataframe\n", + " )\n", + " strained_dict = calc_static_with_lammpslib(\n", + " structure=structure_strained,\n", + " potential_dataframe=potential_dataframe\n", + " )\n", + "\n", + " relaxed_dict['stress_GPa'] = relaxed_dict['stress'] / 10**4\n", + " strained_dict['stress_GPa'] = strained_dict['stress'] / 10**4\n", + "\n", + " stress_diff = strained_dict['stress_GPa'] - relaxed_dict['stress_GPa']\n", + " \n", + " return stress_diff, relaxed_dict, strained_dict" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a1655241", + "metadata": {}, + "outputs": [], + "source": [ + "def calculate_elastic_constants_at_0K(\n", + " structure : Atoms, \n", + " potential_name : str,\n", + " strain : float = 0.005\n", + " ):\n", + "\n", + " df_pot_selected = get_potential_by_name(\n", + " potential_name=potential_name\n", + " )\n", + "\n", + " deformation_gradient_dict = get_strain_tensor_cubic(\n", + " structure=structure, \n", + " strain=strain\n", + " )\n", + " \n", + " tensor_dict = {}\n", + " for constant_str, deformation_gradient in deformation_gradient_dict.items():\n", + " diff, relaxed_dict, strained_dict = get_stress_tensor_at_0K(\n", + " structure=structure,\n", + " potential_dataframe=df_pot_selected,\n", + " deformation_gradient=deformation_gradient\n", + " )\n", + " \n", + " tensor_dict[constant_str] = diff\n", + " tensor_dict[f'relaxed_dict_{constant_str}'] = relaxed_dict\n", + " tensor_dict[f'strained_dict_{constant_str}'] = strained_dict\n", + " \n", + " elastic_constants_list = get_elastic_constants_from_stress_tensor(\n", + " tensor_dict=tensor_dict, \n", + " strain=strain\n", + " )\n", + "\n", + " return elastic_constants_list, tensor_dict" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "ee98fe5d", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/potential.py:324: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " df_pot[\"Config\"] = config_lst\n", + "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/helpers.py:29: UserWarning: Warning: setting upper trangular matrix might slow down the calculation\n", + " lmp.interactive_structure_setter(\n" + ] + } + ], + "source": [ + "elastic_constants_list_0, tensor_dict_0 = calculate_elastic_constants_at_0K(\n", + " structure=relaxed_unit_cell, \n", + " potential_name=potential_name_str,\n", + " strain=0.005\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "8d66bf8b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[169.2 121.4 76.3]\n" + ] + } + ], + "source": [ + "elastic_constants_list_0 # GPa\n", + "\n", + "print(np.round(elastic_constants_list_0, 1))" + ] + }, + { + "cell_type": "markdown", + "id": "3126ed0f", + "metadata": {}, + "source": [ + "#### Comparing with paper" + ] + }, + { + "cell_type": "markdown", + "id": "606b4dec", + "metadata": {}, + "source": [ + "In comparison with the [reference paper](https://journals.aps.org/pre/abstract/10.1103/PhysRevE.103.063307#s4 \"M. Krief, et. al., Physical Review E, 103, 063307, 2021\"),\n", + "\n", + "$C_{11}$=169.9GPa, $C_{12}$=122.6GPa, and $C_{44}$=76.2GPa" + ] + }, + { + "cell_type": "markdown", + "id": "4d364244", + "metadata": {}, + "source": [ + "##### Larger super cell" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "11aa1585", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/potential.py:324: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " df_pot[\"Config\"] = config_lst\n", + "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/helpers.py:29: UserWarning: Warning: setting upper trangular matrix might slow down the calculation\n", + " lmp.interactive_structure_setter(\n" + ] + } + ], + "source": [ + "elastic_constants_list_0_r5, tensor_dict_0_r5 = calculate_elastic_constants_at_0K(\n", + " structure=relaxed_unit_cell.repeat(5), # 500 atoms\n", + " potential_name=potential_name_str,\n", + " strain=0.005\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "c33bfe89", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[169.2 121.4 76.3]\n" + ] + } + ], + "source": [ + "elastic_constants_list_0_r5 # GPa\n", + "\n", + "print(np.round(elastic_constants_list_0_r5, 1))" + ] + }, + { + "cell_type": "markdown", + "id": "873d8e00", + "metadata": {}, + "source": [ + "In comparison with the [reference paper](https://journals.aps.org/pre/abstract/10.1103/PhysRevE.103.063307#s4 \"M. Krief, et. al., Physical Review E, 103, 063307, 2021\"),\n", + "\n", + "$C_{11}$=169.9GPa, $C_{12}$=122.6GPa, and $C_{44}$=76.2GPa" + ] + }, + { + "cell_type": "markdown", + "id": "dc1c5c62", + "metadata": {}, + "source": [ + "##### Varied strain" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "afdb1be8", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/potential.py:324: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " df_pot[\"Config\"] = config_lst\n", + "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/helpers.py:29: UserWarning: Warning: setting upper trangular matrix might slow down the calculation\n", + " lmp.interactive_structure_setter(\n" + ] + } + ], + "source": [ + "elastic_constants_list_0_r5_s_0d0005, tensor_dict_0_r5_s_0d0005 = calculate_elastic_constants_at_0K(\n", + " structure=relaxed_unit_cell.repeat(5), \n", + " potential_name=potential_name_str,\n", + " strain=0.0005\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ce937595", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([169.8, 122.5, 76.2])" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "elastic_constants_list_0_r5_s_0d0005\n", + "np.round(elastic_constants_list_0_r5_s_0d0005, 1) # GPa" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "7f31c5dc", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/potential.py:324: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " df_pot[\"Config\"] = config_lst\n", + "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/helpers.py:29: UserWarning: Warning: setting upper trangular matrix might slow down the calculation\n", + " lmp.interactive_structure_setter(\n" + ] + } + ], + "source": [ + "elastic_constants_list_0_r5_s_0d00005, tensor_dict_0_r5_s_0d00005 = calculate_elastic_constants_at_0K(\n", + " structure=relaxed_unit_cell.repeat(5), \n", + " potential_name=potential_name_str,\n", + " strain=0.00005\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "96c34910", + "metadata": {}, + "source": [ + "But now, the strain is too small!" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "id": "ad42bff1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([169.9, 122.6, 0. ])" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "elastic_constants_list_0_r5_s_0d00005\n", + "np.round(elastic_constants_list_0_r5_s_0d00005, 1) #GPa" + ] + }, + { + "cell_type": "markdown", + "id": "d5c86034", + "metadata": {}, + "source": [ + "We increase the strain by a little bit" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "id": "9ae7a71e", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/potential.py:324: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " df_pot[\"Config\"] = config_lst\n", + "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/helpers.py:29: UserWarning: Warning: setting upper trangular matrix might slow down the calculation\n", + " lmp.interactive_structure_setter(\n" + ] + } + ], + "source": [ + "elastic_constants_list_0_r5_s_0d0001, tensor_dict_0_r5_s_0d0001 = calculate_elastic_constants_at_0K(\n", + " structure=relaxed_unit_cell.repeat(5), \n", + " potential_name=potential_name_str,\n", + " strain=0.0001\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "id": "a3af7799", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([169.9, 122.6, 76.2])" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.round(elastic_constants_list_0_r5_s_0d0001, 1) #GPa" + ] + }, + { + "cell_type": "markdown", + "id": "2d1ab724", + "metadata": {}, + "source": [ + "We get the same as the [reference paper](https://journals.aps.org/pre/abstract/10.1103/PhysRevE.103.063307#s4 \"M. Krief, et. al., Physical Review E, 103, 063307, 2021\"),\n", + "\n", + "$C_{11}$=169.9GPa, $C_{12}$=122.6GPa, and $C_{44}$=76.2GPa" + ] + }, + { + "cell_type": "markdown", + "id": "1d4d9117", + "metadata": {}, + "source": [ + "## Reference function to fit elastic constants (Jan + Yury)'s" + ] + }, + { + "cell_type": "markdown", + "id": "921512df", + "metadata": {}, + "source": [ + "Requires only `relaxed_unit_cell` and `potential_name_str` from previous cells" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "id": "abfe2e9f", + "metadata": {}, + "outputs": [], + "source": [ + "def fit_elastic_constants(\n", + " structure: Atoms, \n", + " potential: str, \n", + " strains, \n", + " stresses=None, \n", + " energies=None):\n", + "\n", + " task_dict, sym_dict = get_tasks_for_elastic_matrix(\n", + " structure=structure,\n", + " eps_range=0.005,\n", + " num_of_point=5,\n", + " zero_strain_job_name=\"s_e_0\",\n", + " sqrt_eta=True\n", + " )\n", + "\n", + " potential_df = get_potential_by_name(\n", + " potential_name=potential\n", + " )\n", + "\n", + " result_dict = evaluate_with_lammpslib(\n", + " task_dict=task_dict,\n", + " potential_dataframe=potential_df,\n", + " )\n", + " \n", + " elastic_dict, sym_dict = analyse_results_for_elastic_matrix(\n", + " output_dict=result_dict,\n", + " sym_dict=sym_dict,\n", + " fit_order=2,\n", + " zero_strain_job_name=\"s_e_0\",\n", + " )\n", + "\n", + " return elastic_dict" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "id": "07218d2f", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/workflows/elastic/symmetry.py:32: DeprecationWarning: dict interface is deprecated. Use attribute interface instead\n", + " SGN = dataset[\"number\"]\n", + "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/potential.py:324: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " df_pot[\"Config\"] = config_lst\n", + "/cmmc/ptmp/pchilaka/Packages/atomistics/atomistics/calculators/lammps/helpers.py:29: UserWarning: Warning: setting upper trangular matrix might slow down the calculation\n", + " lmp.interactive_structure_setter(\n" + ] + } + ], + "source": [ + "elastic_dict = fit_elastic_constants(\n", + " structure=relaxed_unit_cell,\n", + " potential=potential_name_str,\n", + " strains=None\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "id": "2b379a68", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[169.74837327, 123.55258251, 123.55258251, 0. ,\n", + " 0. , 0. ],\n", + " [123.55258251, 169.74837327, 123.55258251, 0. ,\n", + " 0. , 0. ],\n", + " [123.55258251, 123.55258251, 169.74837327, 0. ,\n", + " 0. , 0. ],\n", + " [ 0. , 0. , 0. , 76.24914297,\n", + " 0. , 0. ],\n", + " [ 0. , 0. , 0. , 0. ,\n", + " 76.24914297, 0. ],\n", + " [ 0. , 0. , 0. , 0. ,\n", + " 0. , 76.24914297]])" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "elastic_dict['elastic_matrix']" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9d40a4ab", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([169.7, 123.6, 76.2])" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "elastic_constants_list_reference = [\n", + " elastic_dict['elastic_matrix'][0,0], \n", + " elastic_dict['elastic_matrix'][0,1], \n", + " elastic_dict['elastic_matrix'][3,3]\n", + " ]\n", + "\n", + "np.round(elastic_constants_list_reference, 1) # GPa" + ] + }, + { + "cell_type": "markdown", + "id": "21e47c80", + "metadata": {}, + "source": [ + "In comparison with the [reference paper](https://journals.aps.org/pre/abstract/10.1103/PhysRevE.103.063307#s4 \"M. Krief, et. al., Physical Review E, 103, 063307, 2021\"),\n", + "\n", + "$C_{11}$=169.9GPa, $C_{12}$=122.6GPa, and $C_{44}$=76.2GPa" + ] + }, + { + "cell_type": "markdown", + "id": "3bfb90c7", + "metadata": {}, + "source": [ + "## Finite Temperature equlibiration\n", + "* First run NPT to relax volume\n", + "* Then equilibriate the cell by running NVT" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "id": "d35b8305", + "metadata": {}, + "outputs": [], + "source": [ + "def equilibriate_structure_at_finite_temperature(\n", + " structure : Atoms, \n", + " potential : str, \n", + " temperature : float = 500,\n", + " run : int = 100000,\n", + " thermo : int = 100,\n", + " seed : int = 4928459, \n", + " cell_scale_value : int = 5,\n", + " thermostat : str = 'langevin'\n", + " ) -> Atoms:\n", + "\n", + " df_pot_selected = get_potential_by_name(\n", + " potential_name=potential\n", + " )\n", + " \n", + " structure_repeated = structure.repeat(cell_scale_value)\n", + "\n", + " npt_dict = calc_molecular_dynamics_npt_with_lammpslib(\n", + " structure=structure_repeated,\n", + " potential_dataframe=df_pot_selected,\n", + " Tstart=temperature,\n", + " Tstop=temperature,\n", + " run=run,\n", + " thermo=thermo,\n", + " seed=seed\n", + " )\n", + " \n", + " npt_lattice_constant = (np.mean(npt_dict['volume'][20:]/len(structure_repeated))*len(structure))**(1/3)\n", + " \n", + " # FIXME: Make it for a generic element - something might be wrong here. Need to check error propagation\n", + " # structure_npt = bulk('Cu', a=npt_lattice_constant, cubic=True)\n", + " # structure_repeated_npt = structure_npt.repeat(cell_scale_value)\n", + " \n", + " structure_repeated_npt = structure.copy()\n", + " structure_repeated_npt.set_cell(\n", + " [[npt_lattice_constant,0,0], \n", + " [0,npt_lattice_constant,0], \n", + " [0,0,npt_lattice_constant]],\n", + " scale_atoms = True\n", + " )\n", + " structure_repeated_npt = structure_repeated_npt.repeat(cell_scale_value)\n", + "\n", + " if thermostat == 'nose-hoover':\n", + " nvt_dict = calc_molecular_dynamics_nvt_with_lammpslib(\n", + " structure=structure_repeated_npt,\n", + " potential_dataframe=df_pot_selected,\n", + " Tstart=temperature,\n", + " Tstop=temperature,\n", + " run=run,\n", + " thermo=thermo,\n", + " seed=seed\n", + " )\n", + " \n", + " elif thermostat == 'langevin':\n", + " nvt_dict = calc_molecular_dynamics_langevin_with_lammpslib(\n", + " structure=structure_repeated_npt,\n", + " potential_dataframe=df_pot_selected,\n", + " Tstart=temperature,\n", + " Tstop=temperature,\n", + " run=run,\n", + " thermo=thermo,\n", + " seed=seed\n", + " )\n", + " \n", + " structure_repeated_nvt = structure_repeated_npt.copy()\n", + " structure_repeated_nvt.set_cell(\n", + " nvt_dict['cell'][-1]\n", + " )\n", + " structure_repeated_nvt.set_positions(\n", + " nvt_dict['positions'][-1]\n", + " )\n", + " structure_repeated_nvt.set_velocities(\n", + " nvt_dict['velocities'][-1]\n", + " )\n", + "\n", + " return structure_repeated_nvt" + ] + }, + { + "cell_type": "markdown", + "id": "0c365654", + "metadata": {}, + "source": [ + "#### Comparing with paper" + ] + }, + { + "cell_type": "markdown", + "id": "845e7114", + "metadata": {}, + "source": [ + "##### Thermal expansion" + ] + }, + { + "cell_type": "markdown", + "id": "c65c94ce", + "metadata": {}, + "source": [ + "$$\\text{thermal-expansion ratio} = \\frac{L_T}{L_0} - 1 = \\frac{a(T)}{a(0)} - 1$$" + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAHFCAIAAACl4cC2AAAQAElEQVR4AeydCVyN2RvHz223JBSylLJnjWxFZY/siixjGTKMNWEQY+y7JP6yJJkxaMi+L9OCsrTYs7ehJlmylNb7/+nldbVeubfu8ryfx+l5n/Oc8z7ne27vc895da+KkA4iQASIABEgAkpPQIXRQQSIABEgAkRA6QlQOlT0lwCNjwgQASJABMQgQOlQDEjkQgSIABEgAopOgNKhos8wjU/RCdD4iAARkAgBSocSwUidEAEiQASIgHwToHQo3/NH0RMBIqDoBGh8xUSA0mExgabLEAEiQASIgCwToHQoy7NDsREBIkAEiEAxESixdFhM46PLEAEiQASIABEQgwClQzEgkUuJEhAUePhnH3DZv39/iYZZ0MURIyJEWZCTvNV5e3tjUFFRUTIS+O7du93c3HIEgwgXLFiQw0inRCBPApQO88RCxh8nILEegkUOW1vbUqVKiRiCW7RoIbErUUffQ6Bnz56YiKpVq35PIyn65pkOEaGjo6MUr0pdKxABSocKNJkKOpS2IkelSpVUVFREDG3LlSsn2XEnJydLtkNF7Q1zgYnQ1NQshgGmpKQU7SqIsEaNGkVrS62UjQClQ2WbcYUdb3p6+ty5c6tVq4YE2aVLl/v374sO9dy5c507d0ZV6dKl27Vrd/78eb4Wm2nYUgsLC7O3t69QoULt2rVRZWRk1KtXr2PHjjVv3hzrURMTE+iwY4cQepkyZVq3bh0SEgILJ9AHDx6MVnBGOWTIkOjoaK5KzPLhw4dDhw6tXLkyEgwu8b///Y9r+PHjx+bNm9epUycpKYmzxMfH6+vrd+jQITMzE5ZRo0aVLVv2zp07GCACQ5aaNGmSaFJHV1ZWVugZtU2aNFm1ahVYoSEn6Kdx48bXrl2ztLQEnFq1aq1YsSIrK4urhbJkyZL69etjXOXLl2/atOn69eu5Ku9cm6VeXl7NmjXT0tKqWLFi//79IyIiOE+UXJCPHj3C+h7RGhgYTJ8+PTU1FVV5ChiC/4EDBzB2dLhw4UK4FTAQjOL48ePR0dGYSk7gD4GO+YXCye3bt/v27YtZRp+mpqY7d+7k7FQSARCgdAgIJIpAwMXFBXdDT0/PrVu3IrX07t2byxYY265du7p164ZciNvfP//8g5u1jY2NaEaEz4ABA5By9u3bt3nzZpxCbty4MWfOnFmzZuGmrKOjA4c//vgD/S9btuzvv/9GcsL9ml+1REVFIWfg2dXp06dXrlwZFxfXqlWrxMRE9COO3L17F/64Wa9duxZ5F/uQU6ZM4XIAbtyIOSEhYfTo0egK+WnYsGFCoXDPnj2qqqqwQJDekGaQDg8dOoRcuGXLFgcHB9g5efz4MRLtX3/9hZ7HjBmzevXqcePGcVVcifyKPn/66acjR4706NEDowYxrgq5E+lkyJAhSDY+Pj5o/ubNG64qR7l8+XLUNmrUCLiQMm/evGlubo6J4N0QZJ8+fRDk4cOHMZZ169YBFF+bW8EblJkzZ4LDqVOn7Ozs4FDAQDZt2tSuXTu8S8DuKCfwzyF4h2RhYYH3De7u7giyYcOGSNIYYA43OlVaApQOlXbqFW3guLvhJo6sgFXamjVrcCPGigeDxDpp6tSpSF0HDx7EkgUKbsdYDyF9opaXkSNHYlWEZSVWD5zx5cuXuBGjN2QIJBjczbdt23bmzBl00q9fP9xG//vvPyw6OWesLJG9YMc6DDqSB66Lp1lcbaGls7Oztrb2xYsXhw8f3rVrV8Q/YcIExPP69Wu0rVu3LtIw7uBIM7iKv78/Rir60C4tLQ2LLYwIbZGz4YPMd+nSJbSFuLq6jh8/Hu8ArK2tkSxx+ueff3I9oxaCkaJD5EgMHyswkOQjRydYUCIjdurUCT2AJPpHkxyCHLl48WLAR0OUGAWCxLoWDXlPBInAECcyIhRQhTNfm1vBO4CTJ0/+/PPPHTp0wHsFOCDy/AaCmLF4xcIau6OcwD+HIBjE4Ofnh/AQJK6OGBAJ3tnk8KRTjoCylZQOlW3GFXa8WHnwY8OeHnQsFlEGBQW9evUK2S7jy4EFVvfu3ZEsP3z4AAdOuPUHp3MlNtOqV6/O6di9hIL7MrYToUA4C3cJnL5//x7rSKwv1bIP7Aeic9HdQvhwgoXdl0A+/YQRaQNLVWRZdP7JlP0P92vYL1++DAfIoEGDfv31V6yWsHXJpT0YRQXLO/4Ua0HouO+jhISHhwOOrq4uVpPq6uojRozAuvnBgweo4gSLKuz9cjpK0OPHBTtWycjNWPW+ffsWtXkKFmRYKGOxxddiOxQZFOPiLdi3xJKdPxW9Cm8UVeBQr149UUuhAxF1zq3/+++/yMQIjK9CwHjXguB5CynKTIDSoTLPvkKNHbd7fjxYJUDHDRol1nAosWJDJuAF23RIS0iTqOJEdLHFWbCnyikoNTQ0UOa2IGPBDkEG2rhxo6OjI9LG1atXkWvxDI8LALWiEhAQwIcBBbusWJwhA27YsAGnvCAdopXodis2GLFCRbbF/iGqRAVG0eEjvaEW3aKMiYnBQ8Fnz55hZXnhwgUEhvUf7KKxibZFFejxtdg4xVIVWRkLKbghneApKXxyCHetHAyrVavG2TlnJHts/HI6SlyFp4fT3JKjN3EGkrsTUQuCydEnIoQD7ChJiIDypUOacyUjoKenhxEj2SAT5JAqVaqgihOsXTilCCV227A5+dtvv82ePRsJAzt72GAUzbWifZqZmYmGgTtyhQoVsG7DSkXUzulcUkRzrDWxxYfVUqlSpZB0YREVZFPRezqeBaIW2QslniaiLTZa8Wiwffv2LVu25FI7qsQRJFps5OIxHoaDp5WxsbHYMsWKKkdb7lp4Yipqf/78OQdf1Ci+nmNGfnAguC6CzB0h7D8SJJqTKAwBSocKM5U0kLwJtGvXDk+V7t69i0yQQ74rMeTde7YVN26sNbHcyT77VOBRHzYkP2m5/uEZoWgYiAHLpo4dO2InENuDolXQcQfnOsAzMyyPkNW2b99+5MiRdevWcXa+/Pvvv3kdT8WgY2sXJWJDyceGOPEEFJbvFTDECnvixInIi1jR5mhubm6OPI0HkLz96dOn3OYkb/lBpdCBYIz8ojbPa+GdCkJCkuZr8QwV8PGskbeQoswEKB0q8+wr5thzjAqP8bA03LJly+DBg/fv3x8YGOjr6zt//nw8isvhWeTTcuXKWVlZrV69Glnw3Llzv//++9KlS5E/xO8QO5nIdtjV9Pb29vf3P3r0KBIenr1xPaBbZBpscjZq1AjPOCdNmoTnlFevXuVqUSKnrl27dtmyZWfPnl24cOEff/yBvU2sBVHVtWtX1A4ZMuTkyZMHDx7E2k70P9HAoWDB0z7sl4IYuP31119ubm41a9asW7dujlYYLEaNPI0Hk7gQokWCx9YoIsnhWeTTQgeCFXlCQoKHhwfI5Lmji2CwF43A8NYBQWK5fPz48QULFujo6BQ5KmqoSAQoHSrSbNJY8iaAG5+fn9/79++5/zw5depU7P5hrZC3d5GsWJDhPov90gEDBuBejLSk8z032YYNGyKkxo0bz5s3r1u3bmPGjEHm5iK8desWHhaOHDkSu6lcaHiYh3Wkg4PDmzdvOAvu8titxUX79u3r7u4+duzYffv2cVUNGjRAMkMKRGCTJ082NTWFA1clTolBIRFibYpshNgQEvfsM3dbZE2k7Rs3bvTr1w8JG5k7KCgod+LM3VBMS6EDwbRi/eri4oLVHvarc3dbv359hIQSa1wEefv27R07dsycOTO3J1mUkwClQ+Wcd3kdtbe3N7JajuixK4g9QNwKebuRkREsfP6AHas3JAw8YEtLS8M+HnTeH+sDOOd4gIT9QPigIS/w2bhxI3/KXWLGjBmcpXr16khg2Eh8+/YtVh5IBugB0XK1XIQoudM8S3SIjVDEhgixyrl06dLcuXPhiUUPntXxXcGCXUFk3MjISKzJcMoJ3JDy4Ykxbtq0qUyZMpwdZa9eva5fv56SkoLOV61a1b17d4yFDwaLUSQGuPGCayF47hQPDhHJixcvUlNTo6OjkfCwOuSqgBf9IGzuFCWyONIhPJGn8agPOR5GTtBnjonjsHO1uUsEkIM/fL4MJO+B4BEs3gQg8WdlZSEw+EOg4EJQOMEbDixhER6CBBMMgbNTSQRAgNIhIJAQASJABIiAshOgdKjsrwAaPxEgAkRAtgiUUDSUDksIPF2WCEiIQO59SAl1TN0QAeUiIPV0iMcYxsbGWlpaZmZmFy5cyJMuHs6jFj61atXiPzESnnfu3LGzs8PDCYFA4ObmBgsvGRkZeLCPnkuVKoVWixYtyvryocO8DylEgAgQASJABMQkIN106OPj4+TkNHfu3PDwcEtLyx49esTExOSILDIy0tbWFrXwcXFxmTJliq+vL+eTnJyMVLdixQruUzY4I1euXLkSiXPjxo0RERGrVq1avXr1hg0buCpZLSkuIkAEiAARkF0C0k2Hrq6uY8aMcXR0NDExwfLOwMDAw8MjBwxkNUNDQ9TCB56jR49es2YN59OqVSvkucGDB2vm+k614ODgvn379uzZE2tHe3v7bt26hYh82w7XnEoiQASIABEgAmISkGI6TEtLCw0NRaLiQ4EeFBTEn3IKEhvsnI7SxsYGiS09PR16AdK+ffvz589zH0N848aNixcvYomZ2z81NfXtl+PNmzdPnjxJSkr6YqCfRECiBKgzIkAEiosA7uRPnz6V7DMyKabDxMTEzMxM0Y+FhM59mqJo3oIFdt4CHc8F0Za35KnMmjVryJAhDRo0UFdXb968ObZkcZrbc/ny5TpfjgoVKtSuXbt8+fJfDPSTCBABIkAE5JIA7uTYbhT9yL3c9//vtUgxHXKhCAQCTkEpFAoFgq+nsHAiEHw1wgdGgeCrBae5BU8ld+3atXv37rCwsJ07d2J/FWVutzlz5uBNBCfcY0ssKJFrSQogEBcXB7AoC/ChKo4AKBErDkXBpWKAKniMEqklUAVg/O+/xKpV3zAGSWIsljGmra2NUlIixXSop6enqqqKxR8fa0JCAhZ//Cmn6Ovr5/BRU1PjP7mY88ldzpw5c/bs2Xis2KRJk+HDh0+bNg0LwdxueOhY7suBt0BwqFixIjonKZhA6dKlC3agWp4AseJRFKwQqIL58LUEikeRQ7l7VzcuTocxSDnGIEwgKGThhHu++CLFdKihoWFmZnb27Fk+GugWFhb8KaeYm5vDzukoz5w507JlS2yBQi9AkpOTVVS+Bo+8K9lN5AIuTVVEgAgQASJQ/ATijoVK9aIqTJrdOzs7e3p6enl5RUREYAGH7crx48fjgtjDHDFiBBQILNHR0fCEDzy3b9/Ofw5kWlra9ewDyrNnz6A+evQITSC9e/deunTp8ePHo6KiDh486Orq2r9/f9hJiAARIAJEQAEJHDlS1W2WVMf1dYEljcs4ODi4ubktWrTI1NQ0MDDwxIkT3Of/Yn8cqZG7orGxMez+IFkJSgAAEABJREFU/v7wWbx4sbu7u52dHVeFx6TNsw/44+kgVEdHR65qw4YN9vb2EyZMMDExQfocN24c2nJVVBIBIkAEiIBCETh8mNnbR2bWYEwovXFJNx0ibmQsLOBSU1NDQ0OtrKxggXh7eyP/QeHE2to6LCwMPpGRkVgsckaURtnfSyAUOfhWeILq5uaGZWVKSsrjx4+XLFmCvVk0KbJkZmZ+VNCjCMPC49sitJK1JpjTIr8eqCERIAKyQuDwYaH9wIXpc0Yzb8Y+PSyU6BNDxh9ST4f8lWRWQbbF6vPBgwdIxiQgEBsbq6+vjxK6XAvmFDOL+ZXZ1x4FRgSIQCEEDh1KsxsyOmPLArYQnnPmsH37WPXqUCUvlA5ZfHz8mzdvKleujMUodm5JwMHAwAClXKNA/JhTzCzmV/K/N7LVI0VDBBSUwMGDSfZjbDOPeLOfVVWFW7awZcuwacqiotihQxkSH7Oyp0Psp+GOifumrq5uqVKltOjIJoCd5+yfclyUKlUKc4qZxfxiliX+m0MdEgEiIF0CBw6wQYNeZurc1GxVpozw6FHBL798vqCqKmvfXvIPEZU9HXKfBle6dOnPmOmHYhHgZpabZcUaGY1GmQgo4Vh9fZmDA8vIqDXU/Oj5MoGBgh49pE5B2dMhB1gg+PR4ltOpVCQCAgHNrCLNJ41FOQj4+p4etP1kRhc2bBj788827dRatCiOgVM6LA7KdA0iQASIABEQi8D+/Z4DT/fMOjJQ7eDdWTsZNkbFaiYBpxJMhxKInrooBgLe3t7ly5eX4IXu37+vr6//7t277+3z0KFDderUUVVVdXJyOnbsWPPmzemjiL6XIfkTAVkmIPxn37xBD8YKt2YytQGDNerUVy3OaCkdFiftQq41atQowbdH9+7dC2kj/WoHB4cHDx5I8Dpz586dOHGitrb29/Y5btw4e3v72NjYxYsX9+rVC6h27979vZ2QPxEgArJJIG33/hGDU5cKXRDe73Ozdv6poqEBtfiE0mHxsRbnSsh/cSLHnj17xGklVZ9SpUpVrly5KJfIq83Tp0+PHDny888/567MzMwsYLX3/v37hIQEGxubatWqcakUnWzYsCF3P2QhAkRA7gi88TrQfZjuLuFPaoKM7duyFi1RERT7c39Kh7L1stHU1MRGIi8VKlRAfP7+/hoaGhcuXIAOWbt2rZ6eHpIm9A4dOkzKPrCfqaurO2/ePP6vznft2tWyZUtkDvQ2dOhQ5BL4Q9CbQCA4f/48akuXLm1hYYHdS9ghN27c6Nixo46OjqGhYatWrUJCQmDMsVnq4eFRu3ZtxFO/fv2//voLDpygT09Pz/79+6PPunXrIudx9hzlP//806xZsxo1anB2rnPsfDZs2BBjj46OTktL++2336pXr16mTJk2bdogWniixECgdOrUCRfCKfQ+ffpcvXr1yZMn0EmIABGQYwI+Phscb/ixjtrqKcePC0Y7lkxiKpmryu60CYXswwepCHou6rCR85ycnIYPH56UlISMhc3Gbdu2Va1aletv586dampqV65ccXd3X7duHXISZ0dewaYi/PHILTIyEjuxnJ0r0QnSKhIe2o4ePZozDhs2DIkKXfn5+SEn5f5ekYMHD06dOnX69Om3b9/G1iXWZ/Dk2qJcuHDhoEGDbt68aWtri65evXoFYw4JDAxEGhY1JicnL1++HGHfuXMHy1D0eenSpb1796KfgQMHYrn88OFDPmf7+vrifQBO0UPNmjXhz79LgIWkmAnQ5YiABAjs3cuGDp0jXDq67oULlzW69SjW54Wi8VM6FKXBWHIyK1tWKoKev71UnmdYJ5UVOZDPOLclS5ZUrFjxl19+QZpBXsQijLOjNDAwQBbEWg1VkydPhg4jBEmuR48etWrVatu2LTLlyZMnsd8IOydLly61trbGmmz27NlBQUEfP36EPSYmpkuXLg0aNMD6D6kIyzgYRWXNmjVIqxMmTKhXr56zs/OAAQNg4R1QNWTIkDp16ixbtuzDhw9YuvFVvBIVFVWtWjX+FEp6evqmTZuQ4TCE+Ph47A/v27fP0tISMcyYMaN9+/Y7duzAYhSZD86AgMUuTqFDsIhEh1BIiAARkEcCwQvPZAwdwbKy1H4esf1eu2YtSiwXgh6lQ0CQIcFe5XWRY+LEiVxwSADY/MTaKCUlxc3NjTNyJbId9g853dzcHGspPITDaXh4eN++fbGEwjYj1pewINuh5KRp06acwq0yua1UZDhHR8du3bohpz5+/JhzEC0jIiLatWvHW6DDwp/yfWKfExfl+uRrOQXxa2lpcTpXYmh8w7CwMGz2ItfybwkCAgLyjIRri+eaWFxyOpVEgAhImoB0+9s8+mr7BZ0nCjcIfx7NPD2ZSgnnoxK+vHRhF6H30qXZ+/dSEfQsRjxIJFhd8YLFEN8Iazjo2IGEQClYsDhDVkNSQRK9du0aNjnhj+1TlJzwG6FcKuX+D8uCBQuwY4mtTuxANm7cmGvF+fMl58+dInWJnvJ9ohZ2rk/oooKnnq9fvxa1IKXBmbOgiaqqamhoKP+WAOl2/fr1XG3uEigqVaqU204WIkAEZJlAVhab1fvOrztaZzHV9LqNsrZsK/FcCFyUDgFBRAQCVqaMVAQ9i1zne1WskKZNm4ZHhlgLjhgxAmmD7+Hy5cuiet26dZFR7t27l5iYuGLFCuw6YvMzz4Ua30pUwcoMzykPHDiA/VjsUopWQTcxMbl48SIUTpChYeF0McvmzZvfvXs3P2fUYmmLaPk3BFCwO5qnPzZ4gQVN8qwlIxEgArJJAE9mhlpErTrWCOEtMju0PcJCVV0mMpFMBAEoxSmyfK3U1FQ8P+MFKQ3RIkPgeSFWez///DNS1O3bt9euXQs7J7GxsdjkvH//Pp66bdiwYerUqbAbGhpiExKnT548OXLkCP8MElX5CbYxJ02a5O/vHx0djRQbEhKSO9XNnDnT29t78+bN2JJ1dXVF1sTjvfw6zNNuY2MTHByMEeVZi2SMJ6DI9+g5MjIS69qVK1eeOHEiT2cEqampif3hPGvJSASIgAwSePmSdW2W4HPFSJ2l/dnB6/erfQSqspKGZCUOGZy2Egnp1KlTeJjHS/v27RHG0qVLo6Kitm7dCh1LJU9Pz3nz5mE7EacQJA9kstatW+NB4+TJk3/J/tR3bCEib+3bt69hw4ZYI4r+hxc0yVOwpnz58iV6w2py9OjR3bt3X7jw0xeMiTr369cPW5erV69u1KjRli1bkJu5p5KiPgXr2InFnuq5c+fyc0OfiGH69On169fv06fPlStXDAwM8nRG+kfuLC3eLnSePZCRCBCB4iSAPdLurRIvPqisw96c6rlx+PlRsrBHyhOgdMijKHkFCQxP40Tl3r17CGv+/PnPnz/X1dWFDunbty8WkaamptAhyC4eHh5JSUl4kLZ8+XKB4PMfrw4ZMgQLLOwoYkuzd+/e6JZrggQGvXz58mgLgRGnRkZGWE0iwcTExCC5Yj/T3d2d+z8vo0aNevPmDTw5+fXXX7FFiceQWI9izcoZUaITJEsonKAJGnK6aImk6+LigpUlZ4QPPDmdKzEcpGFEjkvExcVhmdikSRNUlS9fHpdA8NAhL1682L9//6xZs6DnEjIQASIgiwRUdv25KHJELfb40sD1nY44yVQuBC9Kh4BAUqwEsH61srIqwmeWikaJfLlp0yZjY2NRI+lEgAjIJoG3SUK2fDkbObIHOxkxdl2jvb/LWi4EN0qHgEBSrATU1NTmzp2r/f2fWSoaJTaHHRwcRC2kKxEBGqpcEdjgllmv6ttHLts/Re3srLHZXQZzIWKjdAgIciz+/v5ubm5yPAAKnQgQAcUlgIeF0yenTpmm+l+Kzt+Cn9jGjWztWtnMhZgESoeAQEIEiAARIAISJpCSwgb1SnbdqIl+l6vPn3+4JfvyuSKwFCwlUkvpsESw00WJABEgAopM4MUL1rnte9+TpTVY6t86E2YH9xX07iXjA6Z0KOMTROERASJABOSMQEwMszD9EHyzbHn2+qzRL0NvzmZmZrI/BkqHxThHdCkiQASIgBIQ0DuwVff5LSMWGWQ+w+q6OzM0lItBUzqUi2miIIkAESAC8kAgK4vNnFl62rijrHfwYHeTgM1MR0ce4v4UI6XDTxToHxGQCAHqhAgoLQGhkLmuTF/QeD9bswYQKi1x0t/tytTVocuLUDqUl5kqsTi9vb3Lly8vwcvfv39fX1//B/8MXzSeGTNmTJkyRdRCOhEgAsVJIDOTTXFMnj5bfWHEoCA1K/b332zuXPblE7KKM5IfuRalwyLSw/T7+7M9exhK6EXs5dtmo0aNEnx7dO/e/VuXEjhzcHB48OCBBC88d+7ciRMncn+G7+/vjxFXqFDh48dP3z/MXeXq1aswQrhTzgenKioqOjo6zZs3/+233+Li4rhalDjdsWNHZGQkdBIiIE0C1HceBD58YAO6vdvoVRp1q0vNNz+3mA0dCl3uhNJhUabswAFmZMQ6dvw06Sihw8IkcSD/4UbPyx7kW0l0+yN9lCpVqnLlyj/Sg2jbp0+fHjly5OeffxY1IjWKfreil5eXYa5n71hTPn/+/Nq1a7NmzTp37lzjxo1v3brFdYLwunXrtnnzZu6USiJABIqNwH//sY4t3x75V1uTffyn8qQZ4cME1lbFdnXJXkjq6ZD7YEktLS0zM7MLFy7kGX1AQABq4VOrVi3Rm9qdO3fs7OyMjIywMsj92SvPnj376aefdHV1S5cubWpqGhoammfnEjci89nbs6dPv3b87BmDBfavpqJqmpqa2EjkBcsm9ITlkYaGBk9v7dq1enp6SJmo6tChw6TsA/uZQDFv3jwhtvBRwdiuXbtatmyJTIPehg4dmpCQkG1m6A08z58/j1qgs7CwQKbhqm7cuNGxY0eswJCNWrVqFRISAnuOzVIPD4/atWsjnvr16//1119w4AR9enp69u/fH33WrVsXOY+z5yj/+eefZs2a1ahRQ9Q+cuRIpEDOkpKSsnfvXli4U75EzsNA6tWrN3jw4EuXLlWqVOnXX3/la/v06SMLbx34eEghAspA4N49Zt7k/bV75XRZ4vmGUwbems/q15ffgX9Kh9KL3sfHx8nJCZtj4eHhlpaWPXr0iImJyXE57HHZ2tqiFj4uLi54COTr68v5JCcnI0GuWLEC90HOwpevX79u166durr6yZMn7969iwyBfMDX/qCCtX9u4TbzsC86dSr7knE+X4c7hR21nClHc85Y5LJDhw7AOHz48KSkJGQs8Ny2bVvVqlW5Dnfu3KmmpnblyhV3d/d169YhJ3H2tLS0xYsXw//QoUOAjJ1Yzs6V6ATQkPDQdvTo0Zxx2LBhSFToys/PDzuQwMvZ+RJruKlTp06fPv327dvjxo3DIg+efO3ChQsHDRp08+ZNTCi6evXqFV/FK4GBgUjD/CmnYGhI9txrA7OPN0AtWrTgqvIssWAdP2+LJBUAABAASURBVH48kiKf41u3bh0bGxsdHZ2nPxmJABGQPAGhMPT3Q5EvytZij4O6LWwXsp5JbhtJ8tGK0aN006Grq+uYMWMcHR1NTEywvDMwMPDw8MgRFZaDWIugFj7wxK2Z/3I+LFBWr16N1QDWTDlarVy5Er3hiRHug7h7du7cGUuWHD5FPi1bluUWO7tP/WF9K7ou/GTK/oeMCDtqs8+YkdE3PXBGccpjx46VFTmQz7hWS5YsqVix4i+//II0g+SBRRhnRwkOyIJYq6Fq8uTJ0GGEgCTef+D9RNu2bZEp8b7h/fv3sHOydOlSa2vrhg0bzp49Oygo6GN2tkdC6tKlS4MGDQBz4MCBWMZxznyJqUFanTBhAlZpzs7OAwYMgIWvRdWQIUPq1KmzbNmyDx8+4BEgX8UrUVFR1apV4085BSs/hIplKE69vLwQOZSCBUHCAb2hhFSvXh0lfwqdhAgQASkSSE9njo7D9vffwUZdnvBXvZPrWalSUrxcsXQtxXSI1Qk2MPFQhx8IdNx5+VNOCQ4Ohp3TUdrY2GDJkg7WOMlfsBeHRQZu2biTNm/eHKulPH1TU1PfihzwQc85BLuLWd8ecMstnNuzZ1m5q3gLarmeGBPyRiicsdASl8BCMEzkwH4g1wpruD///BMrJ+wl4k0GZ0SJztu0aYOG0CHQHz58iAFCB3xsIdasWVNbWxvdwhPZAnYIdDx7gwKpUqUKTuPj46FPmzYN70i6du2KnPro0SNYOIEDp0RERJibm3M6Smy0wgIFAh++T6zesEnL9YkqUUH8eHMjakFDnCKVIh3iong9IKfCwtmhQER1nEIys1fi/MDRJ3yQ71GVQ+ADINITXFd6nStSzwRKzNmUcVBpaekbVr2P6zSEeXkJVVSGu5uVd5ubnpkp5ugk6AZQkhUppsPExETcs7i7LRc0dNwiOZ0vYYGdP4WekZGBtrwlT+XJkydYaOIZ1enTp7Fvhi1WZIvcnsuXL8eTME6wioIDNvdOiBzYu8MNGrdRkaT59unTN7nFyysJPjo6yegkP0EtfCDXryeJ9gCLOIIXCm7rSPC8IAvyDf/9919c9+XLl9gS5I1ghVb8KcYCH5ziySLeWKA3UMJjQu4hH3aYUYUtaPhgOQgdwp1CgSAdIhthqY2tyyZNmuzevRtGeAqFQigQKKLvMHA5WGCHoE8EA4UTnKJnThctsaeNGect8IHnu3fv2rdvj96w+9q9e3ds0kKHnXPjfbhTrrx+/Toc8LiUOwUTnOKxJXfKl5hZdIVZFplzSapnz57FdVFKslNF7AuICJQ4EyvjoI4ePTmg26Mps8r2uTgrWVP7iovLMUNDccYlcR/cyfGKkqxIMR1ygQoEAk5BiVunQPD1FBZOBIKvRvjAKBB8teA0t2AFgMdL2JTD0hAPscaOHYv7fm63OXPm4HkbJ3i2BIeOHTviyRYvVlZWWMpge7KcyFG1arncUrnyJw8bm9I1aggFgm8Wf+gWFgMDIWo/OZXL2ZwzFloiDSD/5en24sULPO3bsmULdj6xI8oHDH8sJvkmeG6HtwgVKlR4/vw5Eid2MpFdsIxGVkCQZcqUgSdyBnSs3qBDYMQp3yGozpo168CBA9iPxaNfOGhpaQkEAigQbK5i0QmFE1waFk5HJyDJ6SjRBA2h5BAE8/jxY97IB4OYsQl88eJFTCVq0RU6hALhfaBzAlBI8Jg7bAVzFqRDGLFzzp3yJcaFruDJz7hkFaykESdKyXb73b3JfAMgIlDizJIsg7Kyst3uank8wETAsn4qd0Q98JzZ/PniDEoaPriT4xUlWZFiOtTT01NVVcVSgI84ISEBiz/+lFP09fVz+OAWj3f9XG1+ZdWqVXEj5mvx3BHPvfhTXsHyiL8zQoEdN80cghu3itiHurrK+vVI1WiEzj6LAAYmcHMToFbsnvJwFAgEaWlpoMTLq1ev4Ie3CCNHjsSW8pgxY7CjePv2bWxmwg5BBEjzM2bMwB4pstfGjRunTp0KO56namho/O9//4uKisLzSDwphCfsnIjqsHCnqampWGRjIQWSly9fxpY1CKMWwjlAmTlz5s6dO7du3YqUhse9Bw8ehAV2CO8DHZLjFBZOunfvjs4xIu4UJe+J56PI+niICCOEt3M6NgyABdf9559/LC0tcerh4YEqTi5dugQjUjt3KlqCao4Zl+wp4pRsh4raG4ESc2ZlE1RionqXVh9OXKqgxVJ8DZ2n3v5FvXVrMUckJTeAkqxIMR3idmxmZsat/bmgoeNpE6fzJZ5Fwc6fnjlzBgsI4OMteSrt2rXj/zwADg8ePMBDMijFIAMGsP37WfZ/3fh8tRo1Pllg/3z+Az9OnTqFTM8LthDRGZIZshqSEHS8e/D09Jw3bx63WwjLiBEjsB+IhdHEiROxcPzll19grFSpEhLnvn37kNJWrFiBZSKMBQveu2BBid4aNGgwevRo5K2FCxfmaNKvX7/169evXr26UaNGWKru2LGDeyqZw62AU7xPxOSeO3cutw9eMHgLheyVuwqW+vXrV6tWDa8oDKdLly54T4Chwc7Jnj17sKzkdCqJgOIRKNkR3b3L2jZ6F/a4vB574ddqVv9bi5iBQcmGJI2rSzEdIlxnZ2fcu728vCIiIvBcCssOPOeDHXuYuO1CgcASHR0NT/jAc/v27VjrwA7BUgk3fQiUZ8+eQXn06BHsEPSGRQY2S2HBIy6kCiQD2ItHkPmiopifH9u9+1MZGclg+fFLI4Fh2SQq9+7dQ7fz58/H5ie/Yu7bty9WcqampqiCILtgnYQNYSwl8ayUTydDhgyJjIzEk7+goKDevXujW64JEhj08uXLoy0ERpwaGRkhGyGpYI6QXO/evevu7o7dTjiMGjXqzZs3UDj59ddfsUTDjODtCLY3OSNKdIJkCYUTNEFDThctkXRdXFxcXV05Y45gOCNKdIUOoUA4H5xihxwPBfEyWLVqFd4WoIqT48ePo1t7e3vulEoiQAQkSECYkenYJSrmtXZd9uDyoHVtL61l5cpJsH/Z6Uq66dDBwcHNzW3RokW452IXDk9TuTVcXFwcbrscBWNjY9j9/f3hs3jxYtyF7bi/aWAMOaB59gF/rG+gOjo6cq1atWqFnTrcvhs3boxWbm5uw4YN46qKp1RVZR06sCFDPpXQi+eiinEVrF/xMO/du3eSGs6HDx+wTsUeu6Q6pH6IABH4TCA5WTBo4N9xHfuzA8HzTtTeu5TJ1adyfx6FeD+kmw4Rw4QJE7DRh9VMaGgoboKwQLy9vZH/GLRssba2DgsLgw9WM1gsZts+FViyYE0gKqKtevXqdevWLax+sKykjbJPvOTkH/LW3LlztbW1JRXvoEGD2rRpI6neqB8iQARAQChkIadfso4d2cGDxhrPD+xO1V3sJHefyo2BiC9ST4fih0KeRSCA9wdYGRehITUhAkSACORHID2d/TLoTZvu5Y9ercwqVmR42I+tsPy8FcVO6VBRZlImx0FBEQEiIHcE8Byjd7tXnvs//feCuEpNWXAws7SUu1EUIWBKh5+gYT/20w/6p3AEaGYVbkppQNIl8OwZs2z86vS1iqXZh0P1Z/9yx4nVqyfdS8pM78qeDtWzHwtzn3siM5NCgUiMADez3CxLrFPq6CsB0hSKwK2bwrYNk27EVKzC4gM6L+4dvohVqqRQIyxwMMqeDlVVVcuXL5+QkPDy5cuUlJSPdGQTSEtLy/4pxwVmE3OKmcX8YpYL/C2gSiJABFj0w7T2LVOevtVpwCIuj/NueWaZAnwq93fNq7KnQ8DS19fHHRP3zaioqEg6IiPBITY2FqVcw0D8mFPMLOYXs0xCBIhAQQTevDEc12N4upcVCwhaE2y0eTZTyc4OBbVRtDqlG3DuCRQIBFWrVq1Xr54xHdkEDAwM4uPjUWafyXGBOcXMYn5zTzpZiAAR4AgIhSzlfgxr107g9+/6MnPPHP5YYfrnL0DlHJSnpHT4ea6xn6ZFxxcCGRkZX1Q5/ok5/Ty79IMIEIG8CKSlsdF9Evs2fZJ+9wGrVk31YoBmH5u8HJXCppzpUCmmlgZJBIgAESiAQFISs231wvuY3vk0y0u1RrArV5ipaQH+Cl9F6VDhp5gGSASIABHISSA2lrU3STx/s1IZ9v5oiwUdwtexGjVyOinZOaVDJZtwJRkuDZMIEIH8CVwPzWxr8uZ2nF5V9jywv5vt5fmK+qnc+TPIo4bSYR5QyEQEiAARUFQC546lWLZJe/6hfCN2+/LsQy185yrwp3J/1yRSOvwuXORMBIiATBCgIIpI4L//Ks12FGSmdxL4Xdz+wHD5BMX+VO7vokTp8LtwkTMRIAJEQG4JfPoa37bN7uwOLNf75HmN8qMHyO1IpBI4pUOpYKVOiQARIAKyQyA1lY3uEXep9TQWFcXq1DEN8dTo2E52wssrkhKwUTosAeh0SSJABIhAsRF4/ZrZmMbvOFXV/oN3cpuOn76hom7dYru6HF2I0qEcTRaFSgSIABH4PgJRkcJ29V4E3NPXZm//tNpe2v8E09P7vi6UxpvSYbFONV2MCBABIlBsBEKC09s2TIpIrFSdPb34s1dXPxempVVsV5e7C1E6lLspo4CJABEgAoUTOLb3vXX7jP8+lm/KblxeEdDUy0kJP5W7cEwiHpQORWCQSgR+lAC1JwKyQSAycte4wOSsUt1Uz13Yn1Bj1jDZCEumo6B0KNPTQ8ERASJABL6bwKVLrHXrHW/tVpRbduxypXJ2Xb+7B6VsQOlQKaedBk0EiEDRCMh2q48f2aZRV7M6dmaJiaWam8y6M0K9ZTPZDlmGoqN0KEOTQaEQASJABIpM4OWLrK71oibubD0/fR7r149duECfyv1dMCkdfhcuciYCRIAIyCKBJ3c/WtSOvxhrpMPedBpchfn6sjJlZDFQGY6JS4cyHCCFRgSIABEgAgUSuHryZdtmyQ/eVTNk0ZcW+3XaM5b+E2mBwPKupHSYNxeyEgEiQATkgsBht8gOPUu/yKjYQvX6Zd/njeb1l4uwZTBISocyOClSCIm6JAJEQBEJxP95ZvA0/RRhKdsy/gEhZasOMFfEURbTmCgdFhNougwRIAJEQJIEhELm6qo/qvt2NmZ89SOHI5uVNa0jyf6Vry9Kh8o35zRiRSRAY1IqAilv058MncemT2dC4dCxZT0ie6hVqqBUBKQxWEqH0qBKfRIBIkAEpEXgxcM3nQwedtg77jmrhgUi27KFqatL62LK1K/U0+GmTZuMjY21tLTMzMwuXLiQJ9uAgADUwqdWrVqbN2/mfe7cuWNnZ2dkZCQQCNzc3Hi7qLJ8+XLUOjk5iRpJJwJEgAgoFoHPo3l4Ltq8UdLltw3fs7Ixq/ayadOYQPC5jn78GAHppkMfHx8kqrlz54aHh1taWvbo0SMmJiZHwJGRkba2tqiFj4uLy5QpU3x9fTmf5ORkJMgVK1bo6+tzlhzltWvXtm7d2rTuCjSzAAAQAElEQVRp0xx2OiUCRIAIKB6BoP+Fm3cr+zi9ppFqTNDBhLYzLRVvjCU4IummQ1dX1zFjxjg6OpqYmGB5Z2Bg4OHhkWO0WA4aGhqiFj7wHD169Jo1azifVq1arV69evDgwZqampxFtHz//v2wYcO2bdtWoQJtmouCIZ0IEAEFJLB/4r+dJpm8FOq2LH33cphmg34NFHCQJTokKabDtLS00NDQbt268QOEHhQUxJ8yxqAHBwfDDoUTGxubkJCQ9PR07rSAcuLEiT179uzSpUsBPqmpqW9FDniiZ5JCCRCoQhHxDsSKR1GwQqAK5sPX5gEqNdWnz1+DNnVIZVq9ql47+6hGRZOKvL/SKgAlWZFiOkxMTMzMzKxSpQofMfT4+Hj+lFNggZ3TUULPyMhAW+gFyN69e8PCwvDgsAAfVMFB58uBtSksfn5+J+gokMDZs2cBCmWBXlT5iQAoEatPIAr7R6AKI/S5Pjeo0wcOJFpb2xydbMIihtY59bP704CrdBM7gTs5fvUkK1JMh1ygAsHXx7xCoVAg+HrKOaAUCL4a4ZPDgtMcEhsbO3Xq1F27dmkV9s3Oc+bMSfpyoBX66dixIx5VkhRAoGvXrgCFsgAfsasU3BGUiJU4c0ygxKEEnxygupg067liRdUrV3Q0UgI33dhxp3Pvvr3gRoI7OX71JCtSTId6enqqqqpY/PERJyQkYPHHn3KKvr5+Dh81NTVdXV2uNs8Se7DoyszMDJ6QgIAAd3d3KFiM5vDHQ8dyIgdq1ekQgwCBEgPSZxdi9RlEYT8IVGGEPtfzoF753e3Y+PWG65asUiXBv//q/jpUQ+OzD/0AAYCSrEgxHWpoaCBjcWt/LmjoFhYWnM6X5ubmsPOnZ86cadmyZcFD7dy5861bt65/OeA/bNgwnCH78v2QQgSIQHEQoGtIjkBmJgsIEAQGVkd51/2sefdy19KbL1H9I+nsVdauneSuQz3lTUCK6RAXdHZ29vT09PLyioiImDZtWkxMzPjx42HHHuaIESOgQGCJjo6GJ3zguX379hkzZsAOSUtLQ5KDQHn27BmUR48ewa6trd1Y5ChTpgxWkzCgioQIEAEiII8EDhxgRkasa1c1V9eWKBtP7RQpNK5d6vmlqxo6zYzkcURyF7OKVCN2cHBwc3NbtGiRqalpYGAgHhbXrFkTV4yLi0NqhAIxNjaG3d/fHz6LFy/GtqednR3skOfPnzfPPuC/Zs0aqI6OjrCTEAEiQAQUiQByob09e/r065iETJUx4dwNVeq20P5qLQlNea4p3XQIjhMmTIiKikpNTcUDPysrK1gg3t7eyH9QOLG2tg4LC4NPZGQkFoucEaWRkZHw20O0FRw4gdHNzY3TqSQCRIAIyBcB7JFOncqEwpxRCwSCPxaqojZnBZ1Lh4DU06F0wqZeiQARIAIKQuDChW/WhfyokCBjYxlqeQspUiWgrOlQqlCpcyJABIiA2ATi4gpyLbi2oJZU950EKB1+JzByJwJEgAhIkEB6etSGowX0V7VqAZVUJUkClA4lSZP6kh0CFAkRkH0CWf+9+KPubpfg3tmh5nx4KBAwAwNmSR/TnU2nGApKh8UAmS5BBIgAEchJ4LX/jd5GtxZFj0RFj+bxgk8H1M8iyP6oLjc3pqr62UI/pE2A0qG0CVP/RIAISIOAfPd5c9mxlp20T3zspCX4+OfyZyfC9PfvZ9Wrfx1UjRoMlgEDvlpIkzYBSofSJkz9EwEiQARECGRknLPzMJ/b8YmwllGp+CD/9OGzP6VBZL6oKHb2bIazcwjKyEgGi0gzUqVOgNKh1BHTBYgAESACnwkkJjIbm2YH5uuylza1HobGVG5u9fWv7LEvam0ttLJ6hhL65yZK+6PYB07psNiR0wWJABFQSgLvLt5gLVuyf/+tVCblgsed4w/qVtSjO7AMvRRoMmRoMigUIkAEFJVA8MIzDSwr7Yy2ZnXqsCtXao7vQes/WZtrSofFPCN0OSJABJSLgDA9Y3OX/dYLOjxn1dzLzcsMvsoaNVIuBHIyWkqHcjJRFCYRIAJySCAlNnFMzXO/nrdPZxp29W/7R9dS1asgh+NQipApHSrFNNMgi48AXYkIfCEQfeKOZZ3nO+K6q7DMlT/d2hfRWLs8/RXhFzqy95PSoezNCUVEBIiA/BN4vW1/q56VQtOa6qq8OrMt5re/mnB/WS//I1PYEVA6VNippYERASIgDQKF95mRwWbOrPDLwPFss1m5B6Hhqp0djQtvRR4lTYDSYUnPAF2fCBABBSLwLurls44/sTVrMKY/ZqVefF67ZlMd6CSyT4DSoezPEUVIBIiAfBC4d+he63qv+16c8bFUBfbPP6orlmqVoYeF8jF3iPJLOoRKQgSIABEgAkUlcHD6xdb9q91LrxOvWj16bzAbOLCoPVG7kiFA6bBkuNNViQARUBgCmWmZLub/DnBt/46Vs6pwM/S2Vv0+9RVmdMozEEqHyjLXNE4iQASkQeDlo9c9ql1ffrkTOp/W8sK5542qNKC/LAQM+RNKh/I3ZxQxESACskLg1q2xza6efWlWiiXvnhLses1SXYseFsrK5HxvHJQOv5cY+RMB2SRAURU7gX/+YW3buiaPa615/fK+p0PWmxd7BHRBSRKgdChJmtQXESACykAgLSXzxMAdzMGBJScbdat/+ZlhU/t6yjBwxR4jpUPFnl8aHREgAhIm8PzO6w7V7vfc//NxZst++42dOCHQrSjha+TZHRmlTIDSoZQBU/dEgAgoEIEL3o/NmqUHv2mow94IZs1iK1cy+qImpiAHpUMFmUgaBhEgAlIlIBSyDWPCO/1sGJ9ZubH6vZAjcbYrrKR6Req8mAmUeDos5vHS5YgAESAC300g+V3miCbhU7yaZzD1wVX8Lj+qVKe3yXf3Qg1kmwClQ9meH4qOCBCBEifw+vVJq+W77jRXZRmuHY7sjrUsY6hb4kFRABInQOlQ4kipw28J0BkRkGsCt2+zVq3srv/uorbq3LyAaX59BOpqcj0gCj4/ApQO8yNDdiJABJSaQFYWWzfqxos2vdjjx6xmzaXXunVY3FmpiSj64KWeDjdt2mRsbKylpWVmZnbhwoU8eQYEBKAWPrVq1dq8eTPvc+fOHTs7OyMjI4FA4ObmxtuhLF++vFWrVtra2pUrV+7Xr9/9+/dhJCECRKD4CSjkFZNeZfZvEOG8s9mQZM+sjp1ZSAgzNVXIkdKgeALSTYc+Pj5OTk5z584NDw+3tLTs0aNHTEwMf21OiYyMtLW1RS18XFxcpkyZ4uvry1UlJycjQa5YsUJfX5+z8CUy6MSJEy9fvnz27NmMjIxu3bp9+PCBryWFCBABIlBkAneC37YyiD/y0ESTfRza7aXKmVNMT6/IvVFDeSEg3XTo6uo6ZswYR0dHExMTLO8MDAw8PDxyoMFy0NDQELXwgefo0aPXZH9zJtyw/lu9evXgwYM1NTVxKiqnTp0aNWpUo0aNmjVrtmPHDmTZ0NBQUQfSiQARIAJFILDPNbZNO9WHydUNWOzFxf6jTzswNSV/WFgEinLZRIrpMC0tDSkK6zYeDPSgoCD+lFOCg4Nh53SUNjY2ISEh6enp0MWUpKQkeFasmMcHQ6Smpr4VOeCGnkkKJUCgCkXEOxArHkXBiuyDSklJn97n3qDpBh+EZTprXbx86kWzWZ0LHpQ0amUflDRGXYQ+AUqyIsV0mJiYmJmZWaVKFT5i6PHx8fwpp8ACO6ejhI7NT7SFLo4IhUJnZ+f27ds3btw4tz8eMep8ObA2hYOfn98JOgokgP1ngEJZoBdVfiIASsTqE4jC/skBqGPH7gx1PHz000Jwkp6Xk0fUtY+xhQ1L8vVyAErygy5Kj7iT41dPsiLFdMgFKhAIOAUlUpdA8PUUFk4Egq9G+MAoEHy14LQAmTRp0s2bN/fs2ZOnz5w5c7B25CQ2NhY+HTt2xKNKW1tbKvMj0LVrV4BCmZ8D2XkCoESseBoFKLIOysKi97ZtLQ/9eZD132u7wzVmiM0whwKGI70qWQclvZF/Z8+4k+NXT7IixXSop6enqqqKxR8fcUJCAhZ//Cmn6Ovr5/BRU1PT1RXrr1wnT5585MgRvE2oUaMG11uOEg8dy4kcqFWnQwwCBEoMSJ9diNVnEIX9kFlQf6544dXYXeXkSaal1eSvWQ7Hf1YvVaqw0UixXmZBSXHMReoaoCQrUkyHGhoaZmZm3NqfCxq6hYUFp/Olubk57PzpmTNnWrZsCTi8JU8Fi0isCw8cOPDvv/8aGxvn6UNG5SZAoycChRBITWXjbCId51eblDD/tn4XdukS++mnQtpQteISkGI6BDQ81fP09PTy8oqIiJg2bVpMTMz48eNhxx7miBEjoEBgiY6Ohid84Ll9+/YZM2bADklLS7uefUB59uwZ1EePHsEOmThx4q5du3bv3q2trY3FJSQlJQV2EiJABIiAOARio7Osaj3desZYwLIWGu9seH03a9FCnIbko6gEpJsOHRwc3NzcFi1aZGpqGhgYiAemNWvWBMq4uDikRigQrO1g9/f3h8/ixYvd3d3t7Oxghzx//rx59gH/NWvWQHV0dIQd4uHhgSeCHTp0qPrl8PHxgZ2ECBABZSHwA+P0O/zWrN7bq89rVGCvTvbb6nJ/pEqVSj/QHzVVBALSTYcgNGHChKioqNTU1NDQUCsrK1gg3t7eyH9QOLG2tg4LC4NPZGQkFoucEaWRkRE2RUWFbyVq5PRRo0ahCQkRIAJEoGACbjOedu1X+kVaeVPB9dA1/jYHxzN19YKbUK0yEJB6OlQGiDRGIkAE5IbAjh1p6z0ymdrwsgcuXRIYTx8gN5ErX6DFPGJKh8UMnC5HBIhAyRAQfkxl48ax0aNnZiw71nLBzuiOpc2blUwodFWZJEDpUCanhYIiAkRAogSO7UiwrBTxfuvfTCAQLFrU88p8QcUKEr0CdSb3BCgdFvsU0gWJABEoRgJZWWzB8Me9R1e+9N50bal57ORJ9vvvTIVufcU4B3JyKXpNyMlEUZhEgAh8P4HXL7N6mzxauKs2mk6q5DPn+mBmYwOdhAjkJkDpMDcTshCBHyJAjWWEwM2Lb1sZ/nfiQR0tlrLT2mtDTF+NekYyEhuFIYMEKB3K4KRQSESACPwogdMeT8yt1B4nVzViUUG/nxrhP5ppaf1op9ReoQlQOlTo6aXBEQHlJLBrVxPnruWESTZaASHn3jRf1F+iGKgzxSRA6VAx55VGRQSUk8CH12ls4kQ2fHi1j08uWc45Ht1Yt7OpcqKgUX8vAUqH30uM/IkAEZBRApePJNTXf/PPphef4ps/v5bfdtXKYn03zid/+qf0BL6mQ6VHQQCIABGQVwJCIds87b5V3/LP0iqvUZ2VdeQYW7iQqarK63go7pIgQOmwJKjTNYkAEZAcgY8pwjGtb/7qVj+dadjpnD0fVlGld0/JdU89KQsBSofKMtOM0UiJgAIS6yVUQQAAEABJREFUiL79rn21xztCmqqwzJVmPvuet9duaqyA46QhSZ8ApUPpM6YrEAEiIB0CiRfvtTRND31TR5clnp568rdrgwSlS0nnUtSr4hOgdKj4c0wjVBYCyjbOPXv0bMxGZnqZqd8MPfS0i1svJhAoGwMarwQJUDqUIEzqiggQgeIg8O5V+n9j57GhQ1ly8opOZy8+qVazL/01RXGQV+xrUDpU7Pml0REBRSNwLzChTY2nAzx7pDF15uKiduaEVg09RRtkPuMhs1QJUDqUKl7qnAgQAUkSOLj4dusOpSJSjKMExtGbTrClSxn9NYUkASt1X5QOlXr6afBEQF4IZKZnuXQIGjC/8TuhtlWZkLBLH+v+2kVegqc45YKADKRDueBEQRIBIlByBF4+et2j2vXlARYIwcnk9LlnDauY14JOQgQkSIDSoQRhUldEgAhIgcDVqyObhp1NbFGKJe8e67fuTjd1ndJSuAx1qewEKB0q+yugGMZPlyACRSQgFLKNG1n79q4pv7bQvH35n9ghWzvSX1MUESY1K4wApcPCCFE9ESACJUEg7eW7cx2XssmTWXp6PbumIfEGTQfWL4lA6JrKQuCH0mFEREStWrSDryyvFRonEciHgOTNz89HdKjx0CZgznmVrmzdOrZvn6C8juQvQz0SARECKiL6d6tpaWnR0dHf3YwaEAEiQATyJ3DB5aRZlwrBH1toC96nrV7PnJxogzR/WlQjMQJipUPnfI41a9ZILBDqiAgQAaUnIExO2WC+u9PyLvFMv3HZyJDLmT2cTZSeigwAUI4QxEqH69evDwgICM913Lt3Tzko0SiJABGQOoHkW49H1Dg/5fLQDKY+uMnty89r1mldUepXpQsQgS8ExEqHdevWnTZtml+uY9u2bV/6oZ9EgAgQgR8gcODAoTbLdr3upcoyXMc/2H2jcRltse5OP3BJakoEviEg1gvOzMwsNDT0m3bZJwKBQCgUZqvyWFDMRIAIyACB9HTm7Mzs7IakeDlX23vun9fTPOoJ6KspZGBmlC0EsdLh2rVrnZyccqNp1qxZVlZWbjtZiAARIALiEMiKjt1Qb8ObdV5wFsyYsTbKrsPAStBJiEDxExArHerr69esWbNowW3atMnY2FhLSwtLzAsXLuTZCR5MohY+tWrV2rx5M+9z584dOzs7IyMjgUDg5ubG2zlFnJ45TyqVlAANW7YJJB04P6DurSlRzsPV9goPHmKrVzN1ddkOmaJTZAJipcMcACZMmJCYmJjDmOepj48PlpVz584NDw+3tLTs0aNHTExMDs/IyEhbW1vUwsfFxWXKlCm+vr6cT3JyMhLkihUrkI85C1+K0zPvTAoRIAKyRSAz8+6Eja3tahxOt9UUpPZbbCbo11e2IqRolI9AUdLhrl273r59Kw4rV1fXMWPGODo6mpiYYHlnYGDg4eGRoyGWg4aGhqiFDzxHjx7N//1Gq1atVq9ePXjwYE1NzRytxOk5RxM6JQJEQCYIJCTsa76stceoB6y+QdlXFy+wMbOLuEEqE8OhIBSFQFHSoZj/fSYtLS00NLRbt248K+hBQUH8KacEBwfDzukobWxsQkJC0vF0HSf5iJg9o3VqaioyNy+woGeSQgkQqEIR8Q7EikeRn/LxY/r585mBgdVRfjgTMKOW76Bbv39gZTuaxF2+r92stUp+DZXTTq8oMecdoCQrRUmHYkaADdXMzMwqVarw/tDj4+P5U06BBXZORwk9IyMDbaHnJ6gVp2c0X758uc6XA2tTWPz8/E7QUSCBs2fPAhTKAr2o8hMBUCJWn0Dk/+/338Nr1Mjo0UPL1bUlyno2dXZ+sAO0QZ3DJi25du1a/i2VsoZeUd9Oe75nuJPjVSRZKUo6fPfuHR7piRmHQPD1f0wLhUKB4Osp34NA8NUIH9gFgq8WnOYpAsFXH7QSCL6e8v5z5sxJ+nLExsbC3rFjRzyqJCmAQNeuXQEKZQE+VMURACVixaHIs0xN7blqVauXL7VAiZM4VjWRVXKamLLrZJPevXvk2UqZjfSKEnP2cSfnXlESLL8vHWINi6Ry//79V69eFRqEnp6eqqoqFn+8Z0JCAhZ//Cmn6Ovr5/BRU1PT1dXlavMsxewZbfHQsZzIAYs6HWIQIFBiQPrsQqw+g8j1Q0VFffp0NbwHZuzrW1UhUxEImO+RUioquRqQIZsAYyz7JxWFEAAoyYqKON29f/9+y5YtHTp0wL6jkZGRiYlJpUqVatasOXbsWGx25NeDhoaGmZkZt/bnfKBbWHz6PmvulCvNzc1h53SUZ86cadmyJTBAz0/E7Dm/5iVupwCIgDIQuHCBPX2ax0CRILFTg9o86shEBEqOQOHpcN26dUiB27Zt69Sp04EDB65fv/7gwYPg4OA//vgDD/mwtO/evfvDhw/zHIKzs7Onp6eXl1dERMS0adNiYmLGjx8PT+xhjhgxAgoElujoaHjCB57bt2+fMWMG7JC0tDRcDgLl2bNnUB49egQ7BP559owqEiJABGSBQNyDtwWEERdXQCVVEYESIFB4OgwKCsJDy5CQkPnz5yPzNWnSpE6dOq1btx49evSOHTv++++/Pn36BAQE5Bm7g4ODm5vbokWLTE1NAwMD8VQUa0p4xsXFITVCgRgbG8Pu7+8Pn8WLF7u7u9vZfXrSjqrnz583zz7gv2bNGqiOjo6wQ/LrGVUkRKCkCdD1WZZ/YOC0QwWAqFq1gEqqIgIlQKDwdLhv3z6kwPxCw8O5CRMm8Fkqtxtqo6KiUlNTQ0NDraysOAdvb2/kP05HaW1tHRYWBp/IyEgsFmHhBKtS4beHaKs8e+YaUkkEiECJEcjMzFqwqHfH95uTuR2gnB9rjGeHBgbM0rLEAqQLE4E8CRSeDvNsRkYiQASIQB4Enj9nXbqoLPyjDbtcSjV1/Jh0wafjq6Mg+3/VuLkxVdWvRvnTKGJFJCBuOrx27dqwYcOwsVmqVKnSpUtDwSl2UBWRCY2JCBCBohBIO3zyWWMb5u/PypSZu7P+zXuaHp7q+/ez6tW/9lajBoNlwICvFtKIgIwQECsdHjp0qF27dq9evZo6daqXl5enpyeU169fw3j48GEZGQmFQQSIQIkRSEt7OGaFRb9KPV//9bFZGxYWpjpiWJ06n8JB5ouKYmfPZjg7h6CMjGSwfKqgf0RAxgiIpsN8Q5s3b96iRYtOnjzp5OQ0ZMiQoUOHQjlx4gSMLi4u+TajCiJABJSBwOPHf9Zf2txrUihrGatV997WQFavnui4sS9qbS20snqGErpoFelEQHYIiJUOHz16NCCvd3T9+vV7/Pix7AyGIiECRKCYCbzd4Tu8wbWRUQs/sLLWjRJvPCxj2lqjmGOgyxEBiRAQKx3Wrl0b+6W5r4edUvE/rS13c7IUNwG6HhGQIIHk5Gv9lrYY3WxXxmBVlrF4RtL5G3p4NCjBK1BXRKA4CYiVDrEpOnfu3J49e65fv37v3r0+Pj5QevXqhU3UJUuWFGe4dC0iQARkgsDt28KWrX47bPGY1TEs9ybAn81brUMboTIxNRREUQmIlQ7t7OwCAwO1tbVdXV1Hjhw5YsQIKGXLlg0ICMhzE7WowVA7IkAEfohAcTQWCtm2baxVK0HEXe9Kv/1s8/xGdPl21mrFcWm6BhGQJgGx0iECMDc337t3b3R0dGr2AQWnMKKKhAgQAWUhkJR0ynr5kl+i2cePzMam5u3jXqeqlS+vLKOncSo2AXHToWJToNERASJQKIHUi9emG+7rccHld7bk31/2shMnWOXKhbYiB4kSoM6kSKDwdNi9e/egoKD8Qnj37t3KlSv/97//5edAdiJABOSeQFbWg1nbLSxVXd9++tDgSfbxFusdmErhdw+5HzgNQJkIFP6CHjhw4KBBg0xMTGbNmrVv375Lly6FhoaeO3fO3d0d9qpVq4aHh/fp00eZoNFYiYASERAmvPizuWuLVQ5hrEVFjXeH/36/YZ++1tcv9FUiFDRUxSZQeDocM2bMkydPfv/993v37o0bN87S0rJVq1Y2Njbbtm0zNDREasRDRAMDgx/BRG2JABGQUQJ+fhONj4+8OeMDK9uh3rObj8v2GVpWRkOlsIjAjxEoPB2ifw0NjaFDhx4+fPjVq1evX79+/vz5x48fb926tWbNmvr168OBhAgQAUUjkJHB5s9nnTtbJZ9SZRlLJsWfu1u9eo3sT+BWtKHSeIjAJwJipcNPjl/+6ejo6Ovrq6urw/Dff/8tWrQICgkRKJAAVcoZgazHkU9aD2aLFzOhcPCYsvdupM3doE9/Vihns0jhfieB706Hov3Hx8cvXLhQ1EI6ESAC8k4gfuP+7vUjLcI3JpStxXbvZp6edZqWlvdBUfxEoFACP5QOC+2dHIgAEZAnAklJJzuuajrZ6mxmp7cq5cM2BrEhQ8SKn5yIgPwToHQo/3NIIyACkiCQ6hfkbLjP1v+3F6xy0yrxodfVuo+sIomOqQ8iIB8EKB3KxzxRlERAigQyMh5M3mDRSXNd9p8VTraPuxKlb9KEPndNisjlrmtlCFisdOicz7FmzRplYERjJAKKTCAykllbr9moGcbMdDXfHdmb7L6vKv1ZoSLPOI0tHwJipcPwfI6nT59aWVnl0zOZiQARkHkCf//NTE1ZUNBa7YWjrB7feKzd24H+14zMzxoFKB0CYqVDvwIP6QRWLL3SRYiA0hJISrrS/Y+JP70Rvn3L2rXTvnlpR0Dt6tWVFgcNnAgwsdKhhYXFqlWr7t27R8CIABFQAAJZF4NWGnu0Pz1vE5vo2fsI8/dnRkYKMC4aAhH4EQJipcNffvnlypUrrVq1qlev3syZMy9cuCAUCn/kqtSWCBQPAbpKTgIZGXHT19hYJs9+PTuDqQ/qlDjwz95Mjf7XTE5OdK6EBMRKh6NGjfL19U1MTHRzc3v79q2Dg0PlypVhPHjwYHJyshJSoyETAbkkEBV1ounspq4jz7EupVVTPTek7D2nV768XA6FgiYCEicgVjrkrqqpqWlra7tly5bnz58fO3asevXq8+fP19PT69Wr16VLlzgfKokAEZBRArt3r2ywo2fEmkRWqZnh65BbmmMmlRLI/UeQyihsCkseCXxHOhQdXps2bZYuXXor++jcuXNcXJxoLelEgAjIEIG3b9nw4WzYsA6pp9QEGVNGJV2+X8HERIYCpFCIgCwQKEo6TE1N5UOvXbv2tGnT7O3teQspRIAIyA4BYVDwg0b92a5dTEWlzQLb+/fY+h069GeFsjNBFEkhBIqxWtx0ePr0aTwsRPJTV1cvXbq0tra2tbU1FojYOC3GaOlSRIAIiE0gIyPJZeWw9lFNnx6/Vc2GXbjA/vijVj36XzNiAyRHJSNQeDo8dOhQ/fr1R44cqaKiMnPmzAMHDiA1bt++Henw3LlztWrVGj9+/IsXL5SMGw2XCMg2gaioK2YTmi8fuEc4JEOgfnX2AWZhIdsRU3REoIQJFM+y25MAABAASURBVJ4Oly1btmbNGqwCvby8kPl69+7dpUuXQYMGLVq0yM/P7/Hjx+XKlfvzzz/zG8emTZuMjY21tLTMzMwu4P1pXn4BAQGohQ+S6+bNm0VdfH19GzZsqKmpifLgwYN8VUZGxrx589BzqVKl0ArBZGVl8bUyr1CARECKBLJ27V7RwLv9zf9FslpGld5fDFIdM5k+a0aKwKlrxSBQeDq8evUqUiCWhnkOuHr16qtWrZo+fXqetT4+Pk5OTnPnzg0PD7e0tOzRo0dMTEwOz8jISFtbW9TCx8XFZcqUKUiBnE9wcLCDg8Pw4cNv3LiBEjn4ypUrXNXKlSuRODdu3BgREYEAVq9evWHDBq6KSiKgvATev48bOKXb8MpzUhdkMHWHXu+vPyzbtq3y8qCREwHxCRSeDtEXll8vX76E8r3i6uo6ZswYR0dHExMTNzc3AwMDDw+PHJ0gqxkaGqIWPvAcPXo0FqOcD4xdu3adM2dOgwYNUHbu3BkWrgqZsm/fvj179jQyMrK3t+/WrVtISAhXRSURKHkCJRJBeDhr0WLXfs3zrEtp9bTtWzP3HCmro1MiodBFiYD8ERArHUZFRWVmZn7v4NLS0kJDQ5Go+IbQg4KC+FNOCQ4Ohp3TUdrY2CCxpaenQ89dxTdv3779+fPnHzx4ADesHS9evIglJvQckpqa+lbkQC16JimUAIEqFBHvIBOs0tIy3dyEWAY+fDit+j/j+z67HCoYPiorI4MPs+QVmQBV8hgKj4BAFc4o2wOgJCtipcOiXTIxMRFJtEqVr98gCj0+Pj5Hb7DAzhuh47kg2sKSuwoW2CGzZs0aMmQIVo3q6urNmzfHlixOYc8hy5cv1/lyYG2KWjzvPEFHgQTOnj0LUCgL9KLKTwRAqcRZnfXxudxy2MhpeqlpgrjWrc+sWNr955AnTz6FJzv/ZAGUZGlIqTcCJSZY3MnxqydZETcd3r1792Y+R8EBCQRfP/dCKBQKBF9P+YYCwVcjfGAXCD5bBILPCoyoEgg+n+Kp5K5du3bv3h0WFrZz507sr6KETw7BFmvSlyM2Nha1HTt2xDqSpAAC2KAGKJQF+FAVRwCUSpiVTvn4KeHdb3n/zX76vdNFvQsXujo4cLHJVFnyoGQKR/7BEKj82XxTgzs5fvUkK+KmQzy3M/32wJoMBpT5BaSnp6eqqsqv5+CWkJCAxR8UUdHX18/ho6ampqurC5/cVXzzmTNnzp49e/DgwU2aNBk+fPi0adOwEESTHKKpqVlO5EAtVpMkhRIgUIUi4h1KjJWKSvKi9SM7PR/zem0yK9Op1dtpf7VU19DgA5M1pcRAyRqIwuIhUIUR+lwPUJKVb9Nh/n1fuXIl8tvjyZMnMDx58iS/RhoaGmZmZtzan/OBbpHrj5/Mzc1h5xxQnjlzpmXLlhgu9NxVfPPk5GTR/+yKvEt/aAFiJMpCIC7uStupzZcM2CMcoirIXL4g9UxwuWrVlGX0NE4iIA0C4qZDQ0PDmvkcBYTl7Ozs6enp5eUVERGBBVxMTMz48ePhjz3MESNGQIHAEh0dDU/4wHP79u0zZsyAHTJ16lRkx5UrV967dw/luXPn8IwQdkjv3r2XLl16/PjxqKiogwcPurq69u/fH3YSIqD4BE6f3lN/QfuQdZ/+rFDv3cUg1dl/aKqqKv64aYREQKoExE2HRQvCwcHBzc1t0aJF2FYNDAzEM1KkVHQVFxeH1AgFYmxsDLu/vz98Fi9e7O7ubmdnBzsEa8G9e/fu2LGjadOm3t7eeF7Ypk0b2CEbNmywt7efMGGCiYkJ0ue4cePQFnaSgglQrXwTSE9ns2ax7t3bvTtZVjXFocfb64+029KfFcr3pFL0skJArHRobW2Nnc+ihYyMhQVcampqaGiolZUV1wlyG/Ifp6NE/2FhYfDB7isWi7DwgpyHpWFaWhrWjgMGDODt2trabm5uWFampKQ8fvx4yZIlRY6Q75MUIiDTBCIj75oNZ6tWIUjDiX2u39HYc7wc/VkhaJAQAYkQECsd+vn5lS9fvoDrCYXCAmqpiggQgR8kkLrnwNQGpxvd2nu8zCDm68s2bqxZX+vL/7NmIgepRIAIFJFA4enQxMRk9+7dWJ/leYWHDx/++uuveLCXZy0ZiQAR+FECKSn3Bi9oO9TYPe3Tc/drjluYyDbJj3ZO7YkAEfhCoPB0+L///W/dunVVqlTBg8DVq1f//fffvr6+np6ezs7OrVu3xgM/HR0d7Ih+6ZB+EgEiIDECwrsRXnWXm/nMvM6a65X6cPRgxgK3gvZpJHZh6khmCVBgUiNQeDrs1KnTtWvXjh8/rq+vj2XipEmThg0btmDBAqwLR4wY8ezZsxUrVpQrV05qEVLHREApCQiFSRv/GtL09phni5JZmc7NX954VKZXP/q2QqV8MdCgi4VA4emQC8PCwmL9+vXh4eGvX7/++PHj06dPjx492rdvX6wROQcqiQARkBiBt2/ZTz/9O/mAT+bAT39W6PLuTIgu/VmhxPBSR0QgLwLipsO82rJXr17l+dFoeToXaKRKIkAEvhAIDWUtWrDdu/urHv2906WLFwWzl2qr/NBv6pee6ScRIAL5E6BfsvzZUA0RKGYCQuHzhdscWj2Jf/yeGRqywMBF59u1taBf0mKeBrqckhKg3zQlnfjiHjZdr1ACiYnH2ixuuqD/P8KBv1Y9zMLDmYVFoY3IgQgQAUkRoHQoKZLUDxEoOoGPZwKnGh3ufW3+S6ZnWuPFin9bs4oVi94dtSQCROD7CYiVDgfkc0ybNu37r0gtiAARECGQnn5v3Lq2NuXcP4yB1WlYwuVHleo3+PxFZrDIi1CcREDeCYiVDnXyOWrWrDniyydxyzsIip8IlACBR48Cmkwy2/rLDWZaSevt8f0p63ZV1tQsgUDokkSACIiVDncUeBBEIkAEvpuAUMh27GCmpi3u766uEtelyX83npSztSv13f1QAyJQTAQU/zJipUPFx0AjJALFSeD16zvdpwtHj2YfPmhbm/lfLnX6epWqVYszAroWESACOQlQOsxJhM6JgFQJZP4bsNx4a7Mzq9xVprFly9j589VaVac/K5Qqc+qcCIhDQNnToTiMyIcISIZAevrzKSu6dc5wSZqVydRu9JwjnD2HqapKpnPqhQgQgR8jQOnwx/hRayIgJoFHj441mtV0g+O/rHMZtY/emz9uP1yJvqFJTHjkRgSKgQClw2KATJcoQQIycGmh8OO2v6Y2PNP7oetLptfc+HXYHa2R47QoF8rA3FAIROArAUqHX1mQRgQkT+D1a+bgEPGL66b0sejceey74IgK9epBJSECREC2CFA6lK35oGgUikBgIGvWjO3b11zttnuf88ePZK7dqk1/VijhKabuiICECFA6lBBI6oYIiBJIT38zffFw6+ibseVZnTosKOjXw91te9P/mhFlRDoRkC0CKrIVDkVDBBSAwKNHQc1+NXUdvosNH17heFZoOGvVSgGGRUMgAiVCoNguSumw2FDThZSAgFCY6bVzaaO/rSI2RzOjWlXebztloFKurBKMnIZIBOSeAKVDuZ9CGoCsEHj9+lmfX7uMMZyX9kcmUxva70P4g7KtW8tKdBQHESACBROgdFgwH6nVUsfyTyAzkwUECAIDq6PM9Au837B/02NL/VnHMhppO3dk7TpQplw5+R8kjYAIKA0BSodKM9U0UIkSOHCAGRmxrl3VXF1bojTqZHwrXq9ZqQct6n8Iu6UxYpQK/VmhRHlTZ0RA6gRUpH4FugARUDgCyIX29uzp068De8aqD2L7Rq4zDbpRhvuzwq91pBEBIiAPBCgdysMsUYyyRAB7pFOnMqFQKBqUkKkwgeD3paXU1ETNpBMBIiA3BFTkJlIKlAjIBoELF7h1oSBHOMiPsbEMtTnsdKqgBGhYikaA0qGizSiNR9oEnh8NKeAScXEFVFIVESACskuA0qHszg1FJnME3r59MXTqFtcPBQRG3+JbAByqIgKyTCBnOpR4rJs2bTI2NtbS0jIzM7uQz0ZSQEAAauFTq1atzZs3i8bg6+vbsGFDTU1NlAcPHhStevbs2U8//aSrq1u6dGlTU9PQ0FDRWtKJgIQJ4NXbrFnmHp9brDFjeHAI+eYKAgEzMGCWlt8Y6YQIEAF5ISDddOjj4+Pk5DR37tzw8HBLS8sePXrExMTkQBMZGWlra4ta+Li4uEyZMgUpkPMJDg52cHAYPnz4jRs3UA4aNOjKlStc1evXr9u1a6eurn7y5Mm7d++uXbu2fPnyXBWVREDCBFJT3zn9zqytWVSUvlGpv1c+X7NGkH18vY4g+0mimxt9m+9XJqQRAfkiIN106OrqOmbMGEdHRxMTEzc3NwMDAw8PjxyAsBw0NDRELXzgOXr06DVr1nA+MHbt2nXOnDkNGjRA2blzZ1i4qpUrV6K3HTt2tG7d2sjICFW1a9fmqqgskABVfieBmzcP1p9dZ/2kQ8I+7Oef2Y0bPX5rMn0627+fVa/+tasaNT5ZBgz4aiGNCBAB+SIgxXSYlpaGDcxu3brxRKAHBQXxp5yCJSDsnI7SxsYmJCQkPT0deu4qvvmRI0datmw5cODAypUrN2/efNu2bfAnIQKSJJCZ+XLBhmHN7wyIXpfAqmxsuo15ebEvnzSDzBcVxc6ezXB2DkEZGclgkeTVqS8iQASKl4AU02FiYmJmZmaVKlX4EUGPj4/nTzkFFtg5HSX0jIwMtIWeuwoW2CFPnjzBQrNu3bqnT58eP348tlj//PNP2HNIamrqW5EDtUi0JIUSIFDpDx8ebuLSeKH97qwhKizzt4lvD10qn4NbVla6hUWaldUzlNBz1JbYqaxemF5UYs4MgRIfFFhJUKSYDrkoBQIBp6AUCoUCwddTWDgRCL4a4QOjQPDZIhB8VmBElUDw+TQrK6tFixbLli3D0nDcuHFjx45FdoRPDlm+fLnOlwObq6j18/M7QUeBBM6ePQtQKAv0UtzK48eDJ80bY3K5X8TKeFbVqEL8ipUXLLr6nT+fx5BBSalZ5YEkbxOByptLLiuByoUkbwPu5PjVk6xIMR3q6empqqry6znEnZCQgMUfFFHR19fP4aOmpqarqwuf3FV886pVqzZs2BA+nOC5Y+7/pIMqPHFM+nLExsbC0rFjR1s6CiSA57UAhbJALwWtbNmyt5dX8tYbf2UOF7As5zGvbkbrOk1rl99oQUl5WeUHJS87gcqLSh42cUDl0Uz5TLiT41dPsiLFdKihoWFmZsa92eGChm5hYcHpfGlubg47f3rmzBk8FFRXV4cldxXfvF27dvfv34cPJw8ePKhZsyani5aamprlRA5UoWeSQgkoJyi1k6fUW7RQOXq0u/q/8ztdvBgoXOtZUVu7EFrKyaoQKHlVE6i8qORhI1B5QMnLBFCSFSmmQwTq7Ozs6enp5eUVERExbdo0LODwnA92LNpGjBgBBQJLdHQ0POEDz+3bt8/fT65tAAAQAElEQVSYMQN2yNSpU5EdV65cee/ePZTnzp1zcnKCHYLeLl++jM3SR48e7d69e+vWrRMnToSdhAgUhcC7d2d7uJr2NXyWoMYaN2ZXry48397CUrUoXVEbIkAE5JOAdNOhg4ODm5vbokWLTE1NAwMDsQfMreHi4uKQGjlixsbGsPv7+8Nn8eLF7u7udnZ2XBXWgnv37t2xY0fTpk29vb19fHzatGnDVbVq1ergwYN79uxp3LgxWrm5uQ0bNoyropIIfBeBd2eCx1c/2u2U803WbGETX3btGjM1/a4eyJkIEAEFICDddAhAEyZMiIqKSk1NDQ0NtbKyggWC3Obv7w+FE2tr67CwMPhERkZiscgZudLe3h5Lw7S0NKwdB3z7P9l79ep169atjx8/omrs2LGcP5VE4DsIpKX9O2RbE5uqW94NRavJA56uC27LtLSgkxABIqBsBKSeDpUNKI03PwKyZn9/9e7Eagc77x0bzYyMyr7wO/re3bdGmTKyFibFQwSIQDERoHRYTKDpMjJEICuLrV3rarFv00sHRPWrzZNbcZU69CoLnYQIEAGlJUDpUGmnXlkH/uQJ69SJzZgxI3NlF73wsz6vNp2qVZZSoQReDtQFEZBvApQO5Xv+KPrvIJCVddH5wMj6wZkBF1iZMqW3uJ1NMO0yqOJ39ECuRIAIKC4BSoeKO7c0MhECKfeipxv5Wq3r92fGsC111rAbN9gvv7AvH3Ik4kgqESAC+RBQdDOlQ0WfYRqfUHh59iHThmmusQOFTOXnNneGXpnK6PtP6IVBBIjAtwQoHX7Lg84Ui8DHBzGzav3TbmXvB8K6VdUTj2155nW5UfmK9LJXrGmm0RABSRCg+4IkKFIfMkhAKGTbt49qdG1VlEMWUx3e8u6d5xV6/iLyFYUyGDOFRASIQMkRoHRYcuzpytIj8PQps7Vljo5zMhYZasQd3vT0z2sNK+jRh65Jjzj1TATkngClQ7mfQhrANwSEwrCFR7fVW8VOnWKams1WD3+UVLnPrzW+8aETIkAEiEAuApQOcyEhg9wSSIt6Pr++T+sFPSakrA1vOIyFh7MZM9S1aFEotzNKgROBYiRA6bAYYdOlpEdAKLyx9FjrOi8XPxycydT6N3lU45w3MzGR3gWpZ9khQJEQAYkQoHQoEYzUSUkSSI+NX9xwT8t5Njcym+iqvvFZHfPPTZNKVdVKMia6NhEgAvJGgNKhvM0YxStKQCgU7t7TudaT+feGZjD1/ib37kSVGTTDUNSFdCJABOScQDGFT+mwmEDTZSRPICGB2dsLhg21y/CpoJr09/IY3zsNqtRQl/yFqEciQASUgAClQyWYZEUcYsS6UyH1hrIDB5ia2uT5Fe9Flx4625A+c00Rp5rGRASKiQClw2ICnfsyZCkagcz/Elc329XcucPgpM0fGrVmV6+qLPyjcnVaFBYNJ7UiAkTgMwFKh59B0A+5IHB/41nLGpG/3fwplWnVq52VfPoCa95cLiKnIIkAEZBxApQOZXyCKLzPBDJfvFpn9pfp5PbBGa3Kqbzb/nvk8Yf1KlXX+Fwtiz8oJiJABOSJAKVDeZotpY31re/ZDtUfOocN/8hKdTV6eOuexuhFxvSkUGlfDzRwIiANApQOpUGV+pQcgQ8f2IQJ2vbddNJflBV82DI78vSTuoZ1NSV3AeqJCBSVALVTLAKUDhVrPhVrNE8OXH/d1Jp5eAgY2zbmyq27qr8sp0WhYs0xjYYIyAwBSocyMxUUiAiBrNR0D9ujTe3qTHsyiVWvzs6cqeq52KiBlogLqUSACBABSRLInQ4l2Tv1RQSKQCD6/KNulcImnOz9gZWNrNQm5eot1rVrEfqhJkSACBAB8QlQOhSfFXlKnYAwM2vb4PONu1Q5/65NKZa8fmSYX7xJqWoVpH5hugARIAJKT4DSofK9BGR1xHGhz7tXDvvFp/N7pt2u/O0bgW+neLdQoVeorM4XxUUEFIwA3WwUbELldjh79mh0an/zVXUtlrK2/8WAF43qWurL7WAocCJABOSPAKVD+ZszBYs48eFrocNgNnSo7tvIvfUXXD8R53ygvaqaQMGGWZzDoWsRASJQBAKUDosAjZpIhoBQyP6ceatOfZXd/6gyVVW2YIH1rY31e9SSTO/UCxEgAkTgewiofI8z+RIBiRGIf5Lct9atkWuaJAl1/iw9XhgUzP74g6nTJ3FLjDB1pLgEaGRSISD1dLhp0yZjY2MtLS0zM7MLFy7kOYiAgADUwqdWrVqbN28W9fH19W3YsKGmpibKgwcPilZx+vLlywUCgZOTE3dKpewTwKJwz5LHjeqmHo1qos7SlrY9ejzOTNC6lexHThESASKgwASkmw59fHyQqObOnRseHm5padmjR4+YmJgcNCMjI21tbVELHxcXlylTpiAFcj7BwcEODg7Dhw+/ceMGykGDBl25coWr4spr165t3bq1adOm3CmVsk8g4Vm6faO7Q3+v/SqrQnP1W6GbQ1yCe6uVKy37kVOERIAIKDYB6aZDV1fXMWPGODo6mpiYuLm5GRgYeHh45ACK5aChoaGbmxt84Dl69Og1a9ZwPmjStWvXOXPmNGjQAGXnzp1h4apQvn//ftiwYdu2batQgf4uDTzkQe7fv9t58oGIhmosfWHjfVdiqzcZZyEPcVOMRIAIKD4BKabDtLS00NDQbt268RShBwUF8aecgiUg7JyO0sbGJiQkJD09HXruKtHmEydO7NmzZ5cuXeBJIuMEMtKF7H//Y82bd7i/Za3W3GvLzs2/NVC9SkUZD5vCIwJEQHkISDEdJiYmZmZmVqlShacJPT4+nj/lFFhg53SU0DMyMtAWeu4qWGCH7N27NywsDA8OoRcgqampb0UOeCLRkhRKQLKg9m1JqKcT/2TSWpaSktWly+S7jo1mdCk0BnlxkCwreRl1EeIkUGJCI1DigwIrCYoU0yEXpUDw9Q/IhEKhQPD1lHNAKRB8NcJH1CIQfFMlEHw6jY2NnTp16q5du7S0CvlMZ+RLnS8HtmrRs5+f3wk6CiRw9uxZgEJZoJdYlXv3nu3d7Nag8ZUjU6ouU5l709Hx6IQJJ27eFKuxPDiBkqRYycNwix4jgRKTHYESExTu5PjVk6xIMR3q6empqqry6znEnZCQgMUfFFHR19fP4aOmpqarqwuf3FVcc+zBoiszMzN4QgICAtzd3aFgMYpWooInjklfDiRRVHXs2NGWjgIJ4HktQKEs0KvwyswX5r+NbXs6ooUKy5xdxcvtahuTTZtse/UqvKX8eICSRFjJz4gLjDT/SgKVP5tvagjUNzjyP8GdHL96khUppkMNDQ1kLO7NDhc0dAuLnP91wtzcHHbOAeWZM2datmypnv33Z7mruOadO3e+devW9S8H/IcNG4YzZF/0ICqamprlRA5UoWeSQgn8IKj3b1XHWD6xG1s5PrWiCbsbPGb78tjhZc0aF3pdeXT4QVbyOOSixUygxORGoMQHBVYSFCmmQ0Tp7Ozs6enp5eUVERExbdq0mJiY8ePHw45F24gRI6BAYImOjoYnfOC5ffv2GTNmwA7Bjiiy48qVK+/du4fy3LlzTk5OsGtrazcWOcqUKaOrqwsDqkhKnkBEhIeZ519X6mNR+FvVP8OuZrb2/IX+vr7k54UiIAI/TECxO5BuOnRwcHBzc1u0aJGpqWlgYCA2hWvWrAmgcXFxSI1QIMbGxrD7+/vDZ/Hixdj2tLOzgx2CteDevXt37NjRtGlTb29vHx+fNm3awE4iowRSU9nChczUdHr0ZDvVQxedfFfGDtNq1URGo6WwiAARIAIiBKSbDnGhCRMmREVFpaam4oGflZUVLBDkNuQ/KJxYW1uHhYXBJzIyEotFzsiV9vb2WBqmpaVh7ThgwADOmKNEV25ubjmMdFrMBE673umndzF9wRKWlqbZs+v+Jy3M1w369EmkxRwHXY4IEAEiUCQCUk+HRYqqeBvR1X6MwNvYpF8aXug+vdHh953/V3Y227uXHT3KDA1/rFdqTQSIABEoVgKUDosVt+Jd7PzCi02M322LsMTQpjQ8N/buNObgwLL/HgYWEiJABIiAvBCgdCgvMyVzcb5/8HxCrZNdFrSPyaxhrBbrt+76+jtdyhjI4gfNyBw7CogIEAHZI0DpUPbmRPYjyspiHh6OjYI9Insg2Alml2/GVergZAqdhAgQASIgpwQoHcrpxJVc2HfvMisrNmHCwgyXBlpR57Y++V9I27J6hXw8UMmFS1dWBgI0RiIgAQKUDiUAUVm6SE298LPX2ibe7NIlVrZsffdJd94adB5bS1mGT+MkAkRAoQlQOlTo6ZXc4FLOXXKuusfae9TMrBVBFjMY1oiTJ6uoq0ruCtQTESACRCAfAsVipnRYLJjl+iJv3gT3W2naVW/d61FCpvJzx+hGx1cxAwO5HhMFTwSIABHIQYDSYQ4gyn6amckCAgSBgdVRZmYIP+45+FuN3e0Pz3jA6lcr/fq4z7vt/xrrlP/0vSLKTorGTwSIgGIRoHRYgvMpc5c+cIAZGbGuXdVcXVuiNNJ+2Wxow9UfJmQx1RE28befVrAdpC1zQVNARIAIEAFJEFCRRCfUhyIQQC60t2dPn34dy7OPFR+wejqaKYf3pe08pV+hwtcq0ogAESACCkaA0qGCTWgRh4M90qlTmVD4TXM8KRQIWFm9Uj37a3xTQSdiEiA3IkAE5IcApUP5mStpRnrhwjfrQv5SQqHg2TOGWt5CChEgAkRAIQlQOlTIaf3uQcWFPi+gTVxcAZVURQSUlwCNXJEIUDpUpNks0lgyM18s+J/XzIgCGletWkAlVREBIkAEFIEApUNFmMWij+HevfjWfUwWOpwTdmYMTw4h33SGZ4cGBszy0/dVfGOnEyJABIiAghHIKx0q2BBpOHkSyMxkq1YxU1P9sBOd1QKb1ni5cgUTfDq+eguy/7zQzY2pqn41kkYEiAARUEgClA4VcloLGVTGzbvrarnHz3Jlqamse/et11uHPNH9bZZg/35WvfrXtjVqMFgGDPhqIY0IEAEioKgEKB0q6szmM66MjLDJO9qYfnSOmTZF3YN5ebETJ3Qa1VBX/+SPzBcVxc6ezXB2DkEZGclg+VRB/4gAESACik6A0qGiz7DI+JJD7s402NN64/AwYYvyau9tllkLR/2MHVIRl0/7otbWQiurZyhpj1SUDOlEgAgoNgFKh4o9v19Gl5FxdvTuxq1KrYkfnsnUBrWOiogpM2ZGRe7p4Bcn+qkwBGggRIAIfDcBSoffjUz+Gty69XfdBd12DI1kxjW0Xhz1fulzxUi/avb/k5G/wVDERIAIEAGpEKB0KBWsstJpejpbsoSZmfWJWm+kEj256727/+n1GqkrK+FRHESACBSNALWSAgFKh1KAKhtdRp2MmGPwV9bv81l6unafTrcfaLqfaaBdjhaFsjE9FAURIAIyRoDSoYxNiCTCyUhJd+1+ppGtZHg13wAAEABJREFU4Yr/Rm8vPYX9/Tc7dKhMbX1J9E19EAEiQAQUk4BMpUPFRFzMo7ruc7+t7sPpp7slszJWunesTs9lQ4fm+O+jxRwSXY4IEAEiIPsEKB3K/hyJG2Hym7RZ7S62HFw7NKWhjiBpq+NVv/8a1m9fSdz25EcEiAARUGIClA4VZfKvXBlW88KqoPaZTM2+elDE9bSx21qrqMrYk0JFgU3jIAJEQPEIUDqU/zl9945NncrMzee8nWOoEnt45sV9seZVm9KiUP5nlkZABIhAMRKgdFiMsCV9KaGQ7f0tzN1wDXN3Z0Jh6xEmj56W6rOqPT0plDRp6k9cAuRHBOSXgNTT4aZNm4yNjbW0tMzMzC5cuJAnqYCAANTCp1atWps3bxb18fX1bdiwoaamJsqDBw/yVcuXL2/VqpW2tnblypX79et3//59vkpJlJiQhF7Vw4asbjHzjcv96p3YmTNs5071qnpKMnwaJhEgAkRAsgSkmw59fHycnJzmzp0bHh5uaWnZo0ePmJiYHAOIjIy0tbVFLXxcXFymTJmCFMj5BAcHOzg4DB8+/MaNGygHDRp05coVrgoZdOLEiZcvXz579mxGRka3bt0+fPjAVSl8mZkhXD/kcsNWpU/EtdBgqfPa+RvfPsq6dlX4gdMAiQARKGkCinx96aZDV1fXMWPGODo6mpiYuLm5GRgYeHh45MCJ5aChoSFq4QPP0aNHr1mzhvOBsWvXrnPmzGnQoAHKzp07w8JVnTp1atSoUY0aNWrWrNmOHTuQZUNDQ7kqxS5vHomyqBjhtLftB1bWsmzYDd/Hv1+00ShfWrFHTaMjAkSACEibgBTTYVpaGlIU1m38GKAHBQXxp5yCJSDsnI7SxsYmJCQkPT0deu6q3M3hlpSUhLJixYooFVnS0pJ+X9O+b8Wr7xqWY0mb7c/6v2zaYEBDRR4yjY0IEAEiUFwEpJgOExMTMzMzq1Spwo8Fenx8PH/KKbDAzukooWdkZKAt9NxVsMAuKkKh0NnZuX379o0bNxa1c3pqaupbkQNGJNrcIvuWjIsXhS1a6CyZ6cKW9a988WZg4ujdHTIFQilFLr+gpASkgG6JVQFwRKsIlCiNAnQCVQAc0SqAkqxIMR1ygQoEX//0DalLIPh6yjmgFAi+GuEjahEIvqkSCL6ewg0yadKkmzdv7tmzB3puWb58uc6XA1u1cPDz8zshV8eBnUd+qvXvZcvZgjt3UnV0Ojmlj9ySeP3VbekNAo9jAQql9C6hMD2DErESZzYJlDiU4EOgAEEcwZ0cv3qSFSmmQz09PVVVVdH1XEJCAhZ/OQagr6+fw0dNTU1X99O3LuSuytF88uTJR44cAZcaNWrk6JY7xRNHbKVyEhsbC2PHjh1t5eTo0cM2+ULVqeMs/3lq8yvzyPhphMq9e81XrbDt2VOqI8DzWoBCKdWrFG/n0roaKBErceASKHEowYdAAYI4gjs5fvUkK1JMhxoaGmZmZtybHS5o6BYWFpzOl+bm5rDzp2fOnGnZsqW6ujosuav45kKhEOvCAwcO/Pvvv8bGxnDOUzQ1NcuJHPBBz3Ih8Tde2RndHLq29X9ZlRuoP/JY91Htr53q+vrFE7wcgSoeIAVchVgVAEe0ikCJ0ihAJ1AFwBGtAijJihTTIQLFUz1PT08vL6+IiIhp06bFxMSMHz8edizaRowYAQUCS3R0NDzhA8/t27fPmDEDdsjUqVORHVeuXHnv3j2U586dc3Jygh0yceLEXbt27d69W1tbOz77SElJgV0BJDM9a+OQSw1blT4WZ6bO0v5od+76f9XaO7VSgKHREIiAtAhQv0TghwlINx06ODi4ubktWrTI1NQ0MDAQO8I1a9ZEzHFxcUiNUCBY28Hu7+8Pn8WLF7u7u9vZ2cEOwVpw7969O3bsaNq0qbe3t4+PT5s2bWCHeHh4YAu0Q4cOVb8cqIVd7uX+/WOm8ybvbfeeaVuUuXF9/+MFF7toVqC/o5D7iaUBEAEiIOMEpJsOMfgJEyZERUWlpqaGhoZaWVnBAkFuQ/6Dwom1tXVYWBh8IiMjsVjkjFxpb2+PpWFaWhrWjgMGDOCMKLFZmkNGjRoFuxxLWhpbvJg1bdrn7vIBqoc32f974XXjhnYmcjwiCp0IEAEiICECxdCN1NNhMYxBAS4RuOl2p4rhSfPXsLQ0QY8evo9Nf93XSUVdVQGGRkMgAkSACMgFAUqHJTxNb2Le/tLokvXExn4f2iwptYzt3s2OH2fZW8olHBldnggQASKgTAQoHZbYbAuFzHfWVRPjlG132yGIX+r5z70zlA0ZwnL9bSVqSYgAESACRECqBCgdShVvvp0/u/a8f7Ur9qtax2dVqa/+OGBd2Jb7HcobV8i3AVUQASJABIiANAlQOpQm3Tz7zsxk7u5/WJw9HN9GnaX93t7v+n/VrJxa5OlLRnknQPETASIgLwQoHRbrTAnDwlnbtmzq1OUZM3pWuBR+KGbRhY5aFUoVaxB0MSJABIgAEchFgNJhLiTSMaS++vCH+ZkhLR+wkBCmo1Np85JjieaN+taRztWoVyJABIqHAF1FcQhQOiyOuby4Ksi0Styiy918hA4XO81n9+6xceOYCsEvDvh0DSJABIiAOATojiwOpaL7JN2P/7X2GctZFvcy6lRRefHPnPB25xYyff2i90gtiQARIAJEQAoE8k6HUriQ8nWZlXVw/KmGJlmbn3TD4Mc0uRoRXXrgsub0ZxSgQUIEiAARkDUClA6lMyO3b3+06OS8pf5zYbW6mjF+2x553mxdoUYZ6VyMeiUCRIAIEIEfJUDp8EcJ5mif9SEla85c1ry51pWAzVrT5nQNuZFYvYOjrP2XmRxR0ykRIAJEQNkJUDqU5CsgYnuQtd7tLStesYwM1r+/zcONy860LFWWPnpUkpCpLyJABIiANAhQOpQM1dTYhIVNfU0dzS5+bLVE5Y/UfUfYgQOsRg3J9E69EIHvJUD+RIAIfCcBSoffCSy3u1AYNOdoC6NXC27ZpTFNW6M7wbfKatr3zu1IFiJABIgAEZBZApQOf2hq3oY8mFj9UPsVPe9mNaik9mrPksfHnjQybFj2hzqlxkSACBCBwghQvcQJUDosKtKPH9kffzwy/2lzXB8hUxnV8nbE03KD59amv6MoKlBqRwSIABEoSQKUDotC/+OZQNasGVu0qEXGtVUNdpzbFb/jWmPdKmpF6YvaEAEiQASIgAwQkLF0KANECg4h68XLre12Gto0uPNA7dOHy/zzz/S7YzoP0y+4FdUSASJABIiAjBOgdCj2BAmF91cd7ljt/rigkS9Y5Q0NPVhEBBs4kL6tV2yC5EgEiAARkF0ClA7Fmpu0u4+W1PFuNssmMMOitCDZdUrU/25asfLlxWpMTiIESCUCRIAIyCYBSoeFzUta2uXxO8waf/z9yc+pTKt7vcd37qlNW2+kSn9bXxg5qicCRIAIyBEBSocFTtalS6xFi4tb7twWNtZTf/O3638n7tU2qqdRYBuqJALKTIDGTgTklQClw3xm7s2bNz9PY+3bszt3nPT+/r3frYhnOkOnVaG/o8iHF5mJABEgAvJNgNJhrvkTCuO3HHbQD2jrPe4j02SjR6vdu73oYBO9SoJcrmQgAkSACCgZAcUdLqXDb+ZWGBm1vel6k/FW/6T2fcTqBK6+yrZvZ7q63zjRCREgAkSACCgcAUqHX6Y0I+PhLM9OdaIdbzu9YRVaVH1+7XJWtxlNv1TTTyJABIgAEVBkApQOP81u5uVryw02NVn1k3+WdSmVj2t+S7gSU615G/ovM5/g0D8iQASIgDIQUPp0+PYtmzJFxbxNQHy9VKbVtdGz2w80p6+srEYfuKYML38aIxEgAkTgCwGlTofv9xx926A127BBwIQe/c78ufHt6VvVa9Wm/zLz5dWhSD9pLESACBCBAglIPR1u2rTJ2NhYS0vLzMzswoULeQYTEBCAWvjUqlVr8+bNoj6+vr4NGzbU1NREefDgQdEqcXoW9ef0ixcFmZmMPX16wnxxo6FNZ8Q5s9q12Zkzxgddh08sJ6BUyGGikggQASKgZASkmw59fHycnJzmzp0bHh5uaWnZo0ePmJiYHIQjIyNtbW1RCx8XF5cpU6YgBXI+wcHBDg4Ow4cPv3HjBspBgwZduXKFqxKnZ84zR9mvn5pBxfeWNaN7Xv49htU8V97+XdAt1rVrDjc6JQJEQL4IULRE4AcJSDcdurq6jhkzxtHR0cTExM3NzcDAwMPDI0fEWA4aGhqiFj7wHD169Jo1azgfGLt27TpnzpwGDRqg7Ny5MyxclTg9c565y7i3ZS5mtROwzOkjE289rahduVRuH7IQASJABIiAUhGQYjpMS0sLDQ3t1q0bDxR6UFAQf8opWALCzukobWxsQkJC0tPToeeu4pqL2TN6yEewJSqsXEVl5Xa9MmXycSEzESACRIAIyBABqYcixXSYmJiYmZlZpUoVfhDQ4+Pj+VNOgQV2TkcJPSMjA22h566CBXbUitMzPFNTU99+OZKSkmBh7G22vPvvv3fHjr16SUdeBJKTk/Myky0PAsQqDyh5mQhUXlTysBGoPKDkMr169Qr3c6FQiFJSIsV0yIUoEGApxqkMoQsEX08/WxkTCL4a4cPYV4tA8E2VQPD1VCD4qqOVQPD1lH05li9frvPlwJZsttmAMR1O+vXT1aMjF4GqVasOHToUZa4aMuQkAErEKieUvM4JVF5U8rARqDyg5GWqV68e7ufIkiglJVJMhxiCqqoqt57jwk1ISMDij9P5Ul9fP4ePmpqabvbnouWu4pqL2TMugSeOWBRyEh0dDUtMTAx3KiOlDIYRGxsLUChlMDZZCwmUiJU4k0KgxKEEHwIFCOII7uT41atYsSJKSYkU06GGhoaZmdnZs2f5WKFbWFjwp5xibm4OO6ejPHPmTMuWLdXV1aHnruKai9kzetDU1Cz35ShfvjwsWCt+MdDPfAkAVL51VPEtAWL1LY98zwhUvmi+rSBQ3/LI+wx3coBSUZFkCpNkXwguhzg7O3t6enp5eUVEREybNg35fPz48fDBom3EiBFQILBg3QZP+MBz+/btM2bMgB0ydepUZMeVK1feu3cP5blz55ycnGCHwD/PnlFFQgRkiQDFQgSIgHwQkG46dHBwcHNzW7RokampaWBg4IkTJ2rWrAkwcXFxSI1QIMbGxrD7+/vDZ/Hixe7u7nZ2drBDsBbcu3fvjh07mjZt6u3t7ePj06ZNG9gh+fWMKhIiQASIABEgAt9LQLrpENFMmDAhKioqNTU1NDTUysoKFghyG/IfFE6sra3DwsLgExkZicUiZ+RKe3t7LA3T0tKwdhwwYABn5Mo8e+aq8iyxcfrHH3+gzLOWjDwBICJQPI2CFWJVMB++VpFB8YOUhEKgxKQoDVBST4dijq0Y3IBvwYIFKIvhWnJ9CSAiUGLOILEiUGISENONXlElCEqJ0qGYlH4KY0sAAAq4SURBVMmNCBABIkAElJBAfulQCVHQkIkAESACREB5CVA6VN65p5ETASJABIgAT4DSIY9CyRQaLhEgAkSACIgQUKJ0WLTvRxRhpSDq8uXLW7Vqpa2tXbly5X79+t2/f58fmFAoXLBgQbVq1UqVKtWhQ4c7d+7wVampqZMnT9bT0ytTpkyfPn2ePn3KVymDAmgCgYD/s1cClWPSnz179tNPP+nq6pYuXdrU1DQ0NJRzIFAcB77MyMiYN2+esbExfsVq1aq1aNGirKwsrpZYBQYG9u7dG/cf/K4dOnSIw4KyaGRev349fPhwnewDyps3b9BVwaIs6dBHjG9eLJiUwtQGBARMnDjx8uXLZ8+exS9nt27dPnz4wI1u1apVrq6uGzduvHbtmr6+fteuXd+9e8dVIRMcPHhw7969Fy9efP/+fa9evTI/fY0yV6ngJWhs3bq1adOm/DjlAhQfrbQV3HfatWunrq5+8uTJu3fvrl27lvsEKFyXQAGCqKxcuXLz5s34FYuIiACc1atXb9iwgXPAqZL/9uFG1KxZM8DhgPBl0cgMHTr0+vXrp7IPKMiIfIf5KcqSDvE6K/SbF/NjpGB2vDxGjRrVqFEjvPJ27NgRExPDvZfHWzA3N7e5c+cOGDCgcePGO3fuTE5O3r17N4aflJS0fft23Oa6dOnSvHnzXbt23bp169y5c6hSeEHuHzZs2LZt2ypUqMANlkBxHPgSt3gDAwO8llq3bm1kZNS5c+fatWujlkABQg4JDg7u27dvz549Acre3h5vRkNCQuBDrAChR48eS5Yswf0HOi9FI4N3G7jReXp6mmcf+P09duyY6E4Y37+oohTpME28b14U5aIkOvIcRsp9DG5kZGR8fDx+P2GBaGpqWltbB2V/PyXyZXp6Ol+F3QzkS64KnootWEnj5oX3AfwwCRSPglOOHDnSsmXLgQMHYvsd75Zw6+HsBIrjIFq2b9/+/PnzDx48gPHGjRvYa7G1tYVeJFZop/hSNDJ424FdUv5TzNq2bYvTQm9ZSpEOxf9+RMV/cYmMEG+7nJ2d8fuJ3AYzciFK7jtDoECgc0aUGhoa/PJItAq6Ags2h8PCwvDgUHSMoIFTwEHJCXTOiFIJQT158sTDw6Nu3bqnT58eP378lClT/vzzT5ABDZSAg5IT6JwRpRKCAoRZs2YNGTKkQYMG2FvGWwc8g8Ap7ACCEnxQcgKdM6JUTlYcBwwfCmig5AQ6Z0SZHxlU4c0Z58+VOIWR0/MrlSIdcoPH41lOQYlMIHoKixLKpEmTbt68uWfPHtGxi2IpgFIBVaK9ybUeGxs7depU7AxraWnlHgiB4plkZWW1aNFi2bJluL+PGzdu7NixyI58LYHiUUDx8fHBKwrPIPA2C88j1qxZgxJ2TogVxyF3WQQyok3QoTi3LJlLh4hb4qKnp6eqqir61iAhIQFvMSR+ITnqcPLkydjj8vPzq1GjBhe2vr4+lDwpoQobzq9fv4YDJ8oAEFvEGKaZmZla9hEQEODu7g6Ve+UQKO6VgLJq1aoNGzaEwomJiQkeSEPHywYlgQIEXmbOnDl79uzBgwc3adJk+PDh06ZN4/YeiBWPKIdSNDJo9d9//4l29eLFC+43V9SYQ1eKdIgFNW5qZwv75sUcaBT1FO+SsC48cODAv//+a2xszA8TOl5DPCXkPyQAi+zvpwQ97O3wVXFxcbdv3+aq+OaKp3Tu3PnWrVvXvxx4PDZs2DCc1apVi0CJTne7du1E/5MCHoxxX1xDryhRSpyenJws+hV9eJuOtTWqiBUg5ClFI2Nubp6UlHT16lWuzytXruC00FuWUqRDEMFDMs+8vnkRVcomEydO5LZrtLW18c4dkpKSAgjYW8CTDGx5HTx4ENlu1KhRpUuXHjp0KKrwFHrMmDHTp08/f/58eHj4Tz/9hPe2ov+7BD5ii9w4gg+eqvJSpkwZXV1dnBKoHFOIJc7ly5fxynn06BG2Abdu3YrXGHwIFCDkkN69ey9duvT48eNRUVH4RXN1de3fvz98iBUgvH//Hm83IdAjIyOhYJuhaGSwRdG9e3fs2+OVCYHSq1ev+vXro+cCRFnSoUM+37xYABpFrcJzHbxR6tChA/a4OMHzDG6wv/32GzLihAkTsBJ69uzZmTNnkBK4qnXr1vXr12/QoEFYCiBNHj16VFVVlatSwpJAiU56q1atcGfHQ2i8V1i8eLGbmxuW0ZwDgeI48OWGDRvs7e3xK4b79YwZM/CoFcS4WmIVEhKCx88QAMECBsr8+fOhF43M33//jXft3bKPpk2b/vXXX+iqYFGWdAgKeAniHVnqt9+8CLuyCTZLcwgWghwEvBFbsGAB9kI/fvyInVLc3Tg7Si0tLfwmv3z5Ers9yIUGBgYwKpX4+/vjRs8NmUBxHPgSb72xsYyXTURExNixY3k7geJRcAreX+JVFB0djS2Zx48fL1myBI9yuCpihffoOW5N3t7egFM0MhUrVsQ22NvsA0r58uXRVcGiROmwYBBUSwSIABEgAspMgNKhMs8+jZ0IEAEi8N0EFLUBpUNFnVkaFxEgAkSACHwHAUqH3wGLXIkAESACREBRCVA6/DKz9JMIEAEiQASUmAClQyWefBo6ESACRIAIfCFA6fALCfqp6ARofESACBCBAghQOiwADlURATkj0KFDB0H2cf369UJDz3YUiPP3WIV2RQ5EQAEIUDpUgEmkISg4AS5v5S75z08QHf/YsWPj4uK4j1CIiopCKz41vnv3DvmyQYMGsbGxaAI3Nzc3KIoiNA4i8EMEKB3+ED5qTASKgQDyFifIXuXKleN0lOvXr8999dKlS+vr66upqeWoevHiRceOHd+/f3/x4kXuQ4XgpqOjk8ONTomA0hKgdKi0U08DlxsCyFucIHthtcfpKHEq5hiwHLS0tNTW1vbz89PT0xOzFbkRAdkiIOVoKB1KGTB1TwRKmsD9+/fbtWuHPdJTp04hI5Z0OHR9IiCjBCgdyujEUFhEQFIERowYUbt2bV9fX01NTUn1Sf0QAcUjQOmwxOeUAiAC0iXQt29fPC9EOpTuZah3IiDnBCgdyvkEUvhEoDACLi4uf/zxx7Bhw/gvtiysBdUTAWUkQOlQGWedxlysBGTgYvPmzVu8eDEy4p49e2QgHAqBCMgiAUqHsjgrFBMRkDiB2bNnL1++fPjw4X///bfEO6cOiYACEKB0qACTSEMgAmIRmDlz5qpVq0aOHPnXX3+J1YCcxCNAXopBgNKhYswjjUIpCIwaNerNmzfiD9XIyEgoFJqamvJNnJ2dMzIysEbkLaQQASLAEaB0yHGgkggoCIFNmzaVLVv21q1bhY4HbuPHjy/UjRyIgJIQyD8dKgkAGiYRUCACeC549+7d69ev169fv9Bhwe327dvh4eGFepIDEVAGApQOlWGWaYzKQqB69ep1sg8NDY1Cx5ztWMfY2LhQT3IgAspAgNKhMsxy3mMkKxEgAkSACPAEKB3yKEghAkSACBAB5SVA6VB5555GrugEaHxEgAh8BwFKh98Bi1yJABEgAkRAUQlQOlTUmaVxEQEioOgEaHwSJUDpUKI4qTMiQASIABGQTwKUDuVz3ihqIkAEiAARkCgBGUyHEh0fdUYEiAARIAJEQAwClA7FgEQuRIAIEAEioOgE/g8AAP///IP2QgAAAAZJREFUAwArZ+3rUMEopQAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "id": "47df4985", + "metadata": {}, + "source": [ + "![image.png](attachment:image.png)" + ] + }, + { + "cell_type": "markdown", + "id": "fa0d5d7d", + "metadata": {}, + "source": [ + "## Temperature-dependent Elastic Constants" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "id": "61bd9d33", + "metadata": {}, + "outputs": [], + "source": [ + "def get_stress_tensor_at_finite_temperature(\n", + " structure : Atoms, \n", + " potential_dataframe : pd.DataFrame, \n", + " deformation_gradient : np.array, \n", + " temperature : float,\n", + " run : int, \n", + " thermo : int, \n", + " seed : int, \n", + " thermostat : str\n", + " ):\n", + " \n", + " structure_strained = structure.copy()\n", + " relaxed_cell = np.array(structure_strained.get_cell().tolist())\n", + "\n", + " strained_cell = deformation_gradient@relaxed_cell\n", + " structure_strained.set_cell(\n", + " strained_cell, \n", + " scale_atoms=True\n", + " )\n", + " \n", + " if thermostat == 'nose-hoover':\n", + " relaxed_dict = calc_molecular_dynamics_nvt_with_lammpslib(\n", + " structure=structure, \n", + " potential_dataframe=potential_dataframe,\n", + " Tstart=temperature,\n", + " Tstop=temperature,\n", + " run=run,\n", + " thermo=thermo,\n", + " seed=seed\n", + " )\n", + " strained_dict = calc_molecular_dynamics_nvt_with_lammpslib(\n", + " structure=structure_strained, \n", + " potential_dataframe=potential_dataframe,\n", + " Tstart=temperature,\n", + " Tstop=temperature,\n", + " run=run,\n", + " thermo=thermo,\n", + " seed=seed\n", + " )\n", + " \n", + " elif thermostat == 'langevin':\n", + " relaxed_dict = calc_molecular_dynamics_langevin_with_lammpslib(\n", + " structure=structure, \n", + " potential_dataframe=potential_dataframe,\n", + " Tstart=temperature,\n", + " Tstop=temperature,\n", + " run=run,\n", + " thermo=thermo,\n", + " seed=seed\n", + " )\n", + " strained_dict = calc_molecular_dynamics_langevin_with_lammpslib(\n", + " structure=structure_strained, \n", + " potential_dataframe=potential_dataframe,\n", + " Tstart=temperature,\n", + " Tstop=temperature,\n", + " run=run,\n", + " thermo=thermo,\n", + " seed=seed\n", + " )\n", + "\n", + " relaxed_dict['pressure_GPa'] = relaxed_dict['pressure'] / 10**4\n", + " strained_dict['pressure_GPa'] = strained_dict['pressure'] / 10**4\n", + "\n", + " stress_diff = -np.mean(strained_dict['pressure_GPa'][20:] - relaxed_dict['pressure_GPa'][20:], axis=0)\n", + "\n", + " return stress_diff, relaxed_dict, strained_dict" + ] + }, + { + "cell_type": "code", + "execution_count": 99, + "id": "9f46351a", + "metadata": {}, + "outputs": [], + "source": [ + "def calculate_elastic_constants_at_finite_temperature(\n", + " structure : Atoms, \n", + " potential_name : str, \n", + " temperature : float = 0, \n", + " strain : float = 0.005,\n", + " run : int = 10000,\n", + " thermo : int = 100, \n", + " seed : int = 4928459, \n", + " thermostat : str = 'langevin'\n", + " ):\n", + "\n", + " df_pot_selected = get_potential_by_name(\n", + " potential_name=potential_name\n", + " )\n", + "\n", + " deformation_gradient_dict = get_strain_tensor_cubic(\n", + " structure=structure, \n", + " strain=strain\n", + " )\n", + " \n", + " tensor_dict = {}\n", + " for constant_str, deformation_gradient in deformation_gradient_dict.items():\n", + " diff, relaxed_dict, strained_dict = get_stress_tensor_at_finite_temperature(\n", + " structure=structure, \n", + " potential_dataframe=df_pot_selected,\n", + " deformation_gradient=deformation_gradient,\n", + " temperature=temperature,\n", + " run=run,\n", + " thermo=thermo,\n", + " seed=seed,\n", + " thermostat=thermostat\n", + " )\n", + " \n", + " tensor_dict[constant_str] = diff\n", + " tensor_dict[f'relaxed_dict_{constant_str}'] = relaxed_dict\n", + " tensor_dict[f'strained_dict_{constant_str}'] = strained_dict\n", + " \n", + " elastic_constants_list = get_elastic_constants_from_stress_tensor(\n", + " tensor_dict=tensor_dict, \n", + " strain=strain\n", + " )\n", + "\n", + " return elastic_constants_list, tensor_dict" + ] + }, + { + "cell_type": "markdown", + "id": "898031e2", + "metadata": {}, + "source": [ + "#### Nose-hoover vs Langevin" + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAGxCAIAAADpq/tWAAAQAElEQVR4Aex9CXxU1b1/JpPZM9khIRAgLLLIIoILoIIKuKGluLRFbWkprxaX4vJs1fdaqq282oJU/NdWXCsqfa9KW3cWFaSgAoKyCbITlmxMEpLJnvy/5/xmLjez5c7MzWSS+eXz43D2c+733nu+5/c7555JbuU/RoARYAQYAUagiyCQnMR/jAAjwAgwAoxAF0GASauL3KiE6iZfLCPACDACQRBg0goCDEczAowAI8AIxB8CTFrxd0+4R4wAIxB/CHCP4gQBJq04uRHcDUaAEWAEGIH2EWDSah8jzsEIMAKMACMQJwgwaaluBHsZAUaAEWAE4hsBJq34vj/cO0aAEWAEGAEVAkxaKjDYywjEHwLcI0aAEVAjwKSlRoP98YXASy+9ZPD+paSk9OrV67vf/e4333yjsZcff/wxSsPVmF/HbJPlX7gVnjhxYsGCBdu3bw+3YKfknz17NuAlMZvNAwcOfOCBB6qqqjquMyUlJWg0JyfHbrePHz9+7dq1HdcW1xy3CDBpxe2t4Y55EHjxxRc3bdq0Zs2au+6661//+tcll1zicrk8ad3rP5DWr3/9665CWsDeZrPh1kBwXy6//PJFixbddNNNiO8Iqa+vv/LKK0FUf/zjH//5z3/m5uZeffXV69at64i2uM72EOjMdCatzkSf29aCwIgRIy6++OLJkyc/8sgjv/jFLzDd/sc//qGlYLfM43a74+e6kpOTcWsg4I/nnnsOvLV69epDhw51RA+ff/75nTt3/u///u+tt946derUv//97+ecc86DDz7YEW1xnfGMAJNWPN8d7psvAuPGjUNUcXExXJItW7bccMMNWVlZVqt1zJgxGNQo3t9FTlgX+/fvD/0A7ve+970jR45QttbW1muvvTY7O/vo0aMUA24499xzhw0bVlNTgxhk+NOf/nTeeeehbGZmJvSJgwcPIp4EqU888US/fv3Qh/PPP/+9996j+GDu//3f/1100UXp6ekwcw0YMOBHP/oRcsKMecEFF8Dzwx/+kGxuMBUiCINYamrqjh07pk2b5nQ6r7zySkQ2NDT85je/GTp0qMVi6dGjB4qUlpYinuTDDz8Ex+Ny0Nu+ffveeOONuBxKeuaZZ0aPHo0KURWKP/zwwxSvi+tzd3AVdAlK5YAdl0NBsv1+9NFHP/3pT2HxQ29nzpwJXZNS/d2VK1cOGTIEVkFKgrn4tttu+/zzz48fP04x7CYIAkxaCXKjw77M+CxAs3hMsal7GPImTpxYUVHx5z//GSYjkMp3vvMdjIaU6uMePnwYo96SJUs++OCD3/3udydPngRJlJWVIRuG11deeQUUcssttzQ2NiJm3rx5aAsU6HA4EPzJT34yf/78KVOmQMkDe+3atWvChAkKd/7617/++c9/juk/UjEEz507d+/evSgVUGBMQyfBVStWrHjnnXd++ctfNjU1ISfYDoZQeP7rv/4LeSA//vGPEYSAokDMV1xxBa4RbbW0tHzrW9/6n//5n1mzZqEGeKDfgKVqa2uRGZd53XXXYZHphRdeeP/995GKS0ANSFqxYgWua9KkSSAAdPXee+8lSkaSLgLEwCW4NO214RpNJtNrr70G1gdtg4eClYWaNWrUKHUqBXEv1JHs7/YIMGl1+1vc5S+wubkZw3p1dTXIBurFZZddhhGcrgpDMPQhKBYgm6uuugqD/vTp06E9YFinDGoX6hFG/BkzZqAG+DHcQ//AcEl5MNPHmL5161ZYnFDPyy+/vHTp0pEjRyL1008/XbZsGUb/P/zhD2gFKhpIoqqqavHixUgFZYICv/3tb8M+BisZGAtUd+rUKSQFlI0bN7a2toJlr7nmmssvvxyax1//+lfkTEtLgyEUnoEDB8LgBunTpw+CEPAouA2mUfAW9C3UDzZCKUSCR+fMmfOPf/xj9+7dxNa4hLq6ut///vff+ta3wE8gNuTMyMhAPf/+97/heeqpp8Cv0NjAxFgfQnw0glsDKS8vxxW9+eabQK9nz57aKwRi6A8uClfx0EMPYRYSDDo0AX1aXTMFEa+OZH+3R4BJq9vf4i5/gRi+MRmHOQsDHExz0DYwncdV7d+//+uvv8YKB/wYN0lg5YMKFVDRAe1BHxo0aBCKQ2Aig56xZ88eFCeB0vbb3/4Wqhi0JUz5MYxS/Ntvvw1VDDHUBNy8vDwY2aAZIANUIpAEdQNBCJQwmArhCShQ7xAPlgX3aDdtwcSHUiToD7jn+uuvR09IoGKiS9Qf+KFm/cd//Ad4V23DRNkLL7wQFAvSBYakYiIyoDQ3i4kCVR5wBkClACBuDQT2PYAGDRIAUpJGV5l/ID9pTorNFjE+YjAYfGIQxK2By5I4CDBpJc697qpXCkVh8+bNUKegGYBjMObSlZB17oEHHsCgqQh0L6QGHJGhczz99NOwR0Fjw1oI6sRqEJnUUIQE3IMRv76+/j//8z8pBi4agm6Um5urtAIP1C9qhWb64AzkVMQnqMTDAz0PihH44Pvf/z50KWhXr7/+OuJDCOyW0MOUDOgPuAf9RDcUgYJC/YGitmbNGqg7d955J/wQRZ26/fbbYTMEK9x4443IgHU1qIxKtWoP9DClZlpyU6cqfqyZAUbIW2+9BfskLgT6qJKqxQMFV8mG9Tn4fe4IYkiQk6CmINzTp0/DJX0LHpYEQYBJK0FudBe+zGHDhmGFH5Y0GKBAObCM/f3vf8f1YHYPFzYlDJo+Am0DSWqprKyEggLjFYxsGJGh7sD0R6Oekq25uRmkBWWub9++ULNoHQipaAjT+Q0bNvi0Au5BKgZTuOAMuIr4BJV48sBwt3btWnQJuhF4C2wKdY2SArpoXR2P/qBRn84giMU2ynbppZeCRVA/mHX8+PFYjYPlk5J++MMfwj6JJFhHwcSwpoLDKEnt/uUvf0GFJD6bKdTZkpOTcWsgqAf3BaZaGGCPHTtGeUBCoH/yk+vDOhSp0cX92rFjhzozBcH66kj2d3sE4o60uj3ifIHRIIDlepAK1nJgsxoyZMjgwYO//PJLDJo+AluiTysY9zFGYxhV4rEEBZZSgvD86le/+uSTT1599dW//e1vqFZRtjAioyxMeT6tYBhFKVgvrVYrSsFPAlYIyASUqrjoDNacsB6GmG3btsFFDNxgqgaSSNAfjP7ovE9/AAhlINdoNEKX+n//7/8h+MUXX8BVxOFwYEXtkUceATEH3MiAqpTK+/fvrxQM4UHn0RYspVh3pGwo+NVXX5EfLnRlWGjhiUywaghr8GeffUbFoaouX74cF5ifn08x7CYIAkxaCXKju8llgrGgWsFISBsooBBAZbnqqqtgmFq/fj1Un4ULF958883+VwvzGuxyv//978FVsJ7993//N1ZfsDKk5IShDGURDz0MPAT/U089tXLlSmTAWheWiKCjQFGDuvbRRx+hddghn3nmGaSiSzBRIie0QBgeUT/Wq0KYB8G4MLiB5NatW4e1pXvvvReGOLAXqoIpDwY3JEED27Jly4kTJxDpL9/97ndBOVi9e/TRR6HfAAEsX82ePRt9QGboo+gAYtDP9957D71C5JQpU+DOnTv3nnvuASUDK6yoQYVKT0+H0okkXQRXgV69+OKLh+SnWrBGogO4XvRw6dKlWPRCcxE3BNCgyeHmAnzcQVwjVi6J8iOukwt2RQSYtLriXUvoPt99990w32G8hqoBmyFWp8A9sIBhXMawiOEMnoAAYbBDfhDPzJkzQQlgKWUMPXny5G233YZVGYywVPa+++67/vrrMVAePnw4KSkJ7Ij1MIz1IIzrrrsO2Wpqai688ELKjM6A5FatWnXDDTdgdAZtQFOhJH8XygGMhz//+c+nTZsGLgRLQQXBcIycWLvCmhO0KCSBS5599llE+gtUqH/9618PP/zwm2++Cf1jxowZWEmCtkeaH0yj0EKgNYLYQBulpaXIjApRD8yGO3fu/NnPfjZ16lSQ5TnnnAPNEgt7SNJLwCK4L4899hgqhKoKeemll4DkG2+8AZrEnUJ8ZAJNDuSHO4gHABXiloERQZOR1calui4CTFpd9951/55De4BdDnYq9aVidIbxbd++fRi7ET9q1CioDsXFxbB0YSDDuPaTn/wE8RCQEIrDhR/Su3dvLIZhHauqqgrjHXgChIQhFUm9evVCDSiLRRoEITAnYqx3uVywcSEIgaaFJSIYuNxu9/79+6HKjB07FvEQZMZS2dGjR7GEA7sizHdQlSBI8hdw3rvvvltUVITMaBRrS5dccomSDaQIPRLXgp5DE0I8eohG4VFLSkrK/fffv337dtgSz5w5gyJgykGDBiEP1ESQGS4NlrqysjJ0A0M84iHf//73QZCgTDQNaydwI55DUgQSsGNYYQJpgXpRodlsBocBFiCGbowePRq9QikkQfxvLu4UrhouUgNKbm4uYAep46qxChhsdhKwLEd2GwSYtLrNreQLYQQYgURCIFGvlUkrUe88XzcjwAgwAl0QASatLnjTuMuMACPACCQqArqRFkzkWMrOzs7GYjKWgrdu3UqQwkgN03x+fj4WnGGtVu+vhWEda6o5OTkOhwMr2LDyUxG4WEvAGjLWySHwVFRUIDLxhK+YEWAEGAFGoA0C+pAWOGbixIkmkwnr27t37160aJGyTeiJJ55YvHjx008/vXnz5ry8vKlTp2LdmLowf/78lStXrlixYsOGDVhqxvI1lnApadasWVhkfl/+wQPeonh2GQFGgBFgBBIZAX1I63e/+11BQcGLL7544YUX9u/f/8orrxw4cCBghZq1ZMmSRx55ZObMmSNGjHj55Zfdbvdrr72GpMrKyueffx70NmXKlDFjxixfvnzHjh1r1qxB0p49e8BWzz333Hj5t2zZsrfffntv8GOzUYSFEWAEYoQAN8MIdCoC+pDWv/71r3Hjxt188809e/YEA4Fm6KIOHTp06tQp+kYEMRaLZdKkSRs3boQf9sPGxkYlCfZDsBolbdq0CVbBiy66CNkgF198MYKUhKAisC5Wef9gPzx48CCI0BvB/zMCjAAjwAh0SQQwkmO1qKWlRRnt1R59SAuE8cwzzwwePPiDDz6444477rnnnr/KX1sAY6Gx3NxcuCTwUyRcs9mcmZlJ8XDVSSA/xCiCIPIrQfIsXLgQZEaCeqDbwSZJQXYZAUaAEWAEuigCGMlhugt2IkxA0iJSCMMFJZ5//vmPP/441Kyf/OQnc+fOBYcp5Q0Gg+JvbW01GM4GlXh41EkGQ5s86iTkJHnooYdAyCRHjx5F5LFjxygYsXvNE+8XzP/ff37+TcQ1cEFGgBFgBBiBaBDASI7x3P8EUURC9CGtXr16DR8+HNWRDBs2jFgkLy8PMWolqaSkBBoVIpHU0NDgcrngJ1EnFRcXUyS5paWlVIqC5MLYmOb9w4QCkd5Q5P87nM5ki91kdUReBZdkBBgBRoARiA4BjOcGQxvVBTEk+pDWxIkT1Rsl9u3bRz+CV1hYCHJa1VmGzAAAEABJREFUvXo1NQaWWrdu3YQJExAcO3asyWRSkk6ePLlz505KGj9+PFj6888/RzbIZ599hiAlIdihYk4RgDQ0B7aldmjTXHk7CHAyI8AIMAJJSWKMjh6He++999NPP4V5cP/+/a+99tqzzz575513olqDwTB//nzEr1y5Epw0e/Zsu90+a9YsJEE3mjNnzv3337927dpt27bddtttI0eOnCLPooaidvXVV8PGiDoh8EyfPj3ECaSoTS+xpBhRVX0TkxZgYGEEGAFGIO4Q0Ie0LrjgAtDS66+/PmLEiMcee2zJkiW33norXeuDDz4I3po3b964ceOOHz++atUqxVL55JNPzpgx45ZbboGiBjJ766236AhUFHz11VfBYdPk36hRo1555RVExkDMRgEIk1YMoOYmGIFugABfQuwREGO0Lq1CGdqxY0ddXd2ePXugGyl1QtlasGABrH9Igm0QrKYkWa3WpUuXlpeXu91uMFZBQYGSlJWVtXz5ctqtCU9GRoaS1KEej3mQNa0ORZkrZwQYAUYgUgR0I61IOxBf5Zi04ut+cG8YAUaAEWiLAJNWGzwstBFDrWm1SecAI8AIMAKMQGciwKTVBn3StOqbmtvEcoARYAQYAUYgPhBg0mpzH4i0GljTaoMKB+IOAe4QI5CwCDBptbn1Frl7kL/TagMKBxgBRoARiBsEmLTa3AqLSXynxZpWG1A4wAgwAoxA+wjEKAeTVhug+TutNnBwgBFgBBiBOEOASavNDeE1rTZwcIARYAQYgThDgEmrzQ0h0uITMdqAogqwlxFgBBiBzkWASasN/p7vtPjA3DaocIARYAQYgXhBgEmrzZ3waFqN/J1WG1g4wAjEMQLctcRCgEmrzf2mjRi85b0NKBxgBBgBRiBuEGDSanMrSNPiLe9tQOEAI8AIMAJxg0DXIK2YwWWRv6fFpBUzwLkhRoARYATCQoBJqw1cpGnx7sE2oHCAEWAEGIG4QYBJq82tsPAp723w4EAIBDiJEWAEOgEBJq02oJOmxRsx2oDCAUaAEWAE4gYBJq02t4I1rTZwcIARYAS6FgIJ0FsmrTY3mTQt/j2tNqBwgBFgBBiBuEGASavNraDvtBqbW1taWtskcIARYAQYAUYgDhBg0mpzE0jTQlQcL2uhdyyMACPACCQoAkxabW68RX6nhSgmLYDAwggwAoxAvCHApNXmjpiMBgrXN7aQh11GgBFoHwHOwQjECgEmrTZIGwwGshCyptUGFw4wAowAIxAfCDBp+d4Hi1Fgwic5+eLCYUaAEWAE4gABMUBr60ai5PJoWk1sHkyUO87XyQgwAl0IASYt35tlkSc58adavrhwmBFgBBiBOECAScv3JrCm5YtIPIe5b4wAI5BgCDBp+d5wJi1fRDjMCDACjEDcIMCk5XsriLTqm3lNyxcZDjMCjIAWBDhPhyLApOULr0V+X8zfafniwmFGgBFgBOIAASYt35tAxw/yd1q+uHCYEWAEGIE4QEAf0lqwYIFB9ZeXl0eX1traiqT8/HybzTZ58uRdu3ZRPNz6+vq77747JyfH4XDccMMNRUVFiCRxuVy33357uvyDp6KiguJj45J5sJ3vtGLTFW6FEWAEGAFGoC0C+pAW6jz33HNPev927NiBGMgTTzyxePHip59+evPmzWCyqVOnnjlzBvGQ+fPnr1y5csWKFRs2bKiurp4+fXpzczPiIbNmzdq+ffv78g8e8BYiYyZMWjGDmhtiBBgBRiBcBHQjrZSUFNASSY8ePdAPqFlLlix55JFHZs6cOWLEiJdfftntdr/22mtIqqysfP755xctWjRlypQxY8YsX74cPLdmzRok7dmzB2z13HPPjZd/y5Yte/vtt/fu3Yuk2IiFv9OKDdDcit4IcH2MQCIgoBtpffPNNzADFhYWfve73z148CCwO3To0KlTp6ZNmwY/xGKxTJo0aePGjfBv3bq1sbFRSUJBsBolbdq0CXbBiy66CNkgF198MYKUhKBaYGCsUv2pk6Lxs6YVDXpclhFgBBiBDkVAH9ICx/z1r3/94IMPli1bBqKaMGFCeXk5POh6bm4uXBL4KRKu2WzOzMykeLjqpJ49eyJGEQSRXwkqnoULF4LPSAoKCpT4KD2kafGaVpQwcnFGgBFgBJKS9MdAH9K65pprbrzxxpEjR8Lc984776CbMAbChRgMnh/7gL+1tdVgOBtEjCLqJIOhTR51kpIfnoceeghmRpJjx44hRhfh3YO6wMiVMAKMACPQEQjoQ1rqnjkcDrAXrIVY30K8WkkqKSmBRoVIJDU0NLhcLvhJ1EnFxcUUSW5paSmVoqDiwt6YpvpT4qP0WExG1FDPB+YCBRZGgBFgBOIMAf1JC0tNe/bs6dWrF9a3QE6rV6+mSwZLrVu3DpZDBMeOHWsymZSkkydP7ty5k5LGjx8P5enzzz9HNshnn32GICUhGAPxaFpMWpqx5oyMACPACMQMAX1I64EHHgAhHTp0CBxz0003VVVV/eAHPzAYDPPnz3/88cdXrlwJTpo9e7bdbp81axauDQtRc+bMuf/++9euXbtt27bbbrsNyhlMi0gaNmzY1VdfPXfu3E/lHzzTp08fMmQIkmIjtBGDNa3YoM2tMAKMACMQFgL6kFZRUdH3vvc9UMvMmTPNZjPopl+/fujHgw8+CN6aN2/euHHjjh8/vmrVKqfTiXjIk08+OWPGjFtuuWXixIkgs7feestoFHY5JL366qvgsGnyb9SoUa+88goiYyZEWrwRI2aAc0OMQAcgwFV2WwT0Ia0VK1acOHECBkAw0xtvvDF8+HACDMrWggULYP2rq6uDKjZixAiKh2u1WpcuXVpeXu52u8FY6u1/WVlZy5cvh7oGgScjIwP5Yya0e5B/TytmgHNDjAAjwAhoR0Af0tLeXvznZE0r/u8R95ARYAQSFoEuTFoddM88GzH4p0k6CF+ulhFgBBiBKBBg0vIFjzUtX0Q4zAgwAoxA3CDApOV7Kyz0e1q85d0XGA5rQYDzMAKMQMciwKTli69FHpjLuwd9ceEwI8AIMAJxgACTlu9NYPOgLyIcZgQYgS6NQPfqPJOW7/30kBZvxPAFhsOMACPACHQ+AkxavveAzIP1jZ5fpPRN5jAjwAgwAoxA5yHApOWLfdfUtHyvgsOMACPACHRLBJi0fG8rfafFZw/64sJhRoARYATiAAEmLd+b4NG0eMu7LzAcZgTCRICzMwIdgACTli+oRFrQtFpbW33TOMwIMAKMACPQqQgwafnCb5EfFyO2sZlJCzCwMAKMACMQRwhESVpxdCV6dcUiPy5GbQ286x0osDACjAAjEE8IMGn53g3aiIFYPhQDILAwAowAIxBXCDBp+d6O5GRDSrIBsfyTWgChSwp3mhFgBLovAkxaAe4tWQhZ0woADUcxAowAI9CpCDBpBYCfNhAyaQWAhqMYAUYgIgS4kF4IMGkFQJJIq54/1QqADUcxAowAI9CZCDBpBUCfSSsAKBzFCDACjEAcIMCkFeAmWOSnWmGbBwPUxFGMACPACDACeiLApBUATdr1zt9pBYCGoxgBRoAR6FQEmLQCwE/mQda0AkDDUV0NAe4vI9DNEGDSCnBDmbQCgMJRjAAjwAjEAQJMWgFugiVFwMIfFweAhqMYAUaAEYgWgajKi9E5qgq6Y2EiLTYPdsd7y9fECDACXRsBJq0A989jHuQDcwNgw1GMACPACHQmAkxaAdD37B7kj4sDYKM1ivMxAowAI9ARCDBpBUDVIr/T4hMxAkDDUYwAI8AIdCoCTFoB4CfzIJNWAGg4ihHowghw17sDAkxaAe4ikRZvxAgADUcxAowAI9CpCDBpBYCfSSsAKBzFCDACjEAcINDdSEsXSC38nZYuOHIljAAjwAjojYDOpLVw4UKDwTB//nzqZ2tr64IFC/Lz82022+TJk3ft2kXxcOvr6+++++6cnByHw3HDDTcUFRUhksTlct1+++3p8g+eiooKio+Zy5pWzKDmhhgBRoARCAsBPUlr8+bNzz777KhRo5QePPHEE4sXL3766aeRlJeXN3Xq1DNnzlAqiG3lypUrVqzYsGFDdXX19OnTm5ubKWnWrFnbt29/X/7BA96i+Ji5ni3v/J1WzBDv5g3x5TECjIBuCOhGWiCeW2+9ddmyZZmZmdQ7qFlLlix55JFHZs6cOWLEiJdfftntdr/22mtIraysfP755xctWjRlypQxY8YsX758x44da9asQdKePXvAVs8999x4+YcK33777b179yIpZkLmQd6IETPAuSFGgBFgBDQioBtp3Xnnnddddx1ISGn40KFDp06dmjZtGsVYLJZJkyZt3LgRwa1btzY2NipJsB+C1Shp06ZNsAtedNFFyAa5+OKLEaQkBNUCA2OV6k+dFKXfwt9pRYkgF2cEGIE4R6DLdk8f0oKV74svvsCClhoHMBaCubm5cEngp0i4ZrNZ0cmQqk7q2bMnYhRBEPmVoOJBc+AzkoKCAiU+eg+vaUWPIdfACDACjEBHIKADaR07duxnP/sZTHxWq9W/iwaDQYmEwdBgOBtU4uFRJxkMbfKok5BTkYceeghmRhL0QYmP3sOkFT2GXAMjwAgwAh2BgA6kBVtfSUnJ2LFjU+TfunXrnnrqKXihPKHHaiUJ2SgyLy+voaHB5XIhA4k6qbi4mCLJLS0tpVIUVFzYG9NUf0p89B7aiFHf5TdiRI8E18AIMAKMQHwhoANpXXnllTt27Nju/Rs3btytt96K0IABA0BOq1evpisGS4HPJkyYgODYsWNNJpOSdPLkyZ07d1LS+PHjoTx9/vnnyAb57LPPEKQkBGMjpGnVN3p2M8amUW6FEWAEGAFGoF0EdCAtp9M5QvXncDiys7MRYZAfbD3++OMrV64EJ82ePdtut8+aNQt9wkLUnDlz7r///rVr127btu22224bOXIkbeIYNmzY1VdfPXfu3E/lHzzTp08fMmQISsVMLPLj4gbWtGKGODeUOAjwlTIC0SGgA2mF6MCDDz44f/78efPmQf06fvz4qlWrwHCU/8knn5wxY8Ytt9wyceJEkNlbb71lNBop6dVXXwWHTZN/o0aNeuWVVyg+Zi5pWrzlPWaAc0OMACPACGhEQH/S+vjjj5csWULNQ9lasGABrH91dXWwDUL9oni4Vqt16dKl5eXlbrcbjKXe/peVlbV8+XLazQ5PRkYG8sdSmLRiiTa3xQgwAoyAdgT0J62kJO2tx2lOMg/yT5PE6e3hbjECjEACI8CkFeDmW+THxWweDAANRzECjAAj0KkIMGkFgJ/Mg/VNvHswADhdNYr7zQgwAt0CASatALfRKjWtltakRt5AGAAejmIEGAFGoNMQYNIKAL3V7IGllj/VCgAPRzECjIA+CHAtESDgGZ0jKNmNi5iNyQZ5klQdk1Y3vs18aYwAI9AFEWDSCnDTDAaDzSQ+GqtraAmQzFGMACPACDACnYQAk1Zg4DK0ULMAABAASURBVK1EWtHvxQhcPccyAowAI8AIRIIAk1Zg1EjTqm3gDYSB8eFYRoARYAQ6BQEmrcCwW0wCGV7TCowOx3ZxBLj7jEDXRUAMzV239x3Xc4+mxRsxOg5irpkRYAQYgfARYNIKjJlnTauRN2IExodjGQFGgBHQFQGtlTFpBUaKNC02DwZGh2MZAUaAEegkBJi0AgNv5TWtwMBwLCPACDACnYkAk1Zg9K1yyzufiBEYnUhjuRwjwAgwAlEiwKQVGEAirTpe0woMD8cyAowAI9A5CDBpBcad1rRY0wqMDscyAt0HAb6SLoYAk1bgG2blNa3AwHAsI8AIMAKdiQCTVmD0SdPi3YOB0eFYRoARYAQ6CYGEIK0IsLXQRgw+xikC7LgII8AIMAIdhgCTVmBoPZpWE39cHBgfjmUEGAFGoFMQYNIKDLuVNa3AwHCsXghwPYwAIxAJAkxagVGzmQUy9fzTJIHh4VhGgBFgBDoHATE0d07L8d2qNUX8CCT/NEl83yXuHSPACOiKQFeojEkr8F2ymgVp1bGmFRgejmUEGAFGoHMQYNIKjDtrWoFx4VhGgBFgBDoVASatwPDbSNPqhsc4Bb5ejmUEGAFGoEsgwKQV+DZZ+USMwMBwLCPACDACnYkAk1Zg9D3fafEvFweGh2MZAV0R4MoYAc0IMGkFhspK32k1Nre2tgbOwbGMACPACDACMUeASSsw5ERaLa1JoK3AOTiWEWAEGAFGIOYIxIy0Yn5l0TVI5kHUwb9OAhBYGAFGgBGIEwT0Ia1nnnlm1KhRafJv/Pjx7733Hl0ebGsLFizIz8+32WyTJ0/etWsXxcOtr6+/++67c3JyHA7HDTfcUFRUhEgSl8t1++23p8s/eCoqKig+lq7JaEg2iAbreVlLwMD/GAFGgBGICwT0Ia0+ffr8z//8zxb5d8UVV3zrW98ifnriiScWL1789NNPb968OS8vb+rUqWfOnKHrnj9//sqVK1esWLFhw4bq6urp06c3NzdT0qxZs7Zv3/6+/IMHvEXxsXQNBgMpW6xpxRL2WLfF7TECjEBXQ0Af0rr++uuvvfbac+Tfb3/729TU1E8//RRq1pIlSx555JGZM2eOGDHi5Zdfdrvdr732GiCqrKx8/vnnFy1aNGXKlDFjxixfvnzHjh1r1qxB0p49e8BWzz33HDQ2yLJly95+++29e/ciKcZCy1p1/KlWjHHn5hgBRoARCI6APqSl1A9tCcpTTU0N+ObQoUOnTp2aNm0apVoslkmTJm3cuBHBrVu3NjY2KkmwH4LVKGnTpk2wC1500UXIBrn44osRpCQE1QIDY5XqT52ki59IizUtXcDkShgBRkAjApwtNAK6kRZUJShYYKY77rgDdr/hw4eDsdB2bm4uXBL4KRKu2WzOzMykeLjqpJ49eyJGEQSRXwkqnoULF4LPSAoKCpR4vTxW/r5YLyi5HkaAEWAEdEJAN9IaMmQI1p9gFfzpT3/6gx/8YPfu3dRDLA6RB25ra6s6iBhF1Ek+edRJSn54HnroIZgZSY4dO4YYfYVOcmJNS19UuTZGgBFgBKJBQDfSguY0aNCgcePGQQEaPXr0H//4x7y8PPRMrSSVlJRAo0IkkhoaGlwuF/wk6qTi4mKKJLe0tJRKUVBxodXJ7YoeR4nXy0Nn5tZ3xO5BvbrI9TACjAAjkGAI6EZaatygG2HBqbCwEOS0evVqSgJLrVu3bsKECQiOHTvWZDIpSSdPnty5cyclYTEMytPnn3+ObJDPPvsMQUpCMJbCmlYs0ea2GAFGgBHQgoA+pPXwww9/8sknhw8fxsrWI4888vHHH996660Gg2H+/PmPP/44lrjASbNnz7bb7bNmzUK3sBA1Z86c+++/f+3atdu2bbvttttGjhw5ZcoUJA0bNuzqq6+eO3cuLI0QeKZPnw7bI5JiLBb5O5B1vHswxrhzc52EADfLCHQJBPQhLRj0br/9dlDLlVdeCd3o/fffnzp1Kq7/wQcfBG/NmzcPZsPjx4+vWrXK6XQiHvLkk0/OmDHjlltumThxIsjsrbfeMhrF7y4i6dVXXwWHTZN/o0aNeuWVVxAZe/FoWg2er8di3wFukRFgBBgBRsAHAX1I6/nnn4eaBZMglqbWrFlDjIWWoGwtWLAA1r+6ujrYBkeMGIFIEqvVunTp0vLycrfbDcZSb//Lyspavnw57WaHJyMjg4rE2LWmCHD4x4tjDDs3xwgwAoyAF4EA/4txOUA0RyUlkaZVx5oWPwyMACPACMQNAkxaQW+F1STMlXVNLUFzcAIjwAgwAoxAbBFg0gqKN5FWLWtaQRHSJ4FrYQQYAUZAOwJMWkGxsvKJGEGx4QRGgBFgBDoHASatoLjzKe9BoeGEpKT/3XLs12/tam3lH7bulk8DX1T8IsCkFfTeWGlNi7/TCopQQif8z3tfv/jvw3tOnkloFPjiGYGYI8CkFRRy0rTq+BinoAglbkJzS6vL3YDrL6+ph8vCCDACMUMgcUmrXYitvKbVLkaJmuFMXSPZBU/XCOpKVBj4uhmBTkCASSso6FZpHuRT3oMClMAJLncjXX2F10NBdhkBRqCjEWDSCoowkRabB4MClMAJFdI2CAD01rRQJQsjwAiEQoBJKyg63jUt/rg4KEQJm1DhVbBcXvZKWCj4whmBGCPApBUUcNa0gkKT8AkVtZ6lLNa0Ev5ZSAAA4uwSmbSC3hDStHhNKyhACZzgqvGsabGmlcBPAV965yDApBUUd6vcPQjS4g9Ig2KUqAkVtV7S8rJXoiLB180IxBoBJq2giFvN4sDc1takhuZuv6wVFAROCIhApXcpizWtgPhwJCPQcQgwaQXF1poiSAvJdQ1MWoCB5SwCLu9GDKxpsSJ+Fhf2MQIdjwCTVlCMTUaDMdmAZP4dSIDAokZAMQ/WN7XAgKxOYr9uCHBFjEAgBJi0AqEi4wwGgzVF4MO/TiLxYOcsAhVe8yCioGzBZWEEGIHYICAG5di01BVb8fx4cVNzV+w897njEKjwmgfRhNqPIAsjwAh0KAKdS1odemk6VG6Ry1qsaekAZfeqokJqWhapiLOm1b3uLV9NvCPApBXqDnk0Lf51klAgJVxaU3NLVV0TLrt/tgOuSxIYPCyMACMQAwSYtEKBTJ9q8fGDoTDqfmntXRExFnIV5gjSYk0LULAwAjFDgEkrFNR0KAaTViiMEi+NVCunJaWH04Krd/GvkwAFFkYgVggwaYVC2moSn2rxnuZQGCVeWoXchZHhMGXaTbh6lwzCw8IIdBwCXLOCAJOWAkUAD5FWHa9pBcAmcaMq5Wm5GTZzpsMMFE7zmhZQYGEEYoUAk1YopIm0WNMKhVHipbnkeYMZdlOWJC0XmwcT7xngK+5EBJi0QoFvk2fmxmhNK1RHOC2OEKDjMDLs5ky71LQiJa2m5pbZL37+6Fu74+jauCuMQNwjwKQV6haRpsWkFQqjxEurkPbADJtX05LBCGDYX1r98d7SVz49zKcXRoAeF0lYBJi0Qt16m9yIwaQVCqPES6uQOy8y7aYM70aMyFin7Iz4JcnG5tbqevHVV1Jc/nGnGIF4Q4BJK9QdsUjS4jWtUBglXppLqlbpdjOtaTU0tbgbIjnoq7ymnsAjFiQ/u4wAIxAaASatUPh4NS3+aZJQKCVaWqX8BUhoWng8ojnJqfSMh7SIBRMNRr5eRiAyBJKTIiuXGKWsciMGa1qJcbe1XiUpRrANGgwGUrYiY51y7w4Ol7Q3am2e8zECiY0Aa1qh7j+m0kiub4zE+IOCsZQzdY3HTrtj2WLCtuWS5sEMuXWQ3MhOcipTNC0veyUspHzhjIB2BPQhrYULF15wwQVOp7Nnz54zZszYu3ev0gOsUS9YsCA/P99ms02ePHnXrl1KUn19/d13352Tk+NwOG644YaioiIlyeVy3X777enyD56KigolKZYea9dZ0/rhi5sn/+Hj4qq6WOLTcW3Fc82VUjHKsInjMLIcwiXdK9w+qzQtsSMj3OKcnxFITAT0Ia1169bdeeedn3766erVq5uamqZNm1ZTU0OAPvHEE4sXL3766ac3b96cl5c3derUM2fOUNL8+fNXrly5YsWKDRs2VFdXT58+vbnZo9PMmjVr+/bt78s/eMBbVCTGrlWSVl1XOBFjb/GZ5pbWo6xsdfAj0tjcckZu9iMdK1PqWxFqWtXKmlZjB/eaq2cEug8C+pAWyGX27Nnnnnvu6NGjX3zxxaNHj27duhUgQc1asmTJI488MnPmzBEjRrz88stut/u1115DUmVl5fPPP79o0aIpU6aMGTNm+fLlO3bsWLNmDZL27NmDCp977rnx8m/ZsmVvv/22WntDntgI/TRJ/P+eVkuLZ9t0ZNvYYgNm92iFdmHgWtJtQsfKokMxpMEQkWFJebVHwaqIqHhYbXFmPRDgOuICAX1IS30pYCMEs7Ky4B46dOjUqVNQvOCHWCyWSZMmbdy4EX6wWmNjo5IE+yFYjZI2bdoEu+BFF12EbJCLL74YQUpCUBFYF6tUf0q8jh5risCnrsmj/+lYs75Vnalram0VVdY28Bc/AoeI/52srP3jmm/KvDqQfz0V0jaYZk0xJhuQGrGmhflcqbcVl6wTtbEwAoxAuwiIQbndTNoz4FW87777LrnkEjAQSoGx4Obm5sIlgZ8i4ZrN5szMTIqHq07C2hhiFEEQ+ZUgebCQBjIjKSgooEh9XdK06iL6CkffnoSuTZn+19THO7+GvhB9U2EvDbfCFzYcenLNvhWfHw1WsEJqRXRULvJker4v9uhMiNEosDE2NHk+peDTCzWCxtkYASCgM2ndddddX3311euvv46qFTEYxJyUgmA1g+FskCLJVScZDG3yqJMoM9yHHnoIWh3JsWPHEBO9+NRgNYmfJqnzDi4+qfETrKrzLIq4u8JGx9jg9pu3d495dFW4Oyppc0RFcNWHkmgXBi6E2Mslj9BFULuUe22DKOKSRAgPCyPACLSLgJ6kdffdd//rX//66KOP+vTpQw3n5eXBo1aSSkpKoFEhEkkNDQ0ulwt+EnVScXExRZJbWlpKpShILoyNaao/itTXpS3vtV1H06pl86D3Cfjw65KquqaP95V6IzT975aqam1w7ieCyZD7L1BjxGtaZV7bICohIoSHhRFgBNpFQB/SgiYEHevNN9/88MMPCwsLlVbhBzmtXr2aYsBS69atmzBhAoJjx441mUxK0smTJ3fu3ElJ48ePh/70+eefIxvks88+Q5CSEIylWEwCH6xp4QJj2W64bVXJMxpQis2DAIGkVH4FtftEJQU1ujWS9UOQFlliM6RVEHVmSvaKYPdguSStnFRxTjwRIWoLIhzNCDACZxEQg/LZUKS+O++8c/ny5a+99prT6YReBamtrUVlBoNh/vz5jz/++MqVK8FJs2fPttvts2bNQhLWoubMmXP//fevXbt227Ztt91228iRI6dMmYKkYcOGXX311XNyPuxXAAAQAElEQVTnzv1U/sEzffr0IUOGICnGQppWa2tSfXxbCCu9pBVitI0xdJ3bXG1DMxaN0Iedx6vgapcauZ29rl1Nyya2DqJaj3nQ3RDutKZUmgcH9UxFJe6G5hAtIgMLI8AIKAjoQ1rPPPMMlKHJkyf38v797W9/ozYefPBB8Na8efPGjRt3/PjxVatWgdgo6cknn5wxY8Ytt9wyceJEkNlbb71lNIo1JKS++uqr4LBp8m/UqFGvvPIKImMvVrmmhXbr4/tTLWVNi8ZcdDjBRTG+7T11prHZs99BCyY1ZB4MbhAmU95Z86DUtBrDP6mdNK3CHAftQqRqtfSQ8zACcYFA53VCH9LCNNNHoFTRRUHZWrBgAax/dXV1sA3SrkJKslqtS5cuLS8vd7vdYCz1DsCsrCyobrShHZ6MjAwqEmPXZExOkTub41yDOatpBR9tYwxd5zZXcsZzMkhDc8s3xdXaO9OuebBCKrUZXvOgzWy0ShtyRfC9GwFbJ1rNSbXQng62EAZEiSMZAX8E9CEt/3q7TYxVKlt1we1F8XClVbWez7NgaIqH/nR6H2hBi7qxK5xlrRppHqwNrlhXyJ1+mVLBovqzpD/cZa1yaR4EaSkGRqqNXUaAEQiNAJNWaHySiLS6iqZFikI7l6Q1uQvna0taYSxr1UhVNcSXeRVSo0r3alrAiFjntCQzBDVKmdyIkZ1qzpRVRbBpXmNDnI0R6GYIMGm1c0Ot0vgT55pWpbRZ4Upq5ZgLT4JLidw6mGZNAQ7aNa3G5hb64Lcu+BkoRFpqTYv8rjBPai/3aloZUlFj8yDuFAsjoAUBJq12UKINhHGuaSkbMdg8SLeTNK3LzumB4O4TVS0t8pArBEIKfaSFLCG4v0JqVLQQhZwQj6YVJmnRGU7CPCg1LaoWtbG0gwAnJzwCTFrtPAJWuaZVH3yRo53yMUlWNC23/MwoJm3GdSNEWhcPyLakJMPid0Tb4ffVXvSCzVGgh6E2XHmGZBp4IFnSH5aqVN/UfKZOLEPmwDzoOXLXc6YJKmRhBBiBEAgwaYUARyR1DU2LN2KIe3X2H+kxvdKtQ3ulIXbncU2fGLvlLgzkrwuy76aiVpwxaDAkpVk932khM2laLrnWhaAWIdtgSrIh3WbKJPNgmIqallY4DyPQLRGIQ9KKL5w9h2IEGcXioa+tra3KiRhuXtOSt6SkSvxUVQ+n5dx8QVq7Tmjai1HtJa3G5tbGQF930c8/gmmS5YcQsqmkCFinzLsLw2AwZIavqFG77DICiYkAk1Y7990mzYPB7EXtFI5Jcn1TS4N3hHU3NLW2alq/iUnXOqeRlpZWYgUVaWnTtFSUH1DZInWKWEq5NtK0wtryXu7dhYFKMkjTCkdRQykWRiBhEWDSaufW05pWiJX5dsp3fLKyoIWmWuL+xCl0sqOloraxCUAkJeWkWkbkp6M5aFpauFzRtFCk1ke3RlRSEm2XgKYlQx6HvtNyyQ0anqj2/iPrZXaqBRmJAqlmBFkYAUYgNAJMWqHxSSJNC9pMO/k6L5lsg065vRu9cKvUBQQTUErkcRhZDrPJmDwkz2lMNkANOlXlOSMjBCBu70YM5KlrCHD4U4XUhzKlQQ95SDIdYn3rdDi/TuLVtMyoIUsWd8maEWRhBBiB0AgwaYXGJ8kqv9OKf00LY7Q5RdxN9cjbzrV102TaOthD6jFWk3FQD3EorZaTc6vlwYOESmBNS27EyJAGPcoGF8jDrXCHcWZumVzTgiKIglQb1OUmr40XkSyMgBYEEjOPGOYS88o1XrXVbETOgCsciI8HwXiHbqRZTQ7Z1Vr9NC3l8y/U34XEQ1pOYXxDt8/tTXsx2l/WUnYPolTAO14h9SEf8yDZ92CQpHPlUbZdodNyc+TvkiiffNF9bLcsZ2AEEhwBJq12HgBriiCtgPPudkrGKpmoBSOp3SwOgKAPiaJvfMXnR0ctWPWPbcejryrGNRBp9VRIy7us1W436OBByhbwjpMRj1iKssGFMkc2ZO2HYpSpNmKkGJPJtEuVo0IWRoARCIEAk1YIcESSTaovdZ31cbHoQjv/aB92mi3FLruql3lw3b5SNPz54dNwu5aUyDOcepwlLalpafhUS833AUmr0mMeFItYakzIQnha87dWZB6kjRioh4pXhLOVA6VYGIHERIBJq537bpULRQGNRe2UjFVylTxbQWpaQil0qxZmounCNyXiFz3og6do6ol9WdK0FNIaLj/VOlFZ164mpNa0Ap6Z65K7LTLabsTABdJeDJdm1vFqWmIjBorTspZ2zkMRFkYgYRFg0mrn1ns1reZ28nVecqU8LTfNZqKuugPt1Q63d43NLYfLalCqVO7Eg6cLSWlbTQurff2y7ej/rvY+MW5X06qQUGfYPWSDOkkyZQxRGsWEcFtaWk/XiG+fc+RWEeTMlCxYIRfMEIxGYCvWfkBwxA1xQUagExFg0moHfKxYIEdAYxHi40FoyzuGZodc06pV7duOuHtHymua5KdOZGqLuJ5OKVgiiVbRtNAHOhdjZ3s/rKXWtALe8UqpSxHHoFpFPKQlU5XIYB4oZBLaJLIKIltYxZE/mDQ1t3z3L59e99SGfcVnguXheEagqyPApNXOHSTSimfzIGlaMA+SplWjh3lQ+bVfaC3QDNrBKM6S0Wf0SNmIAf+52vZi1MhjnFLkEU21gTZhuqQylGHz1bSIfk5rW9Mi22CG3WQyet4++NFJqhyeiOWNL4p2nxQHVh0sFabdiOvhgoxAPCPgeW18u8hhLwJEWrVxvBEDFiF0FuZB2ogRUEVAhrCEFrRQBPqWS5sCgczxIJhe0CJfj1Sr0h9a1vpaDuhKpL+nRiqp2XInOurxyYAYwlb9C5CUJ5PMg9qAKld9pEXFPWdqaOM8KuLvuhuaFq3aR/F0hDz52WUEuhkCTFrt3FCbSexuqNdjoaidliJNrpRHvEPTskvzIAavSGs6W26/3IVB4RK5RET++HdpY545JTnNJj4AoA7np9vgoSR4ggntYcl2iA+8iJ/UOUmjNSYb0ryHjyipWfJUC42alucMJ8dZdS1D+qOcHDz/ySHlTjFpKbeGPd0PASatdu6p1SQg8h/C2ikWw+QquTsAI6ldbnmv0cU8GJekpQVUGrh7pFoMBoOSn8x3FbiLtJqkJLT1VEvzoFfT8j3GiTZKYHJgMJytmSrIkjxXJr++opgQbrnMluPdkY+ctEhG9SMYgcAi+ud1B1AwN00wLl0IgiyMQPdDQIzI3e+qdLwi0rRgGtKxTn2rItLCYOqwCN0i4GJMWC02t7QekIsitOmuRMOpfWHV36GZMXyjfvUuDASJFVpbk0JrMzWStEB4KAKCg6sWKpshd/qp4+HPSxdUcaqy/eMNkblMmgepFQQhmeFYF5HfX55a+01NQ/OoPunXj8pHKpMWQGDprggwabVzZ63SPOg/hLVTLFbJIBg6PQikRfzqjtqSeew0TIwtlpTksX0zcR2ku8DTJSQgaaUYkzMk2YSw4LW0tBJ0pAP5f6dFmpBy6pIajTxpfiyuqkMl6viA/nKpaWU7zpoHM6MjLcwwXvv8KNp66JphaTbx4fOZOv4dZOARG+FWYo0Ak1Y7iFtNYk2rrrFFy29btFNXByQrwxNGK7s0D7qluhBNU7QLY2CP1Nx0sZeBaEBdITjtr5sOa1Qs1AVj4CeK9dG00G6WQ5AEEQaC/oJ5CVQxxBOdIAi/WirlcRhEMOp4+Hs6YY1MamppLdewmaJMalpEjSgLyZRLYiDFyJ6xJ97/GnOXK4f2HD8w2ynX287I781RMwsj0P0QYNJq555a5ZoWMsXnr5NUygUtu9loMibbpXnQHWivNvqvXfbLBa3BuakYi1GqRH72BI8i/7el6Jf/3PXHtZ69akp8PHiIYqnn6v7QDr0QmlaN3DqI5Sr6UUd/0gKpoEJotHB9BODTl8JaiLxMEhtRI9VDRAjOI6WZIjW6XxVVfLCrONmQ9ItrhqJIqnwG2DwIKFi6KwJMWu3cWavJSDnic1mrSm4dTLMKo5BdKoVuOfhSnyNzvykRn6YO6gHSEppWSZU4vkFdFWUoctWqI+PET6QVTNOioygCdrVGbmBxmD1HOPovDZL6QqqMfw290gVWJyvbx6RM7sbMcVqUSqwmo1XOjSrkMVFKvBbPlsMuZLtiaM/BuU54nPJJoK4iyMIIdD8EmLTauaeYRHu+No16raidliJKrpSaFk3/oW+hDreOmlaaGFhL5CCLmhU5dloMzSG0FiVn7D2lUi9Ub3OgPtCewBDmuxppVnVYjDbJ/f5zFFJfUqX9jepUu3lpgrSwrKWO9PfDAFhOZzg5BLZKBlK2aK+HEqnFQ1MH2HIps1N2r5rNgwQHu90RASat9u+qdxTz3QPdfsmOz+H9sljsG9TFPNjS0krmwUE9nWRkKzlTh6FWfSnHXG4E45W0hF4YXNNqQM8Dioe0zCl0u/3Ng54M0v7mX0NeuiCtk+1tIKxpaMb6KIrnOMUaGzwkRFqntX2eLIt4nCJ5L/pkig/REJUqu6esdCKGhRHoZggwabV/Qy1y6u1vL2q/ZMfnCKRpNUXT7InKWuhqJqOhX7a9p1MMxBhk1WstYLUiqWmVVzf4kFk07epSFv2hT3d7Sr1HXWeW1GxCaFq4auR3WFI8t9tPsSZNyylZATl9hEjrVHufB5BtELxIX4IrlXj3YgTlVCWnj6dIGmn7ZIoTgZHklJqW+n4hkoUR6E4IMGm1fzdtZoFSXVM8HvROpOVZ06Ldg9GZB0nNKsxxwC5qMxtpjFYva5WcqW9oFkonXBrH20cwVjmARmNzK1rLSW2jxyCGNj6cltvNEfQXuha7WTEPimtUZ6MMYDV1pOKnNa12N2J4bINt1SxUkmEXHXaFv6ZV5KNpSdJCV8HfqJaFEYgpAjFpTAzHMWmoCzdiTZG73qMjgw66fvqyOM0mN2KYhZGwvqmlOeS5D6F7QqQ1qGcqZeuRJpZeSuRCEcUcPS1sg+SHskWeOHFL5PIbVvgs8pape5XlEKwQwqTplhtYUi0poGoU9P9OC0yA+GCklSt1u3ZJq/SM0KVyUgWqqE2RTLu4gxVhmgdB0lVy+aq31zzotIh6WluTauLycVWulz2MQMQIMGm1D51nFItjTQvDNC7DLjUteGj8hScCofPdB/UUW9FQnJa1SiUZIAg5piYtuXsbkXEi1M8eqo15SseItEKYB6vl7kGsC8J2h1LB1rScQcyDveT3xTAPhlZxSNPKlrZKtKJIltS0wl3TOi5tg9kOs90s5iuozWpKpn1DvBcDaLB0SwT0Ia3169dff/31+fn5BoPhH//4h4IUXuAFCxYg3mazTZ48edeuXUpSfX393XffnZOT43A4brjhhqKiIiXJ5XLdfvvt6fIPnoqKCiWpUzykadU2+NqLOqUzPo3SRJs0LUtKcrI8FS+a5Tfazj7Yq2nRspbKPJh0TNqjqBvlDOgDygAAEABJREFU8jtZ8seDS6RFROvTH9o96HIHXYejj7JTvbsHm1paG6UVVKmHaCCYpkW7B90NzXRHlFI+njKpafUIZh6UP33iUyRE0Mc2iJx4AVM9FkI+FAN4JP1z+/GZf/r3iQqx31WE+V/XR0Af0qqpqRk9evTTTz/tA8gTTzyxePFixG/evDkvL2/q1KlnzohvgJBt/vz5K1euXLFixYYNG6qrq6dPn97c7Fk0mjVr1vbt29+Xf/CAt5C/E8UqNRj/PdCd2CWlaRiI4E+3CaMQBiyacUdsGsIkg47DGJzrMQ8SAZQEMQ+GsLahV7EX6mcPp6/xDT3JcgjzIAynVfLLNsT4SLU0DwJAq1zCRKqPslUt98QTJSDVR2xmI92F0Lveg2lakW3EKJKalrILg7pEezGqpNmQYhLZffXTo18crfjH9uOJDEI3u3Z9SOuaa675zW9+M3PmTDU6GAGXLFnyyCOPIH7EiBEvv/yy2+1+7bXXkKeysvL5559ftGjRlClTxowZs3z58h07dqxZswZJe/bsAVs999xz4+XfsmXL3n777b179yKps8SaIlDyGcI6qzM+7XrWtOTkGkkYOuG65fgLT7gCTeVMXRPUtcIcB5XtmSYIoERlHqStg3ZJ5CGsbVQ8xi76jxZ7+K0YIdKSYkyVlj2iDcT4iFuaB6FImY3JQACp6mUtPMw0FaBKkOovvdLFZsvQu95pFZDUPnUNGdI8GO5GDC9pefa7U4WpclmL9EKK6f5u8CuEwRaJXxzpZGsN+tBdpaGpZeG7ezYeKIvZBYrhuIMaO3To0KlTp6ZNm0b1WyyWSZMmbdy4EcGtW7c2NjYqSbAfgtUoadOmTbALXnTRRcgGufjiixGkJATVAgNjlepPnaSvn5igzm8PtL6tRFYbkRbN8VGDQ3JJbaSL8KRm9cvG0C32nqDCYObBUX3SkUpDMDxapKa+6dbnPl269hstmSPLQ6RFROtfAylbwbRDdA9FACAUVv9lrbpGz/aWVMl8yOkv3r0YoSxRFUEOMKTvtGC99K82REyRNNUqH2lRTlp1w+SDgonsYqpBiu8XR13wJzIUHXfta/cU/2X9wSfej51e0YGkBcYCUrm5uXBJ4KdIuGazOTNTHCLun9SzZ0+KJBdB5Ce/2l24cCH4jKSgoECdpK+fhrA4JS15njetaeGqbWaxIE86AYLhyjfFwng7qKfHNojiPubB+qZmmrqeVyDuXTCtBQX95eO9pf/eX770w/1ED/4Zoo+hj7QCmgdROZFWMO2wRqqnoGvkpGmKWrcm26DBkGSX0wLk8RfStE5Viq+b/VMphoyTabYUCioubcQIn7QEQfbJ9HykRbU5pdpdXc9rWkmVtY31TWIpGjOVI+Vnd70SUOzqgsBu+YPgNF/UpcJ2K+lA0qK2DQa5N0AGWltbDYazQRnncdRJBkObPDKpTQyVeeihh2BmJDl27BhFdoRrNQm1A3Ptjqg8mjqBDF5L1OCnaUX4fTFpWsouDNRMWkuJ1zx43FXb2ioGbsqDsQB5NMpXRcJE09Dc8sk3HWVJoA0jPVKFmc6/V9kOsawVrM81HvOguNcWuWNerbASaaWaUwyGAI8itZWXLto9VSWIhGL8Xc8JJlaxBqlOzXCIGDxjYc2NAmpatOrGmhbgLVYdm7n1iDikEZEs+iKw56SY6VaE+bVGNH3oQNLKy8tDz9RKUklJCZQtRCKpoaHB5Tr7GKmTiouLkUeR0tJSKqXEkAf2xjTVH0V2hEvzbpqJd0T9EdcJVaBRfkurkBZ11R2peZA+0lJ2YaBjPeShGBgBaTClj7QKMu20KlMW/FtdlPWRLyVpIRL2BLgdIaE1rczQpEWallnoQAQjKETpZE29mAeQHqZE+nhoA+GpkCc5AUmUSrMJioJHEdj0UuRKmnZlC/MV2m2hfKRFtTmlpkUNUUzCumQVoMuHhZA87OqLwNenqlBhTUMzFrfgiYF0IGkVFhaCnFavXk2XAZZat27dhAkTEBw7dqzJZFKSTp48uXPnTkoaP348lKfPP/8c2SCfffYZgpSEYKcILWPQsNUpHQjWaJXcCGdMNti9Nivy4AEKViR0PJHWoB6ej7SQOc2aYkkRDwkpMcfkdrWCLFuO3OxwWp79imztSktL687j4uFGzo/2liAIj74C02WF3DLeM9DuQbRFmlawdTi6v0RLNo9u7dnOirLEAQ6L0MMQ9Ejb/0jTCrERA5oxrUESr6hLGwyGDPl9sUvzoRjQelEDLspuToFHkVSLYERSDZXIxPQUy1O1TEahHLOm1RHPACwHRXJMQOUVsVK2xHiE9qKU6urq7fIP9Rw6dAjeo0eP4j2cP3/+448/vnLlSnDS7Nmz7Xb7rFmzkAcLUXPmzLn//vvXrl27bdu22267beTIkVOmTEHSsGHDrr766rlz534q/+CZPn36kCFDkNRZQkNMHI4Cld4j3gE1geOQ41etVBooRrtbXl1P6z0De3q2DqIsavZaCOsQLJJfFhdk2Wl9CKY2DMSIb1cOllUDQKspGSpFWXXDdq/W1W5B7RlQLTJjhEq3iVEbfh/x9jnwmlONxzwoCIBIC4qsUkON1LRSrYFrpmy9vN8XU9DfRYVN8rCStED1ZNqF9VK7plUUaBcGGqXHtYPOzF3+6ZGF7+3ReNPRmc6VYqn1ThyUg27sKz7TQZig8oSVfaeEbZAu3yWnjOTvUFcf0tqyZcsY+Ye+3nffffD+8pe/hP/BBx8Eb82bN2/cuHHHjx9ftWqV0+mZxT/55JMzZsy45ZZbJk6cCDJ76623jEbPNPbVV18Fh02Tf6NGjXrllVdQVSdKqtwwRnPtTuyGf9OY5iAyTZqD4IHYpMpVI8dfBMOSvfL565tlt0vmU8p6NhDKZS3FPEgEAOMkWaiUzME8XxVVImlEfvplQ3rA0xEWQloKhgro2bGOZtoK9ZmIuW2KCNVIpndIAK3SrVVZWcG4yJQaWtNKE2taFe5GMqUiv4/QI2RUacbqDOGTllg889mFgQqJtKjDCOooeEL++587/7Lu4F65YUfHmjuoqmL5feHI3ul9Mm2YLXx5TDyEHdRW/FQby57skYMGtejqWprW5MmTMflSy0svvYQrwTx9wYIFsP7V1dXBNjhixAhEklit1qVLl5aXl7vdbjCWevtfVlbW8uXLaTc7PBkZGVSks1wirY4YBaK8oko5tVErFmTdwow+gprp+RvWyzOrUGoga1uJtLQck7N7aFpWk/ezJ22HYhBpjeqTMWWY2Bq6ZneJUr9eHuphsK2DaIXW4aAdwu8vbsn0BKDNJCZzahjp7tOT4F+WYtJsnp81CbaspdgG8V5QEbWbQeZBeU/V8cH8RdIsg+HYJwN1kgjSJynK4JOr97WK44iTQphAo2xC3+Kn5E7O3DTr+X3FZlde1tIXXtS2Vy5owQOp6FqkhR53Y0mVqkwcfq3p0bRsZ21WNpPQVt1SaQj3juyRW1eH5qX5FPSQltS0jskfJembJfZYh+YAn0poF8bogvTJ5/RMNiRhqn5MWhp9skUT/PTgaRRX79dHUC1Z8sS/gKSFNeSGZrE32iG1TIJRrTDVSPMgUZq6TrUfVETLWur1f3UGz/2ynr1f6tRMuzQPaj7OsUhOIGJGWjuPV76/6xR1mOYH5I9nt0RqWiCtsf0EafGylu4362u5dRBvNGp2aZ5vIXM0ImaU0ZRPhLLOeFvZ9oJOa1ppKtKijRikNHhzaf2fdgEN6+VHWmnC6lVyph7NQVAdDZRZDjHI0koSIkNIY3PL7hNiFwY0rUyHeVy/LGTW10IILf8DOaRedW4eKg8o2bLDMA8is08Ghebt0gBoC2IedEpDsU9ZdTBPYnVKLqWo48lfJTfOpNnEshnFqN0ceSAhGTnV8cH8RR5NS0wg1HmckhRJNVTHR+lfvHqfUkOxaiu5EhmHHroRuCmKptURO4Di8MJj0yW8R19L8+CI3uKoARdrWrHBXUsrqXGraclBUG0etMtR1a1ajNFygcjT1Nyyr7ganqDmwTP1pBth6CeFAx7kD6i4IF4te0+dqW9qSbOm9M8WI+yU4cJCuPZrPS2EO45XHq+otZmMlw0Wa2bq1hU/sSyUKn98aIg3pySbjGIaZ5UKq795kC5cqdDf0ytdEHww6xlpWk45B/Iv6107FBte/FP9Y4qCaFrODnhcYVj78OsSTKivH52PnhRLWzE88Sx4pMuk7To3zTK0lxPPBkymB0rFQx7P3e5CfSty1eLFMRkNNCeoYE0rfm4eLRJUY7TDYm78dCtJfPCP7qRZz5qb7CZpHgz/xKlDZTW4PofZWND2eAXUT78CDItQkRwlsaCFSEi2QxxLWC7HBQRDiLKgBQMasl05TByS8unBch13c723U1iuLh/ag5QktOIvdrPRIrfv+xMt0RjdaBQMQFry/FmaviBDMMlNF6QVbEynTSvBNC2MragWGi3cdqWytpFq6+39JS2liFOSlo7YomasZsGdeX6fiwcILbk4kKaFDHElZdUNeF+NyYbsVAvmInTwGFsIdbxHpGYN6umkhWSXZst2lH0Q88ooq+j2xVMtwp6DJWh3+GTQoeBg5EL9bTQtaddyywUYJGkX2oUxJM/pv/WO1rRgtvJsHcwS2hJqzkoV5kFY2+APLV/JDe40aiDnwB6phTmOxuZWvY7GgJnifUlaV4/ohfqDCSgz2xG4z5gwopRdogePzSS4v83HxXKZkJ4EZAgmXk1L7Ovzz0MbMdSTDHUe+o67RBsfBPtICxVSJ2sampsxZiMctXx+6DTuVEqy4WdXDs51ClYukWtFUVfcsRUUS3WwR6oFvIWWaFkLKiP8LLog8LVcBR+W58y0i9fKxZqWLrDqUonVlEzPfbztxSBzk3rmHrF50LMLw29BCwASaYGcoI0hWOCd2gcjAOTxkS/lfncsaCnxVw4VFsI1e9ocfaKkhuuBYRN9MxuTL5f76UMUJ6I9XeP7qZZbbh2k4R7FvaTl+3GxkgF5AgqWTxB/KgjxwDyF1DTbWc0YQUUIZ0wOwMFKZDAPab19vPdCnU1RB4mJ1UkR+NGZRavEWai3XFAAJTs3TZAW8UEEtcWyyClJWqT7ol0yYbGmBSj0EtK0YHrNlBtfK+JxTUuva+1q9WCGTqNVvB1CGlTTkmpBWDB7Jk2BSAvTqBSsZiQlbTtagTpp6yA82VLT8icAJKmltqF5n/ysZ3SBWK2lJLIQfvR1SbjawMnK2rtf37b1iNgoSFXBJTXr0sE5TmtgPkAekiyPSbOBgopL47uiaVnNQtOqVS0N1kjltd01Lc/uwcogmpY83dgpzXdK04qHbCwNzS10W5X4gJ6iILswkNmSYjSnCAsKXRRiopFNB8o/O3TabEy+6/JBqIdsmGDWcG8cysZYSoi0nMKIjabP7yc2EB4orYnZ2IpGu7fskfvdh+alZXg0Ld/XqoMuXzzcHVR1d6qWSItmypFdF2PhLtcAABAASURBVJaFdZ+f+pubaNilFZqw+rlHbl0dluf0LwWDIY2neyX3YLpNebKDEAClKu7uk5UY4FADaSEUP65/JqyasCeEa65584vjb3154ievfOFSGdDf23kS1V41Iui+QaSSZDuEHeO0qizFuyXNK5xkk+ZB/40Y9BhQkYAukRbGdNxu/wz+90udx2ry/Ixkify6QJ1U39T8z+3H1STkJa02v6SlFHFahEFbF8PA37aIo6hvuaBPfoZoKzvVAqsD7I60x0FpMQ49pGnRHUH3shzmAfJX4mjuhRiWaBCoa2w+XFaDGoSm5RCTxQo2DwKO+BGaHatHjXD79vM3dlz0+Nqdx/X8Jp8GQYz+SmfsZjFaqVUEJSmEBwRAbzjWtAJmI8sVVvWQqmhaGAUQhNkQbgihYwhG90mHwqpkw8I4FCMEMZGHq13od9MxYv76rV1UCm8OzBQYSafK/R0UGcyF1ogkf9LyKFISPWTwJ62atvZD5AkoOeC9ZAPGdDq61ycPTXqCmQeRmXAu8bMu/m3zsZ+t2P7g379EHpIil/ihjYDmQWSgxzX6vRgYmNbuEZs8vz2mD6qFAGesEsGj+wwMdeorxRJGsmdSzWP4E2MCQg/3m+JqPOcYBPA80GtVUdsIY7IedbdTB2ta7QBEyTTFjmbqSr868+nBcqpQF5f2j6kHQbtZ2LVqGprCenpIzS/IsjmtYsbk3zfaI4B4jFm90sWqBvw5njNzG0J/+0K7MEb29j3WhBbGtx09e9I/6mxXaCRCtn9sP7FKfphFX7yOH5Cd6RBaFJJCSLY0afoTbbXkJDAOlbWZxXuBIZuCcKu1mQehldIoGXDXO61BOoOYB9EKlS2Wdi0EFdkrv4Z5b+epg94d20XBzYMolSqbOCP7jGDEsn4fyLcpP906puDs7SMLYbGkhIhrjkHBYgkjQUrN0SO39Uh4jxyVZdcHARo0huY5MRnNkGtaMKjQiOSTU/egeDl1r7T7VRj9KEDT3v0lun0mAgMUjaRtNS1BWpgB1cvfvtN4I76WtsGhfmdhKMXpzFwEwVgpRs8zkyltAvJJDfV7g1/RLoyCswtaqAdC097txyrC4lcaiUb0Fl9AP7xyZ4W7AUM5atNiG0Q2TAzh+mtaXvOgQA8ZYKmDqyis6CFBHYJvkJ8kL12QenGg74tJMw62exDFPZqWn3mQ9Etouss+OYRskKKQmlb0cyw0AXl3h7C7XjOyF8gYQRL6BIJuBMXEp0s9JIqlHtKq6h65541iOsyNvGI8bLjdcCOvIiYl1YOGJcVol9NlvI8xaNwzAMWgpS7dRPSjAJmGaEuCLlBQhagqTU6r4YHYzcI8CI8y4MLfrnwtF1SHBdqFQWVpMIVfsQ3Cb0kxOmXTZcF/VauytvGgNHyP7nN2qo6ykGG9nFjex7IW7aRHjBahkejXN5w7qGcqjIR3v77ty2MVBkPSVeeKb7/arYFIK5Cm1ebnsmwmwV7KmhZmAOBmVK6oYvAHE1q6C6JpiVbSgpyIgQp7pIldAyV+G8pPVHi+OH7jiyKkAlWa0vYOtHsQ9TitQmNWnhDERCBQNNdI2+C1I9t8SEA0UCL1mAiqjVkR5TgMpUWyDQC9dikBIP/Pe18fLRc2WKV4bDx/31o04X8+fH6DZ3YSm0YjaIUGjaG9PKvgmZ69GKHmrxG0ErAIk1ZAWHwjnXJ0pum2b5qGMF4S0rRgCIZfQ4n2s+DdQyaH2ZjiVX0QNCYbzHLnGCyECGqUPVLTGpbnef78S9FhDYgvaPvpcbB9DchJQmt4fTJtxBYUSS44b3i+UJi0L4xDuQRRoXhBlv33N41KNiR9In8EeVy/TKWHSA0h3g63t+VdThsxalNVNPobDEl2kyAzigzmkqZFa4Q+eegZSJOM4pNEQbqKkraaFh6Y4xViOyLosKGp5eWNh0N8pEX1eDZi1Ec1ggBbPPC92toGUT99qlUc3+ZBTNqI10kvRLchhDzsEDWqfaGI95f/21L053UH/vTxfv+kjo7ZsF/8rvfmw232x3Z0o+HWj2dyj1RYh3nNMxnSQuiKya53Ji1N9yvVkoJ8eIfhkoTl4iXBq4IiWGbQ620n0lLbBlE/BDQGFy8tXC0CJiD9b5gGTQvrXuo6s+WyVnnwQzG+lJ8V+6tZVMmYvkL9goWQgu26ZdUNgBHEnOOwjOmbOfeyAVQkxHmDlEFxiTtP+6mG1XL3IJk4kNmaIshJ+bi4Ri4OOcwpaisZsgUUjPKIp2k+PIrUNzVThTR0KvFqD2m0pW35AIMvPXi/uGYoMr+y6cjeYnGQI6YCCAYUjzVbnuIRMIOWSI9tcEQvn6umVSL61Q8t9XRKnmKpCNpMxjQ53aQ+WE3JKZjpJCXR7IEiA7pk5qJ16IAZOi6SyOBIZyh52i+q9Ey9y90ILAfnplKpTLtYUSbcKKbjXCYtTdimyvPiaMatqUDbTOqXhBiibXokIVrVT7MJQ5C6PFkIa9qbSypFDpdjTG7BeK02/Smp5FHWtAqyPMdhUDxxgL+1jVLhfiV/wUg5CwMxajlPLu9vOyY+/1LHr9p1auxjqzfKKac6nkYijOw0jN475ZzhvdKgVUwfJQ7EU+cM5s+W2/QBjqJFUU430ZJFTE0QY5OaFsyDmFEiSJyR6k1FTAihMd2ftJSHhxglYA24NMSXtDUPYoUDkYD6htH5A3Ic4LCn1goNoE9brRd5FCHDgNKiEq/dA3zW7Baffl83yvdDAnoYitsyq/aaI8753o6Tr2w6rLF4sSQtWDINBvGzxVTKYDDQ+1IlD+2kyICuW74+e0+dIbNwwDwdEQnYD5SKfeR4K+nZ64hWoq9zj9wZVJjjsHptDxmkaWn+3e1o+sCkpQk9GmgwumvK7ZdJPXzoRVqVtcL4Qy+hukHQD4JuqTrA067skbbBIXlOYoKA+clshSQf0spJFdOrcj/FBTkhLS2tZOWAVoSgv9AhBbtPVOJdVafCMgMifFd+faWOJ5ubYvDBC/PmvAn/fugKssipcwbzp9lSaK7tamvHqKHdg2YPaaFm1IABq7FZ/H4UkZbDItQvxIcWj6YlB011TnoGQLHQFNXxaj8RXklb8yCRVn6GFTfoP6RyeUguEwbStDyVpco5FnXbExXmf7ANwioAg+SYAvFNrrq0p5N+F6jOo68fD9Lj7+756atf/Pc/dx3w7p8M3QQ9KtRVdU4vnYt3Rx3v4ydDBdYyj5QLCvFJ7bjg/pJqPHWoH0p5ccynBWhXo3wtbYNDVbaZTNa0NGIXs2wYa9BWxKOAWtPCc4mqopcqOVtMs/prWmJspbdOSyueBVWvbTpgEZCTzWTEaNs/26HOgOk/gqf9TkVCJOTrU2fAPSBR0qgQ4yMYdrMdZhCD2g6DFf4v5NEbRXJXt7oIkhDMSxO7FeCBgF38EUB8MMFcm3bG+xBtjeR4hZZwsVQDlC14aqQelqpN0yIGhablM1OmrYM0aKLOgEJKjLuhWf2k0YJWfrr4tnfGmN49nJ7LB3oBK0EktaJ+6hAZlnhsgyPzwJQ+BYkJcGexwOaT1BFBTGjuev2LZ9cfpMo1vj4lcsSnrlJBculpISsFxQR0cQsoHsoWeWLj7pFkQG1B2SJPHLoEi3oVPFNqWqfbzgU7qOesaWkCljStiL/TIoKhlvTVtPzXtMi0VSPtG9RiaHeP1LSG9Qq6CwPFU4zJz35/7DO3nk8shRiSbIcYQMv8Dpig1A37S+G5qDDLnBL4MQOFEJ+p92J8IK1SKOhPWsGmz8isXbIdQjv02fVOtKRsDjQZDWBo1IkREy5RCD0DCIYW0kobmlt8mqCBMs3mO8lQ12Y3pxA1Fqv0GA9pyQMprCbjDyf2pyLtmgep25Q5LBfLbx7b4Mg2+wapEgxPwAf+krZmTMToLuXV9d9b9um7O06Zjcn9s4Vp+rDUMtttiB4VmkCoM3vpXGzjVMf7+N3eo7HJDuaT2nFBehmp/hgredSoRhfzUeQcoprpZkhNyxXwUAxk1VUCjya6NtEdKqOhBAaTyC6GBiwaLvXaQFgpzYP+pOWQNq5aqTpo6S1p+iF2YVAllw7uMc3v9xWzpXnQf18DFYGJCZ5LBgf9gSukjunruxcDC1qIhxS53D7KSnGQ6TMyaxfiXR9GIY4n6FAV2JSUrVrJ/TT6K6nIEELA0DlyfwqNm0rOqiCasZKBPJ5lLXmlFEP73RW96taL+kHvNxiSBvbwrIFTNrVLj2vEc6xP9pXhUYdtkOy36prhNxgMRMx0OxDTQVJcVfftP23EhAYP+V/nXEg/5aVR/0BZ9IrAhEcRj6Yl3x0l0t9T63199sqvQfwzdFDM17K5NLl55FBZJ2y413hdBK/yTKJUpkPMxngjBqCIF6FZdsQH5tJ6xqg+6Zi/YzgoVg1JEV8hEWGazbMMo9Rjk5sIFPuGEh/Qg4cMK0pIwpoW3HAlW2pa5YHMg9BRPj8ktu1eOjgnRLXnySWT7cc8hxRUuhuVg51g1ocNSl22WOof/jYfdZ52/URaPjV7NS1hWaUaoNPAQ+ZBGv3pGUBku5KXLhRQWAjVOclYRzN9dbyPn6x/aiXGu6YlzIPIjBH8tbkXL7t9XN9soXkgxl+cVjGC0FPnn9puDNkGrx4RwDZIZUmDKZG3g2I6wn31s6NHT7sxMr7x0wkXD8jun+1AK4e1DeXFsm/UT5RSxCn5oKq9fZXK67NX7jhQipMHkW4vq1GMLi6maHukeXDKcPHRYdxqWlhidEkzYLY0WtC1Z5CmxRsxCI54cJ0WwQ00eEXQHxo+shyW/tlioNHFQlgpZ4sYwnz6Yw+HtL6W7yTGhTQ5zPlU1W4wy0GmtgCnO39xxIV1bEx1B/cMqhCg/lEF6QZD0rHTtWVy3/zar4ubWlqH5jkxzUfqsdNtJpuekShNHDmB1MiE3jT1OhxeQrfUqBTzIGq2yZOciLSI0kh9QVK7QopISdv9FN5JhqCTEDXQNpNSVVn6Kitfmgep4Mg+6TSuUdDfpa5ieuSf1G4MVqpWy5+MuW5UANsgFc9NE6xMt4NiOsKlPRc/GN9/kHyE+svjbjVrWuJTPP/5TZpN4E/3IkSfa+XzgAxHTrvdbflp7Z7iq5asf+J98XMtyKCj4IFxucU+cjpF83B5m4dfx4airKqitrFF7E9KouVhqo03YhAOceSmygkazESYDUXQLWWWPbinWDrShbRoYT8QaQl+9XnTgvWZZnZDVbbpYDkDxnvMgzUNGPd9MnwiN6xfMijHYDi759gnD4Igy0HSzLVdbr6gHxmBHRI8itSitnsxiqWGSiMmUiOTLKkdqs2Dbu8ChtoAaDMJratODl40+qfKiYuWRkHVyFYiewsPSZXHPCjuDsUEdD1lvaTV2NxCX0TlZ4RB1aRP0FMXsJUQkZsPn8YcKyfVPLav775BpRSxcrG3k0q8vp4jcucecRVqLpSkdbKyTmEURAYUvKRkm6WpjzqPF5n21rTFFBoIAAAQAElEQVTkfUfB1takfcVtjl7DAhvid+h68jUqhNB2pAE9UsnsgcvHhSA+3oQmfGnWFJPx7OpSptyIAdKNQW/PthqDxrpuEzRgNTa3QnuI4CpoZodZ3jm5Qu3QuAMqdEOVtWLbbiDSEqNtjdzDHboGpH4td2EMD7kLA9mCCU2vMO3C5MsnzwZ5VsUlg0PZBqnIefJrre3HYKpsWrdP7N24+tw82luvJi3YG+mSlZ/1o+LhulnS+F6u2qZPH2klG5KsprOvg5VIq0n8DmSN3D2o1sNCN+olnjp1NqIQPAPqSH8/UXKJtG4hFTZGjJvmlOQcybWI0SI0NMO+2tjcoiW/Os9HX4tj3ScP6em/b1DJRhpMsbeTSryOHozXZAkk4wRqxrCIgRKeI6fb2YaO5wT6YlJSEu3GRBFF0qwm+GnCB08woTlffrqYKOyV60yUE73aeECcWFFeLTQ5itTLpRnksF5pfTLtxmSDu6FZrXDr1Ur09dC7ky0XbpXaMqR5EJYJvKdKZAd5zr6lHdRA96hWmYND2YrgijB1Rak0a8rg3ACaFt4xaBj+ygqKhBCUQqo/adHY2u5sFGUhh+RkdqA0vyAYrphTknFRKOXzDrtqGnaeED/CAk0LqaHlvL4ZyLDtmGv9vlLMCQqybMN6Ob2a1lkLCQ2RNpORTLUoEpn4a1p0T3GLDYazSiGRVm2DGPQpg1Nq21oa7ZEmBjtYe9SZaR2l3UpIiVHKerYOpouPtNS1hfbTM4A8RLfwaJcP9wrSumJozxBFvMyq/8CtNFpW3QDYcUNo+oJ4g8FAyhaRGWKCCalZmXaTJUVM4NTZCH96H9XxPn4MvogZI3VNMqEjCDlUVgNVDx50D66+QjNI2MbxWvWW1uDDcWkhJCtFllwaUBDAOGDEvC8pqaLjNxAyaSmwh/Jg1knKVnV7S7gBa6GXBC/MYKlp+Wwg/Pnfv7pj+dYXN2r92p+aoNmi/8wdwzoyKCYv+ENIkVw0wswuRJ7QSTlywuWzr+HfB8qgH0CtpBWa0DXQ56tfHaskwwvULAxPXtISZ+5Rcegc8GBpHanwRCz0stGLR5W4pS1IGegpkmCkwataqq1gNUpq1/VqWm3GdM/9soqZfogaqCwxNLL57MJAjBYxGZNtUlOkB09LEcpzpLzmYGlNSrIhtIocA00LPUGX8tNtVnkh8EP60V4MOdNCMJgUS8MsddInD70vZPnwSVKCUE8b5UflY+R0iriEUjce8Py0UHV9k+4qBWlaw+UXu/2yxeK3xgU86lvMXHrZycqiNIq3MsMmnm2X3KOhxHeEp0uTVkcAErROD2lJS1HQTEESyDTktJowVcR8BGskNBlEdozFq3afguf1z4/C+ACPFkFOmrn7a1p22oihoZ8NTS0npYUHyo2WRgPmIQ4gi4GS4d+eBa1Qm92VzOA2jLDARNm0hiTi0SKXStOSKyg0piNDxJItt+nTi0eVYACCx25pMytHlxBJpEX6ig+rITWYUCfLZIeVPMQfNGgqkf4esmgpmlZkpIVqU6VeSI0iqFE+lLbBcf0z06xiAApWijStYvnwBMsTZTx0GtTQP0eM3fCQ9JfLWu1+qkW/CxOQtJwaYKFJDFocIzWtvcVn8LohCNkobYPwQKKx3a3ZXTztyXVfqg4wAwUelJ+gwTyIyjFQwG33SpEn9kITvmyH2ISlbj3Ds6wVYFuWOlv0/m5FWu6Gpo4TGtTwpEbQRKVUmU1GQ3NLa98ssXd5Z1El1fPaZ0ewJoQbiYWuTw+WU2S7bsmZOlSFUqjTJ7PRKGxcZ+rah+JASTX0IUuKwWE2+lSiPZgun9RTlbVKkZr6RlqaurB/phIZwtPQ3HKuPO69qaU1J9U8JNeJzPRKHDvtRm0IQo5JUwkywB+N2EyCnGBcraxtoHpcNUIlspvagGCSMFa5G5GHlCTEwK9FnFYx4mNdSuk8SlXIGWi7lRA14vadrqlHqSPyqsGC8IcluKd4PMqqRSXaC66Rv0UCo27oIsSImDaVa6v/lU2Hr1j08dcnq0JXq079puQM+t8nw6aOzM8Quxbxpqgj/f0018lxmP2TzEYx4uHd809SYui7Q9x/Wk47XdNwVO4hrK5rVJ+HiVaUIuF6nttwcF9x9e/e/1opuPN4Jd7odFuK0yqew17yAJQDpdVKhvjx0GTFaUvx6VKafOyR6hMfWRB3P5iIWxgsrcvFX/jbtcN/+UEHCcwmAOSHL22OoP598rcf5/51K8oekh+azH1F+BF86kNx+Clqhnxv2WeI0SIXPf4h8kPOf2yNT/7//L+vEP/54dM+8f7Ba576BDnrm1rP/dUq/1SNMfRz7I+9s0fJj9roe9g7Xv1CiQzt2eL9Mdmy6oYRC0Rnrv6j6FtD89m+/X6V2GT8zo5ToatqN/XSJz7CVUNG/3o1Zf7pq9sQ3HmiioLkvvWV+P1DNIrgN/L2zXl5C/ztyy8/mLJ4HSpsbDnbeZRSPwMIBpPxC9vc2f/bWoSq/vTxgWD5g8Uflmz3/Rc+D5YhYDypyH9YtS9gqhJ5sffxG/sb38dPyaP2/Pc/d+H1wT1VR4b2P7te/KDU37YUqbP94o2dQANPizrS30/v1Bvbjvsn3fTnTaihtLrBP0mJuXzRx8gDAyGuDh7IpN9/jFQ8mRVyCyhiINrfVpT1kU8Pik8YNx4oV+KpY5W1TXh9EAk+QxMf7CqGP97k1c+Oom/PfXLIp2N08vW9f/vSJz6CIEZyNBFMuhVpBbtIjmcEGAFGgBHoHgh0K9L6/JErdz96VQfJ1OFiP9V/Xzcs3Pp3LphGz8r6/7wcZf9w8ygER/dJh3/auaLOWRcWIE/vTLHlbOHMEYhvV16cfQEqKcyx++dc8R8XI6lXutU/ySfmx5cWIida94kPK/jQNeJHnnAhSqkpw8RF3XPFICWmXQ+QsaYk93Sat/9yqpL5fLkMDrgoZmxf8dnQoltGUTAaF7jhwl+YPY4qefCqIQheOyKPguT+x2UCnFsv6rvr19NgKUKGj+6fTEla3MFyQ+ay74+lzDsWeJ6BTx4UzwBFBnPHyG8AnvzOaDRtk7vw37nnkmCZg8XTXfjv6cODZfCPv3lsH1zm9y4s8E/yjxnbT9yO39/c/u3Y9IsrUC0EptEv/nuKf1X+Mbhwu7zwt+6e6JOaJhelVs6b4BOvDp4r9zL8v++NUUeS/6tfTUVPIP/++RUU4+++MudCZOiXLV6uOy8fCP+3RucjG6ym8ONpmTkmH56wnnAUVwRjCIpnSbs6LvOzh0VPLuyfhcjfzPC8/tt+OUVY+ZOS8GooBaPx6FgWBnx09S+3ne9TJ52K+YPx/XziIwhiJEcTwaRbkZbdnNJxkmETC4/1zS3hNiE2TUv4e6ZZUHZkb7HDG9aSmvrmj74WnyXdPr5/qtX0nXF9ketf208iT7tS3yRqzbSb/XPSzgis6/on+cScqqxDiwN6pPrEhxXsJffmVrqbqJQlxUinN10+tCfFaHH7ZtvfvueSN+dNzFBdUT+5Vaz0TAPVUCq/jOmb5aBgNG6PVDE/cDc0UyVYSwMO6aqmEZ9mFetSzS2txuRkWIqQoYe8fUjSInnpoomqWg8sLeJ2oQ7x5VC7xXvJ74gr3Y2Nza21jaLkwPDvEZBEew1NWh9Xm8m4QW6fmXZuXrs9RAbak41Owh9alG+QcTnfFFf7ZD5c5n7w71+53I3qeHdDi7uxxWBIOifXqY6Hv1B+io5HF/5gQo9Kv5wAj0qazUyrfY3BX2RaY3bIwYTe1gNl1SnJyVulERsPdl66WJbGkl6wDoSOpw+Tbxvff2APBy7zvR2nAP4+uYZ3XgHumxjEMu2W3pmilZIzdaFri31qRa3YapGfYfdpuodTrDhW13teK5/UcIN4eoNJtyKtYBepSzytkEew5R2L6ugAVoCtJrEFoH+O+HLwTH3Tnz7e39jcOrogg/YL3Ti2D97STQfLj8rVCBQJIVVBvixGETvtHpTbuBEMIcfkeRO0Ty9EttBJtGMCi9WU7YNdp/AyO60pI3unU4xGd1BPp09PCuRLi+Vu1NDa2ooFXnj8zzhAZLhCrEBjB8rWyJ2WNJYhSEI3C9xfLVMRaZe3Dx4tQi9wiXcDIe2xtpqSQertFu/pFISHskXyBuWkmq3hNE31eze7ii/QKSa0+/WpMycr66ym5PEDskPnpFTtGwjVW+A+k8dRUg3kLnxvz9tfnXzuE88vj1DkYbmpPT/d5g9XYbbYT3hIZqDMPm5Tc0uZnN9gjuiTREGnVUxH6K2kGB+3Vp7bRO/R0Dz6sLIajFXb2IynHXpGtvzMg6jRp6yW4Naj4qTNcf0yfzBBHNj/101HgHyFu9GYbBgkFXSqpL+ctNHaJMXEg4s3kV72rFQxiVd3KdMuYircgtLU8br7mbS0QuqUdgllCNNaLCmJCCbNlkJF8B72ly/eK5uOIOZ7FxTAhfTOsJH94e9bjyEYWmgQTLOJ18+T0/uf3Swaqm9qaaYZozfe/3/6SKtA7mb0T9UYky2f3fKaBjzNz64/cNdrX6DgdSN7pRijfbT6ZIrhiZgVKguuCDUTGcATjVwzIg/F/7ntBEFUIwcpmpQgnsRqEjMMjFM0TQEHJMtvJym1XddLPHWU03O/5HBJMSFcusbiqvqI97uj8jT5uIYYmpFHLbTZfeLAHLpwdVJAP20oRycDpqojafO61SSeh88Oeb5zogyVtZ7zkb+QSgxFwqUihXKDO4Jq6S8jj8jdTOp4xV9W3YAH35hsyHGIib8Sr3jS5JtId0SJVHuggiNok5O/vll2m8kIhfW1z8Xug/EDs/EYYBqBDOWSGuEJS0qq6o6drsX0dEzfjJnn98FzdbCs5rlPxK6TATkOq3zqqML+crv/YbkPnmLiwcVsu1FaHrIdgqLUXcqUBk9XIpPWn/70p8LCQqvVOnbs2E8+EXvJ1ADF3o/HC43SEAaPdqGBw2k9SzAweqA4rFIOs5F+cAFByM3jBIH9fWsRDaaICSZ425GUbjtbJ4Ikdvmywe+WYzE8AQXqBZgGScqJA/BHIFkO8eziSZ3/t+2Pv/s1xgssjSy44dwIqvIp4v2+WHyqBfUNqXgrrKq3GjGRCSw8gA51bpSf3dTQt8MWwVJKhTbZEKxzNE1Rfh9SyRDa01OaSqAtUbYquevMKYmEYkK43rJ1HtKSxqgQ+QMmpcq2tD+uH8kvtCaHPAhD3RB9Nl6s4VOtI1IrunZELxSHvgICgIfk470leAvg33WiqlZlG6Ai/bLFrAWpaiEmC6Fp4bYiPzAEu8DjL06reGvo00n/VMS4ZU/s8j1CJedIZYs+Ipw4SBxL1kNqWmXVkagUX0g1C+oauoEh5aaxYh3xpY2CtMjigg6Q9PdoWu2cWUWZY+bS9wAAx/9N9GpaWpX7iPsspj8RF+64gn/729/mz5//yCOPbNu27dJLL73mmmuOHhUznY5rsd2aaRTARKPdzD1PCAAAEABJREFUnD4Z6PVwykGEkmiVHv4bzuutnuBPG475a8qJyjoaTJEhmFTWiicDI69/BksKXjQRrR4FRLjtv2Pyu13UkCbf4baJYYSy7IK0WluT/rn9BKa3v77h3CduGuX/QIdRozcraVrHXbXQ4WhwBDrexKj+t6QYbxgt1tLf/OI4KqqRBkD1jUAkTbTrGpoDpiJDaCHbVKk8mgE5aV6fZhPDJYKhhS6z9Ew9ngTkpLUNeMISp7ytGh9XmHRoML1CM2nltmXlYH1D/CFp7p4yPDfTbqprbFGsskiCMRkuBNT1ZVEFPCRY6IKnUCpV8KilHw3lwfUPPDDI3ytdmFjh8Zc0+SZWyWmEfypi6MWxm4XFAsGhucJCSPNIaKKIyZHXTkZIBMMS0Dby0zYWeL4/vh9cTPXg+pAWXekRiR5S40RopktTVZ8u0aHvmL/6xOsejFPSWrx48Zw5c3784x8PGzZsyZIlBQUFzzzzjO4XH1aFmBYhv/apKzKTeDUtzzuAyMG54jWA53sXCtUKHhKryfit83rD/79biuCGkMrgpGUwGOh9owljsEpgo0BSlLZB1JBiTMZgBA+e4+VzLvrBhP7oAILRS166FQY5WAWxeEDTZxrNo68ZNcw8X+D8/s5TUKRqpEqKhXfEK2IzCcVLmAclpYV74KGveVDerzSrJtIiwoOWRuNvvtzqonRMo4ceV5owUZH/3XJsyuJ1RwMNguv2lWLcxPS/t+a26F5gMoEpBdUfzCUDFxjowsIs5KF9OvBgvfDjvWIjEpIQpNEcHgiZB0nVQFAthZK0AA5NJtRJ5D9YKg5lL8wRJ1NTjI/rlHeBphE+SRSkF8cmNS3E0Jnr8AAcel9ypKZVIXbKiG0ySNIudJkKaQ3okXrZOZ6DY4b28gwLVFuh1zzYLsKUPzYuLWj52wbReoY0D2JoasHDhHCHSTySVkNDw9atW6dN8+wSxrXDv3HjRnjUUl9fX6X6Uyd1hN8pJ2gY48KtnAYOp+XsgIW312E2ThiY7b9b4eZxwlywevep0De+KuQgCOUdnaSxGJ6Acuy0MLsVZAawwATMHyLyp5MHThmW+6+7JsLiHyJbuEnmlGTadlHkqsVKAIrnpgVepUBSuHJeQcaAHg5w0ns7TtZ4zINnZxWoDRMIuMhAd9xHD0NSaIF5ChkwtsKF+E9cEBlMiPAwOhyWhrXecjNhsMzB4lP9Htdl6w/uL6l+d6f4aNqn1KcHxVLT5CGe0dMnNWCQmBXje2hlzlXTgFEMNYCBLiwUWzyUZa0N35ShOFSiWy/qiww0msODMZrMg7Sogxi1pNtNNEk6Eoh9kZMIb0APB/wBJc2zphX010ncjSJJ2XejcMnEQdk0IcuwmWBUQOXlYVoIwdM7j1ehoEJa8M+e0A8uhE4dhIcElgaDIQnw4kmgmHhwT8vjYzBD9e9Mhk0YXUBYISYE/qUiiImatCJos70iZWVlzc3Nubm5Skb4T50SB/QpMfAsXLgw3fsHVQwxHSqpknVoCAuroSp5xi69KlQQs9RND1/5wuwLDAb6GIOihYsHF+8DrChQL0Q4yD8aCNJsZ4lQnZFIi6wc6ni1n8yDUS5oUYX/cdnA534wDu8YBXV0qU6QFmlaxGG61G8wGG48X8wPYCGskboUphHqmmmiDQzpjqda2lCaOmdAvzKmU3F6jYPdL58aMCib5Kdhe0+Jo4zyNWs/6nrSJGkRWSK+vLqezvU4VBpgjeRAiYgcLg/TQmYtYjen0DSO5hPBihyWvIsbZzMbLyoUmtaWwy4ytZFtECbxcfITJdgnaaKGJ7+moRlKdrCHs780G1LN/u0elJbDATKPfypinFbx1tBUEkF/wU1HJL1E8Ci/NkcLWoiB/Z1G7bIw92LsOlHZ0NySk2rum3V2sjj5nJ5YBv7B+H400UH9JFaTMV8uZx4OQs+ULVx304Hy7z37aUCFW0tVZB4kS6BPfnNKMr0mLnlqnU+qjsF4JC26PAwr5IHb2tqqDiIG8tBDD1V6/44da3/HHYpEI3Q/lFFAe1U0YNGropRKs5rwUCpBxZNi9KgXxytqlUh/D5EWVqT8kxBjk+Z4TGPhDybHTov6C+S28mB5Oj2+j+xekctdLBeHaPFfr17NGNPbYEjadLCcoPbRpWwmYR7E1Jgoje6+9qbt5hQqQmN6lVxBwU3XUoPBYKClfqz0IH/viEgr1SKGZsWavfmwODcItZEiAo9aDpYJk9qA4CY1dWbFj7kX/HRr4AkoRC39paVrWK80pzUFLL77RFVTc8sa+fvIV52bd24+gEmGtY26QQtaoGpLirgF/tUWSgthwAvBQOExD/YIrmlZBTJ0R/wrRwy9OPQSIQh+Gl2QAYPYpYPPaqI50kIYLmmRNnl+30zcYtRMkpxs+P3No3/9rRHqSErqly247bCkYYoJ4W49cvqvmw7/7v2v56/YdstfNoGZ6NnzKfLkmn145mkzpE+SliBtxAAaATNnSAuhq4M3EMYjaeXk5BiNRrVqVVJSAmXLByaLxZKm+vNJ1T2I9w11VteLHRDwaBfiOSqupRQNUsflNzrB8lfKQTAYaZHS4JZLNcFqABMgqU+WeCvgiU/xklZtsdylRqOklq5qyQOc6Zskt9wt5rM/0CZJS5gHpaJM1jYt1Sp5aOJMFkKa12t/BugXuVCVJSUZgyY84Qp1GMYlKqh8IEXEQJHkVtY2lkkzF1ELRWpxyVpLtyZY/kNybzpsg8gAE8IFUqmChXDLEZfL3ZhhN11YmGUyJo/qI7643yo3vnt4TjITSvlLf6lFBRzKYUmDYcNgSKIW/csihu4C3REE/cVH00KGFXMv/vCByeobkZMqTGGEGzJoFLpAtW0wdEG60iNSWw2dc0dR5Y3PbPrlP3c98/GBf2w/gYVDMNOKzb5TeUygqQ/7ioUSH7rOgKmnJSFlBfmcINMuYKmQeQIW1yUyHknLbDaPHTt29erVyhXCP2HCBCXYKZ5UizAQwXDX2NwSVge8pCXmd1oK0m4xmv4Hy4+HD0mw78P1F5tcQ6axGKklZ+o+kr/sBz8JJqTH5JqW2kxBSXHlEqcWuTykBSuTvt0jCyHV6aNpWc3i1YCmVR1oxYuKhHbpc6sS+X0x3S+N5kFUS3vz4AGzGgy+NmTEtys0NDc0tdQ3NSPzZ/KEVngwzoKl4FGEVBNQrNOq9RGlsrnyI+hiqQRTjL9LAy4NvkglCyEYlGyDVw7NTTEKnMf1y0TqlsPiq1tio/5SOUOkv5D+cSSQ0YzUL1jVApoxqCq6C3RHKMbHdcvZHr1ElAS/zwSRVOGwNC28dFuPiB2SYZAWaVqBrpQ6prgH5PYT3MTZE/o/dM1Q2pS4VuqySh54/v1NGdlmyfKMmHAF0wIUaUfTqgl7Zo86tYt4YrTnjlnO++6777nnnnvhhRf27Nlz7733Hj169I477ohZ6wEbUgY1shcFzBMwkuZ0TrnGEDCDT2S+XHinb3R8kiiIkRSDEfxpQeq0S9LCwgDyYMz67rOf/vDFzR+reAuTXErFmIg8cSukaR0trymVQz9N7XXs7dUj8ggr1Gk3i0kJPCQ06mFV2SWnjTRloSSNLhkzyURTJTXjYPfLv0JaEkN8fkS2QRR0eC8HFsLK2sY98jfj6WKJFZCH5JC0PoXYuUDZ/N3cdLGtvFgqwf6pFENtKXoP9CrEw1a5alcxPNPO9axb0zhOR0UQGylFkM1HCqWmFfBTrYMarsUp3xqaSvrUTEG31LwJK4rxd+mbep+fTPPPpo45droWJGcyGkb01npYTD+pbhLxq6vy9xOXAN4FN5z7k0kD77piEPJ8WVTpc3fW7RPbNZGEOTGNS/CHJdRQlsMcsBRpWvTKBMygS2ScktZ3vvOdJUuWPProo+edd9769evffffdfv366XLBEVdiTkm2pAi4QjzuASuvCrnTz79I7wxhsgthHsQYhFLGZEOwkZQGrFo5YXzuk0MH5do7LSGgIITULHAADc2IiU8pkJsbD5e7QR643my5kKBjVzERAW9RhQ7J9OSHazN5FlSIL4NBjZzBBNNeJFHxM9KqTHN8RLYrtIEQ2XpHSlqAi/pcXd+05fDp1tYkjPU0XBJLoXISejwGyDP9KEajS+qgz7CoLgvdgtpS1CZ0wG42VrgbMWhaTcmXeVeJsMyDgugJxkRPETleI9Jf+kvSArC4NJ9U1ICYELswkJpmFQplCE0LNmFkQz/hBpMc+SjSroRgeXzitx4Vy4pAwOp9tHwy+AdxyxAJQIAkPCEEuCFV4RI8P+cVCIvr2j0liCdBJR/v9ZAWYtq1EFa6G0/J40mRWZFyaUn2P8OJMmQm7JoWXf+8efMOHz5cX1+/devWyy67jCI716U5mv+rErpXRHJpcn4XOiel9pa7D/BWU9DfJdJChQZDYMORTY6/mDCikqe9v9f1yTdlSlWerYOSEpTIOPTQp1rUMRhkMBCTX0eXLIQY31OMYkai1IyFlpRkAW+Z3CEGelOSNHqItDzmwXA1Lfn5KhrKj5S0UBYXBRePH1Y44IFpjkbzg9KUhBiSg55dGEF3LlA2f9ejSkol2D8VMS53I1aY4OmX5akcqJJShchJ5/SgBxX+TId5oNw68cUR12G5hEPMhCR/SbOayDxFapw6wyF5LTTWq+PV/jT5JgIWdaTajxcHQZupjeaNGLUQadGzoY4P4afFJPqxghDZ1ElkvQeGQFId7+/3LjWdVYCmDhdarNpCuLf4zKkqcbzkxQPENs69p8TuG/+qlJiZz/z7ykUfg7qUGHiIHQl/BH0kwy460G5vfUqFG2zzooZbONHy0ygQgrQCAkKvh1PO7wJm8InsLc2DITQtUt18jOzqSmiExbv323d2Y9o4uiDDZDQcKXcfkcMBch6jrYNZQqVDMG4FY1wvuesXPSRjFDz6yvgB2Q9MO+fRbwU4d8pmEsoWZvRokW49PNqFTHwlZ8TxgzSvT7OKOb6WGqgscubLhwGeCMSzF6OuCWtIKA7bEdkAD0obGmJIDkpFnJIoRqPrZWVxgQGLHJbPW690q0JOyAbuhAu56lxxAiQ8JOP6iZH0/V2n8NxitlCQZaP4gC5R2pFy8a2hOsMheWmFIbVG0nfxVkLzUJdV/LUazIM5clZBz4a64N2vb/vXlyeUGLUn3AUtlIVORry156T4ugsxwYQ29SmaFrJdKX8haMP+Mre0uCCG1KyLB2TTtpe90mKM+ICClfsDpTVYRNijygZkMJ4gv7ohBBXJlJpWhbSoK5G6e5i0woCURoHwSUssSzrl/E5LY/lycn2mvolGOv8iHk3LFnQEtMnR9uO9Je/uOIX3f+G3R5L5Zb3Xou3VtEKNC/7tdkoM6Z1omoxR8OgrycmGu64YPFN+s+VTs1UqrDSHjYS05D6Fkqp6DI4YIlE5DZfwtCsw71Ce3vJhIH+4Lj1yMN/RyUkgrUK5qZ1GdqqtpaWVggNkEkVqdP4W8FwAABAASURBVKmTdIEBi5Am1C+7zdzoQvmJsTHZcOVQoQooBUkDoyP+8ApYUsSMQUn18VCdhyUpKknNLa2HJY0NkPZDJd7HQ1MHZHZLcvJJRdAtR3k10SLSR3IC7R788OuSt7488aeP9vtkRhALSEQS5/cTW04Qo1FG9hELYF8WiR0cIYrQU6rmkiG5zj6Ztvqmlg1eE8s6aRucfE4PJKGqr+VXgPAElArvt1Y0p6E85fLLYrPR8z0WRapdaMwIuhJzIwauPA6FRq5quQdaY/eamlswW0FmGkHgaVfs5hR6+IIpW0RaITQtMsfvKxbq//fH9x+en0ZHxaz3Pr7H5NbBPnGvaQErvHhwIXnpYtkfnpgJcT9Wg9AizVfg0S5eRaTe3dCMIRIFnZonLoqm1VvailE2AqHHdf2+UrQO8uuTaS+UozlYCjxKFZ6orMW4ZjIaFJwpXotLnURx2K8C5ifSokaVDOP6Zf7ksgG/vuFcn72vY/uL0RxYIadPEcT4SMBPtU5U1DY0tWDtGZznk18dtJqSyfAbbFJIfaC7ry6o9ufINa3TNfXAVonfK/eRuwLpGYfLxLosSoX72cboPoK0vjpWqbQS0ENWuyxpnaMMBoNhyjAxLaBlLUy1txwRi2qTh/Skg6mwpqU8BlRE7VZ4r+KgypjsacVhRuXqzIo/Q3YgIAJKnug9rGmFgWEqfbApD1DQWAzPCuV0WoMqRpRB7WKIQTA0aYWYttstHnN8Tqr53qnnoCpa8d50oLxR7tcn0irIbDMFRrY4FAy11Ktw33YqFY1rM52d7Kdazvo11kmKCGYYZETCQKmuMHQlOQ4LlIn8dGvo8Td0JaRS0NcOZJSDrQkqDgblYu8+9YPSNtgv25FiDHsosJqMTknDpdIE6t8Z0nt89gFCtX3o2mG3XdzPJz/Uo0xpXEJ8v+x2nkw6ef3LY230DzJ79s8Wv1eHSoIJBlx6d0j99ckGEgINI9Iu9Wx4AkqWQyzetLQmKYM7su2TukuFV0dBjCLgU/iDLQUhKZiQKY905WB5EO+qEUfO++yP8JDW18XQp/+9v6yxuRXgwLI6qGcqDDAud2Np8PXICrl9DDUfUJEWbTyha0eSv2TKOxgQAf/MEceE/aRG3FI3KEivaFiaFr0YVlOyOSUMqPPlSgZmwQFBq5Kr+qE0LZNnhP351UMp27n5aXjUwKDbjlbgtTwuj9soCLlsELDp2Ef28aoauWmx1rTIPEiXTPMV8mt002wpdNMPyt0BaTYThkuNZTGyv/+zy9bcP8kUPpcoTaRaxNwFYxNiLpRHKJlTkgskntQlxB+UQxIIA/4IxPMtmpcCfWog8x1GSZ/4gEGAQxZCpPYPvnUQqRBwsMGQ9E1JNS0ZIgZySF5Lu1oactKLTGvDCKqF1mwQA4MH3GCC+0IDdJncTUfZoLvAA86raxTfxsGvCI3jGXJMVyK1eEb0TseV4oUNsekDnOSSilGWVHSUanHTnZYU9HB7UcXH0jY46RxxqIfVZCSESTVU8qs9xIKIOSiXCeGBnJYXmy1Nowj6S6bsAHXGP7VNTBSBMEbSKFrpJkVpFDgTjqZFJginNQw1C2D1DrnrvVJOgmgejcz+MrBnKiLxyNLWOPgxCF4yKAceLGsVo0/NrSnJhl7ePQ6Ij1tRkZZup+VqvFib6ezb4Qhf0zIYDGQh3F8i7LROqZRobBrZbGaj3SxYB/7IJFXVIh4GqqTQayGkIEyF8BTKnXvwhCt0gaVyg6VPWZieqHIaH31SAwbHyr0YSKJOwhNMMuxmzMOQCuMBXBIaXgeE3IVBOendoQklxSiuWy5oGQxJVtXdV1LVnhxpIVS4BERFJI08RFHwKEKKS0b4pIUxZ6C8oq+CL2uhcuh8aIuWlOAhwRzlsiGCpdbsLsaLj0jYBuFCyEK4V6qGCPqLcgmwytTL79ORRzEPwh9Q6AJB27VB1gsDlgo38uxrGW7JBMxPo0AEmla4AxatZBRJfcgfZyItUqH8UxFzXkHG+/Mv/euPLgRXIUhymZxkrf+mFE8hYvIzbEbYCOCLbynItFMHdT8Og6oN4dq8CivyOCLiDxrTibRooERVMRPlqcPwqtBAodxwcUhaBdETGugHykgEwxUygZYE0rQwwBErtGvrUxpVNK1+7WlaKEI/bQWrF/wkxJHKlVJkQJeQweTNP5VGW9x6g0F88OCfQYkBqvArpIW7TMyByIpaYayDR5EKab6jc9CVSI2eUbSsVRR0WQtQo6o0awr0P3jUMlUua73++VHoauCwiweIg/aRgX6HNhRpeS8BF6Wcrnua9DlpGkUl/gKKxWwY8R2qbDFpAWGtgluCrNXyQ1F4tAi9t06rSUtmJU9vaR4MvaYVgrRQz1CM8aoxFzGXDhaaFozjEAQ73jaIRnSQXulWvI2Y9oJldagunCqsXgAdZmNyRARPYzqGMzSbJn8RA56YCT2uaO6iAVkGg2cILpRKFXEVkg5K9hogIxEMV4iV1TY6pQZa0MKynAKjkhTMg9EZjy2KYO0tWB4lfsIg8Tz/e385VDqK9FyLVCUpJpibJt/HgPtH3FJFsIdc0KJqfXa9k22QkhQ1hYJwK6R1JMMR3jiAgpDR8mDGr9ojLdj/kdlHJg/pgbmpSy6zgbFs3usamid+uyuUeVAWodqUZS0yD2bZxXoeJfm4BoMBSjAiXZLe4OkIYdIKA1WntLdgZUh7GbKbp8mC2kv1lubBE0E0LZohhiYt/7awJoQntbU1CdMupGoZF5Ct0yXFmLziP8ZD6OOzWPbHZvIsDUbcNO2vOyCJIc0ayYAVzfXS44oasAIEl2SgHNNJKYFWgQk44gdIAxQ84QpdYEmg9XzaOqhFZ1IaBb29fc8lb919CXQCJTKY54L+mSajAf0/KrfCwjpHa8CF8gKDlaJ4QobeTYpRXCItZXBX4v09tKuC9iYgVU0AAUhLckBkmhbtev+qqEKhZzSnFtK0ApIWKGRcP7EtE/lpQQseCJkHQbRY4UbQX9SXQA8w8tDF+mz3QLxaMqUJVF1cnaqLn0krDBhp6krKk8ZiZ+rER1rhDli9M8UXVBgLFGuyujl62SKYuZOyRY9gn0yP2U1dc3z6h+enweCZFPM/q3daSmbhCNonRYTMuTRQRlBJxEWcXppUFrRQVaFUqjDQNza30BoM1iECjnfI3K6QKhnQPEiV99dAIepWYHPLlmtF6siAfrs5ZUyBGI43HhC/YInmMCHDTK6da5F1pdnEBCLgiwwiRxZ7yOMwkAFCm1CU4we/kV+YIB5S6bWtwU9SITUPQE3BsNzhvdJgcyurbjjhd6gS1ROCtJCBjsaAB1oXXBJMJiwpyXWNLbRYQJFqlzqM24FIUmHhOS2/0yK2RjCgZEo9jDWtgOB0QiSRVliaFr0YzjA1LcxWbCYxzT9ZEeC4gUppasD7GS4EtKxFpYL9wh6lsgsE6BbAQ/cdnnCFxnQqFe7EhUpF49JTl2E3ndNT2IKoqlynFdeF+TVGKxqMtKgmVNbfJVYuCbTlncyDhcEPa/evLdyYCYPECs2/94vzyWiVrjDHAQtVu/UQMmSx8MnslhsxbN75ik+qOpgjN9Epa1q0PtRHTjcrpF6lzuwxD0qyVMdr8VtNRlKMdgTZi0EMEYytrzpXnAo9snf6gBzPYVpoFDbDwbliu1awT4ypzrH9xAGGB+X2V5TysmOoLVEXD8i6ZkRejraZB+qMQFjTCgM0mnGHtxFDbjWkl0R7S3jx8uWyVkALYcSkdUH/LEyvqBsF8u0iP7sBEcDgTvERk1YP59nXm2b3VGFs3LH9Mq8Y2vP+qeeoF+Tgx8iODoCxDso94gMi3YWBSto1D2rfOojawpUJA8Wy1qYD5S0trQflzmz1uByiNppA0ITSJxttede0piXHZShAqAEGFRgq4blQ/mAYURSCilR4NK2gq0FKzoAerPYh/ssgy1rlcid6piNw5Zierr1/0vIfX4RRBZUoQnsxYCFUYtSeCsm7eIQQebC0hiyTHvNgkIaQE3LftCHP3Db2Yu+OD8ToLt2PtHSH6GyFzvA/LsbTjPJOqzBHwKNdekvznf8GQlh13HKtOAJNC1O2i7wPEx5l7Z1JzJzKdNthSYkMATVpOcPUtiNrUV3Kbk55YfYFt4/vr46EnyyEWNbyDPTSYIj4CKSHPKoKoz+WlNTFMcbRmla45kF1Je36YTS2mYwYSbGehIEV+TXuKKF7QWZ2lFILvVx2TZqWmJGUye3+38ivGnLTLDC7oTYa8eFRhCaa0HqVmLA89IkxlrUCliKtKITVrle6zX+4GEp7MYLseqdLOK8g02BIQucBckNTC240OhCiIaTGQJi0wgCZPtYJS9Oqkh8C00sSRktJSb3loXP+GwiVN81pDZsI0YHLBovJqc1k7PQnD52JcwHHUw+dkZIWKSJUCc3uyd+5LqkjYCwIejIwCtJKs6aQ7u6zrIUx7kx9E8a7Dt3vY05JpuU6LGsdkiasQm1aI2m9NKEEAmoh0rKZ25+mZEvzYHl1AxiazsKA7kK0VNl2TQsZiAMoVd2cRj9pWl8VVaIq/yJAG5GZcjEJHo2C3iIn+B6uv1TIS+iVbqWBCHMCokbYFf35z794h8YwaYUBr8c8iClHS6vGYmQ3T7OGTTC9pXmQbA7qtirlghaGUTw96niNfhi4YeyaOCjbYPDsgdZYMAGz2eSyIi48Yk0r22HxbJVPSqKBErV1uhTKtY2DpdUQdGZApFsHUdZgMBAx+yxrHZFH2fZKsyrEj8wdIXiSUe3G/WWHpHmQLg0xocUptd6AW95r5ZqW3XvrQ9RDyzYNzS2oh4Z+0EBGoL1zWAVvkiNGZpi8orSOmi0pyVB0DssTgZV48nj2R0gSpRgt7tC8NGQDbv67vaA31zW2IDXdbqLHA48K6BkxWG6HhRmeThQmrTDAd0rzYGtrktvvmJZgteA5QxK9JPBoF9pA6L+mRaQV8QgIq+C/f37F/7v1fO09SdicNrPn7aDJSgQ4YGJBQxvKpsmBEp5OFxqGMG3Hw2kwJEWpDNFmk5K2u94Pyl3+hVHocBpRomWtDfvLXHINRiNppVnFJDKkpiW2QYXuA/jYaREKWVl1PW0dHJLrJC2E9CqlOAXBOiiiRIblMRmTh+enochXgfZiuOSp6lkOCzJoFxgz06wpzS2tB0pqfEq55Aocnl5c4ACa4pTVeHdhBF4586mhQ4Oe17JD2+g2lVtNybiRuBztFkJ6MZzyJUFB7dJbfqrlr2lhWodK6N2AJwLB7MmS0v47GUHN3ayI1YsSdNOIL40UERSP4BlAqY6QQnneBO046JNps2rQKkJ0o4fcj1BS1Wab62GpaWmkkBCVt5s0vFdaht1U3yTUgvz0Nj/cFaJsmnwfq6Tp3icbmQftZk0vCH1fXHam3qNp5TkzpC5VKc0hSs0URD+VmAg89Inxl4GOe6dfDMmSTWuv2WAwkLK1t9hS0QB5AAAQAElEQVT3x7qIZTNs4rRMsh4fKKn2tOJg0tKOcRzkNBgMNH5pPxSDOMYZ/iybNK2TFXUt0rCgXD29ANGQllIVe0IjoHyn5dA2hAWsjRQRJKXZxKwcnk4XzFqyvUPPAG2LQCH6TKzso2nB6IQiHbp1EPVDYKoa791bpF2xo3sB2m6UP3qAehSplbuc7NrueI60yH1TUk3HpQ/umYqBHlVVSE0FHhJSXCL7sphqgDuyt/iNkh3H2xxsj3h0mEx5ob/5RU5/OScv8K53T4elqXOAtB5j+dMlT6LKDlOf8280+hjWtMLDkEgLdhWNxUjTopmdxiKULddpgVYHizmMDxRDLpEWvXUUw24HIWDzqiCpVmFNiqwV+pIJZdNskVeC4vpKobT5oE6N2+2QM5jQBdKoreQh82D0lSsVhvBMGCi+1kIG5aLgDy30FiOP/4tMln+bWdMMg0bwjQfEh2IFWTasfZI6VdPQjIVv1E9SIU2XlEQxEbijCwRp7Txe1dSWaEkBMhuTI5haDZHLWrSLRN2lStnhTLtQqui43qOn3cXSApzlEJHqzLH3M2mFhznpTFhZ1VIM8ziaBKWFP8tOMSbnpVnRis+ud9o9qFXTQnmWSBGwmTw2olSLxxNBTTSmGwxJqdrGwQiaiKCIQic0j46gBqUIqZJqTQu2gSNyv0Bh1Gqc0koIDx1CiAwDNDeX4h3iaU6JsorU0kYMs6Y7nuMUI/gmeSQHFrRQidMKkxr+F9vExX/yX4W0FmZIxUVGROLg6sC10A73y6/rlCpcngWtoD/MqOT091Cf6bNodapLkhZ1GEtfDrMRS1/bjrqQh0kLIHQxwXODHmtc01LmcVQKBcOS3oF2vZOmxaQVFpKRZbZ5R65UuQEnskp6yJlHqiUFhqzIauiIUgqdDPCqXBG30iPNgrJq0io+U4exNSU5kl9DRlXhCi6hV7qY3g3qKYxdGos7rULxrfJb1gpvTStVXDsN8efkOtE0rCNkVqmUW8YRA4nmiHcUJ8HzM6K33IvRdlmLNK1gXxZT2WDuObkCsROVdbXSKKpkc0nzJq3PGQyGQrmhZrv8yU0mLQWlLuNJlatTZ+qbtPSY5nF2sxEzOy35ffLkB9r1zpqWD0odF7SZPNNtR9SaFg1kHdfVcGsu9HKVonKFW4OSn1TJUtVJTnSiUkGW3WQMbMhRyuriwai66JbR9009h34xTmOdZPygN1RdhEhLufXqJH9/jiQtij9Hkhb8pKCQSRBBiEfTcgiaRDBioU+Mv2y7gZAIJtshdL5wa8bc1y5nZqfa7qOplKphplc1HCBVWDIaMWmFC3Ln50+Vm1yr6zSRVpWcxzklz0XQddqL4bPrvVI+T2nxtEASwaV1iSJWL2lFfAdxmaP6pFtNyef1FWe4IRgnQufO4brIBB1Nr8g8WF7ToKy1HIrV1kGl2xMG5txz5WDoIkpMux6nVVBIlTzPWp2ZdA67WdOaVmDSsoma25AWWdtskfCKum/0u5e0vV6JLw95hpOSLaAHfJ+XLpTUk5W16gwuueciw+7pMC1rUYbI2JHK6uXGYiqkV1/joR6nZCCNa1o0j3PK1yOCzvfOEAex+xyKQaSFKVIEFXKRsBCwyUkoimCBHW5k0ivdtvmRKUu/Oyay4h1UCsPQYzNG/PG752HYirIJjGLGZENraxKdwofaSNMq9CpziIlDSZMvMm3uVXcPhk0ElVsPfwjJkbsHkQEIKDpruhzrSbtCEqRSmgpJA0MwYhkgNZ6D8uwPpRL6fAp3QYkJy0OzllNtz493EcsqmpY0D1K1EexRpII6uh1DWjp2MM6q8mha2syD9ErQ6xHBdZCm5fOpViVrWhFAGVERm8mIyYHDbMy0e6acEVWThFlLWEpAZK2EW+r2i/tdMTQ33FL++XFpNHaXeC2Env3u8U1auCm4FjK2w6MImQfJaKZEBvPkeM2D/bPtVq9e7r/r3cMBNqGBBatKSzytLWFyQIMAFXHJ9aeIH1HStPzMgw2oXNmjr/AxItk8CBC6mKTKNXllh0Xo3ketaQnN3Ye0yKCBwTR005waPQKYPv/vT8b/7x3jrd7xKPo6u2UNZCEsqaqnqyPSGhDfpJUmN/T6v8i14e0eFBsxcNX00yHwQDKkgqLmlQrJK4q1DXkik1RLCq0g0mHEVAmZByNWgHqli0EmoKaVKS8ErRSqbmVmdBM41Ba9sKYVHoa0EUOzeVAsfTmlISK8ZmTufLl7EO8VEZWMS6JPKNKs0c7aqLaEciO4WAxG5+aL72MiKJs4RWgkLZHf8WBl6+hpN65dPdIhGG/ilG+Q+s1CD1tbW73faXn24CAyhDjMRqtJDKHKLgxk9mpajfCTEIFleDmAIiNzCVW1hZA0rSjNgyfbmgcrPOZBj4HBbk6hncyYK8dmc01ocATioXNwqhoBp2cjxtknEg+6OoPaT68EvR7qeI1+PCukjCvLWi0trbRxEU+Pxko4GyPQ0Qh4D8UQJzkVuWqbWlotKZ6vDDu66Yjrp2kfZoTqGurRdXkUNl49dXwwP1YEyUJIHzxRNp81LYwPXg7QYaI5QJ5PQauG1Fy53DSRafcQDEVqd/PSbchcrNo9KDsszYMqliULYcTUiCZ0FCat8MD00bTW7im+4LdrV3x+NGAt9EqkRappoc582vXu8uztQYVY8UY8kxZAYIkTBHrIpR3StMg2CIUAa11x0r2A3XDKt9JnTYsWtJDfptkgfOtF/cb0zZgof/EHBSFeTUuM+wjCKgMqhCcIryAlDCGj60F5pD0Vo51+9DspFBOWS+ZBtaYVsMPULs2hw6q/IzIzaYWHKszKKADygLu/5Mw9r28rq67/5/YTCPoLrWml2SKfYZFWfsK7IZVUN7xR5hS+cf54c0znIEAfUNOalkJandMVza3SW0kvslLILRe0oCZiOVOJDO356eSBK+dNTLOefcczpIJCJkGUJTULdVo1EyFKBRPSeOiULORpbmmlbYqZkWtaYk0Lg5hy7pTSYZt39ywaogOfeskFCwQ7V3jsCw9/0rRqGprAH//x16018kvyb+TvlvpXRK8Ezen8U7XEFGSKXe+7T3iOYaY3gdUsLdBxnpghQGta9H0xkVZ/1dJ9zLoRVkP0VuItVpeqla+zxq2D6oJqf4YkLRr6EU/vLEUiGKVAhUUNABlGPHgq3A1kelE2TSAyLMmym01G8cVCiXfzZ4VnQessDaPCb4/p/Ytrht439Rz4O12YtMK7BbSmVVXbdO+K7VDSSbnGPIWUdJ+6iLTo9fBJ0hi8YmhP5Hxnx8k6+QtelZ797pq+fERBFkYgBgh4SUvsHsR4ihZpbIUnboV0I3pDlU66PaQV1fuVLj8irpA7BlEzbZRQto8jJhopyLKnJBtqG5tpkzp9pIVZbIoxwpEcVtzcNKFsKctaFfKrssy2qpvNbLxj0sA4ua0RXqoP7r/97W8nTJhgt9szMjJ8ko4ePXr99dc7HI6cnJx77rmnocFj6kW2HTt2TJo0yWaz9e7d+9FHH6W5A+Ih69atGzt2rNVqHTBgwJ///GfExImkSlM4yGPt1yVQ+Z+9fRxZ8AIqWzSPc1razFnCupCLB2Sjfrxaq3YXoyDahZtui7xCFGdhBPRFoGeaGPVKq+vxChNp0RKIvq3oW1uafJHpDVVqJtLCAK3ERODJkJpWVV0TbHcoXhFIcUF8ZGIyJtOPdtJeDNqFEeX+CJp5K8taLl07HNllhi6VHDpZYyqo6Oabb/7pT3/qk7+5ufm6666rqanZsGHDihUr3njjjfvvv5/yVFVVTZ06NT8/f/PmzUuXLv3DH/6wePFiSjp06NC111576aWXbtu27eGHHwbVoSAldbpLa1rUjYUzR47sk07HdH5TcoYi1S7IBsFoNC3Mg2ae3xuVvLG1CC6tGzNpAQqW6BDQszRtxGhsbsX0n9Zf42RKHuIi0+TMD28oiFbJVtsovlGJ0jyovJ70tlZI6wgxmdJQNB7CFmYeVEIGnshOy0VxEtpAqHyqVSF1RL1UQ2pCX1cf0vr1r3997733jhw50qdzq1at2r179/Lly8eMGTNlypRFixYtW7YMdIVsr776al1d3UsvvTRixIiZM2eCnEBa9ABBterbt++SJUuGDRv24x//+Ec/+hEoDUXiQRxmKOIG9OSHE/vPPL8PPIN7ipOSfQ4EQzyENmI4VYu0iAxXqJVPvimF/k6aFr1v4dbD+RmBDkLAnJKcKdWLzYddWGJxWlPiZJtZiOtFJ5EKZYi0K/gh5LeZjPBHLFCGaGpLdFWpNwd4SKu0Bj0kTStKtPPSxCfSKtIS3/NkRn28L7rXQaIPaQXr3KZNm8BJUKcow1VXXVVfX79161YEkQTboMUi8EIQSSdOnDh8+DD8SJo2bRo8JEjasmVLY6OAkmLIRVXgP0UosqNdqD4PXzts7qWFcKkt+q5wf6C9GDARIE+a/PYensgEz+jYfpktrUkrtx33kJaVzYORYcmlOgoBOhTjs4PlaAC2QYNBTOzgj1uxmYxYHEL3oGzBJSHSilLTQlWkbJHK4rG26ccBnk+15AmEpGlFaR4kTeuk91Mtl2TZdFuEH37h8iMXbSU7lrROnTqVm3v2fLPMzEyz2YxI9A2uOon8iAyY1NTUVFZWhiS1LFy4MN37V1BQoE7qUP+cSwofuW445lPUyqBcqWn5mQfrGptpF6nTGi3H3DRWqHSwEBJp0StBrbPLCMQDAvR98WeHTqMzmGbBjXMxGAxOv2WtWj02YuDCyRhImlYFLRHpxwEEL60dkqYVpXmQ1rR8NS2pOuNa4lA0kdaCBQtwjwMKdKDQV4VS6gytra1KjOJBBsTDVWIUDyJ9khBD8tBDD1V6/44dO0aRsXdpTau4qp4YRemAMoNLtUS1GQkVXjeqlyUl+ZuS6o3yN1KZtIAJS1wh0MMpTCZkb4j//e4EXZpnWeusCYc0rSg3YqByIq1KSVeVcjMexSApehkoz1w/5qrFnJi0oig1rVy5j0ZFWmKvXGbb3YPRd1vHGjSR1l133bUnyB+sfyF6k5eXR8oT5XG5XI2NjaRU+SSVlJQgT7CklJSU7OxsZFALTItpqj91Uiz9aVYTHe9Pb6zSNC1ogbGMydGaStDEtHPzUDNNr7oyaeEiWLohAmQepAsjVYD88ex6NC35o3fUT/AAPNGbB2kXQ4W0s7kkddExGag8esH8wGE2YjXu6Gk3bXmPkmBI0yquqmvBIkRSEnU4vatrWjk5OUOD/FmtYrdrsDsxfvz4nTt3njx5kjKsWrUKTDN27FgEkbR+/fqGBsHqCCIJS1/9+/eHH0mrV6+GhwRJ48aNM5miNbJRbR3h0k/q7W9rITwjfyiSXozoG71R7iGkemiGSH52GYF4QIA+1aKeDJA/+0T+eHbTpN1evetdL02LRnyveVAMcRl23ZaIDAZDoVS2MIUl0or4iHe6O2BBzKubWlrLasSXdpVyKFbKMgAAEABJREFUu2OUREg1d5CrSdNqt+2jR49u374dbnNzMzyQ6upqlJo2bdrw4cNvv/32bdu2rV279oEHHpg7dy60IyTNmjULBDZ79myw2sqVKx9//PH77rsP9wNJd9xxx5EjRxCEdvfCCy88//zzKIj4uBWyEPpsICTSohcj+p5fOrhHbpqwwKAq1rQAAktcIYCBT+lP/xy74o9nD00oxW4pby/piHe7KVp7PulVFVLHIg7I0FVxoWnBwdJqD2lFx4hYnqfbRxZCl1QQM3XtsBdgff7Xh7R++ctfjhkz5le/+hW4Ch4IrXUZjcZ33nnHarVOnDjxlltumTFjhrJ5PT09HepUUVERtKh58+aBoiB0TYWFhe++++7HH3983nnnPfbYY0899dSNN95ISfHpDu7pRMew5gRXEfpgheZcSmTEHtgYZ4wRH2yhBiYtgMASVwgomlZOqsVpjV+jiBq0NNnPSjlGU3ytZyNGVFveURVRFOgK6/FEXRSDJF2kUJ6SdbC0xkNajmjVOFrgAGnB6ohuo5N6DVyoSnfRh7Reeukl3B61TJ48mfrat2/ft99+2+12l5eXL126FNoVxcMdOXIkLIR1dXWwH4LwSM1CPGTSpElffPFFfX39oUOHoHghJp7Fax4UyqXSz3V7S+G/qDALri5yk/wsDFXF8yQI3WNJQAToUAxc+AA5nsIT/5Ivj38t8v6EAjrslgfm6rARQ+4VrHA3VNc3weyGmjOjU4ZQg1ro2NxdJyvrm1oQH+V3WqghL12s8pyqqsNKfKv8cRZalkNSHIo+pBWHF9a2Sx0bGiR/5OZ4RS2eUWqpoall/T5BWnR4IEVG6Q7Odd4/9ZyfTh6oDBBRVsjFGQG9EFA0ra5iG8SFU1cPl4uvdBGEuHXStEhNwZpWhbQQWlKSrdF9sIy+qWWAXDWkc7RRuV11HLs6m3Z/L/mrWicr61yyww6z0ZwSv9QQvz3Tjnin58x0mGEVQTcOeD8x3nz49Jn6ppxU8+g+vocxIlvEcveVg39+9dCIi3NBRqCDEHBYUjDSofJCOZ7CE//SN8uBTh4tF7+zDA9EN/OgTRhIK92NZGrL0Ht9iOhW7vVLynaY1TYqXEUE4tG0KusqpLE0wx6tvTGCPmgvwqSlHatQOQf3pE+MPRbCNXvE+baXD+mZnBztfvdQrXJal0age3WePvcp7Drmwf7ZYsPIyaq6usZmuhWkadnMUW/EkIO+omnpbmpzWk2Kapvp0IFglDWtCqlpxfMZTrhTTFoAQQcZnEukJY7Nxdre2j3is7Mrh509DUSHNrgKRiCOEZh3+aCrz82bdE6POO5jm65hKSjVkoIlnCKXR9mqlexlj9raRqpVhbvhtEdxEYpXm7ajDiiTA1xF1JUleTStKpgH5QZ9uSYXfbUdVAOTlj7Akqa1v1hoWgdKq4+edpuNyZcOztGndq6FEYh7BG4a2+fPt4+NfhdDzC4UVrV+Utk6XOYhLTdtxDBFu3uQ9vfCfEd0SBym73XRXgzUqQtp9UoXGzFOVta63I2osyM6jGr1EiYtfZAcpNr1TmrWxQOzYejXp3auhRFgBDoAASKtI6cV0hJ2wug1LavJaDWJofWIpEPdzYNAYoB37VAX0iLTbl1jy1G5LSVTmjfRSnyKQDY+e9a1ekXmwWMuN9ZyibSulD863LWugnvLCCQUAv2yxV6MI3KkxoXj5YVrj3pNC5UQUR2SNWfod8Q7aiYp9K4dZulBMFaTMVPuFtlzUixwZEg/NRSHLpOWPjclJ9WCKQ/s418cdW05Is661nGzuz5dVGphDyPACEgE+mWJvRhHyoWm1dDUQt9U2aJe00LdGXLcJzokAkOkjkInOaHCKM9wQg0keXLX+55TVQhm6EGEqKeDhElLN2AHyQ2Eyz45CFv2kFxnQZZ4H3SrnStiBBgBvRHomy1eUqIWUrPQQvTmQVRCy1rFVeI0vwxJYIjUUfpm2Y1yZ7IumhY6RstadPgcHUOFyPgUJi3d7gvtxfhYHoRx5bCeutXLFTECCYBAp1xif2keLHLVNjW3uBub0AeT0WAy6jAqqomqIzgAnaQzDehcD/Q8SqFlLaokswPsmVSzLq4Ot0eXfnSDSoi06EKYtAgHdhmBeEYgL81qTkmGVfBERZ1bHodhM0W7dZCuV20SzLDr8CkVVat2F90y+nc3jhzVJ10dGbGfNC0q3kEdpsqjd5m0osfQU8PgXHFsLgJY3DqvIBMeFkaAEYhnBJKTDbCzoYdHTteQedCuxy4MVNhG0+oA8yCaGNE7/TsX9DUY9Dm+IE/ueke1kI5QDVGtXhJD0tKry/Faj6JpXT6kp1Gam+O1p9wvRoAR8CBAezEOl7tJ09JlQQtV0/GD8EDUBIZgfIpa08rsGNVQrwtn0tILyaQeTkuaVRwAw7ZB3TDlihiBDkaAdr0fLa9x05fFemwdRJfV5sE45wD0FgJLKVwINLc4/5lZJi3cJn3EYDA8ct2w713Ydwqf3qQPorGohdtIcAT6ZYsNhNC0vOZBnda0vCZBi95HvHfQ/VLMg2lWU5wbipi09HwGYGJeOHMklnb1rJTrYgQYgQ5DgEjrqNc8aDMLY0n0rSnLQhle9oq+zg6twWk1pVrEtWfGfYeZtDr0SeDKGQFGIK4R6JctD8U47TEP2nXaPaisaanthJqB6JyMuWkWNJwR3wta6CGTFkBgYQQYgQRFoHeGLdmQVNfYQudi2PVa0/IO/V1F08Lt7yUPxYj/DjNp4WaxMAKMQIIiYE5J7p1pw8XTCUY2vUjL5vk5kvjnAFw7CS1rZXrpliLj0GXS6pybwq0yAoxAnCDQL0tYCOmsWL00LdRjMoovqLqQeZB+7gSqZ5zcl2DdYNIKhgzHMwKMQEIg0C9bbCA8XSN+/9Cm00YMg8GQLn9KMcPhUbniH8ofjO//5HdGz71sQJx3lUkrzm8Qd48RiBkCCdoQkRZdvF0n8yBqy5Db8LqQpuWwpHx7TB866hf9j1th0orbW8MdYwQYgVgg0E9uIKSW9CQtuaxF1EWVs6sLAkxausDIlTACjEBXRaCfNA9S760mfT4uRm1ThudmO8wX9M+CnyVyBPxKMmn5QcIRjAAjkEgI0Jm5dMU6alp3TBq45b+m0M/sUeXs6oIAk5YuMHIljAAj0FURsJtTejrFd7W4AB1JC7UZDGIDITwsOiLApKUjmFxVZAhwKUagkxFQLIQ2kzjKqJN7w82HRIBJKyQ8nMgIMAIJgEA/714MfTWtBECuEy6RSasTQOcmGQFGIK4Q6JclPtVCl86SFgIscYkAk1Zc3hbuFCPACMQQgX454lAMNGjT7zst1MbSEQgwaXUEqlwnI8AIdCUEVJoWr2nF+41LZNKK93vD/WMEGIHYINA/x2FMNpiNyQ6Lbt9pxabnCdgKk1YC3nS+ZEaAEWiDQLrN9P9mjXnqe2MsKUxabZCJw4AOpHX48OE5c+YUFhbabLaBAwf+6le/amgQR0/S1R49evT66693OBw5OTn33HOPOmnHjh2TJk1Cqd69ez/66KOtra1UBO66devGjh1rtVoHDBjw5z//GTEsjEBCIMAX2UkIXD2i19Uj8jqpcW42DAR0IK2vv/66paXlL3/5y65du5588klwzMMPP0xdaG5uvu6662pqajZs2LBixYo33njj/vvvp6SqqqqpU6fm5+dv3rx56dKlf/jDHxYvXkxJhw4duvbaay+99NJt27ahKlAdClISu4wAI8AIMAKJjIAOpHX11Ve/+OKL06ZNg1Z0ww03PPDAA2+++SZhumrVqt27dy9fvnzMmDFTpkxZtGjRsmXLQFdIffXVV+vq6l566aURI0bMnDkT5ATSImULtNe3b98lS5YMGzbsxz/+8Y9+9CNQGoqwMAKMACPACMQegbhqUQfS8rmeysrKrCzPGZGbNm0CJ0GdojxXXXVVfX391q1bEUQSbIMWi+f0FCSdOHEClkZKAgXCQ4KkLVu2NDY2UlBxURX4TxElnj2MACPACDAC3RUBnUnrwIEDsPXdcccdhNepU6dyc3PJDzczM9NsNiMSfrjqJPIjMmBSU1NTWVkZktSycOHCdO9fQUGBOon9jAAjwAgwAt0SAU2ktWDBAkOQP+hACi5QlWAqvPnmm2HTUyJRTvHD09raqsQoHoqHq8QoHkSiCFx1DIKQhx56CFodybFjxxDDEjkCXJIRYAQYga6AgCbSuuuuu/YE+YP1jy4TjHX55ZePHz/+2WefpRi4eXl5pDzBD3G5XLDykVLlk1RSUoIMwZJSUlKys7ORQS0wLaap/tRJ7GcEGAFGgBHolghoIq2cnJyhQf6sVitwOX78+OTJk88///wXX3wxOflsneCwnTt3njx5Enkgq1atAtOMHTsWfiStX79e2QGPJCx99e/fn5JWr14NDwmSxo0bZzKZKMguI8AIJAgCfJmMgD8CZwnGP01jDHQsMBZWlf7whz+UlpZCtYJQ2WnTpg0fPvz222/ftm3b2rVrH3jggblz50I7QuqsWbNAYLNnzwarrVy58vHHH7/vvvsMBvHzM1gSO3LkCILQ7l544YXnn38eBVGEhRFgBBgBRiDBEdCBtKAJ7d+//8MPP+zTp08v7x/BajQa33nnHWhjEydOvOWWW2bMmAFio6T09HSoU0VFRdCi5s2bB4qCUFJhYeG777778ccfn3feeY899thTTz114403UhK7jAAjwAgwAomMgA6kBW2p1e9PwbRv375vv/222+0uLy9funQptCslaeTIkevXr6+rq4P98Fe/+pXBINQsSp00adIXX3xRX19/6NAhKF4UyS4jwAgwAoxAgiOgA2klOIJ8+YwAI8AIMAIxQ4BJK2ZQc0NdBgHuKCPACMQtAkxacXtruGOMACPACDACvggwafkiwmFGgBFgBOIPAe6RBwEmLQ8Q/B8jwAgwAoxA/CPApBX/94h7yAgwAowAI+BBgEnLA0Q8/Md9YAQYAUaAEQiNAJNWaHw4lRFgBBgBRiCOEGDSiqObwV1hBOIPAe4RIxBfCDBpxdf94N4wAowAI8AIhECASSsEOJzECDACjAAjEF8ICNKKrx5xbxgBRoARYAQYgSAIMGkFAYajGQFGgBFgBOIPgW5CWq2trcC2iv+6DwJ8JYwAI5C4CGA8p1EdHh/pJqR15swZXFhBQUE6/zECjAAjwAh0ZQQwkmM8p1EdHh/pJqSVn59/7NixioqKykj/UBzQwI20gu5WDlAwID43lTFJdEB8rt8vyE+IDySRAVJRUYGCGNUxBPlLNyGt5OTkPn36YG6RFsUf0ImidDcsyoD431TGxAcTBoQB8UHAJxjBE4KRHOM5RnWU9ZduQlr+F8YxjAAjwAgwAt0PASYtn3vKQUaAEWAEGIH4RYBJy3NvLBbLr371K7iecML/BygYEJ+ngDFhQHwQ8AnyExIDQJi0PCDjaVuwYAFcTzjh/wMUDIjPU9BpmPj0IzmQJZoAAAfbSURBVG6CDIjPrWBAYgAIk5YPyBxkBBgBRoARiF8EmLTi995wzxgBRoARiFsEOqtjTFqdhTy3ywgwAowAIxA2AkxaYUPGBRgBRoARYAQ6CwEmrc5Cviu0y31kBBgBRiDOEGDS8tyQP/3pT4WFhVardezYsZ988oknNmH+W7hw4QUXXOB0Onv27Dljxoy9e/cql97a2rpgwYL8/HybzTZ58uRdu3YpSYngATIGg2H+/Pl0sYmMxvHjx2+77bbs7Gy73X7eeedt3bo1kTFpamr6r//6LwwaeC8GDBjw6KOPtrS0JBog69evv/766zE44B35xz/+QZcPN8RrUl9ff/fdd+fk5DgcjhtuuKGoqAj5wxImLQHX3/72N4xKjzzyyLZt2y699NJrrrnm6NGjIiFh/q1bt+7OO+/89NNPV69ejbdx2rRpNTU1dPVPPPHE4sWLn3766c2bN+fl5U2dOjXYQZaUvzu5uORnn3121KhRykUlLBoul2vixIkmk+m9997bvXv3okWLMjIyCJYYY0KNdrr7u9/97s9//jPeiz179gCB3//+90uXLqVeIZggrwxGidGjRwMEunDFDYEARtqVK1euWLFiw4YN1dXV06dPb25uVgpq8TBpCZTwhM2ZM+fHP/7xsGHDlixZUlBQ8Mwzz4iEhPn3/vvvz549+9xzz8Uj+OKLL4KzaR6NGRMAAZ3PnDlzxIgRL7/8stvtfu211xIBGLxRt95667JlyzIzM+l6ExkNjNF4L/BsXHjhhf3797/yyisHDhwIWBIWk02bNn3rW9+67rrrgMZNN92Eed6WLVsSDRDM73/zm99gcMCFKxLikaisrHz++ecx45kyZcqYMWOWL1++Y8eONWvWKGW1eJi0khoaGjBA45lT8IJ/48aNSjDRPHiwcMlZWVlwDx06dOrUKQACP8RisUyaNClBwIHqiSEJbxcunCSR0fjXv/41bty4m2++GQZkDDfg8gTH5JJLLlm7du2+ffuAw5dffgm94dprr4U/kR8SXD4kBAIYaRsbG5XxBHZFTIXDHU/ikrRw3TGUsrIy6Ke5ublKm/BjpFaCCeXBLOm+++7DC4mHCRdOOAAQ+Engp0gKdlcX5osvvvgCC1rqC6QLBwJKJPwUqcR0V8/Bgwdhfhg8ePAHH3xwxx133HPPPX/9619xsXT5wAF+EvgpkoLd1f35z3/+ve99b+jQoTCZgsVh9UIQF0vXDhDgJ4GfIinY7V26WFy1cqXwUyRcs9msmC6QQUmCX6MwaXmAwkKix5eUhIFbHVTiE8Fz1113ffXVV6+//rr6YtVoJAI4x44d+9nPfgbbhdVqVeNA/kRDg666paXl/PPPf/zxxzFA/+QnP5k7dy44jJLgJiAmWAjHEwJTOSY3MJv/4Q9/gAsoSBIQELpwxdWIQATjCZNWUk5OjtFoxBRAgbukpAT8rwQTx3P33XfDCvTRRx/16dOHrjovLw+eRAMHRgw8A2PHjk2Rf+vWrXvqqafgpaci0dDAAwDp1avX8OHD4SHB6i8WPuFPzCcEF/6f//mfv/jFL7773e+OHDny9ttvv/fee0kvT1hAgAlJCASQhOUYl8tFOeHiRaPXCn6NwqSVBHUVw9Pq1asVyOCfMGGCEkwED+Y70LHefPPNDz/8sLCwULlk+PGcARCKwQOHEbzbg3PllVdifXi79w9rObfeeitCAwYMSEA06NZPnDhR/SEE1nL69euHpMR8QnDhbrdb/SuFmPhCGUV8wgKCaycJgcDYsWNhTVXGk5MnT+7cuTPc8YRJS+CMVZznnnvuhRde2LNnD2ZMmELCai8SEubfnXfeSbYOp9MJTQJSW1uLq4eOD2M9jEIrV67E4zV79my73T5r1iwkdWMBCFjSU8ThcGRnZyOYmGjQjcZ78emnn+JJ2L9/P2xizz77LJ4ZJCUsJtdff/1vf/vbd9555/Dhw3g7Fi9e/O1vfzvmgKDBzpTq6mpM5iDoxKFDh+DB4BnikUhPT58zZ87999+/du3abdu23XbbbdBT1XudUE+7wqQlIPrOd76zZMmSRx999Lzzzlu/fv27775Ls0iRlhj/sD5RWVk5efJkWIFIYLKnS3/wwQfBW/PmzYPCcfz48VWrVmFMp6QEdBMWjQsuuABDMxY7Qd6PPfYY3hdon/QAJCYmS5cuvemmm/BewFL6wAMPYJ0PsCQaIFu2bMEaJwQXjqk/PL/85S/hD/FIPPnkkzNmzLjlllugu2MG/NZbbxmNRhTRLkxaHqzw8GHGVF9fj/WMyy67zBObMP/BPOgjUKro6jFvWrBgART5uro62AYxZlF84rgff/wxxmi63kRGY/r06bCa4jGAQWLu3LkECNzExARTNzwVR44cgU3iwIEDv/nNb7DQADQgiQMIprk+48ZLL70UGgGr1Qq+Ly8vh30VjFVQUID8YQmTVlhwdUJmbpIRYAQYAUZAQYBJS4GCPYwAI8AIMALxjgCTVrzfIe4fIxB/CHCPGIFOQ4BJq9Og54YZAUaAEWAEwkWASStcxDg/I8AIMAKMQKchEJS0Oq1H3DAjwAgwAowAIxAEASatIMBwNCPACDACjED8IcCkFX/3hHsUFAFOYAQYgURHgEkr0Z8Avn5GgBFgBLoQAkxaXehmcVcZAUYg/hDgHsUWASat2OLNrTECjAAjwAhEgcD/BwAA///p+DBUAAAABklEQVQDAKMc8ANxNTeWAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "id": "378f7bf6", + "metadata": {}, + "source": [ + "##### Nose-hoover\n", + "* x-axis = MD steps\n", + "* y-axis = Bar\n", + "\n", + "![image.png](attachment:image.png)" + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAGxCAIAAADpq/tWAAAQAElEQVR4Aex9CXyU1bl+JpOZTLbJCiSBsKoIAopgFVHBCrihUqrWot7SWq7Wrbhce5XeltpWb60iFW9tXapWtLT/WqyoVRAVpaAigrKJIlvYEhImCUnInv/znWfm5MtsmZnMhEny5vdyON/ZvnOe75zznPc95/smsVX+BAFBQBAQBASBboJAYoL8CQKCgCAgCAgC3QQBIa1u8qB6VTWlsYKAICAIBEBASCsAMBIsCAgCgoAgEH8ICGnF3zORGgkCgkD8ISA1ihMEhLTi5EFINQQBQUAQEAQ6RkBIq2OMJIUgIAgIAoJAnCAgpGV6EOIVBAQBQUAQiG8EhLTi+/lI7QQBQUAQEARMCAhpmcAQryAQfwhIjQQBQcCMgJCWGQ3xxxcCzz33nMXzl5SUVFBQcM0113z11Vch1vK9995Dbrghpo9issnqL9wCDxw4MH/+/I0bN4ab8biknz17NuCl2O32YcOG3X333VVVVbGrTGlpKW6al5eXmpo6YcKElStXxu5eUnLcIiCkFbePRirmRuDZZ59du3bt22+/feutt7766qvnnHOOy+Vyx/Ws/0Bav/jFL7oLaQH7lJQUPBoInsv555//yCOPXHnllQiPhdTX119wwQUgqt/97nf//Oc/+/Xrd9FFF61atSoW95IyO0LgeMYLaR1P9OXeoSAwatSos846a/LkyfPmzfvv//5vLLdfeeWVUDL2yDS1tbXx067ExEQ8Ggj44+mnnwZvrVixYteuXbGo4TPPPLN58+a//e1v11577dSpU//+97+fdNJJ99xzTyzuJWXGMwJCWvH8dKRu3giMHz8eQSUlJXApn3zyyeWXX56Tk+NwOMaOHYtJjeG+LlLCujh48GDoB3C/+93v7tmzh8laW1svueSS3NzcvXv3MgTccMopp4wYMaKmpgYhSPD73//+tNNOQ97s7GzoEzt37kQ4BbEPPfTQoEGDUIfTTz/9X//6F8MDuf/v//2/M888MzMzE2auoUOH/uAHP0BKmDHPOOMMeL7//e/T5gZTIS5hEEtPT9+0adO0adMyMjIuuOACBDY0NPzqV786+eSTk5OT+/TpgyyHDx9GOOWdd94Bx6M5qO3AgQO//e1vozmMeuKJJ0499VQUiKKQ/b777mN4VFyvp4NWsAm6cMCO5vCStt933333Rz/6ESx+qO3MmTOhazLW1126dOnw4cNhFWQUzMXXXXfdxx9/vH//foaI20sQENLqJQ867GbGZwau4rHEZvUw5U2cOLGiouIPf/gDTEYgle985zuYDRnr5e7evRuz3sKFC996663f/OY3Bw8eBEmUlZUhGabXF154ARRy9dVXNzY2IuTmm2/GvUCBaWlpuLzxxhvnzp07ZcoUKHlgry1btpx99tmaO3/xi1/85Cc/wfIfsZiC58yZs337duTyKzCmoZLgqiVLlrz++us/+9nPmpqakBJsB0MoPD/96U+RBvLDH/4QlxBQFIj5m9/8JtqIe7W0tFxxxRX/+7//O2vWLJQAD/QbsNSxY8eQGM289NJLscn0pz/96c0330QsmoASELVkyRK0a9KkSSAAVPWOO+4gJSMqKgLEwCVoWuiloY02m+2ll14C64O2wUOB8kLNGjNmjDmWl3gW5kDx93gEhLR6/CPu9g1sbm7GtF5dXQ2ygXpx3nnnYQZnqzAFQx+CYgGyufDCCzHpT58+HdoDpnUmMLtQjzDjz5gxAyXAj+ke+gemS6bBSh9z+vr162FxQjnPP//8okWLRo8ejdgPP/zwqaeewuz/8MMP4y5Q0UASVVVVCxYsQCwoExT4rW99C/YxWMnAWKC6Q4cOIcqvrFmzprW1FSx78cUXn3/++dA8/vznPyOl0+mEIRSeYcOGweAGGTBgAC4h4FFwG0yj4C3oWygfbIRcCASP3nDDDa+88srWrVvJ1mhCXV3db3/72yuuuAL8BGJDyqysLJTz73//G57HHnsM/AqNDUyM/SGEd0bwaCDl5eVo0T/+8Q+g17dv39ALBGKoDxqFVtx7771YhQSCDreAPm0umZcINweKv8cjIKTV4x9xt28gpm8sxmHOwgQH0xy0DSzn0aodO3Z88cUX2OGAH/MmBVY+qFB+FR3QHvShE044AdkhMJFBz9i2bRuyU6C0/frXv4YqBm0JS35Mowx/7bXXoIohhLeAm5+fDyMbNAMkgEoEkmA1cAmBEgZTITx+BeodwsGy4J7QTVsw8SEXBfUB91x22WWoCQUqJqrE+sAPNes///M/wbtmGybyfuMb3wDFgnSBIVVMBPqV5mZjocDC/a4AmAsA4tFAYN8DaNAgASCjQnT1+gPpqTlpmy1CvMRisXiF4BKPBq5I70FASKv3POvu2lIoCuvWrYM6Bc0AHIM5ly2hde7uu+/GpKkFuhdi/c7I0Dkef/xx2KOgsWEvBGViN4gmNWShgHsw49fX1//Xf/0XQ+DiRtCN+vXrp+8CD9Qv3oUrfXAGUmrxutTh8EDPg2IEPviP//gP6FLQrv7yl78gPIjAbgk9TCdAfcA9qCeqoQUKCusDRe3tt9+GunPLLbfAD9Hq1PXXXw+bIVjh29/+NhJgXw0qoy7W7IEepkvmlps5VvuxZwYYIcuWLYN9Eg2BPqpjQ/FAwdXJsD8Hv9cTQQgFKQk1L+EeOXIELvUteER6CQJCWr3kQXfjZo4YMQI7/LCkwQAFyoFl7O9//zvag9U9XNiUMGl6CbQNRJmlsrISCgqMVzCyYUaGugPTH2c9nay5uRmkBWVu4MCBULO4D4RY3AjL+dWrV3vdBdyDWEymcMEZcLV4XepwemC4W7lyJaoE3Qi8BTaFusYovy7ubg5HfXBTr8rgEpttTHbuueeCRVA+mHXChAnYjYPlk1Hf//73YZ9EFKyjYGJYU8FhjDK7f/zjH1EgxeswhTlZYmIiHg0E5eC5wFQLA2xxcTHTgIRA//TT9WIdBobo4nlt2rTJnJiXYH1zoPh7PAJxR1o9HnFpYGcQwHY9SAV7ObBZDR8+/MQTT/zss88waXoJbIled8G8jzka06gOxxYUWEpfwvPzn//8gw8+ePHFF//617+iWK1sYUZGXpjyvO6CaRS5YL10OBzIBT8FrOCXCRirXVQGe07YD0PIhg0b4CIEbiBVA1EU1AezPyrvVR8AwgR0rVYrdKn/+7//w+Wnn34KV0taWhp21ObNmwdi9nuQAUXpwgcPHqwzBvGg8rgXLKXYd2QyZPz888/phwtdGRZaeCIT7BrCGvzRRx8xO1TVxYsXo4GFhYUMEbeXICCk1UsedA9pJhgLqhWMhDxAAYUAKsuFF14Iw9T7778P1efBBx+86qqrfFsL8xrscr/97W/BVbCe/c///A92X7AzpFPCUIa8CIceBh6C/7HHHlu6dCkSYK8LW0TQUaCoQV179913cXfYIZ944gnEokowUSIltEAYHlE+9quCmAfBuDC4geRWrVqFvaU77rgDhjiwF4qCKQ8GN0RBA/vkk08OHDiAQF+55pprQDnYvbv//vuh3wABbF/Nnj0bdUBi6KOoAEJQz3/961+oFQKnTJkCd86cObfffjsoGVhhRw0qVGZmJpROREVF0ArU6tlnn92lXtWCNRIVQHtRw0WLFmHTC7eL+EYADZocHi7AxxNEG7FzScqPuEzJ2B0RENLqjk+tV9f5tttug/kO8zVUDdgMsTsF7oEFDPMypkVMZ/D4BQiTHdKDeGbOnAlKAEvpOfTgwYPXXXcddmUwwzLvnXfeedlll2Gi3L17d0JCAtgR+2GY60EYl156KZLV1NR84xvfYGJUBiS3fPnyyy+/HLMzaAOaCqN8XSgHMB7+5Cc/mTZtGrgQLAUVBNMxUmLvCntO0KIQBS558sknEegrUKFeffXV++677x//+Af0jxkzZmAnCdoeNT+YRqGFQGsEsYE2Dh8+jMQoEOXAbLh58+Yf//jHU6dOBVmedNJJ0CyxsYeoaAlYBM/ll7/8JQqEqgp57rnngOTLL78MmsSTQnhkAk0O5IcniA6AAvHIwIigychKk1zdFwEhre777Hp+zaE9wC4HO5W5qZidYXz78ssvMXcjfMyYMVAdSkpKYOnCRIZ57cYbb0Q4BCSE7HDhh/Tv3x+bYdjHqqqqwnwHngAhYUpFVEFBAUpAXmzS4BICcyLmepfLBRsXLiHQtLBFBANXbW3tjh07oMqMGzcO4RAkxlbZ3r17sYUDuyLMd1CVIIjyFXDeG2+8sW/fPiTGTbG3dM455+hkIEXokWgLag5NCOGoIW4Kj1mSkpLuuuuujRs3wpZ49OhRZAFTnnDCCUgDNRFkhqbBUldWVoZqYIpHOOQ//uM/QJCgTNwa1k7gRp5DVATit2LYYQJpgXpRoN1uB4cBFiCGapx66qmoFXIhCuL7cPGk0Gq4iPUr/fr1A+wgdbQau4CBVid+80pgj0FASKvHPEppiCAgCPQmBHprW4W0euuTl3YLAoKAINANERDS6oYPTaosCAgCgkBvRSBqpAUTObayc3NzsZmMreD169cTUhipYZovLCzEhjOs1ebztTCsY081Ly8vLS0NO9iw8jMLXOwlYA8Z++QQeCoqKhDY+0RaLAgIAoKAINAOgeiQFjhm4sSJNpsN+9tbt2595JFH9DGhhx56aMGCBY8//vi6devy8/OnTp2KfWNWYe7cuUuXLl2yZMnq1aux1Yzta2zhMmrWrFnYZH5T/cED3mK4uIKAICAICAK9GYHokNZvfvOboqKiZ5999hvf+MbgwYMvuOCCYcOGAVaoWQsXLpw3b97MmTNHjRr1/PPP19bWvvTSS4iqrKx85plnQG9TpkwZO3bs4sWLN23a9PbbbyNq27ZtYKunn356gvp76qmnXnvtte2BP5uNLCKCgCDQRQjIbQSB44pAdEjr1VdfHT9+/FVXXdW3b18wEGiGjdq1a9ehQ4f4jghCkpOTJ02atGbNGvhhP2xsbNRRsB+C1Ri1du1aWAXPPPNMJIOcddZZuGQULrXAuljl+YP9cOfOnSBCT4D8LwgIAoKAINAtEcBMjt2ilpYWPdubPdEhLRDGE088ceKJJ7711ls33XTT7bff/mf1awtgLNysX79+cCnwMxCu3W7Pzs5mOFxzFMgPIVpwifT6kp4HH3wQZEZBOdDtYJPkpbiCgCAgCAgC3RQBzOQw3QX6Ioxf0iIphOGCEk8//fQHHngAataNN944Z84ccJjOb7FYtL+1tdViabvU4fCYoyyWdmnMUUhJuffee0HIlL179yKwuLiYl+IKAoKAICAIdFMEMJNjPvf9gigCIdEhrYKCgpEjR6I4yogRI8gi+fn5CDErSaWlpdCoEIiohoYGl8sFP8UcVVJSwkC6hw8fZi5e0oWx0en5w4ICgZ4r+V8QEAQEAUGgGyOA+dxiaae6IIQSHdKaOHGi+aDEl19+yR/BGzJkCMhpxYoVvBlYatWqVWeffTYux40bZ7PZdNTBW/wEOAAAEABJREFUgwc3b97MqAkTJmCB8PHHHyMZ5KOPPsIlo3Ap0ksRkGYLAoKAIJCQEB3SuuOOOz788EOYB3fs2PHSSy89+eSTt9xyC+C1WCxz585F+NKlS8FJs2fPTk1NnTVrFqKgG91www133XXXypUrN2zYcN11140ePXqK+hY1FLWLLroINkaUCYFn+vTpQb5AitJEBAFBQBAQBHoDAtEhrTPOOAO09Je//GXUqFG//OUvFy5ceO211xK+e+65B7x18803jx8/fv/+/cuXL9eWykcffXTGjBlXX301FDWQ2bJly/gJVGR88cUXwWHT1N+YMWNeeOEFBIoIAoKAIBBXCEhluh6B6JAW6g1laNOmTXV1ddu2bYNuhBAKlK358+fD+oco2AbBagyH63A4Fi1aVF5eXltbC8YqKipCICUnJ2fx4sU8rQlPVlYWw8UVBAQBQUAQ6M0IRI20ejOI0nZBQBAQBASBrkFASKsjnCVeEBAEBAFBIG4QENKKm0chFREEBAFBQBDoCAEhrY4QknhBIP4QkBoJAr0WASGtXvvopeGCgCAgCHQ/BIS0ut8zkxoLAoKAIBB/CHRRjYS0ughouY0gIAgIAoJA5xEQ0uo8hlKCICAICAKCQBchIKTVRUD3jNtIKwQBQUAQOL4ICGkdX/zl7oKAICAICAJhICCkFQZYklQQEATiDwGpUe9CQEirdz1vaa0gIAgIAt0aASGtbv34pPKCgCAgCPQuBLoHafWuZyKtFQQEAUFAEAiAgJBWAGAkWBAQBAQBQSD+EBDSir9nIjXqHghILQUBQeA4ICCkdRxAl1sKAoKAICAIRIaAkFZkuEkuQUAQEATiD4FeUCMhrV7wkKWJgoAgIAj0FASEtHrKk5R2CAKCgCDQCxAQ0up2D1kqLAgIAoJA70VASKv3PntpuSAgCAgC3Q4BIa1u98ikwoJA/CEgNRIEugoBIa2uQlruIwgIAoKAINBpBIS0Og2hFCAICAKCgCDQVQiETlpdVSO5jyAgCAgCgoAgEAABIa0AwEiwICAICAKCQPwhIKQVf89EahQ6ApJSEBAEehkCQlq97IFLcwUBQUAQ6M4ICGl156cndRcEBIH4Q0BqFFMEhLRiCq8ULggIAoKAIBBNBIS0oommlCUICAKCgCAQUwSiQ1rz58+3mP7y8/NZ6dbWVkQVFhampKRMnjx5y5YtDIdbX19/22235eXlpaWlXX755fv27UMgxeVyXX/99ZnqD56KigqGx5ErVREEBAFBQBA4HghEh7RQ81NOOeWg52/Tpk0IgTz00EMLFix4/PHH161bByabOnXq0aNHEQ6ZO3fu0qVLlyxZsnr16urq6unTpzc3NyMcMmvWrI0bN76p/uABbyFQRBAQBAQBQUAQiBppJSUlgZYoffr0AbJQsxYuXDhv3ryZM2eOGjXq+eefr62tfemllxBVWVn5zDPPPPLII1OmTBk7duzixYvBc2+//Taitm3bBrZ6+umnJ6i/p5566rXXXtu+fTuiRAQBQSAIAhIlCPQGBKJGWl999RXMgEOGDLnmmmt27twJ7Hbt2nXo0KFp06bBD0lOTp40adKaNWvgX79+fWNjo45CRrAao9auXQu74JlnnolkkLPOOguXjMKlWWBgrDL9maPELwgIAoKAINAjEYgOaYFj/vznP7/11ltPPfUUiOrss88uLy+HB5D169cPLgV+BsK12+3Z2dkMh2uO6tu3L0K04BLp9aX2PPjgg+AzSlFRkQ4XjyAgCAgCgkB8IBD9WkSHtC6++OJvf/vbo0ePhrnv9ddfRzVhDIQLsVgscCmtra0WS9slA+maoyyWdmnMUUxM995774WZkVJcXMxAcQUBQUAQEAR6MALRIS0zQGlpaWAvWAuxv4Vws5JUWloKjQqBiGpoaHC5XPBTzFElJSUMpHv48GHm4qV2YW90mv50uHgEAUFAEBAEeioC0SctbDVt27atoKAA+1sgpxUrVhA7sNSqVatgOcTluHHjbDabjjp48ODmzZsZNWHCBChPH3/8MZJBPvroI1wyCpcicYiAVEkQEAQEgS5DIDqkdffdd4OQdu3aBY658sorq6qqvve971kslrlz5z7wwANLly4FJ82ePTs1NXXWrFloGzaibrjhhrvuumvlypUbNmy47rrroJzBtIioESNGXHTRRXPmzPlQ/cEzffr04cOHI0pEEBAEBAFBoJcjEB3S2rdv33e/+11Qy8yZM+12O+hm0KBBQPaee+4Bb918883jx4/fv3//8uXLMzIyEA559NFHZ8yYcfXVV0+cOBFktmzZMqvVinDIiy++CA6bpv7GjBnzwgsvIFBEEBAEBIGQEZCEPRaB6JDWkiVLDhw4AAMgmOnll18eOXIkAYOyNX/+fFj/6urqoIqNGjWK4XAdDseiRYvKy8tra2vBWObjfzk5OYsXL4a6BoEnKysL6UUEAUFAEBAEBIHokJbgKAgIAoKAICAIdAEC3Zi0ugAduYUgIAgIAoJAXCEgpBVXj0MqIwgIAoKAIBAMASGtYOhInCAQJgKSXBAQBGKLgJBWbPGV0gUBQUAQEASiiICQVhTBlKIEAUFAEIg/BHpWjYS0etbzlNYIAoKAINCjERDS6tGPVxonCAgCgkDPQkBIq2c8T2mFICAICAK9AgEhrV7xmKWRgoAgIAj0DASEtHrGc5RWCALxh4DUSBCIAQJCWjEAVYoUBAQBQUAQiA0CQlqxwVVKFQQEAUFAEIgBAp0krRjUSIoUBAQBQUAQEAQCICCkFQAYCRYEBAFBQBCIPwSEtOLvmUiNOomAZBcEBIGei4CQVs99ttIyQUAQEAR6HAJCWj3ukUqDBAFBIP4QkBpFCwEhrWghKeUIAoKAICAIxBwBIa2YQyw3EAQEAUFAEIgWAkJa0UIyIUFKEgQEAUFAEIgxAkJaMQZYihcEBAFBQBCIHgJCWtHDUkoSBOIPAamRINDDEBDS6mEPVJojCAgCgkBPRkBIqyc/XWmbICAICALxh0CnaiSk1Sn4JLMgIAgIAoJAVyIgpNWVaMu9BAFBQBAQBDqFgJBWp+CTzIEQkHBBQBAQBGKBgJBWLFCVMgUBQUAQEARigoCQVkxglUIFAUEg/hCQGvUEBIS0esJTlDYIAoKAINBLEBDS6iUPWpopCAgCgkBPQKCnkVZPeCbSBkFAEBAEBIEACESZtB588EGLxTJ37lzerrW1df78+YWFhSkpKZMnT96yZQvD4dbX19922215eXlpaWmXX375vn37EEhxuVzXX399pvqDp6KiguHiCgKCgCAgCPRyBKJJWuvWrXvyySfHjBmjMX3ooYcWLFjw+OOPIyo/P3/q1KlHjx5lLIht6dKlS5YsWb16dXV19fTp05ubmxk1a9asjRs3vqn+4AFvMVxcQaB7IiC1FgQEgaghEDXSAvFce+21Tz31VHZ2NmsHNWvhwoXz5s2bOXPmqFGjnn/++dra2pdeegmxlZWVzzzzzCOPPDJlypSxY8cuXrx406ZNb7/9NqK2bdsGtnr66acnqD8U+Nprr23fvh1RIoKAICAICAK9HIGokdYtt9xy6aWXgoQ0oLt27Tp06NC0adMYkpycPGnSpDVr1uBy/fr1jY2NOgr2Q7Aao9auXQu74JlnnolkkLPOOguXjMKlWWBgrDL9maPELwgIAoKAIBAMgW4bFx3SgpXv008/xYaWGQcwFi779esHlwI/A+Ha7XatkyHWHNW3b1+EaMEl0utL7cHtwGeUoqIiHS4eQUAQEAQEgZ6KQBRIq7i4+Mc//jFMfA6Hwxcmi8WiA2EwtFjaLnU4POYoi6VdGnMUUmq59957YWakoA46XDyCgCAgCAgCPRWBKJAWbH2lpaXjxo1LUn+rVq167LHH4IXyBNTMShKSMTA/P7+hocHlciEBxRxVUlLCQLqHDx9mLl5qF/ZGp+lPh4vHg4D8LwgIAoJAT0MgCqR1wQUXbNq0aaPnb/z48ddeey2uhg4dCnJasWIFMQNLgc/OPvtsXI4bN85ms+mogwcPbt68mVETJkyA8vTxxx8jGeSjjz7CJaNwKSIICAKCgCDQmxGIAmllZGSMMv2lpaXl5uYiwKJe2HrggQeWLl0KTpo9e3ZqauqsWbMANzaibrjhhrvuumvlypUbNmy47rrrRo8ezUMcI0aMuOiii+bMmfOh+oNn+vTpw4cPRy4RQUAQ6PYISAMEgc4hEAXSClKBe+65Z+7cuTfffDPUr/379y9fvhwMx/SPPvrojBkzrr766okTJ4LMli1bZrVaGfXiiy+Cw6apvzFjxrzwwgsMF1cQEAQEAUGglyMQfdJ67733Fi5cSFihbM2fPx/Wv7q6OtgGoX4xHK7D4Vi0aFF5eXltbS0Yy3z8LycnZ/HixTzNDk9WVhbSiwgCgoAgIAgIAtEnrYQEQVUQEAQEAUFAEIgJAkJaMYFVChUEBAFBQBCIBQJCWrFAVcqMPwSkRoKAINAjEBDS6hGPURohCAgCgkDvQEBIq3c8Z2mlICAIxB8CUqMIEBDSigA0ySIICAKCgCBwfBAQ0jo+uMtdBQFBQBAQBCJAQEgrAtDCySJpBQFBQBAQBKKHgJBW9LCUkgQBQUAQEARijICQVowBluIFgfhDQGokCHRfBIS0uu+zk5oLAoKAINDrEBDS6nWPXBosCAgCgkD8IRBqjYS0QkVK0gkCgoAgIAgcdwSEtI77I5AKCAKCgCAgCISKgJBWqEhJus4jICUIAoKAINBJBIS0OgmgZBcEBAFBQBDoOgSEtLoOa7mTICAIxB8CUqNuhoCQVjd7YFJdQUAQEAR6MwJCWr356UvbBQFBQBDoZgj0CtLqZs9EqisICAKCgCAQAAEhrQDASLAgIAgIAoJA/CEgpBV/z0Rq1CsQkEYKAoJAJAgIaUWCmuQRBAQBQUAQOC4ICGm5Ya9vai6rrq+pb3Jfy3+CgCAgCPQ2BLpDe4W03E/px3/ZOP5Xb/9jw373tfwnCAgCgoAgEH8ICGm5n0lachJ8omkBBBFBQBAQBOIWASEt96NJT7bC1wtIC60UEQQEAUGguyIgpOV+ctS0qmVPy42H/CcICAKCQDwiIKTlfiokLdG03HDIf4JAVyIg9xIEQkZASMsNVbra0xJNyw2H/CcICAKCQFwiIKTlfizUtKrrm93X8p8gIAgIAoJA/CHQZaQVf01vXyM5iNEeD7kSBAQBQSAeEYgOaT3xxBNjxoxxqr8JEyb861//YltbW1vnz59fWFiYkpIyefLkLVu2MBxufX39bbfdlpeXl5aWdvnll+/btw+BFJfLdf3112eqP3gqKioYHlOXmpbsacUUZClcEBAEBIFOIhAd0howYMD//u//fqL+vvnNb15xxRXkp4ceemjBggWPP/74unXr8vPzp06devToUdZ47ty5S5cuXbJkyerVq6urq6dPn97c7DbNzZo1a+PGjW+qP3jAW8wSU1f2tGIKbxsn6xIAABAASURBVJwWLtUSBASB7oZAdEjrsssuu+SSS05Sf7/+9a/T09M//PBDqFkLFy6cN2/ezJkzR40a9fzzz9fW1r700kuAqLKy8plnnnnkkUemTJkyduzYxYsXb9q06e2330bUtm3bwFZPP/00NDbIU0899dprr23fvh1RMRWSlmhaMQVZChcEBAFBoJMIRIe0dCWgLUF5qqmpAd/s2rXr0KFD06ZNY2xycvKkSZPWrFmDy/Xr1zc2Nuoo2A/Baoxau3Yt7IJnnnkmkkHOOussXDIKl2aBgbHK9GeOisDvMQ+6tb0ISpAsgoAgIAh0HgEpITgCUSMtqEpQsMBMN910E+x+I0eOBGPh3v369YNLgZ+BcO12e3Z2NsPhmqP69u2LEC24RHp9qT0PPvgg+IxSVFSkwyPzkLQamlsamloiK0FyCQKCgCAgCMQagaiR1vDhw7H/BKvgj370o+9973tbt25l1S0WCz1wW1tbLZa2S4RoMUdZLO3SmKN0enjuvfdemBkpxcXFCOmMpNmNzzihBLEQAgQRQUAQEATiE4GokRY0pxNOOGH8+PFQgE499dTf/e53+fn5aLNZSSotLYVGhUBENTQ0uFwu+CnmqJKSEgbSPXz4MHPxUrvQ6tRxRbejwyPzJFkTHTYDjeou+JJTZFWUXIKAICAI9HoEjGk66iBAN8KG05AhQ0BOK1asYPlgqVWrVp199tm4HDdunM1m01EHDx7cvHkzo7AZBuXp448/RjLIRx99hEtG4TKm4j6L0SA/qRVTmKVwQUAQEAQiRyA6pHXfffd98MEHu3fvxs7WvHnz3nvvvWuvvdZiscydO/eBBx7AFhc4afbs2ampqbNmzUJlsRF1ww033HXXXStXrtywYcN11103evToKVOmIGrEiBEXXXTRnDlzYGmEwDN9+nTYHhEVa+G2lpgHY42zlB+fCEitBIFugUB0SAsGveuvvx7UcsEFF0A3evPNN6dOnYr233PPPeCtm2++GWbD/fv3L1++PCMjA+GQRx99dMaMGVdfffXEiRNBZsuWLbNa3btKL774IjhsmvobM2bMCy+8gPRdIGl24ye1quVLTl2AtdxCEBAEBIGIEIgOaT3zzDNQs2ASxNbU22+/TcZCfaBszZ8/H9a/uro62AZHjRqFQIrD4Vi0aFF5eXltbS0Yy3z8LycnZ/HixTzNDk9WVhazxNp1mwdlTyvWQEv5goAgIAiEhICfRNEhLT8Fd8OgtGRD1auukz2tbvjwpMqCgCDQOxAQ0mp7ztzTqhZNqw0S8QkCgoAgEF8ICGm1PQ8xD7Zh0YU+uZUgIAgIAqEjIKTVhhVJq1qOvLdBIj5BQBAQBOILASGttudB86AceW9DRHyCQC9FQJodvwgIabU9G2paNXLkvQ0S8QkCgoAgEF8ICGm1PQ9qWnIQow0R8QkCgoAgEGcI9F7S8n0QPPJeI6cHfaGREEFAEBAE4gMBIa225+AxD8p7Wm2YiE8QEAQEgbhCQEir7XGIebANC/EdHwTkroKAINABAkJabQB5NK3mtiDxCQKCgCAgCMQTAkJabU+DmpbsabUhIj5BQBAQBOIMASGttgfCgxjVDU2tra1toeITBAQBQUAQiBsEhLTaHgXNgyCs2gaxELbBIj5BQBAQBOIHASGttmeRYrMmWozL3mchNFot/wQBQUAQiH8EhLTanpHFYvH8DqScem+DRXyCgCAgCMQPAkJa7Z5FusP48eIa+ZJTO1TkQhA4HgjIPQUBfwgIabVDhQcI5UtO7UCRC0FAEBAE4gYBIa12j4KkVSNfcmqHilwIAoKAIBAvCBxf0ooXFHQ90pOt8NfIT2oBBRFBQBAQBOIPASGtds9EDmK0g0MuBAFBQBCIMwSEtNo9EL6qJebBdqD0tgtpryAgCMQxAkJa7R4O97Sq5fRgO1TkQhAQBASBeEFASKvdkyBpiabVDhS5EAQEgeONgNxfIyCkpaEwPO6DGHJ60ABD/gkCgoAgEHcICGm1eyTUtKqFtNqhIheCgCAgCMQLAkJa7Z4ESev4mAfbVUQuBAFBQBAQBPwgIKTVDhSeHhRNqx0ociEICAKCQNwgIKTV7lFQ06qW04PtUJGL3ouAtFwQiDcEhLTaPRFqWmIebAeKXAgCgoAgEDcICGm1exRCWu3gkAtBQBAQBOIMgcSEOKvQ8a1Omvr2YLWcHjy+j0HuLggIAoJAAARE02oHDDWt+qaWpuaWdhFyIQgIAoKAIBAHCESHtB588MEzzjgjIyOjb9++M2bM2L59u25aa2vr/PnzCwsLU1JSJk+evGXLFh1VX19/22235eXlpaWlXX755fv27dNRLpfr+uuvz1R/8FRUVOiomHp4EAO3qJGzGEDh+IncWRAQBAQBvwhEh7RWrVp1yy23fPjhhytWrGhqapo2bVpNTQ3v99BDDy1YsODxxx9ft25dfn7+1KlTjx49yqi5c+cuXbp0yZIlq1evrq6unj59enNzM6NmzZq1cePGN9UfPOAthsfatVkT7UkGJtXy6ySxxlrK77kI1DU2z12y4Z8b9/fcJkrLjhsCxgTd+ZuDXGbPnn3KKaeceuqpzz777N69e9evX49ioWYtXLhw3rx5M2fOHDVq1PPPP19bW/vSSy8hqrKy8plnnnnkkUemTJkyduzYxYsXb9q06e2330bUtm3bUODTTz89Qf099dRTr732mll7Q5rYCS2ENbKtFTuIpeSejsDaneWvbDyw6J0dPauh0pq4QCA6pGVuCtgIlzk5OXB37dp16NAhKF7wQ5KTkydNmrRmzRr4wWqNjY06CvZDsBqj1q5dC7vgmWeeiWSQs846C5eMwqUWWBerTH86vJMeOYvRSQAluyBwsKIOIJRV18MVEQSii0CUSQuq1Z133nnOOeeAgVBRMBbcfv36waXAz0C4drs9Ozub4XDNUdgbQ4gWXCK9vqQHG2kgM0pRUREDO+/ydyBF0+o8klJCr0XgUJVBWhW1jU3NcqCp1/aCWDU8yqR16623fv7553/5y1/M9bVYLPoSrGaxtF3qcHjMURZLuzTmKKSk3HvvvdDqKMXFxQzspIvsYh4ECCKCQGcQKKk0SAslHKltgCsiCEQRgWiS1m233fbqq6++++67AwYMYBXz8/PhMStJpaWl0KgQiKiGhgaXywU/xRxVUlLCQLqHDx9mLl7ShbHRafpjYOddHiCsltODnYdSSuitCFDTQuuP1AhpAQaRaCIQHdKCJgQd6x//+Mc777wzZMgQXUH4QU4rVqxgCFhq1apVZ599Ni7HjRtns9l01MGDBzdv3syoCRMmQH/6+OOPkQzy0Ucf4ZJRuIy1UNOqrmuM9Y2kfEEgNAS6X6oSZR5EvcurhbQAg0g0EYgOad1yyy2LFy9+6aWXMjIyoFdBjh07hmpaLJa5c+c+8MADS5cuBSfNnj07NTV11qxZiMJe1A033HDXXXetXLlyw4YN11133ejRo6dMmYKoESNGXHTRRXPmzPlQ/cEzffr04cOHI6oLhAcxahrch++74I5yC0GghyHQRlqiafWwRxsHzYkOaT3xxBNQhiZPnlzg+fvrX//K1t1zzz3grZtvvnn8+PH79+9fvnw5iI1Rjz766IwZM66++uqJEyeCzJYtW2a1Whn14osvgsOmqb8xY8a88MILDO8C12MebOqCe8ktBIGeh0BdY7Or1m2oKJcDhD3vAbNFx8+NDmnBPOglUKrYKChb8+fPh/Wvrq4OtkGeKmSUw+FYtGhReXl5bW0tGMt8AjAnJweqGw+0w5OVlcUsXeBmJCfhLnJ6ECCICAIRIFBa1XbSXfa0IgBQsgRHIDqkFfwe3StWNK3u9byktvGGgD6FgYqVyZ4WUBCJKgJCWt5wkrRE00pI8EZGrgWBUBAwk9aRmjatK5S8kkYQ6BABIS1viHh6sEaOvHsDI9eCQEgI8CUth82YW+T0YEiQSaJwEDA6Vjjpe35aalrV8u3Bnv+opYUxQYCa1vB8J0qP/p4WChXp3QgIaXk/f/eRdyEtb2DkWhAICQGS1imFBmmVyenBkDCTRGEgIKTlDZbHPChH3r2RkWtBIBQEaB4cWWCQVlVdU6N8fjAU1CRNyAjEIWmFXPfYJBTzYGxwlVJ7CwLUtIbnZ1gTjS+IuuT94t7y5LuonUJa3kC7Na2G5tbWVu84uRYEBIGgCGDU8D2tgkxHdqodabv+1Pune12ylwbke6oIaXk/WWpazS2t9U3yqwre4PTea2l5aAiALRqUPbBvhiM3zSAthISWNTqp1u9xzfz9mh8v2RCd4qSU+ENASMv7maTa3J+SkgOE3tB01XVLS+vOw9VYs3fmhm9tOXTX3z47Jt+Q7AyI4ectUZ/DAF3ZkxJz0w3SKu/aV7Xe3HwQtd57pBauSI9EQEjL+7EmJlrS7AZvVdfJWQxvcLrm+tk1u7/5yKol6zr1G2mPv7Pj5U/3vbe9tGvqLHchAiXq++79nA5c5ihNq7xrP4rx7vbDuHUvGbxoaS8UIS0/D50WQtG0/EDTJUFflRzFfXaUVsONWGiVkhV3xABGlpGnMPIzDdKCvoVCulLTKj5Sy25ztAtfWemkSQAQiYSFgJCWH7jSHfLNXD+wdFkQlwudXCxXHTM+NC6k1WVPjTc6pH6zmJpWbnoyArl6gKcLRCvWDU0t9U1d8etCv3596zm/ebcr29gFMMb5LYS0/DwgzwHCODAP+qldzw+qUcvk6obI8W9uaeVau9hl/K5bz4csblpI82C+09C0aB7sytOD73zRZg2u6ZIvsb255dD+imOf76uImyfQ8ysipOXnGafZDU2ruks6vZ/bd+egsur6a55c+8qG/Z1pBKebzmhaR+sMNQt12Ccb8kChC8VjHjR0rDx1EKPLtJC6xuY1X5frtnam/+hCOvTwLlWy/90hUtFLIKTlB0vuadWo9b6faAkKjMAbmw5+uPPISx/tDZyk45hqhXxn8K9UtkHcaZ/rWEuLvG8HJKIpQcoymwdz0gzqKu+qLzmt3Vle39RSkOnIU2bJo/XuhUuQ2nYyCrtZRxVd0RbdydIke4gICGn5ASo92Tg92JlJ00+hvSNo64EqNLS2MXLLHrLXKMMgqQuXEYgmrYbmlpKjdRGUIFkiQ8BtHuRBDKVplXfVFzHeU7bBycP7OtWeNHWgyFoRYq66xpYmtSSq8mj2IWaUZJ1BQEjLD3rUtDozafoptHcEbT1okFYn347icqEz+GvSAurFR2RbCzB0hcBA56o19BvuafH0IHSRLjgTAaWHh93PH94nnaSl9PWYNltboauOdWqVFtNK9rzCA5BWz2toOC1yH8SIfacPp1LdIG1jc8sXh4zT6liBdqa6mOaQvTOkZZ5EimVbC2h2ifADTslJiZkpNtzQ6bAluT8/aDAZQmInO8tq9h6ptVsTJ54A6yD3pGNOJDzsg0aJpgUQukyEtPxA7dG0uuLIrJ/bd9ugnYdh2DO+fVWyFposAAAQAElEQVSr7HuRtaOpuQU7E8hbXdeE5TM8EUilZ08LeYtd8nEEwNAV4jmF4bBYjE/lJiZastX7xWWx39Z6V9kGzxyKfbQkLjq59Ilps/UtZE8rpjh7FS6k5QWIcUnSopHKuJZ/oSGw9WAlEx5rjJzvazyHNrFbQPZimQkJCaF72pFWl5gHj9Q0REyxobcrzlNyQ4svabGquYq0AA4vY+e+pz6EMXl4X9ziOJgH1XEM3FqkCxAQ0vIDcnc5iIEFbFxNlDyFAUBhHmxRG9TwhyvVJi0tYgshzTV56iBAF5gHP99XMf5XK36xbGu4je1h6f2QlnoEsSYt9JOPdhmH3c8f3geQZiQr82DsiUQ0LaDd9SKk5QdzaloYCX7i4iYI9pDxv3p70Ts74qZGCVvU0UHWpy7S7xHUmLYSzX4WG6JLTWtU/0yk7wLz4BcHj4KjN+93K5q4ae8UnnfPdxon3YkArHXwYHUFN3by7x1ljc2tg3JTh+Sl4S4ZDmNHrQvGLyzYCQm4YQIXSYZP/sUeASEtPxh3C9L6TL2Ev+VAvEyU0Pl4dJCARnyA0DzX6JUsywzdJWmdUuhEFmy01EfKoMgeipChI65tKLfoFmkANerZ9ebB99Rnkc8f3tdiMfbSaB7sgsehuapKTg/iwXeVCGn5QTpdmRciXub7KTEGQRXqbLF5io/BTcIo8mBlHaqUlGixWY2JI+JtLTPsZn8YVUlI4Mb4kLz0FJu1tTXhQEVsX9WqU3t4+gB0WFXtSYlpHuTXctku7mmVx/hD7x/tPILbTTrJsA3Cw/FbHfuXizUvavbC3UVijYCQlh+EPZ3efZrAT4o4COI+QbXn2MJxrxE3tE7om049NWJNy0xU1SZTYVgNJGllpdiKclKQcW+MT71jDw930Qeg4e+dQk2LL2kRgVz1cYqYvl8MNXqPer4jlWKN+2Z01Xtaun82NLVw4YK7d1KaW1phZ25sbulkOT04u5CWn4dL0jLPnn4SHe8gV20DqhA/leSGFiYOKDeoWMSaVrWJhqsjJa1KdeQ9M9VWlJ2KysT6LAbmTdwFtY34+Amyd3eBfbhE/QKk2TyYo04PxvTXSfaW12Kix5jtm+HeS4MfYOoNJ/hjJGbdOlrK1pJ1e6cvWv3HVV/HqM49oFghLT8PEZMdQjHtRqwuIHushaTVBSMzxIbwvPvIAmeK+gnNiKEz0zBoIMS7eyVzk5ahaSnSivGrWtS0YIesMR199KpStC/jrjxXbSMUDlTLTFo8wEmrAKJiIfwBrWF90y0Wwy6NW5C0tO0OITES8y2qorSttU19U2ZjcbzsVccIus4UK6TlB72M5KQ0NfPS3OEnRRwEuWqMrwyYp/jjWymewoiGptX2IYPIKBlLfn512+mAedAgrX0xflVLm4bMs9jxfRxdf3ceHcQmlj2pbVZxa1qx3NP6+rDxY6HD+hjnBtlq90GMSNV0FhKKa37c0dK0qK3uKa8JpQK9M01b9+qd7ffbaovFws3kgxXx+9k6lzIPVjdE/tkIv22PLLDyWGOxIgZD07IZnxuOWNMya1eRUXJNQzPsRWhIJjStbGNPK9an3qlp4Y7myuOyV0lJlXHaxaxmofnc0wIsdeqsCkKiLl8fNub3YX3SdckZyerIexe8p2XiRW6j6jpE7Ck9Wo+82KXrlqZmVD32IqTlH+PCLGOyO1hpjEP/KY5rKKaA2gbjnAhMUvQc1+ok0KbRPyslK9XuNg9GOkmZiSqyow1gUKBhtyY6bIlFOYamFfODGJ4j9eZNDtShVwnNElzt6YY7HUk2dZo0dhbCr92aVrq+KTUtmPebYnycgY87SX1fkcq9rkPEnsOK+xuaWg4qT8Tl9OCMQlr+Hy5PQB2sjFNNq0Kdd2fVzbM8Q7re5dFB2AZx604fxDDMg1CSUFRkTatU4DhTkqAxk7QAF+cXlBkLqfcwdLRmrlhUMtZl+tW08AiyU+24dYxIC6bgr0sN8+AJfdtIKy3Z0PVx0xrToR5cRl1oHiRPR0XTgnZFTQtV3VNmaJDwiHghEB3Sev/99y+77LLCwkL00VdeeUXfA11q/vz5CE9JSZk8efKWLVt0VH19/W233ZaXl5eWlnb55Zfv27dPR7lcruuvvz5T/cFTUVGho7rMUxDfmhZtg0QjMnWEecN3/edwb2gVGC/zujUtpQj6Tx00tEaZXPo5jZNgMCsFTes/krsLzhTDRpSenJSjDrDReuk/Q6dD6xrdB5Qj24Tr9P1DKuCNTQevfGLN/phZvElaXO2ZK0QLYVlsvpkL9Q7WYOg6g3INlZr3TU6ycl8t1r8DyZUQDAy4L3sdPJ0RjOumllaWsLtcPvRMJLzd6JBWTU3Nqaee+vjjj3sV/9BDDy1YsADh69aty8/Pnzp16tGjxk9XINncuXOXLl26ZMmS1atXV1dXT58+vbnZsHchatasWRs3bnxT/cED3kJgF0tBpgN3jFvzoMv0w3qc5VHb4yhmTStVnWGJeE+rRq2OuTVSrfzhtovmwUxFWshbFPttLVhrcSMIl97wxKEs/nDPJ3tcr39+IEZ140EMrjbMt8hNi6Gm9XWpoY4MzE21WdtNZRnJ6vODagFkrkwU/Y3NLVys9FcdrCoapwe1moV67pGzGEDBn7R70v4ShBR28cUX/+pXv5o5c6Y5NdSshQsXzps3D+GjRo16/vnna2trX3rpJaSprKx85plnHnnkkSlTpowdO3bx4sWbNm16++23EbVt2zaw1dNPPz1B/T311FOvvfba9u3bEdWVEu+kpSxgBOS4r+5hf/+q1FiL8LNJDpthnMGOAqsXrlutJhou2Ksj+kHYSr6klWJoWrj7gBxjDV6s3j/FZSykvsmtaXHpHYtbdL5MksqXJYYxrfOl+ZZQwpe01GrPHJsby2/muje0TKcweGtua0VraPxz437fF6d04YWZxv53VDStEtM+1i4xD/JZ+rjRIS2fYo2AXbt2HTp0aNq0acZFQkJycvKkSZPWrFmDy/Xr1zc2Nuoo2A/Baoxau3Yt7IJnnnkmkkHOOussXDIKl2apr6+vMv2ZozrvL1AdMW73tGBG0G3kLK8vu94DxmpsbsWWO+0k3NOK+HhIjSItj6Zl7G+F2yLuLjgdbtLqgveL6zx7WnGraWEFSbPBVyXG8iJcSENJX6GOs1KvMqenebYsNqfe+ZKWeUOLt4ZZGJ6oWM7RIe/+f589+K8vdrdnET7rFJuVDWSvw007I9S07EnGtLxHzIMBoDTQCRDV2WAwForo168fXAr8DIRrt9uzs7MZDtcc1bev8aM4CKTgEunpN7sPPvgg+IxSVFRkjuq8vyDLMA9W1DZGbObqfB2ClNDOPHi8X2jVtkHsaKLOqco8qOdxhIQlmCOQvp9asNdEZB7k9KHNgwOpablieKamznN68LgvIACdX6mqa6Lu+1VpdYtn18RvyogDK5SCm5ViGAPNheSpLzkdqTFOcpvDo+IPqGklK/NgNE69r/26HGsy1PZw+205qlYZjiTungJhpOmkHFbn3U8bkIVy9hypidGTQuHdWmJIWsSFExn9ra2t5ksG0jVHeaVRUe533ZmY7r333gszI6W4uJiB0XJhE09Tk298KluueDIPek5hGL8DAvwd0TMPRmZt8zIPFqnPD8bUPMi9DbSdExk88Sa0DaJW0IBjcRajvqkZJaN8fk0GHi1URMpjo2l5SKvtzWLeF1wCT1TWEO9/dRhFQbyawMJxI6f61CGXSkjWGaF5cOygLGuiBZ2KildnCuyReWNIWvn5+YDMrCSVlpZCo0IgohoaGlwuF/wUc1RJSQkD6R4+fJi5eKld2Budpj8dHhWPxWIpiOMDhC5limFLqyNSR5g3Ki6/OsgNLRTI04OcwnAZlmCBUq3Mg9zTqmloRkhYJSCxN2llqz0tV20ERaG0UESrlTQZhZKli9McMm2WfBkDCyFfM0i0JGC159U0Ggxj8c1crGlK1EbaMNN5d96d5kG97cTAyNwPvipjRvOgQwifdbrD5tG0jC/UILwzUqqaAzN7kTrcIdtafsGMIWkNGTIE5LRixQreGCy1atWqs88+G5fjxo2z2Ww66uDBg5s3b2bUhAkToDx9/PHHSAb56KOPcMkoXHalFGQaFkLuBHTlfUO5F8cPDXFd8BMMwau0U32SYHh+BpOxVnoeZ2CILlaXtF3xEFpzSytCQsyrk9FQ40wxDEQILMxKsVgSUI6XeQdRnRVP/vrGeD+Iccj0xmEszmJUKNsgTLKJIC4PLPyfBzHKY2Ae/Fp1vL4ZyU6He/+Sd4SboUI6v6cFBV0zh9erZqBM3MgJ86C6V1V0Tg8aXzNAiwblGrqjHCAEwr4SHdKqrq7eqP5wg127dsG7d+9ei8Uyd+7cBx54YOnSpeCk2bNnp6amzpo1C2mwEXXDDTfcddddK1eu3LBhw3XXXTd69OgpU6YgasSIERdddNGcOXM+VH/wTJ8+ffjw4YjqYnGTVszea+lMc1zqyDuPGES28dOZu5vzwuxOBuXWBaJSaB6M6D0tqlkoJDc92aJMwjoEgSFKpWcCZXp7UiLPdxWrD00xMIoumLXB8+WFCGobxZoEKepQZduWUizOYmD3F3fPSvXe0EJgTloy3CMxMA9+rV4rNn/ACTeipCuTXec1rVVfum2DKNaLtPisMxzY0zKWR1GxDFNx7JPhGJxrmAd2y1kM4O4j0SGtTz75ZKz6Q/l33nknvD/72c/gv+eee8BbN9988/jx4/fv3798+fKMDPd6/NFHH50xY8bVV189ceJEkNmyZcusViuyQF588UVw2DT1N2bMmBdeeAGBXS/5PEBosqt0fR0C3dGl9rS4W8PBEyhlrMNhJMGsjbtkpbpXu9zTisw8WKNsg2l2K2z66XZjLoigdSQtZ4q7PqjbAGVs2Rebb703eM6740ZAA24cyqEq4xzKSPX295el0T9AWKHs1ZkmzDUIuerIOyy9dZ4zljqqk56v+QGnvoZS4lWU2zzY6d+BfF+RVk6aQcZepMVnjRuxp6EbdLKBMF/zIEYnNS0vKHreZXRIa/LkyUDcLM899xzAslgs8+fPh/Wvrq4OtsFRo0YhkOJwOBYtWlReXl5bW7ts2TLz8b+cnJzFixfzNDs8WVlZzNLFbmGmMg/GsaY1QO3WdH452RlgXWq2As04lIKFoqhpRTaASVH8GUkulkljKDZ0IWmZJ1B+zKk4Nq9qmVvKiSz0qnZZykPqK5rnnpSHO+6IwQFCmgezPQsX3EULdrls6vODUd/WcpOWz0tauHUGNS21BsJlZNLY3LL263LknT6mAK4XaVG1ynDYsLqyWBCfwBDDF9E/9Fuq7H2dyUPyDCbeLZqWPySjQ1r+Su72YXF7EANjicZ6zsU1nTvyjhViZx7VEUVa2WopynJSlYbEA9YMCd0lRWH1iiykrghogOe4nI42TatIsXtxCObBPeU1v3xtK6d41CEU0efdZydpFAAAEABJREFUkRj7HFi6wRNvwq3ZM4fkwFiK7b3iaCudPIiRlWpoJF5tt1gsucpCWN7+yLhXsgguwb7I5fuSFgLZhSLoPMirZWNxBQYa1KxzT+yDQC/SYuEZjiRs44GYkaCqc9tatA3CYpGcZB2Ua5gH0RvjpDthZfbu9lJ0bzTzuIuQVsBH4N7TUkvUgImOR4RL8YTFktBfvUzGwRNZRZ56f+eo+W+t33MksuzIxd01DGz4KSl2o1NFaB5UBEy64rxD3Yslh+JidNUre5357PXAXOObBaF86/3Zf+9+ZvWuP6/dHcq9mAYcAA/PHzQ2t/LuCOmk3PW3z27/y4ZozVklysrdPyt1mNJLon4Wo+JYA9pr1m5xqYXdI7qaVmNzC1+/ZYv0vehh5+nM0EA5tA2ec0JenrJwepEWLRwZam1EC2EnNS1wAm4K2yBcGFHQozCIaDBEyPES9MDXPj9wwSOrvv/suv9+edPxqob5vsb8Yr4Wv0aApFV5rLFWzaQ6/Lh7KtSGVlaKjcoEtZPIarV6Rxk0rXW72949CLccjuQs0xKbdsLINK1qdXyfMw7dcFtHNQsDHkYb3RZM1vAfMJ2gw6Vf4eROu5PfBL6BoEkEAgEsI+Dp5ESJEiBo9cuf7nv1swNRmehRQ5fqM/lOx/B+6Sg/6qfe3X3Sn3kQt+O2Vpl6cxaXUREsQZpaWlPtVjTKt0Dalqs7Zx4kaZ17Yh5Jl11d34tqB3UsjkT2PZ0gXA/Pu/NbMFCI+UnD3cfVQrhpX+XVf1x760sb+G7fW1sOeYEQbhujkl5IKyCMWENx3qRpJWC6Lo9gv8lOtaclG0cVMMFFXIUKpbRRW4qsEJcqIcc0W6XajVqBC5t5ej2cctkWtovgwz4TTgEJWGQgPVa+MNrAQ+GkSdwYEsglSewuC+MD26AElJZis5ImOZchpDOiZ1s2pzNFIS+ZGDV0piSd2M84CRX1A4QVxxpxIyyk4PoKeYXV8I2NLIRHB4f2STM/aF1URrJhHKYypAPD8mBQfL6/ElnOO6kPSQvrMPP3cbg6yVCbZwAWKfmuBTyRSaki9T4ZxmFLlDBYnXrfHdFnc/eU1/ztk+Imz6FWlBauoIfMXbLh8v9bjRWtw5Y4d8qJJ+dnYJXw+qaD4RYV9fRCWsEgpbIV1g5HsOKiFEemwTYSl5PhTuvmWrjUAjyU2dycy+xnCaiMDsTkSD8GOT2huySt9GTjHCmpiyGhl0ATDVe+OleOUgQxy8CmpAP9eggFZoqWkBmX5kEMbM5fuIvfksMKjC5pcdWVn+mwWCwnKdLaHu3P5rJPQt3020yOI1bDb4IIAneoo4MnKGunb3YODQ2jb4IOQ2CEaG1NwEwN1QfrJ54l4Q4u8/JBZzgMdnQq10vTAnMs/nBPh12OpcElqffNMM5/4dJNWu0/eIjwUOSBN7bd8/fPn3jv61ASe6XBTt5//vmTqY++/8rGA0DgW2P7v3v35LlTTrpy3ACkXPpp229I4fK4iJBWMNgxzhF9IM4OEB6pMd69z061YSyhepjWYXeGJwJxKT2JbgTZkQULUrhkBXggyepzn/CYl6W4DEU4EZCuMtQaNtzFMlUTr80VXMJgiAp02NIj6gU47EuZPyGBjEGkTn140AFNixXunEmKN9KtZnMYGLHL2ZDqzknKPAj7ZwR6cJAKVKjVj3kf0Zw4X709Et3F39fqR0n8bmjh1hwaIK3QFx/IZRZtG0QgyJ7KlvltMxSOKPZSZ4pBXVwwIZDyy9e2/vSVzSu2tvu+D6P8uty+4mv1SDAol2cxwlD6kYtySH1Z4w+rvmaZDOzQhQ3w2qc/nPF//16+tcRiSbjolPxlt57z6HdOK1CP7/JTCzGIPt1bATLusKiYJgiHtGJakbgsvFA9regONjQUBqV5Sze9vD7CNQtnXpgHOTKhEkSg06AasB6QJDhTIyQCYV6zpgVzTYrNUJXQzHALBAEjC9uVpvQtTg0IDFE4y4OlzOlRJcCFENYWHr+CeZzYItbrk94ICST16nMYDps1w2HMXFE2DyoyCHTrEMOp4uRnGkv4ouxUhy0RxtvoTj0krUDmwQJ1YuhAVM80gXfRfN8POCEQkqEWEPBEdrYWq0B+chC2QRQCyVEHIM2aFimKKp1H02r3owRfqw92FIf8okXpUX4Ow3hMuKNb04rIPMhxVNPQ/LuVX6KoEGXJx3v/vaM8KdECpWrFHef94fpxowe4PyiKEvo6HRNPMF6ZeGVDrH6SDXcJRYS0gqGUn2l0oOgONtwPRoMXP9r78PIIfySsQqlH4IlUuxULIhQY7syOLBDO7/C4OjEzulRlctLanXVOsRukVRv+RzFq1JkXalrp3JYIU3GpUseOvUgLbQRccIOTFtoCewiSQXaFPFnUNxk/Xgr9MkNNlJ3c2MCtIfqBVqqveyCkM8JVFzsz+JtnxKN7gJD1zEpt1w10nQsyjXFk/pSUjorMA1L5OvDnMFAmHgcmX3g0kvCHLl+VVpdU1aOQMwbnMFdOmrEiOeL5GBUUOJacoR66M8XYxyWNMT0SQHGBv1TtVMHToeCOSNPX6dnTynNrWmgswsOSWs+o+cvHxXwxIJTsZeqdhFvOP+Hhq049oa+x9+mVC6ZChCzdsC+CKiFjtERIKxiShVnGYIvuh94xxz31wU7cFZo7ejY84coRt3nQbrFY0uzGaKlRh+7CLcfl4aojyiYWbnamZ94s00EMhKcoTSsC/a9aNcRNWmo6qPEMPxTrV7wCOXtyEjFH0YDpUtCZw81+toUhoWtadepDD442TavdcpulhetG1zxI0iJzoCYnqfkIO+3wR0WwbVOtHlN2+26gCy9wGq8coL8RKx0ODxTTt7Yc8g1HVBDB2Dla3wRr1WA1s/umxNCgDqSR9E0TJIQfyT1zaC4eK5PlUNPy9B+srri+oY5F17ynVVZTD3UWeVFVuB0KaKBUaVr9PHtaRTmpFksCgC0Pf3giF+54Yt90GA9+8+YX8IciHB08teQ3/YWn5GNo7y6vxb6X3wRdEyikFQzn/BiYB/++fh+XVE0trZxhg9XAX5xb01ITRHqyQVqRjUyWgzugGjAVwhOBVCjmy/GnaUWwp0WK4kEMuhx+oVcMbUFiZ4qxLoZHC2toNu/oKO0pN30fb1fIBwj1QYzOPAtdB3owJ9JDeOmP2D2kXtLq5zRWYCiEBwi/VJoKLjsvxBwzbIbDG3YW7kxJSlXKNw2VDKS76J0dN76w/q/rwvtpIWhCyD4wJzU5ydDp4fcVPg5wm29UhyFb1LnBMwa1/eAfz8ce8Wha7JZQ5pKTjCnUqfqbWcne5/n9NlJRh3dEPdmRtKaVnGTl9kTo6yfeBfxXo4wc8y8/xZpoWbG15ONdIb2I6VJWk6wA6jIKx2rywlOM30d8ZcN+XB4vMRA/XveO//sWZhrjPIoHMcAN2B3VDS9T+ri+DNHDmZd9K7KNH97IpfiG/oqIzFDQFF2qo+e07+gpStMKd/mMmnAuwNiAP12ZB7nrhssQhRNoQPOgiZZ8C6SmhfU7onaHbB5kMx1JVqdSDaE6IHsnRbeazelkad6aljqLEUVNi8zqdNgwRfqtqsViyVdDyddose1gFbKEbsJCYhTyP69shueUwrYdF1x6SXon1nPbDh1FafqHC+DPaa9p8QFlOJLQNMQ6Hcba0aRpJez3kFaImlapWligQKCIAinUI6HZ8DJEt76ppRkb3QkJYwZkXnNGEXL9+vWtGKrwBBc+x2y1Gg6UcsbY/oha9vlBqNfwHBcR0goGO0caFlDUAIIlDS3u1c8OFB85lptm759lGEwOR0Ra7Fs5acb+QbrDWNtyrg+tCm2pyDe8doVvgkBGGPHV6EjI8kdakexpKSsTpxvycbjIc+JwKlhQQy05ak/C3GQdpT1H1Dp6hPqq7N7yWo58HRvIwwVyss2KGQdpOJ3B0xnRre48aWGdxMU+Tw+iViepU+87D9cgCpedl0r1OYysoJMdjZOkT/Md96pzCiVqyjaHB/LjuVz1h7U7y2owgn5y0cmBkiGcjyOCoYHpmBtm7AkoCsL+wx6CSy5NMjzdzKNpGcd6EQvhhhY8paHtaZWq835aG0ZGyCD1qtaekNdPyALRTU61J82dclKa3frZvsrXQni/iqMjO9WYWFCOX1HfB0nG8o6nK/2miXWgkFYwhNEpM9R6zdesESxbgDgsdn6v3pz4wTlD+qvvjpcHXfgHKCYBPQZR2WqOoA1Nz3EID10qlJLE9CyT/tBd5gJEdmUk0RlTlC0ogj0tNoSklaE0LT0CdeHBPZVKZfSjaamhyAoHKoGbB6MKM+3WxIbmlhA17Dp1EMNhS0RvQcnhVhhZfEUXQg72TRB6SFl1AxYWSYmW3HT3Dj+m+1S7FQ3cXR7JcWrfW1colT3Q0UGmL1CWdq9xBNakRlIS2swOheyqP66B5W1wburfbpowMNc4qsDyfV32oggs57vKagBOmt0KoHSxOW5Ny/haFQK5NMlQChYuuUiqUoeAcAlhu+BBSuri8AcRchu/4aSToZnwh/uYatXGcIrN+KmEPhnJN04ahkL+750dcIMIjIru56gmlkApk6yJl59aiNilx89CKKQF/IMJlS3fFWKwPAHisOGMUYeOfv2EQX3UDFIWvqaFcQ79BnfgcTgexNBzHMJDF5eaa5jeZSIwhoTiMleWUmLM6TFgcBkBaVWr8UbzIDWtaqV7obQQpTIAaeWqz8exwoGKKldrCIxz/uZLiBZCTkkOm5WzJJ9OoFuEGK5bXaGUmBBz+U0GYxrCMRtaafdMSEhMtGCLHoHRshC6VEfKTA22Qi/INCztrAxuTQGHYWcX/pIQTsNvPVD1nT+uLamqR+X/duMEM6OgBF/JcNgQiL0iuGHJFx7bIIDSGbNVJ9eLHlARovjE4XGmKPNgnR9NC7GhWAhLlK6Jx4T0Wgbnqm+9h/l+MTsPBxGKunq8YSHccbgaUwcuAwnsIqBqxAbXtJCAZwixVUZ1EyFdLEJaHQBeoOx4oXy2LnhBWMg8/q6x2Pn+2YOxLstTc2hZ+KSFSZnHlriwTVdrPXbT4BXwja0wERWVDN80wUNc6jCV14YWsrg1LXV+HZehi1nTYtMQAuhCL4GqSSBNq1zRUqDSOCWB3tyTRWiKSL36Pq8jKZrmQa0f4HEHqm2I4ZwNufbSWXgWY3uJsXOjAyP2sCOxQwYqhBXwWvwVK9sgssBOHtwYCyvFf77wCXrpKYXOv944oa/ToEBkDCLpHBp1YR/m/EJtsw3Pd5oLz/WvaRm8iGTOFMPT0NTCFQxC9pm+o1+qjgUiMIiUKl3Tyzw4OE+RVnlNWEOgRo072mBwRxChzWoBvLwFQvyKS80GdmsitHC/CXTgqP7OAdkp6Pab1HEVHd5lHiGtDqAucBrDw2uwdZDHX/R7Xx7ecqAKHeL7E4cgPo+a1lG3tQEhIYpLrWqdjqQkq/HsuNbDzB83wp4AABAASURBVB5idnMyl6Ichrgi2tM6ojp6dpr3EttDWu4foectvNzK2sZ3vigxr/7gp3LGRSKbBtMWA72yB7rEBiSiOInAoyVHVdKlKqwDvTzlak8LKd2TRWgrXM5TyTa3eTAqy0/OO6hemKSFHN4CbQZB5Ax4KCf1Mz6b+1WUPubESmalGhM3y/d1C/2ZB/d4SAtTannQBdyG4op9rmPoEi/NOQsPyLd835CMZEP7qa5v03580/gN2a40rREF7V5UylaaVgX6InpkQgKfMoYhS0i3J1kshpd6NjiG5sFshUkomhYZBVq+UYrn38Acw/4JrY7LKU9wB/9zCctBhKTQF/n0g5u7K9TEkpVqs1hUS5AzgFgsFj5Nl2kCCZA2JsHGxBeTgntKoQVRelXrz2uMX7u49syBnOLzMowNhrKgA9UvhJx2WQgSYBjDRbeGG66wKJpZjkTU/1yK6vxoWjbjIDIGeJAqPfivbT947pM3Nh/SaWrUOV1c0jCYYrPSoKXVDkQFF9AeR2wgTetITQMmlECFIBZRWFOHRVr1jQY3O5JAWknIzgrA0xnRTa5rbFu8R1Ygz7vnqzeldAnUtL6MmqZlEEMomhYZVFeDpzB4WaJOItDv6y7favST80/u6/tkfRMzhEMjgsfhNg/2a09ayvgJI0eFWvew2AylzOF2iYkWcmSV2taqPNbIznxqkfEDtiQkJAsiJTQPqiWyTuawWUl7UDF1YIce7mlp0kJ6cow+G4IQX+FskK2a6RvrFUIK55rVK6oLLoW0OgDZY4uv6yBdR9FfqlXtRaPymTBXLfwjIS3FE7pvsWtGpmlVqLXV0D6GCYJdlnUL3WWv1QyqM4Jv4D+mzBTw+JWd6iM35m0VtsJmtSQnGZyHBR3nndC3Jahm4XZ6CQw/BUY/eGDTCEKlJC0s5IfkGpiE+FGMuraXiw3SimwBgbqZhXMiQ2jwpD8Cl0aC/ExjkaSzY1sIfmzaQcWBp5MC/QMlZAWd7ziOgDDhQnqImbRIrgj0Fawzlm8xvuA3bWQ/39hAIemKUcJ9HFCVOLmf3N48aLMmki85Ulgsb8EKULlHdlxCKYSbl24vyjZUJZ4MREgQoTYGU55XGt40rD7AcZSmDkOxNB77OlARbBJzqdkgKzWYuszS4GKMwOWaFZ4OJNrRQlodIFpAs0bQ591BEQkJjc0t3IJmJ0b6PLemFYF50MiS7elbXOvVBKUH3M6vuNSacaiym2M28ZsmeCB7LXuwOaXbPKhmc3O42V+mbHHmgeQebMqqw5QkLYYzJLjLsY1cSVbvjg0eTU4yAssDbGth18Slxi3obbD6zgJ2XKC6Bb8jYuvcpwexp2UMeGxoh5ILGYOImbSwbA+SssMoD2kZr1joxOjV2L1obG4NbjLS6YN7KlRHCj7fYfLFI0A5VCnggQBhuKgJXHM4Ls3y9eHqXWU1SDZ5eB9zeHA/ugESmJHEZYfypbINFmQ6fD/+y37O/kNyynAYT5xlOpWfPZCk1T87lSREQmKyQG6p0rS89rSQ2MyFuAxF2GQuZ5me1pT9FcEOi/IhZqd6m/pZgpfLZJFNGl5FRXBpDOMIsvWeLOi+aCwpB57IBFMDLOGYNLXNWp8exCoyrDI5sWrlhqcHue4Lqxzct0LN0UPVjzu41LwTVglIfEQZFbM8DIoQSorNUJWOKbsZQ3xd/iSgGVj3YLMb+grTcyWrbWUMDOJyfneqJbZXMuhtnHQCtRR5qXZkp9phTrEnJao5PdjilLeABQ8eh81tHoSfDYEnYqlRpyityjxKPSbioqjB5DuNrVldCErmCUmzrqNjw/UAOmTJ8ukGCNQC/DmUzMsU3v3UIuMd4SCk9ZZSs84+IddMErrkQJ4M1Q3CHRq+rxXr8s39h8XyFkzgTDH6LXX9/ep3IQZkpXC8l3Z0EAMdpkbZxklyLJCu02HwYpWyOjKkQ7dGHbglZzNxIU+TBV15u9RYzlZbd8wVxDVDESRZjKKEtDoAtkA9b/RFdoUOUgeILj5yDDHqY2LuTc48dRCjvqkF/RVRoYsrSuZBKAQ84TpUmQePqGJDrwZTViiqy0n1Xp25Na3A+l99UzMgRSHmTY4aNVObJwKuFkOHqFKdd3emGOMchXtJtlpFBmopT2Hg7qArbFEMyjEMO6FYCGnvSrZZYUFy2IwBxRnN6+6hX0LnY5PJNJVqbRF6dnNKLE2oaRVktiMtpOGLq7AQwt9JqVA1zEzx7gZexfI4wKEqYywgCg+LGcerj9IGIa3lW4wNrWkj85ErdEnne35hnh7cfsj4QoeXbZA3zVb9p1yNFC6k0pMNomKsh12M7T2ewoBRrq/TsMoe7mjrmmpWmt3KDs8C6TrdXGgUy5AOXfKfuSgPabmR91sCF3NZqR08ROYlFIGGEtPEzjXGWOxK7wElpycnZaiuadYJdLuwpLr+mY9Wf1WmQ/x6itX51yL1QjETYFpPU0bnsgDWKibzddm3uNJBbIZaTnKOw2XowvW7zWoZoMzu5MLQszNloD2tVNW0ILtHtLGgEOigmFjhgbAV5sEG8HU4PB0K5kGkgSUKrq/A7ofAQCONVeJeI5INVlbTUD77RtJyJBnKZbqaKDtJWjUesqdVh41ClSIQsAIWRsjI2RMeLYNyDVbeG9qxfp3Lr4d9MiuopoWMBbS0e17JKlZHB/PS7UMU1IcCHMTAuPtsX6XFkjBlZF8UErqkRzQ0tivz4Mn57U5h8KbsGxwpR9WhRBIVY50pxlKJZsP9yhCHx9cn3VgrlAZoGjPCLfV33h3hkAzVo2h1xGUoUqM0LU4vTN9fnSbbr/Q/hvi6FWoBmt3RQ2RGzj987gzpSldIq2O0C9QjN+sEOs/iD/d88FXZwrc7+NEajk9oWjojPHnuba16+EMXl1rV6gmCU3yN0lFCLwQpOfayUu3sfzUNzZx8ERW6sBCWYM7lsBkz+DFl8TCHa3+ZZ+2JKVWzSA0Hm1oiMGW68jOcIcFdThmBSCs71VhF6tt5FcXwXKUBI4ozKbZS4A8uaAISOJSO5VQTJc9DIzAyqVFP05poIdNweRFZUYfUTglm22TFqeZCqEp2XtPCBh5JOvjpQdy6INOYwQ96jFS0DWJQcCOnVFUVybzk7a3GEYyxRVn6J329EgS6TFedJ6xngfWT++igP9KiTZ6aFpucoR43K+A02fFID/2zUvgEkYWWZ6b0dall0pboFetMMZQ5miW8ogJd1viMI2paqDMHiN+MnonFGCN+E5gDCYVLWRTN4V3jF9LqGOd8rhA9g82cYf0eFy43Flewo8DvV4rV1zP1KQymwVQCT7ln+oY/FHEp60SOmn+RntM6dRRchi4VivyyU21ORxLmR2RkCDwhCsYh51OSgTlXis0gLVggzYFmvyYtBOrVQI3SMNKTjbwIh7B1oZ8epFLiTDHWvMjuJSRXl1pRekXhEjMLXKaBx/N+cQ38wYV7WmQFzmKYHYJnCR7LV4vQ9iy17GWjgmcJFEvbIFnBK80gpd/s6bSmpefTQGsFfd/8TEVaHk2LpDUwJ5VWUPKrTqw9yxVpXXhKeLZBZM9QjIKhASrCJeXzfRVcQfLSyz1QWYdnl5RoGaY2er1iOWC5uEEyxGY42nqaM4XsYtjxeBBjQE4KskBHxEhhLmTxKzyp4feNaae6RViaFpqMu3A5Cw8k1Z6EkQ6PXjHA7yUValxkeyYWr1ivS84/wRvllSWKl0JaHYNZmGkMNq6ezKkbm1swBhDS1NK6bnewj/9zfHLrG+kpeWpRfzgi82CWp29hakNp6KbmkYmQDoVzN8qxWCzsqeF2QUymra3GfbLU3Gr4PP9oHgyiupWZ3qqGhZD50Ap40uzG4IcHwoEXfEGAZFpQJfgDzZ7ZCrQjAZaHR9RqALMMSoAMVgcIQzEP1qtDkg6laUVmksLtzFKtNC08WTYkrAnLXA78ZAKqOLg0CzUtkFa4PcdcCPyc7DKSk5KsHUwmhcpiofe0OChAWv2cxsZPRW2jb4fBft7ar8txl2nhk1a60rRaWhO0mRpD+Fu/X/Mff/oYBfoVfgsDjGVP8tMWqhfsJ+49LcWLLEqzC7or2oJAaFrAhD2qNOhZjFKaBzMMHJDRLM4UgxeDaEjmxPR7Fn9t4wjhhWpvfr+yW+LSV1yeVaxvlG8Iz2sAWF9rCjRv3/TRDfHzbKJ7g1iW1kVln9DX+HzAZ/sqvO637SD6kvFiKcI5tODxK/uU+Z67RzqB2zyo+qsO7NDDvqUVAr6Hi6UcjVQdZtcJKtwLK2NI5KgjQy4VohN06GH6DEeSzWe2ctgMbQl9OlAh5q1prWlxIiBRMSMKh4fh8HQonN851/smzkk3TB9H1FF731hORhpYmgehImNp4pvYHFLnOfKOwAy1AxGWSQq5vITtxZyblWJUmEzslSbES2LbL9NYdXllQW9MtBgTOpf5XrGBLue/uuX6Zz5qUF+uYhpq274HxBlrdvPVC856sU+NB6SF55WsSKLUZ+/n3e2lWBGe2Dedj8NcWod+rJws6tgT8UT6DXtdGCkw+dYqnR4hXkLb4Mntv4Wh0+SmGY8D/QTk2tBsDPwMM2mlGEMJeud+tXXkdCRlKCWpT4YBfnCQaR6kLVHfjh4nFbjwTg82I2+q2leGh+IhrYCnYTmcsYpl+uAuOqfNaoDLXObENy3+dNTP3/rnxhj+4JaQlhlw//6zh+Uh4uNdR8xjFSG0DXJR9u+vA57FwMqLpievj1JT0zIbylBmcGlpaTWTDRKn2d3rKdorEBKiuNwLK2McelQQ4w2wELMjmUupJnqWR4iWFDVgakPY00IW/V1HAIVLjAe4FPpDNw9WqbGNSZDZvVzaNFwBNC0+I92cfhkOhy0RcxxNPV5F6UskaGw29E2HzeDpDDWLYebSCSLwVKs9CShtbAifeATlIAs/RMtPkeHSLOi3nMj0t5TMsX79oJnn1uzGJu6m/W0LOChDSMwuBE8QocIHnDHpI5nWtCwWCw2YJT7qyHL1IYxp6ocHkSUsQbFe/WfLAeNkIAopVqd54fESkpb5Z7TMCahpuWoaONYsloR0z+hDMrAUXCybPEcHjXMuCOFOFXUpXPoVsrXfTTunYj6sjv1m9BvoO46QDGofXG3VgN8sUI/YqGwfq4k5mfZbAptnDh+tQwdOUcNBp4+uR0irYzxPzs/AXIYp2EvZIml9R31EGeMh0OTCWQ8TEPufvl8ftfAPi7TQd2HuQAlZytIFT2KiJU0xBHsqQkIUl9KrWA5ah1wMgSdEwZITKf3OVlzlcW5CGl8pU0ZR2oX00rtamcXMmhb9oTet0n3k3U3kXvelTYMnHr2icFmuNhdz1UPBJYB1b2sF/QKhbqNDmQczHLYE48N0YX+kFXfUUq1IC213phiLdzZKx4blgS0A6f1qWggPpYFIpmXZ5wfo/7q0bauvQn2HPiuEyQ5pHAolzNGYJTm5cyWX7zTUEe7A8RZwHw/cAAAQAElEQVRwge172w/DE+5hd2ShZCQbPUFrWls9pEW+ZBqzu9193t3P0UEko6YF0qUmDcZCJ0E4hQ8LI3Sf0rRIEojiq1eHgxpUShVbB9C0jD4ALkRRIQrHC/qPOX2hss0GIq0KNXCQHtMU3FCEkwYnAXP6UtVSv/tz5mSd8QtpdYweuubZw3KR7t872qlTn6pTGBePzof9ELs7H+70v61VrGyDXhtaKM2jaYWh37iUeoT1o12ZU1AIJF2t7jnT4TJEqVBFZau5hktI3/4XvCiXoj32Xa+UXGdBBWlUVhSvWFySIUb3N77MdrDS/foIBxubgzSQjDCbxvk90MBjVbFSRsm+wubnqI95M5ZzOqxJvPTrYmJluCPJ0LRYeZ6kYHgELnHAhItZHtnZKHgiELemlWlQgm92EobvDL55fyXEN/2yzw4y8OuyanrgsiMFwhwJtGB5XqDONEG3ht0Sdj+7NREaLRJwvqaVDJeUNV+XYaUIPhszwHj7mIFhuZ7H4V5DYGXJ7L5NRnh9UzM/Leb3JS0kyEkzzBL1TS2cl1k4wilcklYda9qn3m8Z4Hm/xS9pVR5r/NsnxX9bVwwz2ltbDpUou2hQTcvdBN4ruMupwIe0jE+iBCQtNZadjo43JvWts1MNNDgJ6ECYgkjPbLUOj65HSCskPCeeYFgI1+ww9oSZAVPtgco67AqcOiCLlLY2gIWQI6Qo220uYHa4ueogBqdvXIYinFizFNPo9Oyd7Kk6sEMPe1u26nk5yg00mwcq6oiys7EErzQOj3Eg0LYW9UtORvoTCZ4NZGP2Z4E0flYrDYwhwV2sc5Eg0ATKSQcNx9BCMi/BChohXE3DAxmsztftDvq7sXVqdweTL1Y2yIJhD5eWFngik2q3pmVlQzDBRVYOcqGXwsW8D9dXBucafXJ3+wOEoMzv/HHtzN+v4eSrc+0oPYpNXF5ycqefpJXVvk8yytdlTaBRcVAMyEkhbgwvaX/qfa06gvHNEX3Bdr5FhRKC5R2S8XGUVtWx1yGE60h4zAL1ETya4UgqyPTP8al2KxeLfLktQ62odAnOFEOrQw+kBjnAQ1o0D3Iq14kXLN9+z98/v+flz3+8ZOONL6znEydz6zT0uIs91hjieRkkA9MjL3e74aFQ89NjjYHadXEJm2bwkA4M7uFoOqL2CHRKmDGAIS7ZanhiIUJaIaE6UW1rbSh21Xq2cD/dY5j1RxQ4wRkkrX+rMeZbHDIhsCjHmCDg0ZKnLFFlylCmA4N7KtSCiN1Fp+TIxFyjQ0LxuFQ3zVJzjVvTUiGh5GUaViZblcAQ7SYncS5KqAuwrcVWk7QwVWFnCHk5dElUuIRwMVtt+m09BAYRzu9Oh2FR8U2WrbgZ9lUmMyfAUCdn56qHwqgh6gBhcE2LRweTbe5xxImMsyQLicAlDunJNk1aqF4E5aCvcnctP9P/LDwo1/gu8N72rPxZcUVNQ3NDc8vTH+wy3/RVpWZlqce987BZ0zJMBVkpIc13+pVHktbAHPegcO9pKYVD33Sr+l2rUwdEqGahnAzVE4jnFlUaAiG8Ozxm2V5i7HiNyHcG4kiEc03DdQwL1yU4U4xe19DUslN9CZokgVjqT6XKAIhLyifKSHNqUdaEobljB2ZhGplz7hC//ZaBYIJA6z8WqF0ogkiMS8xLcLWwPofQIfwZP9j5s9QA0VmCezgLMaNOWaqeIFCy+RzO0mk673EPts4X1LNLgCEFS6fG5taPd7ltgNzQGjcoGw0/a2iuxZKwo7S6tP1SEVGQYrXrW+RZeSGEwtODGFHaxMTwIC7XNV59Kz3ZWOKhnCAZfaPclKPWVjk8Pdh+0eSbxSuElSHheUVZLJYUm6Ew+R1p2M9wKfYdWeC0JlowxrgEJu+yOSyQ/prQNC3oTzT9c65nCWYXAylDrY6xHjSHw191rAnVgIdDER7IYDWnc4bCpV+pU99XTE4yGosEGQ5j5tKbKAiJQJg9PdmapRgCvc4vjB2WDIUGadLsVtYKfi8ZlJuKEC9N69O9xquHCF+ybm+52ueDH6z52mfGhtacc4fiEpM+HiI8EG6HsKq4DC5UYg5VHkMJSNlGWpkGrWJKRSAFd9x20PiNypEFkZOWedHDDa08Zd7g3Xkj7X6hbhfoFAaTZafa4eHRlQzVl3BJwRaXxWJ4MQ/gv/6e8U6do1Tt9CAcUt/UzB+F+b9ZY//yn2ctvXniv3587rxLRyLKV1LtVowRhKOLwu1QapSajmRpdmNagIeChtvUT0GWmGrCKLgVasGarfobLkMRDnyvoVSquJlNDqWQyNL0KNLC0jJ2cqb6Qtp720t5i4/Vi1mj+jtxaU9KHKFeoX/vS3csArXsVStZGHl1CD1WSwK6ER4brA0M6dAtVQsZZ7LVnNJhs6KQIzUN5sAO/UfUfOSwJSJlqiqh7Gg9/KELmQa84jcLSkatQE6+sbCfYAsQAzzFbuVplJ2Hq5GMCgqGKPwUq5oGsO/Ny+BuaXUdtCjcNMlqCZQySw3LgxXHvBLsU++vpNmt0Pl0VL7TmEn3HTl2pCYgMhXqGII9yX1HG+zFCQkVteE9C31HeioVo6NTYeLm3uXBijpGheXuUXa/Ps7kQLnylFpZeazRDMi63W7SAh8/9cFO5sUSbWdZTXKS5cpx/eGCR78sMR4ZYsuVqSDF1q5PItyv5Kgtw2LXsZ1qVwwIM1mmIgCQGS/h7i6rxaoIcPbPduAyMklR8KEcZP9sn9GuC042vhOPIQn1HYFm4Y7X0D5p5kAvP/vPbqVLoYebY+uamtPVkSgoqeiEMLkzNiPZII/SqrYnuGlfJQDMTEkCSTBNEBfrlYxkY4CXHG0rIUh6vgHpSEoENZqToXpUZznWzFHww9qBOqOq8IcobCzMnub0+9RXFHLTA3Y5c+LgftQnkMQvaf3+978fMmSIw+EYN27cBx98EKgB5vBv/HrlyJ+9FSN5ecN+3Ou5NXtYPneq7/n7Jl5uVcs0fclAul+WGraUGxd/ykvtnvLz5ei7KHPawvd1YHDPb5dvR/rXNh0yJ3vni1IE/mLZVnNgh/6jSn25bNG/kRJ1QwlflByFP3R5d7txsuvnr27xm6Vc7XjN+L81vrGTHn4Pt2tNSBg9f/khRcPffeojJMPmPMK/8+SH8FMufsx47rBW8TK4e9YD7yA75PRfvh0oJbXe65752CvBpY+tRkavG+l6Bilw1lMfISO2CljgnBfW4xJPnJeRua9+bpx3eHj5l+ghasss4YIFqyIo6vvPrUNlMPsHyjv+VyuRADLhf9/RaVZ9aTxWBEL+sGonw6/8w1pc1je1nvnAO3Dhv+SxDxi1Wp1OmvfKZl4Gd3/52lbkRY99a7PxcaaH3trO9N971qjq3iPHeAn3/EeMToJVSBDwkSy4/P1TY8w+9s4OJFu+xRgmf/1kHyrQ0Nw6av5yBJqFDQk+jtaoLQBaGt/cXGLODj/HFMqHnPPQuwiBsA8fa2yBn0IwK4814fkyJLhboV7kuOJxY6gGT4nYC3/3Pu5e19R2OwRS9ilGud6n8yP2kRXGh+iWfX4Q/hDlgX99gRu9taUdCD99ZTMC/72jLMRCAiXDTI5yAkmcktZf//rXuXPnzps3b8OGDeeee+7FF1+8d+/eQG2QcEFAEIhPBKRWgkDUEYhT0lqwYMENN9zwwx/+cMSIEQsXLiwqKnriiSc6bPzH8y7Yev+FsZMT+xqfxlhw9al3Tj0JlZkyoq++17p5F1hh8EpIWD73PB0Iz5L/PAsp+2bY4feVSScZxor7Lz/FN8pvyAUj+qK0/7l0hDn2h+cOQeD1Zw3Sgf95nhGCQMilo/M3/myqjqLntdvPQRQUfF6i8riEfPLTMACEfQNZlt02kYV4uaMKnYj9/ayxXuG4fOBboxCFLWj4vz9xMPyo/Kf/MwUeyEf3fRPhlC2/mEZU371rMkOCuH+aPR7ZYd4JkmbGaYVIM3fKiV5p5l92CsInn9THK/x1BRQe7Kq7/Vdg4XdORcaxRVnMiGS4RHrUnCERuGboeAzhd9ecFkE5aCYqgyYHyYtYpLn9mycwza9nGI/m9IFGc351heHvk27/0/cMYGE7xTNCsh9NMra1rhrXH35I8G6ABGb590++idtpQcfTsTSC/fNWd3eadorR1e+edpJOEIHnnguH414YAn/+wTfg6edMRiFnDc2BH50Qfi1sI/atdYhfz23fPAF5KRo0nfKMwdmMOueEPB0ID/cOn//+GfBDRvU3dukevmoM/KEIK/ybb48OJfEfrzsddTi5X4Zv4pvUg7vmjAG+UX4nFt9k5pC/3zQBN0L3MAdiSkTgvEvaTVDmBCH6MZOjnEASj6TV0NCwfv36adOm6UrDv2bNGn1JT319fZXpD4Gp9qSYyjknGgffP9nj2rS/Erc7c0iuvl2fDMfYgUaX3VDs0oHwwOaLlANz0uD3FYwixFbVNfpG+Q3hrk+/TIc5NjvV2Byub2rWgfsrjI+1gBWSEi2vbzp02182wMyiY+GpV5/Ly063ww/JS0+2Jxk9oa6xBZehiN2aWKV+qaggM8Vv+nRHEprW3JrgG+tuhTMZUQNzjLMAZdX1qCHSQ/qkt7UuLdmW7jCONjS3tiJxcKmpN75ek53qbpTfxHznsaa+ySuWb1ZhA9kr/JTCzHGDsmHJfHPLIa8oXiIKdU5Ldnc8bCDhUgVamCACt7bBaAg2BpA3J0093JCfC7JoOabK8W2UTgDPCX2NddiByjr4IZvV67dnDMaOTNLVZxRhz+lwdcNPlc3nwlH5OWnGIxuebyxH9hw5hvSOJCu7Qb7TfzdAGrMUZjmSVU8DSnnpdowaHVugPo5Xdcw9Fr48ZBjVTyvC83Rjq1OG7slVm3bo1djIwR1H989E3iHqTYaSqnr4texUr5CfUujUIX493BZCUZCcNO+ehroiHDIwN9WcvV+GsTkKoBBosybyFMa4QQbICOlQWGx9U0hjs8n4vFSCM8XmWywPFnk1nMk4JDE6eBmKW6ieV8WxxhSbVafH9iGaPyA7pM6gc/n1oJxAYkxVgeJCCo9BorKysubm5n79+umy4T90yPghOB0Cz4MPPpjp+SsqKkJIrIUH32Gx5WvFpw8yWErflAffafXWgcXqTUPf8+5MkJeeDE9ZdQPcUAQ7/EjGTgwPJU1t/9aoKZshe9TRDygxT39vfKrd+sFXZd998kNOYUzgUhtOuhyLxYIBhCiGw9OhYPe+Vc3NgX6QAl0ZhWAbGa6XgKIQwraD8+DHpFmjTj2hLe7D8ghVkp5skF8oZyNf+sgwIGPeUfn8O5hoEFFe4w04Q3LV40ACs3z79AG4fPnTfa1sMC5MggkRV9iThwtBq62JULQSOAsgJAJhY0GEyJuZYnA20IY/XHHVGs3MSjVoL1DegeqEJDsM0mxQRwe5/LInJVKJx9NB1GWnGkoqPNBl4ZIG0EyiwnoiPLigpxVkGjM4knkN8hN82QAAEABJREFUCvIBTzwCgT1HapFmRIH/j1MgKhRJd38KsomHLEYWGHTL+xar8nUhW9WB+JEdnVRk/2GuDIfxaOinC6qgp7+a0OmHy6UM169fYxXQ1JKenATOQlQo4lQ3Ap2HkrhGvZOTlmyc3fBKT5rB/qtXOC79TiwIDyKcPRqbW/GwdLJSdTTR7wtnOk3nPfFIWmwV+jc9cDFfmC8RArn33nsrPX/FxcUIibWcOTQHU9Ke8lrMcXZr4qj+xhjQN52g3uUCaaG2OrCY591zDH1CB2oPJ27z12N1lF/PkfZkwzTURXTXwd1RQ0QNzkubPLzvS3POykq1QTXkZ9wQDvGdzvweYEXKQMISMFUlWf13oRRFpX5P85crkuaJ/0L1dZmDFcdYf87U5ptieOOSlAZPIFmzo2ztznI8lBsnDQuUBuEebjZmc1xqOaJoLDfNz/x+6ZgCKAdfllQDQ51ee+qVzpqc5J4jLBZLhsNg2aMhv1umi9IeQsFySDkVx7wrrBMH8VSoc8x4RkHSDM41eiY7DOq8vcQ4ZX76IONLJcj13W8MROeBJzvVBpMXPBBqKlhpgUrZDdLsVjAcokKR/Ew3aVHJ1llIWpz1th+qAhfmOx1+lxE6S4eedD6Leg9pFRp2Od53b3vS4vH6DjmyPWkZD9pcB7ILQqBqwNXSN8NYm7Jpm/cbb4ONLHR6Lc50Yl+PM8W4ERQ13yjfEI6U1GQji1dsoaJSvx/FcKmuwmftlSvQJQZ4is3o9nqli5mHbeSraYEydj7c/4zT+XI7U0JeXp7VajWrVqWlpVC2vMpMTk52mv68YmNxmeGwcY8BhYOx9FSFSwiGenJSItZTHAAIgRSrseH7khaiIJy4y9TyBJfBpaWltUKtnbPT2i3x0pONrsOZDiWg/2H9Cw8H52lFWdPHFODSXKsK1UcxEyGckqPKdKm5myHB3SOKPs1j2Ct9is0YNrR0eUWRpPOUWlOgvuuDkEpVJVKUOb173lGmSHO42Y/RwuNPs84c2F+NTHOs2e/hZuNHj8zhR1TD/TYHkz5/zOnv642DZ+Zc8Ncpc4x+uRghGZ6JEv4IRJ25N8yD5G9nJzStCvVBuexUP0ysKzYox3i/GHNNbUPTZ8WVoApMuHrSQR1+eI6xPzpjbH+bZ3WS4bBxFoayxVtkBb2Fvhc9heqJw8/+CQ+FpnJqWnynCjM7oyJ22Z3Qq78qNciYWnhRtsHTZtJqaGrZoRJ0eMdc07KGPdNcN6diF4QM8LykBT8EFlq4mBng8tTxKEWfuAxFyIWhalrKYpFuN0afV+GFaoF4tL4J+xHmKAyfCvfEEqyrmLPQz/GiX9XCIgZIIorthSdGEo+kZbfbx40bt2LFCt1m+M8++2x9eRw9/J4TKoCtDrhmSU6y8mDFK6bP8ndkHjR6SZl6ZcpclF8/OkdTS6vFksDpXqdJVzYQrrAQuFvZBgsyHQ61DkLIyWoTYpsygOAS4mIfNc01nNo4dyNBh+IpoR19mnOl2I2uZbZJ6lgs0uHPU/sNmAXs1kTMlV+rTQXMkogyC0N068xR2v/el4fX73ElJyXePDmYmoX0OWlGhY/4/DpJuVL+clSVkMxLrhxnWAhf/exAvfoVEnMsVUkNNaL4OLhuwGW4QvMOcqWrxTIoE/7KY2F8eg7pKZyJslKNJjPE181MtTHBnvLaT/cabzKdrrZmEzx/N08+4S9zzvrJRSd7Aoz/PRbCGt6ClTQiQvgXSNOCXoXcJer1fBrrOtR7kD64ZKgFxCFM0s2tTkcSuYRkCZ7WnROUBjMXEgRf8eBe2SbScjq8gdUh/bMMXkR6ChcBperF2y0HjO1wLHkZFYrrTDFuhEaEkrhabRNw1HilT7UnZavO4KVs1TQ0o/lIzFh4QhSunl1qwYcspWrxjc7g8Mw8CIyFGDNLLMrtZJl33nnn008//ac//Wnbtm133HHH3r17b7rppk6WGZXs/JkSFOVLWgjk7PaPT/c3qW+lYNXM/kEzOhJ4SZ7SNmBs9Ar3e3lQHa/ok56s17xMRvu1niX3KNLigSUm4OD/Qn3BmiEupdZwtmIIF00uRWYMCe6yp2abaM8rfYrquJzTvaLKFEmz7TCScBbboQxTbIs5fYaau6vV+tEcrv1YJy5Ybrxl8r2zB2MnWYf79bDCLqUmmhOQrXNNU5I5FisVTKkVtY3vbDPe9TFH1TUaG9+OJEPZZTgnSpjaeBmuS3pOSrQkJxljk1uGWMOGWw7So8JwMYnADSKDcowZ1kRabtsgs+ABTRiW6zUNDVU/7LuzrJoVy1JTIdN36GI5xTQkD/rh8tm5SUudBxnZ0Q4TcgWXdNV5mAZalMVibDeituxU+9R+M2K3qZcsRxQE/IAT0lDwOFQZxhUftOHz/CO72KwWaqKe4AReHj5aD2MJd9dGqQOEOkFwjzPFUJuqQlu4sP/Q+uJbbKGyQ3BS0rEuxTr2pESOWR3eoSdbDX+OHSQuVe9csrG4jJ0YAyN2pUdc8ne+852FCxfef//9p5122vvvv//GG28MGjQo4tKimBE2QKxHMKGMG2QcnPUq+fyT+2Liw6TMNzS5xEMnxpTnlZKXnLgxuTQqkmNgIPeg+hq6HvM6GUdmjdqAReDuMmMHe1BOGvwUHvcqqarX3atCkRP7HNPQrxMwMIgLtQ+x2QFmeUSl2I2RVqsOsOFSC8Yt76JtCGzRV+oVbLZFJ4aHNBaEtJZvLcFuU6rdeuN5xlFsZAkiuWnG7gJKM+tMoL1ypXuRuX2zWxMt3zq9P8J9LYRkZYetbRw51eperyGQKyxxf8PJkWSxGDMsKadSPa+wykGjaLsL8oxY4KBco6vsLq/ZsNf4nObp7Y8XMY2XO1QdwNt5GJqWYWjNCo+0jM+No8CBuQZZwkPhGEEvxYLvi0OGNQ80w6iIXbMF7xSPRc5isXARqS2EoVsjk6yJfCKoUobDUIDg0cJHX5Dp/gqwDmdXh3lwV3kNRgR6CwHUCYJ7nOpGIWpanAf87mnhLv0Vae13uX9XASGQCrWEzU61ARlchi4cL3qlW6pUyVifwkD12gYbLuJKbr755t27d9fX169fv/68886Lk7olJ1n/duOEv990NjuiV61s1kRY/xHI2Y0bWugomPUQ6CtYuDGqXJmnfBOYQ0CBuMSQgGsWjkyssDBPIZxDcZD62CsuIWACrmq/8Chb7Gfmucar/yFXcOHqjLn8pkyxGcqH7+lB3BoKKLLovFz9kbR8zRrpyvgJmkEWXwEFUs36wcQhoWzaZziSCDgHKguElb+x2TgKSUpjoJfLM4SwQ2LqMUeR/Bw2o7EMz3AYcxm5hyFhuWxperJB+cgI8x3cSrU7BU/oAuS5wYA+FjzXoFyDPN79ohR3cdgSoXAET4/YYdS02kjLsHIjPBShYg2bcD91EFxn4UEM7G5+fRh9uQWrkEE5RsV0ggg8aXY3jMg7sqDt2BSHA0cKorYpy3koDUdi3W/1M0IgZfzgnOH9Mr5zhvdJZiofMKhsVMsC3CjJGsbE60wxelRVaH0A2KEyvuMIgRCONb4Sg0sKhiQ82Uptgid0YZYjSlFDrlJlHqQtFJexkzCwi10lulfJJ/bLGD3AOIbkW22E0EL49rYSPEuOCi7rEOUrsL3kphkDvkxZzHwTmEMOVhpvX+Vnug9f6Sh2UEy79epQAJbMiBqsls/wUE5Wn0bcpswgCOGUzT6HSwjX46gz/KHIEWVhM5fglStFKR+YOr3CuaGVnWoDwTOqQLWIZMC2MJwuKTkQB7y26eD2kqMZjqQ56kOuzBLEBeC4NRKUm1YJR5Q/1W5NUSceEesrJ/RNP60oC3T7T9OGJZK5zYOqsbiEcC6L2DzoRVqkHNAJSg5L+IhtVgvaFTzjINVVPtplfAl6zIAs/VyC5OKeFvSGI0pDZSWDpDdHYcq+4rTCH085Ec/CHJ6Xbk+0JADhD74yviOFZF4JzIlD9FsTLWmeZ3pKfxNp5Rp0yOGJpR630MysFqT8nFRjwCYnJdqTEr2Sgc/euuO8W85vewGZCTBMktC2hAQaYMI6hYESPJpWSPuaNWpPK5B5EAtoFOhtHlR6fFaqQY2IDV3QXiQ+okmrl5sHgUU3FQy2Uf2doJBXN+7fp44ODsg2Rkig5uSpbS0sMAMl0OEH1S+icorXgfDo5WSN2vjZU67Mg2pYIpZyslpmfqFWlAjxXVvlqKHoUlSEBB1KheroOepcg9/EqXZjkav3unWaMkXPbDUDC5TJgn7O+PTT5fBj0xhidn//7g5cgrGokcDfoWSzpar+TIwlMDwcgfAEEp4h/HyfsZGu03jMg2ZNy2h4iAeUdTnaw5ZqHGiMAmlBp9RpQvFUKJtPVqq9Q5vP4Ny2/ul1CiPQjdCloSpBk+N0nxXOfAci+d01Y31n9iRrInvFO18YG4chUkigGupwLnpAMNQOGc51ZLF6HQVrQcALUjmxn/GeNRMEcXPSDNLKcIQxxYN989Qwd5OWiT6D3EhHOVNUjzrWCH7VgYE8XPToOcErWaEaa16kxa6SnWq0yyt98EuvlW6J2zzovaoOXkgEsd6LhQiKkCxeCFypXkf9+6f7ipXt2Pc3i83pc9WJtVBOvWN0IaOvpoVZIFUtJ9FfMfy48OHyGekpI9VLml+orQJ0fZd7RmsbeNmKfrhTxSzBXaYM0tEdqkqBSIut5i0KM9t6uZ6sGQU3XZkHYcGD30ugnLFF1581yCsqyCUnHaLEZPTnpnUwaGkQBsLMRZfabXJS2zjKUNNZxHtazKg1TqcyDbW0JlR79ix53w7dCsXKSgfqIK15b+n0ge1OYQTKiS43SFEdKTzEH9MKVJoOZ99ep34/AYs/Hd4ZT3qyMePDamfWIGkeLFZrSm5oQZNOTmpbeQS5I/tPhsMoNkgyryju9LDz6N01rzSBLqlpNbW0+totfLPUqn6i+49XgkJ16t2LtFzsKuGTFocMs+NGh0XTAgrdVK44rb/Natm8v+qDr8rQhKLstpUsLr2kj1qCcbHvFeV1yT2tQrVW8opiHwVp7VVqFpZ1HKs6GU+9f1lyFLvc6PpYIyOKCyV4IByKrpoGUBou/Yo5CimRxlwCLs2SYjOmANzLHAj/YWX4Rg3hpxR4XtzBJRsCjxYexKD+oQPpWa9+SQ/zUZBqMKXZdbdUDVSGH1E2LoYzxK9LpYenG3SCQJoWvwulk4XuYUupHyCXw2ZNVoxYqdYZCAlRWM+sEHQg9MBUu/GwUHIopzCQDELFhZwdupqLjEGE2yGwUiBN509hoBBIhsNYmZ2ivoSJSwpJC+ZBdOltyvwQOkeyn2SESVoAmbeGhnpSv/A+84Gng1UCsleFcICwRpkHfccRskP6q9kDMwnmAVxSKlTXyg6hqzC9drMVz3HNh8BSaloZxlknXMZO2laIsbtHbysZc+iUEcY3qGgKoy0iEAh56hl3qGlhdLk1LWebXqLL5BFe9Nc9R6I9ImEAABAASURBVGoQyFUwPFowStH1McXsLnef+LJZ28z9SMb+h9WcX50Gd//enz6evmh1hWeuZ09lLmT3FdwOgb6aFunZTFqFavWHxJD0ZPfsCT+FswP4mJdmd/0eYxtmnOcrpeaoIH48HcSWq30seCCsUo46WIjLQJKlRnWlBwEmI2klmxbprDAVJqYJy2VLzS+Huu8b2j68vleFmomy1LSiA/16YD9E90AUXPNzQUgQ4bYWE4SizzFlcDc/0z3fYQMIa5HgiUOMJXpepIW522JJwIoKO6y0cIZujcxJMzRyPuUQ64Bk1LTgGZ6fYVerEPhDFIvF4lQcGcoBQnf/8RlHvBeer92aCMUdvMUQuFSVskPoKkhsFkLhUj0N4aVqPcpXF3DZgXQiWkirE+AFznrVeON1VMZjLqDHr5tH86Da6fGbgIEgCapHPGTFQO1yYYXV/R6lafmSFqzqGC1Iv+3gUZeadjGdYTAghIIVfapabrs826oMp4suDnP8lgNV9/z9cxAYlmncs2GvZRovFwUiBPMCXLOUqZ5NUxvDocGk2NxcxYYwnG6a3bDDcCgyRLufKE1rfAhHtHUWeHLU4CQIuISQwMwWSwT6CqdmajA61vcgBqezTpCW8TmMdDVJ8S7AB57KMEmLDWSdkT24DM41Tr2fPjAk2yCL4qta9KMv0dNJV58nROEpqjd2skBkv/X8E649cyDP9OKSAtooVPo9lK1tStMKXbE7tchAaVT/gEexeAsvV2tao8Lc0GI5tBJ3eIAQY7NGbWz7jiOWg3mgQK0RD6iXPhnoUqyTpdZkDAnRzVZ7ChW1Dc0txhcI8T8y8qgkPLETIa2YYHveiX04L6fZrdlBe0OeMg9ixRe8HlSzkBjjzTcljYHV9c271XclOAd5JaOF8ItDVRXsoymG2cScJjvVjkuwI1wvod0fgcu3ljy/ZjcnboslgfMpwn2FPOSHtBQ95ymqZi6LxcKBhEvfwcbp2/f0IFQcfhFnvL8X5lBUICHRmptJP8MD5UI4jWAgD/OZiDr1jQyHh3SRLMNhAFut5g5chitYeSCLGQeCjPsiPHRh+qygfU+XdtGofCzAZ6q9WB0Y3NNO0wrtLsELRGy/TLcVIXS9B7mCy/jBOb/+1ugM9VDMKbnTDMbardZ5oZsHzxic8+n/TP3v9p8IMZfs19/H6W7aKZ7XxfwmCxToVPXvUNMCe8BYgkJS1VIPHl8hW5u3tSrUKjZbDX/f9EFCmAV6G9i0RH3KJM1uNXfdIHk7EyWk1Rn0AuZNsibOHGu8jgrbICblgOkSEvLcpFUfJA2i+E22QrVKwqWXsKNgZg+kaSH9CJ7FOOjWtNjhEK6FszZncB1ID0mLCR544wseSsYqnqZ2pvFyU+2G8uRrHiQ9s9U6CwcSLsm+8GhhiC8HfL6vEpsfWBlw9tHpO/SwFS41UJmY5kHuKjPEr0vyaG1t9wX3en4Rw2Y0lrlY4ciPvKuvLGYkG/olC8xMscNToZYa8IQoFaqBWalG3g6zQBH58tcXn6d+3a3DxEwwLK/trB2RYXhnXG1FCF3vifh2tH9gEYYS8p0O9gr4QxEkDj6ofQvR+seoMFU0FuV0HyDs4NR7jdrQQpa0wHrqAPVdxK/UtxaREsKxQLUJl6GLzZqYoUwCR2ob+DkM/QRDLySClEJaEYAWUpbZEwePHZh1XUcH22iVKlP6R5ByD6qFDEaX3zTsOjX1TbvVN5z8alpcS2Jp6VLTX5bP6pibPX5Ja5t6K/mmSUOnjuyH1dx9/9iMamSnBpsQU9SwgaYFkwUSa2FLvUirINO9Dk2zt03WzEIOgOUBJgiG0P1EbWjBNhju9MFmlpv2tI6ogxh8ECzcr5ucZKUFlUoM09Spr7w7bG3jKEMNY5pPmSYst1rNO1yFMCMpwXxThgd3Az3l4LlCj4XeSZpPsVkdJs4OvQTflPxmLsLZV+GJnZC01n5tHJXiei5290LJWF3BxSKPb0zCH5aEqGlhBkCxDltikrWtQyLELGcOzcUlz4jBA6lQL7qEuL5BerOAv3HpqmkoVacw2EyExFQCti2md+0NhRdkpiy9eWKHpEVjN6jCa1L2gijQS1pMxiN2h6vrS9WOkV/S4p7Wgcq6PcqE6Es5OYrGXGqFzmK1S01rZEHmb68cU5jpABUhirM/PH7FYTOUDzQK+pBOAAIjW/D4iQ4vUIeacEmKgkdLuuIAXAIiuFrW7za+7ur3C5A6jV+P754WXy7O6eggBkqDcgm3wvRDIW7SSjIaiyhIhsMwD2IDkh/LQEhYQvOgbjXyRkZalVyapARbWKDwzggthFmq23SmHJ23wOn+wtNI9VqhDo+mx1MWTCDwsnN2gWKHFp1S6Lx6/ACOC9w6LHGTVvt9zef+vWv2sx+bjRnVyijtO4jM9zrvxDxcbtpfWa4Wyo3NLTx7lR10DYosfoW5MDZ5KrgLTmGgGkJaAOF4Sk6a3WJJgF3YL1vomtE8mK92j3Wg9nBhTmrBHIdVsI7SHvT7/oobPtxVjsAstYkKj5bsNGOCO6KWXToQHowE/Yt8WI499t2x1kTjs3jsr0jgV1KVpoUo86CqOtYERQ2BXKTDQwER0mOerBkC/Ybr7jc2HWQIXOwqrVefJMeOBS7DEn7K3VXTCAZFRrghmgeROFMN7ArFB7iE1KuvkCSbNC09ZcBaiwThSo3StMynKLMUK1S2n7DMxaIJ5kv6yazMy5Cou0OVhRD9LVolo9/+98Un33fJyV2wYKemxZqP7PSXeVlOEBdc9frt5z44c0yQNEGi3OZBZTrWyf6waud72w9/pIYzA2sUaXE2YIivC17BgIKVe/UOQ8tkZ8YUFNlzxPSFW2Du4nJZW0ERGDsR0oodtiGVnGRNzFZTYZla+ATKw4MYgfa0uAXCXz0YnJsaqBCaQbaoT2jzpuaUbhXE5/Qgf5EPpptctf0GnvivC4cjI1aOcAOJzZqYpLiNahmTQReEJ8ORhDEMj5ZCxaa4pMoIj1mwPsXlX9e1/c7nzrJqDDaHLTF4HZDLV9hMcGeN+pgvDI8kHg4/3/TmEI+mZXwlFuFNzS1NWG4kJDiS2jQtMHqaIuzIDhBWq3knXb1SjVtAOJtUmtQ7BGrZvL/y1F8s/z/1ZRAdCI9LMWuWIjxcxkKirmmhkjdNGvaf5w2DJ9ZiJi2Oi1jfsTPlY8WJ7FWmhQtU/ENqy4AnIBALYZdOtSfBH0TOO8lQtlZ9aXwuq0JZVlA++m2QLIGislPdK11WQ0grEFDBw7tfbJ46Sld2tCFI1dlBA+1pcW3FeWpQrnF82W9RWGEhHIssuNk+05lb01KdGAm0bFVfLBxpsthgZvngnvNvv+BEncavJ8VmTOVm0iIx5ynyM2chadmticmm2V8nmHFaf0RtPViFCZqB65Rt8LSikD6UxyzaTbFjD8ZYq8Eq6KppuP0vGxDldCRp1RCXgSRLgVbpgahOqVlI7FAthYeS4TAshJ0hLTN5e0jLzZS8hXafWb0L+2fLtxzSIfBA96p0k5YxpyAkFnLBiH5YyvDrVrEoP6ZlYo2SptYWeO5BhkxM6xB64c4Uo0eZTw/uU1/bQQlczsIDoaZlVtMR6Cv82b/3vyyDxYKThu9s4JvLb0iOMti4ahvkIIZffHpsICdxTuh+G4k5iEdUsU/mN0G66bBZEE3rZPVrkCwhK9V7OsMwRhTmcbhmodWRhKfDsSXQ4dIM9ID0ZvMg25inSBpRWob1SfvO+KJbv+n9pVEmAJtOO8V4WVsrW58o0gr3sDtLg0tla/nWQ5c+9sHKL0rtSYn3XzHKYjFsnogNIiStCsUHSIbVLlxIcpLBgvBQMtQ+XGQHCGlUzDBrWmRK0yqbd4GLWexfmw2rKbYqcakFCwWokrikaghPLOSEvukf3Tfl+xONnzaORfkxLdPi+YES7PV22JNjWpNQCnemGMpTlemLGMWeHwPjxgELoZqelmwkZohfFwMHVI3BuO1QFfgGaXxnAwSGIhibSHakpqH0qPE5b9G0gEavEFIRNIlArcUsSRNWv0z3JwO8UppJK8iy8WR16p15s31IiyFHPGoEk8HdFubbl8hCcZNWY9s53XJ1Zi/PR9PCDPKbK8cEUd34cw+vbNxPnojsWxisFVxua/3q9W2Y64fmpS29+ewZ6v0ERAWXTHWuocLDH6yMPSkxURlCdV6nWhdXepIZ4aH9a25xf1/OV9NCH/At443PD/Lt5rLq+gaP2odkLkWrUE8xN+FSxC8CWHgh3GxCwGV8ilPp7lij6Orxw4m49NW0OiQt9NizhxlnCFd9ebhCjXcuWFFauML1H1a6peoImP7wR7jlhJW+3QoxrJySOFoITB1pqBHLPjsAbd1vmeyXeen2ZH/WM2Qxd9NBuQH3tAbnpjls7ieerdbvyKuFHReLJh0CD6bRL9R59wjGdooymh1raEE5FMyt8OT5kBYCg8vEYXn9s1JgcINicfho/e7yWosl4fSB2cFzBYolPSN2xmmFr952zikhv+9JS12FogRkJ2E42qtZCCe2ZA5chi5cKSO9+UAKb+qXAvmzbUgPky83FeCHVKiZKDM17J/1Q97eIxh3IPWLRuXHf5O5DDLvafEro6i5WdOqVdu0acrsiaggct5JfRD7/peH2UuzUg3zI0LCFWpa+yuOYWwib5/2v5GGkFiIewqLRdFSZogITB6OZ50EZlqnvm/tm+tQlfFLo/mZ7peZfBOY57hBgfe0rIkW/Um3rFRv8yDKh8JQUdvIz2rwLrvKajA1g36CFMuUvq6DpKXeZGJsxKQFVYZfxoKFcL36etNJfTM4m7PksNxLRxcUZjoe+vaYR79zmllJ7bAQju1Kz5mIOtU0NtOcl9i6FHOYwzv0c08CGpJ5dcJmYlLAAsJcws7D1Z/sceGRZasZhwZkJnBvaKVEOBOxkB7vXj2+aNP8C8890Zi+47yxHk2rzWihzYP8QXPWn4se8xKW4b4ut7VgZt+v9sayfWYD3yx+Q7jS/fpwNWKTkxKdyjAOf0xFSCum8IZUuMNmvVgt917ZeMBvBn4oLN/zFotvGj3zptmteT47Rub0elsrS8105ihMjhNPMI4VvW46XL5N2QZhV7RidjSnDsGPZSxS1arfSoAHclgdNsnL8OZLRHUoV40vgnb14c4j//h0HxKH+51cZNFyzTcGrrn3gqvPQIEd72PpXPBwiwi8Dj+ENls8PvjNQhapCJ+0PJOOcYBFF4jnQr95oY2QlxUOmH341XAsehBIcSldMDs1EpxZQi9xI+jVxwUZZ4qxTYUOgO1tVmCv+jEw+KvqmrjWgZ8ePRsgJJBgDTooN7WppfVNdYSHPTZQ4iDh7GONza1IA9ugxRLegEKuCERIKwLQop/litOMbz69semgeWdC34YWgIIgmlay0aeRflBumsUSrN+AfpAsIznJZvXz6KePKUAsDJVwKdxpG2E6OsjwUFzoZ0hGdQR8wh5vAAAQAElEQVQeSMSaFvLCPMhF8fKtJbgcH+Z3cpGl8wKDGwrRe1r1StPCAhOBZslSbEHmMId36CdpmfVmZMGTSlMGn0rTJhm0rpfX70csuJxnLw9UGuo4QiAVShdkbXEp0t0RcDoMpRkcc0x1OVCX3tNC03i0GB72n1A0LSQ+T6mYMLbDzx4LT7iSm9a2MNLfOw63kHDT+5m5wi1C0ncegbOG5vbNSMasBCuzb2lcRBcE+PAg0utuOjiv/YYW4trLaPXpM6yJ2ge7ry48JT8p0fLFoaM7PJ8m26Y0rQg2tFCiQ021/k4P+j9OgizB5Tvji3SC8WF+J1dn7IyHv3ZYofQYlFPn87VcBEK4/KyIQNNSb4+m2d1LEBRFobKF7sFLuP/eUYapCuEXjOjL1cxB03e7K1QNqRcisUh3RyDVbrUqU0eVOkCI50t+4ttmXNSijbXqzXQucXAZXKCj6wTssfoydI8zxabqZeQINKsYcVH9J6QVVTgjLQw98rJTC5H7n5/5sRByT4tzE9L4ijYIQNPyjTWHjBuU/T/TR/76W6PNgdqPBRd3aJd9ZhykRvhW9SZyZJpWqtrTqlVrQxSF5SE1LX65CiHhypSRfbOVVRMEH+53csO9l9/0Weru2kpT5/5arvcgYiUxs/gtJEggzTsZPhsD7i9xmDSt/7fesJFecVphcpK1QL2abd7bqFB8yU3yILeTqO6CgMXS7ie19qrfXO7nTB6UayxSuahFW2qUKV4vYRESRCYMy7VZ3VaZbNWxgyQOFIWJKyvVrWzxNzwDpYxiuPd4i2LRUlRYCGACQvoVWw9x5oJfCxfRQfa00HVSbMZGyKAcoxPrjL4e9P4bzhkCxc43iiG0EL72+QFyTOnReoslIbKvfPLIe5060YTCaxqaOctHtqeFEjBB8+czvjEkx2JxjzeEd5lkqbHd0NxCKw0tn757WhzGLsUcYdWNX4HznXQy1ZZGpYe04HlLbUVcNa4I5fdXKjg3PnEJqVCaVmaKYVPCZbyJ1CcCBKDTIBcWTHB5CqMoO5UL2UMeyzDVL9/+gyy+gmTaXMEe65smlJBsNSiQsgs+voW7QIS0AEJcCAx3Q/LSMK2vUHs2uk4gD66k2EF1uJeHGyEDczsgLa9cvpdTR/azJyV+fbhm28Gj25RtcEhuGvq3b8oOQ8ijnN+RuOyo8fMrMHSk2r3NX4gNUe6YetKdU0/6SZi/ZhRi4R0mQ4vsVmPIkBXwsJAlOclYLsCjJTvNYAum0YGheLhe0XqzzpKp6AdcxZBlnx3A3ufwfhmj1C8KFqgvUrbTtBS9kWKZRdzujoDTYXQqvqpFTQu2wXz3ozde7EUDA/UfRPkVmlUQxR4LTwTCA4TICPsH3C4QYwR2wW3kFh0iYLFYLqeFcKOxwa7TVx1r4ryfnxnwyDsS//CcIVNG9NNLJ4REJhkO2/nD+yAvlC2SVmS2QZSQova0aj2a1v4K46RAJ5djmNBvv+BEvhaKW3Sx4BnxdAMJyaNpeQ+ibGUwqTjm/iZv6JXk5zDQRq8s7r20moYNe12/efOLhW9/hQRXjR+A+sBTqGYuV22j3j6sUEoeq4EEIj0AAafStjEboC08hYFRUJBpzAl6T6tG7WlhXYg0oYje1upMV9F5u+bHtNAu7/GGoCiIFBERApefZmxrvf9VGX81gGUcVC9pYTnjUAZABvq6N04a9vT3xkNJ8o0KN2T6GKMayz4/sEVtaEX8ww0pqsJkXNTho53G1+VPK8qCv/sKTzdUqON5gQ5iUDFqbmmtUgcrQm8szTu+pEWmfPTtL7/1+zVPvPc1tgb7Z6V8a6xx4hSFYzrjPKWVrQplHmRVkUCkByBg1rSK1Xl3kBYXsrTEoI01ak/Lt/8gyq+MKMi4efKw/7pwePC5xW9eHYipiX45iEEcepc7rE86jISY7N7Y3Pb9U8+GlrGk6ho4LhjRF3yDgfG2MlSiZ0d2X2paVEdQwpqvDdLi92Nw2U0lS1nw+fZuvTqIkZzkvfLDFAAA0cAKpfHAE6KQtHyNsYVqQd3SmpBmt146puB315z2r7nn8qP7KBn6FlfcevKqUOZBUh0SiPQABNykpZ6sNg/yuR9Sn3tHG2vUTwT49h9E+RX0nHsuOvmW8/1/89NvFt9Afd5HDmL4gtMrQngc458b2iyEnInYO7sGglR7EngL96pRlr2Rkf7aECdumgcxnDYWV6DMs4cZ7y/D0/USlTtSiyIrBNK0cKNsxW0w2cEfupC0MnxOD159RtH9V5zy7PfP+PRnU/9v1ulXnNafU5gu2f2qljLAYhOUZJmd6j7WpZOJp/siAH0alYfu3tTcQkt7UU5KgTMFgUdqGuoam+ubmvmSb+ikhbydF35+0Ga1sM93vsAOS/BeJHaYQRLEFAGY5hItCZ/scW05UMkb8WgQ7QAM6QKX5+9xI3TEfs4IX6tKUXtaxxTzfbz7SFNLK4YZbBootvtKZorBBBXK/lavNC2Hzc8gylKE4QpT0wK1AxnfSSfVnvQfEwafP7xvss+hD6SHcE3D9Q1WCZy8shRxIlakByDAZUrVsUY8ZRhj7NbEfhkOZ0oSl4YlVXU1akMLLU1T4w6erhFqWn3Sk6G3dc0d/Yy3rrmx3MUvAiAn8Bai/rBqJ1wI+ihcLqXh6RrBDm1GsnHGb2ShM+K+yOFUp97TWkvb4NDurWYBfDJBBfe0VNMc/oiEx7EqfEiroanlq5KjUIZQlK8cVXtg6Qp539ggIQXqLAb3tCqUBQmTGvEPkkui4gCBUKvgTHGfHixWL2kNyElJTMTQtBRkGhsHmCVqlG0wOSkxSR1wDbXcTqfju2JD+6R3uqRQCxDSChWpLkt306RhuNfrnx/YU14DD7oj3Hyn0TXh6Rpx2KzTTjG+fj26f+TnJlLUig8Lf9T53zvK4J59gvGDCPB0X+HpBu5pkY+BlW9z3JpWjfcvN/7q9a1TH31/1ZeHfbMgpCbMjXRkoRSaXtVy1TQgEOSKKQ0ekZ6BgDPFWERWHWvSL2mxXVjmwnOosi7izoPsnZHxg7Kf+o/xD105pjOFhJVXSCssuLoiMZSbycP7YNf9yfcNZYvLZ66nuuL2nnvMu3TEf104/KZJQz0BYf/Plf6xxmZMo/yG4YRh3Z+0Uo0Fb4UyD/I9LYc/82C2O5nBH2bgeCBz+6Gj5kDtdx9599nT0gkCeQpMmlal0rRAWoESS3h3RMBtHqxr1Kcw2AqSFpa21LR8bctMFjsXa6OpI/sVqs+yxO4u5pKFtMxoxMQfQaE/UsrW/1u/r/RoHbojSmDXhKfLJCfNfsv5J2SlGls4kd2UmhbUkQ93lre2JpzYN73LzhdFVuFQcnm+qGSwUZ369mCyzeqbMTvVwM2luM0ciweKy3KlDMHjJdVqWyLNbqypvaKCXxYqTYsHTUmoWSlGBYLnkthuhIAzxVgtYU9rrzrvPjDH/RmBAmUexM63u/OEb1vuRiCwqtEhrV//+tdnn312ampqVlYWy9Xu3r17L7vssrS0tLy8vNtvv72hwRjtjN20adOkSZNSUlL69+9///33mw39q1atGjdunMPhGDp06B/+8Aem7z3uN4bknD4wC/sfj638iua1ArWU7l4IpNqMyRf152F3/u5J92qCb23d5kH13VLwMRI4/JFWliItbi8hDQU9vKSqHv7y6rZRgEst1fWGOTEjUk3raH3T0bpGl9pIy1Kqni5ZPN0dAadDkVZdE/e0inKMc4NoVL6aGbC0rVV7WmnKJo/wHiyJUWkbqOiqq6760Y9+5FVac3PzpZdeWlNTs3r16iVLlrz88st33XUX01RVVU2dOrWwsHDdunWLFi16+OGHFyxYwKhdu3Zdcskl55577oYNG+677z5QHTIyqpe40Lh/NNl4eeKlj/aiyZiAqLXA343EYTd617HG5n9/bWxo9QDbIMDHs4BbqYihXv3CfbLPe1pIkK04o0IlwyWl6lgTFiLwl9cY1AWPWZqaW2hvjOAgBoxCTkV1mLwqQzIPmu8s/m6AgNO9p+U2DxbleDQttdt9qKqumqQlmlaID/MXv/jFHXfcMXq097fDly9fvnXr1sWLF48dO3bKlCmPPPLIU089BbpCsS+++GJdXd1zzz03atSomTNngpxAWq2wIiUkQLUaOHDgwoULR4wY8cMf/vAHP/gBKA1ZepVccHJf2NOws4VWd/EpDNwxKpKiVBA80p2HaxItCUG+0huV23VNITS7UYUix/jVtLJTDesclR5dsZKj7m/EHfFnHqxRtkEkBgPBDVcK1abCgYpjZMosVYFwC5H0cYuA02FoWk0trew8mrTyM40jWlis1CjSimDFE7dNDlQxYy0cKK7z4WvXrgUnQZ1iURdeeGF9ff369etxiSjYBpOT3e8AIerAgQO7d+9m1LRp0+ChIOqTTz5pbDQsJwyhi6LAf1oY2GPcxETLTWpnCy0qUP0Snu4lKYq0WOdR/TMzU4xRx8vu6/IzE7B51jc11zc2oyEOf5pWltK0XO1PD5Yq2yCylPszD1aro4P2pEQI0oQr7CSYvFxqI40VCLcQSR+3CKTa3T+phRri4ZLD4OdzL6uu50IqLdnPDiuSdQ8JrZaxJa1Dhw7169dP1yQ7O9tutyMQIXDNUfQj0G9UU1NTWZlhYkKslgcffDDT81dUVKTDe4zn8tMK+f2eArWI7nbtSrIm2j2vjPQM2yAeQQasgepHUWCFqyNp2fxME9lK0aHSg1yUEs/ndjDFtEIDZajHdR8dTDY2Aj1hYfzPTnLQ0LSM5R01wjDyS9L4RgBbBk5lAUY19SkM+HPS7Bhl6E27yow3ZFLtEfYfFNVdJCTSmj9/PiDzK9CBgjcVucwJMFZ1iPYgAcLh6hDtQaBXFEIo9957b6Xnr7i4mIE9ybVZE++9ZAT0fZgKu2m7HDZ3B5s4rNu/VsxHAA2YKmNlbWOd2tNy+COtLKVp1TQ0cxOLeUvVj7PAj80w6GrwmIV7Enjc5sDQ/VzfHKisq1QvPrMCoWeXlPGPgDPFbasoynZvaKHOFoslX1lidpRW4zLi/oO83UXcc0rw6t56663bAvzB+hckb35+PpUnpnG5XI2NjVSqvKJKS0uRJlBUUlJSbq73Kz4wLTpNf8je8+SyUws3zZ92wYg2bbV7tZHrPpvVMn5wtqp5T3BIWrDG1Lk1LT+DyOmwYRsPrTUrW6WePS2El/tYCElakW1oocAC9yky7GlR03JPcIgS6RkIoFOxIXpDi5fc8/76sEFaEfcfFtUtXD/jzbfeeXl5Jwf4cziMbUDfLAyZMGHC5s2bDx48yMvly5eDacaNG4dLRL3//vsNDe6zv4jC1tfgwYMZtWLFCngoiBo/frzN1ksHIVZSxKE7uinqAO5YrAztPcdqwVe1XDXGV0rxUBw2P+ZBrZBxhwnJIHpPC37fA4Q0D8L8iNgIpMDzqhbvKAcxIsAwzrM4U9yDyGweRJ2pYrWDHwAAEABJREFUadWpL2GmJ/vpjUjTkyQk0uqwwXv37t24cSPc5uZmeCDV1QbtT5s2beTIkddff/2GDRtWrlx59913z5kzB9oRCpw1axYIbPbs2WC1pUuXPvDAA3feeScn6JtuumnPnj24hHb3pz/96ZlnnkFGZBHpdghwQu8BX28yI5+VYqyfyqobeLbTkeR/mshW21ou06n34JoWT39FvJFeqDStA5XHxDxoflgh+btJIqfD6HiorH5JC35IgTIPwgNJ7UGrQzTHr0SHtH72s5+NHTv25z//ObgKHgj3uqxW6+uvv+5wOCZOnHj11VfPmDFDH17PzMyEOrVv3z5oUTfffDMoCsIqDhky5I033njvvfdOO+20X/7yl4899ti3v/1tRonbvRAYWeC0JlouVJ8x7F41D1LbLLVfpU9VJNv8DyImM5sHS9TpwQy1nc6Dy+a7HOWRZc/EZI4Kxa+X2/KJ91Dg6o5pnJ6+4VfTYovEPEgcOnafe+651vZ/kydPZraBAwe+9tprtbW15eXlixYtgnbFcLijR4+GhbCurg72QxAe1SyEQyZNmvTpp5/W19fv2rULihdCRLojAg9dOWbdvCkjCpzdsfKB6kxNq8RzFDDZ35F35M12a1rGDhMuMT6oaY3IN9Ao83m/mJpWxOYdh82am2a8HIZ72ZMSU/wZLREl0n0RoHkQe6V8J083xKxpyUEMDUt390j9jw8CULNyPDPp8alBDO7KPS2SFhjLvNgy3427Sto8WFXXxF2HkwsykOxIgIMYnZl0uK2FwkGrgWqFWJFuigA1rYJMLEjaKff5yjLMRkVsXmb2buG2a3y3qLFUUhA4vgiAElCBQ8rWB/0Gfr+SrayIFepVXyQ4rI4OOh1J/dVbd+U+H8WoULtfTod73wJZwhVMZ8ySpW5Nv7g9BgFnitE3vDa00LqCzLbTcGIeBCAigoAg0A4BUgI1LUeADS1k4C+6kopwWaJIrq/TkZtufAWmrLo+AaEmOVhpfOQp3zQBmSJD8hZ68mYpy2RIeSRR90Fg8vA+o/tnfvcbA72qnAebMoyGKlRIS8EgjiAgCJgQIGnxJIUj8NYRk7k8mhY3tPo5k7nzxOymUhMOVBzDJfUweCKQAqXDISN1QXhEehICg3LTlt12zhWn9fdqFIzw/TKMlRDC0+3uY/Hw91QR82BPfbLSrlghkJniPu+AGwQ6746obKXuaE2LL2n1zYCmZWQvb7+n1draeqDC0LQ08aCEcEWbibLEPBgudt08vVbQO7+nFf9ICGnF/zOSGsYXAmZKcAQ2DzKZ1rQ85sFknkyBpgWi0g2rPNZ4TH1fQxOPjgrdU+jRtLIVX4aeUVJ2dwQK1FmM5KTEJGvPn9J7fgu7e3eU+scbAmbjW3KAN4tRZ36ytk3TUgcxDE0rzbDkNDS38MUspITsV7ZBWA4dNv+vKiNNh1Lg2dPip+g7TC8JegwC1LR6w4YWHpmQFkDoZSLN7RwCzhTjEBfLCPRmMWKz04xkFbWN1KhoHsSeVordmmo3mMl86v2gsg1qVQnZI5B+TodFfYGefBlBCZKlmyLA9UpvsA3iAQlpAQQRQSAMBGzWRP02lSOwYkQbXVNLKzUqHsSApoU75aarbS3T+8UHKo1TGJx6kCAyQcX6qg35bNnTigzBbpvLrWnZe/4pDDwiIS2AICIIhIdAZoqhRSGPIzBpIcphM8ZXRY2hbLn3tBSp5CoLofksBk9hdFLTQn1OH5idaEkYnm+8v4zLbiRS1c4gcM4JeacVZV1zRlFnCukueY1B1V3qKvUUBOIEgSyPKuMI8A0n1jNbHYhw1TZU1zcdU+cs+jqNDa3cNGpa7p84QGKedy9UX2rHZcTy2HfHfnjvBUP7pEdcgmTsjghkpdpfuWXi7IlDumPlw62zkFa4iEl6QSAhS5NWYE0LMGEqgQvSKlU//5iRnJSqDDhu82B1PWIpB5V5sNBz/I+BEbiGhdDZ9n2ECEqQLIJAnCPQhaQV50hI9QSBkBHQJx1oAAyUL1txW0VtY4n6ui7VLCTOoXnQ9CUnmgcL1MFlJBARBASBQAgIaQVCRsIFgYAI6DPlyUnGOcBA6bI95sHDStPiKQwkzuNBDM/7xc0trYcUq3XmcxgoVkQQ6A0ICGn1hqcsbQyIQGQR+lWt4JpWVntNq5/a0MIdc9Se1hGPplV6tA68lZRo6aOOaSCBiCAgCARCQEgrEDISLggERIBshGhH0D2tbKVpVdQ28CWtvp7dptx04zhGmWdPi6cw+jkd1kT1mhXKFREEBIEACAhpBQBGggWBwAjoPa3koKSVpTQtF/a03OZBg6tQKk8Pak2LG1qFnT46iJJFegQC0ohgCAhpBUNH4gQBvwjoPa0Qj7yXqi0rk6ZlHHkHafFjGdS0Cjt9dNBvVSVQEOhhCAhp9bAHKs3pCgRMe1rBDmJQ06qobSxtr2lxT6uppbXqWBOqy1/SkqODgEJEEOgQASGtDiGKSQIptFsj0KZpdWAeNDQqV20DNS3sWrHVyUnWjGTjiztl6ktO/FpufzEPEh1xBYGgCAhpBYVHIgUBfwjoPS2H+lCTvyRGGN/TKqmqq2loxjU/DAgPJFedeoeFEH6+WSyaFqAQEQQ6REBIq0OIJIEg4I0A7X4Ihc4EN5Bkq9ODjc2tSJCenGT+5QhaCMvVAULPQYwUJDuuIjcXBLoBAkJa3eAhSRXjDQGHzZqcZIwdR1BNy5li42+FoP5mNQuXue5T7w11jc3UtwrFPAhcRASBjhAwBl5HaSReEBAEvBEYnp9hs1r6Bz3yZ0206O/B6284sSB96p1HB1PtVp2SCcQVBAQBAwGff0JaPpBIgCAQAgKLf3jmu3dPpsIUJDkthEigv+EEPyRX7WnBPOg5OuiwWOTNYgAjIgh0gICQVgcASbQg4BcBp8M2IDvVb5Q5MEu9X4wQb/Og55u5PDpYGFRjQ3YRQUAQIAJCWsRB3OOIQE++dbY6i4EW6vPu8EM8mlbDwYo6XBbK992BgoggEAICQlohgCRJBIFIEcjSmpbT/Q0nlpSrNK0jNQ3c0xJNi7CIKwh0iICQVocQSQJBIHIEsj2alteelvvIe039AfXzjwVydDByjGOTU0qNVwSEtOL1yUi9egQCfL8YTfE6Pcif1IKmtd91DLHBTyEigYggIAgQASEt4iCuIBATBDI9mpbXnlZ2mvGFp5bWhN3lNbhxQaYDroggIAh0iEBvJq0OwZEEgkBnEaCmlWq3pquPDeribNZEvpgF3kKg7GkBBBFBIBQEhLRCQUnSCAIRItBHffnCryLFA4QoF/tbDluwr8UjjYggIAgQgSiQ1u7du2+44YYhQ4akpKQMGzbs5z//eUNDA0uHu3fv3ssuuywtLS0vL+/22283R23atGnSpEnI1b9///vvv5+/LYQskFWrVo0bN87hcAwdOvQPf/gDQkQEge6IwPjBOT+aPOyn00f6Vj43zbAQIrzQfAoD1yKCgCAQGIEokNYXX3zR0tLyxz/+ccuWLY8++ig45r777uMdm5ubL7300pqamtWrVy9ZsuTll1++6667GFVVVTV16tTCwsJ169YtWrTo4YcfXrBgAaN27dp1ySWXnHvuuRs2bEBRoDpkZJS4gkD3QsCaaPnJRSefP7yvb7Vz1al3hBfIS1pAQUQQCA2BKJDWRRdd9Oyzz06bNg1a0eWXX3733Xf/4x//4N2XL1++devWxYsXjx07dsqUKY888shTTz0FukLsiy++WFdX99xzz40aNWrmzJkgJ5AWlS3Q3sCBAxcuXDhixIgf/vCHP/jBD0BpyCIiCPQkBHLUl5zQIjk6CBBE4hmBuKpbFEjLqz2VlZU5OTkMXLt2LTgJ6hQvL7zwwvr6+vXr1+MSUbANJie737hE1IEDB2BpZBQoEB4Koj755JPGxkZeahdFgf+06HDxCALdAoE8MQ92i+cklYwzBKJMWl9//TVsfTfddBObeejQoX79+tEPNzs72263IxB+uOYo+hHoN6qpqamsrAxRZnnwwQczPX9FRUXmKPELAvGPQI6HtMQ8GP8PS2oYPwiERFrz58+3BPiDDqQbA1UJpsKrrroKNj0diHzaD09ra6sO0R6Gw9Uh2oNAZIFrDsEl5N5774VWRykuLkaISOQISM4uRyBXHSzEbQvla7lAQUQQCA2BkEjr1ltv3RbgD9Y/3giMdf7550+YMOHJJ59kCNz8/HwqT/BDXC4XrHxUqryiSktLkSBQVFJSUm5uLhKYBaZFp+nPHCV+QSD+Ecj1aFqFcnow/p+W1DBuEAiJtPLy8k4O8OdwGG/y79+/f/Lkyaeffvqzzz6bmNhWJjhs8+bNBw8eZHuXL18Ophk3bhwuEfX+++/rE/CIwtbX4MGDGbVixQp4KIgaP368zWbjpbiCQM9AgJqWNdHi9VnCntG6qLRCChEEfBFoIxjfuBBDoGOBsbCr9PDDDx8+fBiqFYR5p02bNnLkyOuvv37Dhg0rV668++6758yZA+0IsbNmzQKBzZ49G6y2dOnSBx544M4777RYjN/Bw5bYnj17cAnt7k9/+tMzzzyDjMgiIgj0JARO6Js+ZUTfG84ZAt7qSe2StggCMUUgCqQFTWjHjh3vvPPOgAEDCjx/rLTVan399dehjU2cOPHqq6+eMWMGiI1RmZmZUKf27dsHLermm28GRUEYNWTIkDfeeOO999477bTTfvnLXz722GPf/va3GSWuINBjEABXPf29M+67ZESPaZE0RBDoAgSiQFrQllp9/nTVBw4c+Nprr9XW1paXly9atAjalY4aPXr0+++/X1dXB/vhz3/+c4vFULMYO2nSpE8//bS+vn7Xrl1QvBgoriAgCAgCgkAvRyAKpNXLEZTmCwKCgCAgCHQZAkJaXQa13KjbICAVFQQEgbhFQEgrbh+NVEwQEAQEAUHAGwEhLW9E5FoQEAQEgfhDQGrkRkBIyw2E/CcICAKCgCAQ/wgIacX/M5IaCgKCgCAgCLgRENJyAxEP/0kdBAFBQBAQBIIjIKQVHB+JFQQEAUFAEIgjBIS04uhhSFUEgfhDQGokCMQXAkJa8fU8pDaCgCAgCAgCQRAQ0goCjkQJAoKAICAIxBcCBmnFV42kNoKAICAICAKCQAAEhLQCACPBgoAgIAgIAvGHQA8hrdbWVmBbJX89BwFpiSAgCPReBDCfc1aHx0t6CGkdPXoUDSsqKsqUP0FAEBAEBIHujABmcsznnNXh8ZIeQlqFhYXFxcUVFRWVkf4hO6CBG2kBPS0foBBAvB6qYNLbAfFqv8+l9BAvSCIDpKKiAhkxq2MK8pUeQlqJiYkDBgzA2sLZiT+g04ncPTCrAOL7UAUTL0wEEAHECwGvywh6CGZyzOeY1ZHXV3oIafk2TEIEAUFAEBAEeh4CQlpez1QuBQFBQBAQBOIXASEt97NJTk7++c9/Dtd93ev/AxQCiFcvEEwEEC8EvC6lh+mK7M4AAAf9SURBVHQBIEJabpDR2+bPnw/Xfd3r/wMUAohXLzhumHjVI24uBRCvRyGAdAEgQlpeIMulICAICAKCQPwiIKQVv89GaiYICAKCQNwicLwqJqR1vJCX+woCgoAgIAiEjYCQVtiQSQZBQBAQBASB44WAkNbxQr473FfqKAgIAoJAnCEgpOV+IL///e+HDBnicDjGjRv3wQcfuEN7zX8PPvjgGWeckZGR0bdv3xkzZmzfvl03vbW1df78+YWFhSkpKZMnT96yZYuO6g0eIGOxWObOncvG9mY09u/ff9111+Xm5qampp522mnr16/vzZg0NTX99Kc/xaSBcTF06ND777+/paWltwHy/vvvX3bZZZgcMEZeeeUVNh9ukGFSX19/22235eXlpaWlXX755fv27UP6sERIy4Drr3/9K2alefPmbdiw4dxzz7344ov37t1rRPSaf6tWrbrllls+/PDDFStWYDROmzatpqaGrX/ooYcWLFjw+OOPr1u3Lj8/f+rUqYE+ZMn0PclFk5988skxY8boRvVaNFwu18SJE20227/+9a+tW7c+8sgjWVlZhKWLMeFNj7v7m9/85g9/+APGxbZt24DAb3/720WLFrFWuOwlQwazxKmnngoQ2HDtBkEAM+3SpUuXLFmyevXq6urq6dOnNzc364yheIS0DJTQw2644YYf/vCHI0aMWLhwYVFR0RNPPGFE9Jp/b7755uzZs0855RR0wWeffRaczXU0VkwABHQ+c+bMUaNGPf/887W1tS+99FJvAAYj6tprr33qqaeys7PZ3t6MBuZojAv0jW984xuDBw++4IILhg0bBlh6LSZr16694oorLr30UqBx5ZVXYp33ySef9DZAsL7/1a9+hckBDdcSpEtUVlY+88wzWPFMmTJl7Nixixcv3rRp09tvv63zhuIR0kpoaGjABI0+p/GCf82aNfqyt3nQsdDknJwcuLt27Tp06BAAgR+SnJw8adKkXgIOVE9MSRhdaDilN6Px6quvjh8//qqrroIBGdMNuLyXY3LOOeesXLnyyy+/BA6fffYZ9IZLLrkE/t7cSdB8SBAEMNM2Njbq+QR2RSyFw51P4pK00O4ulLKyMuin/fr10/eEHzO1vuxVHqyS7rzzTgxIdCY0nDgAEPgp8DOQlz3Vhfni008/xYaWuYFsOBDQgfAzUIf0VM/OnTthfjjxxBPfeuutm2666fbbb//zn/+MxrL5wAF+CvwM5GVPdX/yk59897vfPfnkk2EyBYvD6oVLNJZtBwjwU+BnIC97vMvGotW6pfAzEK7dbtemCyTQUfCHKEJabqCwkej2JSRg4jZf6vDe4Ln11ls///zzv/zlL+bGmtHoDeAUFxf/+Mc/hu3C4XCYcaC/t6HBVre0tJx++ukPPPAAJugbb7xxzpw54DBGwe2FmGAjHD0EpnIsbmA2f/jhh+ECCkovBIQN126ICEQwnwhpJeTl5VmtViwBNNylpaXgf33Zezy33XYbrEDvvvvugAED2Or8/Hx4ehs4MGKgD4wbNy5J/a1ateqxxx6Dl72it6GBDgApKCgYOXIkPBTs/mLjE/7e2UPQ8P/6r//67//+72uuuWb06NHXX3/9HXfcQb281wICTChBEEAUtmNcLhdTwsVA47CCP0QR0kqAuorpacWKFRoy+M8++2x92Rs8WO9Ax/rHP/7xzjvvDBkyRDcZfvQzAMIQdDjM4D0enAsuuAD7wxs9f9jLufbaa3E1dOjQXogGH/3EiRPNL0JgL2fQoEGI6p09BA2vra01/0ohFr5QRhHeawFB2ylBEBg3bhysqXo+OXjw4ObNm8OdT4S0DJyxi/P000//6U9/2rZtG1ZMWELCam9E9Jp/t9xyC20dGRkZ0CQgx44dQ+uh48NYD6PQ0qVL0b1mz56dmpo6a9YsRPVgAQjY0tOSlpaWm5uLy96JBh80xsWHH36InrBjxw7YxJ588kn0GUT1Wkwuu+yyX//616+//vru3bsxOhYsWPCtb32rywHBDY+nVFdXYzEHQSV27doFDybPIF0iMzPzhhtuuOuuu1auXLlhw4brrrsOeqr5rBPK6VCEtAyIvvOd7yxcuPD+++8/7bTT3n///TfeeIOrSCOud/zD/kRlZeXkyZNhBaLAZM+m33PPPeCtm2++GQrH/v37ly9fjjmdUb3Q7bVonHHGGZiasdkJ8v7lL3+J8QLtkx2gd2KyaNGiK6+8EuMCltK7774b+3yApbcB8sknn2CPE4KGY+kPz89+9jP4g3SJRx99dMaMGVdffTV0d6yAly1bZrVakSV0EdJyY4XOhxVTfX099jPOO+88d2iv+Q/mQS+BUsXWY900f/58KPJ1dXWwDWLOYnjvcd977z3M0Wxvb0Zj+vTpsJqiG8AgMWfOHAICt3digqUbesWePXtgk/j6669/9atfYaMBaEB6DyBY5nrNG88991xwBBwOB/i+vLwc9lUwVlFREdKHJUJaYcF1HBLLLQUBQUAQEAQ0AkJaGgrxCAKCgCAgCMQ7AkJa8f6EpH6CQPwhIDUSBI4bAkJaxw16ubEgIAgIAoJAuAgIaYWLmKQXBAQBQUAQOG4IBCSt41YjubEgIAgIAoKAIBAAASGtAMBIsCAgCAgCgkD8ISCkFX/PRGoUEAGJEAQEgd6OgJBWb+8B0n5BQBAQBLoRAkJa3ehhSVUFAUEg/hCQGnUtAkJaXYu33E0QEAQEAUGgEwj8fwAAAP//lmthBwAAAAZJREFUAwAaeS8SM0PGbwAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "id": "a4fdee0f", + "metadata": {}, + "source": [ + "##### Langevin\n", + "* x-axis = MD steps\n", + "* y-axis = Bar\n", + "\n", + "\n", + "![image.png](attachment:image.png)" + ] + }, + { + "cell_type": "markdown", + "id": "7fba9d66", + "metadata": {}, + "source": [ + "### Different seed" + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAGxCAIAAADpq/tWAAAQAElEQVR4Aex9CXxU1dl+JpmZzJI9IQmBsMm+KYILoEIVEBUtxda2qC0t8q/Fpbh8tko/pbZKaytS8autuxUt/b5WrLssKoqgIIKyKxAgYclGFjKTPfk/57wzl5s7M3fuLEkmyZvfy+Xc9yz33Oece57zvufcO/Gt/McIMAKMACPACHQRBOLj+I8RYAQYAUaAEegiCDBpdZGG6lHV5JtlBBgBRiAAAkxaAYBhNSPACDACjEDsIcCkFXttwjViBBiB2EOAaxQjCDBpxUhDcDUYAUaAEWAEgiPApBUcI07BCDACjAAjECMIMGmpGoKDjAAjwAgwArGNAJNWbLcP144RYAQYAUZAhQCTlgoMDjICsYcA14gRYATUCDBpqdHgcGwh8MILL5i8f2azuXfv3j/4wQ+++eYbg7X88MMPkRtHg+mjmGyq/Au1wOPHjy9ZsmTHjh2hZuyU9PPmzQO8JFar9ayzzrr77rurq6vbqTJFRUWLFi2aMmVKWloaLoq+0U4X4mJjHAEmrRhvIK5e3PPPP7958+Z169bdeuutr7/++kUXXVRRUdEtcQFp/eY3v+kqpIUmsNvtaBoI2uVb3/rWo48++t3vfhf69pADBw68/PLLYMcrr7yyPcrnMkNBoDPTMml1Jvp8bSMIjB49+sILL5w6derixYt/9atflZSUvPbaa0Yydss0brc7du4rPj4eTQOZOXPmM888A95au3ZtQUFBe9TwkksuKS0tRfl33nlne5TPZXYVBJi0ukpLcT0FAhMmTMB/xcXFOJJ8/vnn11xzTUZGhs1mGzdu3P/+7/+S3veIlPAuDhgwAPYBjj/84Q+PHDlCyVpbWzF/z8zMPHr0KGnADaNGjRoxYoTL5YIGCf7yl7+cc845yJueng574tChQ9CTIPaRRx7p378/6nDuuee+8847pA90/L//+78LLrggNTXV4XAMGjTopz/9KVLCjXneeech8JOf/ATuLwhchTiFFy4pKWnnzp0zZsxITk6+7LLLoGxoaPjd7343fPjwxMTEXr16IQsGdOhJ3n//fXA8bge17dev37XXXovboagnn3zy7LPPRoEoCtnvu+8+0kflqGkd5RaUwgE7bodO4d9Dgg8++ODnP/95VlYWajtnzhzYmhTrewRB+ipZ0wMRYNLqgY1u6JZjMxHN4ocOHUrVw5A3efLkysrKv/71r//5z39AKt///vcxGlKs5nj48OFhw4YtX778vffe+8Mf/nDixAmQRFlZGZJh9HzppZdAIdddd11jYyM0CxcuxLVAgU6nE6c/+9nPsKAybdo0GHlgr927d0+aNEnhTvj0fvnLX06fPh2xGIIXLFiwf/9+5PIrcKahkuCqVatWvfXWW/fff39TUxNSgu3gCEXg17/+NdJAbrrpJpxCQFEg5ksvvRT3iGu1tLR8+9vf/v3vfz937lyUgADsD7BUbW0tEuM2r7rqKrjRnnvuuXfffRexuAWUgKhVq1bhvrAstHr1alT1jjvuIEpGVFQEiGHpEbdmvDTco8VieeWVV8D6oO0bbrjBeF5O2TMRYNLqme3ele66ubkZw3pNTQ3IBuYF3EQYwekGMATDHoJhAbK5/PLLMejPmjUL1gOGdUqgPsI8wog/e/ZslIAwhnvYHxguKQ1m+hjTt23bds8996CcF198ccWKFWPGjEHsp59++vTTT2P0/9Of/oSrwEQDSVRXVy9btgyxoExQ4He+8x34x+AlA2OB6k6ePIkov7Jp06bW1law7BVXXPGtb30Llsff//53pExJSYEjFIGzzjoLDjdI3759cQoBj4Lb4BoFb8HeQvlgI+SCEjw6f/781157bc+ePcTWuIW6uro//vGPIDbwE4gNKdPS0lDOJ598gsDjjz8OfoXFBib+85//DH0kgqaBlJeX445effVVoJednW28QCCG+uCmcBf33nsvZiE60BkvllN2YwSYtLpx43aTW8Pwjck43FkY4OCag7WB6TzuDSvz+/btu/766xHGuEkCLx9MKL+GDmgP9tDgwYORHQIXGeyMvXv3IjsJjLaHHnoIphisJUz5MYyS/s0334QpBg1dAsfc3Fw42WAZIAFMIpAEVQOnEBhhcBUi4Fdg3kEPlgX3HDt2DGEjAhefkgz1AfdcffXVqAkJTExUieqDMMys//f//h94V+3DRPbzzz8fFAvSBYZkYkLpV5qbxUSBCvc7A6BcABBNA4F/D6DBggSAFGXwqMw/kH7s2LE4HvH6bBH2EVYwAnFMWtwJYh0BGApbt26FOQXLAByDMZdqTN65u+++G4OmIrC9EOt3RIbN8cQTT8AfBYtty5YtKBOrQeRSQxYScA9G/Pr6+v/6r/8iDY64EGyjnJwc5SoIwPyiq8DIQBpwBo6KaE4VPQKw82AYgQ9+9KMfwZaCdfWPf/wDeh2B3xJ2mJIA9QH3oJ6ohiIwUKg+MNTWrVsHc+eWW25BGKKYUzfeeCN8hmCFa6+9FgmwrgaTUSlWHYAdppRMS27qWCWMNTPACHnjjTfgn8SNwB5VYo0EYOAqybA+h7CmRaBhYQTUCDBpqdHgcCwiMGLECKzww5MGBxQoB56xf/3rX6goZvc4wqeEQVMjsDYQpZaqqioYKHBewcmGERnmDlx/p06dUqdpbm4GacGY69evH8wsWgdCAlwIltbGjRs1VwH3IJaGXXAGwopoThU9BeC4W79+PaoE2wi8BTaFuUZRfo+4ulqP+uCimsrgFIttlOziiy8Gi6B8MOvEiROxGgfPJ0X95Cc/gX8SUfCOgonhTQWHUZT6+Le//Q0FktB+EHWsEo6Pj0fTQFAO2gWuWjhgCwsLKQFICPRPYToSwVOYj4xAeAjEHGmFdxucq4cggOV6kArWcuCzGjZs2JAhQ7788ksMmhqBL1EDCMZ9jNEYRhU9lqDAUsopAg888MDHH3/88ssv//Of/0SxirGFERl54crTXAW0h1zwXtpsNuRCmASs4JcJKFY5ojJYc8J6GDTbt2/HERocg5oaqA9Gf1ReUx8AguyKJCQkwJb6n//5H2i++OILHBVxOp1YUVu8eDGIeffu3YpeCaAopfABAwYoep0AKo9rwVOKdUdKhoxfffUVhXGErQwPLQIsjEAkCDBpRYIe5+1oBMBYMK3gJKQNFDAIYLJcfvnlcEx99NFHMH2WLl36ve99z7dacK/BL/fHP/4RXAXv2X//939j9QUrQ0pKOMqQF3rYYeAhhB9//PHVq1cjAda6sEQEGwWGGsy1Dz74AFeHH/LJJ59ELKoEFyVSwgqE4xHlY71Kxz0IxoXDDSS3YcMGrC3dcccdcMSBvVAUXHlwuCEKFtjnn39+/PhxKH3lBz/4ASgHq3cPPvgg7BsggOWrefPmoQ5IDHsUFYAG9XznnXdQKyinTZuG44IFC26//XZQMrDCihpMqNTUVBidiIqK4C5Qq+eff75AvqoFbyQqgPtFDVesWIFFL1wukgvBwoaA/FAI8EEYgjBLj0KASatHNXd3uNnbbrsN7juM1zA14DPcsmULuAceMIzLGBZBSAj4vU8wDdKDeObMmYMhDyyljKEnTpy44YYbsCqDEZby3nnnnVdffTXY5fDhw3FxcWBHrIdhrAdhXHXVVUjmcrnOP/98SozKgOTWrFlzzTXXYHQGbcBSoSjfI6wfOA9/+ctfzpgxA1wIlsIoDMcaUmLtCmtOsKIQBS556qmnoPQVmFCvv/76fffd9+qrr37nO9+ZPXs2VpJg7ZHlB9coFsxgNYLYQBulpaVIjAJRDtyGu3bt+sUvfjF9+nSQ5dChQ2FZYmEPUdESGI5ol9/+9rcoEKYq5IUXXgCS//73v0GTaCnowxZMRyCADiXAqkMYgjBLj0KASatHNXcXu1lYD/DLwU+lrjdGZzjfvv76a4zd0I8dOxamQ3FxMTxd4B5M6n/2s59BDwEJITuOCEP69OmDiTnWsaqrq2EBgCdASBhSEdW7d2+UgLxYpMEpBO5EjPUVFRXwceEUAksLS0RwcLnd7gMHDsCUGT9+PPQQJMZS2dGjR7GEA78i3HcwlSCI8hVw3ttvv11UVITEuCjWli666CIlGUgRdiTuBTWHJQQ9aoiLIqAWs9l811137dixA77E06dPIwuYcvDgwUgDMxFkhluDp66srAzVAGdAD/nRj34EggRl4tLwdgI34jlEhSF+KzZ69GiQFqgXBVqtVnAYYAFiqMbZZ5+NWiEXoiC+jYuWwl3jiFi/glhf8ZuSld0YASatbty4fGuMACPQfRHoqXfGpNVTW57vmxFgBBiBLogAk1YXbDSuMiPACDACPRWBqJEWXORYys7MzMRiMpaCt23bRpDCBw3XfF5eHhac4a1W76+FYx2L6llZWU6nEyvY8PJTFhyxloA1ZKyTQxCorKyEsucJ3zEjwAgwAoxAGwSiQ1rgmMmTJ1ssFqxv79mz59FHH1W2CT3yyCPLli174okntm7dmpubO336dKwbUxUWLVq0evXqVatWbdy4EUvNWL7GEi5FzZ07F4vM78o/BMBbpOcjI8AIMAKMQE9GIDqk9Yc//CE/P//5558///zzBwwYcNlll5111lmAFWbW8uXLFy9ePGfOnNGjR7/44otut/uVV15BVFVV1bPPPgt6mzZt2rhx41auXLlz585169Yhau/evWCrZ555ZqL8e/rpp998802/X5NDYhZGgBHoUAT4YoxApyIQHdJ6/fXXJ0yY8L3vfS87OxsMBJqhmyooKDh58iS9IwJNYmLilClTNm3ahDD8h42NjUoU/IdgNYravHkzvIIXXHABkkEuvPBCnFIUThWBd7Ha+wf/4aFDh0CEXgX/zwgwAowAI9AlEcBIjtWilpYWZbRXB6JDWiCMJ598csiQIe+9997NN998++23/13+2gIYCxfLycnBkQRhUuJotVrT09NJj6M6CuQHjSI4RXrllAJLly4FmZGgHNh28EnSKR8ZAUaAEWAEuigCGMnhugv0RRi/pEWkEMIRlHjuuec+/PDDMLN+9rOfLViwABym5DeZTEq4tbXVZDpzqugRUEeZTG3SqKOQkuTee+8FIZMcPXoUysLCQjoN+/jJniP5i/73vPv/E3YJnJERYAQYAUYgEgQwkmM89/2CKJSQ6JBW7969R44cieJIRowYQSySm5sLjdpIKikpgUUFJaIaGhoqKioQJlFHFRcXk5KOpaWllItO6QhnY4r3DxMKKL1n4f+flpoWn+hotTrCL4JzMgKMACPACESGAMZzk6mN6QINSXRIa/LkyeqNEl9//TX9CN7AgQNBTmvXrqWLgaU2bNgwadIknI4fP95isShRJ06c2LVrF0VNnDgRLL1lyxYkg3z22Wc4pSictqtYEgRMTc3+fantemkuPAgCHM0IMAKMQFyUfgTyjjvu+PTTT+EePHDgwCuvvPLUU0/dcsstgNdkMi1atAj61atXg5PmzZvncDjmzp2LKNhG8+fPv+uuDBNdbAAAEABJREFUu9avX799+/YbbrhhzJgx0+S3qGGozZw5Ez5GlAlBYNasWTpfIEVp0RJzgmDxpubWaBXI5TACjAAjwAhEEQExRkde3HnnnQda+sc//jF69Ojf/va3y5cvv/7666nYe+65B7y1cOHCCRMmHDt2bM2aNYqn8rHHHps9e/Z1110HQw1k9sYbb9AnUJHx5ZdfBofNkH9jx4596aWXoOwAMcebcJWmFiYtwMDCCDACQRDg6I5HIDqkhXrDGNq5c2ddXd3evXthG0FDAmNryZIl8P4hCr5BsBrpcbTZbCtWrCgvL3e73WCs/Px8KEkyMjJWrlxJuzURSEtLI317H83kHgyw1bK9r87lMwKMACPACOgjEDXS0r9MV4k1xwtAGptb8ddV6sz1ZAQYAUag5yAgxuiec7dB79QiLS0ka1Y8hDhhYQQYAUaAEYgNBJi02rSDWW7EgIqXtQACCyPACDACsYYAk1abFqGNGFAxaQEElphFgCvGCPRYBJi02jT9GdLiV7XaAMMnjAAjwAjEBAJMWm2aIUFueYeqkV/VAgosjAAjwAgYRaCD0jFptQHaZDJZEuhVLf4oRhtk+IQRYAQYgVhAgElL2wq0650/iqHFhc8ZAUaAEYgBBJi0tI3gfb+YP4qhRSYuLo5VjAAjwAh0LgJMWlr8aS9GE2/E0ALD54wAI8AIdD4CTFraNjAnCEx4I4YWFz5nBGIUAa5Wz0JADNA9646D3a1FbiBs4s8PBgOK4xkBRoAR6HgEmLS0mLOlpUWEzxkBRoARiBkEugZpdSRctBGDvz3YkZjztRgBRoARMIgAk5YWKN6IoUWEzxkBRoARiBkEmLS0TWGmXyfhr7xrgeFzDQJ8yggwAp2AAJOWFnQLfRGDt7xrgeFzRoARYAQ6HwEmLW0bmHnLuxYSPmcEGIEugkAPqCaTlraRaU2LN2JoceFzRoARYARiAAEmLW0j0O5Bfk9LiwufMwKMACMQAwgwaWkbwbMRI3Z/mkRbYT5nBBgBRqDnIMCkpW1rC2/E0ELC54wAI8AIxAoCTFralvBYWrzlXQsMnzMCgRHgGEagoxBg0tIiTWtazbzlXQsMnzMCjAAj0PkIMGlp24B2DzaxpaUFhs8ZAUaAEeh8BIyTVufXtWNqYOb3tDoGaL4KI8AIMAKhI8CkpcXMwhsxtJDwOSPACDACsYIAk5a2JXgjhhaRWD7nujECjEAPQ4BJS9vgno0Y/COQWmD4nBFgBBiBzkeASUvbBp6NGPxysRYYPmcEGAFDCHCidkWASUsLr5k3Ymgh4XNGgBFgBGIFASYtbUtY4k1QNbF7ECiwMAKMACMQYwhEh7SWLFliUv3l5ubSbba2tiIqLy/PbrdPnTp19+7dpMexvr7+tttuy8rKcjqd11xzTVFREZQkFRUVN954Y6r8Q6CyspL0HXM0ZGl1TFX4KowAI8AIMAJtEYgOaaHMUaNGnfD+7dy5ExrII488smzZsieeeGLr1q1gsunTp58+fRp6yKJFi1avXr1q1aqNGzfW1NTMmjWrubkZesjcuXN37NjxrvxDALwFZYcJb8ToMKj5QowAI8AIhIpA1EjLbDaDlkh69eqFesDMWr58+eLFi+fMmTN69OgXX3zR7Xa/8soriKqqqnr22WcfffTRadOmjRs3buXKleC5devWIWrv3r1gq2eeeWai/Hv66afffPPN/fv3I6pjhDdidAzOfJWoI8AFMgI9AYGokdY333wDN+DAgQN/8IMfHDp0CNgVFBScPHlyxowZCEMSExOnTJmyadMmhLdt29bY2KhEISNYjaI2b94Mv+AFF1yAZJALL7wQpxSFU7XAwVit+lNHRRI2xwtMGvkzTpGAyHkZAUaAEWgfBMQAHXnJ4Ji///3v77333tNPPw2imjRpUnl5OQIoOScnB0cShEmJo9VqTU9PJz2O6qjs7GxoFMEp0iunSmDp0qXgM5L8/HxFH2HAwl/EiBBBzs4IMAKMgAeB6P8XHdK64oorrr322jFjxsDd99Zbb6GacAbiCDGZxGY8BCCtra0m05lTaBRRR5lMbdKoo5T0CNx7771wM5IUFhZCExUx85b3qODIhTACjAAj0A4IRIe01BVzOp1gL3gLsb4FvdpIKikpgUUFJaIaGhoqKioQJlFHFRcXk5KOpaWllItOlSP8jSmqP0UfYcCzpsVb3iPEkbMzAowAI9AOCESftLDUtHfv3t69e2N9C+S0du1aqjZYasOGDfAc4nT8+PEWi0WJOnHixK5duyhq4sSJMJ62bNmCZJDPPvsMpxSF0w4Q7+7B1g64Vve4BN8FI8AIMAIdhkB0SOvuu+8GIRUUFIBjvvvd71ZXV//4xz82mUyLFi16+OGHV69eDU6aN2+ew+GYO3cu7g0LUfPnz7/rrrvWr1+/ffv2G264AcYZXIuIGjFixMyZMxcsWPCp/ENg1qxZw4YNQ1THiGcjBv8IZMfAzVdhBBgBRiAUBKJDWkVFRT/84Q9BLXPmzLFaraCb/v37oxr33HMPeGvhwoUTJkw4duzYmjVrkpOToYc89thjs2fPvu666yZPngwye+ONNxISEqCHvPzyy+CwGfJv7NixL730EpQdJhbPRgy2tDoMcr4QIxB1BLjAbotAdEhr1apVx48fhwMQzPTvf/975MiRBBiMrSVLlsD7V1dXB1Ns9OjRpMfRZrOtWLGivLzc7XaDsdTb/zIyMlauXAlzDYJAWloa0neYeCwt3vLeYYjzhRgBRoARMIxAdEjL8OW6QEJa02pi92AXaCuuIiPACPQ4BLowabVTW5Gl1cyWVjvhy8UyAowAIxABAkxaWvDI0mpkS0sLDJ8zAowAI9D5CDBpadvAsxGDLS0tMHxuBAFOwwgwAu2LAJOWFl9yDzY18+5BLTJ8zggwAoxApyPApKVtAnYPahHhc0aAEejSCHSvyjNpaduTLC3eiKHFhc8ZAUaAEYgBBJi0tI3AlpYWET5nBBgBRiBmEGDS0jaFRf6eVlMX24ihvQs+ZwQYAUagWyLApKVtVrK0eCOGFhc+ZwQYAUYgBhBg0tI2ApFWI/80iRYYPmcEQkSAkzMC7YAAk5YWVNqI0doa18IeQi02fM4IMAKMQCcjwKSlbQCytKBlYwsgsDACjAAjEFMIREhaMXUv0akMbcRAWbysBRBYGAFGgBGIKQSYtLTNoVhaTFpaaPicEWAEGIHORoBJS9sC5ngTqdg9SDh0vSPXmBFgBLovAkxa2rY1mUwJkrf4oxhaaPicEWAEGIHORoBJy08LkLHFv07iBxpWMQKMQFgIcKZoIcCk5QdJS4KAhde0/EDDKkaAEWAEOhUBMTp3agVi8eLmBLGs1cTvF8di43CdGAFGoEcjwKTlp/np/eLGUH9Sy09JrGIEGAFGgBGIJgJMWn7QpDUt3ojhBxpWMQKMACPQqQgwafmBn9yDjc0tfuJYxQh0KQS4soxAN0OASctPg1poIwZ/e9APNqxiBBgBRqAzEWDS8oM+uQfZ0vIDDasYAUaAEYgUgYjyM2n5gc9MlhZvxPCDDasYAUaAEehMBJi0/KBPlhZvxPADDasYAUaAEehUBJi0/MBvlu9psXvQDzSGVZyQEWAEGIH2QIBJyw+qlngBSxNvxPCDDasYAUaAEehMBMTo3JnXj8lrs6UVk83ClWIEIkSAs3cHBJi0/LQib8TwAwqrGAFGgBGIAQSYtPw0gpl/msQPKqxiBBgBRqDzEehupBUVRIm0GvmDuVFBkwthBBgBRiB6CESZtJYuXWoymRYtWkQ1bG1tXbJkSV5ent1unzp16u7du0mPY319/W233ZaVleV0Oq+55pqioiIoSSoqKm688cZU+YdAZWUl6TvsaOH3tDoMa74QI8AIMAKhIBBN0tq6detTTz01duxYpQKPPPLIsmXLnnjiCUTl5uZOnz799OnTFAtiW7169apVqzZu3FhTUzNr1qzm5maKmjt37o4dO96VfwiAt0jfYUczb3nvMKx7xIX4JhkBRiBqCESNtEA8119//dNPP52enk61g5m1fPnyxYsXz5kzZ/To0S+++KLb7X7llVcQW1VV9eyzzz766KPTpk0bN27cypUrd+7cuW7dOkTt3bsXbPXMM89MlH8o8M0339y/fz+iOkzop0l4y3uHAc4XYgQYAUbAIAJRI61bbrnlqquuAgkpFy4oKDh58uSMGTNIk5iYOGXKlE2bNuF027ZtjY2NShT8h2A1itq8eTP8ghdccAGSQS688EKcUhRO1QIHY7XqTx0VYZjWtPiLGBHCyNkZAUYgdhHosjWLDmnBy/fFF19gQUuNAxgLpzk5OTiSIExKHK1Wq2KTIVYdlZ2dDY0iOEV65VQJ4HLgM5L8/HxFH3mA3YORY8glMAKMACPQHghEgbQKCwt/8YtfwMVns9l8q2gymRQlHIYm05lTRY+AOspkapNGHYWUitx7771wM5KgDoo+8oCFN2JEDiKXwAgwAoxAOyAQBdKCr6+kpGT8+PFm+bdhw4bHH38cQRhPqLDaSEIyUubm5jY0NFRUVCABiTqquLiYlHQsLS2lXHSqHOFvTFH9KfrIA+Qe7Ppb3iNHgktgBBgBRiC2EIgCaV122WU7d+7c4f2bMGHC9ddfj7NBgwaBnNauXUt3DJYCn02aNAmn48ePt1gsStSJEyd27dpFURMnToTxtGXLFiSDfPbZZzilKJx2jPAXMToGZ74KI8AIMAKhIhAF0kpOTh6t+nM6nZmZmVCY5AtbDz/88OrVq8FJ8+bNczgcc+fORRWxEDV//vy77rpr/fr127dvv+GGG8aMGUObOEaMGDFz5swFCxZ8Kv8QmDVr1rBhw5Crw4Qsrabmlg67Il+IEegpCPB9MgKRIRAF0tKpwD333LNo0aKFCxfC/Dp27NiaNWvAcJT+sccemz179nXXXTd58mSQ2RtvvJGQkEBRL7/8MjhshvwbO3bsSy+9RPoOO5rle1q85b3DAOcLMQKMACNgEIHok9aHH364fPlyujyMrSVLlsD7V1dXB98gzC/S42iz2VasWFFeXu52u8FY6u1/GRkZK1eupN3sCKSlpSF9R4qFN2J0JNx8LUaAEWAEDCMQfdKKizN88VhNSO5B3ogRq+3D9WIEGIGeiwCTlp+2N7Ol5QcVVjECjAAj0PkIMGn5aQOytJr4K+9+sOmyKq44I8AIdAsEmLT8NKOZNmI0t/qJYxUjwAgwAoxA5yHApOUHe0u8gKWphUnLDzisYgQYgWghwOWEgYAYncPI1r2zkKXVyO9pde9m5rtjBBiBLogAk5afRuONGH5AYRUjwAgwAjGAAJOWn0Ywx4sv9jZFZSOGn+JZxQgwAowAIxAmAkxafoDzkhavafkBh1WMACPACHQiAkxafsC38HtaflBhVfdBgO+EEei6CDBp+Wk7s9zyzhsx/EDDKkaAEWAEOhUBJi0/8Jt5y7sfVFjFCDACjED7IWC0ZJ9KRD0AABAASURBVCYtP0iRpcU/TeIHGlYxAowAI9CpCDBp+YGfN2L4AYVVjAAjwAjEAAJMWn4awcIbMfygEgUVF8EIMAKMQIQIMGn5AdAsN2Lwe1p+oGEVI8AIMAKdigCTlh/4aSNGI38w1w82rGIEuhkCfDtdDAEmLT8NZiFLi7896AcbVjECjAAj0JkIMGn5QT/B8xkn/iKGH3BYxQgwAoxAJyLQI0grVHytCQKWRra0QgWO0zMCjAAj0M4IiNG5nS/R9YpPtCSg0i2tcQ1NLQiwMAKMACPACMQIAkxafhrCLkkLEbUNzTiyMALtgAAXyQgwAuEgwKTlBzWrOZ7eL65tZNLygw+rGAFGgBHoLASYtPwjb7cKD6G7ocl/NGsZAUaAEeh+CHSFO2LS8t9K5CF0s3vQPzysZQQYAUagcxBg0vKPu0NaWnXsHvQPD2sZAUaAEegcBJi0/ONut5oR0R0tLdwWCyPACDACXRUBJi3/LWe3CGSYtPyjw1pGgBFgBDoJATE0d9KlY/qyDmlpsXswphuJK9dtEOAbYQQMI8Ck5R8qu1zTYkvLPzqsZQQYAUagkxBg0vIPvF2+X+zmLe/+4WEtI8AIMAKdg0CHkVbn3F7YV3VIS4vdg2EDyBkZAUaAEWgPBKJDWk8++eTYsWNT5N/EiRPfeecdqmtra+uSJUvy8vLsdvvUqVN3795Nehzr6+tvu+22rKwsp9N5zTXXFBUVQUlSUVFx4403pso/BCorK0nfkUd2D3Yk2nwtRoARYAQMIhAd0urbt+/vf//7z+XfpZde+u1vf5v46ZFHHlm2bNkTTzyxdevW3Nzc6dOnnz59mmq2aNGi1atXr1q1auPGjTU1NbNmzWpu9nwzae7cuTt27HhX/iEA3qIsHXn0ugc9VerIS/O1Og4BvhIjwAh0NQSiQ1pXX331lVdeOVT+PfTQQ0lJSZ9++inMrOXLly9evHjOnDmjR49+8cUX3W73K6+8AoiqqqqeffbZRx99dNq0aePGjVu5cuXOnTvXrVuHqL1794KtnnnmGVhskKeffvrNN9/cv38/ojpSupx7sKymfu+J6o6EiK/FCDACjEDHIxAd0lLqDWsJxpPL5QLfFBQUnDx5csaMGRSbmJg4ZcqUTZs24XTbtm2NjY1KFPyHYDWK2rx5M/yCF1xwAZJBLrzwQpxSFE7VAgdjtepPHRV52C63vLu7zmec5r+w9arHPz5eWRv5vXMJjAAj0IkI8KX1EYgaacFUgoEFZrr55pvh9xs5ciQYC9fOycnBkQRhUuJotVrT09NJj6M6Kjs7GxpFcIr0yqkSWLp0KfiMJD8/X9FHJdDl3IOHSl0trXFHT7mjcvtcCCPACDACsYlA1Ehr2LBhWH+CV/DnP//5j3/84z179tANm0wmCuDY2tpqMp05hUYRdZTJ1CaNOkpJj8C9994LNyNJYWEhNFEUR5faPdjc0nq6XnyQvrq2MYogcFGMACPACMQaAlEjLVhOgwcPnjBhAgygs88++89//nNubi7uVm0klZSUwKKCElENDQ0VFRUIk6ijiouLSUnH0tJSykWnyhFWndyu6Dko+qgEvLsHBRNEpcA2hUT7ROGq6rquUeFoA8DlMQKMQE9BIGqkpQYMthEWnAYOHAhyWrt2LUWBpTZs2DBp0iScjh8/3mKxKFEnTpzYtWsXRWExDMbTli1bkAzy2Wef4ZSicNph0rXcg9V1HgNLYa8OA4ovxAgwAoxARyIQHdK67777Pv7448OHD2Nla/HixR9++OH1119vMpkWLVr08MMPY4kLnDRv3jyHwzF37lzcHhai5s+ff9ddd61fv3779u033HDDmDFjpk2bhqgRI0bMnDlzwYIF8DRCEJg1axZ8j4jqSOla7sEqr1dQCXQkVnyt7oEA3wUj0CUQiA5pwaF34403glouu+wy2Ebvvvvu9OnTcf/33HMPeGvhwoVwGx47dmzNmjXJycnQQx577LHZs2dfd911kydPBpm98cYbCQkJ0ENefvllcNgM+Td27NiXXnoJyg4Wr3uwa7ynpXCVYnJ1MFx8OUaAEWAEOgaB6JDWs88+CzMLLkEsTa1bt44YCzcAY2vJkiXw/tXV1cE3OHr0aChJbDbbihUrysvL3W43GEu9/S8jI2PlypW0mx2BtLQ0ytKRR3IP1naRLe/VtZ6lLCXQkVjxtRgBRoARaB8E/JQaHdLyU3AXVznke1q1jWxpdfGG5OozAoxA90KASct/e5Kl1dTS2tDU4j9FLGmrvGtavBEjlpqF68IIMALRR4BJyz+mdvmeFuK6hIfwDGl1wS3vAJmFEWAEGAGDCDBp+QfKao43x4t3nLuEh1DZf8GWlv/mZC0jwAh0FwSYtAK2JHkI3V3hdyBVlpbnha2Ad8URjAAjEBwBThG7CDBpBWwb8hC6u8IGQsXAqqlvamlpDXhLHMEIMAKMQBdHgEkrYAN2ofeLFdJqbY2jjxAGvCuOYAQYAUagKyPQc0kraKvZLOJl5y5haSnuQdyUQmAIszACjAAj0M0QYNIK2KBkaXU50lITWMB74whGgBFgBLomAkxaAdvNId8vrov594tbW1vp4+7JNjNuRtlJiDBLV0OA68sIMAJBEGDSCghQV3EPuhqam+Xmi/x0B26m2vtJJ4RZGAFGgBHoZggwaQVsUK970PNZv4DpOjuiSn4Ow5oQn52SiLqwpQUQWBgBRiBqCMRYQUxaARuESCv23YNVbvFuVordkmq34GZ4IwZAYGEEGIHuigCTVsCWtXWR3YNkWqXYzSk2SVr8JaeATcoRjAAj0OURYNIK2IRkacX+7kFyD8LMAm/hZsKytJCPhRFgBBiBLoAAk1bARiLS6gLuQbmmJUjLY2kJb2HAu+IIRoARYAS6MgJMWgFbr8u4ByVpwTeYYpfuQd49GLBJOaJLIcCVZQT8IcCk5Q8VqaP3tGLfPUj+wDOWluQweQd8YAQYAUaguyHApBWwRbuee9DOLxcHbE2OYAQYge6BQOeSVkxjaPPsHuwa72nB0oIAUDK8EGBhBBgBRqD7IcCkFbBNydKKffcg7R5M4S3vAVuSIxgBRqD7IMCkFbAtibRif/cgfXgQZlaKXWzEqKlvampuCXhXHBEUAU7ACDACMYwAk1bAxrF53IPNAVPERoTX0rLQB3NRKfAWjiyMACPACHQ/BJi0ArYpWVq1Mf/LxR7SslksCfFU52re9R6wVTmCEeiSCHClFQSYtBQotAHa8l4b8z9NQjsv4B7EDaTw+8VAgYURYAS6LwJMWgHb1i7dg00trQ1NsbtEhCW3elm9VIdY0EqhXe/8qlbAVuUIRoAR6NoIMGkFbD+7VfzcPqI7yEOIK4UuZGbFm+KSrOIlLba0QoeQczACjEBXQoBJK2BrWc3xZrBBXFwsewirpFGVbLPEy6qm2IW9RcqAN8YRjAAjwAh0WQSYtPSajjyE7obYfb+YfpeEFrRwJyk2YW9V80YMYMESDQS4DEYg1hBg0tJrEfIQumN4A2GVtLQU0qIAMZnejXEcI8AIMAJdEwEmLb12ox3kdTG8gZBIK0Xuv8CdpEj3IC104ZSFEWAEGIFuhkB8XDe7oajejk1uIIxlS6taegLJwMKtp9jEmhZ9IwOnLIwAI8AIdDME2NLSa1CytGKZtKraugdTpMnFlpZeo3IcI8AIdGUEokNaS5cuPe+885KTk7Ozs2fPnr1//34Fk9bW1iVLluTl5dnt9qlTp+7evVuJqq+vv+2227KyspxO5zXXXFNUVKREVVRU3HjjjanyD4HKykolqiMDDrmPvCu4B4WBBWS8llaX//Fi3AsLI8AIMAK+CESHtDZs2HDLLbd8+umna9eubWpqmjFjhsvloos98sgjy5Yte+KJJ7Zu3Zqbmzt9+vTTp09T1KJFi1avXr1q1aqNGzfW1NTMmjWrudnzob+5c+fu2LHjXfmHAHiLsnTwMfbdg2RpEVcBnBS7YK9q6TPEKQsjwAgwAt0MgeiQFshl3rx5o0aNOvvss59//vmjR49u27YNSMHMWr58+eLFi+fMmTN69OgXX3zR7Xa/8soriKqqqnr22WcfffTRadOmjRs3buXKlTt37ly3bh2i9u7diwKfeeaZifLv6aeffvPNN9XWG9J0jHjdgzG85V3jHvSsabGl1TEdhK/SoxDgm40JBKJDWupbARvhNCMjA8eCgoKTJ0/C8EIYkpiYOGXKlE2bNiEMVmtsbFSi4D8Eq1HU5s2b4Re84IILkAxy4YUX4pSicKoIvIvVqj9FH8UAkVZdzO8eTJUGFm48hde0gAILI8AIdF8EokxaMK3uvPPOiy66CAwE0MBYOObk5OBIgjApcbRarenp6aTHUR2FtTFoFMEp0iunFMBCGsiMJD8/n5TRPdpifvdglbS0UuzCK4h7Jz+hq6G5kX9SC3CwMAKMQLdDIMqkdeutt3711Vf/+Mc/1ECZTCblFKxmMp05VfQIqKNMpjZp1FFISXLvvffCqiMpLCwkZYRHTXaytGJ59+DpOuG6VCytZPlFDNwF6RFgYQQYAUagOyEQTdK67bbbXn/99Q8++KBv376EUW5uLgJqI6mkpAQWFZSIamhoqKioQJhEHVVcXExKOpaWllIuOqUjnI0pqj9SRvdIpNWF3IPmhPikRPqSEy9rRbcvcGmMACMQEwhEh7RgCcHGevXVV99///2BAwcqd4YwyGnt2rWkAUtt2LBh0qRJOB0/frzFYlGiTpw4sWvXLoqaOHEi7KctW7YgGeSzzz7DKUXhtCPFZhEfeo9ZS6upuYV+pFixtABOijS2+EtOgKK7CN8HI8AInEEgOqR1yy23rFy58pVXXklOToZdBamtrcVFTCbTokWLHn744dWrV4OT5s2b53A45s6diyisRc2fP/+uu+5av3799u3bb7jhhjFjxkybNg1RI0aMmDlz5oIFCz6VfwjMmjVr2LBhiOpgofe0Ypa0qqVvEJgoXkGEaX2rmne9AwsWRoAR6HYIRIe0nnzySRhDU6dO7e39++c//0lY3XPPPeCthQsXTpgw4dixY2vWrAGxUdRjjz02e/bs6667bvLkySCzN954IyFBWDaIffnll8FhM+Tf2LFjX3rpJSg7XmLcPUhfvnBaEywJZ9oxhXe9d3xH4SsyAj0Ngc673zODXSR1gHtQIzCqqEAYW0uWLIH3r66uDr5B2lVIUTabbcWKFeXl5W63G4yl3gGYkZEB0402tCOQlpZGWTr46HUPis0OHXxpI5erklsHU+2erYOUJYV3vRMQfGQEGIHuiEB0SKs7IiPuiSytmHUPEmmlaEiLLS3RdPyPEegOCOw6VvXR16Xd4U6idw9MWnpYEmnF7O5B/6QlOaw6CmtaeshwHCPACHQAAje9+Pm857ecrKrrgGt1lUswaem1lC22dw/SFkGte5B3D+o1Kce1FwJfFVU+/0lBS0tre12g55ULME9W1wHRg6U1Pe/uA94tHpF7AAAQAElEQVQxk1ZAaBBBllZtrP5ycZX/NS2xxEVRuAUWRqBjEPjv/+z+zRt7vjh65s3LdrluTyq01vsBuaOn3D3pvoPcK5OWHkC05V3pOnpJOyOOmClFLmIp16dT2lioKDnACLQ3AmWn63GJclcDjixRQcBV79kCxqSlxpNJS42GNmyX7sGmltaGphZtXAycV8uFK6170C4sLeUVrhioJlehRyDgahAjbMy6JbpiG7i8Ph4mLXXzxSBpqavXyWG71fPeWGw+imROpco97gpSKfKUohRltwlUuRv/vO6bo+XsLYmtJm1tbSWzIGa32sYWXsZqQ5AibSG7B4GCV5i0vEj4+99qjjfHi0/3xqaHsEquaaVI00qpvsc9WNc9vz346vaix9Z9/ZcPDyj3y4FYQKC+qaWxWWzBcEt7Kxaq1A3qoJAWW1rq1mTSUqPhJ0wewth8FIm0UtuSFp1WS8+hn/vp4qpTcsmkuLquo++Dr6eLgDK8xqZPQrfusRvp8s4AKt2NVXKGGrt17cCaMWkFAZs8hG6vczlI6o6NDrDlXaxpwTSMzXW4CBGiDwRX8gMcIY7Rzu6qb6Yi3d4Nb3TKx0gQUFBFIewhBAgkTFqEQ8Aj7XqPzfeLafJFppVyA0nyPS2cnu6OHkKX3E+FiSdukCV2EKDJBOrDlhZAiJZQb6fS/HoIKaqnHZm0grS4TW4gjEFLq6WllXZbaNa0EuJNyYnyJ7W834APcoddKtolZ/SVbt5XHVvNpjiy3F6PVmzVr2vWxqVy8DBpKW3IpKVA4T9AlpZb1Xv8p+twrQvuP7HyHaextFARojGiNJx2J6EZPUxMcHZ3uq+ufi/ULriLGHxSUKsuKi7pV6DKM2kRDjgyaQEEPXFYhdXSae7BwFXDwI1IqzmebEGEFaGf16IEirJ7BOgxbmmNO90d7ciu20Y13uZg92AUG5F6O81KeU1LAZZJS4HCf4AoIQbnj8RJtMFdU3WPpdUd17SUGX0Fewg1rd6ppzS8ogox+KSgVl1U4E1BzUf0TsaRLS2AQMKkRTgEPHrdg+Jt/4CJOiOCSCtVvkqsuX6qXWwgrO6Ou97pMcb98gZCgNBZ4ntdZTLBuwd9wQlb45IruMNzU1DCsYrapuZY/C4P6tbBwqQVBHAirRh0DxInET9p7oHML9oQr4nq6qf0GOMueC8GQIgdUdqlljdiRK9VXHJN66xeTmtCfFNL6wn+gRKJLZOWhCHwwRaruwdpnwV5AjXVT5HmFyXQRHX1U2VGX+nunp/86KINpFjA7B6MYgsSqsk2S990O4rlZS2AAAlAWohhkQiQpRWDjyIZUmRUyZqeOZCSEpzRdv1QY3NLg/fLxZW8phVLDapMJmpjb59tLOEUWl1c0j3oTDTnZziQk5e1AAKESQsg6Al9xikG3YM0OjgTPZ/0Vd9Dir17rmm5pLeE7rSCLS0CIjaOyu7BGJzexQZC4dSCOjycg/2YtFT4MWmpwPAXtMsPvcfgo0gr3jbpvdRUPEV+FKNrWVr1Tc1B15mV6Tzut4q/5AQUYkZoeEV1amEOt8j3B3HCEhkCNOzA0uqfyZbWGSiZtM5g4TfkkO9pUe/xm6CzlGRpkfdSU4deyYnQdCEPOO7lkkc+uO5vm1FtHXFJbwklqGD3IAERG0f1fAK8FRuV6vK1IFThTSH3YBd6otsVeiatIPDarQKimHUPkvdScw8j88Qe2UNlLncX2cr1Tcnp4ur67YWVra16k/QalXuwkt2Dmlbv1FPaMkBVcPesZS266XY5uuXzC0uL3YNqfMWIrD7nsAYBu0V8EYN6jyaqc09pPmuXhqCmJtnJNhhbGP/3njitiYrN06KKWlQMFaabQtivuNqQFn9+0C9InaN0qYxg2M2dU4nudVU4zBvlT5Q5rJ6NGBXuxsh9/vtOVv/6tZ0lXfnHfZi0gvR0R5TWtD45UHbrK1+guzy+/ptVW46+v684wq+wu+V81q+lhVsaJY2tPcerEA5PPtxfMnHpehzDyx5SrqIKzy8Rq20p3xJckrQS5M9y8svFvvh0okbdcO7GmHsTvxORCfvSbu88wGlNSEo0ZzqtKKow4p8wfuqjQys/Pbp6+zGU1kWFSStIw9mtCUgRuXtw6Tt73/zqBLrLsrVf/+rVnT994fOfvrAVJYctVCW79F76FkKktft4tW+UQc17u4tPVNU99NZefZedwdL0kxVJSwtpXN4HFWFfcUme7p1qQ1SFiy0twBArQrsHTSZRH5pOiRD/iwABmgckmuPNCWKUjtayVrG0scpq6iOoWidnFXB0chVi+/JkykT4HDa3tH5TXIMbnTdpwA/Oy794SBbCXxVVRcIH5Ekj7yVK08iovFRoIiGtSrnT4ZuSmg+/LkVR7Soq0tKbpLukpUUvWlbXNQHVdq0VF24QATQE9cZMZyKyxJR7EJXZdSyiBw131ClCYw5sLLp6tJa1SqoFXZ1ydeF385m0qEsEPDqkexBdP2AKAxHHKmrrm1qsCfG/vmrE768d++yPz4OLC5qymvDNBerTdlk93yqMku7B/SdPN4b7vbJTXlPmqQ2HfMuPrqbI6x4kWgpUOM0989LE1wGQpj12vQOubUcqwIcoP7YlhmrnkvsFUCGspOJIPROBWJAHXt81a8XGjQfKYqEyIdWBersz0Uy5okVapdLGoikpldzljkxaQZqMWIEmkkGSBo4+UCo2RAzq5SRL32qOz00RPq4i72AdOGvAGHIPEqf6JspPdyQnmhuaWw6UCAvPN0FQTaV3e97mQ+U7i8JfGwt6IZibRYp70Dv8+c1FlJZqt+DWkKBS2oIIRFHg8b/2yU0vfXokimV2+6KoXczxpjS7BTfr1m1EJFDLxm/Kvv0/n+yOYPFVXZpvGPM2KPeeCN9PjuydIgSj8oB7SUtsWQq7PvVNzZXyuT7VDs9O2LUKNSOTVhDEHHL3YFNLq/IBoSAZ/EUTc5yVnaRE9k0Xbwsqg7WiNx6gPm23+PkiBgqJjzeNkMZW2B7CCtmth+WIn0V4+uN2NLYq3I1uuViFarv017Ske9BpNac5xeCIjMgSXSkoc6HATw6U48hiEAEXtUuimUbYkNwS/9pW+GVh5Ts7Txq8VqjJyJlxskr4xELN27npCVXFPRiVNa1yr2uHqCv6N9ghJTJpBYGZLC0kCulRRHq10ILW4F5q0hI+rkhIi+qjVE99OQqThzC8OSysnwpJWndfPgylvbXzRJExoxBP2n2rd24KxRujLhnZcblAUiMpDQ6TNLvYSVVVG75zNdAlaEvnzmOVgRKw3hcBahcMr9QblSmIb0pfTclpQSfU2XxjI9SgG5dJbxjtPoiwtFCzwxdCs9VQM1J6l+ztjkSve1B+FAMPC1YQKUEYx1KJNjIqzn+Eu5wwaQVpMkuCKSHehESReAgPlAof3ZAcX9LybPVG+aEK1SeQpYXSRkWwF8PV0Nwo3xGZPDjzosFZeE6e/+Qwygwq7+8reeWzoyvePxA0pZKgyOsbhKZGztkR8CsuGZuUmJDmkJZWOywmn5a/wFtcXV8sN1n5rQYrNQjQ1kGQlsfSamzWJNA5JZzbaeKP7oSVY1z9ZGe0JmZv05Zt2Hr4FCoQhriklxW9nfJiQQFjEZ7KSO5FIa3qusauu3AbHdL66KOPrr766ry8PJPJ9NprrxHKOGKms2TJEujtdvvUqVN3794NJUl9ff1tt92WlZXldDqvueaaoqIi0uNYUVFx4403pso/BCorK6HsLMEdOSzCBeeWfSiMagAEmnANVrkH+8jfGlCP1yGV3Njc0ihJhYYJv3lHSffg3uPVLaF/C442lFvN8SDFBZcMQvmrthytEp/7Q1BPaAYX0sRZ/eqJ2+sn9HsNeoyFpeWwIkF7vKpFpIXC4bPCkcUIAuAGJHMmJjiswixwh/KktKulVe71hp3s8F+iqmtsJp/njqNhDl8usrQkpIAXU2daUzhaHv5Ml3ZhoLTW1jgjjzNSxqBEh7RcLtfZZ5/9xBNPaO7wkUceWbZsGfRbt27Nzc2dPn366dNiSwKSLVq0aPXq1atWrdq4cWNNTc2sWbOamz0TtLlz5+7YseNd+YcAeAvpO1HscoeeW3c81akeZjcYCmGtDcxyKsmo/xUZ87kpuZQAmVk4tUlCRcBXwJFgndP1TYWhX4VYJ8NhBWdfMiRreG6yq6EZJpTvVTQa+hEvOmqiAp0WqSwtl7SlAqX0Do7mdGlpVUoHZqDE4enJPYi8X7Xn3hOU352EWg2TiVCfFIzseDQARYXcHYBAdKVM+gZRZsnpujCmbsgYtsDAoof0eFWYWycIVdivSh0iX9bCWKSU1k6YK+W3XyA6pHXFFVf87ne/mzNnjrqisDCWL1++ePFi6EePHv3iiy+63e5XXnkFaaqqqp599tlHH3102rRp48aNW7ly5c6dO9etW4eovXv3gq2eeeaZifLv6aeffvPNN/fv34+ozhJ6FPGAhVeBb+T+vf6ZeKiFxUaF9PVaWkCJNCEd6ySDmkxxieb4QBktCfG0jSKMvRjUockLZzKZFlwsjK3nPyloag7yg980fauWTrZAFdPoiySn5qSIV3xcupN05TGmXWqV7TDSES+ihl8da5cNk7BE1+0phrsVl+g2Qq2WlGgmnwStthq5O3pnCCkrI5x/oAh/QrswEAO3RND9cscra6NokH2wz/N2Y9hlUldUu1L6ZYiF8Eh+VQvkDTRIKtoHcyq8XY8Bh7zIr1pQUHDy5MkZM2ZQUYmJiVOmTNm0aRNOt23b1tjYqETBfwhWo6jNmzfDL3jBBRcgGeTCCy/EKUXhVC1wMFar/tRR0Q3DRYYCw7a0yDd4lmoXBkrrnWo3meLgcFeeKyiNC03iMEaYTGK9LVBG8hCGsReDBpF0h/DCofCrz86zWeJLTtcXqqwi6H2FSAvPW1B6U/IWyTKH5YqP/LqkS0SJ0gQo1ploTpMVa4+nTqHbr4qCfL1XUzeDpw+9tfemv3/+3u6TBtN3iWRobtQTpEXTO+NPSvHpOmSEtEdToljF0kJYnzzqm5qvfPzjqx7/2Hi/RZk68uHXJRR7PFzPpFtO4NDbqRwcadf7xgNlDd6fQoUyJGljaXlfxAyphFhI3I6kBcbCHebk5OBIgjApcbRarenp6aTHUR2VnZ0NjSI4RXrlVAksXboUfEaSn5+v6KMeoMmOWxo3YRROpAVnnTovHHdYWYWmSNoZCIQkVBkaI3Qyekkr5JdUaE0rw+khLdQ2P5326AfxpxNpoUo0kCGgL62trUVEWnKXin4uisXSdJp0DyrX0r+E8ViMXDQcYCZQ6W4sPBWmY0fnigfllhzaWK+TrGtFuaRTF8Orw0prWh4/f9C7UCytusaWulC2bwQtmRKUe9e0cEo7PhDwKxjN0eLlrgaX7rTJb15fJZadDpWKdycQdaIyzF5ENXHKtQmUA5k2IgcT6B2Flff868vwvJ24TZSD7o1jO00UyJym0QAAEABJREFUUHJ7SzuSFlXdZDJRAEeMUCbTmVNoFFFHmUxt0sioNhrKde+998LNSFJYWEjK9jjaZb8J+6H6pkQs4w1R7cKgSvb1egjpNKQjWVpUMZ2MI8PdQHhKet6IG6h8rz89yBNYXef5PEx1rd4HmahMHOEuw72YTHFDssULYW45u4TeV9ANXN7BMd0h2DTqTx2tr+DSoyVuXxaFuYSOEgIJjRp0DJSmy+l9dg8aanrcZonX0kI46q2JMsu8a1oIF8vPFyHgV8q99EauTr9pjCvJzBrUS6xhl9bUNwZzqvstmWqCqYASO6hX0l9uONccb3ptx/E/vLtP0RsPoDJI3D9DTEAr5DOO0y4n7Uhaubm5gENtJJWUlMCighJRDQ0NFRUVCJOoo4qLi0lJx9LSUspFp8oR/sYU1Z+ij3rALt8vdodvaYk512A/pCW6DtkZodaZlg0w7dLPOKJ3MvgAQ6R6dNDPQrGV0t+dLrmBNESxhcHswiovVynsRdkDHen2c5JtadJ4qgk8z4UrtUlug8RjnCoTV0b7qSPSgpvrnPw0VBgeQhyjKOBdtAUKLFMNpjjt6kKthnahWZTxJ6XE+9oQEKhohxcYyl3iJbCEeDHl1d8prrSIO/C0CZU0KB/uFwta157b15Jgam2NKw5rw70yRVNf9FvDsv9w7Vho/vbRoWdCfOVf6X5D5RcDKtg9CBw1MnDgQJDT2rVrSQ+W2rBhw6RJk3A6fvx4i8WiRJ04cWLXrl0UNXHiRBhPW7ZsQTLIZ599hlOKwmmniENaWuH15kp3Az0P6s9h0F0QDRQFowFKrDl6SEt6YzRR6lOH1TxIblkMdS8GzcLSncKgoQLzPe7BYJaWd1t8lTdA2QMdi6RvsG+6HVSBNPSgIuArSpTTak6XbFoZfdISZmKyzTymr/jc8FdBNxD61lJXA0wa5KS73Duv103eZSKpaeC2dcgnhTqnkdqrR/NKOU8ykst4mrLT4vVzeqm/WHdtSWkRV+Bpk8HrwiWz6aD41OGlw7NzU8XX2vSX0wIVSzXBVECT4NrxfX85cziUv3tr7392HEPAoNTUN9U1io1UHtJqB8AN1iTCZNGxtGpqanbIP9SmoKAAwaNHj5pMpkWLFj388MOrV68GJ82bN8/hcMydOxdpsBA1f/78u+66a/369du3b7/hhhvGjBkzbdo0RI0YMWLmzJkLFiz4VP4hMGvWrGHDhiGqs4QMGvTFMCpAC1p5qTYalNUlYKTGKY3aCIQkbrkAYLcEb75R0tO1J8TfKKFZWLo0aKhi+XLnUmGwn/PBuEzpq42SllgkAxT0cLqlA5BK0BzpGbZbEjBxTrOLl4vxEIbneNGUrJwqbq6z+wpLa9exquhu81MMi7IOsbSw7LFi/TebD7b7J6kURxaRltuwT4LsTsL/VDuMoWXS0hrVR+zxCWJpyZSoCd0LAmHLZwWnwA1YsR6em9w7Rez3C28vBtXEKecBmsrcPGXQvEkDoLz7/74sMjzrJbSTE8290wSVnmoH0xZV6gAJPuoZqcTnn38+Tv4h8Z133ong/fffj/A999wD3lq4cOGECROOHTu2Zs2a5ORk6CGPPfbY7Nmzr7vuusmTJ4PM3njjjYQEz47wl19+GRw2Q/6NHTv2pZdeQvpOFLvsN8YfRXVVibR8zSyk6euxXcSojdOQhLa8O4JZWihzlHzFONQNhBVyBCGDBoVAjNS2qbkFRILEEIPuQfI3YsHMmShaX8mOEjRCUcRtKXaLSbh84iqjamzR1sFkmxm+XIy/robmQ3LfhKYmYZ8q+w46hrQ+PVT+6Nqvf/PGmTf6w665fkZqGkzLqEMaf1IIEECN8iui2pQoEFIm3Y+j5LxNbdUhSiPlXtvXHbGl9cE+sW9w6rBeJpOJ6OFkWK9q0SyNOrymtij5/lkjQYqNza1fFmrfzdAkVk5pztQrOTHDITwolfIZV2LDDoALZy7/aNGq7SfCus0wrhsd0po6dSocpmp54YUXUBuAu2TJEnj/6urq4BscPXo0lCQ2m23FihXl5eVutxuMla/a/peRkbFy5UrazY5AWloaZemsI4ZIXLrSmOmAlGoh0sIgqFZSGOYFAkUVtcANgZDELT3vMDuC5qInNlT3YKUcQdLUlla6WIErq2nQcf7QmhBVqdq7uEWngY64fUQBCno43Q3NgdBwyVuGDwrpYWyl2ISxVRXVzw/Sm8XJNgvK9+7FMDoioFZBpbRG2eHd2Cj9hEGzRJLgoPz47wldt1gk5St5XdI+lqQlZh5u2VJKrE6gRG7EIG9VZbSXWBqaWmgWMkrO2/QtrXKv7UvdTKfOQaM2yN+fmzpMbIEm9+DxSk+7B82rTkCowhmuVirh+HjTiN7CgjxySiyZK3qdANgFsVnJiWmStCqiRFqbDpbtO3n6tR3HL/3Thr98eKC+yejeUVQmPIkPL1uPypWVJCYmSrcO6d7pzWLaGqfJGMmrWrXSN43RVVOm7yk9sUfK3QZNHyrhlBxBlC3vUKY6LMk2saG5KLA7okrF6wYvV+RZ03IQaTW1tNYHeAeFpvOUDPVJl4RaIckVp1ERIl26TVrW2hnVDYRkWFBVCWEKt9ORfLloFAzf7XQJKpbcqmgau/RJ1DY2B5p5UHo6YnSj5qNX4ClMUVE50i4Mc7yJysc8TMfDX6ZYWoZ9m34rebjMVVDmwkUnD85EgrxU4R4MY00LfmnAiBKc0gOBgK/APwEltTICQYVIS1haTjGgRQtwmhVZEkyo8CPv7p+5/OMP9gtbM2h9wk7ApBUcuqwk8bEGpVsHz6BKoWNpWcP+Va24OPQPXMQhxwgEdCTdac1LFS5srNDoJFNH4dmm8tPkjEyJIg8hOfQUpTqA8VE5NbKmhaGtSFIgLC2HRUzSkZ0mmAhohPQYGUmfKuuGkYhOo3L0kpaw4cb2FXsxvozqXowS6a2iqtIIQuF2Oh4p98zBafhup6ugWGU+4ZD+6tbWOCzqQK8vhIAlwTRA7hWqjNLEX7koefwyk6xwGCSaxUCn4yEs81pa7shI60M5Xk8YkJ4sPQG5qeLRC8Nv5vZaq0qHV+5LCdDOdcxHFY1+oFTeY6+kxHQ54QPgWPXUz2Ik9oR8EW3+RYMe+/7ZYERw9k+e3/o/H4TwyWwjV1GnEW2pPuewLwJe0hLbZ31jdTToecdki/p1DyIjBmsci6S1gYBxqZV92m6AtFDm+QMzcFy/1+j0p1KaL3CRpUjTCnlJ8oO9WKa2rtQERtl9j+WuBoxuJlMcjE5zQrxN7itxBxg1iLTgg6Jy6MGriOpIR+5Bumvai7HnRHUUzRQ1aSmjJN1OexyPel+OJnpoj0ugTMw8XLLJ0DR2SwI0ELfsnwjoCKGRnWzLcIpZQnSbEtelMTrTmWgymYg8dCwedEVkgbilqxOB8OQDudn9W9I3iBLypKVFtghOjYtbQopnkOjWb8Z+mcJjHwJpyTkTeCVNTvhaWuPUDywugT65fN3Xx+WQhVODQttM+qTZvjOu7/t3TVlw8UCnNWHW2N4Gs4eRjEkrOGiYrCFRudeBgLBBOSTfioeTDeI3S1+5UBQOaXl2D3rGCL+FK8orx4gO9PbOEwYnVuS5SndY8LQrhSAQ1B2hJipaTkAuHaEbz02xwehEMox6ONK0HQGNuOQKuTLxpA2EVZJfNSnDPqVLUzX6ZzrAXmCsr4tPh12gJmOpXMIhZXiGO+U1cgSXHPVaWmVyim0kVxhp4M6FLysuLg6OLGWQpTFXvzRylipjaEVUmxKXLpcPLJZwEM5JERZPoGUtPBfU55GSCBgBg4IVnV/9+6slr+9+5N19MC8+PST2atKCFkqgjRigT3QknBoX6opwpWieQXUJZGnBjDNYeKmXtPC4USfXYP73zUeWr/vmuY0F6qsEDaMCSIN5J47JNsviq0Zu+tVl/TOdOG0nYdIKDixZWuhG8JsFT61KQd/CCGRmIaHX0gp5AyENCgYtrUuGYmQwY7q3vfDM29y4eiCplOZLmkM4vtVpqLaF3vm7OorCRFomua/PiHuwyOsbpOwOq1gzcwWY6pKeNmIgPVWvQlYVp1ERr3tQVMNkMo2VG9+j+LYW2Ra9U8UAWtaeRAI0YDoo4y+9rgRlewieCyqWtgxgnMUpuZcR0JESSeHZyfBWiZ5GvU4nfahRhHCWUxSOiRGyE00ioJFKVBd2h9S6DdiIMqHn8JvX96zaWvjCpsN/+fDgH9/bDwrPS7UNzfH8cl6Gw2pNiIe/VMcz6Smo7X9uOUUjamkbc+YMTzWcE6g4uXPORAQIEWkBcMSnS+tWoWpoIFiQw/FEdR2OxuWE3GZC9Ey5sP5NgXY6MmkFBxYzbvQ8pKPHAAGDorOgRSUQDRSF7h4k+nQYcw/aLAnTR4ovQL751Qm6rv6xQs550x3CaaNOmZ8u3BFFlQEplkirt5zVajwP6nKUMN04mZtQkhWlDLXQqKVGjiZOSWzQY6ECRww3OEZLqM7JNs+N07LWV9Hbi1EqvyQ0Um76ot3Y0aq5bzlHVW/UYabvmyBaGppMOPGExIvZCs083NK7pX8JopDslETqadTr9LOEFFsupwVkaXncgwGGY0pJhbskW1DYyJG++Xv9Bf1+OnngD87Ln31O3u+vHYsZD+WNj/d6JgNcmpL5HmkqoP+A4yr9MsQjqSxe+paj1lA3ANVBme4QXK6ZKBD5nZIWKtIYEQxEmB4hZZ50hCLQARIKaXVAdWLyEugcWXIDYVkozYlb8ZBW2++7Q68IjddF0uBQlEYCNCiAjYwkRpqrpIvZoIewQpov1K2RVxGvezDgRzGq5Tb3vhniQaKwktdvgG68r1wqQwKyoly6lhYRGxKn+3vqoI9E1JYWyiFLK1p7MWobmk/LWxspd2DTo46rtJMcVf1UYKiTrZCqRKAp7WKXEym3nGHol0OWVo74gpcYQDFjIDejfi7jsfS0ZjpF4fruQUpJJRupOaXEsam5pVLO8O6cPvT+q0eCrpb/YBwcG4hShPgy1IUiqoa+pYVL9MsQXrhC1QQFSr8CbMsli6tJS2NpHZOz55C27ZAFabPEp/nMcf1WIypKJi1DMGbSBkLpFDaUQSby7HfP8fgKpK7NgcZrTHCwAtEmItgJRkAkccgBAoGgctGQrGSbubi6/vMjwT2E3s9hiKddXTLVtqq2EeOLWq+EEYVwvjTIAqVBAkUKpaexr5e0HNKKCkxa4v0P5TGmh4SGDKXACAO0ESO5raWFNS1MJyMsGdnJOYPHe0CmGGiiRSSo8/3/2fX54VO4hFrI0jIJ4yeOLq2OjWKY2ktpF+qT1D/1r1IinyZYWtSU8KFR/9HPZTyWEM6STy65BwN9yUk9TAcy9P1et0IyFkBOk1Mov2nyUoU3WGcPiN9cXktLeKr9JiBl/0wxQTSyFwP3CEdivCku05mIvOmSY9SPDxbGyGrUMBkS6wi9gpaXajeZZFfTSRq9KCYtQ8aEsNwAABAASURBVFhmSUsLDW8otUyETkCdSWdNq7dobLE/ONR5Nw2jdouhjRioTqI5YcbIXATe+uo4jvpCj2Ka9HqrU2I2TTtKiiTZqKMoTOtY+Rni3RR3Q3NjsPdnvZaWePBQAg18NAjiVCOexzjRc8updgsSVLgbcYyWkNGQ7N0z2TvVZkkwiSmqfGstwquUeJZwbOSwihaRwHr+++Yjvt/8pr43NDsZ1abhG4H2EJc0qtA3qHDqk2h9OtU5YgqF2OxkgByfLDGvkCY+lFGRMukXyZRPbk6KGKkDbcQolynNGNHj4tzSGjZYARrf00HUMq/fXLmp4nHAirLf2EBKAlBBNVCyfhni2aEJSqA0pKf+luFMTJBVTZMsq/50FmgV8wYkxk21gN8QMiC0CyM31WYgbdSSMGkZgjJLztfoMTCUIS4OjmaMd0mJZprl+c1lPfOqVkCfm9+M1KdpgPCbwFdJm1Df3nUStfKNVWsq5diRIbu1Wo9wvrSKAr2qRTPlPmniKUVi4jAE/AqMyyLpjlBZWoKQXAGWQ4jMgCeVli6rVyWrSprIj8SLyXIARWkmk4mebTI9oYlESqRh0Ss5MUsOoyH1JZ3r0g7VPcerNQNNoXQZndtffE0mWtfyW40auQiEwZBiMYAjYMTSKiUWTxF0Qq1JHQ/ZoyJl0huWJZ9ccg9iFQ29zrdwSkn9MFD3880FDc1iM5xanwSiFMmTH/qjwV1RBg1Qb1dQDZSedr0bJy10PyqK6qwGXFmrBmEZXyomMu4tiZlK7oAjk5YhkDNl1y+V446hDHFx+06KrdJnZSdh7NPJQo9KUYjLWrW05d0qRnmdwtVRkwdnpdjMuIWtPq4kdTKEaf5F4whO1dI3XczsaEBU6ylMLkE8D0mJZmj0d71jJK1vasG0T+nxNK+kxxXZNUJ6zUaMCumf0aQM7xTrEzQVSLYJG44KSffxopA+jGOJXIrPTk7sJfvSKVd90NmDkasclvvaMdRSQMlCX/c5t5/4nVUalJWo6AZc0jRJSvSARj5etzS/dC4EtMm7AEsLyQjniuh9whUUDosBJatJq6G5hZTQqwVdEae0ZBu05kipCJWGDq9ovIEz/1P3psH9jDZYyOWZCojnSCct7XoHafklY3VGPPg4VUiLAKf6Qw8hRx8CkFPezwcjrC+0VkfErJ8yirFMWobAzJKzY3rMDGWIi9t+tBIpz+4rPqyAQCDpI+2SImlzBErjq6eZrD0U0rKa4y8fRR7CIHsIiQnS5HituXRf6foLVFuytOC4Azsio76lVSR5GmYoKobEkKRE8Yi65CCIU43USD0RG6LSpKUF8iZPKTQRCpWPQpK9lhbCdBVicZxGIrR3C6SFMc5kisN8tiIaZuLhMs9mTvXnJYEJOd/O7S9Iq9LdCGd1JJXXyUvtRZtokIz6pFtOqnAaSMATcEbBVZUpzRTCOSqA0BVhK9CcAGhDYzXH04X8egjLpU1GrjaXZAtkMSI06FPJgdL3ThWus5BJS7K+M9gD3ifdjr7kbmgukx7OQHWAXul+CEPSJewVqjkf7cJAFCRoaUhDQvfVmy0tgiOmjjRDCWmb8hdHxZYHmurq3AvZLjSC6yTTRGGwhsYhf50SAYMy6+w8pHxn1wl6nhH2K5VyMKWnXZMgX1pagWp7hrTsYt5NhpemBOW0SPI03T4pHYnCcKwJMGrQaELEhvTJibQGEUcXhSZCoQUtmyXeknBmJpfhEJ4fAsR4+c9/UnDtk5s0uUrkfvds8HlCfLosNnIDCPYEWVSom5q0yBQGRAMznQQTObKQLOpCuCmTCYccZ2lSpXOtYml3Yi4YD1s7Li5dzpAqVWOoTl4jUeWShzB/Al1RevIQ0nVJoxxpMkqk5ZZsoUTpB8olVRABBErZW5JWWU19SPMGV9spWqDCE80JeZIwjp7yfLIrUEofS0t07ArVYu0x1assRMaBilLrPaQlXaBqfbuGzzyf7XqZrl54plN43tHzlBvRD2CqS78GYoC0xAoQjeD6ZSqxcAUQadmsoTXfpLMy0xyWspqGzwrEe/tKgZoAddk0ObBqovqmB6wtBlAyrTBS0Hfxq+UOeE0JyindMhVISiKkQKOG9zEWxIb0GOyohtEa6Yhik22CblE+SbrcjVIRotvqmY8Lth2p+HB/KRVCR8+alvQNZjrFkBH5O7/Fp+vq5KeTcQnqbwhAjsj97ljwAEqZ0kkQ+bVQrF+hdqG2QwKPpRVgYRIJSAgNIhJoqCkr5GwJp5ELGRYgRaWo3FQbwier/HyMrVwyHJEWniz0ZKQ0IvSkUGsGSp/htII4YVb65ctAuTSoBkoGPVWbWhyngcRDWrL7IU26fLorVLOEY/LrTbDbEEssjkBQobU6Is6giaOVILRRL1pX7XLlZCWLUcZ4W+46VtXY3JqVlEhb6XTul0wNGsF1kqmjsBSEZwAah1X40xAwKLAhZgbzEGKxgebO6XLyqyk5P8OzpgXi1ES5MJNsFTowVooc+qtUH30XEW3/FVUIv5aatJzydmrkHLNt2jhcDuVDqQyOCKfZBcFURGmko7tOVvkGxSU8z7b4AVycGhEMN/T872/7/ScapnuliNkPOgaKMj4HQmK/Qr7BBGms7DleDZQoGRY5EKDhLFrXQoF+hdrljKUlrX93cNISn12As5TKTA8dZ8oY6FgubaBM7xiNZESQft2DZTIxOB7J8GTVGf5xDSIt0BIyBhKTyUTGFhklgZJp9DXS32DkAadWphbXFKI+9XS/ZNH9oKfZWKW7Qekz5B4cJD9eXC5ZHMn0pbahuVLSHk0I9BNHMZZJyxCY9ORjfMSYbiSD1zeYhi6rn55GbYzgSu/RT49YZUSwWzxmB5QG5Yox4juE9Dt1frNgMQB6kykOBhMCGqEVOFdDc4XsrOpYoihMKm2WhBS7YNPqukZ1Ak34C7nmN0j15jXtlcKgr0mJUzH/lYyoDI5QpklapccGpxEK/b5Gsk0QoVIUMXdlKLx40Pu7kV/LnThKUTTVpWE6S44dZcaGBqUE38ARuQvjvAHp4C3MqIqrPWYEDWE0ClPXJcvDt4TINTS8JiWKFkdpDo97sAlhHSFnaa9kYf0gGY2hoVq0yBhICFva80JpsHqKQIl0SyKgCJwiNXKe1DfNgW4PvUsSBgJBhZyu+qSFQujSZJTg1Ii4pZeSngj99NTK6nfJ/aanpQ1a5kCCdDlLaGpppRfeYVzSRgx6oZ7IGMn05bj81UenNSGl7VRPP1fksUxahjBEG2M6i1mYweaEdwjl0jI4AjrSO82GRwVOHgw6OsnUURjBcWo1x2OoQiAkObef2AN9vKou0I3QAJ1is5gT/PQNEBINu2BZzXWJtIjqkB2x5C1EwFcw2u49UZ0Qb5o6rJcSS4Tk9jdJp2EFQNGYSFnSHFYEqMIIRCin6wXFYh1IXQ5dwpeh1Wk04a+La0izX2VpYa5DAxxtlsuSLrvIiaRAktbw3JSzeokXlhUPoYe0MoRZnCWtDRrEqWLRPbrkiK+Qll2Slt9GVF+3hPa7S/KG3otzCBYtculIuTSeMiXOlCw3VRgZvpYWPXfWhHjMtBwWMQt0S8KgXPpHeogy5dqBTso8udkqJEuLUCXfg07JiDJoadGcSSEtPMh2ebOV0vVdhiW3ZrGVd6T8xli5RA+F64v3q4N2k6nj3ixGlfwMTNCyaBDA8ErzqTIDzQmbicyI8f3F3i1NUZrTRHNCjpxvFsmNCZpYv6ewyqGnPodASAJLYqD0ACgDnCb7KdmJ0x1tDA51Gq+HUPtiWRvSsovsOpbWe7tPoswLB2WkSeJBGEKkRfyEU7W45OQXz7DJdObxSJOVJNNQnTi8sF/3YLqsXki8SF9JRh3QoC45oCOMkREzHsx7qBcRkRgcGpA9kByRWwcHZDpG5YlNqvAQUkrMCRDonyGYLEt6tttvTYvai9oOF6VZBc2rcBpISuS2FHLZIU06NaWP+Y6o8KRMWrGEM5VA1zrp8zvO5TIl6M1kMjkShb3okp2NcukfT8mNDNSmOik97kG5aKSTTB0FZwZOFVQRDiSej2LI1/ICpcGIQRaVQlpISdWmnbFFsm6wCLNTBLXTBAtp9IUsLbo7vZTRjmPSMoooPQD0MOjnwWiFeY053jSmjxhK9BMjVvEQImxE0AWRLDzSQkb69p16sxmUilRIV1i6UxgxilIdyJd7MXzfL66W2y5SpKOA7C3SqPMq4fd2FyNMC2wIkICTEHD7s7RccvTXeEvS7KKSVGFkjFACkJZg34pQBtNvvJYW6kPf8UKAxmh0Icx+cEpuKyN9CYl15LC0tPpnOWmCTG0KV0+hnADRcEbXityqC1QNcqsqTeMwamkJTyZZ7SiZJgcVsu/hNHIpk5NLAK4URaTluxuiXKYEaSGl01P5IL5NpIQA5wrZMSgvNIGEhvVwLK1EYfkFKpb0NDXBgOMObCCWSWK2WeKTJStTxjQ5UaiQmNPrVn3S7YQYkTEl0znSDKCDd2GgPkxaAMGQUNc0MgehBa1RfVJt0gAPWrrHeyC/8B80MRLQNJZGB5yGKqPkB1t3Havym5GsinSH4AO/CfqmC6dTkdxGoU5AzkCiK6KuQJZWSXUduU9nyF0hSiE08NHMXVFSgJSaiSdNz6vkwEHJIjlSbWGJqgtJkzjQg63W64TJ0kqSo4OyrOXxhqWIaSzyeqwfOZTgNKigUR5f/01h29k0DHoirYGZTmrT3SdEmxafrmtoasGcicZKmlzTkkbQC4WRwCXHyiR5v8hutwpjxe1v5oFYRTSApMkBtNLdiJtS0kQSoGGanlkqB2YEAhXuRixiIaAI0TkN1g5ZeVewylNedJjmFrHQmi47CSn9HnvLXelhkZYA02+ZijLVYaHHrTDAx9WQskR+FQE9AdYkTknI0qqQxiLtwsBARMpySeSUTOdIq3RY4NBJ0x5RTFpGUaVubcTN8oX8KC2tHhkp3dNRZO8xkt4thwmDjOhb4Ki2riRNglPSPZgmBxFNFJ3Sfsi2T4iIqZJ7BT2kZRcGCtGYiGv77709wswCPjT5VSJp4MOA29jcoigpQJYWJSANjlTJCjlVxGmEomNpIQqLUkbKR9MQMtNGZCO9sqyFiTBOaUELAeN9CYkhq7YWLlv7NQRhRYqr67EUmhBvwgSZrGdcGq1wRO53h9KcIJ5uz7UME6RSvsEANY0yn3AaMFYw1msASXeISVJDc4vbGGEErRtNLuneKXGaw2I1C0BKpGeSlDjSAE3rUjRtMvj5Qbh8kT3ZZqZiEQ4ktLnOOGmBuYk4nZJEAxWr6PtnCj8w+YQVpTpAaJPNrei9EzKxlEv7Xfuk2TOdoiHwTMGOVFIGCtDeDba0AuHT+Xp6AMoMPPzbjL1WrNySp6MYJi2aKjrk6KAUYjwwSlpaWMOn4UaTsVJyQLocRDRRdJovLa1CH0sLwyUSeEjLJkiLNFBq5L1dYkGLPs+hjqJ5LjRqnSgtAAAQAElEQVRun0UFj6XV9hmmp64ySpYWubmSZc1RBxK6HYQNrpwdLBHveKJBLxyUiVxfe/dieKa6ck8E9NSXMLBieMJpUCmUNtaWgjafcj8sfYP56XZLQjygwIiDcrCspd6FAQ1dy0i/ReIwhJpGmU/YZbfU5x7cOEwUkykuy7tRAp3ZKikWw2UYdfDNQpNLpXwkMJlMZGxp9mKUyyeaUjqswrIhwkAWfTklH1i0tX4yxMKCwRFNUG9sM319U0szAIqLIxJFXn3xbCCUncRvSrImYWmpY9PlxFRtaWGiQ+sCuLiRDk+WFlGyuuT2DoupR3tfo3uUT66GsmCGs7uhae8J8dVBI7swCJkM+ejSxI00+ke3nI3a5eign9JvbFZSYk5KYmtr3N4T1b4JaNQg4883Fpq+krTgT9AMuPCWIDbFbpFH8fD7/fZgpbths/xJcl/SwoyVRi76vUeUo4hL0pgynSd9mnzqKqNEWqflBn210x9XgbFCvpdKyeXQ6Aux1JCcpKG54vPqdIosJbRZLiURYQj1pcbm1kC8jjRqKZYbtTEdplUEijpcJgiSZtnQ0Fxk9/Eq2v1Mm8qgz5K9q8Ld2OhjvyI2QoEBCmsPhSQlihZHwCHHfVp2xalfIVsnE80piQppwChRbE13Q1NtY3NcXFyWd5aAS0D8kxZxj0QJ3IlkyI5jUCmXQ4HOk6KUAHpI9GfkKQk0AZdcwYWSwERAX6itabLiN2Wp7D8+pOUxqpAFXQtHzHswAaKJWrnkcih1hHYP5qV53lvQSRndKCYto3jSA1AWrC2/KqrCLAmPR57c52qk9Eyn6D2nDH+kkh5ITLCNFO43zSjpIaR1e02CU8Hcg3Bhx5viMBkkn4OSncZf6vEpNkFd1dJhqCSgwLq9JcBneG7yALmJkZTK0ZEoVp6Vh1bRkyZJxirKdGkOVtZGZ580fIAoOVluJEFAERqVMOgrGp0A7bwYkp08JFv8iFpxdT2xHQ3Tyr6DRHMCXShod6JrKZ6lz4+cMbYOSzcg7QVFMmpTX0sLKCWgweLiyuUgi5RRFMUoAQFRsQ45l8K4r5nTUCwdqecoaJDSi3MUWpPMLJslnipD5eOYkyqGV82vapXJJzrTmYgERBIuOUPCqb6ckmxH1dZPCUruLS9N+x30EyPWTbNSSwI1HDT60j/DgQRHZH9AwFc8llaSuH0lFlSKcIWcjWEOinBfuccq0ymGo6BzaEzyaEdib7lih+wdJkxaRqHuJWdt1MV18tAWg3P7i9ehdJKpozLkA0PPgFofKEzTWLscHQKl0dePlh5CzMp9k9Egmy75wDcWGktCPHVTjYeQSMtraQnSArGRJxO5FHlX+gZnjhaf7lWUSoCc+C7vTFPRu+QynjIykp4IssIdndV7L2mJmlP5dEyTUBhsnQMlwsgempOUbLP0kbOWr+VmQs+okXxm1KDuVHra0BhdLGfKqM/nh8UHLRGAeC0tMWDhdJSnTauPSDdR/0yPXnzJSQ5DQbsuCglVamRLWRPirdKSQHbqlvAvofVx6lfodmDuq2PTpN2M1lQrwwuXyfkfZplgC3UJuSmCmTTuwTLJ5VnJIorccW7Z2dQZ/YZplpkhsfWbQK0kH5oy+VBH+YYJVaqMb6yvhtyD5EP2jYWGZglaS0vWvMLViCeX6Ifm2eQGKJewIG8gIaM/xWbWPJWB0kdR36VJK4o4BC/KYFtuD3FBCxemfl8uJ244DSpEWo4ISGuktLR2HQvoHkyXI3WgmtCMrEjuq1bSoOsjTEQCJ5tJvk9FTAA9Cdjoo2/EF/kCkVZSovAyuXymui45OFIsFYUj+d8bmlrIQwVNJIKZI7In+1ha6XIwJS5HAn0hihqcLXyDw6SHcL9c1iJLq5ccGakEDKkIlMlpPgI6ghukgRVpaGMqApDDck1LMVhH9UmB8kBpzSH5SQ56nQ4aCF2LiBOnJBWuBupIdBrekdpFPbzS+7koTafwErmZTdmWgsQQ6nJqnL8qqrz00Q/f3ye27SCBcaGtkplylqnORRt/NKRVLpuAzAuH1X/3UxeihOmBzZAzTkUZKEC7FQySFrGmcTIg9yAmkfBh+K2Af9KSz3iFu4HMLPRzuv0Mp7C0Tkni91saKY/LN96I50jTYUcmLaNQ05OPNWQdvweivpBfJzq3f/DXipUL0wOD8R3Dk6LUCdTK332wWYQnTSeZThTNyr8pOe17xQq5RJTu1Boc6tJoQNTM7MgZmCIdg5jdg7eQhRa6ECDZ8HUprggjYFiOGNZJqT46EsVNkV2l1tdIGtM8xk5rglk6viqki0OdPoww8Ecuf6QlnuEKCQsS6AiGaQwcSIA1LeX49cnT6BWlnmFaTOcRBcmid37liIlTHSG7hCYB8OjSiIYyj0h30IBMJ+WFRxrDDYYtupH+Xj1isyRZ0lCOU0iFq+GSRz647m+bEY5EauRkQt0uZlhdCWJU0fl1kpK2K3xUgTSHxFl6p0nzjy1HD5W6/rz+AJ2qj1hLW/npEVq9U+spTHTSSy5TkYaOZO6UeM1WKFtaWsmGpqfbKSeCtY2G3tOijPTwoih9gVMdCWjnAgL6UiN7O1GIfkqKhefDkmBqbG4NVL5v90NG9BYcK0Ba8s3iPtI3CA2RPWGI00ByQubqnXrGeRAoZdT1ontFvdBuWWCmfAbQM8ik8HuPWGZAV7aa44kV/KbxVcI6kWNvHDqQb6yvxu11eftGGdTAVMJFcS/KTgHKiGeYpro07SWl7zFf7sUobPteSJV8uRjFUnryE2qw8vgGR+WaTNIQo6SqI9lSNH9XqeNIox4cEWsymejBo2cSmrAFN067P5Il6arL8QymBnjxYGlNa2tchtNKIyARMxAGCA1yE4SvpVUezAmDmhBp9U23Y4AAJ+0oFL/TVnK6vraxOSHeBD3SQICG0uswkhKS0EOyZNctU13r8yMV8AjBP4wCkSBsoXZRXwtF2WnoD+xkK5GbzjVrWunSolU/AvSLdF8WVhb5bFV9YdPhX7+266G39+ByvkL0nOk8M0WgNGRpqc0dTKqa4MqMi6OOFNIXMfCko1jKiIC+5MqFH/WlddK75VQgSU7gdJIpUbIbCG+w370YmN+Qka3ufsibRoC7Go9JeMmbDX2mtLSC9kyytHpLHzhydaR0K9JyNzS1n+Dxpm5UWFEb6CqbD5ah8Ub2TkHiQGl89XVNzfTBcqzT+sb6amrkPjdzvMk3yqAG4x0NqTuOgqTOgIbxUT7CcVazXuG908RwAE+UcjlXfWOVHNZB2KRMsgpPS2l1HZ3iWOGuX79XuHqmDOuFU7+SaBYdEnaAJrZa7umwJmhrRXbGrmO4+Jm70OQ1clpaUwe+QdslxMdp0lOjl1XXa/S+p7uOCzoZmOWkKHLa7D/pWWRKsZlbWlspCkdi95NVAfsS0pDQL2ZlJ9nG5osPrHx6sBx62vmZl2ZrFO82ee6dLDzcRV6aHWkU8e1dnx8WGzrQ1pgvK8nCCJySTiS7JUGd12YRjYgxXa1Uh2m8AwJqJS1nlp32dJjS03X7vV8c/s/24+qU6Gz/u7UQtwnXq1qvhMkBmOowKxoKwBhFrqKK2mPeRxjPMjTJiQlNLS1IY5GTRziKEQ4qpZJ64RoNmhIJMiVDHKtwIxxUAB1qlWhug6p+LqKcA8U1vsmw+NTYLF6Ctlvj1bHUTJhO7TsplgngraVYmoKUeBuClL7HQumdznJafaOiogECgUR0r0BxXU5//kPrR97/XvsJme1Xr9gY6BL3rd4F0DAXDpQgkP6U9D595y+bAiVQ6//1xTFc5fH3D6iVoYa3yGHr1//Zpc448ffvo2TIuAfXqfWa8D3/2ok0245UKPpRD6xpxBAYFzdt2QZS7pNrOT9b+QWd4ogyXQ3NyDj36c9w6lfW7S1Bgt++tVcT++HXYiXsv/+zW6Onu1j8Wpu70KQxcnrBw54bP/e32hsHzqjSv7cfC1rOr/4tWl+B5bt/Fc63ytqmbz/xCUqormtSl7DifeH1QlOqlX7Dd/3vV8i+7WjFe7sE5aM+SDbv+a1QwthFWJHnNh6GErLzWJWiROC5T4T+pU+PIEzyt48OIRnkokc+IE14x1+s+hKFbC+sVGcvlqP5dX/7VK1UhzHJQK7bV+1QK/+4Zj+Ub+48ScrzHlovBlqo4uIQRUo6orN9XSK+Sny4zE0azfHlz44i31MfFWj0Fz/yAfSQyX94n6LwLOP0dH0znd7/+m6cfrC/lE71j9TDb1b1cJ30C1/ZjpL3nDitk0aJQn9G4o0HyhRN0AASIwvq75uSHmrE4gFUx0743XooIau2FuGodI+l7+zD6Xu7i9WJfcOrdxxHMuqNvrERajCSo/BA0q1IK9BNsp4RYAQYAUageyDQrUhry+LL9jx4efvJ9JHZaPXFV47we4mvHpgunVtxaxZd4jeBjnLGKFHyfVcM10mjRE2UX1v4/bWjFU0Ygf/cOhn3YrfE71wyQ8n+5PXjoBzVO0XRBArQKvc//9+FlIBKS7Ob6RTH75yTh6IWTRuCMMlPJw+A5voL+tGp3+NNFw9Emhsu1Kbpnylc9n//6fmaXP9YcAHSY81Gow/1dOX881FOfobdN+OzP56AqLN6OX2jNBpkR8rn5k1Q9PQxJ1q8mTUmV9Ej8Iqsee9UG8L6MnN0Doq95/Jh6GA22cP+c8tk6oq/mtmmw+xaMgMNisQPzW7TN575kbiFwdmeW3j3FxcjDckfvzdW/+r6sb+4bAjKmTMuT51sfL90KJddd7ZaqYQ/+eWliIXsuH+6okTg5ZtEE/RJ9wBC0N05fSiVhttHGsiXD0zPkK42lADx7RJIM0j+UMtzPz7TEFCSUA/HQiCd/vqqESgEYNLp8/POwymy06nO8bP7PHex7dfTdJKpozLl5qZ/3TxRrfQb/n+XiKdA/0nRZFzxg3NQ8xG5yRo9Tm+7dDCiZp/Tpo2ghwzNFm8TIhaiVOy1WybhFCAjQSDZ/RtPT3v79osDpYlEj5EcdQgk3Yq0HFZzu0puih04YvHW71VKsZTfEme3JAzOTvKbQEeZnSw24dTUN+mkUaLghkY10uyJikYEQrx3MBOc2rWNLSWn65Xs7gbx0b+MJKuiCRQY1Et09+NVtZSgoUlkTHOcyZiRJNa96hpbKAGOtH4wNCcZ4UCSZhe7FhubWjUJ3A3Cr5jpUzH6zbqymgb1hTR5jZw2Sqc/Vll8E+emiqapqg3SNPEmU5F8B2BMH8Dg6YdY3URLAWEc89Id6sLz0wUNY/UCHUat9w3Tknj/TGeK3TpO8sGu41VwDKLMYbltwEyyWSYP7mUyxV0wKENdTt8M0W9PuRpJiaUg5CWpqQtyX5Ql0NHTFR1tumKSTSxnYlnXby48Prh0usOSpuotSJkrtypUuz31ofcxzh+YcfXZvePi4tbtLUYayOeHK+BLz3RaLxiYAX2pqvciluSUfHukb0YbwCnq4qHZ5njRhBNnmAAAEABJREFUUmWnG6CprhMbBXNSbAhD0MFQZl1DM8L6Ut8onJdou8ykNveuk2tAlnhk4DvVSUNRDU2i8DSHhU6NHEf3FS+GHipzYSVMk/6w3GU6oneKRo9T2laKW4YM6uUZtfLk3oqK2kbfopCFpKk5DkOHzOUkTdSPKDyQxC5p/eUvfxk4cKDNZhs/fvzHH38c6AY6Up8lB+KyANuUD0g/+1nZzvh4/1vjdKqaIXc6Bd1mSiW45Qhut4rd4aQJ42hOiB+eK97s2X1cLMNSCbR3K90hNh+TJtARXRxRh0rFl4QQqJJrcrRjEKeQFJugnyq5gQKnEHoZdmCWZ4s2NL7iTBTjHdhfE+V3lxrSIH3/TDH602IyNOHJablfKzlR1FlTAqFR6W5opa0ammjvKW0dTHNYsuRWPVLTx5woTPYWhXHMlMnqm1owU8GpjpyQL8TkpopJwIQBwojZdriC9rvTvavzPjF3HEyZwdlt3ijIkv0WQ3ljs5hbfFUkPgZPucprGigQ3tHbLm26okP2zFr5YoZvscVyxzl4QhOVLnsdGgKVPFlVd7K6Do/RmD6pV4zpDRr+4mjlcbnH+t9fiAWYb5/TB/YQSvDdL4fslbI3gtiQQCNJieZx/cT4/oncM1Uun+VM+fQhpcMquh+tvOJUR8rlDpQMZ/AnRSmEvltxWO5fUJR+A4Qq+rbfWL/KfhkOmyUe3emIT/nfyNXlwSqjSimBMMep3ZKQ7vB0flKis1e6A/YNzFaRC7dvs7Rpeig7QGKUtP75z38uWrRo8eLF27dvv/jii6+44oqjR8XiagcgonMJGmjKAjznRFqDpQmiU4jfqEzZ+zGs+I3VKOvkcOCQQ4MmKqRT2iG9+/iZIYxIC30xaDlwlyENZnY4Qmj6nGr39HtoUuzi+Sc9TjHvPiJnfEZIyy0pBLlIWlpaiaf9Psa0DXKf/N4jpQ96/OxQ+S9WbS+TAxYlPi03ZCZLE4E0ypGe4aaWVn12+UZ++WJodrLJdGbKQnWjonolC9ahMI4YH6kFA3UnpIGAKWmDOI3y9EHL9ftKQAkJYr+7IGwkU8RmSciTM2VFgwBuAQSAAHWwr4oqER6QKfLS4IvT8IQw0bSLXfZMajLfYul2clOF/aqORech5CrdjTsKxYc/YJSjZNz4hP6Cqt/ZdRJzo3V7xFada8f36Zsu6l94yq0uBGG6R9wv7hqnvjJ5cBaUtHOB+kCWnEBA6ZS7zN2BN+sjDQldhQYE0gQ99pdvzvmSim9Gl6yAUzKob6xfDToD4EKUsuUSYQieO3pIh2S3mccgCpLmJao+6XaTydNvLeL7y+JBpntEMl+hF8JyU7SN6JuyPTQxSlrLli2bP3/+TTfdNGLEiOXLl+fn5z/55JPtcf8hlZklZ6zU0X0zHpSWlt8ZjW9ijYZ4QqeXqNPXkqUV8RxnlPwuxp42lpb4nQKlK6svqgkPlAbTGUtLWlQpdtHXKSVZWtVSDw2myXAlWRPifYdUxCpCD6pLvlypKOkZximmyThqZDh9eMK7PVoT6/f08fe/+c+O469tF5swKQG9kJvkj7QwBNss4jHBYEqJ/R6/kR9wGpwjXEBKggFZTkuCZyzo1Za0kCZLtzshAQRdArghkC0dyOP6pWNsIfu1T5rdahYVQ6y+YETLkMYEnGlNzS3kebt0uFgq06dM/WIRC+8ijqAWHBVx6JIWTCikzJG3g4AiqCT1mUp3w/ZCQavj+gmTCAmuHCM8hG/vPPHGV8eBBlp8ZO8U2BaIKpTvGCGgCD2euN9ADo+LBgvS2nSgDJOhcjkBpYZACQ7JE43NrQ3S3Q1NICGnSLq0DgOl0egHZAmWPSynbpoozWmN7P8aVDVpfE9phrSv7YMAUse9oAODlnyzZDg9liL6kjqW9Dp9w/OjJB3+qVyqpKFOT0k77NjQ0LBt27YZM2YoV0R406ZNyikF6uvrq1V/pGzXY69k0cbU0X0vRB9LHZztZ0bjm1ijoV6CEUqj93tKM0GbJVLDfJT3a3Wt8AXIK1XIxQAjjyK5B+Hxw5OPrDSMYrKMMAkRGK0ZQFMgP0neL9OBsQmngYSmujVtLS3iMGRM9DdGD5NOzn3SBxKoWLUeN7tH8jQceoqeLC0aNBWlEkiXY5N+63ztsbTakBYmrWd5LW9iHaVMBLLkBL9MfiwDp36FhvispETiJyAMY45SDpDzBgoHPfaSlFlWU49eCisN9H/+QGG+QBM0r04Cmk+gNHUaGvprpbmg1lPY6x5sY3dSVLpDTHoqYGkdFaR1Tr6HtK4YLUhr25GK5zYWIOW15/Y1mUxEWr7uQSqf7heJfeXs/DSnNQFX2XOimrgnU84ekNIh6RYBesQQCCTUGchBEiiNRm/c0iJPAyqpKUH/FAucSPB12wcBzQ3loKwkPD4IaCTNIQY0KDWUliWnOHSPiPUVsrR6y2VI39j21kRMWu1QwbKysubm5pwcMROk4hE+eVL8CBOd0nHp0qWp3r/8/HxStusxU7al3+ccYzcNgoP9+Y6D1iok0qprFCsTygMWtPBACdDL0ZXRNWnVBMkqpBebvumHUx3JT7eb400Y/mhUJdJSD/oYXpH9tNfSItIaGGycpdmlZsggDnNaEzBUoUyN4C6ggeMeTYBAUCmurq+Qax4H5W9fUXqytJJtwqVJGvWRnu0KCY5arw6Tc3hIjnbKomiyU7TDNKgIJZTJiQICfgWrO9DTghYCkPFyWQsB8u8hYESyiCBrGsg3OLpPCg3r5dLUMFKC3zQ1/mwCu5xOuaU/wDcX8IeSPriOgFoI5/Ka+p3HhMv6nHxBq0gAXyJ5COHpgt/v23Jjan6GMFxQGnnLkYxk/0nxCpfOY4iZxAVy/+2mg2Vl0kWcKcFBdkTBGYCAK0DlEUWCpwYBemwRMCLUXqhwbbDCa+SkjZ4FIyVTGnoQNO5BcgAMyWkzl6L0OGbIDY0I+LW0Tsl1O8T6Co0YvdnS0kCjHqFaW1vVp5Ty3nvvrfL+FRYWkrJdj1lyuoqn0e0zizwhPv3QjHG8f6Z4lkKtRqZTTHkwLAYdeZuaW+AhQfk0NCAQtsBWoxU4rJFQIZVyNE+XE17SBDqaE+JhNiGWPITVbb/hBH1K2zUtIq1BQUnLKmijRg6FKITEJZ/hpEQRRRr1EWOB1Rzvbmj29RSpkylh+pYETmmSgQBEn7QIEAIHiX0F4+YRuQDuOzoMk+NFojk+OVFbf+pORiwt9eIBDd+ow4BMvS0tSKCWXtKYgHvwS7kLA9ZGppyBgSHUyUIN+20ah1X4AAINzcW0EcPHPYhLE85bDp9Ca2KOoiYe8hAizSVDe2WniKUUJKYuQZs2EUWyT37fAS5EOvV7pGWt9/eVULuTYUEpHYlUebGrkDR+j+WS7DO8bOc3jUaZ5rDSTM7XOtSkxO1DQ14HBAwKkdbhchd6o5LFM5fK9k9aqBKl7Jsu9pdSGEe6rzJ5jzj1Fc8vabGlpUCTlZWVkJCgNq1KSkpgbCkJKJCYmJii+iNlux7xINnk8gZ1WfW1qHPAY4PJmlpvMEzGTUtrXKXXNAmUEcYNRdnl0EDhsI+XDBX+/f9+bRcEowxYE0WlOwSDIqAvg+QW3oIyMbGtktWmZ5JykdUFPSYc0BRI9yDwQVhHaBiioVBJRqeBJp6gzyHymdyn8uYreX0DcAqREq6hCq+VQ4NXsk24pyhWfSRACBy1Xgl/caQCbYfb7yW5QdEjQMvjOSk2k8mzuAUlSZZMXCYn+6TxPdKPPyG7EjWhv9jqjdMBco0EASPiIcia+i8Lheft7L5pZF7ApEC7GymB0hwtd5OtRqfUNNRqpMGRSItGXpxqxENaKYJ4NFH0FGzYL75+MrZvGtwASoIrxuRSeM65fSlgMpnI2MKyDWnoSKaGPmnRstZnBeJbVpYEE02wKLvfVVWKUh9PSSsk02noSVEyDsgUM1rwiqLxGyBUA3V4v1mgRN+D5Yd++I30VEMDoXFJTf9QKpLhfdLz2m7eyZL3RdakklgJYN5MBpzGqagkaO9ALLoHrVbr+PHj165dq9w8wpMmiVfeFE2nBPCcZDqFk6fUZ6CBewpVotETgVAFVJcifVP0MOhkpyHGZIrD5F0nmcGou2YM++lk8SbjS58eufqJjdRNaewIWgLtOT4od73ThguM2kquFLsgAKxpkzOTHtSBwSwtB81zG5ub8fB5y6qRlpbOM0x792m08mYK+L9iaSHFQfkrHgjQmlaybAKcaiRNmp4V0gxVojCyvPnV8Xtf/eriR96f+8xn0A/NSTKZtMx0ydBeV4zOXTj1LCTQSC85T9cnLfK+9k49M8TnZ9iBvNUcP7K3+BShpsxAp1nyWscqagmlsX1TwTQoBOnL5fiLQFA5VlmLTjL7fz7ZIZkP6b1NI6wTnJLYrcKmdMs9rqRRjhjv6H5zUsVzpOgpkC7HUPgAcXpOP8+CFsKQ3ql2YHjlmNzLR+XglAQ+agTUhktDUwu16fDe4nUOxPoVtFRWUmKreBsqDk+0yXSm1RxyLujycaVoyqEnJcPp5y40KdWn/aRxTEa5Wq8J09WJPjVROqcmkwn3hQT7vctacNt4SUvrtUYyCAGOgF/3YKCO8eH+UhhhmU4rpj7I2/ES3/GXNHLFO++885lnnnnuuef27t17xx13HD169OabbzaSsb3TeGasPovn9KgEmtEYqVWmnHeXBzbJqRCytBwW/ws8lMb40WZJuP/qkX//6flY4UD/Bscgb7ocoxHQF/L10RADiwqJU6RLEAGI05qA5QcEqusaMZTQdDgoaWEkRRaIWzVq0DOsRCFWIzStpuFYE+V7SqRlkxYztRrSkKUV6BL0bFe2XdMCUd36yvZ/bCksPFULt/B5A9LvnjEMRWnEZkl48obxPzi/n0aPU4ybOOL5xzGQ0OKB2tLC2PTyTRe8edtFWOkJlMtXT9f65GBZU0trVpIVgxTKoQl10C5HpYFvfvGP7WhoTCcefmsvDGgImBuxGtzQ9FDSbgIE1IKbRXb0jEx/w726452T34a0UMg9M4f/5frxieYzBNkvQxguhafO7Ho/VFaDPpxsM+elnqF55NUI7v2iwZmkzJR0TmEcHYmScds6qKHXCMx0aDKcIVlacV5L60yFUYhGgDPN83RmaZosyql39uZ585LWLDBUBFqzwDor5sp49tUdDKVl6o5F//y8EGnmnNvHau4c+uicq+Ke9eX73//+8uXLH3zwwXPOOeejjz56++23+/fvr5+lY2JpdkxdVn1FjPg4jYS06AGoaDsyokyNuOUqblR8g0rJsAbeW3TJjJFiDouBw245My4oaXwDtIGwQLoHwUxIoLa0MC6k2IWxBSMMc2EMVQ5rguYFW2TRSKI5HiMalC7VqFEjwzoufvLm75WLGcirI3D3F0hH5aXDxXezDkozEelP14u9/sk2UWGcaiRNsniFytJy1TeRn+0nkwc8P++8Lx+Y8X83T01uV7sAABAASURBVKLlfU1enVPPBMjHaldnIWeahp9gdgzN8T93VudVhzEw4ZS4GZ43tA5Os5KFoVCmWwEkI/nz+m8+P1IBfkIbYdlp3d4SzJ/QrIjVDK/UOamjIlYtdDu9khKpldVRCKc5znDAOB/SQgKN9MsUpIXepehp4jIsp83bckqsOkDLWtDQAI0AidMqOj/Nk0jj90iWVqbzTIX9JtMo+xuwtBQLVafDa4pVTulBUPzk5P4ZkOm0JPgf522WhHcXXfLWbRcl0ATTWxDdF92jV+f5H8uAWAvEyffPy8exU8T/zXRKVTQXXbhw4eHDh+vr67dt23bJJZdoYjvrNFPOEH0Xz4m0lP3NYVQvQz4AvnSoKQojBTQ0LiAQLcHV/3bj+OfmTXhu3nk0ogUtmcwmLIODCTABR3o1aSmn4LPDkieQPmjJSODwGTXAEChNMzJCowhZWrgKaqIo/QYwqGGcxc3S9xsPylfrkJJGc8w6EfaVdIcYm9SWFjV3VlLiA1eP+tbwbJ26+ZamaJAdYd++BKUint2DKXp2g5JYJ0DXogTwDVIg0ynuqzyYcY/Emw6WPfHBAQQenjNm/kXCn/z7d/ZSo5tMcQ7ZZIglcVjNCFBHRUAtRFp+tw4iGeGMAOwk2m2BsI7kp2tJa698x3x47+CMrpAWmZvKVajyfhlXSYNuRglow4KiDxoYIFn2cJmepUW93RxvgqsiaIGaBERayq536qW+m4PUufLS7L5Q0335HYte/eIYXPfn9ksbnB0cZPWFohiOXdKK4k1GsaisZPGcl7WdnJbXiF3UJlNcRKQlR8ZTwUaQOrK0jBlDId24yWS6dHjOuH6efcZB82YlWZNtZiwM4NmgZ1hDWik2YbhU1zaRcTMg2IIWXRFzeQTo0UUAQmHS49RXeiUnpjssYCPUxDdWrdl7QnhORvZOOSs7CfqDck0Lbi4irWRZYeg1ku4UN1KhMoJpXBiaIwrRJDZ+imojsauh2a3yhUKjCPT0opvG0lISGA9kSYcPpVeWIsjIKAu2poXufcc/d6Chvz8h/5qz826eehZY/2Cpi96aSrKa0XOoZDoSh6HydKo+ekgrWVh4aj2F0YgU0CxokdL3SBsxMG1CC1Lsfmlt06t7pAl0xGCNpUHEZrZ1D5J9Q10OsX6lXO7fsSSYkhMFPftN41dJltaJqtr6JvEtTb9pXB6/ghZVv4k1yqE5gkiKq+tpgkU7MsJgl0w5NUeHBz+pLwGc/1f+klknmlmoD5MWQAhB6OEvk71WyfaNnLD3Tbfb2045lQRGAjqzG3V2d7uRlvoqRsIYqshDqCzLawb9FLnEVVXbWFAuPlFIa2BBSyarhR5dSlwTbCMGakJzTMUxQhl9j0RaI3onD5akBc8SZs1YQqCHMznARgyyACpcwoVIZVKL0xhBmjCOTmuC3SKcUWWn/X/kjcwsJEu2CdYM4xJKFtBMvHe3wRlLS47X5brzJIxT//WvrzAOntXL+cA1I1Eg5iK3yw+H0890UXtBrwg9BdRRFSUFUA4CmhUUaEjSHGJGiLDvghaUvoInDkp0jwqv55Y6wAj5kRRE6ctVY8Q7y6P7tNnP4rAKHtJU/ndv7vnJ81vQVajACvn4A1J0PNIYPGYlWZ3WBMyuQLSBsriot4c1kmBiR5gQDgfknIy6eqDL+dWnO0R/wzSFyE9JA//woTIXJiVXjc1TlB0fYNIKDfNMOWPVuHRogk/vPIVWnCp1plM8sRo/MhaZf/PG7iLVt2rI62IPq0+rrhadIPEQkRZmnRrPOEY3XAbuwQK5dDQg09B7RXiqkYseXQQgbjn3xAOJcCAZLr+LQRPtQGmg3yvdRyN6p/RKSky2mTF8HCl309ZBjOmOAKgSaakfYLK09B0vuJy+YMgjY6u0ps5vSto6GMiZ5jeLP6XQoWkwyCKEQY36MMJZckINQwrhQPJ/24qwhmE1xz8x91yHHNCRcu4F/QdkOojpnYmCd6FUhGCkba6KkgJ0R4EMx3Rp0SLlOd7XihHWESzJ5KQIow2PCZJVuRtp38pQY6T1i8uGvHX7RVe3HX893U9l++I2n990+IP9pR/uF589xIXI0qJegVPjghbvlymeAp0NhC55ad+pgMGrkKt8/8nTmG3QmlYYW5rNCfHEW3SnyqVXbRFbMGaN7Z2UKKhd0XdwgEkrNMAxV0KGsrbuQQ9pZUfkLKIxRUNaz3x86PlPDr+0+QguSkJjgd2iHSkotoOPatJKsYvZmboCHtKqbTwsLa2BvcTjqk7gN0yPKz26lIA++k6jCWl8j/Ss0gTTN5Y0eIxpswZIC8MH+XIPltaQCw7PIZSUUnOk4cnV0Nzg/SQdOV4itLRwFQ9p+WxGRRSkWL6H2zs10gUtFAXJkvMtxTcITSZZWtJuwKmvALGnPjoE/R3ThgI0BEis5vhfzhxOYeBGAeXosIgRranFzxf86I4C7cfJdCZi6gMZ09b6UUr2DdAGQljMiNonfYN90uzU8aDRF3NC/Ki81HjMVlTpfHcPlrvqwVtI8s4uz0d5TkmHKqEHfUgCskd6nWUtXA0JqBoIhCrkcthffLr0dD06Nm4Oa8mhFoL0NByVq6xwzO3e3nkCUZ3rG0QFmLQAQgjSSz75mgkIBj4UEYYZjlyKeHpJ2xEEnQ8J1N96IEtLmfMithNlUC/B08TZmgUt1CpFugcxuab570A5x4ReXzykJa0rSukih0miGApJ43v0PKu67xcXVdRi7cqSYCK6ouPBkho8jSgw2aYlXShJkm1YFxdBMrZq6puOyZ/JUD4DKOLC+kfdCeOL39yEW07EuzCocCJIxTcIZabszIGujgQff1OGxsV04foL++FULTNH52I1HhpqLwQUsXsNVppgKXoE6BPvge7Iao5/deGk1bdMUkpAFn3JV+3FoIeFpi/6uXRicbOIdUlzBwEI1RmB9/eW0FoUDeUZ0k6FPiShZS0dS8stL53kY78avApNpGBpkQcbpG6zhDPBxQQCVwRh40jyxpcnMPjAS3yu4WVvyuj/GIGWSSs08Og5r3Q3NsqfJqLMNO8enC1WQUkTxpF6SUVb0sKQgaKOV55xH7nlmlZ4HRFFRVfUkziiKHX5RGM75XeD0hwWg+8se0YNSVRUGpGW74yeYulIz2rJ6XqNqUqxdNwrd2GgmTA4QnNWtrD8MOEAk+EUzISjX8FkPM0hnbdusfhEXheYC6nS9e83i0Flr2Th3UK1/aanz2Gov+HkN5lB5f+7ZNAVo3OvHe/5ogRyZQWztJ7/RHyg9nsT8n1tF1ilD357dN90O9gLRakF8BLJuxu1H0PCDAYpA7kHETUkJxkNhIBB8e7FEPvx9krf73ADWwd1CicThzzSlIysQ4RP1zd9cqAMAepjmU7RJXAakngsrXJRYb8ZMSWC3mHVm6IhQSAhP/nXJ09TLw0JTHWZmbJv0J2Snl7PgpmFpidNZx2ZtEJDPs1usVkEaFvlN2CQGfN0ehQHZwuzA5rwhDZioJfAJ0MlIFwmzfPjcl5PSkx2EHB4J7MId6KoSYsoSl2ZFLuwXWgoUadUp/EN08ydHl2KrZFWF+lJ43tELCaV0JOPCAFfoZqM8A5qtAZ5sNRFpOU7LqtLAOnitELuxaA5CtEklJEIkVYgW4f6lc4QH9KlLx7S68kbxmdJ64oyUhjdrAWLe6RSHQ+V1mAhx2SK+/GkASr1meDoPqkbf3npjyb6ibXL/kkTLCVDXWNzlfzcV46/Dw8qyUIKUKOTe3C/dA8Ok6ubIRWiTuyQdona0qJWoDTv7BQeQiCG0wxnOKSlY2nhwUdPoAVg/Skarh5IBvVyWhJM4NcNX4uvYQ3JCXNQorsjmxLXwmP1ZWEl5iLKZ7Sg7CwR429nXbsrXheT7usmiLfq/rRmPzoZbgGjHo4YfXxHbeiNS4acyzc0n/kpWzKzUEJpTb2ymoInHxoaFBDoXEE1sIRAdfC5/TiiAdwREhj0DSIl6AdHt3SSIAAhS8t3wR9RagnqIdwrLa2RvT0f+FF2vVfXiW2BOpYWrpIuW6dSWlpR2YWBMiHoNjhiqMLRV2j3YLQsLd/y6aawYENcoknwwqbD0Fw6LNv4hAPpSRyStDTuQfKzJZrjU+xhmhFUuPpIlhZIC7y7XzqHRxjbhaEuRB2mbqaueXF1PRLALYbj2r3FcLHQ6gAN61CGJAPkFyPhqW7yumowjDz89t4Zj20Yef975z207hn58yv6vVHnipaEePJ7069chrELgwrPlJMbcg8C2/v/sxv66SNzsqQe4U4UJq2Qwb/1W4Ntlvgvjla+v0/sJiJqoWl7yGWpMoAA7BbhfaZ5HGLoq5QItLbGFcs1eYRpNKeUOO10UUY0P6SlGpuUZEEr7LSKEY2sK0rsJS2hJ43fIy1m0MjlN4GyC4NiMUnHzNHd0EyWk/4wke4QViNtrf5avuEwVL4TQ0WFfewlhwBMSvyWQHP8aFlavpeAH49ajcYmdQLQ2L+2FUHzE/lpSgRCEodsRGCrzqXcjsnk3X2vjg4rjEZEPvjPj5xyuxqarQnxA4y9DohcfoVqjqKU2BL56F01Ng/+wEp342eHTtETilMljfEArMxEc3xTSyvqTLk+OVD+1EeHvi6uqW1sBjCYBV40OOuH/r77RemDHqlnNjaLTyuG7f6hu6M7fe6Tgi0FpzARufeKEUGv3gEJmLRCBjk7xTZvkvgowB/f2485iIe0ssM0w9WXp7kbzeOgp8EUAYjiIaxtED+mZZczWeg7XeCOoDqQXUVhOqo1xocSmuq6VZZWjVzfIjKjkv0e6Vml9WffBCjkSLlYSBjhtbQwJ+2fKT6pQD/unmwTtOSbkTRp0tKqIEtLzuiH5kShxXUsLczEyQJrP0sLt5Yply7IC41TRf7v80J3QzPucfJgzzf6lCgjAbucfrlVjYhcNPHCqI1wtAQri6BeGIsfyBkkxmg0q17hweJ8ux9Vu0+abcYo8Z2zd3adoKGcntZg5Wnj4aohoj0st9Qi+q8bDuI459w+H9w9dd9vZ37yq0tX3nSB0ksRFaqQy4FykdVF4ZCOdHdwDx4oOf3Ie/uRd/FVI/pliucF4c4VJq1w8L95yqDkRPO+k6ff2nkCjYoiwvYdI68iNIKckutYUBIdIgChjWQI1MrFbRoUcNrpQrveUQ3fXQkp9jM0EIKllSgsKrKuUGyVu7FebjRXlwa9r9AlAu3L2i8XPHJSEulppOz0SO86Lj6TkWQT1yW97zFdWlqV7gaYIGQxDM6OaN8NXaKX3IhRVlOP2Q9plCOIBCtNCfGmTGmNKfroBrLkFjhUQF0sOIB8gzCzTKZwrCLMylGg2smGUxr9o/LaGUojiY839ZW/BbV2TzE0ZG0jELY4rKIbuOrPfLHipHQPYqo6c7R4Gfm93cUEV6bk+zAu1F9uo6WOurOoCn48tPId04aiAyeaha8ljDLVWRQQ+qTZydmujjUYprsrOV34fGdaAAAQAElEQVR/5/9+ibWJS4b2mhuB8WfwogaTMWkZBKpNsjSHdcElg6Batvbr/fKHACJ3D6I0Gk9pHodTcg+SKUN7rKGkgcAeM5bWQLnrHRUjRxMCiqg1eCAVvX6AHjMYRpRs00GxX2twdpK6NIrSHPtnimkgxvrTco1KE7tHbi3TTGBpWQvPJBIn65JWmsfSaqQ5CqyfoPVBmUGFhgZ4csCFmsQnqmqhyUlOxIiGQDsJVaDcO0+iq4AAsOiS5rDMPqcPaUI9Uv90y52uSl4PaUmeVpSRB8hw2XJY/DiW2sgIr2Qy6N0qG5HcgzAQJw7KTLGZy2rqaedOhuT7MK4yIFN01MPS7v/rR8LMuubsPFqcC6M03yxDvY5rPDW+sQY1mfLuCspcXxVV4a4fuXasyRTO9MXg5UJK1v1IK6TbDz/xTy8amOG0olELT4nBJZL+oVQCBSJ8SvqgMIoVyyneJUN6QUlDGAJuORDEoKXlawml2DyWFnw4REWof1BJShSTTbpNJP7oG0FaFw/JQlhfkm2WLDn5PSKHA01i2oWhIa3BXsZFYmTHMZCkS9KCpfW1/IW9qBjWuBZm1mnShvNd1iqWSynRtUtwRY1kJYk99+VtX5anne6YWRP3aLIYOSVLy914xl5BrmLZnwO9pIUE4Ul+uuAAWIfIPtzr+0U4PHF4ux/ZvpjQkLseNrrVHD9N/hICSo43xaWpHAnQGJf+ctXtSLnrcJnrHfm67s+miBmw8RL0U/ZNt9Pmw7B3YaB8ms0gAHnw26Pbb2EV5YcqTFqhIuZJj26x0PvLfsk2M/l5PHHh/pfpFJtoydIi3yBm9DRvOuF9VYt2DzqsYmQP9zrRzJeXZsfDjBIVikKYxGaJtySI2ZlxMwsZHVYzjmRptba2fvyN2LlLzA29vgyQjpfD3tUCdeJ9cuughrTI0qJkKbqWVoZTEHCFu/FraVhTo1DGCI+9JG3Q8pW6qPbeOkjXorGpTPV2IAjss4JTmFXfOLE/pQnjSI1Yq7JXUEhx+9AwWVooH6J4xhAOT8jSQt5aybglp8UrkujGNKGcOSoXUZB0hxWeSQTCkAFeS+upjw/BA/ytYb2GR7ZNX1MHk8lEOETSS3GDJvHsxuGWv31OZ35pUHN3OGXSAghhyg0X9u+dakNmmFkmk2xhnEQgGU6a9oo3WMkNhRl9Xpq4hOIeJBPEbokV0oLz6tpz+57VyznC+/6TAoDJZEqxibE+JNLCbAAluOTmiyPlbvipLAmmCwZ5fmMeUTrSX5IWcmnSYNaMBUgoR7at5CDVl6WSdUkrTVpaFe4G2h0zNCfEXRi4dgCh6Y4f0mofu0RTi0xJmSAqRQ93EMJYquydakcgPLHLSRX1VaUED2kli06uKCMPKI61dIcFNn2EBWKmZZKPsksybrFshexkm8kktFjacchbM/imvN/KDJC99Gi5m/Zn3jzlLL/JIlHeM3P4jyf2v2qsWIQLrxw811eO7j0sJ/mh74w2mcS9h1dOe+Ri0gofVZsl4Z6Zw5D/4sHBnVdIFlQynWRpifdCaHAEHealibFDtRFDuFxoUAhaYMckWDpnzPq7pjqkhaS5IvkMB0p/iCYq0Ck5EumTBGRmje+PaZ8wvwJlUfQDMoWnCF4XRUOBo6fcGEATzfED5HhBShzBqcowlyz5FUq/ghpAX+m1tIZ4lw2gjFACkpZc0+qdKqYsEV5CJ3uW7HLlqjWtL4sqkV79iUKchioOi5hU1UpXNuWF0UwEEH33YIZ4QHAVLGiZTJEOryaTiYwt6oGeBa0UD9Hikf+W/PnQDIkbLhqGoE0tCaaG5hb4Hsf1Szt/oKEJWUgXQpm/+fZoepRCyqhO/D/Xn/vuootpWqPWd3qYSSuiJvjOuL6f3nvZL6YNjagUb2aavpF7kLZuD8lORhdHPJa4yPgg96BdTvegj3EhShgayvueTnlrmOdimPMuaIlVPSN3SqsFh33cg/vk1sGhOcnmBG2HP8u7rJWUqMeL6XLlCU1TIj9uOyQ7epaWtHV817ROSmdabjuTFg1JZao1LbK01J8oNIK8Jo1DNiImCor+dH0TOdzagbTETAUXipaTjSqPHogyi2UrqOuMpT4saGEihdjwBJ2wr1yHQ3aYWaBJBDpFgl40NuumfYaD3gYn0CCAYSUBvVijDeuUpm+08EufDhuSk5RssyRLzxXtxaCBwCE/pB3WRTo005JrRi25euSUIUZZB5Wj6SF8/RjmPj1YDo3BBS2kHCgNqcM+GzH2erYOJiONRmDLkoZAprDvMc0hjGDS56Xakm0WCkd+DGRpFUvHlHq4jPxaviVkyq0r5V5LCxMFD2nlp/kmNq6xW8UMgMZ9ykXfUUyxmaM+30qxWdLllIIWcuhykRypB9KDdtKnFSYPztqyeNrdM4SLJeyr9M8URAun+vQR4t2vsMvpmRmZtGKo3b3uwYbTdY3Hq8QKMG1vy5OrC8cr6zCm0HTVZu0aDTeid8q8yQNDWrK2WxJM0sez6UAZeCvdYRmV5/nwUtCmopcfsT5EVqmSniwtvzNxDByUTJ+HrOZ4p7QekHhI9HyDKM0vaaGhaY6Sm9Le7kHh+ALOZMHDC11WU2+ONykfu0INwxCHxErtHmxXDp4wIAN1vmBQZhhV9c1Clacu5HUPtmmFrKTECOeplw7PRgn/dfnwkB4N36r2TE3XGPt6SNtkyGkvpni75euueDbIYdhb7sU4Xllb39TSKj7OEoeR3RAmXTARHmNaEaGfL7poSC9oDN5Hqt1C1qrGQ7hPfsNieNtdGFSmsoFQ3z2IxGkOj7E1NCdqvkEU65e0YG3XNbaAvGHHI037SYrdjEkCyofnE8ev5ILW0BwwuFiUgiY8oXEfPVnJXiz9bO10O3+5/txP77sspKVTpWK+Aac0E4lxi+XuwZwUQe2+KcPW/GjigN2/uXzmaM9exLDL6ZkZmbRiqN2TEz0jyJYC8aaksnBCezFge9GDhBp3Y9LC3ZF/5v294tOOoW5yIcfLEZWHEFNmOvVraY3onWJNiO+TZsfMF5fWkXSnxyXYLpaWalUJdTgoP2/YN92OlX+ctp+YTKZM1Z7VL+XvyJydnxrhFR2qcZ+KOilJKzu5jclCUZEfLQnxWXJpMPKiUILdKgjbJXeRFPu4B5EgKtLeLRuVSsZmIUxaMdQuGEHIUPisQKzlDMnxzOjzUsWjfqKylt7WxCBrTujODUekBZ8V2uYiA68VI5ki3mUtl6LZL9+swmSZsFX0FMhKSnx14aRXFlxApzpH2kCIBDBEcIyW9JKjLQydRu9nv1HygdIaHM/ybhJBuP2ElrXK5K/x7pSkNbZvRAtaqCpZWvSyHU4hXj+bMFlwGsui/vwgLcW198piLKMRg3XrzmNfDMIdtEoZctq77UgFUiqWVm9a06qqJUvLLmeCSNBdhUYN3N3g7CSyMhE2KP0znUh5pEx8GxcByD65C8OvmYVYyOg+qZQLYR1R3INKu+gkNh4FLkyQG3nKvbshkPdgiSBdWtHEabtKpmRNrB9iIY3cg2P6RGpp0Qtw+05WF57yNASZLO3kHowuPg5pJrrqm131TTRzwownupfg0iJBgEkrEvSinzfTKRZOsJ6Bogdne3a70cB9orLOQ1oW4b5Agu4qtKiAuzPy9SYkU8sA+XtFBapd7xg6kWC4vwUt6I1LutyiBpcdGYLGM+qnxIpdllzLLJWb6Smxx9LK9pjapGyno+dVLVfD4XJ3dV1Tojl+WCivKPitFSYBaLuW1ri/bxY/yoU07eoeRPlRFKecFLobmuj1Boc1ISlRbIaM4iW4qEgQaB/SiqRGPTtvhlOQFmFwxj0oN2Icg3tQvqXvkA8VpemWR4UVjG92V3DAcInwETVpSUtrRMRfyoFJhJKj6xtEgZBeycJpVloj9oviFHJQrmkN7hDSypSUWV5TT2bWyLwULBGhDhHKTyYPQAmrthbCXkGgC7kHHZKiXPXNxXIdDr5B+O1xCywxggCTVow0hKcaCmlhXk9WFyLIqVLf1HJC7oPv9ku4RFqWBKNfbwJEitCaVnF1PWbKUMLlRb/9GLmldenw7H4ZjmvP7Ytioyu9pINOsbRgT2OCgkt01JqWoEw4J78srMJFI/wWBkogmTo0e0Cm43Rd06vbj7W0tJLVQj2ZEsTsUbG0ij2kJfCJ2dr2wIoxacVWoyukNSQ7WZnfJZoTsuS4dlCuz3d7SyspUfg/xxv+epO6CVMdljTpxzsqV1OOV9Vh3AT/DcpKiovs7+z8tI/u+VYk33MLdP1eyWJYVEiLWhmzFqUzBMoYFT11rTJXw85j4gNOkS9oUa3g9vzxJGFsvfBJQZkLM65WkymOrkUJYvboWdNqOGNpxWxVe2bFmLRiq92VcWpwTpv1jDzpIaThzN7d3YNkYVw1JszPfZKH8HCZ2MuwT37cHQVazbHb1f2SVsf4BtH7yT0I992uY+LHMCPf744ySb47vi9Wgw6Wuv697Rg0mc7EqDgeUVS7Cu0Dctc3Fbfbfvd2rX+3Lzx2n+RuD73fG8x0eta0hmS3JS25gfCg3FTW7d2D8y8auO7OKddf0N8vREGV8EohzWH5qtY++VrxiIh/ZgkFtp/0kmZ0qfdVrYNyQQtE235XVJecJTes7i8+XdvYDI4ZlNWm46lThhpOtlnAW8j15IcHcMxNFQYlAjEuDqvYduFqAGmJVcZsaQe3W5254JARYNIKGbJ2zaBYWkOyPVsH6XL0UQzaFOfo7paWyWSCnQH/Et17qMcBtOtd7sXYKy2tyLfDhVqHkNL3kq/cqtyDwkYEAiEVEnZisrToSyuj+6SEDbvfCsybNMBkiquua0JsjrxNBGJcPJaW1z3YJdbhYhzS6FaPSSu6eEZaGo0gKEXZOogwJE9aWg1NLQh3789h4AYjFM+ud3IPSktreMR7uCOskn72XnIuryKtjnuzGBVT5kkIR/5aMQpRy4As57eGZZMmu52/o0hXifzosbTYPRg5lO1TApNW++CqKjWkYN90BwaRs3o5NU6JPPmrWlSUvbtbWnSbYR9pTetIubuusfmQ3LoS6+5BFWk1t7QeknTbYe5BeJuTE4VDDIBH+IskKMFXaO879O398V9cIipCrwm6vZZWVzEQo3LvXaKQ6JDWQw89NGnSJIfDkZaWprnto0ePXn311U6nMysr6/bbb29oaFAS7Ny5c8qUKXa7vU+fPg8++GAreShk9IYNG8aPH2+z2QYNGvTXv/5V6nrEASPIB3dPfev2i00m+alz702Te5DO2NIiHAIdyT14oqpu17Gqlta49Gj8oG2ga0VFT5aWq0F8gqGowg17OtEc3yfd89uGUbmEfiGKfR+t/e7qy100OItcnX078I7UFQg17JCbV2H41kvHRnZK11iKC/U2u276+KhUHVT0ve997+c//7mmtObm5quuusrlcm3cuHHVqlX//ve/77rrLkpTXV09ffr0vLy8zd7ydAAAEABJREFUrVu3rlix4k9/+tOyZcsoqqCg4Morr7z44ou3b99+3333geqQkaJ6wjHVbgF1ae6U3IOk7PZrWnSbYR/BUinyF8jW7ClGIcNzU0ymNjMAKGNKnNYEmoiU1dQfkLswBmY56dtO7VbPNgVnyZ0gwK09eMVkMv3P3HNvu3Rwe7wt0OY2onRCllYT5jtxcWkOPw9jlK7DxYSJQHRI6ze/+c0dd9wxZswYTS3WrFmzZ8+elStXjhs3btq0aY8++ujTTz8NukKyl19+ua6u7oUXXhg9evScOXNATiAtMrZgWvXr12/58uUjRoy46aabfvrTn4LSkKUnCybjZvmFOoDgS2lQsigIYJTEUgpO39l1AsfhEX/ACYW0q6DCaF9cArP7g9KfSaYJNB0jZGmN6ZuGmrTHFYflJt81Y1hX6bdq93tOF9k80h6tFrNlRoe0At3e5s2bwUkwpyjB5ZdfXl9fv23bNpwiCr7BxESP6Y2o48ePHz58mKJmzJiBAAmiPv/888bGRjpVjigK/KeIou+WAcy7c7zr2A6rZwWiW95pVG6KlrUKT9WitBG5Rn9DEok7S86QlnyrocMWtOh++6SJH9Id3y+dTnv4Ue3JYN9gh3YGYxdrX9I6efJkTk6OUpP09HSr1QolNDiqoygMpd+opqamsrIyRKll6dKlqd6//Px8dVS3DOfJ94txa3Zr+7YaLtHVZUCmGIXpLmLf0kI9lVe1OvJTubguyc1TB90/a+RPLhIfsCBNTz5aEuKtZs8jpswUezIgsXbvnrbRr9aSJUvgN/ArsIH08yKXOkFra6uiUQJIAD2OikYJQKmJgobk3nvvrfL+FRYWkrIbH/O8Gwhp/aMb32nktzZAvqqFcuBS1bzxBmUMCllaJdWeNa3BHfJLWgoO2cm2n140MMVmUTQ9PIBVRkKgq+x4pNr2kKMh0rr11lv3BviD908HqdzcXDKeKE1FRQW8fGRUaaJKSsTP1AaKMpvNmZmZVIhyhGsxRfWn6LtrgH5VC3dnt3Zd9yCq3xEyQP5ACa40IMtp7wpvCBBp7Tt5uqq20WSKo9+jQv1ZOgUBh/cR41/S6hT89S9qiLSysrKGB/iz2Ww6F5g4ceKuXbtOnBDr4Ui2Zs0aMM348eMRRtRHH33U0ODZAY8oLH0NGDCAotauXYsACaImTJhgsfT0aWCe4h60iO/JEjh89ItAf6+l1SUWtHALRFpbCsoR7ptu7yp7FlDbbin0UQzcWld5IRpV7TliiLSCwnH06NEdO3bg2NzcjACkpka81T9jxoyRI0feeOON27dvX79+/d13371gwQJYRyhw7ty5ILB58+aB1VavXv3www/feeedJpPYmnzzzTcfOXIEp7DunnvuuWeffRYZkaWHi7Lr3dEVTIfObaxMpzUpUdijw2P7WxgKSrSmRZ876uBdGEodem7A585VlpbepNwnHys6AoHokNb9998/bty4Bx54AFyFAITWuhISEt566y1YY5MnT77uuutmz56tbF5PTU2FOVVUVAQrauHChaAoCN3xwIED33777Q8//PCcc8757W9/+/jjj1977bUU1ZOPvb2WFk/Dg3YDk8k0NEd8+HV039SgiWMhAVlaVBMmLcKhE4+KpcVrWp3YCoEuHR3SeuGFF1rb/k2dOpUu2a9fvzfffNPtdpeXl69YsQLWFelxHDNmDDyEdXV18B+C8DDQQEkyZcqUL774or6+vqCgAIYXKXv4kS2tkDrA0jljfzd79JQhvULK1VmJ1aTVwS9pddYtx/J1ydIyiR8A8/zqQizXtqfVLTqkFfOodYcKpjksI3un9EmzZ8nvF3SHW2rPexiWm3zDhf2j+83y9qsvvd5L5Z/VsVsH6aJ8VCPglB54PGjmBB4h1cDERJibJCaawUglTCbT67dOXn/XFKv3JRIjuThNl0Ag0ZyASQlVlS0twqETj45EsSCak+L59EEn1oQv7YsAk5YvJrGrwbyPF7Rit3lCrVnb9L2kAZ3usGQ4rW1j+KyjESBLixe0Ohp3Y9dj0jKGE6diBNoZAVrWYt9gO8NsqPgMp7Cx+qY7DKXmRB2LAJNWx+LNV2MEAiBApMW+wQDwdKj6B+fl/3Lm8JunnNWhV42Ni8V+LZi0Yr+NuIY9AoHzB2aYTHGXDO0a2x27d5OkO60/n3pWbiq/pBWL7cykFYutwnXqgQhcf0H/nUsuv3JM7x5473zLjIBxBJi0jGPVXVLyfcQqAkly01qs1o7rxQjEBAJMWjHRDFwJRoARYAQYASMIMGkZQYnTMAKMQPsiwKUzAgYRYNIyCBQnYwQYAUaAEeh8BJi0Or8NuAaMACPACDACBhHoQNIyWCNOxggwAowAI8AIBECASSsAMKxmBBgBRoARiD0EmLRir024Rh2IAF+KEWAEuhYCTFpdq724towAI8AI9GgEmLR6dPPzzTMCjEDsIcA10kOASUsPHY5jBBgBRoARiCkEmLRiqjm4MowAI8AIMAJ6CDBp6aHTfnFcMiPACDACjEAYCDBphQEaZ2EEGAFGgBHoHASYtDoHd74qIxB7CHCNGIEugACTVhdoJK4iI8AIMAKMACHApEU48JERYAQYAUYg9hDwqRGTlg8krGAEGAFGgBGIVQSYtGK1ZbhejAAjwAgwAj4IMGn5QMKKjkaAr8cIMAKMgFEEmLSMIsXpGAFGgBFgBDodASatTm8CrgAjwAjEHgJco1hFgEkrVluG68UIMAKMACPggwCTlg8krGAEGAFGgBGIVQR6MmnFaptwvRgBRoARYAQCIMCkFQAYVjMCjAAjwAjEHgJRIK3Dhw/Pnz9/4MCBdrv9rLPOeuCBBxoaGpQ7PXr06NVXX+10OrOysm6//XZ11M6dO6dMmYJcffr0efDBB1tbW5VcGzZsGD9+vM1mGzRo0F//+ldFzwFGoJsjwLfHCDACughEgbT27dvX0tLyt7/9bffu3Y899hg45r777qOLNjc3X3XVVS6Xa+PGjatWrfr3v/991113UVR1dfX06dPz8vK2bt26YsWKP/3pT8uWLaOogoKCK6+88uKLL96+fTuKAtUhI0XxkRFgBBgBRqAnIxAF0po5c+bzzz8/Y8YMWEXXXHPN3Xff/eqrrxKma9as2bNnz8qVK8eNGzdt2rRHH3306aefBl0h9uWXX66rq3vhhRdGjx49Z84ckBNIi4wt0F6/fv2WL18+YsSIm2666ac//SkoDVlYGAFGgBFgBDoegZi6YhRIS3M/VVVVGRkZpNy8eTM4CeYUnV5++eX19fXbtm3DKaLgG0xMTEQYgqjjx4/D04gwokCBCJAg6vPPP29sbKRT5YiiwH+KKHoOMAKMACPACHRXBKJMWgcPHoSv7+abbya8Tp48mZOTQ2Ec09PTrVYrlAjjqI6iMJR+o5qamsrKyhCllqVLl6Z6//Lz89VRHGYEGAFGgBHolggYIq0lS5aYAvzBBlJwgakEV+H3vvc9+PQUJfIpYQRaW1sVjRIgPY6KRglAiSw4qjU4hdx7772w6kgKCwuhYQkfAc7JCDACjEBXQMAQad166617A/zB+0e3Ccb61re+NXHixKeeeoo0OObm5pLxhDCkoqICXj4yqjRRJSUlSBAoymw2Z2ZmIoFa4FpMUf2pozjMCDACjAAj0C0RMERaWVlZwwP82Ww24HLs2LGpU6eee+65zz//fHz8mTLBYbt27Tpx4gTSQNasWQOmGT9+PMKI+uijj5Qd8IjC0teAAQMoau3atQiQIGrChAkWi4VO+cgIMAI9BAG+TUbAF4EzBOMbZ1ADGwuMhVWlP/3pT6WlpTCtIJR3xowZI0eOvPHGG7dv375+/fq77757wYIFsI4QO3fuXBDYvHnzwGqrV69++OGH77zzTpPJhCgsiR05cgSnsO6ee+65Z599FhmhZ2EEGAFGgBHo4QhEgbRgCR04cOD999/v27dvb+8fwZqQkPDWW2/BGps8efJ11103e/ZsEBtFpaamwpwqKiqCFbVw4UJQFISiBg4c+Pbbb3/44YfnnHPOb3/728cff/zaa6+lKD4yAowAI8AI9GQEokBasJZaff4UTPv16/fmm2+63e7y8vIVK1bAulKixowZ89FHH9XV1cF/+MADD5hMwsyi2ClTpnzxxRf19fUFBQUwvEjJR0aAEWAEGIEejkAUSKuHI8i3zwgwAowAI9BhCDBpdRjUfKEugwBXlBFgBGIWASatmG0arhgjwAgwAoyAFgEmLS0ifM4IMAKMQOwhwDXyIMCk5QGC/2MEGAFGgBGIfQSYtGK/jbiGjAAjwAgwAh4EmLQ8QMTCf1wHRoARYAQYAX0EmLT08eFYRoARYAQYgRhCgEkrhhqDq8IIxB4CXCNGILYQYNKKrfbg2jACjAAjwAjoIMCkpQMORzECjAAjwAjEFgKCtGKrRlwbRoARYAQYAUYgAAJMWgGAYTUjwAgwAoxA7CHQTUirtbUV2FbzX/dBgO+EEWAEei4CGM9pVEdAI92EtE6fPo0by8/PT+U/RoARYAQYga6MAEZyjOc0qiOgkW5CWnl5eYWFhZWVlVXh/iE7oMEx3AK6Wz5AwYBoGpUx6emAaO7f55R7iAaS8ACprKxERozqGIJ8pZuQVnx8fN++fTG3SIngD+hEkLsbZmVAfBuVMdFgwoAwIBoENKdh9BCM5BjPMaojr690E9LyvTHWMAKMACPACHQ/BJi0NG3Kp4wAI8AIMAKxiwCTlqdtEhMTH3jgARw95z3+P0DBgGh6AWPCgGgQ0JxyD+kAQJi0PCCjty1ZsgRHz3mP/w9QMCCaXtBpmGjqETOnDIimKRiQDgCESUsDMp8yAowAI8AIxC4CTFqx2zZcM0aAEWAEYhaBzqoYk1ZnIc/XZQQYAUaAEQgZASatkCHjDIwAI8AIMAKdhQCTVmch3xWuy3VkBBgBRiDGEGDS8jTIX/7yl4EDB9pstvHjx3/88ccebY/5b+nSpeedd15ycnJ2dvbs2bP379+v3Hpra+uSJUvy8vLsdvvUqVN3796tRPWEAJAxmUyLFi2im+3JaBw7duyGG27IzMx0OBznnHPOtm3bejImTU1Nv/71rzFo4LkYNGjQgw8+2NLS0tMA+eijj66++moMDnhGXnvtNbp9HHUek/r6+ttuuy0rK8vpdF5zzTVFRUVIH5IwaQm4/vnPf2JUWrx48fbt2y+++OIrrrji6NGjIqLH/NuwYcMtt9zy6aefrl27Fk/jjBkzXC4X3f0jjzyybNmyJ554YuvWrbm5udOnTw/0IUtK352OuOWnnnpq7Nixyk31WDQqKiomT55ssVjeeeedPXv2PProo2lpaQRLB2NCF+304x/+8Ie//vWveC727t0LBP74xz+uWLGCaoXTHvLIYJQ4++yzAQLduHLUQQAj7erVq1etWrVx48aamppZs2Y1NzcrGY0EmLQESuhh8+fPv+mmm0aMGLF8+fL8/Pwnn3xSRC256mkAAAX0SURBVPSYf+++++68efNGjRqFLvj888+Ds2kejRkTAAGdz5kzZ/To0S+++KLb7X7llVd6AjB4oq6//vqnn346PT2d7rcno4ExGs8F+sb5558/YMCAyy677KyzzgIsPRaTzZs3f/vb377qqquAxne/+13M8z7//POeBgjm97/73e8wOODGFdHpElVVVc8++yxmPNOmTRs3btzKlSt37ty5bt06Ja+RAJNWXENDAwZo9DkFL4Q3bdqknPa0ADoWbjkjIwPHgoKCkydPAhCEIYmJiVOmTOkh4MD0xJCEpws3TtKT0Xj99dcnTJjwve99Dw5kDDfg8h6OyUUXXbR+/fqvv/4aOHz55ZewG6688kqEe3Inwe1DdBDASNvY2KiMJ/ArYioc6ngSk6SF++5AKSsrg32ak5OjXBNhjNTKaY8KYJZ055134oFEZ8KNEw4ABGEShElJp931CPfFF198gQUt9Q3SjQMBRYkwKRVNdw0cOnQI7ochQ4a89957N9988+233/73v/8dN0u3DxwQJkGYlHTaXY+//OUvf/jDHw4fPhwuU7A4vF44xc3SvQMEhEkQJiWddvsj3SzuWrlThEmJo9VqVVwXSKBEIWxQmLQ8QGEh0ROKi8PArT5V9D0hcOutt3711Vf/+Mc/1DerRqMngFNYWPiLX/wCvgubzabGgcI9DQ2665aWlnPPPffhhx/GAP2zn/1swYIF4DCKwrEHYoKFcPQQuMoxuYHb/E9/+hOOgIKkBwJCN64cDSIQxnjCpBWXlZWVkJCAKYACd0lJCfhfOe05gdtuuw1eoA8++KBv375017m5uQj0NHDgxEAfGD9+vFn+bdiw4fHHH0eQekVPQwMdANK7d++RI0ciQILVXyx8Itwzewhu/L/+679+9atf/eAHPxgzZsyNN954xx13kF3eYwEBJiQ6CCAKyzEVFRWUEkc8aPRYIWxQmLTiYK5ieFq7dq0CGcKTJk1STntCAPMd2Fivvvrq+++/P3DgQOWWEUY/AyCkQYfDCN7twbnsssuwPrzD+4e1nOuvvx5ngwYN6oFoUNNPnjxZ/SIE1nL69++PqJ7ZQ3Djbrdb/SuFmPjCGIW+xwKCeyfRQWD8+PHwpirjyYkTJ3bt2hXqeMKkJXDGKs4zzzzz3HPP7d27FzMmTCHhtRcRPebfLbfcQr6O5ORkWBKQ2tpa3D1sfDjr4RRavXo1ute8efMcDsfcuXMR1Y0FIGBJTxGn05mZmYnTnokGNTSei08//RQ94cCBA/CJPfXUU+gziOqxmFx99dUPPfTQW2+9dfjwYTwdy5Yt+853vtPhgOCCnSk1NTWYzEFQiYKCAgQweOp0idTU1Pnz5991113r16/fvn37DTfcADtVvdcJ5QQVJi0B0fe///3ly5c/+OCD55xzzkcfffT222/TLFLE9Yx/WJ+oqqqaOnUqvEAkcNnTrd9zzz3grYULF8LgOHbs2Jo1azCmU1QPPPZYNM477zwMzVjsBHn/9re/xfMC65M6QM/EZMWKFd/97nfxXMBTevfdd2OdD7D0NEA+//xzrHFCcOOY+iNw//33I6zTJR577LHZs2dfd911sN0xA37jjTcSEhKQxbgwaXmwQufDjKm+vh7rGZdccolH22P+g3tQIzCq6O4xb1qyZAkM+bq6OvgGMWaRvuccP/zwQ4zRdL89GY1Zs2bBa4puAIfEggULCBAceyYmmLqhVxw5cgQ+iYMHD/7ud7/DQgPQgPQcQDDN1YwbL7zwgj4CNpsNfF9eXg7/KhgrPz8f6UMSJq2Q4OqExHxJRoARYAQYAQUBJi0FCg4wAowAI8AIxDoCTFqx3kJcP0Yg9hDgGjECnYYAk1anQc8XZgQYAUaAEQgVASatUBHj9IwAI8AIMAKdhkBA0uq0GvGFGQFGgBFgBBiBAAgwaQUAhtWMACPACDACsYcAk1bstQnXKCACHMEIMAI9HQEmrZ7eA/j+GQFGgBHoQggwaXWhxuKqMgKMQOwhwDXqWASYtDoWb74aI8AIMAKMQAQI/H8AAAD//wajnfkAAAAGSURBVAMAM4GwA8nHspQAAAAASUVORK5CYII=" + } + }, + "cell_type": "markdown", + "id": "01d13f87", + "metadata": {}, + "source": [ + "##### Nose-hoover\n", + "\n", + "* x-axis = MD steps\n", + "* y-axis = Bar\n", + "\n", + "\n", + "![image.png](attachment:image.png)" + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAGxCAIAAADpq/tWAAAQAElEQVR4AexdCXxU1blnMpklM1kmCyQEwo7IKgiKgApWQFRUikotakuLvFpXXGqf2leptvpqBan4aqviUpFiW6VV68KigMiOoGyC7AlbSJgkZIbsef9zvpmbm9lyZzIzuUm+/D4O5579/M+953++75x7J6Ge/xgBRoARYAQYgVaCQEIH/mMEGAFGgBFgBFoJAkxarWSg2lUzubOMACPACARBgEkrCDAczAgwAowAI6A/BJi09Dcm3CJGgBHQHwLcIp0gwKSlk4HgZjACjAAjwAg0jQCTVtMYcQpGgBFgBBgBnSDApKUaCPYyAowAI8AI6BsBJi19jw+3jhFgBBgBRkCFAJOWCgz2MgL6Q4BbxAgwAmoEmLTUaLBfXwi88cYbBu9fYmJi586db7nllu+++05jK1etWoXccDWmj2KycfIv3AKPHz8+Z86c7du3h5uxRdLPmDED8JKYzebevXs//PDDZWVlMWpMQUHB7Nmzx44d63A4UCnujRhVxMXqHAEmLZ0PEDevw+uvv75+/foVK1bcc88977///qWXXup0OtskLiCt3/zmN62FtDAESUlJGBoIxuWKK66YO3fuTTfdhPBYyP79+99++22w4zXXXBOL8rnMcBBoybRMWi2JPtetBYFBgwZdcskl48aNe/zxx//7v/+7sLDwX//6l5aMbTKN2+3WT78SEhIwNJBJkya9+uqr4K3ly5cfOnQoFi28/PLLT58+jfIffPDBWJTPZbYWBJi0WstIcTsFAiNGjMB/p06dgkuyZcuW66+/PiMjw2q1Dhs27O9//zuF+7tICetijx49oB/A/eEPf3jkyBFKVl9fj/V7Zmbm0aNHKQTcMHDgwP79+7tcLoQgwZ/+9KehQ4cib3p6OvSJgwcPIpwEsc8++2z37t3RhgsvvPDjjz+m8GDuP/7xj5EjR6alpdlstl69ev30pz9FSpgxL7roInh+8pOfwPwFgakQl7DCJScn79ixY+LEiSkpKVdeeSUCq6qqfvvb355//vkWi6Vjx47Iggkd4SSfffYZOB7dQWu7det24403ojsU9dJLL11wwQUoEEUh+2OPPUbhUXF9RkfpglI4YEd36BL2PST4/PPPf/7zn2dlZaG1U6dOha5Jsf4uCNI/kEPaIQJMWu1w0DV1WZ+JaBV/3nnnUfMw5Y0ZM6akpOTPf/7zv//9b5DKD37wA8yGFOvjHj58uF+/fvPnz//0009///vfnzhxAiRRVFSEZJg933rrLVDItGnTqqurEXLXXXehLlCg3W7H5c9+9jNsqIwfPx5KHthr165do0ePVrgTNr1f/vKXEyZMQCym4FmzZu3duxe5AgqMaWgkuGrJkiX/+c9/fv3rX9fU1CAl2A6GUHh+9atfIQ3kjjvuwCUEFAVi/t73voc+oq66urobbrjhf//3f6dPn44S4IH+AZY6d+4cEqOb1157Lcxor7322ieffIJYdAElIGrJkiXoF7aFli5diqY+8MADRMmIiooAMWw9omvaS0MfTSbT4sWLwfqg7dtuu017Xk7ZPhFg0mqf496ael1bW4tpvby8HGQD9QJmIszg1AFMwdCHoFiAbK666ipM+pMnT4b2gGmdEqhdqEeY8adMmYIS4Md0D/0D0yWlwUofc/rWrVsfeeQRlPPmm28uWLBg8ODBiN2wYcMrr7yC2f+5555DLVDRQBJlZWXz5s1DLCgTFPj9738f9jFYycBYoLqTJ08iKqCsW7euvr4eLHv11VdfccUV0Dz++te/ImVqaioMofD07t0bBjdI165dcQkBj4LbYBoFb0HfQvlgI+RCIHh05syZ//rXv3bv3k1sjS5UVFT84Q9/ALGBn0BsSOlwOFDOl19+Cc8LL7wAfoXGBib+4x//iPDmCIYGUlxcjB699957QK9Tp07aCwRiaA86hV48+uijWIWEgE57sZyyDSPApNWGB7eNdA3TNxbjMGdhgoNpDtoGlvPoG3bmv/3221tvvRV+zJsksPJBhQqo6ID2oA/16dMH2SEwkUHP2LNnD7KTQGn73e9+B1UM2hKW/JhGKfzDDz+EKoYQqgJuTk4OjGzQDJAAKhFIgpqBSwiUMJgK4QkoUO8QDpYF9xw7dgx+LQITn5IM7QH3XHfddWgJCVRMNInaAz/UrP/6r/8C76ptmMh+8cUXg2JBusCQVEwEBpTaWrFQoMIDrgAoFwDE0EBg3wNo0CABIEVpdJX1B9IPGTIE7hGvzRZ+P+EARqADkxbfBHpHAIrC5s2boU5BMwDHYM6lFpN17uGHH8akqQh0L8QGnJGhc7z44ouwR0Fj27RpE8rEbhCZ1JCFBNyDGb+ysvIXv/gFhcBFRdCNsrOzlVrggfpFtUDJQBpwBlxFfC6VcHig50ExAh/86Ec/gi4F7epvf/sbwkMI7JbQw5QEaA+4B+1EMxSBgkLtgaK2YsUKqDt33303/BBFnbr99tthMwQr3HjjjUiAfTWojEqxag/0MKVk2nJTxyp+7JkBRsgHH3wA+yQ6An1UidXigYKrJMP+HPw+I4IQFkZAjQCTlhoN9usRgf79+2OHH5Y0GKBAObCM/fOf/0RDsbqHC5sSJk0fgbaBKLWUlpZCQYHxCkY2zMhQd2D6O3PmjDpNbW0tSAvKXLdu3aBm0T4QEqAiaFpr1671qQXcg1iadsEZ8Cvic6mEkweGu5UrV6JJ0I3AW2BTqGsUFdBF7epwtAeV+jQGl9hso2SXXXYZWATlg1lHjRqF3ThYPinqJz/5CeyTiIJ1FEwMayo4jKLU7l/+8hcUSELnQdSxij8hIQFDA0E5GBeYamGAzc/PpwQgIdA/+cklgic/u4xAZAjojrQi6wbnaicIYLsepIK9HNis+vXr17dv36+//hqTpo/AlugDCOZ9zNGYRpVwbEGBpZRLeJ544okvvvji7bfffuedd1CsomxhRkZemPJ8agHtIResl1arFbngJwErBGQCilVcNAZ7TtgPQ8i2bdvgIgRuk6oG2oPZH433aQ8AQXZFjEYjdKn/+7//Q8hXX30FVxG73Y4dtccffxzEvGvXLiVc8aAopfAePXoo4SE8aDzqgqUU+46UDBm/+eYb8sOFrgwLLTwsjEBzEGDSag56nDfeCICxoFrBSEgHKKAQQGW56qqrYJhas2YNVJ9nnnnm5ptv9m8WzGuwy/3hD38AV8F69j//8z/YfcHOkJIShjLkRTj0MPAQ/C+88MLSpUuRAHtd2CKCjgJFDera559/jtphh3zppZcQiybBRImU0AJheET52K8KYR4E48LgBpJbvXo19pYeeOABGOLAXigKpjwY3BAFDWzLli3Hjx9HoL/ccsstoBzs3j355JPQb4AAtq9mzJiBNiAx9FE0ACFo58cff4xWIXD8+PFwZ82add9994GSgRV21KBCpaWlQelEVFQEvUCrXn/99UPyVS1YI9EA9BctXLBgATa9UF1zKoKGDQH5oRDgAz8EfpZ2hQCTVrsa7rbQ2XvvvRfmO8zXUDVgM9y0aRO4BxYwzMuYFkFI8ATsJ5gG6UE8U6dOxZQHllLm0BMnTtx2223YlcEMS3kffPDB6667Duxy+PDhDh06gB2xH4a5HoRx7bXXIpnL5br44ospMRoDklu2bNn111+P2Rm0AU2FovxdaD8wHv7yl7+cOHEiuBAshVkYhjWkxN4V9pygRSEKXPLyyy8j0F+gQr3//vuPPfbYe++99/3vf3/KlCnYSYK2R5ofTKPYMIPWCGIDbZw+fRqJUSDKgdlw586d999//4QJE0CW5513HjRLbOwhKloCxRHj8tRTT6FAqKqQN954A0i+++67oEmMFMIjFixHIIAOJUCrgx8CP0u7QoBJq10NdyvrLLQH2OVgp1K3G7MzjG/79u3D3I3wIUOGQHU4deoULF3gHizqf/aznyEcAhJCdrjwQ7p06YKFOfaxysrKoAGAJ0BImFIR1blzZ5SAvNikwSUE5kTM9U6nEzYuXEKgaWGLCAYut9u9f/9+qDLDhw9HOASJsVV29OhRbOHArgjzHVQlCKL8BZz30UcfFRQUIDEqxd7SpZdeqiQDKUKPRF/QcmhCCEcLUSk8aklMTHzooYe2b98OW+LZs2eRBUzZp08fpIGaCDJD12CpKyoqQjPAGQiH/OhHPwJBgjJRNaydwI14DlERSMCGDRo0CKQF6kWBZrMZHAZYgBiaccEFF6BVyIUoiP/gYqTQa7iIDSiI9ZeAKTmwDSPApNWGB5e7xggwAm0XgfbaMyat9jry3G9GgBFgBFohAkxarXDQuMmMACPACLRXBKJGWjCRYys7MzMTm8nYCt66dStBChs0TPO5ubnYcIa1Wn2+FoZ1bKpnZWXZ7XbsYMPKT1ngYi8Be8jYJ4fAU1JSgsD2J9xjRoARYAQYgUYIRIe0wDFjxowxmUzY3969e/fcuXOVY0LPPvvsvHnzXnzxxc2bN+fk5EyYMAH7xtSE2bNnL126dMmSJWvXrsVWM7avsYVLUdOnT8cm8yfyDx7wFoWzywgwAowAI9CeEYgOaf3+97/Py8t7/fXXL7744h49elx55ZW9e/cGrFCz5s+f//jjj0+dOnXQoEFvvvmm2+1evHgxokpLSxcuXAh6Gz9+/LBhwxYtWrRjx44VK1Ygas+ePWCrV199dZT8e+WVVz788MOAX5NDYhZGgBGIKwJcGSPQoghEh7Tef//9ESNG3HzzzZ06dQIDgWaoU4cOHTp58iS9I4IQi8UyduzYdevWwQ/7YXV1tRIF+yFYjaLWr18Pq+DIkSORDHLJJZfgkqJwqQisi2XeP9gPDx48CCL0BvD/jAAjwAgwAq0SAczk2C2qq6tTZnu1JzqkBcJ46aWX+vbt++mnn95555333XffX+WvLYCxUFl2djZcEvgpEK7ZbE5PT6dwuOookB9CFMEl0iuX5HnmmWdAZiQoB7odbJJ0yS4jwAgwAoxAK0UAMzlMd8G+CBOQtIgUwnBBiRdeeOHTTz8NNetnP/vZrFmzwGFKfoPBoPjr6+sNhoZLJRwedZTB0CiNOgopSR599FEQMsnRo0cRmJ+fT5fsMgKMACPACLRSBDCTYz73/4IoAiHRIa3OnTsPGDAAxZH079+fWCQnJwchaiWpsLAQGhUCEVVVVeV0OuEnUUedOnWKAsk9ffo05aJLcmFsTPX+YUGBQO8V/88IMAKMACPQihHAfG4wNFJdEEISHdIaM2aM+qDEvn376EfwevbsCXJavnw5VQaWWr169ejRo3E5fPhwk8mkRJ04cWLnzp0UNWrUKCwQNm3ahGSQjRs34pKicMnSThHgbjMCjAAj0CFKPwL5wAMPbNiwAebB/fv3L168+OWXX7777rsBr8FgmD17NsKXLl0KTpoxY4bNZps+fTqioBvNnDnzoYceWrly5bZt22677bbBgwePl9+ihqI2adIk2BhRJgSeyZMnh/gCKUpjYQQYAUaAEWgPCERH07ronwl0awAAEABJREFUootAS3/7298GDRr01FNPzZ8//9ZbbyX4HnnkEfDWXXfdNWLEiGPHji1btkyxVD7//PNTpkyZNm0aFDWQ2QcffECfQEXGt99+Gxw2Uf4NGTLkrbfeQiALI8AIMAK6QoAbE38EokNaaDeUoR07dlRUVOzZswe6EUJIoGzNmTMH1j9EwTYIVqNwuFardcGCBcXFxW63G4yVl5eHQJKMjIxFixbRaU14HA4HhbPLCDACjAAj0J4RiBpptWcQue+MACPACDAC8UGASaspnDmeEWAEGAFGQDcIMGnpZii4IYwAI8AIMAJNIcCk1RRCHM8I6A8BbhEj0G4RYNJqt0PPHWcEGAFGoPUhwKTV+saMW8wIMAKMgP4QiFOLmLTiBDRXwwgwAowAI9B8BJi0mo8hl8AIMAKMACMQJwSYtOIEdNuohnvBCDACjEDLIsCk1bL4c+2MACPACDACYSDApBUGWJyUEWAE9IcAt6h9IcCk1b7Gm3vLCDACjECrRoBJq1UPHzeeEWAEGIH2hUDrIK32NSbcW0aAEWAEGIEgCDBpBQGGgxkBRoARYAT0hwCTlv7GhFvUOhDgVjICjEALIMCk1QKgc5WMACPACDACkSHApBUZbpyLEWAEGAH9IdAOWsSk1Q4GmbvICDACjEBbQYBJq62MJPeDEWAEGIF2gACTVqsbZG4wI8AIMALtFwEmrfY79txzRoARYARaHQJMWq1uyLjBjID+EOAWMQLxQoBJK15Icz2MACPACDACzUaASavZEHIBjAAjwAgwAvFCQDtpxatFXA8jwAgwAowAIxAEASatIMBwMCPACDACjID+EGDS0t+YcIu0I8ApGQFGoJ0hwKTVzgacu8sIMAKMQGtGgEmrNY8et50RYAT0hwC3KKYIMGl54P1k58n5K/Ztzy/xXPN/jAAjwAgwAvpDgEnLMyYffnN8/orvth11eq75P0aAEWAEGAH9IRAd0pozZ45B9ZeTk0M9ra+vR1Rubm5SUtK4ceN27dpF4XArKyvvvfferKwsu91+/fXXFxQUIJDE6XTefvvtafIPnpKSEgqPqWs1GVF+RXUd3KaFUzACjAAjwAi0BALRIS20fODAgSe8fzt27EAI5Nlnn503b96LL764efNmMNmECRPOnj2LcMjs2bOXLl26ZMmStWvXlpeXT548uba2FuGQ6dOnb9++/RP5Bw94C4GxFkuigKKi2tOGWFfH5TMCjAAjwAhEgICYqSPI5p8lMTERtETSsWNHJICaNX/+/Mcff3zq1KmDBg1688033W734sWLEVVaWrpw4cK5c+eOHz9+2LBhixYtAs+tWLECUXv27AFbvfrqq6Pk3yuvvPLhhx/u3bsXUTEV0rQqa1jTiinMXHgMEeCiGYH2gEDUSOu7776DGbBnz5633HLLwYMHgd2hQ4dOnjw5ceJE+CEWi2Xs2LHr1q2Df+vWrdXV1UoUMoLVKGr9+vWwC44cORLJIJdccgkuKQqXaoGBsUz1p46KwG9hTSsC1DgLI8AIMALxRSA6pAWO+etf//rpp5++8sorIKrRo0cXFxfDg75kZ2fDJYGfAuGazeb09HQKh6uO6tSpE0IUwSXSK5eK55lnngGfkeTl5SnhkXlY04oMN87FCDACjEBwBKIfEx3Suvrqq2+88cbBgwfD3Pef//wHzYQxEC7EYDDAJamvrzcYGi4pkFx1lMHQKI06ihKT++ijj8LMSJKfn0+BEbukaVXynlbECHJGRoARYARij0B0SEvdTrvdDvaCtRD7WwhXK0mFhYXQqBCIqKqqKqez4Xy5OurUqVNIo8jp06cplxJCHtgbU1V/FBixy5pWxNBxRkaAEWAE4oZA9EkLW0179uzp3Lkz9rdATsuXL6fOgKVWr14NyyEuhw8fbjKZlKgTJ07s3LmTokaNGgXladOmTUgG2bhxIy4pCpexE6tJQFHBmlb4EHMORoARYATihoCYqZtf2cMPPwxCOnToEDjmpptuKisr+/GPf2wwGGbPnv30008vXboUnDRjxgybzTZ9+nRUh42omTNnPvTQQytXrty2bdttt90G5QymRUT1799/0qRJs2bN2iD/4Jk8eXK/fv0QFVOxJIr3tPj0YExB5sIZAUaAEWgmAtEhrYKCgh/+8IeglqlTp5rNZtBN9+7d0bJHHnkEvHXXXXeNGDHi2LFjy5YtS0lJQTjk+eefnzJlyrRp08aMGQMy++CDD4xGQRuIevvtt8FhE+XfkCFD3nrrLQTGWljTijXCXD4jEEcEuKo2i0B0SGvJkiXHjx+HARDM9O677w4YMIAAg7I1Z84cWP8qKiqgig0aNIjC4Vqt1gULFhQXF7vdbjCW+vhfRkbGokWLoK5B4HE4HEgfa2FNK9YIc/mMACPACDQfgeiQVvPb0eIlWHhPq8XHgBvACDACjEBTCLRi0mqqa+HFs6YVHl6cmhFgBBiBlkCAScuDOu9peYDg/xgBRoAR0DECTFqewWFNywME/9csBDgzI8AIxBYBJi0PvqxpeYDg/xgBRoAR0DECTFqewVE0rfr6ek8Q/8cIMAKMQBtAoG11gUnLM56kaeGC3y8GCCyMACPACOgTASYtz7iQpoULJi2AwMIIMAKMgD4RYNLyjIvJaEiQH5dvnR969/SC/2MEGAFGoG0jwKTlGV+DwUDKFmtaHkT4P0aAEWAE9IcAk1bDmNC2Fn/ovQER9jECzUGA8zICMUCASasBVNK0KqrrGoLYxwgwAowAI6AnBJi0GkaDNK3KmtqGIPYxAowAI8AI6AmBZpKWnrrS7LawptVsCLkARoARYARiiwCTVgO+rGk1YME+RoARYAR0iQCTVsOwsKbVgEWr9nHjGQFGoO0iwKTVMLb0k1q8p9WACPsYAUaAEdAZAkxaDQNiNRlxwacHAQILI8AIRBcBLi1aCDBpNSBpSRRosKbVgAj7GAFGgBHQGQJimtZZk1qsOaxptRj0XDEjwAgwAtoQYNJqwKm5mlZDSexjBBgBRoARiAkCTFoNsLKm1YAF+xgBRoAR0CUCTFoNw8KaVgMW7GsrCHA/GIE2hgCTVsOAsqbVgAX7GAFGgBHQJQJMWg3DwppWAxbsYwQYAUYgVgg0q1wmrQb4SNOq5K+8N0DCPkaAEWAE9IUAk1bDeLCm1YAF+xgBRoAR0CUCTFoNw0KaFn8RowGRZvg4KyPACDACsUCASasBVda0GrBgHyPACDACukSASathWFjTasCCfYxAG0SAu9QWEGDSahhF1rQasGAfI8AIMAK6RIBJq2FYLPyV9wYw2McIMAKMgB4RaGuk1RyMSdOqqK5tTiGclxFgBBgBRiB2CESZtJ555hmDwTB79mxqcX19/Zw5c3Jzc5OSksaNG7dr1y4Kh1tZWXnvvfdmZWXZ7fbrr7++oKAAgSROp/P2229Pk3/wlJSUUHisXdrTqqypi3VFXD4jwAgwAoxAZAhEk7Q2b9788ssvDxkyRGnKs88+O2/evBdffBFROTk5EyZMOHv2LMWC2JYuXbpkyZK1a9eWl5dPnjy5ttaj4kyfPn379u2fyD94wFuUJdYua1qxRri9ls/9ZgQYgaghEDXSAvHceuutr7zySnp6OrUOatb8+fMff/zxqVOnDho06M0333S73YsXL0ZsaWnpwoUL586dO378+GHDhi1atGjHjh0rVqxA1J49e8BWr7766ij5hwI//PDDvXv3IirWomhaaHms6+LyGQFGgBFgBCJAIGqkdffdd1977bUgIaURhw4dOnny5MSJEynEYrGMHTt23bp1uNy6dWt1dbUSBfshWI2i1q9fD7vgyJEjkQxyySWX4JKicKkWGBjLVH/qqMj8FpMHDbYQRgYg52IEGIFWg0Crbahnmm5m+2Hl++qrr7ChpS4HjIXL7OxsuCTwUyBcs9ms6GSIVUd16tQJIYrgEumVS8WD6sBnJHl5eUp4xB5ropHyMmkRDuwyAowAI6A3BKJAWvn5+ffffz9MfFar1b97BoNBCYTZzWBouFTC4VFHGQyN0qijkFKRRx99FGZGErRBCY/YYzIaEmTNlXyAMGIQOSMjwAgwArFEIAqkBVtfYWHh8OHDE+Xf6tWrX3jhBXihPKHlaiUJySgwJyenqqrK6XQiAYk66tSpUxRI7unTpykXXSou7I2pqj8lPGKPwWCwSGWrrWhaESPBGRkBRoAR0CkCUSCtK6+8cseOHdu9fyNGjLj11ltx1atXL5DT8uXLqetgKfDZ6NGjcTl8+HCTyaREnThxYufOnRQ1atQoKE+bNm1CMsjGjRtxSVG4jLVY5bZWBWtasQaay2cEGAFGICIEokBaKSkpg1R/drs9MzMTAVBcZs+e/fTTTy9duhScNGPGDJvNNn36dLQTG1EzZ8586KGHVq5cuW3btttuu23w4MF0iKN///6TJk2aNWvWBvkHz+TJk/v164dccRDWtOIAMlfRrhHgzjMCzUMgCqQVogGPPPIIeOuuu+6C+nXs2LFly5aB4Sj9888/P2XKlGnTpo0ZMwZk9sEHHxiNnnMQb7/9NjhsovwbMmTIW2+9RVni4LKmFQeQuQpGgBFgBCJGIPqktWrVqvnz51ODoGzNmTMH1r+KigrYBqF+UThcq9W6YMGC4uJit9sNxlIf/8vIyFi0aBGdZofH4XAgfXyENa344My1MAKMACMQGQLRJ60OHSJriS5ysaali2HgRjACjAAjEAQBJq1GwLCm1QgOvmAEGAFGQGcIMGk1GhD6KAafHmwEStu44F4wAoxAm0CASavRMLKm1QgOvmAEGAFGQGcIMGk1GhDe02oEB18wAoxALBHgsiNAgEmrEWisaTWCgy8YAUaAEdAZAkxajQaENa1GcPAFI8AIMAI6Q4BJq9GARF/TalQ8XzACjAAjwAg0CwEmrUbwsabVCA6+YAQYAUZAZwgwaTUaENa0GsHBF20UAe4WI9B6EWDSajR2rGk1goMvGAFGgBHQGQJMWo0GxJIoAKmsrmsUyheMACPACDACsUVAa+lijtaath2ks5rEl+Yra2rbQV+5i4wAI8AItD4EmLQajZn3M06saTWChS8YAUaAEdAJAkxajQbCmsiaViNAonvBpTECjAAj0EwEmLQaAciaViM4+IIRYAQYAZ0hwKTVaEBY02oEB18wAm0fAe5hK0OASavRgFnkQYwKPj3YCBW+YAQYAUZALwgwaTUaCc+Rdz492AgVvmAEGAFGQC8ItAvS0g42HXlnTUs7YpySEWAEGIF4IsCk1Qht1rQawcEXjAAjwAjoDAEmrUYDomha9fX1jSL4ghGIMgJcHCPACESCAJNWI9QsJg8gVbX8fnEjZPiCEWAEGAE9IOCZo/XQFD20gY68oyW8rQUQWBgBRqB9IdAaesuk1WiUTEaDwSBC+PODAgX+xwgwAoyAzhBg0mo0IAaDgZQt/tB7I1z4ghFgBBgBfSDApOU7DrSt1XY1Ld/+8jUjwAgwAp8s26UAABAASURBVK0IASYt38EiTYv3tHxx4WtGgBFgBHSAAJOW7yCwpuWLCF8zArFGgMtnBDQjwKTlCxVrWr6I8DUjwAgwArpBgEnLdyhY0/JFhK8ZAUaAEdANAnEjLd30uKmGsKbVFEIczwgwAoxAiyEQHdJ66aWXhgwZkir/Ro0a9fHHH1OH6uvr58yZk5ubm5SUNG7cuF27dlE43MrKynvvvTcrK8tut19//fUFBQUIJHE6nbfffnua/IOnpKSEwuPjkqZVUV0bn+q4FkaAEWAEGAHtCESHtLp27fq///u/W+Tf9773vRtuuIH46dlnn503b96LL764efPmnJycCRMmnD17lho3e/bspUuXLlmyZO3ateXl5ZMnT66t9fDE9OnTt2/f/on8gwe8RVni41oSjaiosoY/4wQY2rpw/xgBRqC1IRAd0rruuuuuueaa8+Tf7373u+Tk5A0bNkDNmj9//uOPPz516tRBgwa9+eabbrd78eLFgKi0tHThwoVz584dP378sGHDFi1atGPHjhUrViBqz549YKtXX30VGhvklVde+fDDD/fu3Yuo+AhrWvHBmWthBBgBRiACBKJDWkrF0JagPLlcLvDNoUOHTp48OXHiRIq1WCxjx45dt24dLrdu3VpdXa1EwX4IVqOo9evXwy44cuRIJINccskluKQoXKoFBsYy1Z86qjl+2tNiTas5GHJeRoARiBgBzhgagaiRFlQlKFhgpjvvvBN2vwEDBoCxUHd2djZcEvgpEK7ZbE5PT6dwuOqoTp06IUQRXCK9cql4nnnmGfAZSV5enhLeTA9rWs0EkLMzAowAIxA7BKJGWv369cP+E6yCP//5z3/84x/v3r2bGm0wyA/Qyov6+nqDoeFShnkcdZTB0CiNOsqTWv736KOPwsxIkp+fL8Oi4LCmFQUQuQhGgBFgBGKDQNRIC5pTnz59RowYAQXoggsu+OMf/5iTk4M2q5WkwsJCaFQIRFRVVZXT6YSfRB116tQpCiT39OnTlIsuFRdanTyu6HGU8GZ6rPIntSpienqwmU3k7IwAI8AItFcEokZaagChG2HDqWfPniCn5cuXUxRYavXq1aNHj8bl8OHDTSaTEnXixImdO3dSFDbDoDxt2rQJySAbN27EJUXhMg7CpwfjADJXwQgwAoxAZAhEh7Qee+yxL7744vDhw9jZevzxx1etWnXrrbcaDIbZs2c//fTT2OICJ82YMcNms02fPh0NxUbUzJkzH3rooZUrV27btu22224bPHjw+PHjEdW/f/9JkybNmjULlkYIPJMnT4btEVHxEda04oMz16I3BLg9jECrQCA6pAWD3u233w5qufLKK6EbffLJJxMmTED/H3nkEfDWXXfdBbPhsWPHli1blpKSgnDI888/P2XKlGnTpo0ZMwZk9sEHHxiN4gUpRL399tvgsInyb8iQIW+99RYC4yaWRIEJnx6MG+BcESPACDAC2hEQE7T21MFSLly4EGoWTILYmlqxYgUxFhJD2ZozZw6sfxUVFbANDho0CIEkVqt1wYIFxcXFbrcbjKU+/peRkbFo0SI6zQ6Pw+GgLPFxrSbBnZW8pxUfuLkWRoARYASCIhAgIjqkFaDgVhtER95Z02q1A8gNZwQYgbaMAJOW7+jSkXc+PeiLC18zAowAI6ADBJi0fAeBNS1fRGJ8zcUzAowAI6AdASYtX6xY0/JFhK8ZAUaAEdANAkxavkPBmpYvInzNCLQ7BLjD+kWASct3bCzyp0l4T8sXF75mBBgBRkAHCDBp+Q6CVX7GiU8P+uLC14wAI8AI6ACB9ktawcBnTSsYMhzOCDACjECLI8Ck5TsEyp5WfX29bxxfMwKMACPACLQoAkxavvBb5RcxQFhVtXW+cXzNCMQWAS6dEWAEmkCAScsXIIv89iBCK6qZtAADCyPACDACOkKASct3MMzGBIP8EcrKmlrfOL5mBBgBRqC9IaCz/jJp+Q6IwWAgZauSNS1fbPiaEWAEGIEWRoBJK8AA0LYWa1oBoOEgRoARYARaFAEmrQDwk6bVnva0AoDAQYwAI8AI6BABJq0Ag8KaVgBQOIgRYAQYAR0gwKQVYBBY0woACgcxAnFGgKtjBAIhwKQVABXWtAKAwkGMACPACOgAASatAIPg/XUSfk8rADgcxAgwAoxACyLQsqTVgh0PVbX3S078nlYolDiOEWAEGIH4I8CkFQBzi+fXSVjTCgAOBzECjAAj0IIIMGkFAN+jaVWzphUAnLYfxD1kBBgBHSPApBVgcDx7WjWsaQUAh4MYAUaAEWhBBJi0AoDv1bSYtAKAw0GMACMQfwS4RgUBJi0FigaPV9Ni82ADJuxjBBgBRkAPCDBpBRgF1rQCgMJBjAAjwAjoAAEmrQCD0DKaVoCGcBAjwAgwAoxAIwSYtBrBQResaREO7DICjAAjoDcEmLQCjIhV/nhxBf8IZABsOKh9IcC9ZQT0hgCTVoARsZiMCOUfgQQILIwAI8AI6AoBJq0Aw2E1CVj4RyADQMNBjAAjwAi0KAIJHVq0en1WTp9xYk1Ln6PDrWIEGIH2jIBQKdpz/wP2nTQt3tMKCA4HMgKMACPQgghEh7SeeeaZiy66KCUlpVOnTlOmTNm7d6/Spfr6+jlz5uTm5iYlJY0bN27Xrl1KVGVl5b333puVlWW326+//vqCggIlyul03n777WnyD56SkhIlKg4e0rQq+NuDccA6SBUczAgwAoxAQASiQ1qrV6++++67N2zYsHz58pqamokTJ7pcLqrv2WefnTdv3osvvrh58+acnJwJEyacPXuWombPnr106dIlS5asXbu2vLx88uTJtbWej1BMnz59+/btn8g/eMBblCU+LmlalfztwfjAzbUwAowAI6AZgeiQFshlxowZAwcOvOCCC15//fWjR49u3boVbYCaNX/+/Mcff3zq1KmDBg1688033W734sWLEVVaWrpw4cK5c+eOHz9+2LBhixYt2rFjx4oVKxC1Z88eFPjqq6+Okn+vvPLKhx9+qNbekCamwppWTOHlwhmB1okAt1oXCESHtNRdARvhMiMjA+6hQ4dOnjwJxQt+iMViGTt27Lp16+AHq1VXVytRsB+C1Shq/fr1sAuOHDkSySCXXHIJLikKl4rAulim+lPCm+9hTav5GHIJjAAjwAjEAoEokxZUqwcffPDSSy8FA6G5YCy42dnZcEngp0C4ZrM5PT2dwuGqo7A3hhBFcIn0yiV5sJEGMiPJy8ujwKi4rGlFBUYuhBFgBBiBqCMQZdK65557vvnmm7/97W/qhhoMBuUSrGYwNFwq4fCoowyGRmnUUUhJ8uijj0KrI8nPz6fAZrqU3WISsGBPC/VSCLuMACPACDACekBAzM7Rase99977/vvvf/755127dqUyc3Jy4FErSYWFhdCoEIioqqoqp9MJP4k66tSpUxRI7unTpykXXZILY2Oq6o8Co+LazIkop76+A3gLHhZGgBFgBBgBnSAQHdKCRgId67333vvss8969uyp9A1+kNPy5cspBCy1evXq0aNH43L48OEmk0mJOnHixM6dOylq1KhR0J82bdqEZJCNGzfikqJwGQdJkp9xQkXnqjynGeFnYQRaCAGulhFgBBoQiA5p3X333YsWLVq8eHFKSgr0Ksi5c+dQicFgmD179tNPP7106VJw0owZM2w22/Tp0xGFvaiZM2c+9NBDK1eu3LZt22233TZ48ODx48cjqn///pMmTZo1a9YG+QfP5MmT+/Xrh6j4iDHBYJbfzHXzq1rxQZxrYQQYAUZAGwLRIa2XXnoJytC4ceM6e//eeecdasAjjzwC3rrrrrtGjBhx7NixZcuWgdgo6vnnn58yZcq0adPGjBkDMvvggw+MRvGlWsS+/fbb4LCJ8m/IkCFvvfUWAuMppGyxphVPzLkuRoARaDUItFxDo0NaMA/6CJQq6pTBYJgzZw6sfxUVFbAN0qlCirJarQsWLCguLna73WAs9QnAjIwMqG50oB0eh8NBWeLm2syCPpm04gY4V8QIMAKMgBYEokNaWmpqXWk8mhabB1vXsHFrGQFGoK0jwKQVeISt8iyGu6omcHS7COVOMgLtBQEYih58Z/sv/vF1e+lwa+4nk1bg0SPzYAVrWoHh4VBGoE0hUHau5r1tx/6xtYB3BPQ/rkxagccoSe5pufnIe2B4OJQRaCEEYlPtOe/ytLKG33KJDcTRK5VJKzCWvKcVGBcOZQTaIgKKTYW/J6D/4WXSCjxGpGmxrSAwOhzKCLQtBCq8ClZldV3b6lkb7I0OSUsXKNOeFpOWLgaDG8EIxBgB5Uln82CMkY5C8UxagUH0nB70WroDJ+JQRoARaBMIVHgVrEr+6VfdDyiTVuAhYk0rMC7tNpQ73qYRqFDMg0xauh9oJq3AQ0QHMSpY0woMD4cyAm0KgUrvk87mQf2PK5NW4DFKkr9OwkfeA6PDoYxA20JAdeS9NR3EaFuDoLU3TFqBkSJNS7mVAyfiUEaAEWgTCFQoe1peT5voVtvsBJNW4HG1yZeLlTNFgRNxKCPACLQJBJSNADYP6n88mbQCjxGdHmx5TStw6ziUEWAEoomA8qRX8UGMaOIak7KYtALDSpoW72kFRodDGYG2hUCDeZBJS/cjy6QVeIjoixiK0SBwIg5lBNolAm2v05UNpwf5IIbeh5dJK/AI0UEMN/80SWB4OJQRaFMIKMtT3tPS/7gyaQUeI9K0+CBGYHQ4lBFoWwjwnlYrGs8gpNWKehCbppKmpdzKEVRSX1+/Pb+k9Fx1BHk5CyPACMQTgQrvSfdK3tOKJ+4R1cWkFRg2OohRXVtfXRuhjXvrEeeU//vyYf4t1MAAc2h0EMCq6Ff/2rH58JnoFNdeS2kwD3rZq70i0Qr6zaQVeJDoyDviIla2DpwuR/Z1+4tq6+rhYWk+AlyCPwJ/WrV/0YajL3623z+KQ7QjoDzmvKelHbSWSsmkFRh5S2JCgkFEVVRF+EumZ1zCMOiqqv2u8KwoiP8xAtFGAPrBO5vzUWoJW6GBQjOk0qtgsXmwGSjGKSuTVmCgDQYDbWu5IyWtEncVFb3taAl59O/CFlrHeqH+x8nbwve3Hy9xi7VReYVwvcH8f9gIVHi/8h7+y8Vh18UZmokAk1ZQAJPMiYhT7AbwhyVnXAppOcPK2FKJYRi54rlVt7y8oaUawPWGhUB9ff0b6w5TlvLKGvKwGxkCyjlhPAWRlcC54oYAk1ZQqJPMApyINS2nV9P6qpVoWidKKgqc5zYdPgN9KygoHKEbBLYece4+UUbNKa9g0iIkInQVTauSTw9GCGH8sol5OX61taqabCahaVVU10bWakXT2l9YXtoathxc3jepy1pDayMblLaUi9Ss8f2z0SlXVS2f9wEOEUvDkXfv5lbERXHGWCPApBUUYWvzPvTulJsNVPrX+a1gW8tV6Tlywrv6NGp6dk+VVXyy8yRaePcVveFC4mMhLHAFdZWNAAAQAElEQVS6dxSUoro2JhUNn3HyPAVtrINtqTtMWkFH02YyIs7tvZvhD0uc0jw4qEsqcrWKsxgur6ZFe/toNotuEXh749GauvoR3dOHdUs3J4qnOD6k9aPXNk3505enz1bqFpnIGqaQVlWk72VGVi/nigABcbtHkK09ZEmSmlZkR95rauvIJPi9fp2A1bb8VnAWw+3VtErPeY6QoOUsOkSgqqZu8cajaNiPR/eAm2IRduw4bGvV1dUfLnLBDnmi9Bzq1S7/2JI/af6ao8Vu7VnimRI9qq71vExZyebBeEIfUV1MWkFhI9Jye/WPoOkCRZSeq66XT8G48yVpHS2pp+tAiXUS5vKeQHPKN8x00ipuhj8CH+88UVRe2SnFMmlQDmKTrZK0KmN+6r0MOz/yrg6XIP++Jf/bk2e/PFCE1upQKlTWFD6I0awBiktmJq2gMCdJ8+C5iFZeZBtMSzINyk2zJCaAww4VuYLWpI+IBvMgH8TQx4gEa8Vb648g6taR3U1G8fwmS03rbOwPEDq927RlYdZ1vKQCDXZH+soj8sZU1K+18JH3mEIdlcLFTR+VgtpeITZpHjwXkaZ1RiorGXazOTFhcJc0gKP/g+/KnFIqd+PQZhYdIgC14Kujwtp804iu1DwirTjsaTm9N0ZYdcH4drJMkpZXladm68cFpEpjWNNSoNCtJzqktWbNmuuuuy43N9dgMPzrX/9Segub2Jw5cxCelJQ0bty4Xbt2KVGVlZX33ntvVlaW3W6//vrrCwoKlCin03n77benyT94SkpKlKh4eryaViSniejxTreZ0OBh3Rxwt8mJBh7dijIThTw9qNvmt5eGwc5WV98hK9mcm2alPqeQeTBM7YfyhuU6ve/Lh/UBjtNnK8FbqMitssLhUj8Cq6fSGOwXKn726BOB6JCWy+W64IILXnzxRZ9OPvvss/PmzUP45s2bc3JyJkyYcPas50N8s2fPXrp06ZIlS9auXVteXj558uTaWg89TJ8+ffv27Z/IP3jAWz7FxueSvpmr6B9hVUqPd7rNjFwXdkuHq/8DhG7vQphPD2K8dCu7j4sXivt3TsUCkRoZR03Ls20WlinyWInn1IZyg1Gz9eOSpkXfGmVNSz/jEqwl0SGtq6+++re//e3UqVPV1UDNmj9//uOPP47wQYMGvfnmm263e/HixUhTWlq6cOHCuXPnjh8/ftiwYYsWLdqxY8eKFSsQtWfPHrDVq6++Okr+vfLKKx9++OHevXsRFWfxmAcjWh6ekYaUdLsgrWGStL49WeaOyNIYt167vFsOrGnFDfMIKtp9QrwmNSBXvEpB2VOsQqEPi0goY7huibyrkUtRyuFvUpSjhm7vDdZklrATNC8DkRbBCKWwhk+9Nw/PWOeODmkFbOWhQ4dOnjw5ceJEirVYLGPHjl23bh0ut27dWl1drUTBfghWo6j169fDLjhy5Egkg1xyySW4pChcqgUGxjLVnzoqKv4kz56WR/8Lq0zStDIkaeWkWTunWWHS+Ubfb2Uqpwd5TyussY5zYtK0BnRuIC3v6cGYf8npjNc8eNarlGvp+3FF04po/aelimamIfOgQxrzURQrWwBBzxJD0gJjoefZ2eIzM/BA4KdAuGazOT1d2M0QDlFHdeokjokjkASXSE9+tfvMM8+Az0jy8vLUUVHxJ3lOD0ZCWmfkQYx0aR5EY4Z5trVaZnMODdAirGlpQall00AP+PakMLAPVGlaZB48G/sPvTu9pwfDOvJORweBm87Ng2lJQmFFO5m0AIKeJYakRd1WLO+4rK+vV18iRBF1lE8aGSV/20pJLT2PPvoozIwk+fn5MiyaDmlakdk0yJCSYfc8BsPyBD3Toa9oNjGqZSlzCqmJUS2bC4sOAkeKXbghraaEnlnJSokpdBAjHO1HyRuWR7kxwiLIBk1Lr+ZBOvKORWqi3Nfisxhh3RXxTxxD0srJEW8+qpWkwsJCaFToJKKqqqqcTnFyF5cQddSpU6cQosjp06cplxJCHtgbU1V/FBhF1ybNgxUR2TRoT8vhp2mBgKPYwugWpWxUlFXAqi9fIo1uBVxasxHYJU9hnJ+TapTTK5Xn1bRibh50RrinJc67o6mgW7g6FHrGsUi1JIr5kF/V0uEYqZskBkl9HUV/z549QU7Lly+nMsFSq1evHj16NC6HDx9uMpmUqBMnTuzcuZOiRo0aBeVp06ZNSAbZuHEjLikKl/EUqzQPRvak0ZqU9rTQ5kFd0hITDEXllQVOz0kqBOpN1D1tVx96j3wlEfchpN8iUZ/CQBOItJQ1B0JiJCVe82BYhz5UmlbMaTWyjlfInyOxJhot8pGvlJeRFcW54oBAdEirvLx8u/xDiw8dOgTv0aNHDQbD7Nmzn3766aVLl4KTZsyYYbPZpk+fjjTYiJo5c+ZDDz20cuXKbdu23XbbbYMHDx4/fjyi+vfvP2nSpFmzZm2Qf/BMnjy5X79+iIqz2Mzi6zjnIrJpnJFb1sqeFvivX04K2r/H+wNI8OtN3KrDjSXt5qMYZRXVE55fM+uvW/Q2HAHb438KA8k8BzFi/54W2Q9Qo3bSghJTLJ8F5HJH9CghY6ylUlpTrKYES6KYDysj+ghOrBvJ5SsIiEFSLiL2bNmyZZj8QwkPPvggvL/+9a/hf+SRR8Bbd91114gRI44dO7Zs2bKUFDF3I+r555+fMmXKtGnTxowZAzL74IMPjEbxVXVEvf322+CwifJvyJAhb731FgLjL7Bxo1Kyd8OjXWBcg4UN6RVNS/Frf9qRJc5CS3WjtDuVeA1BcW5D/Ktb+tWx/YXlK/ecqqtrBRbRgJpWikVsndLwxQ5A6KPKXaG9rhOlHtsgGqZb0qKFqdVk9JBWTSRnr9BBnUibb0Z0SGvcuHG4p9XyxhtvADsoW3PmzIH1r6KiArbBQYMGIZDEarUuWLCguLjY7XaDsdTH/zIyMhYtWkSn2eFxOByUJc4u7WnRDR1W1aSmGAwd0pLEbEJ5yYbjVmkzFK4Tt7auvkIuMHNSxXcWqAs6aVvsmoE79u2N4jt+IKywjnHHrkkhSi48W3H6bCUWFf1zGs67I30yHcSIsablqqpVPoUO0gJ0qLpJOSHPu9vNYj2q25u/QrKU1WQ0S02LD2I0OawtmyA6pNWyfYhR7biJUTI0LY3PJxKT0IYWGIu0FgokY2O59+c/KFA/rjKh5DoEaZV6dy/008JYtGTrEee+U+VUst66vGDld7//5Fv1vbdbnsLomWVPMgsOoGbD9ZwexFwL7sV1bITualAmileWOPCHFvocRu9O4qwjOA9tDJ2+RWJpuYbn3ZIogK3kPa0WGQbNlTJpBYWKNC1E0z0Nj0Y5I434GTazOr3dIp4HhRvUUWH7Y5DBJdkULNspRZBWSfswD74tf5WK4CzR06+IYadt7vJ9L606sOnQGWoeXK9tUHx/GZeKkBJfX98hph/3o6ODHVMsxFsaT72TebBPR0FaaHAEdgvkirVgYYoqrMqellS8EMKiTwSYtIKOi1UeJUI03dPwaBR6vOkbTkoWu0Uc6yBuUAL143FJu6XdbHTI7wI424GmBdXhPztOYAhodVKipy7DDIiGQd7aIKyX8EBI01J/CwOBEEtigskoXmTUSCTIEoHQLZFhtxBHarSm0tHBbpk2aqG7Wo8HCCvkQQzsYVtMYj5kTSuC2yOeWcQgxbO+VlQX1A5MB2hwuOrRmcafw0AJEPABXFfs3wBFLRGIW2paYFYirdJ2cHrw3a8KYK0amJs6SP52jK66rJDWJztPYiuLBtSraTXa0EKUwWAgIgnrQxXIGJaA45E+3WZKsYqdWv+6EOsvx+VBjFxHks0sFm1uXR4grJS7uVikWtg86D+E+gth0go1Jkly86BCLsRCpWsc55S2tQy7eLaVGJtZPLSk0CiB+vFQw6BzOJLMaFWJ7AI8bVWwV7R401H0bvrIbpiI4SnRE08rpFVTV//OJvG1F3dVDf2OqL+mhcbTWQyN2g/SRyB0V6fbzCny3IfGc7CkaeWmgbSkeVyujSKoPaZZ6AG3mhLMRjEfsqYVU7SbX7gYpOaX0lZLSDLJJy3M5aF3TSpmfwUZWgu7wyxKyR5rD6mAaGSaNA/qagaPRd83HDxz8LQL6u8NQ7sQT5fqiaeJtDAc6DvItaa27tuTZ7Fr1SnFgl0lBPpIMp16j+UBQs9dbTclS0N3eaXnZ0p8WqK+xMqATg/mOqxJcv3nllZodRo9+Mn+bzUZPebBMBepeuhCu2pDOKTVroCRnaUnLdzdY3oH02dPy2YR/FeuV/OgS7KpzZzoSBIKYom76SmpQ2v+o5PuNwzrginYQTytpy4Xnq0EutcPzc20m0+UVqzYU0gfcPL5FgbSkKR4iCSGO0ZOiU+6zezR6jQQZNm5GrqvOqcl2aWlwS1vM2qzflyvpmW0yCPvrGnpZ2gCtoRJKyAsnkCPphXmyovWpBm2RpqW96GN4bTiaXRE/7klm9otRuLaUj3ZyiLqUKhMReWVn+46iRTTL+4GV4fK5WlJWtABf3CR+PmCRRuOBDuFgfZDiEjKNRAJEkcmTqmJCtKSBKnFPHi8VHy0LMNuTjIbIahXr6RVh7ZZoWnxnhaA0L0waYUaIuzxILoizOXhGVqT2huTlnzU3bq06aOPpAKKgxhJpGlVIbBVSASN/MeWgura+gvyHHQEg8yDulIuT5cLTQuWQGy5GQwd1u4v+vzbQvQ0mKYFfRGx8djTsnsPYshVDioNIbSh1TlNvERhNwtLg0uX5kGPppXo+YxTFb+nFWJQdRDFpBVqEKzN2NPK8D2IIR5a4oZQVbZQHC2BbeZEUjugaWn/rNE3BSXvf328hRoedrXYvVu49iCy3TpSqFnwOKR5sFRP72mRpgXS6ppuu/J88fNyJ8vE95AG5vq+pIX2Q1Lk4YjYalryTKzD5jmIoeVOJtLKdSShhbi14IZraUeWOAiRVpLZ80WMynDe08Kd/8g/v2aei8MwKVUwaSlQBPDY5PKQ9mkDRAcJUgwp6nhaCxM3qMN14qclMJbDaUlC06qr76DF/kONv+9v2yB75Y8TUoie3de/PFRUXtU90/b9YV2ondTlUj1ZRIm0OqVY0MLbLukOF4K7sXuGDR5/8ZgHNRyO8M+rMaREmgdh9KY7Wcvt4TnvniY0LTQeFdFtBo+upEKqVlYT9rTEyjKsPa3nl+/7+5aCL/cXNe5Rq7wC9S7bdbJUGor03AEmrVCjQ3taYS0Pq2vr6HlOtzUyD9JBDDy09fV6/DAr9A8AYbMkWhKNNL+UaNM80J3jJUIJ2H2iFCXoXDDz/mWNULMenHCeSZ5vRoOJtEp086zW1tWfcXnMg2je5X07dssQXNW/c2oCfY4CoY0lDgcxzkjSSvdqWlpeZG6saQk+COtRatzFGF6RpiV/mkTMh5XytS2N9RVKDfhwsUtj+hZJ9tm3p/Zo+H2J//nXzv96a+ukP67ZddpEigAAEABJREFUcLC4RdqpsVIxSBqTtsNkSWbxclVYmhapWZhbUpOEyqKARgcxQFhhlaZkj7WHNtuS5RHHsA4Quqpqq2rFPrbyEb9YN7U55b+0+gCWFOfnpFw3JFcpxyHNgyXnqkHASmALeopdldB0cQtl2oWmBaKadVlPtGdMnyy4AYW0H/ptgYAJmhkIsqGPmTnsypH3po8UnZCrmc5kHpR7ui797eli0OmRtJo9e1qVms2DgAX3P7A9UuyGq085Uuz66RtbZjX14zvbjjrf2SLeCDxRWjH9lQ3zlu2tkc+1DjvFpBVqUEjTCmjTC5bN6TX9GzHrqBKhKOyoI0CHz61oldwht0mSTpM6IiZxhDcpTvmhRST7zvvlWfj1IB/vOAGjJZ5YpTEnSyve+PIwLn9xVT8wATwk2KeBB7YRmpfhb1kh22CG3aLcQrAQfnTfZfdc0SdYw5KtYoUUuz0tWoolJhig0qVo3j+jr+V2kZ9gtpmkpqW/zzhhyYWlJIC1mjzmQdwJuNQiRfK8DFKqbzNc6koOS0ItcJ4rkbpywLZBuf/1v3ch6roLcm8e3hVrphc+2/+DlzcUOPVIxkxaGKmgYjOLJ60inCPvZ+Qkni4X7+pyMUvSc+vScOxKnTE+fpdcAmOeRHVeTUvTAUKazpBrf+FZuPqRP606gE3y6xas/XyvOHeHhr3w2XfYrhjRPf178mgDQkjsZiOmY/hLtFlEkTKmQi9pdUwRahZVZDAYBuSmmhODPq2kaZXH7NaiUXbYzGhJsnyRGQortS2Yi3nwlDSddU6TBzEsiUgZ1voP6eMgykoF5kGzRBg3icZ66ZAnEutZ0yIDJhr5XaHnBw3g95F3NufvOFaKFcmvJw/4w80X/PGWofBvPeKc8n/rtNiBfUqL9WXQxyDWFbeK8pMkacEIoL21tJzJsDfa0KLs2DGCxyV1Gnh0JdQqu9S0yFym8WCC07sVdOSMOyx2j3X3yyrE+9GwmP30jc0LVn53qMj1983C+vHIpPMx86prxyV1ucTbF3Vs/P2kaalJq8k2eLWfpk12TRYVMAEhky6XYp66miJI9KKmrh7KIh0nsclHidZGAatoqUC6aWEWMRkNFg9p1WpsTJF8nQ6J851ukDQ8OhRaA6FhwWwhMJY8++m3SPDAhPPorrthaJeP7r8sN80KVXLNPt2dMWHSwmAFlSST0LTcYWlaUgd32AKQVrJFp4tN9J/2tOyyhdR4mqcQFVpwx1OC+voOB04HXcpRmni6LjmrXn5eRzRs7vJ9U/7vS8yh4/p1vLhnhn8z6CyGRp72z+4T8vct+TNe3xTxEhXTPQqkuR4eLUK3Vuw0LY/9wC7u6mRpHmyyd/RmcTZW7EYxydgkaZ3Tn3mQSAtPOtYuXtISe7RaYC8q91gjqmvr6dSJllxxTqPStALbQp5bthcPe7/slB+N6q60LS/DdvXgzrhUDBXw60TE/aSTpuiwGRFoWjSJZwQiLXpuYzezNAdAahW1kNQOp2TfJsuk6YyS7Q9uf6AE8XSpR7+bMujZG4eYjQlESA9P7BewDURaeHQDxoYbuPCLQ6v2nv7iuwiXqERatObVWLVGItFYmn+yEnkzpJOmJVc2gLceywH/pN4QmsTpJS2E2cxixeaSVmhc6kfIPIgNLTTJIheplZpPD0IRQS4S3VoIQ2taOwpKF8svRz95w8BEubyg7sC9op94QXD1vtPaX9lErgAS7SAmrVCI0iQe1vLwjDyIkW4Xa1KfokmPIZ3GJ6rFL93SaEkLdtrT0vi6Bk1n1P5g9geKjadbU1tHkxF6NO2ivH/cOWp49/T7ruxLn8Dwb4lDLjJKo7SnVSwPrOefiXATm3ZKOiZb/NsZLEQx2YUmkmDZmwx3SsMpGb1TrOLQB/bq3SG/FKM+OojybaRphcyCZPGXCmlH8ZCWNA9WaT41pyatw3o99d5AWn67zrhbnnh/J9YeNwzNHdkr0wf8i3qmY9SwhKLfxFHHfrm/6E+r9iO7OjBufiatUFDTrRzWnpZTrkkz7OLB9inaLp9b2j3yiWrxS5ecTWjXzSEX1CXaXral13dIU9l3KrD9If69U1b0tFC4IM/x7s9HPzjhvGAtIZ4ukVNzsDQaw+vq6p2ynAKn+PKexlzqZJgmcBmWppUiD0eASM7JKRjZoytn5PEionarKcGILaAOHaBshaiFjg7myqODSIbpD65Lro3g0Y8QYugUmmROFPOh9iPvNFIWmetopGsU1BtTKTxbQeWfKqssbfxQHy52f3W0BHaIx67pT2nUriXRSG9ZfC4/IaZEYT78+aKtz36yd/NhpxIYT48YpHjW17rqSjLJPS05oWtsuVOSVrotgKZFlOCSey0aS4tPsuraOjrma5e0mpYkGl8iO9JkA5xigu5wUY90pNSPebBcTo54GmkaQttCC328SiNPhy7qbAXUPPH+ODbnQ6cMFkvb+2GRFuZcD5HE5pu5dDOky9UM9n6gv6Lx6CncYHJCfi03Vx4dRBoyD2K+g19X4q9pVYZpHsSSCD06XKTH94uhDIGr0DyT0QDX5wnddlSwzuCuadmp4qslSOAj4/p1RMiqfafhKvKfHSfK5G12qKhl9rCZtJSxCOCh5WFF8NUrFmVvrjusrGVQBO1pBSStZLMw64c2qqCE+ItisaSZxSHnJo0zOPWXTjfAQgJA4t9+/xppZUAn+P1j/UOi+M1csg2iiog1rUJ5Ji0s0lKIhGYT1N4cefS9bx7559eY75RCzsilSbpNrGYQ6CUtcT4TlwHluHyzOFe+WYwE9CjpUNMiM7LVJJanlkThVtaEdxBjRHexYjsiX4dCT3UlZedqaD06rJto5HeNbSHbjpagtUPzHHADyji5rQVuo8ec0izeeIQ8LaVcMmkR/oFdupVD0Mw/txY88f6u/353h5L/jFRQAu5p2SzikSjXn6ZFU4nZmEB6iUOSVqmcp5R+BfOQ4ahfTmqqNRHmqYOno7De/Hxv4bg/fN6cb8mQEpAsz7kFa7k63NPlaOxpOeUNgMILnG71vI8QLeKuqqE7JKzTgyiZiITy4jJiKauo/tum/L9vKcg/02De9GpaHtJKkcCGros0rc5pniU8kRYYIn5Hw7VBQEtSq0nMhBZp6NO+8CKdGNulqOrIGVcEw42MMZVCaRvEszm4i/jUss+rWtvzBWkN6xaUtLo4kvplp+C5XvOdR9n69mQZLIrUZvUdQiHxccVQxaem1lgLPWlk9Q7Yfjp6sGbfaZq7kcYpD2Jk2D2PN0IUsZulpqVD0pJNIk5Faz1qx7lqLQ9hieS2DJu5b3YK8vo8FQiJQJZsOgprO/3kVQTZkcWjaUnAcdmkeEkrlOrQZCGU4Iy8AeDHBK0cicalRik6K05RYw4lEtKYC8lSiEik3QaXEYuyWNlxrOFjksTE6d6d2ibrAhNQ3zHrUUtocxH+EE8TYuMvaCoqpY0Ai6QuqCZa7nxkpN+CgaYC2yyGu1CqyChNP3KqTHzEEta/vp2S0Sr14wlTLX2QcJhUwhAbUMadLyyEq/d6SGvxxqNIRnvYERvAUUJzhEkrFHpJco8HoxssUb7cfa2pq/9oxwmkwe1Oy09M4rj0EXpuXeHskPmUEKNLahJxKqqgGRwrYuoLQoIJnm2vZmmip2J/Y/tDsIyhw7/OF9PlKfk9hdApg8USaWmf9+khJAIOVqbG8DPy6CAljuCpPl0uts1hG4TFjwrR6FJny5v9oXcFhG+OiWU41e6UTJzuYx6Uax1K4OOeLBW9APU6pNaOWEtigkHsqnSAKolL/Qi4B42xkHnQKGwhUCzwRCMwtNDRQdgnsELNledNdLitVSg1rU6plr7ZkrRUj+fO46XoJhT63DSPNhywv+POEwffsa1VV1ePmXDpV8eQ7OfjesOl2Q+eOEurJq2YY2UzCd0IQ1sd5BSsMiu9/7X4QakSaRrCsitFLnt92kdbLDSf+kS17KVbzj7UPLTEajJa5ZKzRGpRCAkmWDWDpxGb7tW0mv/ZXMx39NtR8KDkyITollYJWkqIKmk1qGsF4R8gpANpHcM5704dJFso2UUpJDK3xGsj3enVtDDEhCdGmcpMsYrDsSHqot2OXEeSwSCZqkMHg8Fgk8Tg1tmrWhVyB8sqd7Ms8rbv0KGDlm0tUiWzksWnrXpk2pFLh9tahVL565Ri7dNJGEJOlFYob4VjpwptHtbNgaGBJ5iM6JGO9dAZV9U3x0o/+OY4lMtuGbZbLspDeiDQIksQJi2AH1SsZg8+7kDqEfSMfK/df/PhMzDik9rhSDIlJHieVXXRNrOgQFJr1OEt7qcpiZpHjfFYCJsiLdzKSI+dMJvZSJrWd37vgiBBWEJ2dmQ5JS0b8EQg1COax7Vkd0gdorTxgWAtGf3TkCWNwgvC/96oh7RUHx6kopp0MbMgDXUcnohFAWFHQSnucJRDNIY7OjVJcBVCCNgQ3+f9Wm6WDOicisSK2Czi/g/4KClpNHqOFruv/uMXf5dfJdeYJVgyaA+ISpJPOtQm+CGVwc9eIZaENrSy5Eh1zxS/HYNtLYrSj3tKmiugaWFZlp0q3vxTDhB6T2GIAxohGmwyJlzWV/y8wKq9hWQb/OHF3Rw2M/bJkEuZAOGPm3gm5bjV17oqwk0MtQltJhsCPGopdlVB1TAYOlyQ56iv7/Dh1ydoEg94CgMZky3C+OCWag0u9SM0jyiaFhrmkFYdmq1wGUy8ViOTwWAg+wP2orAwD5ZeS7hCWoVnK2CR0JLFPw2ps3Rc0z/WPwTrDARixg+mUiNWoxTLT/tY5Zq9yUdanI7HraMqOmLSIu0nBJGoKgnlVdTrsooaUpholDHr0bOAzCmSfkKYIr+SZ6kvbLxZgpUN8p6Lxpec1nx3GvsxL8ufRkOZzZEK+UMkpGlhrWk2iimxUqpfoYsl82CW1IlJ08LNHzpL/GMLvZoWqu4rlS1lW4tIC5oWokILHXwHY+HZTEww3DS8K9J3yxQ8nS/3R3AZTxEjFM/6WlddmIuTyKYRSNOiActJtd50YRf0CxZCerwDbmghgU1qWpgZ4deVuORbTXbZPGoYZih4lPkL/oBCWkW6VFOAA+Yy7IQdbt6nAWiRjuqqa+upfPjDlXJpg9JuHlR0CEXPCLdGJT21eWCuOKwVWtPCGn/sH1bdtnCjkhee0/LXLmDPgT8sSZEW6fJmL4nUCNBZDOoRjTI1KVmSVjDzIPSzbVLTulCeBacscOn+d8mhwWVzhBoJpUH5sF7EpVXKt7Ks8jFHIZZEMSVqWXh5SUscuYLFDHmPNO/ORwlRl9PSXIGNK5Tcp1PDthbMQjDCQ3se0lXcqIgNIXTwnfjvqoE5HVOExpaXLkiLljUh8sYiSoxQLMptM2UmBT+LkS93LLqmJ10zuLMxwYAnnBaY6XaPFcUHBJpDSa3xiWrZS7ecR6h51BKHTXShpClzGU1n2IhGLhB8n2zxVDTnuxjgvG8KxKI1HaoAABAASURBVP6/QZpX8Vyh5AjEJefuZItQbbVkx/CRuYNmQy1ZgqUhbZvmggJ5hwRLuffU2WMl577cX0zaFSUrlLMMzQsUotH1EInsuMYsAZOVyH1ZisItDY9Tfg5DbT8ggsT2BmL95VCRq8Rdjdnf1zwoH6Wo3P8l3kauPxjeb+z+Y0v++gONsmDpgC5YpWYMj1mSljZNS5zzzCJNK8uzpwXCRiH6kVPyIEZ2qhVNOi9bbGuRprX9qHjKzs9JtZmFzRaxISQ71aoM5fSR3Sgl8XR++AZwyt4cl0mrCfRI0wpo0yBNKy/dlplsoe+dkJGdJnH/csn+5pZqjX9sC4bQ8pysN9QM2tMq9U4NFOjveqYzqWkhtq9nKRf5e/IHTpe7qmrRkn7yASOLPEoOV6hHtPWiMa9D9qKkqW28Jksj0rqgq3j35ZjzXAgLJ2KpNFrrkJ80rY5yKqQQjS6RVvPNg0TbNCVhWwu1OyUm6XIdg0tIslWsaYLVRe/xDO6SRgSA9CQYVniicv8rw/Tl/jC+SoydsF/885vZ72xDMxSpIPNgY02rUgYqaQJ6aKSItAguqJ6EVcD08Q8Eg9IaiDQtMuDTWzqkCmuxDVKzr5AH37F1N8r7icKuGULTojmQ0sTNZdJqAmp60s5VBXhJvkCuMmjwbrggFwXhroXrkNMfPD5C9jeaT32iWvbSLXmUZj1qiUPOUMrUQIH+7hmazryaZd9OYikHo41/So0htADEfJfrEL8ceEqqHRrzqpMRyGrdUR0b0E9dLvWenQuYRksgEfmA3FRob1W1dWRUCZiRvoOOqEakJTchOqYICwyitEuyNA8qZ8O0Z/RJSYN+qdx7h6aFic8p1y7qu5puFQLZJzsuqTs+tkGE06PkDmRpR2xYUuK1AaxrrDaFLgQ2MSTATYWtRHhIKuSZC6tCWtJTqWVPS45UlhwpZId5HAU20zaOEqIoGKBzsnedUsXt1KejMIRAuYcdwnt0sIlTGEpjfjyqx8QB2b+dMgjbfhRIPJ3vPYlGgfFxmbSawBm3I1LQ2MOjFhqwvHQxvU4cmG2RhgUkyAhGWhahiVdU18EIhmRRlmYUB+UGudWGgjQiLe/UgNiAQhN0ure/tJRrjnlwu7QNDu3mgEUCNUZ86h2PJbInS8Dh0SIat/FCF4W9EDKaYW1LH4OglU3AXJg+KJy2xOGHWkY7JRGQFjYUUQLmKbjNEeKDi3tkmBMTsAg7UuymUVbbD8iUGowgvzoivmh3YTeha6pbQos2t1whqcMj8JfK1RIyFjjPQX+CR4s4vbnOSBqmLHge4aHHHB56iivlRhcuQwiNVFay2NNCMmghcHW1rQV6RpNwY9CjDQNvltTgvz1Z9k2BeBVyaJ7vGCF9QOmUan35RyMu69tRiaV5D3taWNYogfHx6Je0/vSnP/Xs2dNqtQ4fPvyLL76IDxz+tXiXhwF+E5bsuXkZQk1OsZq+d34nyo6bgzw+LhWFQFc0nluUEy2hKZ6sl1QmmQdLVM82hfu4TpkgvYG0hKaFLY3qIK+1+WT3vyRNa2hXB61bT8kDu/7Jmgzx9MgsVglNJqYEUSEtAgT726lWU1e5mqGbhKrwcTHhUsg3BSWEWOm56upa8bFdmlwoVqPr1bQC3KgaS6BkZXKlkpls7p8jRhPKllPO9Q65jqE0VFdA8yBYk1YtFzY+OoiMSVHc05IKMWgVxa47oNVCqNzPZMJFXgitR5OkgoVLi1x6VtU2/ePFRfKYKFYnyAWhA4TgePh1IoVyQ6tjqlCzqEnnZQtl64OvT0CVTLUm9pJbcRQVrtslPQkbz0CvWG55hpu9Oel1SlrvvPPO7NmzH3/88W3btl122WVXX3310aNHm9PPiPPS3VwhtWx1IdCWyLxDpIWo66WFEJ6Av0uCcDwPMBnBQwcf4NGJuPwOYqTLGapEzlbUyMKyCuovXZLrlKSlrMFz06x2s7Gmrj6y9Sa2xPfKN/alpiWetIhJi9QdmlupqU26NCmTntFk4mAJaDZMt5lhRclLF6uZguD2EwVPLPa/PSF+1YW2SQA+TcfBagkYnmwRDA3OCBirPZAGHauWwV3FubKdx0pLaJRtHpUCRVFdBDIu1fJ1fkldfYcujiSszTt06KCOImutOyrmQXlnXi4X/us0WwidMheaVCz5Bh5IpXy0rT4HMZrStLDphRUGsmdJ3QUeOgKuK9KiAz4KraKRfTsJ0lq6TXzVYmi3dNylCIxMLIlGWlnmx/3Uu05Ja968eTNnzrzjjjv69+8/f/78vLy8l156KTJwm5nLGmR5eLIMRFZvMhpo5FDLFefj9hATR7DzygaDwS5L05um5Zaan022DR2B+JgH0ddrXvgC4mp8OM3pEl9/cEiGQy50sE+2WJ7vOxXJWYydx0uxFACIgDQ7TXxa5mSke1rUTppb0TAtgmkayUrlBA1PZOKUq05i8a5EWsEPEB4rEV+kBdOjrm35wqRGs0wEtkGUkCL3tKJAWlKJwZhiZxHFflNQSsY0h01FWt66YM9EGrV4bIPdA2yW0PqPbjZ1lnD9sEfR2uKawTnIC9JCCDxNCrEvkqmVgwrJT1aT56Ap5mIkgCICN4QQ7ZmMBlLQkZI0rcN6OvVOaz6ytKOFEHo8iW6HabYNImNAoWUZLIQBY2MXqEfSqqqq2rp168SJE5Vuw79u3TrlkjyVlZVlqj8KjLprM4m7GVqwT8m0vsh1JJHyhFjc9y/eeuFj15w/MLfRhwAQpQgtNmlKVQJb3EPtsZsF41JjaAYv8a5M31p/BMYQXML0RwnIdcopnuZoCqGlHJ1QohDtLhbpSAw7O8gPvAU/1Du4EYjLT3dsshBM00hDzzM8kQnNhmQfzssQm53BzINgF6rr2iGdURfN9R57jtzbR2BYkmL1nOjTOIMHLBwLMZrEsWqhX3nGSoKYON27NEHGVFlXfX0Ht1RTEKIIncIIOCHSqqj5Zga0EHuHqPGKfp2spoSi8ko6xo2Q0EK3K9IUy5fh4IHQo41y4IdYpHkQihT8IQSVIjbTbsG9Cg+E9rS0b7AhS6ylUK75sApUKjpPalp0qf3oIKX3d8nIpFi5/RPEKKTZpBWDdhUVFdXW1mZnZytlw3/y5EnlkjzPPPNMmvcPqhgFRt0lQzwsVz4l01DRWkOJGntex/+6vLdyHyvhisdLWk1bzJUscfC4pMWG2kbVeWfwqvp68ZXMhWsPUThRNfnhKtYw+En6yqdiX0Qfc9om30i9QC4AaXkIDmhy+qB61S6W/y6pO6p36dQJAvppyUxL+IAJtATStJhhE0pJaE2LbIOp1kTa3KZj4h5Ny2tx0lKjkobUSthmm9QSlCz+HtrQwp5csjnxvOwUM53FOONGSvXSBDN7IhJ16OCzrYW7hQbR/+ggSojWZ5xKpC5oMhpwl17UIwMlazz47vQuwopV5kHwNEqwmsTaFB6LtBMSKeIymBRJ2stKEQNNaYi0cMfCLEEhLe4WyvONasNP32xhCKGGYXVInohdWpbFn6f1SFoEonrqx8OgvqQEjz76aKn3Lz8/nwKj7gYjLZq+adi0V2qXJrjmW0i016glpVsa/dRTPKYDZKyurXdX1S7ZfJTICSFqUwCInOZHUiwQC+meKd6yVN5AQoh2IU2LFulY15uN4uak1aL2QpASy38oAfCkWITyAY8WcdjEBARtUkviYGkIqAx5oozuDZATbJ7+6QkiaOpDuzkMhg4AFvOgh7Qi0rSgx6AcVHRWw6+TYKZ++B9f/2X1AaRXS4k8hQH+xm6HyZjQX348kMAkfCixwWCg/UKfLzlBEQeAoDTlXVRKTy4ZLTA6dBmxiyqQNy1JfKl2VO9M+GEhhNuklEjDAJKBWuCSAAp4GkgrUbAX3dgIDyb0CzLKhhaSQdPNtItbKP6TOGoPKGQepPPulAArD2pkryy7ekApNlzXc+pdvvkTbt7mpBfzQnPyxyJvVlaW0WhUq1aFhYVQtnzqslgsqao/n9hoXSbJJZj/k0ZmH1pNa6/LZk5EYpiG4OpHqD3UNmoVek2cgWmUvvCGrXVEYW6FS0JbHUhml0xMgVlyvqa5m0I0upiyobwaDB1o/99gMNDDVihPQGkshJK5KmvggSZglatm+LUI8TSZ7LSkD5iGOk6aFla4JqMBqs/JQGcgaUOra3pSqtXzqy7bjpYAbRSLjHDDFSBGyhaNZujs85bv++fWArhYDqpTlkhdRJnOBndJVWIJH+UyRW5rlTUmSNIXB/u9Vky5aFVEKyQKicz1NlKsSMb0Ft9y3XCwOODKwKd8laYlfmWKYivkK1lWk+AqhOB+htskadGRmazGOnH3THH05kixUExRSItLwNuJPuaEpVLzm0fmQfWc0PwytZSgR9Iym83Dhw9fvny50gH4R48erVzG02OTM3KFNKCp66VTYTRs6vDQfjLBQX0JnSyesZi2qD005VHVmAGxqwH/G+sOnyitgFn8TvkLOuoblLY6MJchMVKSZMrHWL1nQOFNuqRm9emYnGIVkxHS07bWydKG+QWBPnKk2LX58BmfQJq1AbW6YT5p/C+hXiCwxLsYhz8CIdIi1dOYYMiVr0jnS/OaT2lEWpRgWJ44toDdIJoKO0akaaH8FItYEgV7fQoJSLYcPvPKFwfhx9TscwKQODs1yTMEQ7o4kAySYk00GRvNFclSi/UxD6ILSBzQNojwJLlio5sNlxFLqTQPOmQjsX+MtkG53On9IZUQxSqDS8OElKA6sgQmeUmLzIOVfnt1SKwWrLFw6UNaejuLUUjmwVRxEBetJaE3c64eJHZSKSRilzQtzA/Vkb7iElnVjW7EyIqIRa4HH3zw1Vdffe211/bs2fPAAw8cPXr0zjvvjEVFTZZJd7P/k0aaVl662GxvshAlAS02XdIcpwS2rKeqtq6mTrwbZLN4FpvUHpoUFm04gsv/urwX6AQe9fzrlPM7DA4IV4QuXVW1ZHVRwpv0bM8XH0OjDS1KTAcIycRBIf7ujNc3T/vL+oLGBgqCl2Zw/yzBQqi/peeqsSUWLE2T4YQJWWCQOC9dLL0LnOKUIC7VQuZB0l8v7C644asjTloaR0xaHpNdY+1HXSn87qqah//xNVn8cEk1wkNC0zpBgRA6iwFPuk0YvuBRhOCl9YESiC7Af2E30R14fMQu139ogE94uJclHnVQMGuiMWFkT00WQizOnDIjqlPMg5XezzVZvUq5JVFMiaBzJAshRXJXLEvaFZRk3lPvLiWksSeuV3gKaHSw4lRXfMdlvbb8avyEAdnqwMj8HZMt5sQEEP+JkorISogslxihyHLGNNcPfvCD+fPnP/nkk0OHDl2zZs1HH33UvXv3mNYYrHBaHp5rvPLCvU42n7wMMSsFy+sfTiY4lzzb5h/bIiFKY2jLQWmDQ54WA5/B88OLu9EDifkX9yiloeUqYumS3FSxJBcfu6VYCtTiEmmpN4ezU8Sp9xCkhQkXmyiB/WKsAAAQAElEQVSYf/MbvwtFy39oWlrqVdKQegH69lE+lARaPMVyLiNNC+m7yjVNQWNORTgEe11wu8gEF8r3cL8pKD1ZKh7+yEnLIjWtkEuiZz/Ze7jYDS2WPtgBDNEMRcDZ8Ctj2jc72SwncaVHiCUhglRrdZgig71WTFmSPKTV3FNI3o03D4+O6UOk1cQrxrBkKrdusTxGgVZVyPPu8NBPk8BjSRRLt6ZJSyoxPiPl0bSKdGEeJDXLZjYmW8Rdga6RGBMMWdIcQpfNcbHxSat2WsE3p6iw8uqUtNCHu+666/Dhw5WVlVu3br388ssR0iJCmta5xubB4yUVmCsRpaypNbYtWWozzV9saqxOSzKXnOOw0sSiVZ3eYfNMCj8Z3RMEgGnOJHdo6ANuSEkLXlKtcEkCixyF0PRNgU26UG7IPKgmrZw0YdagxUHAEnYdF5+iQVSJ1PngIcHsCQ/aDFe7WE1GDCjS0wk6eCIQp2xJhhc6WtP4cCoVqzYP9hZG0UQsjDCxIhYLWLgRSLJVKB/E2QGzrz9QDHsvon5/0xCy7QQkLbKUIpnJmEBHKtLlCgYhisAoBz/scnBJMIKg/C6BXiumBHazmD3djR8ligrLLZEKk8Kso+W2FqzEWEqGKKdEDo1BLKg6AGeyCgJzZDEbExKwBQpfhw5mSdJNk5akPZ/Z//zO4mzezuOlcTaXyYb7OoVyJxVqlsEg++wbH51rusPVuwbRKTdkKfolrZDNjl8kliqojG5ueEjy5S5FXkaSwdDohqDYEK5NPrcueSA7RLJ4RtEkQhOKul5HkpgB7Wbjj0d3R7gxwdA1XaiVyg1KulS6zcNtSEOSYRdkU+wKtRdFKRUXKzXMI5gv+slPB1E4nXoPoWntOl5GKZ1yFiM/XILXZ4GJ8CbFIafmksalNZlLSSAMUPJtazo9iPBgmhYmNepXV7nphRlTYWusDKgZyB6upFgEKxBn++fF6uQX//wa4dCbx57XkbQEH9KivtPQIyVkcBfxXYx0v1EmeNV1eWyD3cX+HDL6Cz1K7qoaAOUfqz2kVLWnhVznZSdnJZuhM4Xe1qKbBGsv3MnI5ZQcRkZsq9c2iHCLh7SaUAeLApHWeZ1SHDaTu6p2h4YNNtQVUyFNK7JDPdobRksfmg+152pmyjZFWu6qmqgL4VteWa0u+cBp8cWH3LQkdaAWP6YkFFjqblSaloyxS0OPn9Wc4FMFHYW69ZJu5kRPVK6cYQ8UllPK0/JcHyYvulRcmvJg/lJCmvR8Ize0emfZMZsriWm9f6K0Qgnx8Xwjv64LPEEA6qgzkjkwE6kDtfhp0j9Zdk5LYv80hWcrsEGI9li9iGVJOwxo3ifxodMuKCWmBAPmcYoibkBe6O5YIVFguG6SSTzOZ1xV/hmPO8/duWhrgfMcrIIPTOiLBJheUd3x0kadpZshyZyIBCTXDuncu6N94oBOdKm4dGDBqaoLug4KHJSbqqTx8dR3EFun6DgIwycqrEtqpM1spFyAq7t80QK2YgoJ6J4sFTuLaVYTaY0FTjeSlUjqAlHBT0KLUKx76DKgC9Z0ypWN3dsGSlZRU0uW3i/2FVFIC7pEJBnJINHoz4pKv8iGf7DIMyco4c334F4KJuIuDxbX6sIv/t3KAb/+NLrykzc2A4dDRW51sb/5YDcCV+07rQ7U4n9u2T5k/OCbE1oSxyfNra+KX8495qzwqY6a+vKaQ0o4vcL5P//eRSGLN+WjL39Zc5AuFZd+l++xpTuVkCY99y7ZjqL2nDyrTjnjdYH8keJGyKsTfLrrFHJB/rjyO3X4Ux+K0Vmxp1AdqMW/r1CsRWb9dauWxP5pRj79GRoDGf7bFRRL2IJ36VJxJ85fg2TVdfWD5iyjwD+t8rwydbKskkIicP/5lfimnA8aA34tnojRv//si+/Erg8aQ4/Jog3iY56vftEwvqjx453iFf7ff/It/CS3vLzhwGnXz9/eRpeK+9raw+jCm+uPKCFrZPnPfNyQV4kij4LPhU958KHwcN3luwtR9VP/2aNk3Cq/K//wP75RQvw9dy76Crm+PXW2SO473vjSeqSBi8DT5VXwkzz98bcI+XTnKboM6F7wm+VIA7n02c99Enz2rWjb8yv2+YTH//LZT/eihZ+E7EjzW/WHZTGpBbcoGh9M2hRpBeskhzMCjAAjwAi0DQTaFGltevzK3U9eFV1ZNlucAbEkGtTFwgaC4X/hlqHqQC3+F384DBlhC9KS2D/Nrt9M/OaJCf7hzQl5+vuD0KTRvTObLOSPtwxFykFd0igl/XTFn2+7kC4V9/4r+yLZ94fmKiFNes7rJD4+/X8/HOaTMsViRFHv3zPGJxyXb/7kIkSRjDuvI0IUuVX+Ivisy3oqIRo9Nw7rggLv+14fjel9kr10qxjcAZ1T1OE9ssRG4Gs/HqEORBWoaEpjiHp1FB8TuXl4F3XKsPyPXNUPxU4enEO5vvqf8SN7iq8cIfCGC3I3N346MHAIxyBSYnKxTYvARTMvpssQLt02Y/pkUZrfThF30fDu6XQZzCXT3L8DDWiwLP7hOali0/TvP7tEiaJbzgdPJZY8Px/bC1275aKuVw/KgeeXk85H+J+miyHD4ww/ydxpQxA7ImRH/nLbhUhzfnajgabsO+ZMpMNW6uZRVDB355yJ1wzKmTosF093sDQRhNPQ/++NgyLIqz3Lhse+ByggdHfRE9Ql3UqXocoJOVFjJkeZwaRNkZbNnBh1yZCvYlTW1FsTjUrhx0srAGjvTslKiEZPhl0cW6isqdWYXp0syWT80Wubp/xpncmYoA5vpp/OAadaTU2W07eTOByFzSpKWSo/+dM5LYkuFTcnzQpwyipqlJDQHrMx4XCxOCU8uKvDJ2VnuYtWdi5AUbBZoRbkhVtWUa3OWCW/cZBuN6sDtfizUsRsiD0SLYn907iq6tCYzGSLOqpbhqCi0+WV6sBCeWAaOzHqQJplkF4dGJY/U96rFTV1lOuDr09sPHTGZjbOm3bBH384rGOKlcLJpWM1xa4quiQXUKMLGEG6DOFmJgussHVBaegQxEU9MugyhIvy6+s7hEjQZBRuLRSSk9pw49GBlzPuRreBTznlleJsBUCgAz5n5T1T30HsYdksDfNGqlU8oTV19bbgkwk1oFNaIzwpfYrVNFK+N/ZNQSmFNOl+V1j+0c6T72077qqMZFoIVj5GFijlpduDJYhKOEaBNkdR3YaDxe9uO2YwdJh381Dg3Mzy0fhg0qZIK1gnmxOOZ56yV9SImx5+V2UN9rrhoeOe8GgXPB5I7JLPDzxhCXYjYLs/eNpFb/OElTdEYpc8gmy3JIZIQ1G0DEff8cAjhPai023iIcelIkTMuImVkNCeI2fcVbV1oOSu8qUldWKaX07Kw7vqcPh3yvPuI3qIs2olclccgSTl8hB/soYeUXrFpY+A+JSmxDbpccrfJcm0NwIkT3aqoPH7xXTevYuMUoq978q+D00479ZLxFlNJTAsT7L8SgVNqXV19W+uF9tO/331+VMv7OpfTifJ0BgmWrUgAbKA/uGhV9bgCSEp8jNO5d4XmXFnIjE0LbghhF6ud8sBCpEsRFRlTS1uFySgwYIH0lH25bRcCuAyoDjlmQssi2iAcBsjGRYocK0modDDA7F4Tg+K9QcuAwrtimXJJYJ/gpG9hHa74aDvh1r8U1LIqr2nybNfbqmSv/mucuS9+UWFLiEvXdgSQNK/fHcHUs4c03NkL/HmHPwxEiatJoCFgkUplFe18uW7omlJJmgnFKXdTbaIx8MV0ZH3b096TnjTzKK90tApXXIGodkkdMoUq4kIKf/MOaBBD3y6XZyMV2ekh7nYpfXI+3enziJ7n07JCd53ZXBJQqR1KhBp7Zbn3WGeQkqwHlxFiLTs5qZpWMlCHs8PskgNkkLCckEASJ/emLS6ykc6MGlJPRJZSKCz3ntlX0KYQsJ1k1VE8sX+IqxvUiyJARkLJaMiLIrBWDSbI+RsRQ10IHhwb8MNLSmSIAnqUnc11AWkv7Bb4G9hIIokSQ4KsQ6FhOuWytFBy1NUixItpEVrkXSbiXREIh468p4kT11SSywe0vKsUCnQx6Xjix2lrukThUvStDYfPoNFAC6blFX7PKR1QJ5JbjK9lgToF61dYn3kHY3pliFI66kPd2PR0Luj/WFpo0Z47IRJqwlsMZPSfaw8aZiykYfUDnjCEqjMSO+OSNPac0JM7shedq4GbrTEJRtDDWuyTFIuj55x00xnMhqSVXMHZc+Q72mdkWe0KCS0S78Y2TdbbGv5pMxJFZZGf9LCM0mz5GV9xfdSS8GfdfVKXpeHhsMnLfmeFqZgpaiwPKRpZTRWPek+AWJKUfX19TCx4rJLY9JCSDOFxoKI5I0vxa/J3DSiKwX6l5xoTKCmYq6h2BL5/pPNbLQkiqUVBQZzkyVBgueQgH7BsmeWnfgAIcHELj+KoV60ffbtqQnzVq/bL042BsulDqfRAa3iwVTCibTOuCrBwUqgj4fu2HSbOcMuVGEkRgLcSHAbaVom0XeyMCMqoBBpZQUhrYG5qegm7slvT3oe2ICFUGBxeeU33jc3oqhpFcpf0rIkJqQmhf0UUMO0u10zxKfscCcYEwxzpw1Vg6m9kLBSMmk1DZdNPml0fyN1Pr1ZnC7WF7gMS2j5D2tY6KciYJm7T8RE03JLtY9UwID1qgNpVQUEaApw2MTPQ6gTwJ8pzSauKq2fH6Rv//TLFhtmyK6W7FSxceJvDkUWTE/pNtP5OeIz5NAP1J+xwNyFQlLkrAqPdnEkCa2R5m7tuZSUpPDRJqgSSP3acayUuAThMExVyK8HdXYISkZItIS6jIoOFbk+33sa6siPR/UIUTjN9QppYZ5FYvAB3CYlWS5WUBf0CXqteFhTahbKpEcJajr8JO9uPYb1x/3vbC+R5jsKDOGWSE2LRkpJlmm3QEvHugUcoAT6eEqkDdlhM2XJ+5PU4kq5/WlVkbTZKKZECvcpQbn0kJbqx7SUKHgSjQnDewgL4cZDxbhUpAa3LO5U5Vp6vviuSAk7cDpqHy0slO9Qdkq1GAxi005WFSuH5gSUfte43so78riMnYgRil3pbaPkJJNYfLnl3g96RObBvIxISMtmEUWhELekCni0yx6FtORzqz1j6JSYd5BAo6bVLUOsqqA3OOULvBk2sWhFdrXAbmMyikeF5gV1VED/d6fE21HnBSYtMa2f8tur2HlM8Pcg+RMYqA7FEonCA6EeadmlQ2K10DYJzW7qcI1+sBFS+mACsydUEKxRPpdv8CABbWiBMCyquRLhzRcPaVXU/FXuZo07r2OPLHEMJFjJaAOiaAqGhzqukbSoLuRyVdVsPeqEp8kNLaRJMouFv8v7KCGEniYQ5xPv78Jlk+JpZOMbz5hgyJR6T6HfraIUSHcI1CwIAoulJYDoM0muShEIoZemKxt/axThavH/MS11LPwj5aHNjaptraPF7tH/Pi7etAAAEABJREFU+9ltCzdCz0YCRVbtFe91UfooalqnpKYVB9sgOjI0T9iEB3dJu/d74tgwQmItTFpNI0z3NExQlDRffp41r/EuOkU16ZqMCWZpNFc/t03mQgI8XYeLPAsxslYjMCriljOI3eJh09Bl0qpKkJZcFzukPc0ni8FgoHlBi4WwurbuYJEgrYDmQc+eljyrqa6Fvjo4IFeoWQ65qUZTEqUh0tKoO1IWch1yKqS1PIWE5TrlQYx0eyMiBxpXyzPWH+88QaXFyDaIwpMtghKgx/99s3jve8aYnggMIbQrA8KgNNTxgGNKCdSuJTGBlibQz7YfLUGUFtKyS3o4p1qx4V5CXsi/tx//xAsRLoNJCd14UidWp/H0RX5dSR1OfphJ6D7HEBO94SZBIAQJiKjggaBfcDVpWpImkdhfLpFnMTYdPkMUBRXrwb9vB6F+ub94/YEG9QtKKr2RPfNSMVInyyroiJN/gRRy4HQ5TKnvbi2gyxBuodS0yFARIllUogbmpi1/4PK//2yUOTFObBKnaqKCjrZCop/KQ1pyckfpBfIgRteMSDQtZKfn1iX3XXCpUfaeOgvrByXGNEGeqLjUEo16CemX+d49LSIn/2bAXIPAIg2fHzxS7KqurQcmXQJt8OSkCU3rdHklHnsUqMgueQoDTwtC0m2CJJxS88MlpomweoQsipCSAa2I5jIlXKOHzIOZjUkLea8Z3Bnu59+ePidvoQJ5kjBgf5GsOULGZ5SAJVGvjvbL+ogNP1wGE9K0FNIqlXxAIATLooSDjIkjtx5xojrou/RGhJIgoIceJaSn2LKK6hJptZsxWpgxH1+6M4R9j7LQze/wWy359IUSKy7VAoUs1ZoIIbqFZlwhjwSrzYOWRLF6q6ypw42kZFd7YOWjgc4KTlqDuzispgSUD8sn8v559YEt8psd8NMvmcED+eZYKdIAuivO70SlHQxpIfxk50kU+E9NpCWOQcVH00JH+man0MjCHwdh0moaZJtJLGBJ08J8fbhYaDx00LPpzH4piB5oYvWLDBrwrdc2iBTq/RtcNlNoBarMd6FLI00L026RtK74aBVK3ky5baBF09onbYN9slMwCSrZFQ+eZOxVgLGKVStozBpkKR1ImhaRlpxwkRHTDSYceGhKhUe72M3GRNTXoQPNcdozIiVaRbn8MUE78zKScP+s3idsQWQe9DnvjhKaLwkJDedisJuFy9BleiZ6L7YePkgSi4DQGSk2xSq2AFfvFYffhnZzgBIoPIRrN8tHSZI3kuFpgoulz6PXnH9+Tkqxq+pX/9oZjC2QEuJtpKgal4p4+hLEPEiKuCPJhNsMghqREYRxTr5aZzUJokIIRNG6sJbCpb+AsbALhduECvFPgBDoHKR3bjxYvKOg9Pnl4uNt932vj8HQAXuN+ws9BzTINjimT5bJmNCnkzDkhrYQ0jlbMqiilhBySh64JUxCJGulUUxaTQ+cVdo03FW1hWcrblu4saK6rn/n1J4hdwtCFGqXz61LntkLkcwniqZps1GMF9anPrHNuXRJnc8m+9hkOZ3TkjCtwwBFJJrut+ClEuh51vKh973yhBV9EYPyql1jgoEePFhOlPCDRWhyHQimZ6Z4zjNkG4gwkAZxcCGEMzzaxWAw0BK+RJ6j054RKUu8G42YGXGpFhR7zSChbH20Q3zZL3bmQVRKVA33xuEB3s1CArUQtoqmRRgSAupkwfyoBVFrvhOkdaH8STBchhZajytjlO+1tFsSjXOnXYBb6+OdJ9//+niIQqiRaTZfZqXXzpS++JTgIS15qyAqwy4O+BSVV1ZITStJdeSdHjGkqZRR8PgIbWhl2JFQbNz6xCqXI+Urxqv3nZ79zjasoq4ZnPPAhPMm9Bc/vfjqF4co2SrJ9+P6dcRln07i9CwMgPAHE6hZiDpRilaHeo0MabCshEvWdXjamIhJsI11KerdscmFGBYvP1q46UixG6vmN35yEebTyCqi3SOXyqyvpZw98rz7BXnidyLKonvkXbaE9L8mW4Jed5WbeV8XiG2MdJvv3EElZMpJoVju8VBIMPc7ueoMeAqDsnhPvQtzB4XQhhbWDaRJOGQbaFZCgnIvB1MsQsKStCSxhKeZMayMsJEhvcNmSjQGeKYmyW2tlXtOwfBImlZuIHMoSmim0En0m4YHPemuLh+KLC6ViZ54N1UigPAmheoqkjo3KRZNZrHLtZHbe8whnw7iZghL+8Bcz04+jITLd3s+hexfIDXSf2XgQ8A+GWlA022e2zWLLAGuqkrZEqtJpWkleoavUh4s9CkHl6A6uFnBbYOIhYyUZzFW7Ck8cNoFQv3dlMFYu8y6XHxK6r1tx4A59Dx6iMZK0urdUZBWCE0L9gaKhUe9hkNdPoJHYJvmozE+eVvFpWeEWkVbW6qRtDycv2LftyfP4tlYNHNkc5YwRA9uSRUaewSDyR75ZvHF8kkoq6jWmFFLMrfU+ahVWtLTttapMsEiyizgkzFc82DfbPHE+hRClwS1+indJY8ODpS2QaShNviQlvbuoAS1EAXSHKcOb9JPDO1zdFDJNTTPkZtmdVXVfvFd0XH52+RdYkNa1w3J7d3RfsdlYmNfqT2YBzczorBlCBdSKpVFh1cdQUhowWYMJTAYOsA8SP7Qrs2ciARuubCAhyxddEfh8q4reo/unYk5d9Zft8xdthezMwJ9pETagf0b6elLaPOgl7SgJ6HY4vKqCvnugZq0DAYDjHuIDUZadCtmNUVaF+Q5qBwU9dzNF5DReET3dNwJ2DR9a8ORL747DTMjjKKd08SJXNK09gd/v/iY85zSpHypoaLkgPLl/iLYNntk2pq0BgXMrv9AJq2mxyhJLg9xH2AZDsbqLq1STWcLkoIMceWSKoIk8Q2Gsn+2osZkNJARJop7WqBDV5V4Vdku++hbcaBr2taiGHr4ya92M+1iSUvzuDrcx4+nl45EhtC0iLROqQ4Q7pQfcBoof5wQBabbhW7k9B7EcElglfkUCcISWsKXhm8edEq1kuYm/xoxFU6SFsL3virAEhsJYrGnhWLvH9935UPjuqYL3QWXoaWjnHlL3NUYCKQslWci6LMguGxSUqyCgZDsvE4pqVYxCvCHFptF6DRu754WHR1U7ihs7bz504t/MkYcyljw2f6fvrG5RFKUuszSIMxKfVEIWJ0F/hLZtXQvH2faLQjE/YmNRnjUpIVLi1S2KqUShksfgcUPIYO8tx/8AQVlXizf1poxusfl5wkDIJLhNph1mVC2Fm048slOYSsmNQtRRFpHi6GFBjb9kU0CKSEF8iwYPAFllTxGP65fp4CxbSCQSavpQaQJ3WY2wiqo/mndpnMGSkFKgLLYDJTENwwaHoJgQMiUswwIDJdRkYrqOjqUSB9F1FKmMsUgcbA5msgMkwLShJBDRS6Y+0EwndPEKcGAKekA4Sm5sYwEYNndnqOD4rw7QtJtgiAVTcslV/EEMmLDlTQ5r9EcF1Ze7M8jPXUcHn/BrgYCP90lpirsBqV6Z3wEtpRgEYaVEGqn3ccSSdUOiQACmxQyDyLZhd3FFyDhaVLwECENUQU8+dI8qL6jwFtPXDfw+R9cYDUlgB6ue3HtEXnuCYlJaGjSksSgUwi5pGkVeu8TClRcZ+MlRaY0DxaXV8JaizSoC64ilkTBrNi4VUIUz7mq2s/l+3Y0mkp4QM/vvj/o6e8Pfuya/urYqwZmw8COhQt27xA+7jwPtcAMbjcb8Tj49BdpSGhDi/wF8gAq+X1cPCCffyt2Ga8431OyT4I2cMmk1fQgTr2w6/j+nV6fcdEwbbvNoUu0m8X61OVdbIZOTLF75NHBAZ1TaaYLQ9Oi/MFdl1SzEG8ziQcVniZFPcUoS1efXJneScEn3Odyn/zqIGyDWIH6RCmX2A+An2wy8OBxLasQSqdywDrdJuYvmsuQ4KyHtLR2B1nUkmkXpWHLQR2oxU9HJTNkYwKmh5aMvtASoYsjKUSXA2aPRSC2/cjMRf0lDMFkGutKtni0K40bWijWRje/HCMsl/Ll5JuX7qsXfn9Y13d/Phqbx/lnzv159QFkVKRE6l4OP2btlCrWPa6qWlq1KOnJ45SalpKLRhnM4SWtRneLxaNpBdB4wKNQEzF8g5vStFAvTDLTR3ZTjIQIgSQaE37qfX8u2ZJIX3xGOO6H3p2EkXx/oTicjBAfoXfwkQXheArgBpQ9J87iYQEN06ZawDStPZBJq+kRxJ7/qz++aGSUPl1skxaSgI9WsKbskaSFZqQmiWkC83JAc3+w7CHCqRk2szEhIdRRKHUJyg4EAoNpWpl2YX7BpIA0IYSO8IawDSIvaVqFcgsNS+NFG44gEFmUuYBmIlJ0EEU9omcbl+EK9S4/pPklYJnUgGCAIAsQniSPY8CfG+0POKHMyIQUFCItsrxpJ60Uq1h+od4LuzngahHcaUgGfQUuTHkwSxoTDJ0DoTEwN+2Xk85HMjIzwAPBbY8lCzxkxYVHEbvZmGQS3FPkPcGvRMFDVJduEysSXJJCXOQKsKeFWA9pBTqIQa8/Xz0oBxyDlJHJtIvyCLoxfTJNxoYZGKYUFHggyLYWHZSnj22GuD8/l7bBMb2zrBINFNj2pAGyttc3ffYo2SwedXeV2EnS2MIG0rIK0kKucu9PQsDfHHHJHSBa/2osp1umZ12cmGCAZS9gLvr+nruq9lxIhZJe0uqbHeCrg0qxMJvAj6d0xuubLn565V/WHMSlemlPPIFZCYYRRLnkKr6ZpHVE/r4XStMuZIDKtHumxYAZr5bbWojqIk9gwtPi0lEanEFa0Dlon9/hp8QEayTNvOk2k/YNf5vcOoU+hDJpQwuWYfXEjXBFaJtnf2E5jSzCFRuDP7OCRdQEjMRqcUr9DE2lwEzZ6zMuj3kwqfH8Tush/yPvCFm5R7xpd/XgHConMhc3591X9EHeaSPy4Cqi9FcJUTxAgMyDV8idqmNSQ1Vi1R7a0GrDtkF0lkkLIMRVaPfIJdlCS8Wuypoj0vTfv3MKHid6wPwPEB4ucn2p+VPZSr1uyZ1hffEo1Wqiec1hC/C13A7yD2QG5Q3e4pAfxdjnOe8urCJIHFDI7OOuql219zQW2kO6pv3q2v60Bqf06XKSra6tp6mwXJJWxHtaZPzMP+PGNEHla3RpA48YNFiWi3tmEKt1cXiIP1jKuIUr5sESaUAzJjS8ntxkG/KkWe/Svh1BGE0mpgS0PKKlDEBGIAEOj7+AC6H/YwcXOhnFlshTGLi7Eo0BJi4ircJABwipdw6bZ0lBo1BcDk1L/ASJVfWeFiqymITGBi0QfrXg+YKRIzvVMixP6x6eOrvaf+fY3rufvOpK+dqWEt5bnno/EEjTOl5a4a6qxTLx0r7iKycnoBTXBrBelrqrt8pPb4yTx+iVktuYJ8DYt7Ee6q07yRbxSICKNDYM5pH6+g54IGl5mJokFDXctD7Z71y09dZXNx4NU0WgKZ6mEpvqPzYAABAASURBVJ8CQ1zSRJNh96h9/ikxi5EFJoSFEEv7I7K1sPX5l6CEpFoTp17Y5fyclPuv7LvyobHv33PpHZf1UnMSWNySKG5jp9xsL5c6KBazSglhebqmJxkMHcB/RELa89JaPgQmKMqYYJh5WU+0dqz3OBkCW1ZwX6EBYAW6o6DBGAxaDcXoxZL/uuS3UwahBI1CmlZVbV11bR1pWnmS+QJmtyQa6U6DskUJSqTCRIdlKETtYssQl9Aa4foIjU66QlpyzxU0gIFGSqtkKXhILPJ2Ir2TQsild8MnDcyBpZdCmuP6P3T0UYwDKs1SKZ8M6WBxKKZoHnZGT8gXJ5QE5Fnz3WlEnZedrPH4KOVqda542qPfaC4xOAJ0s7qkihM8VUPMt/INLWxoUVCqVVCFj6YFteCwPGR1vPQcJdPo4rlFSnrfGR6NQhs/yro1YC4irRBT/8HTLmhOqdZEmmsCFoJAg8Ewb9rQT2Zf/sCE82gpikC1IAFNRiVSVyBg1aymTtyk35Jo7Cy39GlKbTK9ksApz9xnyM08JdDf8/Oxvb99ahJ96tc/Nv4hHtI6W1ki+cB/ryhEkzB3X9IrEzwXIo1PFN38CMSNly9fNlKszQj0FxpxzOMURZqWQ+rWFKJ2lb6oA+HHbUaUTG9HIARrGrOxYeoLQlpCCUNiErAsvfJ89eDOFBJ1t3umPTHB4KqqPel3BpJou292Mu52si0XBNp2/VyebLxCmhCj3jz9FNgwcvppU9tuCTGES7N50Luh5dn4SU2SpNX4oxiYAirka5IuaRzTDiClD3eKp/VvhnfdGrC6TLmYhQUmYCwC6b2T87IDf3UQCbQLzWJ0FKJcAotZSXt2n5Q0jYars5IhNDQmqAiTDgQenYgy0RMf0N0Vu7bBvo15GeW7q2rypdG7a7p4tRYhAcVnmwfmLyQL9iaZsj+HNGrBThj0D4QoGTEEdH8iEGL1MQ8milmxUj5QiCVZf6AYzJeVbL5Ivn1FgdF1sbfXPdOGMomi4FGEjg726SQmAdKiCvy2terq6ulHkNvwG1oEiBge8rEbHwS8R961HsTYIz/gNKCz57UkqCZop4+mpVjhyiMjLbMwOaJYjYKlnN1sVF6ZDJgr0y72D84E39P6lr46mCOew4AlaA9Mt4m6SFcgGg5IWhoLJEoOS9PCJg0tGpS1vMa6WjxZxxRxzrOovBIzMhrjCKLEICpaYpNnMdxVtflSVyC0gxXuOQXu3eahIQ5mHqS+FMpf5VAXSLZB3BKgTCU8wy7uGVwaDB3UWhdCLInCgO9jHqTXqiYOzDFinw2JYiOkWQYgLbn727eT2P3NkzRfINFTt0L5ZvyIHs3dclMXq0N/gg7b1LabRGqNWyoETfYUqyf6NG2DeTCJNK1GX3JSrHAubcUq9cIWAb9NziPwaJSLe2bsmHPV9JHdQqTPlAe0iuWH6XySVVTXPvfp3lfkOUCFjH3ShHVJVOFU7WkRyGEVoiTunim+wxsWaZGSh7kPM6NSTqvwdJTDhH0grxIj7q6YtpwshKAfMoKRqTlYjX06iWn6gPfVJVIHg9kwibSwP+dTmlPajX34mO5PpLQmGg2GRtt4FqlpqQ9i1NTWLZNvhV89qFnnBlFdaPH010vSlBjGfzo6CPMgQrqmC20s30/TItvgZeeJb8YjWRsWJq14Dy4xhEubSpTvdINXsELs5f2ofCrtacljVErTz3gVGo3FKhndcmstgike+xlKIQE9tJJV2FRJs/nwmWtf+OLFz/fX1NVjT/smDR8jV/IG86RLTYvmJtI1yQYbLH3ocJpGwzIP0pvF6XbxyxehC9dbLE30uMfoM75hbVBF1hebRegxsHfV13fAs0AaebCiSPMAvdGvI5ZI+gnWSPr5KBCwT2klcruObhIlSqk3yW/FZpHWwkrVV943HT6DO9lhM2EPTykhSp5GxRBp+WhahWcrz1bUQMHrKScBMqj6a1qr5Btabd42CLyYtABCXIUW466qGiygmqyYbIPnZScnGj0jlZokTHn0iqWSvcir0JRXarU6Ul6X1MyaM8VTOf4uTQqK3RIJ0N8nP9h985/XHzjtwlz50q0X/vn24VaTmMIQ2xxJl6RFcxOARVH0ChE8EQgZrCLQtKgZEdTYglmwXkmSQ3BAru79f/Ij6m0DUaFMMg7npdsMhkZaDqLUAn7CrYKQA/LXEUPbMCklngXYJ5BFEVrNOBpbPun+RBqr1KvgUcQsnzW1eZC+Ezihf7ZJRikpo+4hkt7v1SypfBA8PD0yMVbiYaFFVUFjTQtU/XVBKZKN083BVDQmRuKZCmNUOhfrjwC9p4WdYfVT4Z+MQvbIb2Gcn+PZ0EJgEE2rClEQVzikBaNHodwAsJkFESJ7FIXML8Xl4mPwVOy6A8WvfSl+SegHI/JWPDA2iqewaD46I5fhhACeb6o0Ard7hjC/YHUPM6aW7NjQevUL8cozfbxDSxZdpaG5fn9hOVoVzPKGqGiJTf6kKv2OGs2/oUvu01FYCKl5tC5RzlP4ZMyUZ39q6+rPSNVKiaVc6XJlowTS+++49F82WSSLqx9POjd4zeBYnRtEM0hoD68IW4zyZqZAOrJEShhCuso9LdyfVapvdnwp39EcmJtK7zUiWRsWJq2YD65PBTb5SCBQi1a0S34cdoD3FAZypSaJXYdgBzFIz0CyEILdi39vP3b/km3Df7uCXj3BejZE+sii/M2D9Fx9f1iX3980JNheemR10XxEcxMMKSjE3gwadthMKRbB4gV+e90o2UfAkT95Y9MX3xVBgbj3e+IzBz4J9H9JpHVCfkcffY91g8k8uPfUWVSUlxHq6CASQGiy9pCWtIoHu3mgBtFdB7UDGRVxSg5Lb6xpZdnFCRSksXqfR/hJLFL3qvR+5R2WSQJneOwPOMAMQ5+AUf9GiXpDCy3MtJutpgQYV+nXRBECWXegCO6YPuLVY3jatkSHtH73u9+NHj3aZrM5HA4fvI4ePXrdddfZ7fasrKz77ruvqsqjEyDZjh07xo4dm5SU1KVLlyeffBLmIwSSrF69evjw4VartVevXn/+858psG242A3CBIe+aDmLsZt+hsP721HIlWqVpNX4yHtxg3mw0cslSO8jJ0srxvz+s/uXbP/39uMwtmCSuvHCrpOHRH8JiUcLVSsNg3/DwWK4o3tnwo2u0FSFuQm6Iy2Q8fBHXIXBYKBT70fku88hysF0NuP1TRsOnkF1f/3pxcO7Z4RIrNuojvIsBjUvLUncXeSPkUs3P9mNyRIbuqLeHcW5mAPSeon1FhI7gjeS3vnzIy1xasnRWNMitQylWeUOFjyKEGlVeT85kS/fJ0u3mejRU5LFyEMkTf2lKvafEkpw306ec7a4P+ksRoHKQrhePlyjYvBwURt05SZEpTWgoptvvvnnP/+5T2m1tbXXXnuty+Vau3btkiVL3n333YceeojSlJWVTZgwITc3d/PmzQsWLHjuuefmzZtHUYcOHbrmmmsuu+yybdu2PfbYY6A6ZKSotuGSOa5Jrcjpqjou17/qd1FTkxIBgo+mRS8JIRwLf7gh5PO9hdDwspLNPx/X+x93jtry+Pi50y5wNH6eQ2TXHkWTwrlqz+cH0bBvpM09FlvZoF40zOmqdsktOvibYx5EdppMQ29rgfJvX7hp82En9s/emnnxiJi9voP2xEAaiuwoT73TNSFJ/hi5dPNT4YQz+YO5fTqJyfqAtF56Tg8Gv107yr74kBap4OmNNS1a6KBSawBNS2wdVXrf0zp6xoVk3TIFd8ITa+nTSZhD134nNCfUhaX8PnnencIRAsmTFsICryUg/4w7/8w5Y4LholZ7E6JT2iU6pPWb3/zmgQceGDx4sE/Fy5Yt271796JFi4YNGzZ+/Pi5c+e+8soroCske/vttysqKt54441BgwZNnToV5ATSwgghCqpVt27d5s+f379//zvuuOOnP/0pKA3hbUaSLeKpcDW1/0S2we6ZthSpXVH3ablXJu0kFAKX1q3wgJDghpCNckX2w4u7/XLS+bjFE43RuQH8a4TyYZaFE6FuPeKsqavvmp6kZRvDv7TQIelyFoOmVS4PQ5oTEyChs4SO7ZYptrVCa1p3v/3V9vwSh830t1mXROU3a0I3KXaxNNFT+WlJnreX6DIWLmlaVLKWm4Em6yNn3JU1tUQ/wJyy+7sdpdZ4WrWTijRYzcD1+SxklkyJcH/SopuHVHYkoLWLFn5F4uYLzB4GQ4f3vz7+r23HUFqxq6rEXY0QOqOBEEjXdHF/5ntJi9SsIV3T8NAhts1LrOYsAm79+vXgJKhTdHnVVVdVVlZu3boVl4iCbdBi8ViWEXX8+PHDhw9T1MSJE+EhQdSWLVuqq4WOTyHkoijwnyIU2CpcWmy6Qn4BHR3Z5WcbRGBqkjDg+JweLPaaB0MTIdYEGw+dQSEje0bfRodi1WIwGEjZorbRcxULNQuVpkvSclfV0tHz5j+6NEPly082oHx/OVLsWru/yJhgWHzHJU3+iK1/dl2FNCYtcXfFtHl081MVeXLyJX8wNzvVggGtravfeay0rl6kCmHDpL7QD9mIpPKfU+5pOeRNIgOEo2haSSaxghRB3n9kHgRHUoCXtJrefqP0zXShst/3vb4o5LGlO7CTR0cHAVSS6mh+V4+m5flm24YDwvA+Kkq/nYSqW0y0VRxb0jp58mR2drbSkvT0dLPZjECEwFVHkR+BAaNqamqKijz6MhKQPPPMM2nev7y8Rh/5pwS6demIOZaOoVtImtbA3DR1MnpioVHVeG3uiFU0rdCklX/mHLaUExMMF3b33XpEIVEXmheobbShFSPSSrGiT6L5x0rc+I/ghSdi6Z4hbEE0WwUshM5AX9IrQ225DZhS/4GKzoGm0t0FT+xE0bRQr3oiDlYjVj+0rbXlsBNprKYEqx/NIJyESMtH04Kmgtj0xuZBNMNqErOfRbpIoAiFKJoWKdx0SyhpYuq578q+Y/pkYhEGbf6bghLU1beTsBnCQ0IaaoFTkFZ9fT2tCEf3bhenMICAGDb8F1rmzJmDWyegQAcKnRe51AkAsRKieJAA4XCVEMWDQJ8ohJA8+uijpd6//Px8CmwVLu24gHhCtzagpoUJmnIp2d1VNdg68gaGOoix4ZBYkcGMYDOLjTHKEjuXSAv2DVDpN3JDa2TPmBxVSEgwkLJFj3Gy9xd1I+4aaVogLZ83fpQC6aM+kwbmKCGt10MTPdpvNxvJMgZ/7ARsQYV3y9Cqu9BBcFiYkTHYeXdEQagvp+WLHLgkIU2L7hAKgWuAJUAeILSa/DUtEaKQVr5UuIknkDEOAg1+/g+GoS97T52dt3wfauyT3Yi0vJqWWKIdLnZjJWoyGoZ3b+NfbwIOJJpI65577tkT5A/WPyoooJuTk0PKE8U6nU5Y+Uip8okqLBS/rhYsKjExMTPT16IF02Kq6o+qaBWu3Sw4wx3SPOiuqjlY5EJ3fDQgEdHWAAAQAElEQVQtkzGBHvuyc573iMn+hpQQ0APcYLLxoLQNxsuMkCW3DYrLK7ccccK8gyctL0PY4oM1rznhDrmOpvmFtgybU1pnhxUTB6YtnzU7lXmi9Bx2swyGDle1LdKKg5oFAJUFk3YaoG2tr44KTYsGGuUEFEz0CD+t+kmtc1W1GEcEptt9t+vIfB3cPCh+sAr3bYFUaGibE+XER9CRF24ZlmDoQI3v20mcRlGq7irNqqfKKiuqa9dL2+CwvPQklf1QSdkmPZpIKysr6/wgf1arNQQuo0aN2rlz54kTJyjNsmXLwDTDhw/HJaLWrFlTVeU5AY8obH316NGDopYvXw4PCaJGjBhhMsXc2k7VxcG1ydtLUZUC1rjnxNn6+g6dUiwdUzzbfkqyVKuAQjlASPY3q7RyQOXCY6ak9PFslJpWjNQdn7pwSZoWmkfPVUxt7uk2MSXly/mFFFk0IGLByqCLQ+gBZBryKYdsg8O7pbeNFzmz5Du56GMcPoeBWhTjLamzCGlS6P3iIrlxG5pZ8bygtEIVadGLxlBE7PKhQ6widH/Sg6MEwkPqJr2ndbzkXE1dvdmYQK9PITZuMqp35gPjz6Pq+jY2D8LUSd1B88g2iMSUsj24mkirSSCOHj26fft2uLW1tfBAysvLkWvixIkDBgy4/fbbt23btnLlyocffnjWrFnQjhA1ffp0ENiMGTPAakuXLn366acffPBBg0F80+XOO+88cuQILqHdvfbaawsXLkRGZGkzQrMqdKkQPfJ/Q0tJnJokFLUy7wFCOp6nTAEueYJOSax4jpWcw5oRCgR2epXAmHpoJYu5ZoM8snhJLDU8h02QVoE8T0XwNrNrhCcshP7leGyDMf52qn+9MQqxJBqJCRxJYjEUo1qUYpNMwviGyzypLsDTpJB5kJI5pEpNfn+3Y7JYQ5+tqIEKQrFO+Rll3B4Gg5hbKJBcYjhxt9C11wUg8NL3Jkh375qehAcHgXGWu6/o88OL88b3zx6oelMTbTAYDF0lelileVaE7eMNLfQdEh3S+vWvfz1s2LAnnngCXAUPhPa6jEbjf/7zH6vVOmbMmGnTpk2ZMkU5vJ6WlgZ1qqCgAFrUXXfdBYqCoEGQnj17fvTRR6tWrRo6dOhTTz31wgsv3HjjjQhvM0KLTZf3paKA/dp5rAzhAxufwkAIJNUqJhdF0yLzYE5aEp1GcAU5SU+H3QflpiZbBOehnFhLpl0QSb7TveOY+CrayF4x2dCiXmTYBSb58j1Q+p4FhUfsdsu0Ie9R+dOa8CgC09Pmw8LKOqmtkBa6Rtp8WlxIy2b23H7azYPdM2wmo4dyQu9pYT1nThRzGoYJ/YIEPIWBcMiM0T1vHt71hqFd4FeLRZZAdjlatWhvqrqc5vuxWfvM1CGv/nhEolF0Sl0geBSXq/YWFpVXosHDusXjaBVq1IP4YhFZm9544436xn/jxo2jorp16/bhhx+63e7i4uIFCxZAu6JwuIMHD4aFsKKiAvZDEB6WDwgkGTt27FdffVVZWXno0CEoXhTYZlxa3AVjF+rmrhNioh/YeIVFUalyclH2tGB/Q3iW3Ry62I3x3dBCkzLkRveWw2dgsczLSKK1IcJjIelS04J1FIUTDvA0R4JpWst3n4LZdkjXtJh2pzktjyBvR7n76AipxERQbMAsNotX08oQBtiAaXwCMWX38L7bG7qRmEOoL8pmJJ3CcMjbw6fYAbmpf7j5ArIDq6PUpwePyFMY3TPFCkadpsX9RFr0LteIHumWRA+qLd6wODQgOqQVh4Y2rwp95W7yIEZ1bd2+k8K+OjCwpiXWqoqmRaSVYTeTClUeRIHbJPWDuG1oAXEyD9K7NZfE+M0wh2pWigppYXWPLtCcBY8iH+8UG7Rt4wiG0qksuW8a7Jt+SrKoeOjmT0wwdE7TSlqol85iwNNkI0lrVF7VKpEvaaWHw8dEAPSeFmlatIJB7foRUv6cbvH2akx3i/XTZaUlTFoKFPHz2OSecLDNJ7Tju1PlVbV1KdZEKCi49BHStEq9e1rYNEKCjGRoWmK1FVCBKyyrOFTkMhg6xG1DC03KtAvzIDyQmG5ooXz1rJTsXcsjPGKhSSFfLrSVQkrd1bSFEOsfA1RqjI8Hs54xwTC8WzzOTPfqaL+kV8bto7qjRu29U74HEdo8iAKJtFSalpjW01VrGqQJLWRgJPMg3QB0M4TOFedY0rSo0nZ1CgNdZtICCPEWUokCsgs1hd7QGtA51WDwmPIpnFzPnpaXtM7IX4AEQ5CGUR5oT2uD/BBG/5zU+OxbUDuh/JEH7iUx3ih2qGalZIvY30KlzRHa08KCQI3n8j2naurq+2Wn9JK/l9Gc8kVe3fybPrLbzjlXTYzLCX6TMWHJf4164rqBYfVe0bQcTelMHtLyHiB0Sk1LfXs0Wa8lUcyKVRjp+no6PqpL86DHYmkzG4d0bUcbWhg+MTz4jyWeCNgswr7nCmLHQ0sCfgsD4SSpSSK78iUnMg9m2sXXbpDAFYi06BRGTI9CoGofSbYkmuXzD+uK/86BT+JmXqoJks65NLNArAzS5fxIa20q7RNpG2xLRzCoX3CTpPYPjz6lgbTkhm6IRtKZQDqIAeI5Jt+CoKEMkUsdRaSFEKhrZM/Ik0f1EKIfUZp0UY8MrAP007A4tIRJKw4g+1aRLO1X9Dz4xsnr3fJntAYGOoWBeMyncFVH3sW7bsI8aBZkFpi0pKY1MsYbS2iVWgziowPCQghzkDo8Fn71rASyjEoV4FqUQ7sa8EDlWiO/vX314LbwIQz0qBUJjIrUWo17WlilzXh909Anly3bfQoZs+RJE3i0iCVRmNmRcr/8tHyWMLyLJwsh+hGsXOmUbNRtg/rpY7CWMGkFQyaG4X06pcCgf6zknHoVr9RXV1e/+4Q8794lVQlUe1LlYlM5iFEsX7rM9J4eLPdT4IrKK+nxuzg2X1FSt83HT6/fXhLLN7SoRofKPEhmUgpvjttNnlg7Wiw+loNyFm88gpV7j0wbzIO4ZIknAjZz4tjzOuamWXtmic9ChqiaTg8eLHKt2nvaXVWL5+LGC7uOH9DwBdQQeSnK5D1ej61lhNDaBR5dCVaEF/XMgCVjfP8wuqarLkTcGCatiKGLPCM2lmjTe9Ve8fEqn4KwtC+vrMHtqGw++yTwalriM07nqmrpnDfsY6TA+Wtam6SahakWaXyKivXlL6/qN/PSntfG4EcmfVrukKY8CoyepiWOt2E46uvrF6z87umPvkX5t1zcDfMFPCxxRuCNn1y05pErwF6h6720b9a4fh0hv7q2/8f3X7ZZ/mIcnrjQudSxGF+LNGt/J3/ISp+khQa/8MNhnz88rk+nRp8lRHibFyatlhniK87vhIo/33saro/Qhtb5OSkmY+DRoSeQNC36HAYYDjM1aRjlfntaMJWgioYNLVzES0b3yfqfyQMsiR57S+yqNRkTyFqCKgAF3OZL9wyxqD9U5PrVv3bOld8tvWtc759d3qv5JXMJESAALkkM8kSoSwOrvfGTiyF3XNarf+fUhIQAR5nU6QP6LURap8RrJ7olLdznsd4qDghOiwcGnhZbvFltvgFXnN8RfVx3oEj53gwuSejo4MBAb2hRgtQkYWGnPS3vKQwzHmkiLX9N6xv5QYp4HnandsbZTbebqUbCgfzNcemg89r9RW9vPGowdPjN9QMfmXS+wRDJJNicZnDe+CNgMYllFhnVyUoc/zZwjcEQYNIKhkxsw2Gs65xmraiu2yC/y6eujDStgUFOYSAlmQddVbU1tXXFckOL7H5YeSHWVSXMhvAoQsSG6pSQNulJ91oICYfm97FbpudUsdmY8H/TL/zxaPE15+YXyyUEREBXgaRpFcvvFupW09IVYvFsDJNWPNFuqMtgMIzr1wnXn3/ru63VJGmlWIWmhbxnK2rouSLSIg2j3O8ghlM+ew55fAO52qo45FkMY4LBaorOXd051YoJK9Wa+NeZF18zuHNbxY375Y8A7O1KIO4Bxc8ePSAQncdbDz1pdW24op+wEGJbC/v8SuP3nCgrKq+EHf78nMBHB5Ey0Zhgl2/VYFvrjKsSIZnSMhbwIAa0MXqji+Z0JG6rki41LSCDBUFU+ojtkE9mX7bu0SvjcPoxKg3mQqKFgCVRmAdRmiUxgV78gp9FJwjEkbR00mPdNGNMnyzYnY6ecR8scimNmr9iH/xXD+qcJGkJ/oCSmiQ++lB2zqNpZcrXUEjT8tnTKvV+OEN9vi5gma09kPa0omUbJDRs5sToFkjFsqtzBMBV1ELsa2LtQn52dYIAk1aLDQQ4ZmSvDFSvWAh3FJR+uusU1KwHJvRFeAhJ9f46SbFqTwsFIkt549ODJZK0UiyJJmMbH+t0mziIQSAABxZGIGIEFNJi22DEGMYuYxufyGIHXFRKHkfbWt63teYt34tipwzt0qdTo1/XRqCPpHoPENIhC695UOx1+Wha9JVrh11oZj6FtLFLMg8mezf8NPaOkzEC/gjQ6UGEM2kBBL0Jk1ZLjsgVcltr06EzUI+2HjmD/S1jguH+8U2oWWhxg6YlD1moD2K4Gh/EcLrC/so1ym+NQh+xVb7J1hq7wG3WCQKw21NLmLQIB125TFotORw9s+zdM23VtfVf7i+au0zsZk0b0bW7/HpQ6GalKnta5fIghtzTSjYLTauqtq6qpk7JHsFXrpW8rcszunfmO/91yVM3DGpdzebW6hABi/cAaguRlg4h0VGTmLRacjAMBsMV0kL4/PJ96w4UY313z/eaVrPQ4lRpBCs9V602DypfN3eptrVK5M/EkekMGduwAMyRvTKb/KBqG0aAuxYtBCzyixgorXum5109+Fl0ggCTVgsPBH3P6duTZ9GOH16cp/G7LKRpFZ6tcFfVImNGsjiDkGhMoIcNxkYEkng0LamZUQi7jAAjEBoBS6LnyHtX/f0oSeiWt4dYJq2WGWWl1pE9M6zSFmFJTLj7ij5KeGhPqjw9eLhIfIDcZDSkWIRhEFnofLb6oxhOqWk55Mk6JGBhBBiBJhHAw4g0nVIsSSHfPEEalvgjwKQVf8wb1Wg1GS/rK94y/tGo7vRDHo2ig1ykytOD9IJXpt0CyxgltEv2amweFL+2lS5fvKU07DICjEBoBIi02DYYGqWWimXSainkG+p98oaBT90w8KGJ/RqCmvKRplUkT2HQ0UHKQaRVrjpA6NnTkp/MoDTsMgJBEOBgDwJYSsKXl8EbWoBBd8Kk1fJD0jkt6fZRPeg50dga+nUSSpwpN7TI7/8lJ6dbaFoONg8SQOwyAhoQuH5o7oQB2T8exZ9I1gBW3JMwacUd8mhUmJrU8LJwIE2r4UPvHk2LzYPRgJ3LaCcI9O6Y/MqPRlyQ52gn/dV1N/0ax6TlB0lrCCDzILUUe1rkgUvmQfWeFmla6axpAR0WRoARaP0IMGm1yjFMlQcxqOmNzINmcYxQIa1zVbWV8kVjB2tawiFoiwAAEABJREFUBBa7jAAj0MoRYNJqlQNIR9up6YHMg+LlLcSSmpWYYFCnR7jOhJvDCDACjIBWBJi0tCKlq3SJxgSFh9Sk5XMQg0gLapZyJl5XveDGMAKMACMQLgJMWuEippf0qfJLTmhNlur0oM+eVim/WQyAWBiBCBDgLHpFgElLryPTVLtSvQcIM+wWJS2RVrn324NOSVrpvKGlAMQeRoARaOUIMGm11gFMlV9yQuszVC8Ok81Q+YyTk1/SAkAsjAAj0IYQaM+k1bqHMVUeIDQZDaleOyH649W0PAcxSiRpsaYFZFgYAUagbSDApNVaxzFValpQs9SHLOjXSZQj706PeVB8A7619pPbzQgwAoyACoEokNbhw4dnzpzZs2fPpKSk3r17P/HEE1VV4tNBVMvRo0evu+46u92elZV13333qaN27NgxduxY5OrSpcuTTz5ZX19PWeCuXr16+PDhVqu1V69ef/7znxHC4oNAqtzTylBtaCGBxzzYsKclBsLBbxYDmtYi3E5GgBEIiUAUSOvbb7+tq6v7y1/+smvXrueffx4c89hjj1GltbW11157rcvlWrt27ZIlS959992HHnqIosrKyiZMmJCbm7t58+YFCxY899xz8+bNo6hDhw5dc801l1122bZt21AUqA4ZKYpdBYFUaRXMVG1oIcprHvR8xqlEaloOPogBaFgYAUagTSAQBdKaNGnS66+/PnHiRGhF119//cMPP/zee+8ROMuWLdu9e/eiRYuGDRs2fvz4uXPnvvLKK6ArxL799tsVFRVvvPHGoEGDpk6dCnICaZGyBdrr1q3b/Pnz+/fvf8cdd/z0pz8FpSELixoB+h2TXIdVHahoWoSkk/e01OiwnxFgBCJCQFeZokBaPv0pLS3NyMigwPXr14OToE7R5VVXXVVZWbl161ZcIgq2QYvFc1wbUcePH4elkaJAgfCQIGrLli3V1dV0qbgoCvyniBLeTjzfH9blfyYPuH/8eer+kqZVV9+horoO4fyeFkBgYQQYgbaEQJRJ68CBA7D13XnnnYTRyZMns7OzyQ83PT3dbDYjEH646ijyIzBgVE1NTVFREaLU8swzz6R5//Ly8tRR7cEPfpp5ac8ujiR1Z20mI13Sq1peTYsPYhAq7DICjECrR0ATac2ZM8cQ5A86kIIBVCWYCm+++WbY9JRA5FP88NTX1yshiofC4SohigeByAJXHYJLyKOPPgqtjiQ/Px8hLAkJBrv8gXBXZU1dXX3pOaGepmvZ02LsGAFGgBFoDQhoIq177rlnT5A/WP+om2CsK664YtSoUS+//DKFwM3JySHlCX6I0+mElY+UKp+owsJCJAgWlZiYmJmZiQRqgWkxVfWnjmrPfmhg6D40rTKYCOV5TIeNNS1AwsIIMAJtAQFNpJWVlXV+kD+rVRwEOHbs2Lhx4y688MLXX389IaGhTHDYzp07T5w4QVAtW7YMTDN8+HBcImrNmjXKCXhEYeurR48eFLV8+XJ4SBA1YsQIk6nhZw8pnN2ACChnMZzy6KDdbDQnNoxIwCwcyAjoEwFuFSPgj0AUpjPoWGAs7Co999xzp0+fhmoFoZomTpw4YMCA22+/fdu2bStXrnz44YdnzZoF7Qix06dPB4HNmDEDrLZ06dKnn376wQcfNBgMiMKW2JEjR3AJ7e61115buHAhMiKcRQsCpGm5qmqc8uggq1laQOM0jAAj0FoQiAJpQRPav3//Z5991rVr187eP+q/0Wj8z3/+A21szJgx06ZNmzJlCoiNotLS0qBOFRQUQIu66667QFEQiurZs+dHH320atWqoUOHPvXUUy+88MKNN95IUew2iQB9FKO8srbEQ1qsoTaJGSdgBBiBVoNAFEgL2lK9358CQLdu3T788EO3211cXLxgwQJoV0rU4MGD16xZU1FRAfvhE088YTAINYtix44d+9VXX1VWVh46dAiKFwWyqwUBxTxYIs2D6Tbe0NICG6dhBBiB1oFAFEirdXS03bTSYx6shHlQHB108NHBdjP03FFGoD0gwKTV1kaZSKu8sqZEmgfTWdMKf4Q5ByPACOgWASYt3Q5NhA1TzIN0ECOdNa0IgeRsjAAjoEcEmLT0OCrNaZPdnIjs5ZW1Trmn5WBNC3CwMAKtHgHugAcBJi0PEG3mPzo96FLMg3Y+PdhmxpY7wggwAh2YtNraTdBgHnTRQQw+PdjWhpj7wwi0ZwSYtHQ0+lFpis9BDEcSa1pRwZULYQQYAV0gwKSli2GIYiM8mlZVTYnna7msaUURXS6KEWAEWhgBJq0WHoCoV0+altNV7a6qReF85B0gsDQDAc7KCOgLASYtfY1H81tDBzFOlJ5DUQmGDilWcZgQfhZGgBFgBNoAAkxabWAQG3WBzIN13h8lSQBxNYrnC0aAEWAEWjECgrRacfO56X4IkHmQgh38ZjEBwS4jwAi0FQSYtNrKSHr7QZoWXaXzm8UEBLuMACPQVhBoI6RVXy/MYWX8V1ZW6S5PqD5XV+mG2A2VrRYSbjgjwAi0XwTAsDSrw+MjbYS0zp49i47l5eWltfs/h8NxaN7N+fOnQd76+ffaPR4MACPACLQyBDCTYz6nWR0eH2kjpJWbm5ufn19SUlIa6R+yAxq4kRbQ1vIBCgbEZ1AZk/YOiE///S75DvGBJDJASkpKkBGzOqYgf2kjpJWQkNC1a1csJ1Kb8Qd0mpG7DWZlQPwHlTHxwYQBYUB8EPC5jOAOwUyO+RyzOvL6SxshLf+OcQgjwAgwAoxA20OASctnTPmSEWAEGAFGQL8IMGl5xsZisTzxxBNwPdft/j9AwYD43AWMCQPig4DPJd8hcQCEScsDMu62OXPmwPVct/v/AAUD4nMXtBgmPu3QzSUD4jMUDEgcAGHS8gGZLxkBRoARYAT0iwCTln7HhlvGCDACjIBuEWiphjFptRTyXC8jwAgwAoxA2AgwaYUNGWdgBBgBRoARaCkEmLRaCvnWUC+3kRFgBBgBnSHApOUZkD/96U89e/a0Wq3Dhw//4osvPKHt5r9nnnnmoosuSklJ6dSp05QpU/bu3at0vb6+fs6cObm5uUlJSePGjdu1a5cS1R48QMZgMMyePZs6257ROHbs2G233ZaZmWmz2YYOHbp169b2jElNTc2vfvUrTBp4Lnr16vXkk0/W1dW1N0DWrFlz3XXXYXLAM/Kvf/2Lug83xGNSWVl57733ZmVl2e3266+/vqCgAOnDEiYtAdc777yDWenxxx/ftm3bZZdddvXVVx89elREtJt/q1evvvvuuzds2LB8+XI8jRMnTnS5XNT7Z599dt68eS+++OLmzZtzcnImTJgQ7EOWlL4tuejyyy+/PGTIEKVT7RYNp9M5ZswYk8n08ccf7969e+7cuQ6Hg2CJMyZUaYu7v//97//85z/judizZw8Q+MMf/rBgwQJqFS7bySODWeKCCy4ACNRxxQ2BAGbapUuXLlmyZO3ateXl5ZMnT66trVUyavEwaQmUcIfNnDnzjjvu6N+///z58/Py8l566SUR0W7+ffLJJzNmzBg4cCBuwddffx2cTetorJgACOh86tSpgwYNevPNN91u9+LFi9sDMHiibr311ldeeSU9PZ36257RwByN5wL3xsUXX9yjR48rr7yyd+/egKXdYrJ+/fobbrjh2muvBRo33XQT1nlbtmxpb4Bgff/b3/4WkwM6rkiIW6K0tHThwoVY8YwfP37YsGGLFi3asWPHihUrlLxaPExaHaqqqjBB455T8IJ/3bp1ymV78+DGQpczMjLgHjp06OTJkwAEfojFYhk7dmw7AQeqJ6YkPF3oOEl7RuP9998fMWLEzTffDAMyphtweTvH5NJLL125cuW+ffuAw9dffw294ZprroG/Pd8k6D4kBAKYaaurq5X5BHZFLIXDnU90SVrodxylqKgI+ml2drZSJ/yYqZXLduXBKunBBx/EA4mbCR0nHAAI/CTwUyBdtlUX5ouvvvoKG1rqDlLHgYASCD8FKiFt1XPw4EGYH/r27fvpp5/eeeed991331//+ld0lroPHOAngZ8C6bKtur/85S9/+MMfnn/++TCZgsVh9cIlOkt9Bwjwk8BPgXTZ5l3qLHqt9BR+CoRrNpsV0wUSKFHwaxQmLQ9Q2Ej0+Dp0wMStvlTC24Pnnnvu+eabb/72t7+pO6tGoz2Ak5+ff//998N2YbVa1TiQv72hQb2uq6u78MILn376aUzQP/vZz2bNmgUOoyi47RATbITjDoGpHIsbmM2fe+45uICCpB0CQh1XXI0IRDCfMGl1yMrKMhqNWAIocBcWFoL/lcv247n33nthBfr888+7du1Kvc7JyYGnvYEDIwbugeHDhyfKv9WrV7/wwgvw0l3R3tDADQDp3LnzgAED4CHB7i82PuFvn3cIOv6LX/ziv//7v2+55ZbBgwfffvvtDzzwAOnl7RYQYEISAgFEYTvG6XRSSrh40Oixgl+jMGl1gLqK6Wn58uUKZPCPHj1auWwPHqx3oGO99957n332Wc+ePZUuw4/7DIBQCG44zOBtHpwrr7wS+8PbvX/Yy7n11ltx1atXr3aIBg39mDFj1C9CYC+ne/fuiGqfdwg67na71b9SiIUvlFGEt1tA0HeSEAgMHz4c1lRlPjlx4sTOnTvDnU+YtATO2MV59dVXX3vttT179mDFhCUkrPYiot38u/vuu8nWkZKSAk0Ccu7cOfQeOj6M9TAKLV26FLfXjBkzbDbb9OnTEdWGBSBgS08Ru92emZmJy/aJBg00nosNGzbgTti/fz9sYi+//DLuGUS1W0yuu+663/3ud//5z38OHz6Mp2PevHnf//734w4IKmxJKS8vx2IOgkYcOnQIHkyeIW6JtLS0mTNnPvTQQytXrty2bdttt90GPVV91gnlNClMWgKiH/zgB/Pnz3/yySeHDh26Zs2ajz76iFaRIq59/MP+RGlp6bhx42AFIoHJnrr+yCOPgLfuuusuKBzHjh1btmwZ5nSKaoduu0XjoosuwtSMzU6Q91NPPYXnBdon3QDtE5MFCxbcdNNNeC5gKX344YexzwdY2hsgW7ZswR4nBB3H0h+eX//61/CHuCWef/75KVOmTJs2Dbo7VsAffPCB0WhEFu3CpOXBCjcfVkyVlZXYz7j88ss9oe3mP5gHfQRKFfUe66Y5c+ZAka+oqIBtEHMWhbcfd9WqVZijqb/tGY3JkyfDaorbAAaJWbNmESBw2ycmWLrhrjhy5AhsEgcOHPjtb3+LjQagAWk/gGCZ6zNvvPHGG6ERsFqt4Pvi4mLYV8FYeXl5SB+WMGmFBVcLJOYqGQFGgBFgBBQEmLQUKNjDCDACjAAjoHcEmLT0PkLcPkZAfwhwixiBFkOASavFoOeKGQFGgBFgBMJFgEkrXMQ4PSPACDACjECLIRCUtFqsRVwxI8AIMAKMACMQBAEmrSDAcDAjwAgwAoyA/hBg0tLfmHCLgiLAEd2xS7QAAAA+SURBVIwAI9DeEWDSau93APefEWAEGIFWhACTVisaLG4qI8AI6A8BblF8EWDSii/eXBsjwAgwAoxAMxD4fwAAAP//Ib9L1gAAAAZJREFUAwDIL73lt4FqWAAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "id": "532bb7b4", + "metadata": {}, + "source": [ + "##### Langevin\n", + "* x-axis = MD steps\n", + "* y-axis = Bar\n", + "\n", + "\n", + "![image.png](attachment:image.png)" + ] + }, + { + "cell_type": "markdown", + "id": "50845aad", + "metadata": {}, + "source": [ + "### Comparing with paper" + ] + }, + { + "cell_type": "markdown", + "id": "81af39d7", + "metadata": {}, + "source": [ + "##### Lower strain of 0.0001" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "id": "ac9baeb6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 92, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAhfVJREFUeJzt3XdYU+fbB/Bv2EOWg6WoqDgBB7gHWLfiqhNHXbVa66q2Ki6sVVFbrVar/uxw1CoO3APFRbXugYJV60BFAXFAQNnJ/f5xXoJR1ABJThLuz3Xlas15cs79QMi580wJEREYY4wxxgyUkdgBMMYYY4xpEic7jDHGGDNonOwwxhhjzKBxssMYY4wxg8bJDmOMMcYMGic7jDHGGDNonOwwxhhjzKCZiB2ALpDL5YiPj4eNjQ0kEonY4TDGGGNMBUSEtLQ0uLq6wsjo/e03nOwAiI+Ph5ubm9hhMMYYY6wI4uLiUKFChfce52QHgI2NDQDhh2VraytyNIwxxhhTRWpqKtzc3BT38ffhZAdQdF3Z2tpyssMYY4zpmY8NQeEByowxxhgzaJzsMMYYY8ygcbLDGGOMMYPGY3YYY4wxLZPJZMjJyRE7DJ1namoKY2PjYp+Hkx3GGGNMS4gIiYmJSElJETsUvWFvbw9nZ+dirYPHyQ5jjDGmJXmJjqOjI6ysrHgh2w8gIqSnpyMpKQkA4OLiUuRzcbLDGGOMaYFMJlMkOmXKlBE7HL1gaWkJAEhKSoKjo2ORu7R4gDJjjDGmBXljdKysrESORL/k/byKM8aJkx3GGGNMi7jrqnDU8fPiZIcxxhhjBo2THcYYY4wZNE52GGOMMWbQONlhjDGm0zIyMkBEYofBIEydHzduHKpUqQJzc3O4ubmha9euOHbsGABg7dq18Pf3h62tLSQSSYHrCc2fPx/NmjWDlZUV7O3ttRI3JzuMMcZ01qFDh2Bra4u5c+eKHUqJ9+DBA/j4+OD48eNYvHgxoqOjER4ejtatW+Orr74CAKSnp6Njx46YPn36e8+TnZ2NPn364Msvv9RW6JAQp8tITU2FnZ0dpFIpbG1txQ6HMcYYgNzcXHh6euL27dsoV64c4uPjYWKiv8vDZWZmIjY2Fu7u7rCwsACQv3CeGAq7qGHnzp1x/fp13L59G9bW1krHUlJSlFppTp48idatWyM5Ofm9rTfr16/HxIkTP7qadEE/tzyq3r/1913DGGPMoG3YsAG3b98GADx79gzHjx9H+/btRY5KvdLT01GqVClRrv3q1at3kpb3efnyJcLDwzF//vwCX6Ot7qii4m4sxhhjOicjIwNz5swBADg7OwMAQkNDRYyoZLt79y6ICDVr1hQ7lCLhlh3GGGM6Z9WqVXj8+DHc3Nzw+++/o3379ti5cydWr14Nc3NzscNTGysrK7x69Uq0a6sqb8SLvi6IyMkOY4wxnSKVShESEgIA+O6779CmTRuUL18eT548QXh4OLp37y5yhOojkUhU7koSk4eHByQSCW7evIkePXqIHU6hcTcWY4wxnbJkyRK8ePECtWrVwuDBg2FkZIR+/foB4K4ssZQuXRodOnTAL7/8gtevX79z/GODjMXGyQ5jjDGd8fTpUyxduhSAsB5L3uyr/v37AwD27t1b4M2Wad6qVasgk8nQqFEjhIWF4c6dO7h58yZ+/vlnNG3aFICwDk9UVBTu3r0LAIiOjkZUVBRevnypOM+jR48QFRWFR48eQSaTISoqClFRURrtzuNkhzHGmM6YP38+Xr9+jUaNGil1l/j6+qJq1apIT0/Hvn37xAuwBHN3d8eVK1fQunVrTJ48GZ6enmjXrh2OHTuG1atXAwDWrFmD+vXrY+TIkQCAVq1aoX79+ti7d6/iPLNnz0b9+vURHByMV69eoX79+qhfvz4uXbqksdhFTXYqV64MiUTyziNvcSIiwpw5c+Dq6gpLS0v4+/vjxo0bSufIysrCuHHjULZsWVhbW6Nbt254/PixGNVhjDFWDA8ePMCaNWsAACEhIUqDYSUSiaJ1h7uyxOPi4oKVK1fiwYMHyMrKwuPHj7Fnzx74+/sDAObMmQMieucxdOhQxTnWr19fYJm8c2iCqMnOxYsXkZCQoHhEREQAAPr06QMAWLx4MZYuXYqVK1fi4sWLcHZ2Rrt27ZCWlqY4x8SJE7Fr1y6Ehobi9OnTePXqFQICAiCTyUSpE2OMsaIJDg5GTk4O2rVrh08++eSd43nJzqFDh3R+jAjTMaRDJkyYQFWrViW5XE5yuZycnZ1p4cKFiuOZmZlkZ2dHa9asISKilJQUMjU1pdDQUEWZJ0+ekJGREYWHh6t8XalUSgBIKpWqrzKMMcZUFh0dTRKJhADQxYsX31uuTp06BID++OMPLUanHhkZGfTvv/9SRkaG2KHolQ/93FS9f+vMmJ3s7Gxs2rQJw4cPh0QiQWxsLBITE5VWyzQ3N4efnx/OnDkDALh8+TJycnKUyri6usLT01NRpiBZWVlITU1VejDGGBPPjBkzQETo3bs3fH1931suMDAQAHdlscLRmWRn9+7dSElJUfTrJSYmAgCcnJyUyjk5OSmOJSYmwszMDA4ODu8tU5CQkBDY2dkpHm5ubmqsCWOMscI4e/Ys9u7dC2NjY8ybN++DZfOmoB87dgxJSUnaCI8ZAJ1Jdn7//Xd06tQJrq6uSs+/vVojEX10BcePlQkKCoJUKlU84uLiih44Y4yxIiMiTJs2DQAwbNgw1KhR44Plq1WrBl9fX8hkMuzYsUMbITIDoBPJzsOHD3H06FF8/vnniufy9kJ5u4UmKSlJ0drj7OyM7OxsJCcnv7dMQczNzWFra6v0YIwxpn2HDx/G33//DXNzcwQHB6v0Gu7KYoWlE8nOunXr4OjoiC5duiiec3d3h7Ozs2KGFiCM64mMjESzZs0AAD4+PjA1NVUqk5CQgJiYGEUZxhhjukkulyMoKAgAMHbsWFSoUEGl1/Xt2xcAcOrUKW6ZZyoRPdmRy+VYt24dhgwZolgpExC6ryZOnIgFCxZg165diImJwdChQ2FlZYUBAwYAAOzs7DBixAhMnjwZx44dw9WrVzFo0CB4eXmhbdu2YlWJMcaYCrZv346oqCjY2toqkh5VVKhQAS1btgQAbNu2TVPhMQMierJz9OhRPHr0CMOHD3/n2JQpUzBx4kSMGTMGvr6+ePLkCY4cOQIbGxtFmZ9++gk9evRA37590bx5c1hZWWHfvn0wNjbWZjUYY4wVQk5ODmbOnAkA+Pbbb1GmTJlCvZ67slhhiJ7stG/fHkSE6tWrv3NMIpFgzpw5SEhIQGZmJiIjI+Hp6alUxsLCAitWrMCLFy8Uy4jz7CrGGNNtf/zxB+7evQtHR0dMnDix0K/v1asXjI2NcenSJcU+TEzzEhMTMW7cOFSpUgXm5uZwc3ND165dcezYMQDA2rVr4e/vD1tbW0gkkncWf3zw4AFGjBgBd3d3WFpaomrVqggODkZ2drZG4xY92WGMMVaypKen47vvvgMAzJw5E6VKlSr0ORwdHdGmTRsA3LqjLQ8ePICPjw+OHz+OxYsXIzo6GuHh4WjdurVim6f09HR07NgR06dPL/Act27dglwux//+9z/cuHEDP/30E9asWfPe8uoiISLS6BX0QGpqKuzs7CCVSnlmFmOMadjixYsxdepUVK5cGbdu3YK5uXmRzrN+/XoMGzYMderUQUxMjJqjVL/MzEzExsbC3d0dFhYWYodTaJ07d8b169dx+/ZtWFtbKx1LSUmBvb294t8nT55E69atkZycrPR8QX744QesXr0a9+/fL/D4h35uqt6/Td57hDHGGFOz5ORkhISEAADmzp1b5EQHAHr06IFRo0bhxo0biImJeWeYg14gAtLTxbm2lRXwkXXr8rx8+RLh4eGYP3/+O4kOgI8mNB8ilUpRunTpIr9eFZzsMMYY05offvgBKSkp8PT0VMysLSp7e3t06tQJe/bswZYtWzB//nw1RalF6elAEbrx1OLVK6CAxKUgd+/eBRGhZs2aag3h3r17WLFiBZYsWaLW876Nx+wwxhjTioSEBCxbtgwAMH/+fLXMmn1zVhaPytCcvJ/tx3YwKIz4+Hh07NgRffr0UVpUWBO4ZYcxxphWzJs3DxkZGWjatCm6du2qlnMGBATAysoK9+/fx6VLl9CwYUO1nFdrrKyEFhaxrq0iDw8PSCQS3Lx5Ez169Cj2pePj49G6dWs0bdoUa9euLfb5PoZbdhhjjGncvXv3FDe1hQsXqq2FwNraGt26dQMAbNmyRS3n1CqJROhKEuNRiN9B6dKl0aFDB/zyyy94/fr1O8ffnmL+IU+ePIG/vz8aNGiAdevWwchI86kIJzuMMcY0bvbs2cjNzUXHjh3RqlUrtZ47rytr69atkMvlaj03y7dq1SrIZDI0atQIYWFhuHPnDm7evImff/4ZTZs2BSCswxMVFaVY+yg6OhpRUVF4+fIlAKFFx9/fH25ubvjxxx/x7NkzJCYmvrMPprpxNxZjjDGNunbtGjZv3gwAWLBggdrP36FDB9jZ2SE+Ph6nT59WezLFBO7u7rhy5Qrmz5+PyZMnIyEhAeXKlYOPjw9Wr14NAFizZo1iDSUAit/FunXrMHToUBw5cgR3797F3bt339kLTZNjrnidHfA6O4wxpkkBAQE4cOAA+vfvr7GupuHDh2PdunUYPXq04sara/R9nR2xqGOdHe7GYowxpjGnTp3CgQMHYGJigu+//15j1+nfvz8AYMeOHcjJydHYdZh+4mSHMcaYRhCRYjfzESNGoFq1ahq71ieffIJy5crh+fPnOH78uMauw/QTJzuMMcY04sCBA/jnn39gYWGB2bNna/RaJiYm6NOnDwA9nZXFNIqTHcYYY2onl8sVmztOmDABrq6uGr9mXlfWrl27kJmZqfHrMf3ByQ5jjDG127JlC6Kjo2Fvb4+pU6dq5ZrNmzdHhQoVkJqaivDwcK1ck+kHTnYYY4ypVXZ2NmbNmgUAmDJlChwcHLRyXSMjI/Tr1w8Ad2UxZZzsMMYYU6tff/0VsbGxcHZ2xvjx47V67byurH379uGVWNswMJ3DyQ5jjDG1ef36tWKK+ezZs2Gt4q7a6uLj44Nq1aohIyMD+/bt0+q1me7iZIcxxpjaLF++HE+fPkXVqlU1vpN1QSQSiaJ1h7uyWB5OdhhjjKnFixcvsGjRIgDA3LlzYWpqKkoceclOeHg4kpOTRYmB6RZOdhhjjKnFokWLkJqaCm9vb0XCIYY6derAy8sLOTk52LVrl2hxGKLExESMGzcOVapUgbm5Odzc3NC1a1ccO3ZMqRwRoVOnTpBIJNi9e3eB58rKykK9evUgkUgQFRWl0bg52WGMMVZsT548wYoVKwAAISEhMDIS9/aSl2yFhoaKGochefDgAXx8fHD8+HEsXrwY0dHRCA8PR+vWrfHVV18plV22bBkkEskHzzdlyhStrL8E8K7njDHG1GDu3LnIzMxEy5Yt0alTJ7HDQb9+/TBjxgwcO3YMT58+hZOTk9gh6b0xY8ZAIpHgwoULSgPP69Spg+HDhyv+fe3aNSxduhQXL16Ei4tLgec6dOgQjhw5grCwMBw6dEjjsXOywxhjrFj+++8//P777wCEVp2PfaPXhqpVq6JRo0a4cOECduzY8U7Lg64gAtLTxbm2lRWg6q/q5cuXCA8Px/z58wucYWdvbw8ASE9PR2BgIFauXAlnZ+cCz/X06VOMHDkSu3fvhpWVVVHDLxROdhhjjBXLrFmzIJPJEBAQgObNm4sdjkL//v1x4cIFhIaG6myyk54OlColzrVfvQJUXRng7t27ICLUrFnzg+W+/vprNGvWDN27dy/wOBFh6NChGD16NHx9ffHgwYNCRl00PGaHMcZYkV25cgXbtm2DRCLB/PnzxQ5HSd++fSGRSHD69Gk8evRI7HD0GhEBwAdb7fbu3Yvjx49j2bJl7y2zYsUKpKamIigoSN0hfhAnO4wxxoosb7PPgQMHwtvbW+RolJUvXx4tW7YEAGzbtk3kaApmZSW0sIjxKEwPkoeHByQSCW7evPneMsePH8e9e/dgb28PExMTmJgInUe9evWCv7+/osy5c+dgbm4OExMTVKtWDQDg6+uLIUOGFPnn+DESykvXSrDU1FTY2dlBKpXC1tZW7HAYY0wvnDhxAp988glMTExw+/ZtVKlSReyQ3rFmzRp8+eWX8PHxwaVLl0SNJTMzE7GxsXB3d4eFhYWosRRFp06dEB0djdu3b78zbiclJQWZmZl4/vy50vNeXl5Yvnw5unbtCnd3dzx69AipqamK4/Hx8ejQoQN27NiBxo0bo0KFCu9c90M/N1Xv3zxmhzHGWKERkaIrYtSoUTqZ6ABCq8LYsWNx+fJl3LlzBx4eHmKHpLdWrVqFZs2aoVGjRpg7dy68vb2Rm5uLiIgIrF69Gjdv3ixwUHLFihXh7u6u+P83lfr/AUtVq1YtMNFRF+7GYowxVmh79+7F+fPnYWVlhZkzZ4odznuVK1cObdu2BcBr7hSXu7s7rly5gtatW2Py5Mnw9PREu3btcOzYMaxevVrs8D6Iu7HA3ViMMVYYMpkM3t7e+PfffzFjxgzMmzdP7JA+aMOGDRg6dChq1aqFGzduiDY1Xt+7scSijm4sbtlhjDFWKJs2bcK///4LBwcHfPPNN2KH81E9evSAmZkZbt68iejoaLHDYSLgZIcxxpjKsrKyMHv2bABAUFCQYjE5XWZnZ4fOnTsD4K6skoqTHcYYYyr73//+h0ePHsHV1RVjx44VOxyVBQYGAhCSHR69UfJwssMYY0wlaWlpivE5c+bMgaWlpcgRqa5Lly6wtrZGbGwsLly4IHY4TMs42WGMMaaSn376Cc+ePYOHhweGDRsmdjiFYm1tjW7dugEQvyuLW5YKRx0/L9GTnSdPnmDQoEEoU6YMrKysUK9ePVy+fFlxnIgwZ84cuLq6wtLSEv7+/rhx44bSObKysjBu3DiULVtW8YZ+/PixtqvCGGMG6/nz5/jxxx8BAPPmzVOsjqtP8rqytm7dCplMpvXrm5qaAhA2y2Sqy/t55f38ikLUd2tycjKaN2+O1q1b49ChQ3B0dFQsNZ1n8eLFWLp0KdavX4/q1atj3rx5aNeuHW7fvg0bGxsAwMSJE7Fv3z6EhoaiTJkymDx5MgICAnD58mUYGxuLVDvGGDMcISEhSEtLQ4MGDdC7d2+xwymS9u3bw97eHgkJCTh16pRiCwNtMTY2hr29PZKSkgAAVlZWOrFDvK4iIqSnpyMpKQn29vbFup+Lus7OtGnT8M8//+DUqVMFHiciuLq6YuLEiZg6dSoAoRXHyckJixYtwqhRoyCVSlGuXDn8+eef6NevHwBh+Wk3NzccPHgQHTp0+GgcvM4OY4y936NHj1C9enVkZWUhPDxcpc9VXTVixAj88ccfGDVqFNasWaP16xMREhMTkZKSovVr6yt7e3s4OzsXmBiqev8WNdmpXbs2OnTogMePHyMyMhLly5fHmDFjMHLkSADA/fv3UbVqVVy5cgX169dXvK579+6wt7fHhg0bcPz4cbRp0wYvX76Eg4ODokzdunXRo0cPfPfdd+9cNysrC1lZWYp/p6amws3NjZMdxhgrQF6C4O/vj+PHj+t1a8TRo0fRrl07lClTBgkJCcXqGikOmUyGnJwcUa6tT0xNTT/YoqMXe2Pdv38fq1evxqRJkzB9+nRcuHAB48ePh7m5OT777DMkJiYCAJycnJRe5+TkhIcPHwIAEhMTYWZmppTo5JXJe/3bQkJCCkyCGGOMKbt58ybWr18PQPjs1OdEBwD8/f3h6OiIpKQkHD16FJ06dRIlDmNjYx5moUWiDlCWy+Vo0KABFixYgPr162PUqFEYOXLkO3tsvP3HRUQf/YP7UJmgoCBIpVLFIy4urngVYYwxAzVr1izI5XL06NEDTZo0ETucYjMxMUGfPn0AiD8ri2mPqMmOi4sLateurfRcrVq18OjRIwBQ7J76dgtNUlKSorXH2dkZ2dnZSE5Ofm+Zt5mbm8PW1lbpwRhjTNnFixcRFhYGiUSi8/tfFUberKxdu3YhMzNT5GiYNoia7DRv3hy3b99Weu6///5DpUqVAAg7rDo7OyMiIkJxPDs7G5GRkWjWrBkAwMfHB6ampkplEhISEBMToyjDGGOs8IKCggAAn332GerUqSNyNOrTtGlTuLm5IS0tDYcOHRI7HKYFoiY7X3/9Nc6dO4cFCxbg7t272Lx5M9auXYuvvvoKgNB9NXHiRCxYsAC7du1CTEwMhg4dCisrKwwYMACAsOfJiBEjMHnyZBw7dgxXr17FoEGD4OXlhbZt24pZPcYY01tHjx7FsWPHYGZmhjlz5ogdjloZGRkpZu9u2bJF5GiYVpDI9u3bR56enmRubk41a9aktWvXKh2Xy+UUHBxMzs7OZG5uTq1ataLo6GilMhkZGTR27FgqXbo0WVpaUkBAAD169EjlGKRSKQEgqVSqljoxxpg+k8vl5OvrSwBowoQJYoejEZcuXSIAZGlpSampqWKHw4pI1fu3qFPPdQWvs8MYY/nCwsLQu3dvWFtb4/79+3B0dBQ7JLUjItSoUQN37tzBX3/9pegtYPpF1fu36NtFMMYY0x25ubmYMWMGAGDy5MkGmegAwjCJ/v37A+CurJKAkx3GGGMKGzZswO3btxVb7xiyvGTn8OHDePnypcjRME3iZIcxxhgAIDMzUzEYecaMGQbfrV+7dm14e3sjJycHu3btEjscpkGc7DDGGAMArFq1Co8fP4abmxu+/PJLscPRCu7KKhk42WGMMQapVIoFCxYAAObMmQMLCwuRI9KOvCnoJ06ceO8WQ0z/cbLDGGMMS5YswYsXL1CzZk189tlnYoejNVWqVEHjxo0hl8uxY8cOscNhGsLJDmOMlXBJSUlYunQpAGD+/PkwMRF1j2it464sw8fJDmOMlXDz58/H69ev0bBhQ/Ts2VPscLSub9++kEgkOHPmDB4+fCh2OEwDONlhjLES7MGDB1i9ejUAICQkBBKJROSItM/V1RV+fn4AgG3btokcDdMETnYYY6wECw4ORk5ODtq2bYs2bdqIHY5ouCvLsHGywxhjJVRMTAz+/PNPAFDMxCqpevXqBRMTE1y9ehW3b98WOxymZpzsMMZYCTVz5kwQEXr16oWGDRuKHY6oypYti3bt2gEAtm7dKnI0TN042WGMsRLo7Nmz2LNnD4yMjDBv3jyxw9EJb3Zl8R7ZhoWTHcYYK2GICEFBQQCAYcOGoWbNmiJHpBt69OgBc3Nz3Lp1C9evXxc7HKZGnOwwxlgJc+TIEURGRsLc3BzBwcFih6MzbG1t0aVLFwBAaGioyNEwdeJkhzHGShC5XK5o1fnqq6/g5uYmckS6Ja8rKzQ0lLuyDAgnO4wxVoJs374dV69ehY2NjSLpYfm6dOkCa2trPHjwAOfPnxc7HKYmnOwwxlgJkZOTg5kzZwIAvv32W5QtW1bkiHSPlZUVunfvDoC7sgwJJzuMMVZCrFu3Dnfv3kW5cuXw9ddfix2OzgoMDAQgrKYsk8lEjoapAyc7jDFWAqSnp+O7774DIKyvU6pUKZEj0l3t27eHvb09EhIS8Pfff4sdDlMDTnYYY6wEWLlyJeLj41GpUiWMGjVK7HB0mpmZGXr16gWAu7IMBSc7jDFm4FJSUrBw4UIAwNy5c2Fubi5yRLovrytrx44dyMnJETkaVlyc7DDGmIH74YcfkJycjDp16mDgwIFih6MX/P394eTkhJcvXyIiIkLscFgxcbLDGGMGLCEhAcuWLQMAzJ8/H8bGxuIGpCeMjY3Rp08fANyVZQg42WGMMQM2b948pKeno0mTJujWrZvY4eiVvK6s3bt3IyMjQ+RoWHFwssMYYwbq3r17WLt2LQBg4cKFkEgkIkekX5o0aYKKFSsiLS0NBw8eFDscVgyc7DDGmIEKDg5Gbm4uOnToAD8/P7HD0TtGRkbo168fAO7K0nec7DDGmAG6du0aNm/eDABYsGCByNHor7yurP379yMtLU3kaFhRcbLDGGMGaMaMGSAi9OvXDw0aNBA7HL1Vr149VK9eHZmZmdizZ4/Y4bAi4mSHMcYMzOnTp3HgwAEYGxvj+++/FzscvSaRSJR2Qmf6iZMdxhgzIESEadOmAQBGjBgBDw8PkSPSf3nJzuHDh/Hy5UuRo2FFwckOY4wZkIMHD+Kff/6BhYUFZs+eLXY4BqFWrVqoW7cucnNzERYWJnY4rAg42WGMMQMhl8sRFBQEABg/fjzKly8vckSGg7uy9BsnO4wxZiC2bNmC6Oho2NnZYerUqWKHY1Dykp0TJ04gISFB5GhYYXGywxhjBiA7O1vRbTVlyhSULl1a5IgMS+XKldGkSRMQEbZv3y52OKyQONlhjDED8Ntvv+H+/ftwcnLChAkTxA7HIHFXlv4SNdmZM2cOJBKJ0sPZ2VlxnIgwZ84cuLq6wtLSEv7+/rhx44bSObKysjBu3DiULVsW1tbW6NatGx4/fqztqjDGmGhev36NuXPnAgBmz54Na2trkSMyTH369IFEIsHZs2fx4MEDscNhhSB6y06dOnWQkJCgeERHRyuOLV68GEuXLsXKlStx8eJFODs7o127dkqrWE6cOBG7du1CaGgoTp8+jVevXiEgIAAymUyM6jDGmNYtX74cT58+RZUqVfD555+LHY7BcnV1hb+/PwBg69at4gbDCkX0ZMfExATOzs6KR7ly5QAIrTrLli3DjBkz8Omnn8LT0xMbNmxAenq6Ygl0qVSK33//HUuWLEHbtm1Rv359bNq0CdHR0Th69KiY1WKMMa14+fIlFi9eDACYO3cuzMzMRI7IsHFXln4SPdm5c+cOXF1d4e7ujv79++P+/fsAgNjYWCQmJqJ9+/aKsubm5vDz88OZM2cAAJcvX0ZOTo5SGVdXV3h6eirKFCQrKwupqalKD8YY00eLFi2CVCqFt7e3Yh8npjm9evWCiYkJoqKicOvWLbHDYSoSNdlp3LgxNm7ciMOHD+PXX39FYmIimjVrhhcvXiAxMREA4OTkpPQaJycnxbHExESYmZnBwcHhvWUKEhISAjs7O8XDzc1NzTVjjDHNe/LkCX7++WcAwmafRkaif381eGXKlFF8weauLP0h6l9Gp06d0KtXL3h5eaFt27Y4cOAAAGDDhg2KMhKJROk1RPTOc2/7WJmgoCBIpVLFIy4urhi1YIwxccydOxeZmZlo0aIFOnfuLHY4JUZeV9aWLVtARCJHw1ShU18DrK2t4eXlhTt37ihmZb3dQpOUlKRo7XF2dkZ2djaSk5PfW6Yg5ubmsLW1VXowxpg+uXPnDn7//XcAQmv1x74EMvXp3r07LCwscPv2bVy7dk3scJgKdCrZycrKws2bN+Hi4gJ3d3c4OzsjIiJCcTw7OxuRkZFo1qwZAMDHxwempqZKZRISEhATE6MowxhjhmjWrFmQyWTo0qULWrRoIXY4JYqtrS26dOkCgAcq6wtRk51vvvkGkZGRiI2Nxfnz59G7d2+kpqZiyJAhkEgkmDhxIhYsWIBdu3YhJiYGQ4cOhZWVFQYMGAAAsLOzw4gRIzB58mQcO3YMV69exaBBgxTdYowxZoiuXLmCrVu3QiKRYMGCBWKHUyK9OSuLu7J0n4mYF3/8+DECAwPx/PlzlCtXDk2aNMG5c+dQqVIlAMKS5xkZGRgzZgySk5PRuHFjHDlyBDY2Nopz/PTTTzAxMUHfvn2RkZGBNm3aYP369TA2NharWowxplHTp08HAAwYMADe3t4iR1MydenSBaVKlcLDhw9x7tw5NG3aVOyQ2AdIiFNSpKamws7ODlKplMfvMMZ02smTJ9G6dWuYmJjg1q1bqFq1qtghlViDBw/Gpk2bMH78eCxfvlzscEokVe/fOjVmhzHG2PsREYKCggAAX3zxBSc6Isvrytq2bRuv2q/jONlhjDE9sXfvXpw7dw5WVlaYOXOm2OGUeO3atYODgwMSExMRGRkpdjjsAzjZYYwxPSCTyRRjdSZOnAgXFxeRI2JmZmbo3bs3AJ6Vpes42WGMMT3w119/4d9//4WDgwO+/fZbscNh/y+vK2vHjh3Izs4WORr2PpzsMMaYjsvKysLs2bMBANOmTYO9vb24ATEFPz8/ODs7Izk5WWnNN6ZbONlhjDEd97///Q8PHz6Eq6srxo4dK3Y47A3Gxsbo27cvAO7K0mWc7DDGmA5LS0vDvHnzAACzZ8+GlZWVyBGxt+V1Ze3evRvp6ekiR8MKwskOY4zpsGXLluHZs2eoVq0ahg8fLnY4rABNmjRBpUqV8OrVKxw8eFDscFgBONlhjDEd9fz5c/zwww8AgHnz5sHU1FTkiFhBJBIJ+vXrB4C7snQVJzuMMaajQkJCkJaWhvr166NPnz5ih8M+IDAwEACwf/9+pKamihwNexsnO4wxpoPi4uLwyy+/AAAWLFgAIyP+uNZldevWRY0aNZCVlYU9e/aIHQ57C//1MMaYDvruu++QlZUFPz8/dOjQQexw2EdIJBKlndCZbuFkhzHGdMytW7ewbt06AEJXlkQiETkipoq8ZOfIkSN48eKFyNGwN3GywxhjOmbmzJmQy+Xo3r07mjZtKnY4TEU1a9ZEvXr1kJubi7CwMLHDYW/gZIcxxnTIxYsXERYWBolEolhfh+kP7srSTZzsMMaYDsnb7HPw4MHw9PQUORpWWHlT0E+ePImEhASRo2F5ONlhjDEdcfToURw9ehSmpqb47rvvxA6HFUHlypXRtGlTEBG2bdsmdjjs/3GywxhjOoCIEBQUBAD48ssvUblyZXEDYkXGXVm6h5MdxhjTATt37sSlS5dgbW2NGTNmiB0OK4a+ffvCyMgI586dQ2xsrNjhMHCywxhjosvNzcXMmTMBAJMmTYKjo6PIEbHicHZ2hr+/PwBg69at4gbDAHCywxhjotu4cSNu3bqFMmXKYPLkyWKHw9SAu7J0Cyc7jDEmoszMTAQHBwMQZmLZ2dmJHBFTh169esHExATXrl3DzZs3xQ6nxONkhzHGRLRq1So8fvwYFSpUwJgxY8QOh6lJ6dKlFdt8cOuO+DjZYYwxkaSmpmLBggUAgDlz5sDCwkLkiJg6vdmVRUQiR1OycbLDGGMiWbJkCV68eIEaNWpgyJAhYofD1Kx79+6wsLDAf//9h6ioKLHDKdE42WGMMREkJSVhyZIlAID58+fDxMRE5IiYutnY2CAgIAAAsGXLFpGjKdk42WGMMRHMnz8fr1+/hq+vLz799FOxw2EakteVtXXrVsjlcpGjKbk42WGMMS178OAB1qxZAwAICQmBRCIROSKmKZ07d4aNjQ0ePXqEc+fOiR1OicXJDmOMadmcOXOQnZ2NNm3aoG3btmKHwzTI0tISPXr0AMBdWWLiZIcxxrQoJiYGGzduBCC06jDDl9eVtW3bNuTm5oocTcnEyQ5jjGnRzJkzQUT49NNP0bBhQ7HDYVrQtm1blC5dGklJSYiMjBQ7nBJJpeH/169fL/SJa9euzbMLGGPsDefOncOePXtgZGSEefPmiR0O0xIzMzP07t0ba9euxZYtW9CmTRuxQypxJKTCSkdGRkaQSCQqL4pkZGSE//77D1WqVCl2gNqQmpoKOzs7SKVS2Nraih0OY8wAERFat26NyMhIDB8+HL///rvYITEtOnHiBD755BPY29vj6dOnMDMzEzskg6Dq/Vvlppfz58+jXLlyHy1HRPD09FT1tIwxViIcOXIEkZGRMDc3V+yFxUqOVq1awcXFBQkJCThy5Ihi/R2mHSolO35+fqhWrRrs7e1VOmmrVq1gaWlZnLgYY8xgyOVyBAUFAQDGjBmDihUrihwR0zZjY2P07dsXy5cvx5YtWzjZ0TKVurEMHXdjMcY0adu2bejXrx9sbGxw7949lVrJmeE5d+4cmjZtCmtrayQlJcHKykrskPSeqvdvnZmNlbew1sSJExXPERHmzJkDV1dXWFpawt/fHzdu3FB6XVZWFsaNG4eyZcvC2toa3bp1w+PHj7UcPWOMFSwnJwczZ84EAHzzzTec6JRgjRs3RuXKlfH69WscOHBA7HBKlCJNl3r8+DH27t2LR48eITs7W+nY0qVLC32+ixcvYu3atfD29lZ6fvHixVi6dCnWr1+P6tWrY968eWjXrh1u374NGxsbAMDEiROxb98+hIaGokyZMpg8eTICAgJw+fJlGBsbF6V6jDGmNuvWrcOdO3dQrlw5fP3112KHw0QkkUjQv39/LFy4EKGhoejTp4/YIZUcVEhHjx4lKysrqlOnDpmYmFC9evXI3t6e7OzsqHXr1oU9HaWlpZGHhwdFRESQn58fTZgwgYiI5HI5OTs708KFCxVlMzMzyc7OjtasWUNERCkpKWRqakqhoaGKMk+ePCEjIyMKDw9XOQapVEoASCqVFjp+xhh7n/T0dHJ1dSUAtGzZMrHDYTogKiqKAJC5uTmlpKSIHY7eU/X+XehurKCgIEyePBkxMTGwsLBAWFgY4uLi4OfnV6Qs9auvvkKXLl3eWTI9NjYWiYmJaN++veI5c3Nz+Pn54cyZMwCAy5cvIycnR6mMq6srPD09FWUKkpWVhdTUVKUHY4yp28qVKxEfH4+KFSti9OjRYofDdIC3tzdq1qyJrKws7NmzR+xwSoxCJzs3b97EkCFDAAAmJibIyMhAqVKlMHfuXCxatKhQ5woNDcWVK1cKXDI9MTERAODk5KT0vJOTk+JYYmIizMzM4ODg8N4yBQkJCYGdnZ3i4ebmVqi4GWPsY1JSUhSfbXPnzoW5ubnIETFdIJFIEBgYCEC4BzLtKHSyY21tjaysLABCK8q9e/cUx54/f67yeeLi4jBhwgRs2rQJFhYW7y339m7ARPTRHYI/ViYoKAhSqVTxiIuLUzluxhhTxQ8//IDk5GTUrl0bgwYNEjscpkP69esHAIiIiCjUfZMVXaGTnSZNmuCff/4BAHTp0gWTJ0/G/PnzMXz4cDRp0kTl81y+fBlJSUnw8fGBiYkJTExMEBkZiZ9//hkmJiaKFp23W2iSkpIUx5ydnZGdnY3k5OT3limIubk5bG1tlR6MMaYuiYmJWLZsGQBg/vz5PFmCKalRowbq16+P3NxchIWFiR1OiVDoZGfp0qVo3LgxAGDOnDlo164dtm7dikqVKhVq+fM2bdogOjoaUVFRioevry8GDhyIqKgoVKlSBc7OzoiIiFC8Jjs7G5GRkWjWrBkAwMfHB6ampkplEhISEBMToyjDGGPaNm/ePKSnp6Nx48bo3r272OEwHcRdWdpVqEUF09LScO7cOeTk5KBRo0YoW7asWoPx9/dHvXr1FN+IFi1ahJCQEKxbtw4eHh5YsGABTp48qTT1/Msvv8T+/fuxfv16lC5dGt988w1evHhRqKnnvKggY0xd7t+/jxo1aiA3NxcnTpyAv7+/2CExHfTw4UNUrlwZEokEcXFxKF++vNgh6SW17411/fp1dOrUCYmJiSAi2NraYseOHe/MolKnKVOmICMjA2PGjEFycjIaN26MI0eOKBIdAPjpp59gYmKCvn37IiMjA23atMH69eu52ZgxJorZs2cjNzcX7du350SHvVelSpXQrFkznDlzBtu3b1daUJepn8otO507d0ZycjKWLFkCCwsLfPfdd7h9+zZu3bql6Rg1jlt2GGPqcP36ddSrVw9EhEuXLsHHx0fskJgOW7FiBcaPH4/GjRvj3LlzYoejl1S9f6uc7Dg6OuLgwYPw9fUFALx48QKOjo6QSqUoVaqUeqIWCSc7jDF16Nq1K/bv34++ffti69atYofDdFxiYiLKly8PuVyOe/fuoUqVKmKHpHfUvjfW8+fPlXbqLVOmDKysrPDs2bPiRcoYYwbg9OnT2L9/P4yNjfH999+LHQ7TA87OzmjdujUAcHKsYSonOxKJBGlpaYoVh6VS6TvP8UrEjLGSiIgwbdo0AMDw4cNRvXp1kSNi+qJ///4AeFaWpqncjWVkZPTBBf7y/l8mk6k/Sg3jbizGWHEcOHAAAQEBsLCwwJ07d1ChQgWxQ2J64uXLl3B2dkZOTg5u3LiB2rVrix2SXlH7bKwTJ06oJTDGGDMkcrkc06dPBwCMGzeOEx1WKKVLl0aHDh2wf/9+hIaGYu7cuWKHZJAKtc6OoeKWHcZYUW3evBkDBw6EnZ0d7t+/j9KlS4sdEtMzf/31FwYNGgQPDw/cvn37o1sisXxqb9l5240bN5S6rIyNjVGnTp2ino4xxvROdnY2Zs2aBQD49ttvOdFhRdK9e3dYWlrizp07uHLlCi9ZoAEqD1A+deoUGjZsqPh3kyZNUL9+fdSrVw/16tWDt7c3jh49qpEgGWNMF/3222+4f/8+nJycMGHCBLHDYXqqVKlSCAgIAMADlTVF5WRn1apVGDx4sNJzJ06cQGxsLO7fv48JEyZg9erVag+QMcZ00evXrxVTzGfNmqX3640xceXNytq6dSvkcrnI0RgelZOdixcvolGjRkrPVahQAZUqVULlypUxePBgnD17Vu0BMsaYLvr555+RmJgId3d3jBw5UuxwmJ7r3LkzbGxsEBcXhzNnzogdjsFROdl58uQJXFxcFP/esGEDnJ2dFf8uXbo0Xrx4od7oGGNMB718+RKLFi0CAMydOxdmZmYiR8T0nYWFBXr27AmAu7I0QeVkx8bGBrGxsYp/f/rpp7CyslL8OzY2lmcyMcZKhEWLFkEqlcLLywuBgYFih8MMRF5X1vbt25GbmytyNIZF5WSncePG2Lhx43uPr1+/Ho0bN1ZLUIwxpquePHmCn3/+GQCwYMECGBsbixwRMxRt27ZFmTJlkJSUhJMnT4odjkFROdmZNGkSNmzYgG+//RZJSUmK55OSkjB58mRs2rQJkyZN0kiQjDGmK77//ntkZmaiefPm6NKli9jhMANiamqK3r17AwC2bNkicjSGpVCLCq5atQpff/01cnNzYWtrC4lEAqlUChMTEyxZsgRjx47VZKwaw4sKMsZUcefOHdSqVQsymQx///03WrZsKXZIzMCcPHkSrVu3hr29PRITE2Fubi52SDpN1ft3oVdQjouLw44dO3Dnzh0AgIeHB3r37g03N7fiRSwiTnYYY6ro378/tm7dis6dO+PAgQNih8MMkEwmQ8WKFREfH4+9e/eia9euYoek0zSW7BgiTnYYYx9z9epVNGjQAAAQFRWFunXrihwRM1Rff/01li1bhsDAQGzevFnscHSaqvdvlcbs7N27Fzk5OSpf/ODBg8jIyFC5PGOM6bq8zT4HDBjAiQ7TqLxZWXv27MHr169FjsYwqJTs9OzZEykpKSqftH///khISChqTIwxplNOnjyJ8PBwmJiY8K7UTOMaNWoEd3d3pKenc3epmqi0ESgRYejQoSoPlMrMzCxWUIwxpiuICEFBQQCAkSNHomrVqiJHxAydRCJB//79ERISgi1btqBv375ih6T3VBqzM2zYsEKf+IcffkDZsmWLFJS28Zgdxtj77N27V7Er9b1795RWkmdMU65fv466devCzMwMSUlJsLOzEzsknaTq/Vullp1169apLTDGGNMXMplMMVZnwoQJnOgwrfHy8kKtWrVw8+ZN7N69G0OGDBE7JL2m8qKCjDFW0vz111+4ceMG7O3tMWXKFLHDYSWIRCJRbEXCCwwWHyc7jDFWgKysLAQHBwMApk2bBgcHB5EjYiVNv379AABHjx7Fs2fPRI5Gv3GywxhjBVi7di0ePHgAFxcXjBs3TuxwWAlUvXp1NGjQADKZDGFhYWKHo9c42WGMsbekpaXh+++/BwDMnj0bVlZWIkfESiruylIPTnYYY+wty5Ytw7Nnz1C1alWMGDFC7HBYCZY37fzUqVN4/PixyNHoL5WTnePHj6N27dpITU1955hUKkWdOnVw6tQptQbHGGPa9vz5c/z4448AgHnz5sHU1FTkiFhJVrFiRTRv3hxEhO3bt4sdjt5SOdlZtmwZRo4cWeA8djs7O4waNQpLly5Va3CMMaZtCxcuRGpqKurVq8eLuTGdwF1ZxadysnPt2jV07Njxvcfbt2+Py5cvqyUoxhgTQ1xcHFauXAkAWLBgAYyMuKefia93794wMjLCxYsXce/ePbHD0Usq/yU/ffr0g825JiYmPDWOMabXvvvuO2RlZaFVq1Yf/HLHmDY5OTnhk08+AQBs3bpV5Gj0k8rJTvny5REdHf3e49evX+fVRRljeuvWrVuK1eJDQkIgkUhEjoixfNyVVTwqJzudO3fG7NmzC9zkMyMjA8HBwQgICFBrcIwxpi2zZs2CXC5Ht27d0KxZM7HDYUxJz549YWpqipiYGMTExIgdjt5RaSNQQOjGatCgAYyNjTF27FjUqFEDEokEN2/exC+//AKZTIYrV67AyclJ0zGrHW8EyljJdvHiRTRq1AgSiQTXr1+Hp6en2CEx9o5u3bph3759mDlzpmIdqJJO1fu3yi07Tk5OOHPmDDw9PREUFISePXuiR48emD59Ojw9PfHPP//oZaLDGGN5m30OGjSIEx2ms/K6skJDQ6FiOwX7fyq37LwpOTkZd+/eBRHBw8ND7/eM4ZYdxkquY8eOoW3btjA1NcXt27fh7u4udkiMFejVq1dwdHRERkYGLl68CF9fX7FDEp3aW3be5ODggIYNG6JRo0bFSnRWr14Nb29v2NrawtbWFk2bNsWhQ4cUx4kIc+bMgaurKywtLeHv748bN24onSMrKwvjxo1D2bJlYW1tjW7duvEqk4wxlRARgoKCAACjR4/mRIfptFKlSqFr164AhNYdpjpRF5GoUKECFi5ciEuXLuHSpUv45JNP0L17d0VCs3jxYixduhQrV67ExYsX4ezsjHbt2iEtLU1xjokTJ2LXrl0IDQ3F6dOn8erVKwQEBEAmk4lVLcaYnti1axcuXrwIa2trzJgxQ+xwGPuo/v37AxCmoMvlcpGj0SOkYxwcHOi3334juVxOzs7OtHDhQsWxzMxMsrOzozVr1hARUUpKCpmamlJoaKiizJMnT8jIyIjCw8NVvqZUKiUAJJVK1VcRxphOy8nJoZo1axIAmjlzptjhMKaSjIwMsrW1JQD0999/ix2O6FS9f+vM8qAymQyhoaF4/fo1mjZtitjYWCQmJqJ9+/aKMubm5vDz88OZM2cAAJcvX0ZOTo5SGVdXV3h6eirKFCQrKwupqalKD8ZYyfLnn3/i1q1bKF26NL755huxw2FMJRYWFujZsycA/erKuntX3OuLnuxER0ejVKlSMDc3x+jRo7Fr1y7Url0biYmJAPDODC8nJyfFscTERJiZmb0zbujNMgUJCQmBnZ2d4uHm5qbmWjHGdFlmZiaCg4MBCDOx7OzsRI6IMdXldWVt374dubm5IkfzYTIZMHkyULs28Pff4sUherJTo0YNREVF4dy5c/jyyy8xZMgQ/Pvvv4rjb69iSkQfXdn0Y2WCgoIglUoVj7i4uOJVgjGmV1avXo24uDiUL18eY8aMETscxgqlTZs2KFu2LJ49e4bjx4+LHc57SaVAQACwdCmQkwNcvCheLKInO2ZmZqhWrRp8fX0REhKCunXrYvny5XB2dgaAd1pokpKSFK09zs7OyM7ORnJy8nvLFMTc3FwxAyzvwRgrGVJTUzF//nwAwJw5c2BpaSlyRIwVjqmpKXr37g1Ad7uy7t4FmjQBwsMBS0tg2zahhUcsoic7byMiZGVlwd3dHc7OzoiIiFAcy87ORmRkpGIpdx8fH5iamiqVSUhIQExMDC/3zhgr0NKlS/HixQtUr14dQ4cOFTscxookrytr586dyMrKEjkaZcePA40aAbduARUqAKdPA336iBuTiZgXnz59Ojp16gQ3NzekpaUhNDQUJ0+eRHh4OCQSCSZOnIgFCxbAw8MDHh4eWLBgAaysrDBgwAAAgJ2dHUaMGIHJkyejTJkyioGGXl5eaNu2rZhVY4zpoKSkJCxZsgQAMH/+fJiYiPoRyFiRtWzZEq6uroiPj0d4eDi6d+8udkgAgFWrgPHjhbE6jRsDu3YBurBHuKh/6U+fPsXgwYORkJAAOzs7eHt7Izw8HO3atQMATJkyBRkZGRgzZgySk5PRuHFjHDlyBDY2Nopz/PTTTzAxMUHfvn2RkZGBNm3aYP369TA2NharWowxHbVgwQK8evUKPj4+6NWrl9jhMFZkRkZG6NevH3766SeEhoaKnuzk5AATJgCrVwv/HjwYWLsWsLAQNSyFIm0XYWh4uwjGDN/Dhw9RvXp1ZGdn48iRI4ovVYzpqwsXLqBx48awsrJCUlISrK2tRYnj5Uuhm+r4cUAiARYuBL79Vvh/TdPodhGMMaZv5syZg+zsbHzyySfczc0MQsOGDVGlShWkp6dj3759osRw86YwPuf4caBUKWDPHmDKFO0kOoXByQ5jzODduHEDGzduBCCss/Wx5SsY0wcSiUQxUFmMWVmHDgkzru7dAypXBs6eBf5/6y6dw8kOY8zgzZw5E3K5HD179kSjRo3EDocxtclLdg4dOoSUlBStXJNIWDsnIABITQVatQIuXAA8PbVy+SLhZIcxZtDOnTuH3bt3w8jICPPmzRM7HMbUysvLC3Xq1EF2djZ27dql8etlZQEjRghr5sjlwOefAxERQLlyGr90sXCywxgzWJSVhV/HjUM5AEOGDEHt2rXFDokxtdNWV1ZSEtCmDbBuHWBkBCxfLsy4MjPT6GXVgpMdxphhyMkBrl0Dfv8d+PJLoFEjyKyt8fulS4gDsDwrC7h/X+woGVO7vGTn2LFjSEpK0sg1rl0DGjYE/vkHsLMTxuuMH697A5Hfh5Mdxpj+yc0FYmKA9euBsWOFUZK2tkC9ekK7+po1wMWLMJHJkAbAHIDN5s1A9erAkCHC0q6MGYi8LZdkMhl27Nih9vPv3g00bw48egR4eADnzwPt26v9MhrFyQ5jTLfJZMC//wIbNwqrljVvLiQ2Xl7AsGHAL78In76ZmcJXzk8+wc2uXdEPQBUAS4ODgVOngI4dhXNt3Chswdyvn/B1lTEDoImuLCJgwQKgZ0/g9WugXTvhT61GDbVdQmt4UUHwooKM6Qy5HLhzB7h0Kf9x9arwSfu2UqUAHx/A11d4+PgAVasi4tgxdOnSBTk5ORgzZgxWrlyZP9X80iVg/nzhq2qerl2BGTOEte0Z01NxcXGoWLGi4v8rVKhQrPNlZAgDkbdsEf49fjywZAmgazusqHr/5mQHnOwwJgq5XFig49Il4PJl4b9XrgBpae+WtbYGGjRQTm48PIRRkm+4ePEiWrdujdevX6Nv377YvHlzwVvHREcLX1m3bRPiAISvrTNnCvNoGdNDLVu2xOnTp/Hjjz9icjG2GI+PB7p3F/4kTUyExtMvvlBjoGrEyU4hcLLDmIYRAbGxyi02V64AUum7ZS0tgfr1lVtsatQAPrLf3e3bt9G8eXO8ePECbdq0wYEDB2Bubv7huP77T1jb/s8/hXFAANCihZD0tG+vP6MvGQOwatUqfPXVV/D19cXFixeLdI6LF4EePYSEp0wZYMcOwN9frWGqFSc7hcDJDmNqRAQ8fJjfWpPXcpOc/G5ZCwthUPGbLTY1axa6rfzJkydo1qwZHj16BB8fH5w4cUJpw+CPevAAWLxYmMmVnS085+srJD1du77TgsSYLkpKSoKLiwvkcjnu3LmDatWqFer1oaHCMLjMTKBOHWDvXqBKFQ0Fqyac7BQCJzuMFRER8PixclJz6RLw4sW7Zc3MgLp181trfH2FgcKmpsUK4eXLl2jVqhVu3LiB6tWr4/Tp0yhX1BXO4uOFgQlr1gDp6cJznp7CmJ4+fT7ausSY2Nq3b4+IiAjMmzcPM2bMUOk1cjkQHAzkrbkZEAD89ZcwD0DXcbJTCJzsMKYCIiEZeLPF5tIl4Nmzd8uamgqzpd7sivL0VPvqY+np6Wjbti3Onj0LV1dX/PPPP6hcuXLxT/zsGbBsGbBiRf4YourVgaAgYODAYidojGnKunXrMHz4cNSpUwcxMTEfLf/qFfDZZ0De4stTpgjD2fQlr+dkpxA42WGsAImJ77bYJCa+W87EREhk3uyK8vICPjZepphycnLQo0cPHDx4EPb29jh16hQ81b05T3IysHKlkPi8fCk8V6kSMHWq0N5vYaHe6zFWTCkpKXB0dEROTg6io6M/+Dfx8KEwEPnaNeF7yK+/ComPPuFkpxA42WElXlLSuy028fHvljM2Frqe3myx8fYWBhVrkVwux5AhQ7Bp0yZYWloiIiICzZs319wFX70SurZ+/BF4+lR4zsUF+PZbYZqKtbXmrs1YIXXv3h179+7FjBkz3rsf3Jkzwvo5SUmAk5PQstO0qZYDVQNOdgqBkx1Wojx/LiQ2byY3cXHvljMyAmrVUm6xqVsXsLLSfsxvICJ88803WLp0KYyNjbFnzx506dJFOxfPyBAGMS9aJIxVAoCyZYFJk4AxY4RFDRkTWWhoKAIDA1GlShXcvXs3f52p/7d+PTBqlDAWv149YM8e4P+X6NE7nOwUAic7zGAlJ787K+rBg3fLSSTC9O43Bw/Xqycs3KdjFi9ejKlTpwIANmzYgM/EaHfPzhZWYl64UFgrCBASnfHjhVWey5TRfkyM/b/Xr1/D0dER6enpuHDhAho2bAhAWEB86lRhDD4A9OoFbNig3w2TnOwUAic7zCCkpAhr17yZ3Lxv40sPj/zWGl9fYV2bwkzVFskff/yBESNGAECxF05Ti9xcYOtWYVXmmzeF56ythVaeSZMAZ2dx42MlVv/+/bF161ZMmjQJS5YsgVQKDBgAHDwoHJ89W5iBpe+rKnCyUwic7DC9k5oqbKPwZovNnTsFl61aVbnFpkEDvexu2bt3L3r27Am5XI4pU6Zg0aJFYoeUTy4XBj3Mny/8XgBh8PLnnwvTW9zcxI2PlTh79uxBjx49UL58eRw//gg9ehjh5k1heN369UDfvmJHqB6c7BQCJztMp716JdxA32yx+e8/YSr42ypXVh483KABULq01kNWt7///hsdOnRAZmYmhg0bht9///2dcQg6gQg4dAj4/nvg3DnhOVNTYaf1adOExJMxLcjKyoKTkxOk0vqwtT2C1FRTlC8vjM/x8RE7OvXhZKcQONlhOiM9HYiKUp7uffNmwYlNxYrvboRpgGNFrl27Bj8/P0ilUnTr1g1hYWEw0bXdCN9GBJw4IazSduKE8JyRERAYCEyfLsxoY0zDmjbdgHPnBgAwRaNGwv63Li5iR6VenOwUAic7TBQZGcICF2+22Pz7b/7GlG8qX165K8rHB3B01H7MWnb//n00b94ciYmJaNGiBY4cOQJLLU9zL7YzZ4TurbzBEhIJ8OmnwqrM9euLGxszSDk5wNdfCxt4AoC5+XYkJfWAra3hLYbJyU4hcLLDNC4rC7h+XbnFJiZGmB7xNmdn5cHDPj4lcqDr06dP0aJFC9y9exdeXl74+++/YW9vL3ZYRXflipD07NyZ/1yXLkLSo48LnDCd9PKlMB7n2DFAIiFYWs5DevpshIeHo0OHDmKHp3aq3r91vC2YMT2UnQ1ERyu32MTECF+33lauHNCwoXJ3lKur9mPWMampqejUqRPu3r2LypUrIzw8XL8THUAYPxUWBty4AYSEAFu2AAcOCI9PPhE2HfX3553WWZHdvAl06wbcvStMCvzrLwkOH07A6tXC2juGmOyoilt2wC07rBhycoSb15stNtev5++c/aYyZd5tsalQgW9ub8nMzETnzp1x4sQJlCtXDv/88w88PDzEDkv97t4V1unZsEGYwg4AzZoJLT2dOvH7ghVKeDjQr58wUbNSJWHHcm9v4NSpU2jVqhVsbW3x9OlTWBjYFifcjVUInOwwleTmCl+d3pzuHRUldFG9zcFBubXG11cYUMw3sA+SyWTo27cvdu7cCRsbG5w8eRINGjQQOyzNevQIWLwY+O23/PdS/fpCS0+PHvq/EArTKCJg+XJg8mRhuF/LlkIDYrlywnG5XI6KFSviyZMn2LVrF3r06CFqvOrGyU4hcLLDCpQ3o2b3biG5iYoSBhW/zc5OeeCwry/g7s6JTSEREUaPHo21a9fCzMwMhw4dwieffCJ2WNqTkAAsXQqsXg28fi08V7u20NLTt6+w4Spjb8jKEtav/OMP4d8jRgCrVgmber5p8uTJWLp0Kfr164fQ0FDtB6pBnOwUAic77B0nTwpLjJ46pfy8jY0w9uLNrqiqVfnbtxrMmjUL8+bNg0Qiwfbt29GrVy+xQxLH8+fCV/Wffxb6JACgWjVhnZ7Bg9+9k7ESKSlJ2O7h9Gnh42fpUmG3koK+Y128eBGNGjWCpaUlkpKSUEoHt4EpKk52CoGTHaZw+rSQ5OStjWJuDnz2GeDnJyQ3Hh6c2GjAihUrMH78eADAmjVrMGrUKJEj0gFSqTB3eOlS4MUL4Tk3N2Fzo+HDtb7TPNMd168LA5EfPhQalrduBT409piI4OHhgXv37mHz5s0IDAzUXrAapur9mz+1NSg+Ph7Dhw9Hat63M6a7zp0TPi1athQSHVNT4KuvhE0e164FBg4UNsrkREfttmzZokh05s6dy4lOHjs7YQHCBw+EnRudnYXd6ceOBapUAX78UVhdm5Uoe/YI49gfPhQa/PI+uj5EIpGgf//+AGBw3VgqI0ZSqZQAkFQqVds55XI5tWzZkgCQl5cXPXr0SG3nZmp08SJR585EwggdIhMToi++IHr4UOzISoTw8HAyMTEhADR27FiSy+Vih6S7MjKIfvmFqGLF/Pdr6dJE339PlJwsdnRMw+RyogULiCQS4Vffpg3Rixeqvz46OpoAkKmpKb18+VJzgWqZqvdvTnZIM8kOEdGlS5fI2dmZAJCrqytduXJFrednxXD1KlG3bvk3DWNjouHDie7fFzuyEuPcuXNkbW1NAKh///4kk8nEDkk/ZGUR/fEHUbVq+e9fW1uiGTOInj0TOzqmAenpRAMG5P+6x44lys4u/Hk8PT0JAP3+++/qD1IknOwUgqaSHSKihw8fKt5g1tbWtH//frVfgxVCdDRRr175nxpGRkSffUZ0547YkZUo//77L5UpU4YAUPv27SkrK0vskPRPbi7R5s1Ederkv5+trIgmTSKKjxc7OqYm8fFEjRrlNzyvXl30c82bN48AULt27dQXoMg42SkETSY7REQpKSnUrl07AkBGRka0cuVKjVyHfcC//xL165ffBiyREAUGEt28KXZkJc6jR4/Izc2NAFCjRo0oLS1N7JD0m0xGtGsXkY9PftJjbk40ZgzRgwdiR8eK4eJFovLl83ssjx8v3vnu3LmjuA89ffpUPUGKjJOdQtB0skNElJ2dTZ9//jkBIAD09ddfU25ursaux/7ff/8RDRyYn+QARH36EMXEiB1ZifT8+XOqVasWAaAaNWrQM+52UR+5nOjQIaLmzZXHoA0bJvwdML0SGkpkYSH8GmvXJrp7Vz3nbdiwIQEwmC/depHsLFiwgHx9falUqVJUrlw56t69O926dUupjFwup+DgYHJxcSELCwvy8/OjmLduVJmZmTR27FgqU6YMWVlZUdeuXSkuLk7lOLSR7BAJdQkJCVEkPD179qTXr19r9Jol1r17REOHCmNx8j74e/QgunZN7MhKrFevXlGTJk0IAJUvX54ecKuDZsjlRCdPErVtq9xdGxgodOMynSaTEc2alf+r69yZSJ23piVLlhAAatGihfpOKiK9SHY6dOhA69ato5iYGIqKiqIuXbpQxYoV6dWrV4oyCxcuJBsbGwoLC6Po6Gjq168fubi4UGpqqqLM6NGjqXz58hQREUFXrlyh1q1bU926dVVuOdFWspMnNDSUzM3NCQA1bNiQEhMTtXLdEuHBA6KRI4VvtHmfFgEBRJcuiR1ZiZadnU0dO3YkAOTg4PDOFxamIWfPCu//vL8FgKhnT/570FGvXhF9+mn+r+qbb4ShWeoUFxdHEomEABjELGG9SHbelpSURAAoMjKSiISWEGdnZ1q4cKGiTGZmJtnZ2dGaNWuISBgPY2pqSqGhoYoyT548ISMjIwoPD1fputpOdoiITp8+rRigWalSJbpx44bWrm2Q4uKIvvySyNQ0/5OiY0ei8+fFjqzEk8lkNHDgQAJAlpaWdObMGbFDKnmuXhW6b9/szu3Ykej0abEjY//v4UOievWEX42ZGdH69Zq7VqtWrQgA/fDDD5q7iJaoev/WqRXSpFIpAKB06dIAgNjYWCQmJqJ9+/aKMubm5vDz88OZM2cAAJcvX0ZOTo5SGVdXV3h6eirKvC0rKwupqalKD21r3rw5zp07Bw8PDzx8+BDNmjXD8ePHtR6H3ktIENZIr1pV2FMoJwdo00ZYCfnQIaBRI7EjLNGICJMmTcJff/0FExMThIWFoWnTpmKHVfLUqwds2wbcuCFsOWFsLGyT3aIF0Lo1cOyYkAIxUZw5AzRsKGy/5+gorGs6ZIjmrlcSFxjUmWQn70OxRYsW8PT0BAAkJiYCAJycnJTKOjk5KY4lJibCzMwMDg4O7y3ztpCQENjZ2Skebm5u6q6OSqpVq4azZ8+iRYsWkEql6NChA9avXy9KLHrn6VNg0iRhJdkVK4DsbKBVK2FPq6NHgebNxY6QAVi4cCGWL18OAFi3bh06deokckQlXK1awMaNwO3bwMiRwkrhJ08CbdsCTZsC+/dz0qNlGzYI+WZSElC3LnDxorBCsib17t0bxsbGuHz5Mu7cuaPZi+kInUl2xo4di+vXr2PLli3vHJO8tbMZEb3z3Ns+VCYoKAhSqVTxiIuLK3rgxVSmTBlEREQgMDAQubm5GDZsGGbNmgXiD5yCPX8u7A1UpQrw009AZqbwyXDsmPCh7ecndoTs//3222+YPn06AGDp0qUYNGiQyBExhapVhW1Q7t0TWkYtLIDz54GuXYH69YEdOwC5XOwoDZpMBkyZAgwdKnxX+/RToUG6YkXNX7tcuXJo27YtgBLUuqP5HrWPGzt2LFWoUIHuv7V67b179wjAOysPd+vWjT777DMiIjp27BgBeGf5a29vb5o9e7ZK1xdjzM7b5HI5zZw5UzFTa8CAAZSZmSlaPDrnxQui6dOJSpXKH3PQqBFReLgw+4TplF27dpGRkREBoGnTpokdDvuYxESiKVOU/75q1SLauJEoJ0fs6AyOVErUpUv+j3rWLGEWljatW7eOAFCtWrX0epsWvRigLJfL6auvviJXV1f6r4B1IPIGKC9atEjxXFZWVoEDlLdu3aooEx8fr/MDlN/njz/+UOwV1LJlS3r+/LnYIYkrOZkoOFhYDj/vk6FBA6L9+znJ0VEnT55UzDYcPny4Xn+QljjPnxPNnk1kb5//91alCtHatUT85Ust7t4V1s0BhHV03phbo1XJyclkZmZGAOj69eviBKEGepHsfPnll2RnZ0cnT56khIQExSM9PV1RZuHChWRnZ0c7d+6k6OhoCgwMLHDqeYUKFejo0aN05coV+uSTT3R66vnHHD16lGxtbQkAeXh40J2SuJWBVCpscPjmh663t7BSLN88ddbVq1cV793u3btTDrcK6CeplCgkhKhs2fy/vwoViH7+WdioiRXJiRPCSsgAkaursEKymHr06EEAKCgoSNxAikEvkp28Lpu3H+vWrVOUyVtU0NnZmczNzalVq1YU/dbCWBkZGTR27FgqXbo0WVpaUkBAQKHWD9C1ZIeIKCYmhipVqkQAqGzZsvTPP/+IHZJ2pKURLVyY/4mQt3zo9u3ab+dlhXL37l1ycnIiANSqVSulLy1MT716RfTTT8KdOe/v0dGRaNEioje+cLKP+9//8pf/atiQ6MkTsSMS1nwDQO7u7nrbAqsXyY6u0MVkh4goISGBfH19CQCZm5srddUZnNeviX78kahcufwP1Ro1iLZsUf+qWkztEhISqEqVKgSA6tatSykpKWKHxNQpM5NozRqiypXz/z4dHIi++47orfGSTFlOjrBLed6PbcAA3Wkce/XqFVlZWREAOq+na5JxslMIuprsEAlvxu7duytavUJCQvQ2Ay9QRgbRsmVETk75nwZVqwoDIznJ0QspKSlUr149xTfEeB3acTsrS9gY/K+/1LvkfomVnS2sdle9ev7fq40N0bRpRAaysaQ6vXypvGvHggW61wvfv39/AkATJ04UO5Qi4WSnEHQ52SEiys3NpYkTJyoSns8//5yys7PFDqt4MjOJfvlFuXm8cmWiP/7g2R96JCMjg/z8/AgAOTo66sz4MrmcaO9eIg+P/LeXhQVRr15Cj6iufLPWW7m5wshaL6/8H7ClJdHEiUSPH4sdnU64eTP//WdtLQw31EV79uwhAOTi4qKXm1NzslMIup7s5FmxYoViOm/79u31s6sgK0vovHZzy/+QdHMTnsvKEjs6Vgg5OTmKAY42NjbvLBEhlmvXiNq0UR5iUqOG8vZQpUoRDRokTOrjt10xyGREe/YIg1DyfrhmZkSjRhG9tZRISRIeTmRnJ/w4KlXS7f2H87ZgAkAnT54UO5xC42SnEPQl2SEi2rdvn6KP1dPTkx4+fCh2SKrJyRFabd7s83d1FVp3eEqr3pHL5fT5558TADIzM6MTJ06IHRI9fUr0xRfCBt8Akbm50LsilQotPVevEk2dKtx83kx8HByIPv+c6Ngx7jktMrmc6PBholat8n+wxsZEQ4YQ3boldnRaI5cL47nz3oMtWuhH796wYcMIAI0aNUrsUAqNk51C0Kdkh4jo8uXL5OLiomh6vKTLOxjn5grjb6pVy/8QdHIiWr5cGK/D9NL06dMJABkZGVFYWJiosWRmCpODbGzy32J9+ry/YUEuFzYDHz+eyNlZOfFxdiYaN47ozBndG1uhNyIjidq3z/+hSiRE/frpdvOGGmRlCUlzXrWHDdOf73FHjhwhAFSmTBm9GyLByU4h6FuyQ0T06NEj8vLyIgBkZWVFe/fuFTskZbm5wsjQN/sPypUTZly9fi12dKwYli1bphg/tnbtWtHikMuJduwQ1rzLe4v5+BD9/bfq58jNJTp+nGjkSOXVDvK6H6ZMIbpyhROfIjl/nqhbN+UfarduwvMGJimJqGVLoYpGRkRLl+rXeyYnJ4fKlStHAOjQoUNih1MonOwUgj4mO0RC3O3bt1d8w/7555/FDknow9++nahOnfwPuNKlhbVz0tLEjo4V06ZNmxSJzrx580SL4/Jl5R4TV1eiDRuKtxRTVhbRgQNEgwcr75qQtwpCcLAw6JQV0rVrQsuORJL/A23fXmgBMgDXr+f3ztvaEh08KHZERTNmzBgCoNiKSV9wslMI+prsEBFlZ2fTyJEjFTegiRMnijOiXi4Xpht4e+d/oNnbE82bx3N+DcShQ4cUW5mMHz9elCUQnjwhGjo0/75paSnsbvDqlXqvk54utBr17i3M4noz8albV8jdY2PVe02Dd+uWMIbH2Dj/h9mypTDWR5+aQd6wZ09+YlytGtG//4odUdGdOnVKMdkgQ4+GGHCyUwj6nOwQCYNFFy5cqEh4unfvTq/U/en//osLU1oaNMj/ALO1Fb4GJydrJwamcWfPnlUMjA8MDCSZllezTk8Xdg+xts5/mw0cSFSIhdKLLDWV6M8/hY0b81bAzXs0aSIMP9OhpYV03/37wmwtM7P8H2TDhkLmoCerpMvlwm4aeUn3J58IexXrM5lMRhUqVCAAtHPnTrHDURknO4Wg78lOnq1btyo2YPT19aWEhATNXUwuF+ZXNmqkPJ93xgz9/6tnSm7cuEGlS5cmANShQwfK0uJcbblcGPpVsaJygnHunNZCUPL8ubAn5iefKPfKSCRErVsLKyiU9L17Vfb4sbAuj6Vl/g/Sy0tYv0eHp8VlZAiJdl7IY8YIay0agsmTJxMA6tu3r9ihqIyTnUIwlGSHiOiff/6hsmXLEgCqWLEixcTEqPcCcjnR0aNEzZrl/7VbWQkjOZ89U++1mOgePnyo+LbXuHFj7bUYkpDQNG2qvBzT5s260+MRHy/si/lmjIDQ+tO5szAJ0QA+UjTv6VNhjYA3p9NVry6s1KxjWUR8PFHjxvkz61etEjsi9bp06RIBIEtLS0rTkzGWnOwUgiElO0TChozVq1cnAGRra0sRERHqOXFkpPKoUAsLokmTiBIT1XN+plOePXtGNWvWJABUq1Yteq6lJotHj5S/OVtbC11YurzqcWysMP29fn3lxIdXbS6Ely+FvbYcHJRXVV+9WifmcF+6RFS+fP7aTMeOiR2R+snlcqpWrRoBoL/++kvscFTCyU4hGFqyQ0T0/PlzatmyJQEgExMT+v3334t+sn/+UV6S1sxMWIyEByoYrLS0NGrcuDEBoAoVKtAjLQyOefVKGGyc16shkQiDkXVhd+jCuHmTaM6cgldtHjiQV23+qNRUIXN0dMz/4bm4CNPWP/tMWCBp9mxh9b5164SJESdOCKtGxsYKYwXVPPZn27b892WtWkQ6siuKRsycOZMAUNeuXcUORSWq3r8lREQo4VJTU2FnZwepVApbW1uxw1GbrKwsDB8+HJs3bwYAzJgxA99//z0kEolqJ7hwAZg9Gzh8WPi3qSnw+efA9OlAhQoaipqJLTs7G926dcPhw4dRunRpnD59GrVq1dLY9eRyYNMmICgIiI8XnmvZEvjpJ8DHR2OX1Tgi4No1IDRUeDx8mH/MwQHo1QsIDAT8/ABjY/Hi1Fnp6cDvvwOLFgFPnhTutRIJYGsL2NvnPxwclP/9oYeNDWBkBLkc+O47YO5c4bSdOgFbtgB2dmqpoU76999/UadOHZiamiIxMRGlS5cWO6QPUvX+zckODDfZAQAiQnBwML7//nsAQGBgIP744w9YWFi8/0VXrgDBwcD+/cK/TUyAYcOAGTOASpW0EDUTi1wux6BBg7BlyxZYWVnh2LFjaNKkicaud/o08PXXwKVLwr/d3YEffgA+/VS4XxkKIuD8eeFGuW0bkJiYf8zJCejbF+jfH2ja1LDqrRZZWcCRI0BCApCS8vFHRkbxr2lkhNe2LhiS/SvC0jsBACZX24NFzffCuLTdx5OoUqX0+hfp7e2N6Oho/PbbbxgxYoTY4XwQJzuFYMjJTp7169dj5MiRyM3NRYsWLbB7926UKVNGudC1a8CcOcDu3cK/jYyAzz4DZs0CqlTRdshMy4gIEyZMwIoVK2BiYoJ9+/ahY8eOGrlWbCwwdSqwfbvwbxsbYOZMYPx44EN5uCGQyYC//xYSn7Aw4OXL/GOVKgH9+gmJT716en2/FE9mJiCVqpYYJSe/++/sbMShArphL6JQH6bIxv8wCsOwXvUYjIze32qkSguTtbWov/wFCxZgxowZaNu2LSIiIkSLQxWc7BRCSUh2AOD48eP49NNPIZVK4eHhgYMHD6JatWrAjRtCkrNjh1BQIgEGDhSSnOrVRY2Zac/8+fMxc+ZMAMBff/2FAQMGqP0aqalASIjQRZWVJdwTPv9c6CZwclL75XRedjZw9KiQ+OzeDbx6lX+sRg0h6enfH6hZU7QQS5yzJ7PQs68Jnj4zRjmHHOyacRnNXWNVT55ycoofhLFx4bve3ixvaVmsZOn+/fuoWrUqjIyM8OTJEzg7OxevPhrEyU4hlJRkBxD6Yzt37oyHDx+isb099vn6otyxY0I7u0QitKcHBwMaHKPBdM/atWsxatQoAMDy5csxfvx4tZ5fJgPWrRNab54+FZ5r0wZYuhTw9lbrpfRWRgZw8KAwvmf/fqGBIk/dusL4nn79gMqVRQvR4G3cCIwcKSSh3t7A3r2F7LknEn6RRWlVynvk5ha/IqamqidGBT0sLNC4SRNcuHABK1aswNixY4sfk4ZwslMIJSnZAYDn587hQkAAOrx4AcW4yF69hCTHy0vM0JgIdu7ciT59+kAul2PGjBmYN2+eWs9/4oQwLufaNeHfHh7Ajz8CXbtyN837pKUBe/YIic/hw8r3vyZNhNaevn0BFxfxYjQkMpkw72LxYuHfPXoAf/4pDL3RKiJhYLaqiVFBD5ms+HGYmeG1mRkev3oFWalSqN28eeFamLTYF83JTiGUmGQnNhaYNw/YsEHxB7EbwBwA/RYswLRp01SfqcUMwokTJ9CxY0dkZ2dj5MiR+N///qe298Ddu8C33+YPAbO3Fyb3ffUVYGamlkuUCC9eADt3ConPiRPC/RAQEkV/fyHx6dULeHsIHlNNaqrQa583H2PmTGEGlpGRuHEVCZHQF1qcliV1pAQWFgUnQcOHA+3aFf/8b+BkpxAMPtl59AiYPx/444/8r4idO0M2ezambNuGpUuXAgBGjBiB1atXw9TUVMRgmbZcvXoVfn5+SEtLQ8+ePbFt2zaYmJgU+7wpKUJO/fPPwvAFY2Ng9GhhWFjZssU+fYmWkCAMrduyBTh7Nv95ExOgfXsh8eneXZh1zT7u/n2gWzdh2KKFhfARGRgodlQiksuVkqXxn32Gh9euYVTfvujcrNnHEyip9MPJ0q+/CoP01Ejl+7dGVvnRM4a4qCARCXvPfPWV8oZ77dsTnT2rVGzlypVkZGREAKhdu3aUkpIiUsBMW+7cuUOOjo4EgPz8/NSyy3FOjrB8ftmy+W+3jh2JbtxQQ8DsHXmrNterx6s2F8XJk0RlyuSvWXjhgtgR6Z7Vq1cTAGrQoIFqL5DJhEUdY2OFRR5PnBAWfVy3TlgEUt3bFxGvoFwoBpfsJCQQTZhAZG6e/wn4ySdEp0699yX79+8na2trAkCenp708OFD7cXLtCo+Pp7c3d0JANWrV08tyW14OFGdOvlvt1q1iA4eVEOwTCW8anPh/O9/+TvY+/oK3wvZu5KSksjY2JgA0O3bt8UOp0Cc7BSCwSQ7SUlEkycr7yLcooWQXavgypUr5OLiQgDI2dmZLl26pNl4mdYlJyeTt7c3AaCqVatSYjH3Nbt5U9j0Mu/tVqYM0cqVOrd/Y4khlwtfqKdOJapUSTnxcXAg+vxzYU8nHd5UXKNycoSdbvJ+Jv37c+vXx3Ts2JEA0HfffSd2KAXiZKcQ9D7Zef5c2DXY2jr/r7hJE6KIiEJvEf3o0SPy8vIiAGRlZUV79uzRUNBM29LT06lVq1aKZPbevXtFPtfz58JNw9g4f6fvr78W9nJkukEuJzpzRthKytlZOfFxchJ+f//8ozu7yGvay5dE7drl/wzmzSs5dS+O9evXEwCqWbMmyXXwB8bJTiHobbLz8iXRzJlCW3XeX7CvL9GhQ8X6K5ZKpdShQwcCQBKJhJYvX67GoJkYcnJyqHv37gSAbG1tKSoqqkjnyc4mWrZMeWPqbt2IdLSFm/2/3Fyi48eJRo4kKl1aOfGpVIloyhSiK1cM9+Z/6xZR9epCfa2siHbuFDsi/ZGSkkLm5uYEoMifG5rEyU4h6F2yk5JC9N13RHZ2+Z9Y9eoR7d2rtk+r7Oxs+uKLLwgAAaDx48dTbklt+9Zzcrmchg8fTgDI3NycTp48WYRzEO3bpzwmxMuL6OhRDQTMNCori+jAAaJBg5S/JwHC7zc4WOieNBSHD+d/VFasKHTzscLp2bMnAaBp06aJHco7ONkpBL1JdlJTiebPV/5a7eUlfE2RydR+OblcTosXL1YkPN26daNXr16p/TpMs6ZNm0YAyMjIiHbt2lXo10dHKzf/lysnDPDk3Ff/pacT7dhB1Lu3MIvrzcSnbl2ihQuFiTX6SC4nWr6cyMhIqE/z5kRPn4odlX7aunUrAaDKlSvrXFcWJzuFoPPJzqtXwhzTvHmSedNdtm7VSJLztm3btimaMX18fCg+Pl7j12TqsWTJEkWy+ttvvxXqtUlJRKNH598szMyE7g5emcAwpaYS/fknUZcu+TOV3hwCuGwZkb786WdlCV12efEPHUqUmSl2VPrr9evXitm6Z99aukRsnOwUgs4mO+npREuXEjk65v/VengQ/fWX1r9WnzlzhsqWLUsAqGLFihQdHa3V67PC27hxoyLRCQkJUfl1mZlEixcT2drmv+169yYqxnhmpmeePydau1ZYsUIiyX8fSCRErVsLLXvPn4sdZcGePSNq1So/3h9/NNyxSNo0YMAAAkATJkwQOxQlnOwUgs4lOxkZRD//LKx0lfcpU6UK0fr1wtxJkdy9e5dq1KihGOR65MgR0WJhH3bgwAEyMTEhAPT111+r1PQslws9olWq5L/tGjQgiozUQsBMZ8XHC91BTZsqt/aYmAjLDmzcSKQrH53R0USVKwvx2doKY5OYeuzdu5cAkIuLi06N3+RkpxB0JtnJyiJavZqoQgXlqRK//aYzC5e8ePFCMX3ZxMSk0F0jTPPOnDlDlpaWBIAGDRpEMhW6Oq9cIfLzy3/bubgIi55qoZeU6RFdXrV57978AddVq/LK3eqWmZlJ9vb2BIBOqLh2mzZwslMIoic72dlEv/4qTBXI+/SoUIFozRqdXPY0MzOTBg0apOgiCQoKUumGyjQvJiaGHBwcCAB16tSJsj+SJMfHEw0fnt9VYWEhrGaQlqalgJne0pVVm+VyYSB13nu4dWvd7WLTdyNGjCAA9MUXX4gdigInO4UgWrKTkyN8fXZ3V/5KvWKFzo+mk8vlNHv2bEXC069fP7Xsr8SK7sGDB1S+fHkCQE2aNPngzLn0dGFi35tTjwMDiXiXEFZYqqzafPSoZoYZZmQIU+jzrjd6tM40ghukiIgIAkClS5f+6BcpbeFkpxC0nuzk5hJt2iQMNs77K3V0FDZK07O1y9evX0+mpqYEgJo3b07Pnj0TO6QSKSkpiapXr04AqHbt2vTixYsCy8nlRKGhyjelxo2FlXYZKy5VV21WR0NwQoLw3gWElbx/+aX452QflpOTo9hA+KCObH7HyU4haC3ZkcmEO03NmvmfAGXLEv3wgzC9XE8dP36c7OzsCABVq1aN/vvvP7FDKlHS0tKoYcOGBIDc3NwoLi6uwHLnzxM1a6bcU/rXXzwuh2nGh1ZtrlixeKs2X76cP7TRwYEXt9SmsWPHEgAaPHiw2KEQkZ4kO5GRkRQQEKDYfPLtBc/kcjkFBweTi4sLWVhYkJ+fH8W8tUV8ZmYmjR07lsqUKUNWVlbUtWvX937Yv4/Gkx2ZTFi5y9NTuX13wQKDGRzx77//UuXKlRVNnKc+sMM6U5+srCxq164dAaAyZcrQzQKWvo2LU27qt7IimjuX6PVrEQJmJZI6V23eti1/r+MaNYj4u5V2nT59mgCQjY0NpetAT4ReJDsHDx6kGTNmUFhYWIHJzsKFC8nGxobCwsIoOjqa+vXrRy4uLpSamqooM3r0aCpfvjxFRETQlStXqHXr1lS3bt1CTY3TWLIjlxPt2aM8dcHOTrjTiD3zSwMSExOpUaNGBIDMzMxo8+bNYodk0GQyGfXr148AkLW1NZ0/f17p+KtXwk0k78YAEA0ZQvT4sSjhMkZEH1+1OSSk4FWbZTJhQHRe2Q4diJKTtRw8I5lMRm5ubgSAwsLCxA5HP5KdN72d7MjlcnJ2dqaFCxcqnsvMzCQ7Oztas2YNEQkblJmamlJoaKiizJMnT8jIyIjCw8NVvrbGkp3u3fP/Mm1siGbNMvhtoV+/fk2ffvqpYuDyvHnzdG55cUMgl8sVzcmmpqZ0+PBhxTGZTFj7pHz5/LdfixZEFy+KGDBjBZBKVVu1+fVroj598o99/bWoS46VeN988w0BoN69e4sdiv4nO/fu3SMAdOXKFaVy3bp1o88++4yIiI4dO0YA6OVbCYS3tzfNnj37vdfKzMwkqVSqeMTFxWkm2fnlFyJra6KgoBI1F1Imk9HkyZMVCc/w4cN1ZuS+oZg7dy7l7Ur/ZgvaP/8QNWyYf1OoXFlo9ud8k+m6D63anDfY2dSU6PffxY6UXb58mQCQhYWFUk+LGFRNdoygoxITEwEATk5OSs87OTkpjiUmJsLMzAwODg7vLVOQkJAQ2NnZKR5ubm5qjv7/jRgBxMYCCxYAZcpo5ho6yMjICD/++CNWrVoFIyMj/PHHH+jUqRNSUlLEDs0grFmzBrNnzwYALF++HIGBgXj4EOjfH2jeHLh4EShVCggJAW7eBPr0ASQSkYNm7CPKlAFGjgSOHQOePAGWLweaNhVSnsREoGxZ4PhxYPhwsSNl9evXh4eHBzIzM7F3716xw1GJziY7eSRvfUoT0TvPve1jZYKCgiCVShWPuLg4tcT6DnNzoFw5zZxbD3z55ZfYt28frK2tcezYMTRv3hwPHz4UOyy9tmPHDowZMwYAMGvWLAwdOg4zZgA1agBbtwpJzeefA3fuANOmARYWIgfMWBG4uADjxwNnzgjfF3/9Fbh6FWjRQuzIGCDcl/v37w8A2LJli8jRqEZnkx1nZ2cAeKeFJikpSdHa4+zsjOzsbCQnJ7+3TEHMzc1ha2ur9GCa0blzZ5w+fRqurq74999/0bhxY1y6dEnssPTS8ePHMXDgQBARRo4cjUqVvkP16kLDYVYW0Lo1cOWKcGP4/z8fxvRe5cpCAl+hgtiRsDflJTuHDx/Gy5cvRY7m43Q22XF3d4ezszMiIiIUz2VnZyMyMhLNmjUDAPj4+MDU1FSpTEJCAmJiYhRlmPjq1auH8+fPw9vbG0+fPkWrVq2wZ88escPSK5cvX0b37t2RnZ2NVq1m4+LFVfj8cwkSE4Fq1YDdu4Xm/3r1xI6UMVYS1K5dG97e3sjNzcXOnTvFDuejRE12Xr16haioKERFRQEAYmNjERUVhUePHkEikWDixIlYsGABdu3ahZiYGAwdOhRWVlYYMGAAAMDOzg4jRozA5MmTcezYMVy9ehWDBg2Cl5cX2rZtK2LN2NsqVKiA06dPo2PHjsjIyEDPnj2xfPlyscPSC3fu3EGnTp3w6pUjypb9G3///R2ioiSwswOWLAFu3AC6d+dxOYwx7dKrrixtjJZ+nxMnTihm7Lz5GDJkCBHlLyro7OxM5ubm1KpVK4qOjlY6R0ZGBo0dO5ZKly5NlpaWFBAQQI8ePSpUHKJvBFqC5OTk0OjRoxW/63HjxhVqTaSS5smTJ1SxohcBi0kiyVIsjT9mDFFSktjRMcZKsvv37ytmhcbHx4sSg6r3bwkRkViJlq5ITU2FnZ0dpFIpj9/RAiLCkiVL8O233wIAAgICsGXLFpQqVUrkyHTLs2fJqFdvBeLjRwNwBAC0bw8sXQrUqSNubIwxBgBNmjTB+fPn8fPPP2PcuHFav76q92+dHbPDDJdEIsE333yD7du3w8LCAvv374efnx/i4+PFDk1n7N+fhcqVXyI+fjYAR1Stmo0DB4DwcE50GGO6Q1+6sjjZYaLp3bs3Tpw4gXLlyuHKlSto0qQJoqOjxQ5LVLdvAwEBcnTtao709KqQSF5i6tQnuHnTDJ0787gcxphu6du3LyQSCc6ePYsHDx6IHc57cbLDRNWkSROcO3cONWrUQFxcHJo3b44jR46IHZbWvXwJTJwIeHoSDhwwApADY+OV2LfvNhYuLA9TU7EjZIyxd7m6usLPzw8AsG3bNpGjeT9OdpjoqlSpgjNnzsDPzw9paWno3Lkzfv31V7HD0oqcHGDFCmH6+PLlQG6uBMA+GBnVxc6dFdGlS1OxQ2SMsQ/Sh64sTnaYTihdujSOHDmCwYMHQyaT4YsvvkBQUBDkcrnYoWkEEXDgAODtLawUm5wMODs/A9AOQDf89tu36Natm9hhMsbYR/Xq1QsmJiaIiorCrVu3xA6nQJzsMJ1hZmaGDRs2YM6cOQCAhQsXIjAwEJmZmeIGpmY3bgAdOwIBAcCtW8KOIkOGnEVioguAo1i0aBGGDRsmdpiMMaaSsmXLol27dgCArVu3ihxNwTjZYTpFIpEgODgYGzduhKmpKbZt24Y2bdrg2bNnYodWbM+eAWPGCK05R44ApqbAt98CK1aEY9OmlgBkmDx5smJKPmOM6Yu8rqzQ0FDo4oo2nOwwnTR48GAcOXIE9vb2OHPmDJo2bYr//vtP7LCKJDtbWOnYwwNYvRqQy4FPPxV2JO/e/R8MG/YpZDIZPvvsMyxevPijG90yxpiu6dGjB8zNzXHr1i1cu3ZN7HDewckO01n+/v44e/Ys3N3dce/ePTRt2hSnTp0SOyyVEQl7VtWpA3zzDSCVAvXrAydPAmFhQEZGDAICApCRkYEuXbrgt99+g5ER/0kyxvSPra0tunTpAkBo3dE1/MnKdFrNmjVx7tw5NG7cGC9fvkTbtm2xefNmscP6qKgooE0boGdP4O5dYRfy338HLl4E/PyABw8eoEOHDkhJSUGzZs2wbds2mPL8csaYHtPlrixOdpjOc3R0xIkTJ9CrVy9kZ2dj4MCBmDdvns79MQFAYiIwciTQoAFw4gRgbg5Mnw789x8wfDhgbAwkJSWhffv2iI+PR506dbBv3z5YWVmJHTpjjBVLly5dUKpUKTx8+BDnzp0TOxwlnOwwvWBpaYlt27YpBu/OmjULw4cPR3Z2tsiRCTIzgZAQYVzOb78JXVj9+gkrIs+fD9jYCOXy1hG6c+cOKlasiMOHD6N06dLiBs8YY2pgZWWF7t27A9C9rixOdpjeMDIywuLFi7F69WoYGxtj/fr16NSpE1JSUkSLiQjYvh2oVUtowXn1CmjUCPjnHyA0FKhUKb9sVlYWevbsicuXL6Ns2bI4cuQIypcvL1rsjDGmbnldWdu2bYNMJhM5mnyc7DC9M3r0aOzbtw+lSpXC8ePH0axZM1H2ZLl0CWjVCujbF3jwAChfHvjzT+DsWaBZM+WyMpkMgwcPxrFjx1CqVCkcOnQINWrU0HrMjDGmSe3bt4eDgwMSExMRGRkpdjgKnOwwvdSpUyecPn0a5cuXx82bN9G4cWNcuHBBK9d+8gQYMgRo2BA4fRqwsgLmzBG6rAYNAt6eUEVEGD9+PLZv3w5TU1Ps2rULvr6+WomVMca0yczMDL169QKgW11ZnOwwvVW3bl2cP38e9erVQ1JSEvz9/bFr1y6NXS89HZg7F6heHdi4UXhu8GAhyQkOBqytC37d3LlzsWrVKkgkEmzatAlt27bVWIyMMSa2vK6ssLAwnRlXyckO02vly5fH33//jc6dOyMjIwO9evXCTz/9pNaZWnI58NdfQI0aQlKTni50U50/LyQ9FSq8/7WrVq1SbH+xcuVK9O3bV21xMcaYLvL394eTkxNevnyJiIgIscMBAJiIHYAhI+KHdh426Nt3LzIz/8Tx48cxaVIU9u/fhMDAATAyMi72+bdtExIbQBhwvHgx0KcP8LGFjrdt24axY8cCAIKDgzFmzBgNv+MYY0x8xsbG6Nu3L1asWIHQ0FDFYoNikpAuLlaiZampqbCzs4NUKoWtra3azjtqFLB2rdpOx0RUqpQw22riRMDS8uPljx49is6dOyMnJwdffvklfvnlF94GgjFWYpw5cwbNmzdHqVKlkJSUBEtVPjiLQNX7N7fs6DGJhB8FPZKSnuL69SjI5TLY2tqgYcOGsLS0KPL5ypcHJk0SVkFWxaVLl9CzZ0/k5OSgT58+WLFiBSc6jLESpUmTJqhYsSIePXqEAwcOoHfv3qLGwy070FzLTlqasNicJm7o7MPOnz+Pbt26ISkpCRUqVMCBAwfg7e2t8ev+999/aN68OZ4/f442bdrgwIEDMDc31/h1GWNM10ydOhWLFy9Gr169sGPHDo1cQ9X7Nyc70Fyyw8QVGxuLzp0749atW7CxscH27dvRoUMHjV3vyZMnaN68OR4+fAgfHx+cOHECNnlLJzPGWAlz9epVNGjQABYWFnj69KlG7q+q3r95NhYzWO7u7jhz5gxat26NtLQ0dOnSBWs1NIjq5cuX6NChAx4+fAgPDw8cPHiQEx3GWIlWr149VK9eHZmZmdizZ4+osXCywwyag4MDwsPD8dlnn0Emk2HUqFGYOnUq5HK52q6Rnp6Orl274saNG3BxccGRI0fg6OiotvMzxpg+kkgkCAwMBCD+AoOc7DCDZ2ZmhvXr1+O7774DACxevBj9+/dHRkZGsc+dk5ODvn374syZM7C3t8fhw4dRuXLlYp+XMcYMQb9+/QAAR44cwYsXL0SLg5MdViJIJBLMnj0bf/75J0xNTbF9+3a0adMGz549K/I55XI5Pv/8cxw4cAAWFhbYv38/vLy81Bg1Y4zpt1q1aqFu3brIzc1FWFiYaHFwssNKlEGDBiEiIgIODg44e/YsmjRpgtu3bxfpXFOnTsXGjRthbGyM7du3o3nz5mqOljHG9N/AgQPRpk0bVPjQcvMaxrOxwLOxSqLbt2+jc+fOuH//PhwcHLBr1y74+fmp/PoffvgBU6ZMAQCsX78eQ4YM0VSojDGm14hIY2uN8Wwsxj6gRo0aOHfuHJo0aYLk5GS0a9cOmzZtUum169atUyQ6P/zwAyc6jDH2AbqwqConO6zEKleuHI4fP47evXsjJycHgwcPxty5cz+4iei+ffswcuRIAMC3336Lb775RlvhMsYYKyJOdliJZmlpia1btypaaoKDgzFs2DBkZ2e/U/b06dPo27cvZDIZhg4dikWLFmk7XMYYY0XAyQ4r8YyMjLBo0SL873//g7GxMTZs2ICOHTsiOTlZUeb69esICAhAZmYmAgIC8Ouvv+pE0yxjjLGP42SHsf/3xRdfYP/+/bCxscGJEyfQrFkzxMbGIjY2Fh07doRUKkWLFi2wdetWmJjwHrqMMaYveDYWeDYWU3b9+nV06dIFjx8/hqOjI0qVKoX79+/Dy8sLkZGRcHBwEDtExhhj4NlYjBWZt7c3zp07h/r16yMpKQn3799H5cqVER4ezokOY4zpIU52GCtA+fLl8ffffyMwMBB169bF4cOH4erqKnZYjDHGisBgkp1Vq1bB3d0dFhYW8PHxwalTp8QOiem5UqVKYfPmzYiKikL16tXFDocxxlgRGUSys3XrVkycOBEzZszA1atX0bJlS3Tq1AmPHj0SOzTGGGOMicwgBig3btwYDRo0wOrVqxXP1apVCz169EBISMhHX88DlBljjDH9U2IGKGdnZ+Py5cto37690vPt27fHmTNnCnxNVlYWUlNTlR6MMcYYM0x6n+w8f/4cMpkMTk5OSs87OTkhMTGxwNeEhITAzs5O8XBzc9NGqIwxxhgTgd4nO3neXs32Q7usBgUFQSqVKh5xcXHaCJExxhhjItD7ZWDLli0LY2Pjd1pxkpKS3mntyWNubg5zc3NthMcYY4wxkel9y46ZmRl8fHwQERGh9HxERASaNWsmUlSMMcYY0xV637IDAJMmTcLgwYPh6+uLpk2bYu3atXj06BFGjx4tdmiMMcYYE5lBJDv9+vXDixcvMHfuXCQkJMDT0xMHDx5EpUqVxA6NMcYYYyIziHV2iovX2WGMMcb0T4lZZ4cxxhhj7EM42WGMMcaYQeNkhzHGGGMGjZMdxhhjjBk0g5iNVVx5Y7R5jyzGGGNMf+Tdtz8214qTHQBpaWkAwHtkMcYYY3ooLS0NdnZ27z3OU88ByOVyxMfHw8bG5r37aRVFamoq3NzcEBcXZ7BT2g29joZeP8Dw68j103+GXkeuX9EREdLS0uDq6gojo/ePzOGWHQBGRkaoUKGCxs5va2trkG/gNxl6HQ29foDh15Hrp/8MvY5cv6L5UItOHh6gzBhjjDGDxskOY4wxxgwaJzsaZG5ujuDgYJibm4sdisYYeh0NvX6A4deR66f/DL2OXD/N4wHKjDHGGDNo3LLDGGOMMYPGyQ5jjDHGDBonO4wxxhgzaJzsMMYYY8ygcbJTSCEhIWjYsCFsbGzg6OiIHj164Pbt20pliAhz5syBq6srLC0t4e/vjxs3biiVycrKwrhx41C2bFlYW1ujW7duePz4sTar8l6rV6+Gt7e3YgGopk2b4tChQ4rj+l6/t4WEhEAikWDixImK5/S5jnPmzIFEIlF6ODs7K47rc93e9OTJEwwaNAhlypSBlZUV6tWrh8uXLyuO63M9K1eu/M7vUCKR4KuvvgKg33UDgNzcXMycORPu7u6wtLRElSpVMHfuXMjlckUZfa8jIGxhMHHiRFSqVAmWlpZo1qwZLl68qDiuT3X8+++/0bVrV7i6ukIikWD37t1Kx9VVl+TkZAwePBh2dnaws7PD4MGDkZKSUvwKECuUDh060Lp16ygmJoaioqKoS5cuVLFiRXr16pWizMKFC8nGxobCwsIoOjqa+vXrRy4uLpSamqooM3r0aCpfvjxFRETQlStXqHXr1lS3bl3Kzc0Vo1pK9u7dSwcOHKDbt2/T7du3afr06WRqakoxMTFEpP/1e9OFCxeocuXK5O3tTRMmTFA8r891DA4Opjp16lBCQoLikZSUpDiuz3XL8/LlS6pUqRINHTqUzp8/T7GxsXT06FG6e/euoow+1zMpKUnp9xcREUEA6MSJE0Sk33UjIpo3bx6VKVOG9u/fT7GxsbR9+3YqVaoULVu2TFFG3+tIRNS3b1+qXbs2RUZG0p07dyg4OJhsbW3p8ePHRKRfdTx48CDNmDGDwsLCCADt2rVL6bi66tKxY0fy9PSkM2fO0JkzZ8jT05MCAgKKHT8nO8WUlJREACgyMpKIiORyOTk7O9PChQsVZTIzM8nOzo7WrFlDREQpKSlkampKoaGhijJPnjwhIyMjCg8P124FVOTg4EC//fabQdUvLS2NPDw8KCIigvz8/BTJjr7XMTg4mOrWrVvgMX2vW56pU6dSixYt3nvcUOqZZ8KECVS1alWSy+UGUbcuXbrQ8OHDlZ779NNPadCgQURkGL+/9PR0MjY2pv379ys9X7duXZoxY4Ze1/HtZEdddfn3338JAJ07d05R5uzZswSAbt26VayYuRurmKRSKQCgdOnSAIDY2FgkJiaiffv2ijLm5ubw8/PDmTNnAACXL19GTk6OUhlXV1d4enoqyugKmUyG0NBQvH79Gk2bNjWo+n311Vfo0qUL2rZtq/S8IdTxzp07cHV1hbu7O/r374/79+8DMIy6AcDevXvh6+uLPn36wNHREfXr18evv/6qOG4o9QSA7OxsbNq0CcOHD4dEIjGIurVo0QLHjh3Df//9BwC4du0aTp8+jc6dOwMwjN9fbm4uZDIZLCwslJ63tLTE6dOnDaKOedRVl7Nnz8LOzg6NGzdWlGnSpAns7OyKXV9OdoqBiDBp0iS0aNECnp6eAIDExEQAgJOTk1JZJycnxbHExESYmZnBwcHhvWXEFh0djVKlSsHc3ByjR4/Grl27ULt2bYOpX2hoKK5cuYKQkJB3jul7HRs3boyNGzfi8OHD+PXXX5GYmIhmzZrhxYsXel+3PPfv38fq1avh4eGBw4cPY/To0Rg/fjw2btwIQP9/h2/avXs3UlJSMHToUACGUbepU6ciMDAQNWvWhKmpKerXr4+JEyciMDAQgGHU0cbGBk2bNsX333+P+Ph4yGQybNq0CefPn0dCQoJB1DGPuuqSmJgIR0fHd87v6OhY7PryrufFMHbsWFy/fh2nT59+55hEIlH6NxG989zbVCmjLTVq1EBUVBRSUlIQFhaGIUOGIDIyUnFcn+sXFxeHCRMm4MiRI+9863qTvtaxU6dOiv/38vJC06ZNUbVqVWzYsAFNmjQBoL91yyOXy+Hr64sFCxYAAOrXr48bN25g9erV+OyzzxTl9L2eAPD777+jU6dOcHV1VXpen+u2detWbNq0CZs3b0adOnUQFRWFiRMnwtXVFUOGDFGU0+c6AsCff/6J4cOHo3z58jA2NkaDBg0wYMAAXLlyRVFG3+v4JnXUpaDy6qgvt+wU0bhx47B3716cOHECFSpUUDyfN+vl7Sw0KSlJkfU6OzsjOzsbycnJ7y0jNjMzM1SrVg2+vr4ICQlB3bp1sXz5coOo3+XLl5GUlAQfHx+YmJjAxMQEkZGR+Pnnn2FiYqKIUZ/r+CZra2t4eXnhzp07BvH7AwAXFxfUrl1b6blatWrh0aNHAAzn7/Dhw4c4evQoPv/8c8VzhlC3b7/9FtOmTUP//v3h5eWFwYMH4+uvv1a0tBpCHQGgatWqiIyMxKtXrxAXF4cLFy4gJycH7u7uBlNHQH2/L2dnZzx9+vSd8z979qzY9eVkp5CICGPHjsXOnTtx/PhxuLu7Kx3PexNHREQonsvOzkZkZCSaNWsGAPDx8YGpqalSmYSEBMTExCjK6BoiQlZWlkHUr02bNoiOjkZUVJTi4evri4EDByIqKgpVqlTR+zq+KSsrCzdv3oSLi4tB/P4AoHnz5u8s+fDff/+hUqVKAAzn73DdunVwdHREly5dFM8ZQt3S09NhZKR8+zE2NlZMPTeEOr7J2toaLi4uSE5OxuHDh9G9e3eDqqO66tK0aVNIpVJcuHBBUeb8+fOQSqXFr2+xhjeXQF9++SXZ2dnRyZMnlaaGpqenK8osXLiQ7OzsaOfOnRQdHU2BgYEFTsGrUKECHT16lK5cuUKffPKJzkyZDAoKor///ptiY2Pp+vXrNH36dDIyMqIjR44Qkf7XryBvzsYi0u86Tp48mU6ePEn379+nc+fOUUBAANnY2NCDBw+ISL/rlufChQtkYmJC8+fPpzt37tBff/1FVlZWtGnTJkUZfa+nTCajihUr0tSpU985pu91GzJkCJUvX14x9Xznzp1UtmxZmjJliqKMvteRiCg8PJwOHTpE9+/fpyNHjlDdunWpUaNGlJ2dTUT6Vce0tDS6evUqXb16lQDQ0qVL6erVq/Tw4UO11qVjx47k7e1NZ8+epbNnz5KXlxdPPRcDgAIf69atU5SRy+UUHBxMzs7OZG5uTq1ataLo6Gil82RkZNDYsWOpdOnSZGlpSQEBAfTo0SMt16Zgw4cPp0qVKpGZmRmVK1eO2rRpo0h0iPS/fgV5O9nR5zrmrW9hampKrq6u9Omnn9KNGzcUx/W5bm/at28feXp6krm5OdWsWZPWrl2rdFzf63n48GECQLdv337nmL7XLTU1lSZMmEAVK1YkCwsLqlKlCs2YMYOysrIUZfS9jkREW7dupSpVqpCZmRk5OzvTV199RSkpKYrj+lTHEydOFHjvGzJkiFrr8uLFCxo4cCDZ2NiQjY0NDRw4kJKTk4sdv4SIqHhtQ4wxxhhjuovH7DDGGGPMoHGywxhjjDGDxskOY4wxxgwaJzuMMcYYM2ic7DDGGGPMoHGywxhjjDGDxskOY4wxxgwaJzuMMcYYM2ic7DDGDJK/vz8kEgkkEgmioqIK9dq819nb22skNsaYdnGywxjTaXmJx/seQ4cOfe9rR44ciYSEBHh6egIAHjx48E7yk5aWBn9/f9SsWRNxcXEAhA0Kly1bpsFaMca0yUTsABhj7EMSEhIU/79161bMnj1bacdzS0vL977WysoKzs7O7z3+7NkzdOrUCQBw+vRplC1bFgDg7OwMOzu74obOGNMRnOwwxnTam8mKnZ0dJBLJBxMYVcXFxaFdu3ZwcXHB3r17YWNjU+xzMsZ0E3djMcZKnNu3b6N58+aoWbMmwsPDOdFhzMBxssMYK3E+++wzVK1aFWFhYTA3Nxc7HMaYhnGywxgrcbp3747Tp08jLCxM7FAYY1rAY3YYYyXO9OnT4e3tjYEDB4KI0K9fP7FDYoxpECc7jLESaebMmTAxMcHAgQMhl8sRGBgodkiMMQ3hZIcxVmJNmzYNxsbGGDx4MORyOQYOHCh2SIwxDeBkhzFWon377bcwNjbGkCFDIJfLMXjwYLFDYoypGQ9QZozpjaFDhyIlJaXIr69cuTKICPXq1VN6ftKkScjNzeVEhzEDJSEiEjsIxhhTN39/f5w5cwZmZmY4e/YsvLy8VH5tqVKlkJubCwsLi2IlV4wx3cDJDmPMID158gQZGRkAgIoVK8LMzEzl1969excAYGxsDHd3d43ExxjTHk52GGOMMWbQeMwOY4wxxgwaJzuMMcYYM2ic7DDGGGPMoHGywxhjjDGDxskOY4wxxgwaJzuMMcYYM2ic7DDGGGPMoHGywxhjjDGD9n8e3YdzgPrctQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(temps, c11s, color='black', label=\"C11\")\n", + "plt.plot(temps, c12s, color='red', label=\"C12\")\n", + "plt.plot(temps, c44s, color='blue', label=\"C44\")\n", + "\n", + "plt.ylabel('C [GPa]')\n", + "plt.xlabel('T [K]')\n", + "plt.legend()" + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGBCAYAAACEmqDoAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAALaGSURBVHhe7N13eFTV1sfx75T0XiAhJPRepChdIHSkKF0RRLkqoq9YKHIVFQQblquC0qygYgVBpIdQFFCq9BoIhBQI6WVSZua8f2xmSIYOE0qyPs9zHsicMydhgMwva6+9t85qtWoIIYQQQpQyescHhBBCCCFKAwk5QgghhCiVJOQIIYQQolSSkCOEEEKIUklCjhBCCCFKJQk5QgghhCiVJOQIIYQQolSSkCOEEEKIUklCjhBCCCFKJQk5QgghhCiVJOQIIYQQolSSkCOEEEKIUqnUhJxt27bx+OOP07hxYzw9PdHr9Xz33XeOlwGwfv167r77bvR6PUajEb1eT1BQEG+88QY5OTn266xWK4sWLaJ27dro9Xr0ej2+vr6MGTOGtLS0YvcUQgghxO2l1IScw4cP8/3335OSkkK5cuUcT9ulpaUxZcoU/v33X+6//35mzJjBuHHjcHd3Z+rUqaxcudJ+7cGDBxk9ejQJCQk899xzvPPOO4SFhfHJJ58wb968YvcVQgghxO2l1IScDh06sHz5cv766y9efPFFx9N2e/fuZdOmTdxzzz188cUXjBgxgqlTp/L666+Tl5dXLOT88MMPxMbGMnr0aD744APGjx/PZ599ho+PD99++y0pKSnF7i2EEEKI20epCTkVKlSgQ4cOVK5cGU9PT8fTdoWFhZjNZgICAvDx8bE/HhERgV6vp7CwEIDMzEzWrFmDj48PvXv3xmg0AtCqVStatmzJgQMHOHjwoP35QgghhLi9lJqQc7Xq1atH48aN2bp1K/Pnz+fQoUNs3ryZGTNm4OrqSmRkJAAmk4mUlBSqVq1K1apV7c/39PSkWbNmmEwm4uLiitxZCCGEELcTndVq1RwfvNPNmTOHkSNHMm/ePIYOHep4mg0bNvDYY48RFxeHj48PBQUFFBYWMm7cOF5//XVcXV3ZsWMHkZGRNGjQgNWrV+Pl5WV//uTJk5k0aRJTpkxhwoQJxe79888/s379egwGAwA6nQ5NK3UvsRBCiDuI1WqlTp06PPXUU7i4uDieLrXKXMjJyspi8uTJfPHFF1StWpX69euTmprKpk2bqFGjBp9++iktWrRg69atREZG0qhRo2sKOdHR0fz777/o9Xpyc3P57LPP6NixI82aNcNqtRa7Vlyb3Nxc4uLiqFy5Mu7u7o6nxTXKycnh1KlTVKlSBTc3N8fT4hrJ6+k8Op2O5ORkMjMzqVKlCnp9mRt0cCq9Xs+qVavIyclh+fLlZer7Z5kLOQsWLGDw4MG0bt2ab7/9loiICAoKCpg1axajR4/mwQcfZN68ecTFxdG+fXtCQ0OJiooq1r9jCzkzZ87kqaeeKnb/olJSUujYsSNjx47lkUcecTwtrlFaWho7duygefPmxf4+xPVJTU3l33//pXnz5nh7ezueFtdIXk/niomJ4fTp07Ro0cJeGRfXb+rUqSxfvpwVK1aUqZBT5uLx/v37MZvNdOjQgYiICABcXV0ZMGAA1apVY8+ePWRlZeHv709AQAAnT54kMTHR/nyLxUJMTAwGg4EaNWoUubMoaZqmSTXMiTRNw2KxyHCqk9heT+Ec8noKZyhzIcc27JSbm1vs8aSkJNLS0uxjlb6+vjRp0oTTp0/zzz//2K87fvw4f/75J5UqVaJ69epF7iCEEEKI20mpCTmpqal8/fXXzJkzhz///BPO9cfMmTOHuXPnkp6eDkDr1q0JCAhg7ty5TJ8+nUOHDrFx40ZeeeUVUlJSiIyMxNfXF71ez+DBg/Hy8uLtt99myZIlbN++nVdeeYXY2Fi6d+9urwRdLU3T7MfFPhZCCCGE85Sanpw9e/bQoUMHUlNTHU8REhLC+vXrqVWrFoWFhXz88cd8+OGHpKSkEBgYiMlkorCwkG7duvHxxx9TpUoVAPLy8nj33XeZNm0aeXl5uLi4kJeXR/fu3fnoo4+oVq2a46cqJjU1lfbt21O3bl3++9//cvDgQdasWYOnpycDBw4kOzubP/74A6PRSPfu3alZsyYbN24kKyuLunXr0rp1a2JjY8nIyCAsLIzw8PALGvB0Ol2xj0uz1NRUtm/fTsuWLaUnxwlSUlLYsWOHvJ5OYns9W7VqJT05TnD06FESExNp3bq19OQ4QVntySk1ISc9PZ01a9aQn5/veAp3d3c6d+6Mr68vAGazmb1797Jjxw727dtHaGgod911Fy1btsTPz6/YcwsLC9m2bRt//fUX6enptGjRgnbt2uHv71/suotJTU0lMjKSvXv3EhwcTHZ2Nnl5eQD4+/tjsVjIysqCc8NoAQEBJCQkYLVa8ff3p1mzZuzbt4/09HQqVKjAiBEjyM3N5eDBgwQGBvLggw9Su3Ztjh8/jqenJ3Xq1MHV1dXhqyg9JOQ4l4Qc55KQc+0uVcXW6XQcOXKEpKQkWrdufcEPd6K4q/lhV0KOcLqiIccZDAYDVqvV/o0hODiYkJAQTpw4gbu7OwMGDKB///7s27cPq9VKmzZtuPvuu+3P1+l0V/Wf4XYlIce5JOQ4l4Scq6NpGoWFheTk5JCXl4fZbHa8BJ1OR2pqKjk5OVSsWPGO/r5V0tzc3PDw8MDT0/OyFS8JOcLpnB1yrsRgMODh4UF2djYA4eHh/Oc//yE5OZmzZ8/StWtXBg4ciKurK5mZmQQEBNxRi0JJyHEuCTnOJSHn6phMJhISEigoKMDV1fWSVRrbIq1F1ygTFyosLMRiseDr60toaOglg46EHOF0NzvkXEzRFZddXFzo3bs3ZrOZw4cP07RpU0aNGsVdd91FamoqPj4++Pj43LY/NUnIcS4JOc4lIefKNE0jMTGR7OxsQkND8fT0vGTIycvLo7CwUP5tXoHZbCYtLY2UlBTCwsIu2UpRVkPOxf91CafS6XTUrl2bkJAQ+8dVqlQhLCzMfk25cuUIDg62f+zq6nrZjUavVtEx78LCQhYuXMjvv//OwYMHmT9/PsOGDWPAgAG0a9eOHj168PPPP5OZmUlcXBxJSUkXLSULIcT1MJvN5OTk4OPjg6+vL0ajEb1ef9lDp9Nd8Jgc5w9XV1eCgoJwc3PDZDI5vuRlnlRySpBtxePu3bvz/PPPEx8fz8qVKwkODqZTp05kZ2cTFRVFfn4+3bp1Iz8/n59//pnU1FQ6dOiAj48PX3/9NYcPH6Zhw4YEBASwZMkS0tLScHd3JzAwkISEhEs2712P4OBgatSoQWJiIu7u7vTt25dRo0bZF+UqV67cLVuyXio5ziWVHOeSSs6VFRQUcPz4cYKCgor9UHcxtkqOt7f3bVtdvl1YrVZOnDiBi4vLJXuYymolR0JOCbKFnGvZ1sG2Aq3RaETTNEwmE6mpqQQHB2MwGNi2bRs7d+60V4JmzZpFVFQUoaGhVKlShT/++IPMzEw4t1/Jja4Q7OLiQsOGDe1T89u1a8fYsWMJCAigsLCQ4ODgm/YNXUKOc0nIcS4JOVcmIadkSMi5NBmuus0YDAaMRiOcG9by9PQkPDwcd3d3XFxcaNWqFc888ww9evSgcePGTJs2jfXr17N06VK+/PJLvv32W/7zn/8wfPhwPv30U9q0aYP+XMnXz8/vmhuNCwsL2bFjB7GxscTGxjJv3jz69OlDZGQkbdu25cEHH2TdunUkJCQQExNDamqqUytLQgghxPWSkHOHc3V1pWLFivj5+eHm5kbv3r2ZPXu2fZPSn376iVmzZvHRRx/xxx9/8Oyzz+Lv74+bmxvlypW7rp84jx07RkxMDPHx8SxfvpwhQ4bQoUMH2rZtS8+ePe1DbkePHiUlJeWGq0lCCHEnsVqtxMXFsWzZMhYuXMhvv/3GkiVLiIuLk++HN5mEnFLIYDDYpxGGhYXxxBNP8Nxzz9GmTRveeustVq1axdKlS1mzZg2ffPIJDRs2xMvLixo1alChQgXH211RYmKifeGuf/75h+eff54ePXrQrl07unXrxhdffEF6ejrHjx8nISFBNt0TQpRaKSkpvPfee3Tq1Im+ffvy6KOP8sgjj9CvXz+6dOnCm2++ecHeiaLkSMgpY9zd3bnnnnvo2LEjDRo04LHHHmPVqlWsWrWKNWvWMHfuXNq2bYufnx+VK1emYcOGjre4ojNnzrBlyxaSkpLYsWMHY8aM4f777ycyMpKOHTvy5ptvkpaWRmJiooQeIUSpkZCQwBNPPMGECRPw8vLivffeY8mSJfz++++88cYbFBQUEBUVJdWcm0hCThmn0+kICQmhVatWRERE0LlzZ37//XdWr15NVFQUv/76K8OGDaNixYpUqVKFZs2aXXNfT05ODn/99RdxcXEcPnyYd999l759+9K5c2c6derEhAkTSE5OJjc3l+zsbAk9Qog7jtls5oMPPmDx4sXce++9/Pjjjzz//PP2H+5eeeUVfvnlF5566ik8PDwcny5KiIQccQE/Pz/uueceqlevTs2aNZk1axZr164lOjqa33//nTFjxlC9enXCw8Np3br1Nc/Myc/PZ8OGDRw4cIBDhw7x4YcfMmjQIHr27EnXrl3573//y/HjxzGbzRJ6hBB3hC1btjB37lwqVKjA//73P2rXru14CU2bNuXhhx++5KrEwvkk5Igrcnd3p0aNGlSpUoWQkBDeeOMNe+j5448/ePvtt7nrrrsoV64cTZs2JSAgwPEWl2WxWFi/fj3r16/n77//5sMPP+Q///kPjz32GF26dOGFF15g//79d/zeW0KIq2dbBPBO8dNPP5GWlsaAAQNo0qSJ42koBfsH3olknZwSdD3r5NyJrFYrKSkpnD59mrCwMJYtW8a0adM4duwYlSpV4uzZs5w6dcrxadekSZMm3HvvvRw5coSaNWsyfPhwGjdu7HiZuAayTo5zyTo5V3a5dXJOnjzJ2bNn7SHAtneVp6fnTQ0GBoOBmjVrXtOQUlpaGl27dmX37t38/vvvdOvWzfGSC2iaRk5ODmazGQ8PjwsWWc3Pz8dkMtk34LwcWSfn0iTklCDbysX33HMPbdq0ceqwi06no1q1avj5+aFpGt7e3sW2jfD29ravt3OzaZpGamoq8fHxVKxYkd27dzNlyhT+/fdf/P390TSNEydOOD7tmjRo0ICBAwdy8uRJ/Pz8GDRoEPfcc88d9ZPfrSYhx7kk5FzZ5ULOqFGj+OKLL+w9f7b1ti72hl1SNE0jICCApUuXXtOkiwMHDtCuXTt8fX1Zu3YtlSpVcrykmOTkZN566y22bt1KTk4O48aNY8iQIfbzX331Fb/88gvx8fE88sgjjBs3rtjzHUnIuTQJOSWopDfodHNzs4/t+vj4UL58eQCMRiM1atTAy8sLq9VqXw2ZcysY16pVC3d3dzRNIzAwkMDAQDRNw9XV1f7N+WL/SW5Eeno6J06cwM/Pj8zMTMaNG8e2bdtwcXHBy8uL2NjYG1pEMCIigldeeYVTp05hMBi4//77adKkidP/HKWJhBznkpBzZZcLOW+++SYLFy60/3BmtVrRNO2m9q9omoavry+zZs2iZs2ajqcvad++fbRt25ZKlSqxdu3aKw7Zx8fHM3HiRMxmMwsWLOCNN95g9OjR9vPvv/8+Bw4cYMuWLXTo0IHp06cXe74jCTmXJiGnBNkqOeXKlaNevXpOmzaoaRoxMTGkp6ej0+nIzs4mMTHRfv/c3FwKCgocn2bn7u5u/08QGBhor64EBgZSuXJlypUrR7Vq1fD09KRWrVq4uroSHh6Om5sb3t7euLq6wg0GobS0NE6dOoWLiwsFBQW89tprrF27lsLCQkJCQkhMTKSwsNDxaZfl4uJif06lSpWYOHEiBoOB7OxsWrRoQePGjW/qN8zbnYQc55KQc2WXCzl5eXkUFBTYv6/cim0dNE1Dd26l+Wv5XnH06FHat2+P1WolKiqK+vXrO15SrDJlC3DHjh3j3nvvZfz48faQo2kahYWFuLi4MGTIEAICAvjss88c7lachJxLk5BTgkqqJ0fTNPLy8uzDX7m5uSQnJ9vPx8fHk5ycjF6vJysri4MHD9qvPXbsGCkpKej1enJycjh16hSapmGxWMjMzCxWTdHpdLi6umI0GgkNDcXNzY3KlSvj7+9PWFgYERERVKhQgbCwMLy9valQoQJGoxE/Pz905xrsLvaf7WIyMjLYt28f6enpVKtWjXfffZdFixaRnZ2Nj4+Pfez6Wri6umI2m7FarYSEhPDaa6/RoEEDYmJiaN68OXXq1Lmmb2SljYQc55KQc2WXCzmObkXIuV75+fkMHjyYRYsW8eqrr/Laa68VW2ojKyuLJUuWUKdOHZo2bWp//MiRIxeEHBtN0yTkOIGEnBJUUiHnemmaRn5+vj3wmEwmzp49a388JiaG/Px8Dh06RHp6OocPHyY7O5vTp0+TlpZGXl4eOTk5xe5pW13Z29ub4OBgPDw8qF69Om5ubtSpUwd/f39q1qyJr68v4eHheHh44Ofnh9FovGwIysnJYc+ePcTFxVGtWjV++OEHZs6ciclksleSLletuhhfX180TSM7O5sKFSrw6quv0r17d+Li4ihXrhw1a9YsU6FHQo5zSci5stIacgBWrFjBI488gslkYtCgQXTu3Bk3Nzf27t1LdHQ0R48e5ffff+fuu++2P0dCTsmTkFOCbreQcy1swcdqtZKamkpOTg4pKSkkJCSQmZnJ4cOHMZlMHDx4kOzsbE6ePEl+fj4ZGRkXDDMZjUZcXFwoX748np6eVK9eHR8fH+rWrYuvry+1a9fGx8eHiIgI3N3d8ff3x2AwFAtBeXl5REVFsWXLFho3bsy2bdv49NNPyc7Otl9TtAp1Nby9vQkICODs2bMEBgYyYsQIRo4cidlsxmAwEBgYeMuat28GCTnOJSHnykpzyLFarSxatIgPPviAPXv2UFBQgF6vx8XFhbCwMHr27MmECRMIDAy0P0dCTsmTkFOC7uSQczVsQaiwsJDk5GQKCwuJjY0lJyeHEydOcPr0afuvSUlJpKWlkZubS1ZWVrH7GAwGXF1dKV++PF5eXlSrVg1fX1/q1KmDu7s7tWvXxs/PD39/f44dO0bHjh3x8PDgr7/+YsOGDZQvX54zZ84wbdo00tLS4NxQ2/WEnpo1a5KZmYmrqytDhw5l1KhR5ObmYjQa8ff3L1WztyTkOJeEnCsrzSHHJi0tjcOHDxMfHw/nJkVUqlSJ4ODgCyrFEnJKnoScElTaQ87VKCwsxGKxkJaWZh8eS0pKIiEhgVOnTtl/PXPmDMnJyWRlZZGdnV3sHnq9HqPRSGBgIO7u7tStW5e6detSo0YNatasSeXKlfH19WXLli38888/eHt7Yzab+eijj0hNTS12r2vh4eFBixYtSE5OxtXVlYEDB/LUU0/Zh71s1aY7lYQc55KQc2VlIeRcDbPZzE8//cQ///zDV199xb333kuHDh0YMmQI4eHh/P777+zYsYOFCxfi4eFBjx49aN26NV26dHG8FUjIuSwJOSVIQs6Vmc1mLBYLWVlZZGVlcfr0ac6ePXtBJSgxMZGzZ8/ae4NsbMNKISEhVKtWjTp16lC1alUqVarEgQMHiIqKwmg0Uq1aNX755RcSExOLff5rYTQa6dOnD3q9nry8PLp27crDDz+Mn58fFovljgs9EnKcS0LOlUnIUQoLC3nttdfYunUrrq6uWCwW3N3dmTp1KnXr1uXDDz9k6dKlxfoPH3roIUaMGOF4K5CQc1kSckqQhJwbZ5sdlZmZSXx8POvWrcPPz8++2efJkyc5ceIEZ8+eJTc31/48g8FAuXLlCAoKIjw8nIYNG7Jnzx7++usvQkJCqF69Ort37+b06dPFPt+1MBgMDBo0iIiICE6cOEGXLl3o3bs35cqVc7z0tiQhx7kk5FyZhBzFNqPVcVkRo9GIXq+3f98ryjbJ42Ik5FyahJwSJCHHuVJTU9m5cyfNmzfHx8cHi8WCyWQiLS2NuLg4e/A5fPgwJ06csC8TbzKZ0M6tf6HT6fDz86NChQokJSXZh7OMRiMGg4H8/HzHT3vV9Ho9/fv3p0+fPhw8eJCGDRvSoUMHgoKCHC+9LUjIcS4JOVcmIadkSMi5tNLTRSnKhKI/3dimrkdERNC6dWsefPBBXn31Vb755huWLVvGn3/+yapVq/j++++ZPHkygwcPpnXr1vj6+nL8+HHS09OL3fda1+FxZLVaWbhwIcOHD2fKlCkMHjyYp59+2t4MLYQQ4uaSkCNKFZ1Od0H4eeihh5gwYQLz5s1j2bJlbNiwgdWrV/Ptt98yefJkHn74YVq3bk2FChXw8PC4oRlUFovFvn6PxWJh0aJF/PHHH46XCSGEuAmu/7u5EHcQnU6HXq8vFn4GDx5sDz9Lly4lOjqaZcuWMWvWLF5++WX69+9P06ZNKVeu3AU7BF8ts9nMtm3bHB8WQghxE0jIEWWaLfz4+PhQo0YN2rdvzxNPPMGbb77Jjz/+yOrVq1mzZg2LFy9m2rRpjBo1it69e1O3bl38/f2LLd1+Kampqezdu5eTJ0+Sk5Pj1N3ohRBCXJo0HpcgaTx2rtTUVLZv335LG2U1TcNsNpOamsqpU6c4efIkx44d4+DBg8TGxrJ///4Lpqnbhs8CAwOpWLEiNWvWpFq1atSoUYPq1avj7+9vXw36Zq6wLI3HziWNx1cmjcclQxqPL01CTgmSkONct0PIuRjbzC2TyURMTAy//PILsbGx+Pj4kJuby8mTJzl16hSJiYnk5ubaKzk6nQ4vLy98fX2pWLEiNWrUoGrVqtSoUYOKFSsSHh5OaGgoXl5e9vUynElCjnNJyLkyCTklQ0LOpZWakKNpGjk5OZw+fZpjx44RFxdH+/btqV69uuOlcO4fxdGjR/n777/tey1VqVKFVq1a4enpab+uoKCAnTt3sn//fiwWC2FhYbRq1YqAgIAid7s4CTnOdbuGnCvJzc0lMzOThIQEjh8/TlJSkr3yExsbaw8/RRc5dHNzw9fXl7CwMKpUqULVqlWpU6cO1apVo2rVqoSEhODl5XXRb2ZXS0KOc0nIuTIJOSVDQs6llZqQs3HjRl566SWOHz9OamoqBQUFzJs3j6FDhzpeislkYvr06cycOZMTJ07g5eVl/8+0cuVK+y6xhYWFTJ8+nTfffBOTyYTRaKSgoIA+ffrwySefEBoa6njrYiTkONedGnIuJT8/n6ysLJKSkjh79iwxMTEcOnSI2NhYYmJiSEhIICsry77OD+fCT3BwMFWqVKFp06Y0atSIOnXqULlyZYKCgq7pm5eEHOeSkHNlZSXkpKamsn79ejZv3syZM2fQ6XT4+/vTuXNn2rVr5/T/bxJyLq3UNB6fOnWK06dP06RJE1q0aOF4upiFCxcyceJE3Nzc+PDDD1m5ciULFy7k2WefxcvLy37d+vXrmTRpEuXLl+e7775j5cqV9OnTh19++YX//e9/F6xIKcS1sAWWBg0aEBkZyeOPP857773H999/z5o1a1i3bh1RUVHMnTuX119/nUceeYS6deuSk5PD5s2bmT59Ok888QRdu3YlMjKSPn368Nprr/Hjjz+yY8cO+6apQoibQ9M0du7cyZAhQ3jwwQeZOXMm27dv559//mHWrFn079+fUaNGXbBJsSg5paaSY9vhOjQ0lC+//JKRI0detJKTlpZGnz592LNnD7/99hvt27e3n7OFFr1ej8Vi4dlnn2X27NnMnj2bJ598EoDjx4/TpUsXLBYL0dHRVK1a1f58R1LJca7SVsm5VhaLhfT0dE6dOsXhw4fZt28f+/btY/fu3SQmJto3NrXNFqtYsSJ169bl7rvvpn79+lSvXp2wsDB8fX3R6/WkpqayY8cOWrRoUSZfT2eTSs6VlfZKzr///stDDz3EsWPHePDBBxkxYgQNGjTAYrGwfft2PvnkE/R6PQsWLLjuZSkuRio5l1ZqKjkBAQFUrFjxknt72OzatYu///6b1q1bU6NGDf755x82bdpEfHw8nHuDAMjMzGTz5s1UqFCByMhI+/MjIiJo2rQpp06dIiYmxv64ECXNYDAQFBREo0aNGDhwIJMmTWL+/PmsXbuW1atX8/XXXzNmzBi6dOmCr68vx44dY8GCBbzyyiv079+fDh060LlzZ0aMGMGnn37K+vXrSUhIsO/5ZRsSE0Jcu+zsbN555x0OHz7MiBEjmDVrFm3btiUgIIDg4GC6devG3LlzmTJlSolMJBAXV2oqOUXNmTPnkpWcuXPnMnz4cDp16kRWVhb79u3DarUSHh7OyJEjeeaZZ3Bzc+P48eO0b9+esLAwVq9eXewn3UmTJjF58mQ+++wznn766WL3z8zMJDc31/6Tcv/+/Rk7dizDhg2ToYMboNPpSE9PZ9euXdx99914e3vLm/K510V3bq0fnU6H1WolNzeXxMREjh8/zsGDB9m7dy+7du0iJiaGrKwse8XS1dUVX19fatWqRf369WnQoAH16tWjWrVqlCtXDldXV/R6PZqm2Q8kDF2U7f/77t27ueeee/Dy8pLXyYFOp6OwsJC4uDiCg4MJDg6+7GuUn59PYWHhDTfY3wx6vZ4ffviBYcOGUb9+fRYvXkzlypUvaGmw/Tku9+e+HrZKjtFoJCQkxPE0Li4uvPvuu6xevbrMVXLKXMiZMmUKEydORK/XU7duXYYPH05eXh5fffUVCQkJzJgxg8cee4ytW7cSGRlJo0aNWL16dbFencmTJzNp0iSmTJnChAkTit1/8uTJfP/99xiNRiwWCydOnLD/dH2jeyOVdRaLhby8vBveeqG0Kxp8OPe6ZWZmkpiYSFJSEidPnrRPa09KSirWH+Dq6kpISAhVqlQhIiKCSpUqUbFiRcqVK4evry9ubm4YDAY0TcNqtRYLP2Wd/Pu8Mr1ej7u7O6GhoQQFBRX/t2MwQJHXTTv370uv18PNDDmaBhaL+vUq6HQ6zGYzTz75JL/99huTJ0/mxRdfvOL3e8cfTooGIr1eX+zfkMViuez/M03TiIuLIyMj46KbDBsMBubPn8/hw4cl5JQGVxNyypcvz2+//UarVq0AWLx4MYMGDaJ169YsW7aMffv2ERkZyV133XXJkPPmm2/yyiuvFLk77Nixg6NHj6LX68nOzmbSpEmMGTOGBx988Ir/6MXlZWdnExMTQ61atfDw8HA8La7A9g2Vc980z5w5w99//42npyfHjh1j7969HDlyhLi4uGKbl7q4uBAQEEBYWBi1a9emfv369hldwcHBeHp6otPpigWfsigrK4tjx45Ru3btMvUmci0sFgtpaWmUK1fuwkrOihWwc6c96FjPBWjDzQ6M7u4weDCEhFxV0NHr9Zw6dYquXbty+vRpli9fTosWLS67srmmaaSmphIXF0dKSgq1atWiUqVK9v9D8fHxHDlyBIvFgre3N3fddddlq9dWq5WTJ09itVrx9fV1PI3RaGTatGn89ddfEnJKg8uFnC+++IIRI0bQrVs3Fi1aZG/+Sk5OpmPHjpw5c4YNGzbg4+PDvffeS1BQEFFRUfj5+dnv8dprr/HWW2/x448/MmjQoCJ3L04aj52rrDceO5ut8bhly5Z4e3tTWFhIenq6/Rvs3r177cEnPj6e9PR0tHMLH3p6elKhQgXq1KlD06ZNqV+/PjVr1iQ8PJyAgIBigaqskMbjKysoKCA2NpbAwMALG49HjIAvvij+2K3g7w9r10KjRo5nLmnfvn20bduWChUqsHbtWsqXL+94STFJSUkMGTKEvXv3kp6ezgcffMCoUaMAOHLkCA899BAZGRkEBARw8uRJunbtyscff0xQUJDjrUAajy+rzIWcNWvWcN9999GpU6diIScjI4NOnTpx4sQJNmzYQOXKlenSpQsHDhxg9erV9rVz8vPzGThwIGvWrGH16tW0bt262P2LkpDjXBJynOtK6+Ro57awsAWfXbt22YNPTEwMiYmJ5OTkwLnSu6+vL+Hh4dSsWZMmTZrQrFkz6tWrR0hICK6urhf9xluaSMi5ssvOrlq8GLZuVZWcc0NAFovl/L+dS1QxnM7dHf7zH7jCOmhF2UJOREQE69atu+JisampqSxcuJDCwkJefvllXn/9dUaPHg1AfHw8y5cvp23btgQFBfHDDz/w6quv8u2333L//fc73gok5Fye1WrVStsxa9YsDdDmzZt3wbmkpCStcePGWrly5bS///7b/viyZcs0T09PrW3btlpGRoZmtVq1l19+WQO0//73v1p+fr5mtVq1v//+WwsKCtLuueceLSUl5YL7Fz2Sk5O1hg0banPnzr3gnBzXfpw9e1ZbuXKl/e9Hjhs7kpOTr/n1tFgsmslk0k6dOqVt3LhR++qrr7QxY8Zo3bp106pXr655enpqgAZoLi4uWpUqVbRevXppb7zxhrZs2TItNjZWM5lMmsViueDed/phez0zMzMvOCeHOvLy8rQDBw5oZ86cueCc45FrMmnpWVl3xL+VuLg4rWbNmpq/v7+2cePGC85brVYtPz9fM5lMxR47dOiQVq5cOe2DDz644Hrb8e+//2ohISHaTz/9dME522E2m7WYmBjt5MmTl3y93nnnHa1du3Zabm7uBedK83GTBztLTlJSEm+++SavvfYaixcvBuCXX37h1Vdf5e233+bs2bMAlC9fnoEDB5KSksLIkSOZMWMGH374IS+88AJms5lHHnnE/lNt7969CQ0N5eOPP2b8+PHMnj2bF154gbS0NPr373/FtC5EaaPT6XBzc7Nvb/LYY4/x3nvvsWjRItavX8/KlSv5+OOPefjhh6lZsyZnzpzhjz/+YOLEiTzwwANERkYycOBA3nzzTVauXMnJkyfJz8+/ZK+BKMM0Dd0dsuBqWFgY9913H+np6UybNs3eH2O1WsnLy2PLli08//zzbN682fGpl2Uymfjqq68wGAyXXZNNXFqpGa46dOgQDz30EGlpaej1egwGAxaLBYvFQvny5fn555/t/0gyMzOZNm0ac+bMITk5GaPRSHh4OM888wxPPPGEvanVarWydOlS3nrrLfbs2YPVaiU4OJhhw4Yxfvz4izZ4FSXDVc4lw1XOdaXhquulaRoWi4XU1FSOHDliX/F1165dxMbG2tflcXFxITw8nPr169O8eXOaNWtG3bp179jhLRmuurLLDlc5uNMWAzxy5AiPPfYYmzdvpnr16kRGRuLu7s7evXvZvXs3BoOBqKgo7rrrrmLPuffeexk/frx9uMrGarUya9YsXnvtNSZNmsSzzz57yddBhqsurdSEnMLCQlJSUopNw7OxLaJmNBrtj5nNZmJjYzl58iRubm5Uq1aN8uXLX7CYoKZpnD17lkOHDlFYWEilSpWoXLlysXtdioQc55KQ41wlFXIcFQ09hw8fZvv27WzZsuWSoadBgwY0a9bsjgs9EnKurDSHHM6tiD937lyWLl1KSkoKAF5eXjRu3JiePXvSp0+fYgHjUiHHarXyzTffMHHiREaPHs2oUaMu+54jIefSSk3IuR1JyHEuCTnOdbNCjiNb6ElJSbFXeq4m9DRs2JCaNWtSoUIFfHx8LvtN/1aQkHNlpT3kcO7fd0ZGBnl5eXDu37G/v3+xGYe2pv4DBw7QuXNnRo8ezejRo+3/pufOncurr77K008/zfPPP4/BYMBoNF5ypWQJOZcmIacESchxLgk5znWrQo4j29ogZ8+evWzo0ev1BAYGUqlSJerUqUO9evXsU9fDwsLw9va+pcFHQs6VlYWQczUKCwt56aWXiI6O5sCBA1SsWJEaNWowbdo0jEYjHTp0ICUlhbvuugsXFxcKCwt55JFHePbZZx1vBRJyLktCTgmSkONcEnKc63YJORdjsVjsoWfbtm38+++/HDx4kBMnTpCammrfIsVgMBAQEEDlypXtCxXWr1+fGjVq3PTgIyHnyiTkKBaLhcWLFxMbG4uLiwtWqxWj0ciAAQMwGAwsWLCA/Px8e/uF1WqlWbNmtG3b1vFWICHnsiTklCAJOc4lIce5bueQ48hqtZKVlUVSUhIxMTHs37+fvXv3XnXwsVV9QkND8fT0LJFtFyTkXJmEnJIhIefSnP8/XQghnEyv1+Pn50ft2rXp0aMHY8eO5auvvmLlypWsXbuW3377jffee49hw4bRtGlTDAYDu3fvZv78+UyYMIGBAwcSGRnJfffdx9NPP8306dOJiooiJiYGk8nk+OmEEKWEhBwhxB3JFnzq1KlTLPisWrWKtWvXsnDhQqZOncojjzxCkyZNMJvNbNmyhc8//5znn3+e3r17ExkZSd++fXn33XdZs2YN8fHx9oqQEOLOJyFHCFFqFA0+PXv2ZNy4cXz99desWrWKdevW2YPPsGHDqFu3LllZWaxatYpXXnmF3r1706FDBx566CGmTp1KdHS0hB4h7nAScoQQpdrFgs+XX37J6tWrWb16NTNnzmT48OHUqVOHM2fO8Ntvv/Hyyy/Tq1cvOnTowODBgyX0CHGHkpAjhChzbAuENmvWjKeeeoo5c+ZcNPScPn2ahQsX2kNPx44dGTx4MO+9995FQ8/FGj6FELeOhBwhRJl3udDz/vvvM2DAACpVqkRcXBwLFy7kv//9r73S89hjjzF79my2bt1KRkbGRVddF0LcGhJyhBDCgS30NG/enDFjxvD9998THR3N0qVLmTp1Kv3797eHnh9++IFnnnmGAQMGMH78eJ599llmzZrFli1bSElJwWKxyAakQtwiEnKEEOIKXFxcCAsLo0OHDowbN4758+cTHR3NsmXLmDp1Kv369aNChQrExcXx3Xff8cwzz9C5c2c6d+7Mk08+yezZsyX0lDFWq5XU1FTi4+OJj48nPT1dqny3gCwGWIJkMUDnksUAnetOWgzwdmc2mzl8+DBLly4lLy+P3bt3s3v3bk6ePEl+fj4APj4+VKtWjSZNmtC8eXOaNm1K9erV8ff3v2Bj4NKqLCwGqGkaO3fu5LvvviM6Opq0tDQAypcvT5s2bRg6dChNmjRx6t+5LAZ4aVLJEUKIG2Q0GgkJCaFp06a8+OKLzJ8/n7Vr17Js2TLeffdd+vfvT2hoKAcPHuSbb77hmWeeoUuXLvZKj+PwlrgzaZrGggUL6NevH5999hmurq706tWLrl27UlBQwLRp0xg3bhw5OTmOTxUlREKOEEI4iW044mLDW2vXrmXp0qW8++679OvX76Khp0uXLhcd3hJ3hiVLlvDss8+Sn5/P7NmzWb16NdOnT2f27NmsWbOGqVOn0rBhQzw9PR2fKkqIhBwhhChBOp3OHno6duzIuHHj+OGHH+zbUUyYMIGuXbvi5+fH3r17+eabb3j66aftoWfEiBF8/vnn7Nu3j+zsbOnnuU3FxsYyceJE0tLSmDJlCo899hh+fn7o9Xr0ej3BwcG88MILvPXWWzdt01ghIUcIIW6qoqGne/fuTJ48md9++421a9fy66+/XhB6vv76a5566ik6dOjA/fffz8SJE1myZAlxcXGyMOFt5KeffmLXrl306NGDwYMHO56GcxU+6X+7uSTkCCHELaTT6fDw8KB69ercf//9Fw09Xbp0QafTsWHDBt5880369etHp06dGDJkiL2fJzU19Y6u8hQUgMl0exzXOgkqNzeXqKgoAAYOHIiXl5fjJeIWkdlVJUhmVzmXzK5yLpld5Vy217NVq1Z4e3s7nr5umqaRl5dHTEwMO3bsYO3atfz777/ExMSQnZ0N52Zu1apVizZt2tC8eXPuvvtuKleujJub20Vn2twql5td9f77sHgx2EZyrFYrmmY9Nwvp5vwZNA18feGjj6BGDcezlxYTE0P79u2xWCysXbuWOnXqOF5ySWvWrGHp0qX069ePe++9t9i5xMREZs2aRbly5RgxYgSurq7FztvI7KpLk5BTgiTkOJeEHOeSkONcJRVyitI0DU3TSEtLY//+/WzatImtW7eybds2EhISMJvN6HQ6KlSoQMOGDYmMjKR58+bUrl2bkJAQp05bvh6XCzkjRsAXXxR76Jbw94e1a6FRI8czl7Zv3z7atm1LpUqVWLt2LQEBAY6XXNTp06fp378/mzZt4pNPPmHUqFH2cxaLhVdffZWpU6fStm1bli9ffsmGZQk5lyYhpwRJyHEuCTnOJSHHuW5GyLmYwsJC4uLi2LNnD9HR0Wzfvp1Dhw6RkpICgLu7O5UrV6ZVq1bce++9tGjRgkqVKt2S9WcuF3Kio2HPHtCfa6IwmwuxWCy4ubndtEoOgJsb9OsHV1jGp5j9+/fTrl07ypcvz9q1awkJCXG85AJWq5VJkybx448/kpCQwNtvv81zzz1nP798+XKef/55TCYTVapUYeXKlRJyroOEnBIkIce5JOQ4l4Qc57pVIacoTdPIzs4mJiaGv//+mw0bNrBt2zZOnTpFXl4eOp2OoKAgatWqRbt27WjVqhX169cnPDz8kkMhznS5kOOooCAPs7kADw+fi75p305SU1Pp2rUr+/bt4+eff6Z3797FzmuaxsmTJ3FzcyM0NBSAqKgonn32WUaMGMF7773Hyy+/zPPPPw/nhqkGDRpEmzZtiImJISEhgdWrV0vIuQ7SeCyEEKWETqfDx8eHxo0bM3LkSObOncvatWv5448/ePXVV+nSpQtubm78/fff9kUKO3TowMMPP8z777/P+vXrSUlJuS22H7BawWK58M36dhQQEEDv3r3Jz8/ntddeY+nSpZw9e5a0tDR2797N1KlTeeCBB9izZw+cG6Z6++236du3L927dy/2elssFj7++GMMBgMvvvgiRqPxjm4ov9Uk5AghRCll+8m+Y8eO9llb0dHRzJ07l6eeeop69eqRnp7OwoULGT9+PL169aJz5848++yzzJ8/n71795Kbm+t4W+FAp9MxevRonnvuOQ4ePMjAgQNp27Yt7dq1o3379rz66qvo9Xpq164NwMyZMzl27Bht2rTh0KFDmM1m4uLiSEhIYNOmTXz77bd0796dhIQEUlJSyMnJYe/evfYtQsTVk+GqEiTDVc4lw1XOJcNVznU7DFddC4vFQnp6OjExMfz5559s3ryZ3bt3c+LECQoLC9Hr9QQGBtKkSRNatGhh32+rfPny172Y3bUMV92Je1dlZ2ezbt06/v77b5KSktDpdLi6utKiRQvatWtHpUqVsFgsDB48mHXr1uHn50dBQQGJiYl4e3szcuRIGjZsyHPPPYevry86nY4zZ85QWFhIo0aN+Pnnn6lSpYrjp5XhqsuQkFOCJOQ4l4Qc55KQ41x3WshxVFhYyOnTp9mxYwdbt27l77//ZteuXaSkpKBpGq6urlSuXJm77rqLNm3a0KZNG6pVq0ZAQAB6W7fwFZT2kHM1NE0jNjaWzMxM9Ho9x44dY/jw4Tz55JO88MILuLm5cerUKfsQ1fjx40lKSuKrr76ifv365xqxi5OQc2lX9y9TCCFEqebi4kJ4eDj3338/U6ZMYdGiRURHR/Ptt9/y5JNPUqdOHU6dOsWCBQsYM2aMfYPR5557zj60lZWVJf0jV6DT6ahatSqNGjWiYcOG1K9fn5CQEKpXr06FChUIDAzkrrvuolGjRtx1111EREQQFhZG3bp1LxpwxOVJyBFCCHEBLy8vGjRowMMPP8yMGTOIiorijz/+4N133+WBBx7A19eXvXv3MmPGDIYNG0bHjh3p0aOHfRf2ffv2kZaWdm5RPwk+lxIREcHixYsZMGCA4ykAJk6cyIwZMyTgXCcJOUIIIS7LYDAQHBxMhw4deOmll+wbjC5YsIBx48bRsmVLADZt2sS0adMYNmwYHTp0oHPnzjz55JPMmTOHjRs3kpiYeFvM3LqduLm5UatWLQIDAx1PodPpCA8Pp0qVKlc9JCiKk1dNCCHENXFzc7PvtfXOO++wfPlyoqOjmTdvHmPHjqVz5864ubmxe/duvv76a5555hm6dOnCgAED2LFjB2fOnCErK4v8/Hyp9IgSJSHnKmiahtlsxmw2y08hQghRhF6vx8fHhwYNGjBkyBCmTp3Kb7/9xrp16/j111+ZOHEiffv2pWLFipw+fZrk5GTi4uI4cuQIhw4dIiYmhsTERNLT0zGZTFgsFsdPIcR1KzUhJycnh61bt/Ltt98yZcoUpkyZYl946XISExP54IMPmDx5Mlu3bnU8zenTp5k+fTqDBg3i/vvv55VXXmHnzp3yk4cQQlyErsiu6g888ACvv/468+fPZ926dXz77bc0bNiQ4OBgPDw8sFgsZGRkEB8fT0xMDIcPH+bo0aPExcWRnp5OXl6eVHrEDSk1IWflypV06tSJxx57jEmTJjFx4kR27drleFkxZrOZTz75hJdeeolJkyaxZcuWYufPnj3L008/zejRo9m1axeJiYl88sknDBo0iI0bNxa7VgghxIVsa8VUrFiR1q1bU6lSJcLDw6lZsya1atWiatWqhISE4OXlhaZpZGVlkZSUxKlTpzh16hRHjx4lKSmJnJwcLBaLBJ6LsG3cKi5UakKOv78//fr143//+x/PPPOM4+mLWr16NV999RXVqlVzPAXA4sWLWbRoEW3atGHZsmWsX7+eN998k2PHjjF9+nQKCgocnyKEEOISDAYDbm5uZGdnY7Va8fLyIigoiIiICGrWrEnt2rWpUaMGYWFh+PioPauysrKIj4/nyJEj9qGtzMxMzGazvLGfCzg5OTnk5+fj7u5+0TVyyrJSsxigraRpMBiYM2cOI0eOZN68eQwdOtTxUji3cNfAgQPJzs5mwIAB/Pe//2X69On83//9H5xbGGvIkCEsXLiQX3/9lT59+sC56k737t1JTEwkOjravkz3xchigM4liwE6lywG6Fx3+mKAN0tGRgaJiYkYjUa8vLyKzRoq+gZtMpnIycnBarViMpnIyMigoKDA/n3e09MTHx8f/Pz88PDwwGg0otPp0DStTPVOFhYWkp2djYuLCxEREZfcaFUWA7zD6fV6DAaD48MXpWkac+bMYcuWLbz00ksXreRkZmayf/9+qlevTvPmze2PBwcH06xZM06fPk1sbGyx5wghhLg8X19fIiIi8PT0xGQykZWVZT8yMzPJzMwkKyuL9PR0srKycHd3JyAggLCwMIKDg3FzcyM9PZ1t27axYsUKFixYwIIFC1ixYgWbN2/mwIEDZGRkkJubS05OTrH7l8bDbDYTEBBw03aSv9OUmkpOUVeq5GzcuJEBAwbQuXNnvvzySxYtWsRDDz1UrJKzd+9e2rdvT+3atVm9ejVeXl7250+ePJlJkybx8ccf89xzzxW5M2zbto0jR46g1+vJysrizTffZMyYMQwaNIjCwsJi14qrp9PpyM7O5tixY9SsWRMPDw8pVd8AeT2dyzascvz4cWrVqoW7u7u8npdhq7jYemwuNsSSnJxMRkYG1apVu2CNmPT0dDZt2sTq1as5cOAAycnJ5OfnYzQaCQoKol27dnTu3Jm6desSGBiIwWAolRUeTdOK/YB/qX9zRqOR6dOns3HjxjJXySlzISc1NZXBgwdz/PhxFi9eTN26dfnpp58YPHhwsZCzdetWIiMjadSo0SVDzpQpU5gwYUKRu8OUKVP4/vvvMRqNWCwWTpw4wejRo+nSpYtMjbxBFosFk8mEp6fnBd/0xLWT19O55PV0roKCAsxmM56eno6n0Ol06PV6CgoKSEtL49ixY+zcuZPdu3cTGxtLfn4+BoOBkJAQ6tevT9OmTalevToRERH2QF+WZm0ZDAa+//57Dh8+LCGnNLhcyHnvvfd49dVXeeONN3j++efR6/X89NNPDB8+nA8++IBnnnkGd3d3du3aRWRkJHXr1r1kyHn77bf573//W+z+WVlZmEwm9Ho9qamp9O3bl7Fjx/Loo49KJecG6HQ60tLS2LVrF3fffTc+Pj5l5htUSSj6et5zzz14e3vL63kDdDodqamp7N69W15PJ9DpdBw7dowzZ87QrFmzy4ZGW+CxWq2kpKSwbds2Vq1axdq1azl27Bh5eXno9XqCg4Np3rw53bt3p2XLllStWtXe3Gy1Wktdlacoo9HI1KlTWbVqlYSc0uBSIaewsJB+/fqxdOlS6tevj4eHB5yr7hw7doyIiAiqV6/OjBkzKF++PPfeey86nY61a9dSvnx5+32ef/55pk+fzoIFC+jbt6/9cUfSeOxc0njsXNJ47FzSeOxcR48eJTExkdatW191v6WN1WrlzJkz7N+/n/Xr17N69Wr27t1LdnY2Op2OoKAgGjVqRMuWLWnWrBl333035cuXx8XFxfFWpYY0HpcBOp2OatWqUb9+fXQ6HXl5eeTn59srLGaz2b7MuKenJ2FhYcTGxnLw4EH7PTIzM9m2bRt+fn6Eh4cXubsQQojbgV6vJzQ0lI4dO/LGG2+wfPly/vjjD15//XU6d+5s/+H1rbfeYuDAgXTo0IHBgwfz4YcfsmXLFs6ePSvtBaVEqQk5tpUzs7OzMZlMAOTm5pKdnU1GRgYWiwWDwcBbb73Fhg0bWL9+PevXr2fjxo1MmjQJgBdeeIFVq1bZGwf79u2LyWTiyy+/JDMzE6vVytKlS9m5cydt27alYcOGDl+FEEKI242fnx/t2rVj0qRJ/Pbbb/Z9tp5++mnq1avH6dOnWbhwIePGjaNLly507tyZZ599lu+//569e/eSm5vreEtxhyg1IefYsWP07NmTVq1a8f7778O5JuCWLVvSp08fTp06hU6nw9vbm4CAAPvh7e1tb2zz9PTEy8sLo9EIwAMPPEBkZCTz58+nd+/eDBw4kP/7v//Dz8+Pp59+ukyV/IQQojTw9PSkfv36PPzww0yfPp2oqCiioqL44IMP6N+/P6GhoRw4cIDZs2fz6KOP0rFjR/r06cNrr73GkiVLiI+Pl/7KO4hh4sSJqoxxh8vLyyMuLo6QkBDq1KlD8+bNqVmzJhEREVSrVo127dpdcpzcNvWwQ4cOVKlSxf64r68v7dq1Q6fTERMTQ1paGg0bNmTSpEn06NHjotMeizKZTMydO5fWrVvTqFEjx9PiGplMJhITEwkPD8fNzc3xtLhG8no6l+31vNyCbOLqpaamkp2dTURExGUbj2+ETqfD09OTihUr0qpVK/r27cuAAQNo27YtNWrUwMXFhaSkJPbv38+GDRtYuHAhixYt4q+//iI+Ph6DwYC7u/sdsdLwxo0bOXr0KEOHDrX/IF8WlMrGY2ezTQ3VNA1XV9erfkOQxmPnksZj55LGY+eSxmPnupHGY2fJyckhNjaW3bt3s379ev755x+OHDliH77y8fGhatWqtGnThl69etG6dWt8fX1vy8AjjcfikgwGA97e3vj4+Fx1wBFCCHFn8/Lyon79+gwePJjPPvuMqKgo/vjjD6ZOnUq/fv3w9/dn//79zJw5k4EDB9K9e3feeustdu3aZe8NFbeWhBwhhBDiCgwGA0FBQURGRjJu3Di+//571q5dyw8//MATTzxBhQoV+Oeff+wzuB5++GHmzp1LbGxsqV6D53YnIUcIIYS4Rm5ublSrVo3+/fszc+ZMVq1axZw5c7j//vuxWCwsXryYxx9/nK5duzJ69Gg2bNhARkaGLBJ5k0nIEUIIIW6AwWCgatWqPPHEE8yfP5/Vq1fzxhtv0KhRI2JjY5k2bRo9e/akd+/efPzxx+zZs0dmaN0kEnKEEEIIJ/H09OTuu+/m1VdfZcWKFfz4448MHz4cPz8/Nm7cyJgxY+jatSvDhg3j+++/JykpSYazSpCEHCGEEMLJdDod5cqVo1+/fsyaNYvo6Gg+++wzOnXqRH5+vn3PxC5duvD666/z559/kpubK8NZTiYhRwghhChBLi4u1KpVi6eeeopFixaxbNkyxo8fT8OGDTl06BBvv/02vXr1ol+/fkybNo2jR4/KcJaTSMgRQgghbgKdToeXlxctW7bk7bffZvny5cyfP5+BAwfi4+PDqlWrGD16NJ06deI///kPixcvJjExUfbRugEScoQQQoibTKfTUb58eQYMGMC3335LVFQUU6dOJTIykpSUFL7//nsGDRpEp06deOmll9iwYQPp6ekynHWNJOQIIYQQt5Crqyt16tRh3LhxLFq0iCVLljB27FiqVatGTEwMH330ET169OC+++7jvffe499//5VNQ6+ShBwhhBDiNuHj40OHDh149913iYqK4ocffuDJJ5+kfPnybN26lZdffpkuXbrQr18/pk+fLv07VyAhRwghhLjN6PV6KlasSL9+/eyLDc6ePZv+/fsDsGrVKl544QU6derEsGHD+Omnn2Q6+kVIyBFCCCFuY3q9nho1avD444/z/fffs3LlSqZOnUr79u1JSUnhp59+YtiwYXTq1IlRo0axZMkS0tLSpH9HQo4QQghx53B1daVp06b2/p3ff/+d8ePH06hRI44dO8bMmTMZNGgQPXr04PXXX2fTpk1lejhLQo4QQghxB/L19aVjx468/fbb9tWVn3zySSpXrszWrVt566236NWrF3369GHFihXo9WXvLb/s/YmFEEKIUkSn0xEYGMgDDzzAzJkzWb16NbNnz2bAgAF4eHiwfPly1q9fj06nc3xqqSchRwghhCgl9Ho9ERER9v6dFStWMHXqVOrVq1cmm5Il5AghhBClkIuLCw0bNmTcuHE8/PDDZbIRWUKOEEIIUcoZDAbHh8oECTlCCCGEKJUk5AghhBCiVJKQI4QQQohSSULOzZCVpX7NyICTJyE+HgoKwGKB06chIQEKC0HTIDMTzp5V5wCs1vPnhBBCCHHVJOSUJJ1OhZN33oGXX4ahQ6FtW2jfHl56CcaPhw4d1Mdjx8L//ge9e0OnTvD887BqFUyeDIMGwVtvwZEjsHs3LF0Kf/4J2dlgNkNSkgpSEoSEEEIIO53VapV3xhKSkppKx8hIxu7dyyO2wGNjW5TJ8THbxzoduLtDXt75x2rUgJwcOHNGnYuMhOBg+Ocf9evDD8O998K2baoS1LYt1Kx5vhJkNMId3GGfmprK9u3badmyJT4+Po6nxTVKSUlhx44d8no6ie31bNWqFd7e3o6nxTU6evQoiYmJtG7duszODHKmqVOnsnz5clasWIG7u7vj6VJLKjk3i2OVRdMu/ljR35tMxR87ehQSE1WAyclRFZ25c+HgQfjrLxg9Grp1gyeegBEj4P77YcIEePBB6NVLVZP27oWtW2HxYtizRwUgkCExIYQQpc5NDzkmk+m6jvz8/DK5kNE1yctTIchqVYHl8GF4910VaNasgQ8+gO7d1dG/P3TtCu+/D++9p4bSXnsNDhxQw2AxMRAbq3qHhBBCiDvQTR+u6tChA1ar9ZoCi6ZpNG/enHfeeQdXV1fH07etYsNVjidvF0ajCkW25b5r1YKwMBWQDAYYMkRVgXbsUB+3aQMNGqjKj9UKbm5wkzZ9k+Eq55LhKueS4SrnkuEq55Lhqptkw4YNxMTEcPr0aZKSkq7q2L59O7t27bqmYHRbqV5dNRn36qUCRI0aMGqU6qEJDVX9NL16Qd++EBQE3t5Qty7ccw/YQp23t7q26AZrzviPbzafDzigws26dWrGV1ycqv707g3PPQf/939qCGzyZHjoIejZE6ZMUTPGYmNh/371+zK4P4oQQojbz02v5Li7uzNv3jw6d+6MxTZN+jKsVivDhw8nNzeXlStX4ubm5njJbSslJYWOHTsy9okneGTECDU9/ORJ1TRcubKqhhw9qqaRh4SoAHPggOrFqVgRPD0hOlo1GteqpULON9/Apk1Qp44KQn/8oe4L6nrHPp6SptdDw4bqa8jMVIHt+efBz09Vf+66S/UJBQdDbq663sOjeFi7SlLJcS6p5DiXVHKcSyo5zlVWKzk3PeTcc889TJs2jdatWzueuiir1cro0aPJzMxk1qxZVxyu0jSN3NxcLBYLHh4euLi4OF6C1WolJyeHpKQk8vLyCA0NJTAw8JL/kfLz8zl16hR5eXlERETg4+NzVVvWp6Sm0rFDB8ZmZ/NI+fLqQb1ehRCrVb3R6/WQkqLWxtG080M/tsZk29dkCy5ms+qZ8fJSQ02ZmeoxzlV2riI4ljhXV/XnM5vVn6djR1XN2rVLBbHBg+G++1TDtKsr1KsHgYGOd7mAhBznkpDjXBJynEtCjnNJyLlJUlNT8fHxuWj4uBhN08jOzkbTtMuGi2PHjrFixQr27NnD/v37MZlMvPHGG9x3333Frjt16hQff/wxf/31F7GxsZhMJiIiIujWrRv/93//R7Vq1Ypdv2nTJj799FPWrVtHXl4eDRo04D//+Q8PPfTQFf+h2HtyDh7kETe3S1dYbMEmKEhVQK7kUtPRbbKzITm5+GOOrFY1Q+tSX1NJcneHSpXUoogALVrAM8+o4a7kZLV2UNeu6mszm1Xlx9WV1LQ0tu7YQavmzfGVN+UbJiHHuSTkOJeEHOeSkHOH++677xg2bJi9epOZmcm8efMYOnRosetWrFhB//79qVq1Kk2bNsVoNLJ9+3b27NlDv379+Oqrr/D19QXg+PHj9O7dm0OHDtG7d29CQkL47bff7FWlYcOGFbu3I/twVf/+PHL//ZevsmiaGtLx97+x4KHTqYUBz5xxPFNcQYHqvyk6e0qnU8NdK1aotXYCA9UQ2T//qJlblGC1yNX1/Nfi6akWSMzJUX+WevXgkUfIMhqJXbeOmt274163rvp6jUZV1XIMeuKKJOQ4l4Qc55KQ41wScm4Ri8VCbGwsR48e5cSJE8XOWa1WGjVqRKtWrYo9fjFHjx5l48aN1KlTh6ioKF577bWLhpx9+/axdetW7rvvPsqXL49OpyMmJoYHH3yQvXv3smjRIrp37w7n/lG8/PLLPPPMM7z33nt4enryyy+/8Pjjj9OoUSOWLl1qD0QXYw85Y8fyyCO37fyqC+XkwIkT4OsLPj6wbBls2KACzl13wcKF6mOzGSpUUENtJpPjXZzLwwPNaIScHHSBgapnCdTXWL26+r27uwpErq6qOlajhmrY1jQoX15dq2nqOk/PYrcviyTkOJeEHOeSkONcEnJugaysLD788EO+/PJLkpOTKbjImiwvvvgiH374oePDlzVnzhxGjhx50ZBzKaNGjeKzzz5jxowZjBw5kpycHHr27MnWrVtZtWoVbdq0gXPr/PTt25eNGzeyZs0amjdv7ngruzs25FxJWpqq9GRlqdCzcSN8953amyssDPLzISpKVXxsfUclUf25Ek/P8z1NwcEqsGkalCsH4eHq9/7+qqlbp1O/r1ZN/d42mw3UNHkvr/P3LSVVIwk5ziUhx7kk5DhXWQ05N30KeVE///wzb7/9NuHh4fTo0QMvLy+ee+45Bg0ahL+/PzVq1KBnz56OT3O6rKwsDh06hKurK9XPVQVyc3M5c+YMVapUoWbNmvZrPTw8aNKkCTk5OcTbekqK0DTtklPdbefu+MPfH61LF7R+/dBq1EAbNgxt8WK0qCi0H39E+/ZbtM8+Q3v6abQpU9A++gitTh00vV49t04dVZWxvS7nDqfLzVVBLCsLjh9X+37t2aNmrM2bB99+C9Onq+n8zz4Ljz4KXbpA585q/7DISDVs1rMnDBsGjzwC48bBp5+q5/3yC2zerI7YWFXROntWDbude62smoYVih22P+8Fr+tNPC7G8Ro5rv5wfB3l9byxo+jrKK/ljR9l2S2r5BQWFjJo0CD27t3L8uXL2bx5M6NGjSI6OpomTZrw66+/8vTTTzN+/HjGjRvn+PTLupZKjsViYcaMGYwZM4Z7772XhQsX4u/vz65du4iMjKRu3bqsXr0aryI/yU+ePJlJkybx1ltv8fLLLxe73+eff87y5csxGo0UFBSwfv16Ro8eTc+ePa9qynypYKveaNr5Juljx2DnTqhQAS0iAv8ffyRw1y40nY7s8HDK7d6N17k+Iqtej17T0N3k/5yFHh6YPT1xT0mxf2w1GHDJybF/LbpzB5zrTzIa1Z+1fHnVIK3Xq2qQtzeaTkdWeDhmDw8KfHzIPTfDLt/fn0JPT9DpKPTyUuFPry8+s86m6JpDTn49CgoKSEtLIzAw8KonAohLy8/PJz09naCgIIxFQry4PtnZ2eTl5REUFHTJCSfi6hgMBr7++mv27NlT5io5tyzkmEwmunTpQkhICAsWLGDu3Lk8//zzrFmzhrvvvhuTyUSfPn0wm80sXbr0mv5SriXkrFixgqFDhxIYGMiXX35J27ZtAdi6dSuRkZE0atTokiFnypQpTJgwocjdVHVqw4YNGAwG8vLyWLhwIWPGjOH+++/HbJvqXRbp9SoUaGr6vF7TMJwbnrS4uOAbF0eFv/9GX1hIRvXqeG/bhuuiRWoIrHJl1fgcF+d4V6cq9PDA7OGBR2oqGpDWqBHZjRrhtWULOsB4zz34hIWhy8hQM8MyMtSfKzVVzQqzWtXMttxccKhOWQGrTgc6HQW+vljc3dGMRnJCQ7G6uGAKDMRUrpwKhdWrq1l2Li5qFprBoPqIfHzU5zMai8+wswUh28dXEYZ0Oh15eXmcOXOG0NBQXF1dy/xPfDdCp9NhMplITk6W19MJdDod6enp5ObmEhoaKiHnBhmNRj7//HN27twpIedmMZlMdO3aleDgYH777TdWrFjBwIEDmT17Ng8//DAFBQX069ePtLQ0Vq9ejec1NIpebchZu3YtTz75JGlpaXz77bf06NHDfu7IkSO0b9+eypUrs3r16mJj7LaQ88knnzBq1Cj7445KbU9OCbjgH2FeHrqjR+HUKbWNxKlTFL7/PllHjuBbvTpGb2/VAG0yqTd8Fxfn77Ol16thNdvmpdWrQ79+6P79V/UltWmjNkM9c0ZVqmy9PWfPqjASG6vCUG4uHDqkGrXT09X+YqBCkm3WWlG2EOPqqhaJ1OvVTLfwcNUrVKeO6hOqU0cFn4gI9bGfn/r1XJi6EunJcS7pyXEu6clxrrLak3PLQo6maTzxxBOsX7+e9evXY7Vaad++PUFBQbz66qscOnSIN998k/vuu4/vv//+msq/VxNybAHn7NmzvPfeezz++OPF/iOlpqYSGRlJRkYG69ato2rVqnDu63766af54osvWLp0Kd26dSty1+Ik5DhX2pkz7Ni6leatWuHj7g6rVsGWLRAQoALAzJlqh3WjUVVATpywV1VKhG1oKjdXLcpYvbrq7/H2VgGnZk3V3+PtrZqxOTdzLS1N/T4uToWewkK10nV+vgpF8fEqVJ08qa43m1W1yHG7DNtwWfnyKhBVrqyCTq1a6jWpWVPNKCtfXoUkHx/VjK3TgcFASmoq23fupFWLFvjIm/INk5DjXBJynEtCzi3w3XffMXHiRGbOnEnXrl158803eeuttygoKEDTNMLCwvjiiy/sU7qv1pVCji3gpKam8sEHH/DYY4+ht/VDnFNYWMiQIUNYuHAhv/zyC3379gUgPj6eLl26kJmZSXR0NLVq1Sr2vKIk5DjXFVc8Tk5WqyobjarK8dtvsGSJmtlVqZLaZuLff1WAKLoqszO5u6vPV1ioqkv9+qkm5eBgxysvzmxWz9c0SElRwSc/XzVO5+erVaJzctTHycnnh82ys89v72Fj643y91dBq2JFFXbKl4cqVcj09ORoQQF1GjTAs1499fV6e6uDcyHK4f+FuDQJOc4lIce5JOTcAiaTibNnz+Ln54evry8mk4klS5awb98+DAYDnTp1onXr1lc1HpuVlcU///yD1Wpl2bJlTJs2jbFjx9K5c2eMRiMtWrTAy8uLTZs28eijjxITE8PAgQN59NFH0ev19i70Bg0aUKlSJQAWLFjA0KFDadKkCR9//DHlypXj448/Zvr06QwZMoSvvvrqsg2bEnKc64ohx1HREGMwqEDw++8qHNSvD0eOwOefq+Gj8uVVuEhKcrzLjdHrYfZsePxxxzM3xhaG0tPVkN3Zs2rY7NQptblqWpraFy0jQ1WMCgrUNUWa3zXOBSGjEV1w8PmqkG0ftdq1VfXH3V3tk+biotZFCgxU54OCzjdeX0OltbSSkONcEnKcS0LOTaRpGqmpqZw6dQqLxUJ4eDjBwcEXVFOuxd69e+nQoQMp52bGFFWhQgXWrVtHzZo1mTJlChMnToRzHefWIkMAmqYxc+ZMnnrqKTgXwl5++WVmzZqFl5cXrq6upKSk0KRJE2bNmkWTJk3sz70YCTnOdc0h50rMZtVLExurhnrS02HGDLUGUEAAVKlSfANUw3Wu9vzMM2ra+c1ktaqv1WRSf678fDV8l5Gh+oPy8ynYvZuMhAQCcnIwZmer65OTVRWKizQw686tJeTpqUJNlSqqB6hCBVUp0+nUAoz+/ufDUkDA+fWKruKHlTuZhBznkpDjXBJybhKr1crixYt55513OHr0KFarlYiICB577DGefvrpa2owLurMmTN899135ObmFqv8aJqGt7c3w4YNIzAwkL/++ot169ZdtDqkaRo9evSgadOm9sdycnJYvnw50dHRpKen07JlS/r27UtERESx516MhBzncnrIcaRp6o0+JUVVL2x9P7t2qSpGWBjMnw9//qmu8/NTAehizcNFffqpCjq3mdQzZ9ixYwctatfGx8VFhZsTJ9SvtoqQ1aq2/8jMVGHp1Cn1OqWlqSGyc7PlLuDjo/qBIiJUAKpeXQXJihXVr7YtTFxczi/YeIeTkONcEnKcS0LOTbJr1y769evH8ePHqVq1Ku7u7hw/fhyAefPmMWDAAMen3BasViuapqHX6y8akC5GQo5zlXjIuRoZGWpBwfx8VcH4+2/45hs15NWokQoBW7eer4K0bg0//qgao28zKamp7LjS62kLMZqmwlxGhqrIJCaq0GM2qz6hvDz12MmTKvzExqoglJFxvseIc9WggABV5QkNVY3bFSqoobFy5VR1qFw5Vf1xdb2jqj8ScpxLQo5zSci5SV5//XXeeustRo0axejRo/H09OSrr77i5Zdf5j//+Q+ff/6541PuWBJynOu2CDmONE29qWdnqzfvM2dUtWfnThV6Bg5Us5xuQ7Y3Zae9nrYwVFCgwk1ysjqOHlWN0jExKgSeOaMOk6n48J+Ly/mZcsHBapZYaKgKQFWrqupQuXJqiMzN7bZripaQ41wScpxLQs5N8uyzz/Lbb7/Ze2QAzp49S2RkJL6+vqxatarUfIOQkONct2XIuRhNU4fu6taruVWcHnIux/aa2AJhfLxqhD58WDWAJyaq/qi0NBWA8vOL9wT5+qrhw4gINfurdm01XGj7tVo1tb+YbTq9u/tND0EScpxLQo5zldWQc3O/C5zre3F1dS3We+Pm5oaHhwfZ2dlle1VgUTrYpm7fxgHnprO9Jr6+qrepWTO47z547jk1xf6nn2DNGli3Dlavhq++gnffhcceU9eFh6vgsm8fbNoEc+bA+++rxRgHDYIOHaBdO7X3WM+eqgdq/Hg1lPjjj/DPP2otopQUNQX/ehrIhRB3nFtSyVm0aBFz584lJCQETdPIzc3l8ccfp6CggG+++cb+U6WmaZQrV44KFSo43uaOIJUc57pjKjl3iJtaybketkpOQcH5dYDOnFEVoBMn1O9t6wXFxakhspQU1Tjt+MOSt7ca4qpYUf2+Zk3VF1S7thoSCw9XQ2He3qof6DqqQFLJcS6p5DhXWa3k3PSQ89xzz/Hpp5/i4+NTrIE3JycHTdPw8vKyP242m3n++ed56623itzhziEhx7kk5DjXbR9yrsQ2JJiXp1adTk9XIScxUc0Mi48/P0ssKUmtGp2WpkJT0RDk6qqCTWioWgOoZk01/FW5smqEDg5W59zd1Sasl6jQSchxLgk5ziUh5yaZOnUqP/744wUzlGwfF93Uzmw28+ijjzJmzJgiV945JOQ4l4Qc57rjQ87VMplUEEpJOT8N/swZNQMsIUE1RicmqopQXl7xAOThoQJQWJjq96leXa2mHRKifh8YqEKQlxcpWVls//dfWjVvLttkOIGEHOeSkHOTmEwm8m37+FwFW7/OnUhCjnNJyHGuMhNyLsdqVVWg1FQ1DBYbC6dPq2nxp0+rGWEJCWqoLDf3/BCaXq8qOwEBapircmWyy5XjpIcH1dq0wb16dRWE/P1VQ/Qlqj/i0iTkOJeEHOF0EnKcS0KOc0nIuQKzWTUpnz6tKkC2is+xY2o9oJMnVQDKySm+IKTRqAJQ+fKqAlSlihr6iohQw2BhYSoAeXmp62zDbqIYCTnOJSHnJrFarRw8eJCMjAzq1auHn58fBQUFLF68mMTERPvWDlarlZo1a9KtW7cb2u7hVpKQ41wScpxLQs4NyMs7H4DO7RmWt28fybt3E5KZiWtysno8O/vC/h8/P1X9iYhQvT516qhAVKuWCkB+fmoWmu2NvYwGIAk5ziUh5yY5fPgwAwYMQKfTsWTJEipVqkRWVhZdu3bln3/+KXZt5cqVWbZsGXXr1i32+J1CQo5zSchxLgk5zpWSksL2HTto1bgxPoWFagjMNgvs4MHzQ1+2neOzsoqvBO3qqsJOQICq+Nhmf9WqpYa9wsJU+PH1Pb9EQSkOQBJynKushpybXiJZtmwZBw8eZOjQofbdvjnXZHzvvffy448/8vPPP/Pqq6+SkJDAb7/9Vuz5Qghxu9IBOg8PFUgaNFBr9gwfDlOnqpWwV61SawGtXQs//wxvvw2jRkHXrur6/HwViBYtUrvXjx4NffpA584QGQkdO6p1gR5/HN57D+bNg/Xr1f5qp0+rviHbytNCiJtfyenUqROHDx8mOjravuJxVlYWHTp0oH79+sydOxeAxMRE2rZtS7Nmzfjuu+/uyCQvlRznkkqOc0klx7muewq5pqlwk5enZnjZqj+HDqmp70ePqo+Tk9XwV27u+efqdKoHyMdHzfSqVEn9Wr36+S0xvL3V497ed1QVSCo5ziWVnJvk9OnT1KtXr1gVR6/XU65cOQICAuyPBQYGUrNmTU6ePHlNs7GEEOKOotOpBmR/f7VGT+fO8PDD8MYbMGMGLF0KUVHw11+wYoWqAE2ZAmPHQu/ecM89aqp7aqqqEP36q6ocvfiiOt+1K7Rtq+47YACMGKFWk/7+e9i4UTVQZ2UV30hViFLipocczq2JU3SdHA8PDz7//HNeeeUV+2NGoxFPT89i6+YIIUSZYjCoABQSAjVqwL33qqAyYYIKMj//rILPn3+qYbDff4dZs9T5//xHDXFVrqyanw8cUOe/+kqdHzZMBaB27aBHD/XxlCnwww/nw092toQfcUe76SEnODiYo0ePcvr0aftjer2e8PBwypcvb38sJSWFAwcOEBAQgNFotD8uhBCiSLOyj4+apm7rARoxQoWV2bPhjz8gOlqFoBUr4Jdf1Ln/+z+1z1dEhAoymzapcDNpEgwZcj783HcfPPooTJ6s9gArGn7MZgk/4rZ300NOs2bNOHnyJL///rvjKTtN01i8eDExMTG0aNECV1dXx0uEEEJcjsGg9uuqUEHN1mrfHvr3V1WcTz6BxYtV9Sc6Wv3+/ffVxqZdu6rwk5UFmzerhuk33lBDaN26qaGvHj3U5qm28LNpk+olcpwyL8QtdtNDzpAhQ6hcuTKTJ0/mk08+IT4+nvz8fCwWC/n5+SQmJjJjxgxefvllKlasSP/+/R1vIYQQ4kbo9SoAhYbCXXdBr14wZgxMm1Y8/CxapMLP00+rgBMefr7yUzT8FB32Gj5cPV40/OTkSPgRt8RNn10F8MUXXzBu3DiysrKoVq0aVapUISIigvj4eGJjY4mJicHDw4MPPviAESNGOD79jiGzq5xLZlc5l8yucq7rnl11J7Ba1e7uaWlqxtepU2r2V0yM2gn++HE1A8zWwGzj5aVme9k2O7Xt/VWpkppmHxyswtZFWhJkdpVzldXZVbck5JjNZtauXcvs2bNZv349GRkZ9kbkwMBAmjdvzogRI+jSpcsdPVQlIce5JOQ4l4Qc5yrVIedSbOEnPf38QoeHD8ORI2ofsCuFn0qV1FBatWpqunuVKqq6VL48R+LiSDx7ljYtW0rIcQIJObdAXl4eR44cIS0tzf5YaGgoERERd+ymnEVJyHEuCTnOJSHHucpkyLkYWzNyfr5a2TkhQVV+jhxRASg29vxGqI7DWN7eKvxERJAeFERGpUpEtG+PvmZNqFhRnXd1ve3X+LkdScgRTichx7kk5DiXhBznkpBzBRcLP3Fxasjr4EHVu3PihBoOKxp+dDq1hlBEhOoJqlFDVX3q1lXBx7bZqVR7Lqushpyb3ng8f/58EhISHB++JE3TWLduHatWrcJStNwphBDizmFbZdm27k+TJnD//fDCC2ptn0WLzjc8//orZydMILFnT7RWrdR+XkePqmnw06apKfA9eqgZY926wRNPqGbnBQvg33/VbvGyiKy4FSHn8ccfZ8+ePY4PX5LVauWTTz7h7bffxizd+UIIUbpcIvykPfYYR8ePx7p06fnwM28evPwyPPigquSYzbBzJ8ydq0LOgw9Chw5qj68BA+D559V6QevXq6GyzEzVRyTKjJs+XOXq6sqoUaNo2LDhVVVmNE3js88+IyAggOXLl+Pm5uZ4yW1LhqucS4arnEuGq5xLhquc67KzqywWFVgSEtSxf79a0fnYMTX8deaM2uPLNkRm2zajcmU11FWtmlo8sWpVtY5QQICa5VWKldXhqpsecvT66ysederUiT/++ENCThkmIce5JOQ4l4Qc57psyLkUk0ltZHr6tKrc7NunZngdOqT6f7KyoKBAXWswqF6eChXUnmG2VaPr1FGPhYaqRudS0uQsIecmse0yfi2sVisVK1akU6dOV/+P/TYgIce5JOQ4l4Qc55KQ41zXFXIuxmxW4SYxUQWd/fvPT3M/dgzOnlWNzkWrPgEBKvTUqKECUP366tcKFdQ2Gnfg0iYScoTTSchxLgk5ziUhx7kk5DiX00LOxWiaqvqcPXu+6rN3r5rafuiQmvKekaHWAOJc1cffX1V3ig511amjhsD8/VXVh3M9Rrehshpyrm/sSAghhLhT6XTg6akWI2zWTG1K+s47qrE5Kko1Ki9eDB98oLa0aNdOhZiYGFiyRF07YoTazqJ9e7WR6ZNPqllif/2lKkYmk2xgehuQkCOEEEIAuLioxQjr1oXu3WH0aPj0UxVs1q2D5cvhm2/gpZfUju+1a6uKz+bN8NVX8OyzKvhERsIDD6jp8XPmwJYtqmJUWCjB5yaTkCOEEEJciq3qU7myqtoMG6YqOb/+qqo+69bBL7/AxIlq2nrt2moYLCoKpk+HkSOhSxc1tX3gQHj1VbW56d69kJqqZopJ8CkxpSbkaJpGYWEhZ86cYdu2bURFRZGUlOR4mV1OTg5///03UVFRREdHc+rUKbSL/EOzWCwcP36c6OhooqKi2LVrF3l5eY6XCSGEKCt0OjXlPCgIGjaEfv1UyPnuOxVuVq9Wa/e89JJatLBCBdXn8/vvKiA98ogKPV26qN+//bYaHtu3TzVJy1o+TlNqQs7WrVsZMGAA7du3p3PnzvTq1Yu1a9c6XgbAsWPHGD58OF27dqVPnz707NmT7t27s2DBgmJBR9M0fv75Zzp37kzPnj25//776dChA6+88gqZmZnF7imEEKKMc3FRwad5cxVe3nlHrcK8dq0KPzNmqNWaIyPV9PX9++HHH+G116B/fxV8evSAp56Cjz9WVaLERBnmugGlJuQcPXqUzZs34+fnR0REBAUFBRddbNBsNvP+++/z66+/0rJlS77//nsmT55MUlIS48eP5/Dhw/Zr//77b0aPHk1eXh5vvfUWX331FQ0bNmTatGl89tlnxe4rhBBCFGOr+FSooILPyJHwySeqx2f9etXj89ln8Oij6rzRCH//DV9+qfqBevQ4v3rzG2/A0qVq3Z+8PKn2XKVSE3I6duzIhg0bWLNmDf/3f//neNouJiaGJUuWUL16daZPn84DDzzA2LFjGTlyJMePH2fp0qX2a3/77TdOnz7Niy++yOjRo3nooYf49NNPCQ0N5dtvvyU+Pr7YvYUQQojL0uvP9/hERqrZW198ofblWrdODWm9/bYKNrVqqWGuJUtg8mTo21dVe3r3hrFjVRVo/37IzpbQcwmlJuSEhoZSp04dvLy8Lruq8qFDh0hISKBLly7UqlULAJ1OR8eOHXF1dWXVqlXk5eWRkZHBmjVrCA4O5r777rM/v06dOtx7773ExMQUq/oIIYQQ18VgAF9fFWruuw/Gj1fNybb+nk8/VdWee+5RgSY6Wg1nDRmiQk/Pnqry8/nnsH07pKWphmZRekLO1dq/fz8A4eHh6Ios2lS1alXKly9PYmIi+fn5ZGVlkZaWRuXKlYmIiLBf5+LiQt26dSksLOT48eP2x20KCwsxmUzk5eWRn5+Ppmn2Ph+LxSLHdR5WqxWr1YqmafaPHa+R4+oP22upaZr9tXW8Ro6rP2yvoe3/ubyeN3Y4vp5l7rBaseh0WAIDsbRogeXpp7F8/jmWpUuxREVh+fJLLCNHYmnXDotej/Wvv9CmTVO9PJ07q4bmkSPho49gwwY126uMbnB901c8tlgsJCQk4OXlhZ+fn/NXsgTmzJnDyJEjmTdvHkOHDi12bsqUKUycOJFffvmF/v372x/Pzs6mY8eOmEwmNm7cyOHDh4mMjOSuu+5i9erVeHl52a+dPHkykyZNYsqUKUyYMMH+OMD//vc/FixYgNFopLCwkD179jB69Gi6d+8uu6jfAJ1OR2FhIdnZ2fj4+GA0Gi86G05cHXk9navo6+nr64vBYJDX8wbodDpMJhMFBQX4+vo6ni6bbD+U6/XqMJvVJqTx8bgePoz/kSMEHDmCZ2Ii7mlpGCwWdJzbpqJaNabm5LC8alVWLFtWplY8vukh599//2X48OGEhoYya9YsKleu7HiJ/ZtD0UrLtbiakDN//nweeugh++NZWVl07NiRvLw8Nm7cyJEjR4iMjKRhw4bXFHJWr17N9u3bMRgM5ObmMnv2bMaMGUO/fv0k5NwAnU5Hbm4up06dolKlSri7u8ubyA3Q6XTk5OQQHx8vr6cTFH09K1eujJubm7yeN0Cn03H27FmysrKoXLnydb8XlHo6nTr0enSahiEvD9fMTHwSEvA5eBDd1q1w8CCcOqVCTocOrFi6tEyFHKxWq3YzjxdeeEHT6XTaa6+9ppnN5gvOW61WLT4+XpszZ44WFRWlmUymC85f6Zg1a5YGaPPmzbvg3JQpUzRAmzx5crHHDx8+rIWGhmoNGzbU0tLStPj4eK1atWpas2bNtIyMjGLXvv766xqgzZ0794L7Fz2Sk5O1hg0bXvE6Oa7uOHv2rLZy5coL/j7kuL4jOTlZXk8nHrbXMzMz84Jzclz7cfjwYW39+vVaYWHhBefkuIrDYtGseXmaNSFBs27erL3Tv7/Wrl07LTc398JrS/Fx03ty1q9fT5UqVRg+fPglG4T9/PxYt24d/fr146+//nI8fUPq1asHwIkTJ4r9pJWUlER6ejoRERF4eHjg5eVFYGAgJ06c4OTJk/brzGYz+/fvx9XV9aJVKCGEEOKW0+nUbumhodCihWpaLoMunjJKUH5+PrVr16ZixYqOp+w8PT156qmnsFgsREdHO56+IY0aNaJSpUr8/fff9ingmqaxfPly8vLyaNmyJa6urvj6+tK6dWvOnDnDsmXL7IFoz549bNq0iVq1alG7dm2HuwshhBDidnHTQ45OpyMzM/OKWyPUq1ePatWqsXXrVvLz8x1PXyA1NZXvvvuOr7/+mk2bNgGwYcMGvv76a+bPn09GRgYAlSpV4r777mPfvn28+OKLrFy5ko8++oiZM2dStWpVevfubb9nr1698PX1ZerUqXz88cesXLmSCRMmkJCQQK9evQgJCbFfK4QQQojby00POWFhYRw+fPii06+LCggIoGbNmmRnZ2O5ivn+SUlJTJw4kRdffJHff/8df39/fv31V1588UUmT57M2bNnATAajUycOJGhQ4eyYsUK+vTpw8svv0zFihWZMWMGjRo1st+zffv2TJ06FV9fX8aPH0+fPn3YuHEjI0eO5Pnnny/y2YUQQghxu7npIadPnz6kpaXx3nvvkZ2d7XjaLicnh4SEhKvuqq9atSqLFy9m3bp1rF271n6sW7eOBQsWEB4ebr82NDSUmTNnsmLFCmbOnMk333zD0qVL6dq1a7F7uri48OSTT7JixQrmzp3LzJkzWb58Of/73/+kiiOEEELc5m56yOnbty+RkZH8/PPPjBkzhiNHjlx0quXu3bs5cOAANWrUuKrpbh4eHjRo0IDGjRvTqFEj+9G4cWPq16+Pm5tbseu9vLxo06YNjz32GIMHD6ZSpUoXDVR6vZ5atWoxePBgHnvsMVq3bn1VX48QQgghbq2bHnJCQ0P54IMPaNSoEZ9//jn33XcfEyZMYNWqVezdu5d9+/bx3Xff8X//93/2BfouNQtLCCGEEOJSbkl6aNSoEd9++y1Dhw7l9OnTvPvuu/Tq1YsOHToQGRnJ8OHD2bdvHwMHDuT+++93fLoQQgghxBXdkpDDuY0uZ8+ezYIFC3juuedo3749QUFBhIWF0bVrV/73v//x2WefERAQ4PhUIYQQQogrumUhh3N9NLZAs2TJEqKjo1mzZg0LFy7k2WeflYAjhBBCiOt2S0OOjV6vx93dnbCwMIKDg3Fzc7toE7AQQgghxNW6LUKOEEIIIYSzScgRQgghRKkkIUcIIYQQpZKEHCGEEEKUShJyhBBCCFEqScgRQgghRKkkIUcIIYQQpZKEHCGEEEKUShJyhBBCCFEqScgRQgghRKkkIUcIIYQQpZKEHCGEEEKUShJyhBBCCFEqScgRQgghRKkkIUcIIYQQpZKEHCGEEEKUShJyhBBCCFEqScgRQgghRKkkIUcIIYQQpZKEHCGEEEKUShJyhBBCCFEqScgRQgghRKkkIUcIIYQQpZKEHCGEEEKUShJySpBOB1YrrF0LR4/CsmXw0kvw3nuwezfs2gVTp8L778P27ZCUBIsXw08/wZ49kJennrdvH5w6pe6VlwfZ2WAygaY5fkYhhBBC2OisVmuZe6vMz8/nr7/+Ys2aNaSnp2M0GmnSpAn33XcfoaGhxa7NysoiOjqaP//8k9zcXKpWrcqgQYOoXLlysesuJjU1hcjIjuzdO5aIiEdIT4esLHXO9mmSks5/HBQEhw9DYSFUrAgtW8LWrSrUlCsHffrAkSMq8AQEwEMPqaCzfTu4u6vzNWrAzp3g5gYNG0JwsApGZjN4eIDBcP7ru9Okpqayfft2WrZsiY+Pj+NpcY1SUlLYsWOHvJ5OYns9W7Vqhbe3t+NpcY2OHj1KYmIirVu3xnAnf+O6TUydOpXly5ezYsUK3N3dHU+XWmUu5FitVj788EMmT56MxWKhcuXKpKWlkZycTKdOnZgzZw5VqlSBcwHnv//9L19++SUeHh54enpy+vRp7rnnHr744gsaNGjgePtiioYceMTx9A1zcVEhx2xWH4eEqKAUEwN6PbRoAe3bw5YtkJYGXbuqYHTkCJw9C5Uqwb33qufm5an7eXioCtTtSEKOc0nIcS4JOc4lIce5ymrIKXPDVYcOHWL69Om4u7szZ84cNm7cyJo1a3jggQeIiopi/vz59muXLVvGnDlzuOuuu1i5ciV//fUXY8aMYcuWLXz00UdYLJZi977ZCgvPBxyA06dh/37Iz1fDWevWwRtvwPLl8Pff8Oab0K0bDBoEjz8O/frBiBEwZAh07Ah9+8IPP8Cff8KXX6rfx8WpYbKsLMjMhFv8RxZCCCGuWpkLOSdPniQ+Pp4WLVrw4IMPEhgYSP369RkyZAgAR44cAcBisbB8+XIsFgujRo2iefPmVK1aleeee4569eqxatUq+7V3CqtVhZb8fPVxVhZ8+y0sXKiGuFavhiefhPvvV78OHaqGwP7v/6B7d+jUSQWlw4fh11/h669Vb5HVqgJXerr6VQghhLgdlLmQExgYiK+vLykpKWRkZNgfP3nyJABhYWEAZGZm8u+//1K5cmXatm1rvy4sLIzmzZuTkJDA8ePH7Y9fSXg4FK1gBwVB0RECL6/iHxsM4Op6/uObxWQC28uiaSr8zJ4Nmzer3p+33lJhZ+hQVQ3q2RPGjIFhw1Q16PnnVaP07t3w/fewaZO6pxBCCHGzlbmenPz8fF5++WW++OIL7r33Xrp160Z8fDw//fQTvr6+/Pjjj9SvX5/jx4/Tvn17KlasSFRUFF5eXvZ7TJ48mUmTJvHhhx/y4osvFrv/sWPHSEpKQqfTkZmZyf/937O0bTuGESMe5vBhM2vXgqenqpakpMCqVWrIqW1bFXR+/FE1FnfvrpqP585Vw0SVK0OdOvD7726kpRnx9LRQvXo+u3d7k5vrAmi4uZkpKDCiabamGttf7c1tsqleXTVLJyerYPfQQ6r/58ABFdz69zdz110mEhO90DSoWDEHb+8CNE2H1QoGg4bV6vg168jIyODgwYM0aNAALy8vNJledt10uuKvp6enp+Ml4hrodDrS09M5fPgwDRo0wMPDw/EScQ10Oh1xcXGkpKTQsGFD9Poy9/O4UxmNRv73v/+xbt26MteTU+ZCDsCff/7JsGHDOHHiBD4+PphMJqxWKy+99BITJ07Ezc2NrVu3EhkZSaNGjVi9evVFQ86UKVOYMGFCsXu//vrrfPPNNxiNRqxWK0lJSYwbN5rOnTtjsVjs075tzb2OHxcUqOEkW9UnO1v1wbi5qSMhwRWTyYibm4XAwAIOHfJj165y+PgUULNmGnv2lGPXrnJoGtSpk0piojdbtgRiNuuoWLGQnBwdZ88a1c1vEsc/q79/IRUr5hIX54Om6ahTJ5X27U8RG+tLRoYrjRol06rVWcxmjYIC1Qzt5weaZiE/Px93d3c0TY+mqXtL1rk+FouFgoIC3Nzc5E3ECeT1dK7CwkIsFgtubm7obtfZEHcIg8HA/PnziYmJYfny5RJySrOTJ0/St29fDh06xJgxY+jduzcnTpxgxowZbN68malTpzJq1Ch27NhBZGQkDRo0uKaQk5iYSGpqKnq9nvT0dIYPH86YMWMYOnQo5qJdwtdJp9Psb+yapkOvL/7Xp2k68vLUTAR3dwsmk4GdOz3Iy9PRsGEhCQk65s83cuiQmqLu7g7z5qnqUWCgChOHDqk+G/X5bkaI0DAYNCwWHaDDxcVCq1a5nDmjqljly8Nzz0FmZj579ybTpEkIPXu64OcHqakq/Pn5qTvZvhdarTfj675z2SoP+/bto1GjRsX+fYtrp9PpSEtLY//+/TRu3FgqYzdIp9Nx4sQJkpOTady4scyuukFGo5H333+f6OhoqeSUdjNmzODZZ5/l6aef5pNPPsFoVFWNzZs30717d+rUqUNUVBQmk4m2bdvi7u5OdHQ0QUFB9nuMGzeODz/8kB9++IEHH3ywyN2LS0lJoWPHjowdO5ZHHnH+FPLrZbGoipGbm/r45Ek17Tw8XA2l/fwzrFkDYWHQuLH6eNs21SdUvTqcOHG+b+fmhCBV2crPV43NLi4QGamG87ZuVeHs0UfVdHjbukM1a0KFCsXDmvwwWJxMIXcumULuXDKF3LlkCnkZkZKSAkCFChXsAYdzDcUBAQHk5eVhsVjw8fGhUqVKxMbGcuzYMft1OTk5bN++HQ8PD8LDw+2P30kMBjUEpNero0oV1UxcuzZERMDo0fDbbzBrFjz7rPr9kiXwxx8QFQXffacajbt2VSs2P/UU+Pur+1asqPqHnC07+/zMrcJCNRPsm29Uk/Off6qvMzJS9TJ16wYDBsDnn6vHH3kEvvpKrQ104oSaTp+aenPCmRBCiFunzIUc2+ypbdu2kZmZaX88OjqauLg4/Pz8MBqNeHh40KVLF7Kysvjhhx8oPPcOu2nTJvtPv40aNbI/vzTR6VSVx5YBg4JUCGrfXq2g3LMnfPGF2oJizBj4+GO1Fs+vv6rwsXChqqx07KgCxqhRakVn24yxwEAVrpwpL09VcfLyVMVn82Z45hkV1H74AZ5+Gnr1UsGsWzfo3VsFt6VL4Z13YNEi1QhusaiG6dxcCUFCCHGnK3PDVXFxcfTr14+dO3fSo0cP7rnnHs6ePcsvv/xCWloan3zyCU899RScWzhw0KBBHDlyhP79+xMSEsKvv/5KamoqM2bMYOjQoY63L+Z2Ha66GcxmFRhsVeb9+1UVxcVF9dj88osKFl5e0KwZrF8PBw+qa7281PNt6/mUFB8fVRXKy1Phq107VdXavFkN3Q0dqh47dkwFnsaNVcWqtJDhKueS4SrnkuEq5yqrw1VlLuQA7Ny5kxkzZhAVFYXZbEbTNGrUqMGTTz5J3759izUNbt++nXfeeYctW7ZgtVoJDw/n2Wef5cEHH8TFxaXYfR2V5ZBzJbaKiYuL2ofr6FE1HJafD61aqTV5vvhCVVTCwlQP0b//qrBh66+x9duUFA8P9bkTE9XnatdOrRYdH6++/saN4b77VFDKyFBbZ5w4Ubz3x2pVgalRo9uvJ0hCjnNJyHEuCTnOJSGnjCkoKCA5ORmr1Yqmafj5+eFnm6LjwGQykZKSgtVqxcfHB39//6ua0mgLOY8+OpYBAx7B3f38LCAbvV4NC13F7coUWwgqKFBNx1lZMG9eHuvXZ9ChQxA+Pka+/FKFI29v1Qu0f7+6viTp9efDlY+P2hrj1CmIjVVfc1xc8b9Ls1kN3X311e33dywhx7kk5DiXhBznkpAjnM62QeeJE2Px9n6EoCC1iWbRXo+AALVzuO0NUNPUDKe6dc/3xID6fdWqasq37fm+vuqwcXV1fq/L7SQ1NZWtW7fTqpV6Uz59Wg1xBQSomVTffKNWWDYaVfPzunWwa5cKJf7+algqL8/xriVv6FC1qKOEnNJNQo5zSchxLgk5wulSU1Po0KEjiYljsVgeITu7eMCxWq9+yEWvV2/mRf+vly+vGoFt52vVUqHHalV9LXXrqus1TV1XseL54Z6gIDUcQ5FG49vtTdjRlXYh17Tzr6der6oqa9aoKlDLlrBhgwob+flQrpx6fN++86+JXl8yG5DeSMjZtUvtGl/0uZqmgnHjxkWvvHYScpxLQo5zSchxLgk5wulsw1VPPjmW9u0fITX1/DmdTvV2xMeffwPT6dQ055iY89cB5OTA8ePndxzX6c73gHDuTc9svvxsIHf386so6/Uq8Pj4qOe4ualA5OKiPq5SRc2GslpVGLLNlDcYVLCytSK5uhavNpW0K4WcK7FY1GtWWKhCYFoazJ+vgkTDhuqxGTPU8JObm/o4Kenqg+il3EjIGTMGPvqoeIXOalVT46dNK3rltZOQ41wScpxLQo5zScgRTnc9jceadmFYKSxUK/8WfTwlRQUi3bkG3CNH1DU6nXozP3hQrS2j06mQdOyYCkK2gFQ0cBUUXPg5bdzcVDjSNBVuIiLOLyJYo4aqLlmt6tdatdTj7u5q0UCjUQWhkBD1eV1czj/3etxoyLkY2+ttCyBHj6pg4+6uQuC336rp8V5e0KSJao6OjVXXurqqv5tLvXY2NxJyRo9WU/QdPfMMfPqp46PXJjU1hR07ttOiRSunvZ5lmYQc55KQ41wScoTTXU/IcQbHN92iIUmnUwHn7Nnz1x49qoKPXq/C09Gj6pzJpH5vqyAlJ6shHs411F5qlwq9XgUEvV4NiYWHq88bEqI26uTcisSBgSr41KihAoOnpxpG4ly4ctyFPTU1lR07ttGiRUt8fIo0I5Ugq1W9NgaDCns7d6rFBDVNBb6oKFiwQAXKkBAVKG2rLoPqBRo5Uu3efruEnPh4VcXKyMhg//793HXXXXh5eVGunPoziOsjIce5JOQ4l4Qc4XS3KuTciKIByWIpXkFKSlIhR69X06ptQ21paXD4sLrGalXBKDtb/T4pSYUlq/Xi697odCo82IJRhQrq8UqV1NCYwaB2X/f2BrM5g/z8/TRufBdVq3rh6amqRR4e1xcgnOH331VfT6dO56ebf/ml2gajXj0VcBo1UqHtxx/Vn/Ohh66+QbwkQs7zz6vKksFgxWw2YzS6YLHoGDsWXn3V8WpxtSTkOJeEHOeSkCOc7k4MOTdK01QQMptVsElIUMNhOTlqSM1qVUHgxAl1/bFjkJ6urk9IUFWnSy0EqNdruLlZcHExUKGCDm9v1WhdvboKORERqtfIzU1VioxG1XDt66vCkpeXc8OQ2axCyM8/q8AxYIB63GJRIc/TU1WqLBYVfMaOhR49VMC42mG7kgg5jz8OX3/t+Ci8/LKqOInrIyHHuSTkOJeEHOF0ZTHkXAtNU+HHbFbhJiHhfHOwre/l+HE4fVo9fuCAmZSUXAoLvUhNNaBpqkrkOCNKp1MBQ69Xw1++virg1Kx5fpPR4GAVgmrVUoEjIEAdLi7XFoaSk1VlJDoaPvlELRZY9Lm2gPPSS3D33TBnjvr8V+vDD1VfUNEGb7MZBg+G8eOLXnn1nB1yNE3NYjt2rPifXdOgRQtVySoLJOQ4l4Qc55KQI5xOQo5zxcWlsX37v9SqdQ8FBT5omgpBGRmqGnTkiAoVR4+qYbbs7POzo3JyLpwlpdOpBmO9XvUHBQSoHpqqVVUYql1bBaSIiPNhqVw59TxbdYhzTeAvvqj27frkExg4UF1zowGHc31RF1vg0NX1/BIA18rZIcdqVUNwv/7qeAbefhv++1/HR0snCTnOJSHHuSTkCKeTkONcanbVNlq2vPRsoKLVnexsVWmxWNS0fJNJDaUdPKgeO3ZMVY1yc88PlTmuZQSqumM0qtWqg4LUxzVrqpBRvboKPnl5KjgkJqqp3d26qWGs8ePhnnvUFhVVqhS/760iIadkSMhxLgk5ziUhRzidhBzncuYUck1TwcRiUeEnOVl9bJtNduKEqgKlpKhqkcWi1s8xmVRVyLG6YjCoilBhoaoGVaigFiPMzoY+fdSO7O7u54fHbL1DHh5qeMzmaofJbsTbb6uGaU0rJCcnBx8fHzTNwGOPqUbpa1USIcdqVWE0Le3CIbDq1dU6TrcbCTnOJSHHuSTkCKeTkONczgw5V8vWBG21qt6gggIVXtLSVNXm5EkVbA4eVNedOqUes1WDDIbzPUO6c2sFGY3qTdq2I3uFCioY2apDtWur4ahy5dQQmpvb+e07dOc2J70R+fnqa0pJSeXff/+lefPmeHt74+Jy4bT9q1ESIaegQPU3rVhRvB9J01Qj9pNPFr369iAhx7kk5DhXWQ05VzmRVYiyyWhUlRYfH7WeT716aijqoYdUH85HH6nhqT/+UG/IjzxSfGXo3r3VMNALL0D37mp7iRo11LDZ6dPw559qWGvOHBg3Tq1k3KMHdOkCHTqonc+7d4cHH4T//AemTlVv8suXw/r1aup+UpLqQbJY1OE43ObIzU01Znt5abi7W/D01PDyur6AU5Ly8lTYyc09f5hMl16fSQghHEklpwRJJce5bkUl52pZrWqn8XHjoGlTeOcd1YS8bh1Mnw59+6o3bKtVDWGlp6thr9hY9WZ+4ICqsNi2+sjOVlWhwkJVNXJsmrYNjwUHq+pPSIiqDtm26HB3V5UhX18VuAID1WO+vqoSZDCoFY937lQrHnt7X//rabXClCmwdm3xvdWsVhgxQs0Eu1YFBXD//bBqleMZ+OwzePppx0evzuHDF+4UDyq83ugQmFRynEsqOc5VVis5EnJKkIQc57pdQ47Fohp5x45VAefzz1XfSHIyjBp1PugMGHDhm6sj20rSJpMKN3l5qkHaYlG9QcnJcOaM6hnKzVW/FhaqVawdKxx6vfp8AQFqMcXAQNUL5O2tFli0WnPQ6Q7TpEltatTwxNdXNVfbZpxd7YKFmqa+BscgxrlK2PXsb1ZSIWfsWBU+Hb+mr79W1bkbISHHuSTkOJeEHOF0EnKc63YMOUUDTpMmKuDUqHH+/Jkz8Nxz1xZ0rsRiUYGmoEA1RhcWqgCUl6em0WdkqCpQQoIaxjp16vy1tv4gRUN3bvf1oCAdnp5qpWkfH7UVR1iYmj5foYKqAFWsqKpG/v7nq0E3+me5lJIKOS+8cPGNTb/9FoYMcXz02qSkqMpYy5Y3VhkTioQc55KQI5xOQo5z3W4hx2pV6+CMG3fxgGNjCzpr16qgM2iQ4xXOZ+vPMZnU0Fhenqr65OerJuncXDh4sIBjxzKxWPxJTjaSlaUCEg7be+h0qi/Jz+/CapCrqxoe8/FRU+RtCyu6u6tqydVWgxwVFsITT6hFFotWXaxWNc196NCiV1+9kgg5Z8+qoce0tDT27t1L06ZN8fLywtdXvRbi+kjIcS4JOcLpJOQ41+0WckwmteZMQoJaB+diAcfGFnTKlVPNyo7DJbdCcnIq27fvoEGDFoCPfSgsI0NVhGy9QpmZqlJUUKDe0G2zzYoyGs+vIRQRoQJRzZqqH6hOnfMhyPbGr9eray9F09TnMpkunEIeGKhC1vUoiZAzZgz88APo9RYKCwtxdXXFatXzwgsqAIvrIyHHuSTkCKeTkONct1vI4dympRaLqm5cSVqa+vV2+ek+NTWF7dt3XPL11LTzQ2O2np+TJ1VT9KFDqnpx7JjqEzp1SlWMsrLON0oXrQYZjSqcBAWp4a/y5dXK0lWrquAXHq7OBQer8OPqWjJDYSURcoYPV/uROZowQTVki+sjIce5JOQIp5OQ41y3Y8i5k9kaZa/39dQ0dVitqvqTn6/6fs6eVTPE4uJURci2F1lmpgpEF9tvzNdXVXsqV1a/1q6tqkF16qgQFBGhhswCA1Vgut7p7m++qXqoHCtp77+veoCuh7NDjqapNZiysx3PnF87qSyQkONcEnKE00nIcS4JOc51oyHnSi4Wgk6dUkHo8GFV+Tl0SFXDEhLUNbaKUdEqkKurCkH+/mqad7lyaujLVg0KDlZN0j4+KgBcLgRlZqp+JEd+fte/F5izQ47FAk89BYsXFw9jFgtMmqR2oC8LJOQ4V1kNOdfZFiiEEJdnm7ll69cJC4PmzeG++9TO7a+/Dt99B0uWwIYNqjF79WrVzP3BB+qNfuBAuOsuFXISE+Gff+C331Rf08svq2nfvXrBvfeqrTO6dlVNyS++qO7x449qZtuBA+r5RqMKRaGhxY/rDTglJT1dhcHTp88ftgZnIcTVk0pOCZJKjnNJJce5SrqScyNslRxNU9WXnBw1BJaVpapAGRlqllhmptp8taBAhZj8fPX7opUgDw8126t8eVXpqVxZVYPKlYNq1dS0eVu/kI+Puv5aZoW9+iosWAA6nRmTKQ9PTw80zcDIkarZ/FpZLGqF64ULHc+oFa+vp5nZalX9VFlZF/Y6hYWpP//tRio5zlVWKzkSckqQhBznkpDjXLdzyLkSW4gxm9Ubd2GhGvLKzlYhKDPz/Mywo0dVSLLtNJ+XV/xethAUGqqCTs2a5/uBypdXQ2Pe3ur37u4XDoXZNmxNSUll167dNGt2D15e3nh4qO0zrlVJhJyCAnj4YVizpviq1JoG//sfPPpo0atvDxJynKushpxr+HlFCCFuD7aNSl1cVBUiJEStVdS2rZrW/+KLaj+w77+HqCg1ZLVuHaxcqab7f/CB2uSzVy+1M7yfn6p0bN6sGpM//ljtyD5oELRvr/YR69hRDY+NHKm27fj2W9i0Sc0ws1rBzU3Dz6+AwECNoKDrCzglRdNUGLT1PdkO26raQpRWEnKEEKWWwaAalouGoP/8B0aPhtmz4ZdfVC/Q2rUqBP3wA8yapVawHj5c9fpUqqRmhB08qJqB58xRTcWPPqp6gNq3V8fAgV68/359XnnFnTlzVDPy5s2we7fqp8nMvHB9oUvx8lKHv//5w8dHLbZ4u7AFp7S0C4+CAserhbg1ZLiqBMlwlXPJcJVz3cnDVTeDpp3f+TwpSQ2FHT2qen+OHVPBJTb2/AKKJpMaDrPR6dTwlru7WhvI21sNhbm7qyny/v7qY09PNRTm66t+7+p6vn/G9nXYZqmFhalrr1V+vpoiv3q14xmYOVM1eV+r3Fy1vcbOncWHwHQ6ePtt6N696NXXToarnKusDldJyClBEnKcS0KOc0nIuTEFBWqo5+xZFYD27ctm585YoAbZ2e4cO6aGhGxr3uTlqbBRlJubCgjly59fJyggQC2OWKmSCkcVK6p+IR8fFZRsQ3XXoiRCTna2qmT9/bfjGTVMeD27zxd19OgRkpKSaNVKQo4zlNWQI8NVQghxHWzr91Srpqa5d+uWT/fuCbz+eiEzZqip7rZ+oD//hN9/V308b74Jzz6rQkDTpqqx2TZL7I8/1DXvvKOqJAMGQLt2apitQwf1nFdfhRkz1Oal+/adX2DRVvG5GJ1O9R35+6sp9LYjKEhVlm4XVqsa7jp7FlJTDaSnu5CcrP6MjgFRiKshlZwSJJUc55JKjnNJJce5bK9nq1at8L6KzbUKC1U1KDtbVXxsK0VnZqoZYmlpangsK0stopiRUXw4zMVFBZfgYLUidOXKqok6LEwFr/Bw1dfj66tCTmKimglmC0O2o0KF61tFuSQqORkZ8NhjamacxVKA2WzGw8MDo1HH9Omq90lcH6nklEGappGbm0tiYiJpaWlYLBa0i/woZLVaSUtL4/Tp0xQW/S4jhBDXycVFhZCQELWTe9u2avbWiBFq9tecObB8uRpi2rABFi2Cb76B//5XLZLYvLnq4Tl1Sl3zxRfw0kswbBh06qQqQF27qrAxaZJqmj51Sn3u4GC1oWy9etcXcEqKxaL6nQ4fhpgYV06c8OTgQR0HD158mwshrqTMhpz4+HjeffddevXqRZs2bejYsSNPPvkkp2zfBc45fPgwEyZMoGPHjtx777089thjREVFYTabi10nhBDOZDCoEBMUpNbsue8+FWDeflutFL1iBaxfrwLOr7/Ce++pIa4OHVRDc3Y2/PuvOmcbIuveXVVD7r0XevdW93vrLfjqK4iOVk3ECQmq4mOxXHr4y8bWKmMwnD+MxmvvGRKipJTJ4arjx48zcuRIVq9eTaVKlahRowYmk4n4+Hh+/vlnmjdvDkBSUhIDBw5k48aNNG/enPDwcFauXImbmxvffPMNvXr1crx1MTJc5VwyXOVcMlzlXNc6XFUSrFY1pJWVpYa/jh9Xs78OH1b7hJ05AydOqOGxoltE2Lbg8PFR6w5FRKgVoevWVU3RNWuqX8uXV309rq4qAG3ZoobVbJ/bForuvlsNl12r1FQV0vbsKf640ah6nHr2LP64uHoyXFWGzJkzh9WrV/P4448THR3NsmXLWLVqFUuXLqVmzZr26xYuXMjGjRsZNGgQv//+Oz/88APvvPMOWVlZfPrpp+RebKc/IYS4RfR6NWMrOPh89efRR1Ul54cf1PDXn3+qRREXL4Zp09TwV58+0KqV6t9JTVUVol9/VRuMjhoFPXqoIbC2bdUCigMGqAbobdvUsFuFCtCsGXTpAg88oGaECXE7KHOVnJiYGLp164Zer2fVqlVUqVLF8RIATCYTffv2Zf369SxdupSOHTsCkJ2dTc+ePdmzZw/R0dE0btzY8al2UslxLqnkOJdUcpzrdqjkXA9NU9tj5OerqkxysmpSjolR6wMdPKgqQ7Gx51dMLrqooU6nprb7+6twU768WgcoJEQ1Qpcvr6bABwSomVyXG85KT1c9RPv2gdVaiMViwc3NDaNRx5w5atVpcX3KaiWnzIWc33//nb59+zJkyBD69OnDjh070DSNkJAQ+vfvT8VzP4KkpKTQvn17CgoKWLduHWFhYfZ7jBkzho8//pjFixdfdshKQo5zSchxLgk5znWnhpzL0TTVm2OxnN8GIj5eDXnFx6thsORkFYByc9Xvzebzw1Y6nRoC8/NTQ2DBwSoAhYZC9epqJli5cmqIzN1dVaJSUzXMZh3Hjh3nzJlk7r77bvR6A0FBt99u8XcSCTllxNSpU3n55ZcpX748JpMJPz8/8vPzSUlJoVWrVnz++efUqVOHvXv3EhkZSa1atVi9ejVeXl72e0yePJlJkyYxdepUxjnslvfbb7+xceNGDAYDJpOJn376idGjR9OnTx9pVr5BeXl5JCUlERYWhqvjLonimplMJk6fPi2vp5OU9tfTtgihbYd2TVP9P7YKUG6uWqlZVYB0xMf7kJHhypkznuTkGMnJcTnXIWEr4+jw9VVDZJUqnQ9AwcF5hIaa0Oni0enSqFevHC4uYDRailWAbD1AV2qOFmAwGJgzZw47duyQkFPaTZkyhYkTJ2IwGBg9ejSjRo0iJyeHKVOmMH/+fB5//HHmzJnDtm3biIyMpFGjRpcMOVOmTGHChAnF7j9r1iz++OMPDAYDhYWFbNq0idGjR9OjRw8sFkuxa8W1KSgoICMjg4CAAIxGo+NpcY3k9XSusvx62gKQ7VAVIB2FhQZycoxkZrqRkeFGYqIX6eluxMf7cPasnpMnVYUoM1NVgBQNsOLhYcHT00xwcC7u7mbCw7Px98+jQoUc/PxUMLLNPjMazy9qaPv8RY+yzmAw8M0337B3714JOaXd+++/z/jx42nevDlLly4lKCgIgD179tCtWzcCAgJY///t3Xl4U1X+P/D3TdKmTfd93+hKC9a2QNmpCIIgwyK7iKC4gDqM4uioKCCPMAwDwtdlHhgYBhHmCygMQgvosBQYKZRShpYKlGJL932lbZrl8/vjNhluAioafl9IPq/nOQ+Se3IbjunNO+eeJTMTdXV1GDp0KKKiou4YclavXo1FixbdcnZxTR0igiAIqK+vx4gRI4y3q263Bg/7eQztef78eaSmpsLV1ZXb81fg9rQsQRBQV1eH3Nxc4+0/bk8DuqUHhkAkgEhAZ6eAlhagulqcCVZYKP73lSvinz/80IW6OgFdXXbQag3jgMQ2tbcXb4O5u4uDnn18gIgIsfj6ijO7PD3F4uQk1r81d9ra/xpBEGz2dpXNza7q2bMnAMDX1xdubm7GxyMiIhAaGoqKigpUVFQgICAAfn5+qKmpQaNhjmS3hoYGCIJgPNetZDIZ5HI5ZDIZZIZ+3W6CIHD5hcXQfqZ/cvllxfR9ye3564ppO3J73lpk3R81MgByCIIMMpkAlUocm5OYKM7ceukl4P33xTWA9u8Hduwox7p1F3HokB6bNokLJL74ooApUwQ89JAANzcBVVUCzpwRsHevgLVrBbz6qoBp0wSMGiVgyBABI0cKePxxAc8/L2DRIgF/+YtYNy9PQEODgK4uAYDp67W+YstsLuSEhobC09MTDQ0NkingdXV1qK6uhq+vL3x9feHo6Ijw8HCUlpbi0qVLknqZmZnw8vJCSEiI8XHGGGO/jtA95kelAry9tYiNbceQIYQ5c4DXXhP37PrHP8R9uzIzgSNHgIwM4NNPxUUSZ88Wp8NHRIi3rwoLgdOnga1bgY8+Al5+WVwt+pFHxGD15JPiFPpt28Q1f0pKxLFFttbTY81sLuTExsbi0UcfRXZ2Nj7//HM0Nzejvr4en332GUpKSpCSkgJPT0/Y29tj4sSJ0Ol0+OSTT1BcXIzm5mZs3LgR+fn5ePTRRxETE2N6esYYYxYhmE1VN4Qgw3T1fv3EsDJ/PvDWW8CWLcDOncCxY2I5ehTYvRv45BPgnXeAp54S1wNydxcDUEYGsHq1uJbQiBFAWpq4EvSCBcCaNeKq0pcuieOGeN7Ig8nmxuQAQG5uLubMmYOrV68iJiYGOp0OhYWFiImJwdatW5GcnAwAaG5uxksvvYTdu3cjPDwczs7OuHLlCsLCwvDFF1+gT58+pqeW4CnklsVTyC2Lp5BbljVOIf+/dO3aNVRWVmLgwIGQG/aP+JWIxO0umprEXhtxjywxyFy9Km5p0d7+30BjGPsTHCzO/AoPB3r1Etf/8fMTxwI5Oorh635nq2NybDLkAEB+fj52796N06dPQ6FQICkpCbNnz0ZsbKykXk1NDbZt24bTp0+jpqYGffr0wezZs5GYmPiT9zo55FgWhxzL4pBjWRxyLOtehJw76eoSp8FXVopr/uTni+Hn6lXx701NQEeHWFcQxNtpPj7ibu+RkWIAiogQZ3z5+IjrAjk7/3dvr/sBhxwb1dHRAZlMBqVSaXpIQqvVQq1WQ6VS/WS4MeCQY1kcciyLQ45lccixrP+fIed29Hpxf6+qKrF8/z1QUCDuB1ZYKAaitjZxoUR076+lVIqzuzw9xV3eDas/BwaKvUF+fuK6QP8XAchWQ47Njckx5ejo+JMBBwAUCgWcnJx+dsBhjDH24DJsWBodLe7Z9cILwLp1wK5d4lif48fF8T9Ll4rHhg4Ve3VaWoCLF8VjH38s7v4+dao42PmRR8SxP7NmiQOpP/0U+PprIDsbKCsTe4xu3eiU/Xo235NzL3FPjmVxT45lcU+OZXFPjmX9X/fk3A0i8XZWR4e4xk9Jifjn5cvin9euiWsB1dSIvT8azX+fa+gB8vMTe4B69BB7fiIixDFAISHiWkBOTmJB9y2zu2WrPTkccu4hDjmWxSHHsjjkWBaHHMt6kELOj9HpgM5OcXPTxkYxANXUiAGoqgq4fl0MQvX1pis/iwHIyUkMQP7+YuiJixP/Hhkpjv/x9RXHABma6E4BiEMOszgOOZbFIceyOORYFoccy7KWkPNjtNr/DnpubhbH+9TU/HemV3GxOPantlY8biAIgJ2duLO7r6/Y+xMQIN5ai40Vt7oIDhbH/ri4iLfeOOQwi+OQY1kcciyLQ45lccixLFsIOT9GqxVvazU0iMGnpAQoLRXLtWvin+XlYu/PLevaQi4Xp7UbennCwoCEBOD06VXo6DiIgwdtK+TY/MBjxhhj7H6jUIhhJSgISEoSV3J+9VVg1Srgf/9XXPX55Eng8GFg+3ZxS4znnxcHQPv6iuEnO1scKL1kibiwoclOQzbBBv/JjDHG2INJEMRFCj08xHE5gwYBM2aIs7w++ww4cECc+XX8uDhza+NGceuKhATDJqe2hUMOY4wxZgUMt6qCg8VQM2YMMG+euK/XzJm2OTWdQw5jjDFm5WzxVhU45DDGGGPMWnHIYYwxxphV4pDDGGOMMavEIYcxxhhjVolDDmOMMcasEoccxhhjjFklDjmMMcYYs0occhhjjDFmlTjkMMYYY8wqcchhjDHGmFXikMMYY4wxq8QhhzHGGGNWiUMOY4wxxqwShxzGGGOMWSUOOYwxxhizShxyGGOMMWaVOOQwxhhjzCpxyGGMMcaYVeKQwxhjjDGrxCGHMcYYY1aJQw5jjDHGrJLNhxydTocffvgBBQUFaGhoMD0MIkJTUxPOnTuHY8eOobi4GFqt1rQaY4wxxu4zNh9yMjMzMXLkSAwdOhT//Oc/TQ/j6NGjGDt2LB599FGMHTsWQ4cOxUcffQS1Wm1alTHGGGP3EZsOOU1NTVi7di2uX7+OhoYGdHR0SI7n5eVh/vz5yM/Px5w5c/Dee+/B2dkZ77//PrZu3SqpyxhjjLH7i82GHCLCX//6V5w+fRoTJ06EIAimVbB3715cu3YNf/jDH7Bu3Tq8/fbb+Otf/wpnZ2ds3LgRtbW1pk9hjDHG2H3CZkPOmTNnsG7dOowZMwZPPPEEiEhyvKWlBRkZGXBzc8Po0aONISglJQUDBgzApUuXcPnyZclzGGOMMXb/sMmQ09TUhOXLl8PBwQHvvPMOXFxcTKvg5s2baGhoQEREBMLDw42POzg4ICkpCWq1Gjdu3JA8h7EHye16LxljzJoIer1e2oVh5YgIa9aswdKlS7FmzRq8+OKL2LlzJ2bMmIGPP/4YL7/8MgAgJycHaWlp6N27N7799ls4OTkZz/HBBx9g6dKlWL58Od59991bzg5s2bIFhw8fhkKhgFqtxpEjR9CzZ0/06NEDer1eUpf9fIIgoKurC01NTfDw8ICdnZ1Z7xv7+bg9LUsQBKjVajQ3N8PT0xMKhYLb81cQBAFtbW3o7OyEp6cnB/JfSSaT4eLFi/Dy8kJGRgYcHBxMq1gtmws5Z86cwaRJk9CnTx9s374dzs7Otw052dnZSEtLQ2Ji4l2FnH/84x84duwY5HI5Ojs7sX//fiQmJiIuLo5Dzq8gCAKqqqpw5MgRPP744/D09OQPkV9BEARUVlbi6NGjGDNmDDw8PLg9fwVBEFBRUYFjx45xe1qATCZDbm4uiouLMXbsWCgUCtMq7C7IZDJkZ2fDyckJBw8e5JBjrfR6PebNm4cvvvgCK1aswKBBgyAIAr755hssXboUr732GqZPn46EhATU19djyJAhCAgIwLfffgtnZ2fjeZYtW4Zly5Zh48aNmDdvnuRn3Kq+vh7Dhw/HG2+8gaefftr0MLtLp0+fxlNPPYUDBw4gPj7e9DC7S//+978xe/ZsHDhwAD179jQ9zO7SyZMnMWfOHGRkZCA2Ntb0MLtLq1evxv79+3H48GE4OjqaHmZ3adWqVTh48CAOHTpkUyHHpsbk6HQ61NbWQqvVYvHixUhLS8OwYcOwfPlyAMD69esxduxYXLlyBe7u7vD09ER5eTmqqqqM59Dr9SgqKoJCoUCPHj1uOTtjjDHG7ic2FXJkMhkmTZqE119/Hb/97W+xcOFCvPbaaxgzZgwA4JFHHsGCBQvg4+MDFxcX9OnTB2VlZTh27JjxHEVFRcjKykJ4eDiio6NvObs5mUwGHx8f/hZiIfb29vD19eWuawuxt7eHj48Pt6eF8PvTspydneHl5cXjcSzEVtvTpm5X3cntxuQAQEZGBqZPnw4vLy+sXr0aMTEx+OCDD7Bnzx7Mnz8fH3/8MWSyO+dEnU6H8vJyeHh43HYGF7s7nZ2dqK6uRkBAAOzt7U0Ps7vU0dGBmpoabk8L4fa0rMbGRty8eROBgYE/ep1lP09jYyPa29sREBBgU+3JIQfA7t27MXPmTPzP//wP5s+fb3y8q6sLK1euxLp166BWq+Hg4IC2tjaMHj0aa9euRVRUlOQ8jDHGGLt/cMgBUFFRgdzcXCQkJEjWxAEAjUaDrKwsnDhxAl1dXUhISMDIkSPh4eEhqccYY4yx+wuHnHtIr9dDo9FALpfzffo70Gq10Ol0P6uNdDodtFotFAoF5HK56WEjIoJWqwURwc7OzubuQf9cd9OeGo0GgiDAzs7O9LDVu/Xfr1Ao7vh++rntqdfrodVqbbI9f25b3s3vsKE9ZTLZT15DbIGhjQH8ZNsZrr92dnY/egvr5/5/ux9xyLkH9Ho9zp49i127diEvLw++vr6YOHEixo0bB6VSaVrd5uh0OhQWFiIzMxPfffcdSktLERISgmHDhmHcuHHw8fExq3/8+HHs3LkTRUVFiI6Oxvjx4zFixAizD4mKigrs3bsX33zzDbRaLYYPH46ZM2ciICBAUs+aaTQa7Ny5E3l5eXj44Ycxffp0yUWps7MTx48fx549e1BUVIT4+HhMnjwZAwcONGvPwsJC7Nq1C2fOnIGDgwMGDRqEadOmwd/fX1LPGmk0Gpw5cwbp6enIzc2Fi4sLevfujenTpyMmJsZYr7OzE+np6UhPT0dJSQkSEhIwY8YM9O/f3+zD4OrVq9i+fTtOnz4NDw8PjBs3DmPHjrX6nuGuri4cOnQIJ06cQH5+PpydnTFw4EBMmDDBbJZqW1sb9uzZg/3796O5uRmDBg3C1KlTERcXJ2lPvV6PgoIC7Nq1C1lZWfD09MT48eMxfvx4qFQqyTkfVJ2dnSgtLUVRURHy8/NRX1+PmJgYPP3007cNdMXFxdixYwdOnz4NABgxYgRmzpxpdk1Vq9U4fPgwvvrqK5SXlyMpKQlTpkxBSkqKWUAvLCzEjh07cObMGdjZ2WH06NGYPn36g/Oe1ev1xMWyZffu3RQQEEAODg6UnJxMPj4+5OjoSCtWrCC1Wm1W39ZKVVUVJScnEwDy8PCgiIgIcnd3J5lMRo8//jiVlZUZ6+p0Otq2bRt5eXmRq6srpaSkkKurK7m6utKaNWtIq9Ua6xYWFtKQIUNIJpNRaGgo9ejRg2QyGY0bN05yTmsv6enp5OHhQQBoypQpkjbSarX04YcfkqOjI7m6ulJ8fDw5OTmRq6srbdiwQXKe/Px8Sk1NJQAUGxtLYWFhBIAmTpxItbW1Zj/XmoparaaPPvqI3N3dyd7enkJCQigsLIyUSiWtW7dOUu/dd98lR0dH8vLyouTkZFKpVBQcHEwHDhyQnDMnJ4d69+5NCoWCYmJiyN/fn+RyOc2aNYuam5vNXoO1FI1GQ+vWrSNnZ2dSqVTG95JcLqfevXvT2bNnjXVv3rxJb7zxBtnZ2VFgYCAlJiaSnZ0d9ejRg7799lvJeQ8cOEChoaFkZ2dHsbGx5OfnR0qlkhYvXkwdHR1mr+NBLGfPnqXQ0FCSyWQEgADQyJEjqbOz06zupUuXqF+/fiSXy6lnz54UGRlJMpmMpkyZQtXV1cZ6Go2GPvzwQ1KpVOTp6Uk9e/YkBwcH8vHxoa1bt0rOmZOTQ4mJiSSXyykhIYHCw8NJLpfT3LlzH5hrAIccC5fq6mrq27cv2dvb08cff0zNzc3073//m2JjY8nV1ZVOnDhh9hxbK1VVVTR79mxau3YtXbhwgSorK+ns2bM0fPhwAkArV6401i0qKqLIyEjy9vamPXv2UEtLCx08eJBCQkIoKCiI8vPzjXWXLFli/BAuLCykGzdu0Ny5cwkALVmyxOx1WGMpKyujAQMGUEhICDk4ONDkyZMlISc3N5f8/f0pKCiI9u3bRw0NDfT555+Tu7s7PfTQQ1RaWkr67nC5YMECAkCvv/46lZeXU2FhIU2dOpUEQaC//OUvZj/bmsq+ffvI2dmZevbsSXv37qXS0lIqLy+nAwcO0Llz54z1Tp48SW5ubhQfH0+nTp2i5uZm2rx5M6lUKho8eDA1NjaSXq+nrq4umjVrFslkMnrvvfeourqacnJyKDU1lRQKBW3fvt3sNVhLuX79OoWFhZGPjw/t3buXampqqKSkxPi7uWDBAmPdvXv3kr29PfXr148uXLhADQ0NtGbNGpLL5TRq1ChqaWkhvV5PbW1t9Nhjj5FMJqMlS5ZQTU0NZWdnU2JiIjk6OtKhQ4fMXseDWC5fvkwzZ86kt99+mxYtWkQymey2IUer1dIrr7xCAOjZZ5+liooKKi4upieffJIA0J/+9Cdj3XPnzpG3tzfFxMTQ0aNHqb6+ntavX0+Ojo6UlJRkDERdXV30zDPPEAB65513qKamhgoLC2n06NEkk8kk57yfC4ccC5f09HRSKBT0xBNP0M2bN42Pr1y5kgDQ4sWLzZ5ja0Wj0VBbWxvpdDrJ4xkZGaRQKCS9D3//+9+Nv7i3flgvXryYAND69etJr9dTTU0NJSUlkbe3N+Xm5hrrFRQUkL+/P6WmplJDQ4PZa7GmotFo6M033yQ3NzdatWoV+fn50ZNPPilptzVr1hAAevPNNyXPmzNnDgGgbdu2kV6vp5KSEoqIiKDIyEgqLi421j116hQ5OjrSmDFjrObbsmlpa2ujsWPHkkqlMuuNMS2m70O9Xk/t7e00btw4srOzo/T0dNLr9XTx4kXy9/en5ORkyTfgffv2kUKhoKeeeoo0Go3Z+a2hHDt2jOzs7GjkyJGS90xWVhY5OTnRU089RfruYP3CCy8QANq8ebOxXn19PQ0YMIBcXFwoKyuL9N3h0tnZmYYNG0ZNTU3Gup988gkBoIULF5q9jgex6HQ64+/vkSNHSC6X3zbklJaWUlRUFAUHB9P3339vfDwzM5NUKhWlpaUZA6Lhy+Cf//xnY73Ozk6aOnUqyWQy+vLLL0nf3TMeFBRE0dHRkmtAeno6KZVK6tu3r9nrvR/LnUcasV/k+++/N44FuXURwNTUVNjZ2eHs2bNQq9WS59gauVwOlUplNl5BrVZDr9dLjmVnZwMA+vfvLxkY169fPwiCgIKCAgBAXV0dSktLERcXh8jISGO94OBgREZG4vLlyygtLTU+bo2+/fZbbNy4EU8//TSeeOKJ2+6VdunSJSgUCowYMcL4mFwux8iRI4Hu9y+6x46UlpYiISEBgYGBxrpRUVEICwtDXl4eKisrjY9bk5KSEpw9exZJSUkICAjA7t278cUXXyAjIwNNTU3GehqNBvn5+XB0dETfvn2Njzs4OKBfv37QaDTIyckBuhcRraqqQr9+/eDl5WWsm5iYiKCgIOTl5aG5udn4uDUJCQlBYGAgKioqJKvH5+TkoL29HX5+fgCAlpYW5OTkwM3NDSkpKcZ6Hh4eGDp0KFpbW1FYWAh0jz1pa2tDamoqXF1djXX79+8PNzc3ZGdn4+bNm8bHH1SCIPzogGCD0tJSVFRUICUlRTLGKS4uDuHh4SgoKEBlZSWICLm5uVAoFEhMTDTWs7e3x4ABA4wr+gPADz/8gJqaGvTv3x/BwcHGur169UJgYCDOnTtnfOx+9tOtx+6K4Q3i5uYmeTw8PBx+fn6oq6tDe3u75BgDmpub8be//Q16vR5Dhw41hhyNRgOlUmm2t5KrqysUCgWKioqg0+lQXFyM+vp6eHt7S8Kls7MzYmJi0N7ejrq6Osk5rElFRQU++OAD+Pn5YdGiRVAqlWYbRN68eROFhYVwdHQ0G4jo5+cHuVyOy5cvAwDa29uh1Wrh7+8vGeDo4uKCoKAgNDU1oaWl5ZYzWI+Kigo0Nzfj2rVrmDBhAubOnYv58+dj0qRJmDVrlvGDtr29HcXFxVAqlZK97dD9QYDu2Svo/lAGIAng6H4fu7u7o6ysTBIArEl4eDjmz5+PiooKzJw5E6+88gqee+45LFu2DAMGDMALL7wAQJzB09XVhZCQEAQFBUnOYbieGq6vhvepISAZhIaGIigoCPX19Whra5Mcs2Y3btxAe3s7nJ2dJb+v7u7uiImJQVtbG+rr66FWq9HY2AgvLy9ERERIzmGYTGD4olNSUgKNRgM3NzdJ0PL29kaPHj3Mri/3Kw45FkZEsLe3N5sx4ODgAAcHB1RUVKCxsVFyzNZ1dnZi7dq1SE9Px8SJEzFhwgTJcYVCYTZbIigoCF5eXiAiCIIAnU53x186Ozs7aDQalJSUmB6yGhs2bMCFCxfwxhtvICws7LZtodPpfvLbbVtbm6QHyPRD2dHREeHh4bc9vzURBAHV1dWIiorCl19+iYMHD2Ly5MnIyMjA+++/j66uLqD7993f3x++vr6S5zs5OUlmqdTU1EiOm9LpdNDpdKYPWwWZTGbc7DgrKwtbtmzB9u3b0djYiF69ekmCChFBqVSarRhtWHjV8L4zhEdThqUoqqurrfpLzc+lUCjg5OSE9vZ2lJWVobW1FWVlZT+6zIGhbQ1tbbp9kZ2dndn1+H7GIcfCBEFAV1cXKioqJI/r9XrodDr4+/vD3d1dcsyWdXZ2YtWqVfjjH/+I5ORkLF++3GxqIhGZfQDU1dWhpaXF7JbX7RiCkKenp+khq3DmzBls3LgRkyZNwowZM0wPS9zpwmYgl8slbVpbWys5rtFoUFdX97Pa/UFGRHBxccGyZcswevRoDB48GB9++CF69OiBY8eO4fr165DJZBAEAQ0NDWZfXExDty3vX3f9+nW89NJLqK6uxvr163Hy5EkcOHAATzzxBDZt2oQVK1ZIgrVerze71VpWVgZ0X19/ChHB1dXVrHfNFhmunQqFAh4eHlAqlfDw8LirLymGtje43fX4fsYhx8IM3+hMu/JLS0tRXV0NT09PODk5SY7ZKkPAWbFiBRITE7F582bEx8dL6giCgPb2dly7dk3yeFtbG9RqNXx8fCCTyRAYGAhXV1fjbRaDzs5OlJSUwMnJCaGhoZJzWItTp06huroa5eXleOWVVzB37ly8+eabaG1tRXZ2NubMmYN//etfcHV1RXR0NLRardkt0/b2duj1evTs2ROCIBjD0PXr1yUXtLa2Nvzwww9wcHAw+7ZtLeRyOYgIsbGxSEhIMD4eHByMfv36oaWlBc3NzVAqlfD29kZHR4dZe16+fFnyQW243WoaGtVqNTo7O+Hr6wtvb2/JMWvxr3/9C3l5eZgyZQpefvllJCcnY8SIEfjjH/+I4OBg7Nu3DzU1NcbxJ+Xl5aiurpacwzBeyXCb1bAyvWnPZG1tLWpqauDv7y8Z+2TtvLy8YGdnZ1xA0aClpQWFhYVwdXVFUFAQXFxcEBwcjMbGRrMv4oa2NNyFMLwfbx2Hhu49sAy3Xx8EHHIszHBRPHfunOQil5+fj/b2dsTExFjth8PdMASclStX4uGHH8bmzZvRu3dv02rGRdf+85//SB7PycmBTqcztrfhQ+Ly5cuSAbHV1dW4du0agoKCzG4pWAtfX1+kpKSgra0N//nPf3Dx4kVcuXIFOp0OLS0tyMvLQ319PdB9Aevo6MB3330nOcfJkydBRAgLCwO62z04OBjFxcWSi1xZWRlKS0sRExNjNm7CWkRGRiIsLAwNDQ2ScR1qtRq1tbWQyWSQyWSwt7dHfHw8WltbJe9PvV5v/Luhq9/f3x9OTk7Izs6WBKKioiLcuHEDUVFRVtvTaOjl8vHxkfTEeHt7w8vLC3V1dairq4OzszOioqJQX1+PK1euGOup1WqcP38e9vb2xrAYFhYGuVyOnJwc4+q+AHDhwgVUV1cjOjrapnrPIiIi4Ovri0uXLkmCdGlpKUpKShASEgJvb28IgoCgoCB0dHTg0qVLknMYBskbAmR0dDQ8PT1x8eJFSU/l9evXUV5ebjam537FIcfCkpOTERERga+//hrffPMN0H0/fufOnZDL5Xjsscd+VperNdNqtVi9ejVWrFiB8PBw4ze6uro61NbWoqWlxfhtJC0tDZ6enti3bx/y8/OB7m/J27Ztg4uLC4YMGQIACAgIwKhRo3Djxg387W9/g1qthk6nwxdffIHr168jLS3Nalc9njZtGo4ePYqjR4/i+PHjOHHiBHbs2AE3NzcMGzYMx48fx8SJEwHAOOtv586dxt6x3Nxc7N27FwEBARg+fDjQfaEbOHAg8vLycODAAeh0OqjVauzZsweNjY0YMWIEXFxcJK/DWgQFBWH48OEoLi7GgQMHjN+OMzMzkZOTg+joaGMYTEtLg52dHTZv3mzs1s/KysI333yDuLg4DBs2DACQlJSEgQMH4uzZs8jIyAC6vyFv2LABHR0deOyxx6x2NfRevXpBoVDgyJEjxh4AIsLhw4dx6dIlREZGIjg4GHK5HKNGjYJOp8P27dvR0NAAANizZw+OHj2KhIQE45eaPn364OGHH8bx48exf/9+oDtM7dixAwAwatSon7w1+yDQ6/VobGxEY2OjsTfLcMu4rq7OODYsODgY/fv3R35+PjZv3gyNRmNc+byurg6PPvqosWdmwoQJUCqV+Pvf/258z2ZmZuLrr79GeHg4hg4dCnRfA/r06YNz585h165dICLcvHkTO3bsQHNzM2bOnGl8nfc10znlXH5d0el0tHz5cpLL5RQYGEhz586lwYMHk0wmo+nTpxsXB7PlUlFRQTExMYTuFY/j4uIoJiaGYmJiqEePHrRw4ULj2hBqtZreeustUigUFBUVRXPnzqXevXsTAHruueeovb3deN7MzEwKCAggpVJJ48ePp6lTp5KTkxPFxsZSdna22euw5lJYWEje3t5m6+S0tbXRM888Q4IgUGJiIs2bN49iYmJIJpPRW2+9Jambnp5Ofn5+5OrqSk8//TRNmDCBlEolJSQk0OXLl81+pjWVrKwsCg0NJWdnZxo/fjzNmDGDfH19ycXFhTZt2mSs19TURBMmTCBBEKhv3740Z84cCgkJIaVSSatXr5asBfXVV1+Ru7s7+fj40OzZs2n48OHG5926Dom1lfr6ehozZgwBoPj4eJo7dy5NnjyZfH19yc7OTrKwZEVFBY0aNYpkMhkNGjSIZs2aRV5eXuTg4GC2AOVHH31EdnZ25OvrS8888ww98sgjJJPJ6De/+Q3V1NSYvY4HsRjazrAGDgBSqVQUFRVFCQkJdOrUKWPdQ4cOGVfXnzRpEk2aNIkcHByod+/edPHiRWO91tZWeu6550gmk1Fqaio9++yzFBoaSoIg0Ntvvy25Bnz11Vfk5uZGnp6eNH36dBoxYgQpFApKTU19YK4B8iVLliw1DT7slxMEASkpKQgLC0NlZSWysrIgCAJmzZqFZcuWWe1997vR1dWFCxcuwM3NDb6+vnBwcIBKpYJKpYKjoyPi4+ORlpZmHBvSv39/qFQqFBcXIycnBz4+Pnj55Zfx+9//XjJVPyQkBH379kV7ezvOnz+P0tJSDB48GKtWrUK/fv0kr8HadXR04OLFi+jVq5exLdE9M2LQoEFwcXFBYWEhzp07h8DAQLz++ut45ZVXJF38UVFRiI+PR1NTE06dOoXW1lb85je/wcqVKyVjVaxRYGAg+vXrh5s3b+L8+fMoLi5GfHw8li9fjmnTphmn1CqVSgwaNAhOTk64evUqzp8/j7CwMCxatAgvvviiZC+wqKgoxMXFoaKiAllZWdBoNJg0aRKWLVuG2NjYW366dXF0dERqairs7e1RWVmJ7OxsNDc3Izk5Ge+88w6mTJlivIXv7OyMwYMHo6OjAwUFBbh69SqSkpLw3nvvYcaMGZLp0YmJiYiMjERNTQ2ysrKg1WoxdepUrFixwmr2VlOr1Th27BjUajU8PDwQHh6OgIAAqFQquLi4YPTo0cbbxhEREUhKSkJbWxtycnJQWVmJRx55BH/605/w8MMPG89pb2+PQYMGQS6Xo6CgABcuXEBkZCTeeOMNLFiwAA4ODsa60dHReOihh9DQ0ICzZ8+ipaUFo0ePxqpVq8yW9bhf8Qad9wgRoaOjA9XV1XBxcYGHh4dVdJ9aAhEZF/67HblcDnt7e8ltPb1ej9bWVtTV1cHX1xdOTk53XCRLo9GgtrYWOp0Ofn5+NjkGSq/XQ61WG8eOmN4i1ev1aGlpQX19/U+2p1qtRmVlJVQqFTw9PW+7MaC1Mtwa0Gg08PHxgYODg1lb4jbt6ezsfNt6RITOzk5UV1fbXHvqdDq0t7dLrol32iVbq9Wivr4eHR0d8Pf3h1KpvG09a2/PH7tWCoIAe3t7s8+Vrq4u45IFvr6+d7z+6XQ6NDc3o6mpCX5+frddoBXdr8FwTrlcDh8fH7ONfO9nHHIYY4wxZpVu/9WNMcYYY+wBxyGHMcYYY1aJQw5jjDHGrBKHHMYYY4xZJR54zBi77xhmlRgWhZTL5XecifNjNBqNcZuPO800Y4xZLw45jDGL0+l0+O6771BVVfWjoYKIEB0dLVnHAwCqqqqwcOFCVFZWQqPRYOTIkVi6dClkMhmKi4tx7tw5pKSkSJaWJyJcuHABV69ehZeXF9LS0rBlyxZs2bIFCoUCERERWL9+PW+Qy5gN4dtVjDGLa21txe9//3tMmzYNU6dOxdSpUzFt2jTJ3w2Pff7556ZPh1qtxnfffYfCwkL4+flJFn08ceIEpk6dimPHjkmec+TIETz55JOYP38+ysrKoFAo4OzsDB8fHxQUFODMmTPGZfAZY7aBe3IYYxbX0tKCL7/8Eq2trRAEAZ2dnfjss89QX1+PV199FQEBAdDr9SAiDB48GH369JE8v6SkBAMGDECfPn3w1VdfGRd4EwQBW7duxdy5c7Fp0yY8++yz0Gq12LZtG5YuXYqWlhasWbMGc+bMgUwmMy7K+fjjj6OyshKnTp2y2o1aGWPmuCeHMWZxrq6uePbZZ7Fw4UL89re/xeTJk6HVahEeHo7XX38dr776KhYuXIjf/e53ZgHnVoIgSMrtbNiwAQsXLkRrayv+/Oc/GwMObnk+Y8w2cchhjN1zRUVFqKmpQWxsrMXGxGi1WmzYsAF/+MMfEBAQgM2bN0sCDmOM8dWAMXbPXb58GVqtFr1797bY3kI7duzA22+/jeDgYGzatAkTJ04028eHMWbbOOQwxu65wsJCAEBYWJjpoV/sxIkTaGlpwfz58zFkyBDTw4wxxiGHMXZvdXZ24sqVK3B0dERcXJzp4V9s2LBhcHNzw6efforMzEzTw4wxxiGHMXZv1dbW4tq1awgMDERoaKjp4V9s5syZWLVqFSorK/H8889z0GGMmeGQwxi7p27cuIGqqirExMTAy8vL9PAvJpfLMW/ePKxatQpVVVUcdBhjZjjkMMbuqStXrqCjowPx8fFQKpWmh3+1F154QRJ0Tpw4YVqFMWajOOQwxu6pvLw8AEB8fLzpIYuQy+WSoPPcc8/h+PHjptUYYzaIQw5j7J7p6upCTU0NwsPDkZCQYHr4F1GpVAgICIBKpTI+dmvQUavVWLZsGS5duiR5HmPM9vC2Doyxe0av16OqqgpqtRoBAQFwcHAwrXJbJSUlGDRoEEJCQrB48WIEBwfjoYcegiAIaG1tRW1tLXx8fODi4iJ5nkajQWVlJbq6uuDt7Y26ujoUFBTg3XffRVdXF06ePMnbOjBmQzjkMMbuOyUlJRg6dChKS0shk8kwbdo0bNu27a5XM162bBmWL18OvV6PuLg4HD9+nEMOYzaEQw5jjDHGrNLdfS1ijDHGGHtAcMhhjDHGmFXikMMYY4wxq8QhhzHGGGNWiUMOY4wxxqwShxzGGGOMWSUOOYwxxhizShxyGGOMMWaVOOQwxhhjzCr9Pxsx3T1EdeoSAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "id": "b73b4f4c", + "metadata": {}, + "source": [ + "Constants from the reference paper:\n", + "\n", + "![image.png](attachment:image.png)" + ] + }, + { + "cell_type": "markdown", + "id": "7cd7a241", + "metadata": {}, + "source": [ + "##### Higher strain of 0.005" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7ca030f5", + "metadata": {}, + "outputs": [], + "source": [ + "input_params_scale = {\n", + " \"cell_scale_value\" : [5],\n", + " \"run\" : [10000],\n", + " \"temperature\" : [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000],\n", + " \"strain\" : [0.005],\n", + " \"seed\": [1234],\n", + " \"thermostat\" : [\"langevin\"]\n", + "}" + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArQAAAG4CAIAAAA7duNrAAAQAElEQVR4AeydBVxUWRvGz4AIoi62iImtC6KC3d0da8ta2GLX6tqsjeLagV2rYgd2fyrG2tiB2ImgIvI9h4uzIwwpMMzwzO9wOfc95557zv/O3Pvc971hFMwPCZAACZAACZAACWgQMBL8kAAJkAAJkAAJGCCB2A+J4iD27LgkCZAACZAACRgkAYoDg9ysHBQJkAAJkIChENDFOCgOdEGd6yQBEiABEiCBREyA4iARbxx2jQRIgARIwFAI6Nc4KA70a3uxtyRAAiRAAiQQ7wQoDuIdMVdAAiRAAiRgKASSyjgoDpLKluY4SYAESIAESCCaBCgOogmK1UiABEiABAyFAMcRFQGKg6gIsZwESIAESIAEkhiBhBAHR48ebdCggZWVlUql8vDwUBP28/Pr3bt3tmzZUqRIUahQoXnz5qmLPn/+3KdPnwwZMqRMmbJhw4aPHz9WFzFDAiRAAiRAAkIIQog/AgkhDj5+/GhnZzdnzpwww+jfv/+ePXtWrVp1/fp15KEGtm7dqtRxdnbesmXLunXrjh8/Dg1Rv379oKAgpYhTEiABEiABEiCBeCWQEOKgTp06EyZMaNq0aZiRnDp1qmPHjpUrV86VK1e3bt0gIM6dO4c67969W7JkyfTp06tXr16sWDGoh8uXL+/fvx9FTCRAAiRAAoZFgKNJjAQSQhxENO7y5ctv27bNx8cnODj40KFD3t7etWrVQmUvL6/AwMCaNWsij4R4hI2NzcmTJ5EPkxB9eP/98/bt27t370JYfDfwPwmQAAmQgF4SwJ4c0eRv376F2edzNsEI6FIczJ49u3DhwtmyZUuePHnt2rXnzp0LuYCRP336FJa0adMir6TMmTPDqOQ1py4uLhbfP6ifJ0+eNGnSfDfwPwmQAAmQQEIRiNP1YE+ePXv2J0+eaO7wmU9IAjoWB6dPn4bzAK4CBBF69uwZUewgODhYpVKF5zJ8+HAITCU9fPgQFeB+eMlPpAR8fX3XrFmDaaS1WCgJgBJZSRBR/RFUVIRCywkqFERU/7Anx/48derUmDLphIDOxEFAQMCIESNmzJjRoEGDIkWK9O7d+7fffps2bRooWFpafvny5c2bN8gr6fnz53AeKHnNqamp6S/fP5CtKEqXLl16fqIiYG5uHlUVlocSIKtQEFH9I6ioCIWWJ3JQob3U9b906dJhf65SaTknhJ0pAQjoTBwEhnyMjP7rgLGxsRJhsre3NzEx8fT0VMYPrX3lypWyZcsqs5ySAAmQAAmQAAnEK4H/js3xtxo/P7+LIR+s4t69e8giBIAT/kqVKg0ePPjw4cMwuru7r1ixokmTJqgDH0Dnzp0HDhx44MCBCxcutGvXztbWtnr16ihiIgESIAESiIoAy0ngZwkkhDg4d+5csZAPOjtgwABkR48ejfy6detKlCjRtm3bwoUL//XXXxMnTuzevTvsSDNnzmzcuHHLli3LlSsHL9z27dvhV4CdiQRIgARIgARIIL4JJIQ4qFy5cvCPH/gJMDBLS8tly5b5+PgEBATcuHEDukGlCo0wmZmZubm5vXr1yt/fH8oge/bsqM9EAiRAAkmIAIcaAYGgoKBP/PwcASWIHwFgaU4IcSDXwz8SIAESIAES+DkCOM309fX19vZGMJrpZwjcunXry5cvkWwNioNI4LCIBEiABH6WAJePQwJPnz59+/ZtpkyZcuXKZc1PbAnkzJkTkXrILIitiLYOxUFEZGgnARIgARJIRAQQTVCUQfr06VOkSIHoM1PsCJibm2fMmBFR+69fv0a0gSkOIiJDOwmQAAmoCTCjewKBgYHoBA5smDL9JIHkyZOjBegtTLUmigOtWGgkARIgARJIjARUqtDr1hNj5/SnTypVFBgpDvRnY7KnJEACP0mAi5MACUSPAMVB9DixFgmQAAmQAAkkGQIUB0lmU3OgJGAoBDgOEjBIAq9evcqUKdP9+/djOrrg4OBu3bqlS5dOpVJdvHixefPmM2bMiGkjYepTHIQBwlkSIAESIAESiC4BLy+vVq1aWVlZmZmZ5cmTp1OnTt7e3tFd+Md6Li4uDRo0yJUr14/mqOf27Nnj7u6+Y8cOX19fGxub0aNHT5w48f3791EvGXENioOI2bCEBEggHgmwaRLQewKLFy8uVaqUhYXF5s2bb968uWjRotevXy9ZsiQWAwsICMCCXbp00bps5A8sunPnTpYsWcqWLWtpaZksWbIiRYpAYaxevVprU9E0UhxEExSrkQAJkAAJkMB/BI4fP+7k5OTm5rZgwYLSpUvnzJmzatWqHh4eQ4cO/a9StHO7d+/Gcb1MmTLqJSpXrty7d+8BAwZkyJChRo0asCN8MGXKlNy5c6dIkcLOzu6ff/6B0dHRsU+fPg8fPkRMAZoAFqSGDRuuXbsWmVgnioNYo+OCJEACQpABCeiIAI6UH+Png5ajMyYctitVqtSjR48wlRH7D2OJzuzRo0cdHBzC1Fy+fDkUw4kTJ6A/UPTHH38sW7Zs3rx5V69e7d+/f7t27Y4cOTJr1qxx48Zly5YNMYWzZ8+iGlLJkiXPnDnz+fNn5GOXKA5ix41LkQAJkAAJ6JKAv79/qvj5oOUoB3b9+nUciXv16qW1ZpMmTdKmTdu8eXN1aXiLukjJ3L9/38rKSsmrp3nz5oWroECBAgULFoQQmjFjxtKlS2vVqgXnARwGEAcQDQhqpE6d2tjYGDGFjBkzKstmzZoVyuDp06fKbCymFAexgMZFSMDQCHA8JEACMSJw/vx51Le3t8c0fOrbt++KFSs07eEtmqXIBwQEmJmZIaOZNH0J165d+/TpE+ILakWEVdy5c0ezvjqPuAPy0VE5qKY1URxoxUIjCZAACZBAoiZgbm7uFz8ftBzlyJXjLo7TWmtWqVIFZ/OaReEtmqXIZ8iQ4c2bN8hoppQpU6pnlZcs79y58+L3D+SCctmBuo468/r1a+TVjgTkY5ooDmJKjPVJINESYMdIIAkRUKlUOHbGR0LLUXK0sbFBnWPHjmGqmeAA0JyNfr5YsWI42EdSv3Dhwqampg8fPkSsQZ2yZ8+udZErV65ky5YNgkNraXSMFAfRocQ6JEACJEACJPAfgTJlytSsWbNnz54rV668ffu2t7f36tWrK1SoEJGf/78lI8jVqlXr6tWr4Z0H6upwRQwaNKh///7Lly/HWi5cuPD3338jr66gmYFqQfc0LTHNG5o4aNmyZePGjdu3bz9kyJAxY8ZMmTJlzpw5S5YsWbt27datWz09PY8fP45Y0Y0bN6C/Xrx48fHjR8VXE1NwrE8C8UWA7ZIACegDgW3btvXr1w9HGTs7u9KlS8+aNQvHY5zfx67vtra2Dg4OGzZsiGTx8ePHjx492sXFpVChQhAT27dvt7a2Dl//06dPW7Zs6dq1a/ii6FsMTRwcPHgQImDVqlVTp04dO3bs0KFD+/Tp06VLlzZt2kA0YMtB2dnb24Nszpw5M2XKhIiRsbFxihQp0qVLBydM/vz5ixYtCklYrVq1Bg0a/Pbbb46OjtCG0GvKJsHmX7RoERTi5s2b9+zZc/ToUTiCfvJBVNHfWqxJAiRAAiSQSAjAyT9s2LDLly/jJBMx/jNnzowaNcrIKPZHVSyOQ4z6fPXw4cOurq6ag0W8o2/fvji5/fLly/Pnz3EMqlixIio4Ozvfv39ffP/gfLhUqVLQK98Nsfkf+2HEZm3xv0yyZMmUlbRr165Hjx4dO3Zs0aJF/fr1q1atClJFihTJly9f1qxZ06ZNi+2q1MQUOgvOHB8fn1u3bl26dOn06dMQGTt27ICIg9Nm3rx506dPh2QbMWIEtkG3bt3QeLNmzerUqVOpUqVff/3VwsLil19+gWCE+OjUqRNkBATE7t278aVBs9G8ZRbdYDIkAhwLCZBAkiWA03ocenbt2oVzzrNn5bMHwlvCw6lbt66TkxOOROGLYmQxMTFxc3OL0SLhKxusOEBgZu7cue7u7jjAw/dy4MCBU6dO4cCPyNDjx4+h8iAIvn796ufnB/0FzXX9+nUvLy/Eafbu3evh4bFmzZrFixfPnj178uTJf/755+DBg3v37o0Df6tWrRo2bFijRo1y5coVK1YMngboDGD98OEDWkDYYtmyZZAREBDYzNAicEjAOVGgQAG4IqBU/vjjj/nz50N2XLx48eXLl9QNQMdEAiRAAgZGAMcRhK39/f1xuClRogRGF94CY/iEOEVE1xiGrxyRBQcgHHQiKo2m3dDEQTSHrVRDQCFlypQZM2ZEiKFgwYLFixcvX748zv4bNWrUunXrzp07IyShvnYBQgy+GuXahX379inXLty8eRM6AwoDmf3790OLTJgwoXv37vBVIHKRJk0arAjfDygSuCJWrFgxceJE+DMQsICwwHoRzsibN2/lypXhihg+fPjff/+NmAg0yrNnz9SeJbTApDsCXDMJkAAJJEUCSVocxNUGh8KAC0HxDYwcORJhiBkzZsCR8Pbt2zCraNu2LZSHvb195syZUfT58+c7d+4cOXJk9erVf/31F5wTjRs3dnBwsLS0NDMzs7a2RjypTZs2ECjwYcCfcf78efobwI2JBEiABEggXglQHMQLXkQZtLY7YMAAHOPPnTv39OlTxDXu3r179OhRhDCmTJnSt2/fpk2bwgGVJUsWlUoVGBiIYAfCHPBVTJ06Fb6mJk2aQFXA3wAtAj8HPBxdunQZN26cu7s73BK3b99Gg1pXSqMgAhIgARIggZgQMFhxkDp16phw0EFdU1NT+AYqVKiAEMbgwYNnzZq1adOmM2fOPHnyBB6FBw8enDhxYv369dOnT+/fv3+zZs1KliwJjwI6GhAQgCiGp6cnwhx//vnn77//DqdFvnz5EKRABVRr3rw5VIirq+vmzZshRJ4/f65c3HDr1i34Hi5duoRGMEUeFuSZSIAESIAESECTgKGJg927dyNmjxg/Dpaa49SvvImJSY4cOcqWLduyZUsc5hGk+Oeff/73v//5+vrCPQAnAVwFcBjAbQDnAVwIcCRAGWCMz549O3v2LETGzJkzFUkBVwRCGObm5hAiiH3A91CmTJn9+/eXK1cOeVj0SB9ggEwkQAIkQAIJQMDQxIGtrW3x4sX1WhlEvtXhb8iTJ0+VKlU6duw4atSoRYsW7d279/r16x8/fnz58iWcAQhbzJ49e9CgQRAWpUuXtrKyQpACkgJBCqXlr1+/zpkz58uXL8psqVKlHBwcENFwdnZWVAi8F35+fkoppyRAAiRAAkmQgKGJgyS4CZUhQwGkT5++WLFijRo16tOnz9SpUxGSOHXqlI+PD5TB3bt3Fy5cqNQ0NjaGfkJ9ZfbNmzfwtWzZsgVxjYEDB7Zo0QJyQXlsQ/v27RGbOH78eJxqBWW1nJIACZAACSReAhQH8bJtIrriISJ7vHTie6PJkydHTAFBBMWA2dGjR5t9fzfo2rVrt23bBl/CkCFDWrVqhViGpaVlcHAwvBGrVq1CgiP5QQAAEABJREFUbKJChQqKVujQoQMEBLWCgpFTEiABEjBgAhQH8bJxEdfw9vbGGblmggX2eFnfTzSaP3/+Bg0a9OrVa/LkyRAKJ06c8PX1ffr06c6dO8eOHduwYcOsWbMqWmHlypUIPUArWFhY/Prrr9AKiF+gPiIaP7F+LkoCJEACJJDoCFAcxNcmgQ6A914zwRJfK4vrdjNnzly3bl04GLZu3fr48WPIhR07dkArQEZYWVl9+/bt2rVr0Ar9+vUrX748/Aq//vprx44dqRXiejuwPRIgARLQDQGKA91wT/i1ao1ooBsR2VGkTgg01KtXD1oBAQgfH58nT55s3759zJgx0ApZsmRRtMKKFSvUWsHGxgZawc3N7eTJk/7+/up29Chzi7d96tHWYldJgATimgDFQVwTTaztwW+BuAbCHEePHkUfMUUeFtgxG6MEQVC/fv0///wTWgFCAQlaAbMwQkZAK1y9ehVaoW/fvuXKlYP4sLW1dXR0nDlzJtwPWGNgYGCMVpfwlaEMEG2xt7evWFG+8QxT5GGBPeE7wzWSAAkkEQKvXr3KlCmT+s6y6I8akd9u3bqlS5dOpVJdvHixefPmM2bMiP7iWmtSHGjFol/G6PYWOgBhDjs7OyyAKfKwIP+TSdEKcCRAIiAAAdcCRAO0ApwNila4cuXK8uXLBwwYAE9DgQIFUqRIgfWi1NnZee7cuZ6eng8ePICk+MluxOHiET3gMiJ7HK6aTZEACegXAZxltWrVCvFWMzOzPHnydOrUCadAsRuCi4sLdpK5cuWK6eJ79uxxd3fH2Rf2wHDcwss7ceLE9+/fx7QdzfoUB5o0mI8DAviR4PsNrYBvKpwKjx8/3rp1K76sELNQJObm5kFBQbdv3961a9esWbN69epVs2ZN/Bhgx3e6adOmQ4cOXbJkCRwbT58+hRyOgw6xCRIgARKIHwKLFy8uVaqUhYXF5s2bb968uWjRotevX2MPFou1BQQEYMEuXbpoXVb9ZBqtpXfu3MFJmnKvWbJkyYoUKYKd6urVq7VWjqaR4iCaoOK/miGuAT6urFmzNmzYcOzYsRs3boS/y8/PD3Lh4MGD8+fPHzhwIGREwYIFTUxMPn/+jGDEli1bpkyZgp9HpUqV8F3HTw7+/NatW0NbrFq16n//+9+bN28MkRPHRAIkoH8Ejh8/7uTk5ObmtmDBgtKlS+fMmbNq1aoeHh44w4nFYHbv3o3jepkyZdTLVq5cuXfv3vC5ZsiQoUaNGrDjfAl7yNy5c8P/inOtf/75B0YEbfv06fPw4UPsb6EJYEHCXnft2rXIxDpRHMQaHReMDQF8fSEXqlSpgh/VtGnTEIC4fv26v78/lC9+G7Nnz8aPAb4Ea2tr1IQb//z58+vWrRs/fnz79u3x80NQDb8TCGT8HuA3UwQH76WMzZbgMiSg7wSCg8XHj/GS0HI04OCwjdOYHj16hKmL3VQYS3Rm4S51cHAIUxMBWSiGEydOQH+g6I8//li2bNm8efNwKtW/f/927dodOXIELthx48Zly5YNMYWzZ8+iGlLJkiXPnDnz+fNn5GOXKA5ixy3CpVgQCwL49kML165dG/oXMnzv3r13796Fk+3atWuQ4VOnTu3atStENAIWaPzVq1enTp3Cbwa/k5YtWxYrVixVqlSK4OjWrZtacPzMrwJrYSIBEkjsBPz9RapU8ZLQclSDx1kNjsQIjGqt2KRJk7Rp0yKWqpQ+evQIe7DChQvD4Y9TGsUYZnr//n1lF6dpz5s3L1wFBQoUgIcVZ0EzZsxYunRprVq1sMPECRLEAUQDPKypU6c2Nja2tLTMmDGjsjh2idgHIjirzMZiSnEQC2hcJCEImJqaFipUqFGjRoMGDVq4cOGhQ4d8fHzgS7hw4cL69esnTJjQoUMHuODSp0+P3jx58uTw4cMI+A0ePBiL4Edobm6eJ08e/DghF6C7P336hGrRTPilaa0ZkV1rZRpJgAQMmACcmhgd4p6Yhk99+/ZdsWKF2o7zH1dXV5zt7N+/H2f8OMyri9QZnA6ZfX9wrdqo6UvA4tiPIb6A0yElYRXwuaora2YQd8AsnLKYxi5RHGjlRmMiJYCfRNGiReEwGDlyJJwHJ0+efPnyJXwJp0+fxu9k1KhRv/32W/HixVHt27dvcD9s2rQJckF5UlOpUqWcnZ0RpHjw4AFCd5GMMF++fN4hD7iEow/VMPXy8oIFdswykQAJJAoC5ubCzy9eElqOaoTKcRe7Gq0VETnVPJfIkiULdlyomSlTJgQdXr9+jXyYhIBp+GuqUqZMqa6GfRryO3fuvPj9A7mgXHYAe5ikrELtSAhTGp1ZioPoUGKdRE0APzYc+Nu3b4/AG479OJC/f/8e4beDBw/+9ddfcCTgBxkYGIgIHIJzrVu3zpUrF3xuzZo1g1Ph+PHjEOzhhwcdAJFhF9e3fYZfES0kQAKxJKBSCRw74yOh5aj6ZGNjgyrHjh3DVDNp3Z+oK5w7dw7H+OzZs6st6gwipDjYq2fDZ+AQhT/14cOHiDWok9amsOyVK1eyZcsGwYF87JJBi4PYIeFS+k9ApVIh/AbxPnToUA8PDwTe4EVYvXp179694QaEiw/SYfPmzXAqKK+KKFmyZL9+/dauXYuwX+ROBf1nwxGQAAnEAQHENGvWrNmzZ8+VK1fevn0bnkXsYbA/icjPj1XCx4lgKIKkyIdPtWrVunr1anjngbomXBGIsSIqAacp1oIA699//428uoJmBqoF3dO0xDSfEOIAXtkGDRpYWVlhl409tWYXr1+/3rBhQ+V6itKlS0MTKaWfP3/u06cPVA+cKqjw+PFjxc4pCcSCAL541tbWbdq0cXNzg3J/9+4dvpOTJ09u3Lhx5syZ4VQ4e/bs7NmzUQHV8EVt2rTp1KlT8euK/CQgFj3hIiRAAgZDYNu2bTipmDJlClyMOH7BMYnjMc7vtQ4QB7UmTZoMHz68bNmyWivY2to6ODhs2LBBa6liHD9+/OjRo11cXAoVKgQxsX37duyylCLN6adPn7Zs2dK1a1dNY0zzCSEOPn78CHZz5swJ0zloHwSDCxYsePjw4UuXLiFgrL4cw9nZGWODi/j48eN+fn7169cPCgoKszhnSSB2BMzNzSHwhwwZgu8YXAj37t1bs2YNxCh+mXAqwM0AO0orVqyYPn16RaqjAqrRqRA74FyKBAySAJz8w4YNu3z5Mo5xiPEjcImjmJGRlqMqdh2Ojo5Vq1ZF9DMSFFgcCgNxB6UOjoyurq5KXpniPKdv3743btz48uXL8+fP9+zZg90UinDEvH//PjJKWrJkCSKt0CvKbOymWoYRu4YiWapOnToTJkzA2ViYOiNHjqxbty5kF2ItuXPnrlevHmLDqIMTO4xt+vTp1atXR9GqVatAf//+/ShiIoG4JYAfW65cuVq3bg3PAfwH79+/h8MA30lofAQmvn79CochfHdt27bFVzRLliywoxSOB+VypLjtDFsjARIwDAI4rW/RosWuXbsQ+MeO5cSJE+vXr4fjvGjIB0c0rcPEAdHJycnHx0drafSNJiYm8JJGv77WmgkhDkJWHHYCcbRz5878+fMDIjQBZA7AKZW8vLzg6YV/RpmFm9fGxubkyZPKrOYUjhrszdUJRViQKUoCBBURIngO8FWEDMcv+cGDBwh7DRw4sEePHopT4dmzZ/iWDh06tFKlSoiF2dvb9+rVCzG/mzdvQshH1GYSsfNLFc0NTVDRBwVWepr27t374sULnEIgJl6iRAn4yHHI+36TwUVEECIaF+IUEV1jGNEi4e3dunUrUKBAeHuMLDoTB3CJIF7w119/1a5de9++fTghg2vhyJEj6D38usmTJ0+bNi3ySkJgGEYlrzlF6AX7aCUpQA8dOgSxxhQJAU9PTzDENJI6LAKB3bt346iPAAT06x9//LF69Wp83+AbhLMOX044Fc6fPz937lxYEBqDwMXvv0uXLvArICqBxZNUwteJX6robHGCig4l1MGeHN8oJh0SiKE4iLueQkahsUaNGvXv3x+OFkRu6tevP3/+fBjDJwRs4P4Nbx8+fDhiEEp69OgRKlSpUgWeGaZICNSoUQOgMI2kDosUAqCkZgX9Ci/CwoULEVOAVL116xYCXn369MFpAZx4+BIi4rhixQrIiDZt2owdOxanDm/fvoV+R1hNac2Ap5qgDHiYPz80goomQ+zJ8dNj0iEBnYmDDBkywIWreWFnoUKFHj58CBaI9cJJq3lHB9wMcB6gKEwyNTX9ReODUuymmaIkQFBRIlJX0MoKnq28efO2bdt29uzZ0AQIbCGmOG3atGbNmiEKFhQUdOHChXnz5sGpgG81fFrNmzefPn06QmP4YqtbNrCMVlAGNsY4GQ5BRRMjQDElNAGN9elMHGD3ilMuuG3VnfH29s6ZMydmEcrFt0fxv2HW19f3ypUrEd3+gQpMJKBbAmZmZvh+wq/wzz//IMT44MGD9evXOzs7lypVCt9kSNtt27bBy1W5cmWEwIoVK9ajRw93d/cbN24o/jPddp5rJwESIIHwBBJCHPj5+SkXYmD19+7dQ17xEAwePBj70EWLFt2+fXvOnDnbt2/v2bMn6mAH2rlzZ+xqDxw4gDOwdu3a2draVq9eHUVMhkcA/nkE7zUTLPo7TJVKlSNHjpYtW86cOfP06dNwKsBhALcBnAdZs2aFUwHff4TPfv/9dzgV0qVLV6tWrdGjRyPI+vLlS/0dNXtOAiSQeAjESU8SQhycO3cOZ0tI6PGAAQOQwd4QeQRxsZecMmUKjv2LFy/etGlT+fLlYUfCjrVx48bYw5YrV87c3By6wdjYGHYmAyMAHZA/f374ijQTLLAbxkjhVChTpgy+9hs3bnz8+DFkMTKDBg3CVz1FihTv3r3bt2/f+PHj69WrlzFjRoQqIIXd3NzOnj2LAIRhEOAoSIAE9JFAQogDeFODf/zAp6rA6tSp061btwICAnA61ahRI8WIKXap2EW+evXK398fygBRWxiZDI/Ahw8ftA4qIrvWynpkxDcZLgTl8YtQBl5eXnPnzu3YsWOBkPuO7ty5s3r16r59+5YsWfKXX36Bqujfv/+6devu37+PH5AeDZNdJQES+GkCOm4gIcSBjofI1ZNAoiRgYmJSvHhx9fUHr1+/3rNnz9ixY+vUqYNww+fPnxGVcHV1bd26tbW1taWlJdTzpEmTDh48aKjKKVFuJXaKBJIoAYqDJLrhOezERiBt2rSa1x/Ao7Zy5crevXsrz19SrmocOXJktWrVLCwsbGxsunTpsmjRosuXLwfxyeKJbVuyPySgJqC3GYoDvd107LjhElCpVJrXH7x///7EiRMzZsz47bffcubMiRDD1atXlyxZ0q1btyJFiqRJk6ZKlSrDhw/3CHn/pOFS4chIgAQSjgDFQcKx5ppIIHYEUqRIUbZs2f7frz/w9fWFDoAagCZIlSqVn5/f4cOH//rrryZNmmTJklcFk6gAABAASURBVAXqARoCSuLkyZMBAQGxWyOXIgES0CSQMPlXr15lypTp/v37MV0dThhwqoBwJM4rLl682Lx5c+wBYtpImPoUB2GAcDZBCaROnVrr+iKya62c1Iya1x+8ffsWkQXEFxBlQKwBu4aHDx9u2LBh4MCB5cqV++WXXxCVQGxi5cqViFNgD5LUWHG8JBDfBLy8vFq1amVlZWVmZpYnT55OnTp5e3vHbqUuLi4NGjTIlStXTBffs2ePu7v7jh07cOaA/cDo0aMnTpwIj2NM29GsT3GgSYP5hCaQL18+/JDw69JMsMCe0F1J9OvD0V3zaRDIw2JsbIx9AZQB9AFUArTCgQMHJk2a1KhRo8yZM3/9+hVg//777w4dOuTPnz9jxow4pZg7d+6NGzcoFBL9BmcH45xA3De4ePHiUqVKWVhYbN68+ebNm/gZvn79GiG/WKwJfj4siN+y1mUjv7f5zp078BrCv4gzh2TJkiHaCIWxevVqrU1F00hxEE1QrBZfBKADiv/4gSW+Vqa37UIH4Oiu+TQI5GGBXXNMcBVUrVoVEQcPDw+cQ8A/uW7dOsQjypQpY2pqCqflpk2bevXqVahQoWzZsrVv337ZsmUPHjzQbIF5EiCBaBI4fvy4k5OTm5vbggULSpcujYgefn346Q0dOjSaLWhW2717N47r+KmqjZUrV4bbb8CAARkyZFDeygFNP2XKlNy5cyPUaGdn988//6Cyo6Njnz594DKE4xCaABakhg0brl27FplYJ4qDWKPjgiSQcAQiun0xIjt6hj0F9lbq6w/gYzxx4sSECROw/4JQePLkyapVq+ACxd4EvtCuXbtiV/L06VMsyEQCiZrA984FB4uPH+MloeXvK4nsPw7blSpV6tGjR5hKiP2HsURn9ujRowgChqm5fPlyKAb8cqE/UPTHH39A0M+bN+/q1asQ/e3atTty5MisWbPGjRsHuY/zgbNnz6IaUsmSJc+cOfP582fkY5coDmLHjUuRgJ4RSJ48ObyOI0eORNwB0YeDBw8ij9MUBCbu3r0L72ibNm3gmfz1119xFuLh4aH55jM9Gyq7mzQI+PuLVKniJaHlKBFev34dR2L44SKq6e/vD3U+aNAgdYXwFnURMvDzWVlZIaOZ8ubNC1dBgQIFChYs+PHjxxkzZixdurRWrVpwHsBhAHEA0YCgRurUqfFDRkwBoUNl8axZs0IZ/IzcpzhQSHJKAkmIgJmZWZUqVeBFOHnyJETAzp07Bw4cWKxYMTgbrl27NmfOnCZNmqRPnx7nMUOGDNmzZ4+fn18SosOhJggBfV/J+fPnMQRE9zDVmiZOnFiqVCnNovAWzdKAgAD8MDUtyOM3iKmS8Nv89OkT4gupvn9WrFhx584dpTTMFHEHWCBHMI1dojiIHTcuRQIGQgDnHHXr1p02bRp2di9evNi0aVPPnj1xmoLoppeX19SpU+vUqZM2bdry5cv/+eef8GHidMRARs5h6DkBc3MB1RofCS1HyUY57uIwrbXmrVu3bty4gV+WujS8RV2kZDJkyAClruTV05QpU6rzyktcIeUvfv9ALiiXHajrqDOvX79GXu1IQD6mieIgpsRYnwQMlgC8BU2bNv3777/hMvXx8VEuSoBr9OvXr4h6Iq5ZuXLlNGnS4NzFxcXlf//7H+wGy4IDixYBXVZSqQQOnfGR0HKUA7OxsUGdY8eOYaqZ4ADALKIJ+I0go07hLeoiJQPXHQ72Sl7rtHDhwqampg8fPkSsQZ2yZ8+utfKVK1eyZcsGwaG1NDpGioPoUGIdEtAxAZzfa+1BRHatlWNkRPizbdu2S5YsQSj07t27ixYtat26debMmeHY3L9//4gRI0qXLp0uXboGDRrMnDnz0qVLymlNjFbByiSgvwTKlClTs2ZNuNlWrlx5+/Ztb2/v1atXV6hQAX7+rVu35g/5qEcX3qIuUmdq1ap19erV8M4DdQX82KEw+vfvv3z5cqzlwoUL0PHIqytoZqBa0D1NS0zzFAcxJcb6JKADAvl0+kAIa2vrLl26rFmzxtfXF/svNze3Jk2awIXw4cOHHTt2DBgwoESJEo6OjoqYwJmNDgBxlT9DgMvGisC2bdv69es3ZcoUOzs7aOVZs2bheIzz+9OnT69bty5Xrlw4lkNVw+UW3hJ+hba2tg4ODhs2bAhfpLaMHz9+9OjR8EkUKlQIYmL79u34bapL1Rko+C1btnTt2lVtiUWG4iAW0LgICeiAAPTBj8+DKA5LAvdDpVJh39e7d+/Nmze/fPnSy8sLe8batWsjMvr+/fuNGzdCQyAMUbBgwb59+2LPBfWQwD3k6kggwQjAyT9s2LDLly9//PgRMf4zZ86MGjXKyMgIB+9Hjx7B5TZt2jQcoZXDeRiL1k5icSgMtRPu8OHDrq6umjXxA8Qv68aNG1++fHn+/PmePXsqVqyICs7Ozvfv3xffP3D4lSpVCnrluyE2/ykOYkONy5AACRgbG0OsDB48ePfu3c+ePZs0adLIkSOxP8LO8ebNm/AuNGzYEHEH7LxwuoMzJ16gEN/fGbav7wTq1q3r5OTk4+PzkwMxMTHBD/AnG6E4+EmAXJwESEAkT54cHoU///zz1KlTynMYu3fvnjt3bggCxD5x5oQAbcaMGZs1a7ZgwYK7d+8SGQkkBQKItcF5oDnS8BbNUuQRp4joGkOURjN169atQIEC0awcUTWKg4jI0E4CJBAbAmnSpGnatOm8efPuhHzmz5+PWRjfvn2LYAREQ56QT48ePTALY2zWYcjLcGwkkCgIUBwkis3ATpCAQRKA8wBu0k2bNr148QKRhXHjxlWoUCFZsmRwHkA0wJGQPn16OBXgWjh+/HhgYKBBQuCgSEAfCVAc6ONWY59JQM8IQBCUKlVq1KhRR48eff369bZt2/r06QPP57dv3yAaxo8fD9EAodCoUaM5c+bcvHkzOJpPt0+0GNgxEtBzAhQHer4B2X0S0DcCqVOnbtCgwezZs2/cuPHgwYMlS5b89ttvUAYfPnxQREPBggVz5crVpUuXDRs2vHr1St/Gx/6SgCEQoDgwhK3IMZCAnhLIkSNHp06d1q1b9/z583Pnzrm4uFStWjV58uQPHz5UREPGjBkdHBxGjBhx6NChhH9ys55SZbdJ4OcJUBz8PEO2QAIk8LMEjIyM7O3thw0bduDAAcQddu/e3b9/fxsbG8QXvLy8FNGQLl26unXrzpw5899//0U84mdXyeVJgAQiJkBxEDEblpAACeiCQMqUKWvXrj1jxozLly/7+PgsX768Xbt2mTNn9vf3h2gYMGCAnZ0dZlu2bDl//nxvb28IiEi7yUISIIEYE6A4iDEyLkACJJBgBKysrDp06LBy5UpfX99Lly5NmzatVq1a5ubmL1++3LhxY48ePQoUKJA9e3bUgYZ49OhRgnWMKyIBwyZAcWDY25ejIwEDIaBSqYoUKTJw4MA9e/a8efPm+PHj48aNq1SpUvLkyeFdgHpwdHTMkSNHvnz5nJyc1q9f//z5cwMZOYdBArogQHGgC+pcJwmQwE8QgCAoV67cqFGjDh8+DKHg6ek5fPjwUqVKGRkZ3b59e+HCha1atULcwdbWtl+/flu3buWjln4CNhdNogQoDpLohuewSUAnBOJ8pQgxVK9efdKkSadPn379+vX27dv79+9vZ2eHFV25cmX27NmNGzdOnz59yZIlhw0btm/fvo8fP6KIiQQSIYFXr15lypRJ8xVKP9nJ5s2bz5gxI3aNUBzEjhuXIgESSHQELCws6tevj73hxYsXEVbYuHFj9+7d8+fP/+3bt7Nnz06ePLlWrVpp06atWLHimDFjjh49ynsjE90m1MMOeXl5wVNlZWVlZmaWJ0+eTp06eXt7x24cLi4uDRo0yJUrl7I4ImUqlQrfYWVWmfbs2RNGFCmzyGAWycTEBN6yGjVqLF26FF94pXT06NETJ058//69MhujKcVBjHCxMgmQgBBCDyBkzJgRp03z5s27efPmo0ePVqxYgd1o9uzZAwMDjx07Nnbs2EqVKkEo1KxZE6IB0iEoKEgPRsUuJjICixcvRjwLqnTz5s34pi1atAjuqyVLlsSimwEBAViwS5cumsviG7tu3ToUKcZPnz6tXbs2R44cyqwyrV27tq+vL/wNu3fvrlKlCkJpkMhfv35FaZEiRSA1Vq9ejXxME8VBTImxPgmQgJ4RyJYtW/v27ZctW/bgwQP1RQnw32Kf6+npiXADgg4IPTRq1GjWrFkIRvDeSD3bwDrq7vHjx52cnNzc3BYsWFC6dOmcOXNWrVrVw8Nj6NChsegRDu3JkiUrU6aM5rLFixeHFIDyUIzIQC4UK1ZMmVWmpqamlpaWWbNmReURI0Zs3boVTbm7uyulDRs2hJ5Q8jGaUhzECBcrk4ABEYiLody6dev8+fOXLl1CY5giDwvyiTPB+wrHb9euXbG7fPr06eXLl6EGoAlw5vfu3btt27Y5Ozvb2trCRQwxAWeDj49P4hwIexV9AvhC4mupmWCJ/uKR1BwwYAD8Tz169AhTJ126dGEs0ZlFnMvBwSF8zd9//x26VrEjZICwhZKPaAqBYmdnBxmhVIDwPXPmzOfPn5XZ6E8pDqLPijVJgAR+IICdLCL69vb2iOKjAFPkYYEds4k8QSjY2Nj07dsXp3qvXr1CZAHxBUQZEDmGbli1alXHjh3hcihcuDDqbN++PXaBWzUEMMHxCfoJFkyRhwV5pnglAMj4QuJrqZlggf0n13v9+nV8Z3r16qW1nSZNmiBohcCWujS8RV2kZBAXgCpV8ppT6FS4KFAKv9eJEyfatWunWao1X7BgQdRXiuBRgDLAV1qZjf6U4iD6rFiTBBIjAR326cOHD1rXHpFda+XEYDQ2NsZJ25AhQ/bu3fvmzZsDBw4MHz68RIkSEBA4BsBvDN8sTgfLlSv3559/Yk8dGBgYo27jUIQDEo5P0E9YEFPkYYEds0zxRyCir2JE9uj3BPIOlbEdMQ2fICjhedK0h7doliKPIBeEKTJhUoYMGerVq7d8+XL4D5DBbJgK4WcRF8NXV7GnSJECGX9/f0xjlCgOYoSLlUmABAycAHbQcMxOmjQJztiXL1/+888/3bt3z5s3b1BQ0MmTJ8eNG1ehQgUIhfr167u6ul69ehU74iiJRHQoisgeZYOsoHMCyuE2VapUWntSpUqV1KlTaxaFt2iWIo+jPoQpMuETQgnu7u7QB8iELw1vgaK1trZW7K9fv0YmY8aMmMYoURzECBcrk0A8EWCziZEARECzZs3mzZuHU/x79+4tWrTot99+w07cz89v586d/UNeDQVXMBy/OE3kBQqJcRPGW58Qk0Lbx44dw1QzwQGgORv9fLFixa5du6a1fu3atb+EfGrVqqW1gqbx4MGDly9fxvdWMV65cgXRMXxpldnoTykOos+KNUmABPSAAA7kcPlqJlh+vt+5cuXq0qXLunXrnj17duGCyyeeAAAQAElEQVTChSlTpmi9QKFfv34/f4HCz/eWLcQ3gTJlyuAL0LNnz5UrV96+fdvb23v16tXwKt25cyd2q8aBH44orc4DhL3gDEBCJnzjyiUF0Kb4zsPj1ahRI7i1OnTooNSEfEE/lXyMphQHMcLFyiQQKQEW6poAdABi+YgEayZYYI+rrhkZGRUtWnTw4MFaL1CYPXu2+gKFMWPGxOIChbjqJ9uJbwLbtm2DFoRMtLOzK1269KxZs3AYLly4cOzWa2tr6+DgsGHDBq2L/xLy0Vq0Z8+eLFmyQLzCwXDo0CF8A7du3arIiE+fPm3ZsqVr165aF4zcSHEQOR+WkgAJREggTFRVXS8iu7pC/GUiiuJHZP/JnkR+gcLYsWNxKonYBA4hyoqic4GCUpPTOCEQ0VcxInuMVmpqajps2DD48D9+/IjQ/pkzZ0aNGgXtGKNGNCtjcSgM9fMN3d3dPTw8NCsoeRhRpOSRwZcKKTAw8Pnz556enr///ru6D0uWLClVqhSEi1I5RlOKgxjhYuUkQYCDjCaBfPnyeXt7e3l5HT16FItgijwssGM2qSWIAAR6tV6gAP+BQgNncq6ursrT62CJk0MU2mGKiAC+ivhC4mupmWCBPaJF4sSOGEGLFi127dqFeP/Zs2fRZngLjGFS3bp1nZycECAIY4/1rImJiZubW+wWpziIHTcuRQIkIAlgJ1u8eHG4VTGDKfKwIJ/EE3y86gsUEAmG57l8+fI40QSWw4cP4yQPmTx58syZM4cXKABFvCZ8IfG11EywxOsa0ThCTi9evPD393/8+HGJEiW0WmAMn+Bkyp49e3h77CzdunUrUKBA7JalOIgdNy6V+AmwhySgewJw8BYrVmzw4MHHjh17+/YtjhnwLiC0rFKp7ty5g/CwcoECpAMvUND91mIPNAgkhDiAs7FBgwZWVlb4PSBYorH20CwcKSiCty10XojPnz/36dMnQ4YMKVOmxI8H4ktdxAwJkAAJ6CMBMzOzKlWqtG/f/uTJk2GeoHDixAn1BQrYW0I03L59Wx/HyD4bDIGEEAcfP36EvxEONK3UIBf+97//QTpoljo7O2/ZsmXdunWI1fn5+dWvXz+I70zTBJR08hwpCcSEQERR/IjsMWk7LutGcoHCjh074FuG6xsJmT179sT61vm47DHbSmIEEkIc1KlTZ8KECU2bNg3P1sfHp3fv3qtXrzYxMVGXvnv3bsmSJdOnT69evTo8cqtWrbp8+fL+/fvVFdQZOBjea3xgRzCPKUoCBBUlInUFslKjiDyTSEAh2H895KH3ZzU+sMAeef8TrDQ8qKxZs3bs2HHlypVwkeJMadKkSZUrV06WLBmcB3AhYP+ZPn36unXrzpo168aNGwnWT52vCKCYdEggIcRBRMP79u0bPGyIxv3666+adby8vPC9rFmzpmKEU8HGxgaOOGVWc+ri4mLx/aNcxHHo0KFd/ERKwNPTEwwxjbRWHBfqaXOgRFbR2XaJCtTNmzdx1qGZYInOKBKgTuSg4CTw9fUtXLgwXKcrVqwYNmxYjRo1oAzgOdi9ezeMhQoVgsrBidbEiRPhc02ADutqFdiT46fHpEMCuhQHkydPhjru27dvmPE/ffo0efLkadOmVdszZ84Mo3pWnRk+fDjcDEp69OgR7AjpQWIzRUIAuxuAwjSSOixSCIASWSkoIp8SVOR81KXRB9W8efNx48bt3LnzyZMnOF+CO6FSpUrYYWIWcYexY8c6OjouXLjwwYMHUAzq9g0mgz05fnpMOiSgM3GArzu8ZO7u7iqVKsrxBwcHq1RaqpmamoY8Nip0gnYQnmCKkkBsQUXZsAFWIKtoblSCiidQOFMqXrw4ToQOHz786tWrTZs2denSBf5Uf39/nNb369evQIECtra2Q4cORQW4Y6PZjcRfDd8oJh0S0Jk4OHbs2PPnz3PkyAEtjAT9O3DgQHjMwMLS0vLLly+aj5hGTTgPUMREAiRAAkmWAE6DEFNYtGjR48ePL126hLhqxYoVjY2NETeZOXMmQrHp0qVr2LDhvHnz7t+/n2QpceBxQkBn4qB9+/b//vvvxe8fCOHBIc8qx6js7e2hapXgHGYRhLty5UrZsmWRZ4oDAmyCBEhAzwmoVKoiRYoMGzbsyJEjL1++3LhxY6dOnbJkyQJ3wvbt23v27GltbV24cGGcce3fv//z5896Plx2XwcEEkIc+Pn5KRoA47t37x7yDx8+TJ8+vY3GB2oADgP4x1DHwsKic+fO+FofOHDgwoUL7dq1g9OsevXqKGIiARIgARLQJJAmTZrmzZsvWbLEx8cHO8xJkyZVqFAB7oTr16/PmDGjRsgljY0aNVqwYAF2vJoLMk8CkRBICHFw7ty5YiEf9GPAgAHIjh49GvlIElxkjRs3btmyZbly5czNzaGF8V2PpH4SLOKQSYAESECTANwJRYsWHT58+NGjR+FO2LBhw++//46Tro8fP27btq179+45c+b89ddfBw0adPDgQYRuNZdlngTCEEgIcVC5cuXgHz/u7u5h+oEImbOzs9poZmbm5ub26tUrxUum3KaoLmWGBEiABEggEgJwJ7Ro0WLp0qVwJ5w/f37ixIk40TIyMrp27dr06dOrVauGSC52uYjtRtIIixKYAA55mTJlwtEwrtYLlxK8R7FrLSHEQex6ljSW4ihJgARIIB4JQBDAWTtixIjjx4/DnbB+/fqOHTviCITj0KxZs+zs7BwcHObNm/f27dt47IRBN+3l5dWqVSuILZzT5smTp1OnTt7e3rEbsYuLS4MGDZQL89GCo6MjvEFw+SCvTj179oQRRYoFGcwiITSfOXNmRJGgCL99+6aUwkkPXfj+/XtlNkZTioMY4WJlEiABEtBXAmnTpkWs1t3d/cmTJ7t27cJpJY4oOLbheJMlS5a2bdseOHBAfVzR10EmbL8XL15cqlQpCwuLzZs337x5c9GiRa9fv16yZEksehEQEIAFu3TporksvObr1q1DkWL89OnT2rVrc+TIocwq09q1a/v6+sLfsHv37ipVqvTr169+/frKa8GLFCkCqbF69WqlZoymFAcxwhVBZZpJgARIQH8IGBsb16lTZ+PGjVAJrq6utra2OOqsWbOmevXquXPnHjt27IMHD/RnNFH19NYtcf78DwmWqBaKTjmcMU5OToiAL1iwoHTp0jlz5qxataqHh8fQoUOjs3iYOji0J0uWrEyZMpr24sWLQwpAeShGZCAX4ApSZpWpqamppaVl1qxZURkuoq1bt6IpSECltGHDhtATSj5GU4qDGOFiZRIgARIwHAIZMmTAiealS5fOnj3bo0cPnAFDFowZM8ba2rpmzZo4Z4Vo0O/RQgfkzy/s7X9IsMD+0wMbMGBApUqVwC1MS+nSpQtjic7s0aNHEeIJX/P3339ftmyZYkfIAGELJR/RFAIF0SLICKVCyZIlz5w58znmt7NSHCgA5ZR/JEACJJAECSBijcPS3Llz4Z2GC7patWrBwcGenp6tW7dGuKF3797nceatp1w+fNDe8Yjs2mtrsV4Peb9Xr169tJQJ0aRJEwRxELhRSh89elS5cuXChQvDzw+HjWIMM71//76VlVUYI2bbt28PFwVKodtOnDjRrl07GCNPBQsWRH2lDjwKUAZa3z+gVIhoSnEQERnaSYAESCBpEUiRIkWbNm32799/9+7d0aNHw4P99u3bv//+297eHq5s+M9fvXqVtIhEPFpFMIGM1ip9+/ZdsWKFugjxAoRvrl27Brb9+/f/+PGjukidCQgIMDMzU8+qM/Du1KtXb/ny5fAfIINZdVFEGWg7CD6lFNsUGX9/f0xjlAxPHMRo+KxMAiRAAiQQlgDCCmPHjr13796+fftatWqFqPbFixdxwMOp7W+//bZ3796goKCwyySxeeVwmypVKq3jrlKlSurUqdVFcMAULVoUs5kyZULQ4fXr18iHSTjqa740QLMUoQR3d3foA2Q07RHl4dXAFlRKlXVlzJhRmY3+lOIg+qxYkwRIgASSEAFjY+MaNWqsXbv2yZMnc+bMgfPgy5cvGzZsqF27No49cC3AwZCEcPw4VBsbGxiOHTuGqWaCA0BzNkz+3Llz3759g0smjB2zwAvXAjLhE4CDPFKtWrXCl4axHDx48PLly82aNVPsV65cyZYtG5SHMhv9aWIVB9EfAWuSAAmQAAnEJwGc7CK4Dkc6Up8+fRBNRxB9/PjxefLkqVq16qpVq5TT6PjsQqJru0yZMjVr1uzZs+fKlStv377t7e29evXqChUq3LlzJ6K+IijToUOHhQsXaq2AA//Vq1e1Og+MjY3hDEBCJvyyyiUFytOuJk2a1KhRo/r162NFSk3IF/RTycdoSnEQI1ysTAIkQAJJlwDObmfPng1Hwvr163HIQWD70KFD7du3h9u8e/fuZ86cQbQ7cdHR8O3/0LGI7D9UimJm27Zt/fr1mzJlip2dXenSpWfNmgUmhQsX1roYDuFNmjQZPnx4RC8RtLW1dXBwgGNG6+K/hHy0Fu3Zswf8c+XKBQcDNgc20NatWxUZ8enTpy1btnTt2lXrgpEb41ccRL5ulpIACZAACegdATMzs5YtW+7du/f+/fvjxo1DiOH9+/cLFiwoVapUkSJFZs6c+eLFi8QyqHz5hLe38PL6IcEC+0930dTUdNiwYfDhf/z4EaF9aKNRo0YZGWk5qkIzOTo6wssCIRXJarE4FAbiDkodd3d3Dw8PJa85hRFFigUZNI4UGBj4/PlzT0/P33//Xd2HJUuWYKNAuCiVYzTVMowYLc/KJEACJEACSZNAjhw5cDyDUx1x7nbt2kE0IMI9YMAAKysrnCVv2rQJZ666JwMdULy40EywxHO3ECNo0aLFrl27EO8/e/bsiRMn4GvBQb1oyAd6Quv669at6+TkhACB1tJYGE1MTNzc3GKxIBaJjjhANSYSIAESIAFDI3Dr1q3zP35giekgcZ5apUoVhN59fX3nzZtXokSJr1+/4kDYvHlzS0vLzp07w9etPhuOaeN6Wh9uFbhP/P39Hz9+DCDly5cHgYvfP4ggRDQuxCm0Xq4YUf3I7d26dStQoEDkdSIqpTiIiAztJEACJGDIBKAD8ufPb//jBxbYYzfsNGnSKFce4Mx46NChOGl+9+7d0qVL4U6Hj2Hw4ME4OMIBHrvGuVS8EdDeMMWBdi60kgAJkIBhE/gQwVMCI7JHn4aNjc1ff/314MGDw4cPd+3aFaIBrvJp06YVK1YMJ80uLi4oin5rrKkTAhQHOsHOlZIACZCAgRNAuKFSpUoLFy58+vTp5s2bmzVrZmpqevXq1REjRuTKlatChQoLFix4/VrL44AMnEs8DS+um6U4iGuibI8ESIAESECDADRBkyZN/vnnH6iExYsXV6lSRaVSHT9+HDEIS0vLRo0abdiwIfJnB2k0xmwCEaA4SCDQXA0JkAAJJHECiC907tz54MGDDx8+nDp1qp2d9YX61QAAEABJREFUXWBg4LZt23777bfMmTP//vvv+/fvT+IPZk483xCKg8SzLdgTEiABEkgSBLJlyzZo0KCLFy9euXJl+PDhOXLk+PDhg7u7e40aNbJnzz5gwIBLly4lCRCJeJAUB4l447BrJEACJBBvBDTfDKS5kojsmnXiKv/rr79OmjTp3r17R48edXJySps2ra+v78yZM6tVqxZXq9BFO4awTooDQ9iKHAMJkAAJxJRAvnz5vL29vX78wAJ7TJv6yfpGRkYVKlSYP3/+06dPPTw8WrRokSJFip9sk4v/JAGKg58EyMVJgARIQF8JQAcU//EDiw4Hkzx5cuX6xJs3b+qwG6GrTtr/KA6S9vbn6EmABEgg8REwNzdPfJ1KWj2iOEha25ujJQESIIEkRUCPBvvq1atMmTLdv38/rvrcvHnzGTNmxK41ioPYceNSJEACJEACJCC8vLxatWplZWVlZmaWJ0+eTp06eXt7x46Li4tLgwYNcuXKpSzu6OioUqm6d++uzCrTnj17wogiZRYZzCKZmJhkzpy5Ro0aS5cu/fbtm1I6evToiRMnvn//XpmN0ZTiIEa4WJkESIAESCDhCSTSNS5evLhUqVIWFhabN2++efPmokWLXr9+vWTJklh0NyAgAAt26dJFc9ns2bOvW7cORYrx06dPa9euzZEjhzKrTGvXru3r6wt/w+7du6tUqdKvX7/69et//foVpUWKFIHUWL16NfIxTRQHMSXG+iRAAiRAAnpD4NYtcf78DwmWOOn98ePHnZyc3NzcFixYULp06Zw5c1atWtXDw2Po0KGxaB+H9mTJkpUpU0Zz2eLFi0MKQHkoRmQgF4oVK6bMKlNTU1NLS8usWbOi8ogRI7Zu3Yqm3N3dldKGDRtCTyj5GE0pDmKEi5VJgARIgARiSyDBl4MOyJ9f2Nv/kGCB/ef7MmDAgEqVKvXo0SNMU+nSpQtjic7s0aNHHRwcwtf8/fffly1bptgRMkDYQslHNIVAsbOzg4xQKpQsWfLMmTOfP39WZqM/pTiIPivWJAESIAES0CcCEbx4UkRkj/7Yrl+/fvbs2V69ekW0iL+/P3wJgwYNUlcIb1EXIYO4gJWVFTJhUvv27eGiQOmDBw9OnDjRrl27MBXCzxYsWBD1FTs8ClAGT58+VWajP6U4iD4r1iQBEiABEhBEAALnEasQcEjYI681TZw4sVSpUppF4S2apQEBAWZmZpoWJZ8hQ4Z69eotX74c/gNkMKvYI5kGBwerVCqlgvI4KegSZTb6U4qD6LNiTRIgARIgARKQBJTDbapUqeRMuL9bt27duHGjbt266pLwFnWRksFR/82bN0o+zBShBHd3d+gDZMIUaZ2FV8Pa2lopev36NTIZM2bENEaJ4iBGuFiZBEiABAyDAEfxUwRsbGyw/LFjxzDVTHAAYBbRBBcXF2TUKbxFXaRkihUrdu3aNSUfZlq7du0vIZ9atWqFKQo/e/DgwcuXLzdr1kwpunLlSrZs2aA8lNnoTykOos+KNUmABEiABEhAEihTpkzNmjV79uy5cuXK27dve3t7r169ukKFCnfu3Nm6dWv+kI+sF/IX3hJi/mGCA//Vq1e1Og+MjY3hDEBC5odlQmaUSwp8fHwQ6Zg0aVKjRo3q16/foUOHkEIB+YJ+KvkYTSkOYoSLlUmABEggMRFgXyIlkDq19uKI7NprR2Ddtm1bv379pkyZYmdnV7p06VmzZuEwXLhw4dOnT69bty5XrlzwFixatGjcuHHhLeGbtLW1dXBw2LBhQ/giWH4J+SATPu3ZsydLlixYHRwMhw4dmj17NrSIIiM+ffq0ZcuWrl27hl8qSgvFQZSIWIEESIAESEAvCeTLJ7y9hZfXDwkW2H9+PKampsOGDYMP/+PHjwjtnzlzZtSoUUZGRggoPHr06P79+9OmTcOBefTo0eEtWteOxaEw1M83dHd39/DwCF8TRhQpdmSCQz6BgYHPnz/39PT8/fff0QeldMmSJaVKlYJwUWZjNKU4iBEuViYBEiCBuCfAFuOPAHRA8eJCM8ESf6v7mZbr1q3r5OSEAMHPNKK5rImJiZubm6Yl+nmKgxBW376JwEDx6ZPw8xPv3onXr8Xz58LXVzx+LO7fF3fuSPF57Zq4fFlcvCjOnRP/+584cUImWB49kksFB4c0xAkJkAAJkAAJSAKOjo5wHsjc97/wlu8lof8Rp8iePXvozE//69atW4ECBWLXjKGJA+OKFYWNjbC1FUWLymnhwiJ/fpEnj8iVS2TLJrJkEZkyiXTphIWFSJVKmJkJExNhZCSMjUXy5CJFCoFIVJo0In16kTmzsLIS2EjW1iJvXgG+v/4qihQRxYqJEiVE6dKifHmZYMmRQy6FxTNmlOsqWVLUqiVatRLdu4vhw8XkyWLhQoEwkqenVBW3b4tXr0TIU68FPyRAAgZFgIMhAcMhYGQ4QwkZiRHO769eFVeuiEuX5PT6dXHrlrh7Vzx4IHx8xNOn4sUL8eaNeP9efPwoPn+Wx+mITvohGiAdICAgIyAmICkgLCAvIDIgNSA4kCAIkiWTa8bx/uVLua6zZ8W+fWL9erFggfjrLzFsmHByEr/9JmrWlKoC/qwMGaQi+eUXAVVhZycqVxaNG4vffxf9+4tx48Ts2WLlSrFjhzh+XGAg6LO/v4ioh3LF/CMBEiABEiCBOCZgaOLgKw7nCqI5c8T+/eLQIXHsmDh5UgYCvLwEggIIBEAxeHvLYAEUAwIHCB9AMSCUgIACFAOCCwgxINAQFCS+fBEBAfJJm2/fyjP+Z8/EkycCcYR79wR8AEiIPqAOghEw/vuvOHpUbN0qli8XI0cqvQg7TZky1PLhg2wHixw5IhdxdxeuruLPP0W/fqJDB9GggahQQbpAIESwCAQKPBkFC0qPRZ06onVr0bOnGDFCTJ0qFi0Sa9eK7dvlSKFLMDT0BOoHvQpdE/+RAAnEhADrkgAJCGFo4iAYAQJlu5YpI6pVk+fl8P8jD29/8eICZ+oIOuAoizP43LnluXvWrMLSUuBsPm1agbN5c3NhairgDPj+7EmlscimqInjN47iiGXgiN6woTy6N22qfRGoBxy2oUWgTs6cEXv3inXrxPz5wsVFDB0qunUTLVuKGjWkjwGxDEQ3lOFgEaiQmzelxNmzRy4yb55cZMgQuUibNgIrrVpVYIwIo8AhAScHRoFIBzKYhRFFqIBqbdoYd+9us2SJEYQIQh5//y2lzKZNsicnTkjxBMUD/wrkDuSR9jHQSgIkQAIkYOAEEkIcHD16tEGDBlZWViqVysPDQyEaGBg4dOhQW1vblClToqhDhw5PcFKulAn4+z/36dMnQ4YMKG3YsOFjnN9/L9L7//BtQItAnZQoIWMNiDgg7oDoA2IQiEQgHoGoBHQDoiGIU8CHgQjIw4cySgIfg4eHgI9h5kzpY+jbV7RvL30MOOrj2A8FAB0APQFZoDDCsnAhwJEAdwKcCnCiwMGwdq3R0qV5tm83hhzBSnv3Fo6OonlzUbu2vISiWDGBjiF0kjq1vA4D8RQoJ8gUiKpy5eS1FM2aiY4dRa9eUsqMHy/Qk4ULxZo1Yts2cfCgQLcR1kFv4YbB2pVucEoCuiDAdRoqgWCGWeNi00aJMSHEwcePH+3s7ObAz68xJH9///Pnz48aNQrTzZs3e3t7QwSoy52dnbds2bJu3brjx4/7+fnVr18/CE5+dXHSyahU8mrH7NnltZAVK4pGjeSx2dlZjBkjZs0SK1bIo/KBA9KjcPWqvK4CegJhEXgawsiCHTvkgTyEW1CyZN7NmgUpPglY0CwcHpqyACuFHQlBFkRS7twRCH8gNAPVsnmzXOncuWLKFDF6tBgwQF5R0bat7Bj8NKVKiV9/FTlzyis6oVHgTUHLEBPoLUIt8JpAqSTN7QiYTCRAAj9HwARnVkLg2PFzzXBpSeALDhMC54DGckbbX0KIgzp16kyYMKHpj552CwsLT0/Pli1bFihQoHTp0m5ubl5eXg9x0inEu3fvlixZMn369OrVqxcrVmzVqlWXL1/ev3+/tv7Tpo0AfkJp0si7MxBAcXCQsZV69QREQEjdbyYm19u3/4agQ8isFA04bJ8/L2/XhPMGjgocv/395c2cd++GlQUIZ0ydKv0WAwf+IAtKl5ZXSOTKJQM0ZmayYah7Hx95WSUUzNixwtFRVKok4zgI3OTPL50Q3bvLWzk2bpQ3cbx6JVBfLsY/EtAkwDwJ/EfA2Ng4TZo0z58/f/XqVUBAwCd+YksAAuvFixfm5ubJEEP/D/APuYQQBz+sMIIZCAKVSoUNj3KoBAQdatasiTwSgg42NjYnceaKmR/T58+f32t8UBiYIkVoMjdHIzpL376FdkPdHyUDu676hFUrfUiR4gdQsIfp0tevgcmSBaZJE5gtW2DBgoEODoGVKwfWrx/YqlVg586B/foFjhwZ6OIS6OYWuGxZ4MaNgbt3Bx49Gnj+fKC3d+CTJ4Hv3wf6+wc+fvz1xImvq1YFTZjwrXPnb9WqBefJE4wvIuQqIiZwQiCGgrhGy5byAosMGYItLILt7L41ahTk7Bzk6vrVwyPw0qXAd+/CdC3hZyWrhF+rHq6RoKK50Qgq+qDAKkyytLTEYQL64P79+/f4iS2BBw8ewBmfJUsWHHbDEFbPJgpxAPUzbNiwNm3a/PLLL+jZ06dPkydPnjZtWuSVlDlzZhiVvObUxcUFHgglKQ+OOPT337vWrpXp5s1dOvz4+Mg+KD3RnMKuq15h1SE98Vy6FAwxDe0h7HHepX37dp07t/PFi52pUu2wsdneoMH2Pn22TZ++bf36fQsXHh8//kKfPjdbtnxUqdKrggU/hWxo1YcPqn//Ndq2zXjWLOP+/ZM1aWJStKhJmjRBmTJ9sLV9Vq3a3bZtr/Tvf+avvw4vW7Z7+/Y477LWBuHckqw8PbWW0qgmEAUodb0knyGoaH4FDh06hJ9e+ISDGQ5p+fPnt+bn5wjky5cPx9nwhNUW3YsDqMhWrVp9+/ZtLiLZ6n79mAkODsZ34kebnBs+fDhcDkp6hHi2EFWqVKmbSD4FCtTNmvWHBIsO+4bOtG5dt3XrGp06gR2myMsEe4L1qkGDKo6OpYYOtZk+PfeqVZaenr/8+6/xyZOBx47BA/HV1TVo8OCgtm2/1agRXLQofAnop9nbt+lu3sx27FiBjRuL/f13udGjazg5NWjZsmH//g1mzWqwdWv9S5fqvX9fL336uvb2devUiduh1KhRA33ANG6bNbzWgIigorNZCSo6lFAHe3J8oyJKiC+Y8fNzBNTvX4gIchTiYFv0Pgj/RLSCyO1QBi1btoRrBIJacRugPhxHX7580XxzJZxIcB6gKEwyNTXFUuqEUpPE8ylY0MTB4YcEiw67Z2RkEhCgJAnqe94Edh326v59k0KFTCpUMGnRIpmzs/HUqcarVxt5eqo2bFC9fSufY+3lJf75R17/2KOHqJXUUhoAABAASURBVF1bPqrS1FQVFKS6d8/o0CGjZcuM//wzWYcOydBC9uwmadOa2NmZ1Kpl0r69ycCBJpMnmyxbZrJjh8mZMyZYkb+/SbJkMR2rZBXTZQy0fuTDIqjI+ahLCUqNIvIMQDHpkEAU4qBxND5NmjTx9fWNxRgUZXDr1q39+/enT59e3YK9vT2+NJALigWNX7lypWzZssosp7EkkDq19gUjsmuvHdfWDx+0t6jYEXEoXlw0ayYGDxZwLO3eLW7cEP7+8p0Xx47J+ybGjpW3b1SsKB90rVLJouvXBRyS69cLNzcxapS8arJpU3mXZv78Ik0a+cDs7NnlO1igMzp0EIMGSdnh7i527hRnz8rbPQICtPeHVhIgARJISgSiEAdAgWA/fP6RJHNzc1SLJPn5+V0M+aAOnATIPnz48OvXr82bNz937tzq1auDgoKwFiQ4DFDHwsKic+fOAwcOPHDgwIULF9q1a2dra1u9enUUMcWeQL588n4EnIgfPSobwRR5b2/5YAM5rz9/RkYia1Z5vG/fXt5OiUP7kSPi4UP53qxbt+RjMdesEa6u8gmSXbqIhg1FmTLy5RqKBvryRQqLCxfkQ59WrhTTp4uhQ+Wzq+vXl4+QypVL4MuMmnnyyKUaNjR2ciq0cqXR7NnyWQ7798unTUAHBwbqD6zwPaWFBEiABKImEIU46NixY4qQi9sjaQkHbzj2I6kABVAs5IM6AwYMQHb06NGPHz9GyALTokWLZvn+Ud+SMHPmTPgsEHEoV64cxMf27dsRZMLiTD9FAPoAJ+J2drIRTJGHRc4YxF/y5PIVWdWqycdL9+snJk6Uz5beulU+PPv2bfk2DbgcHjyQHgL4CSAppkyRngP4D+BFAAp4FNACSPj5yZdxnD4ttm9H2CL/pk3GcDC0bSufXFm0qHwdF6rB0VWokLw5s3lz0bOnGDNGOjYQ/oDkguuCd2YCIxMJkIA+E4hCHCxbtiw1TqQiHeG8efMyZMgQSZXKlSsH//hxd3fPlSvXjzY5h5pKO2ZmZm5ubq9evfL394cyUO5EUIo4JYFYEoDMzZFDODiIunVFx44yVDF1qnx6NKIVcKIovod37+Tbs9atU1YRlCzZnfr1v6kfGAVNAL8Fyl6/lgEOSIFNm8S8eQLRjV69RIsWUi4ULiwf9oBfTdGi0jJihFi6VL7g4+nTuHyWA/rARAIkQALxRiAKcRBv62XDJJD4CKhU8v0aefOqQy3fTEyudOkSBFeB0tl9++S7uF68kC/M1LyyoXt3oXllAyp//ChjEPAluLiIzp3lE6iyZJGNFysmX58BxbBsmXxC1LNnVAygxUQCJJDYCMRMHFy7dm3Pnj0IB6hTYhsP+6NnBHCGrbXHEdm1Vk5II7wI8JPBPVC5sjzM9+4tX7QN5wFcCMeOiZs35QvBP32SfgXlkdUIOtSsKaytBVwOCFhcvCg2bpQvzerUSVSoICwthYWFvEDyt9/EyJECwY4TJwQVQ0JuUK4rkRG4devW+fPnL1++nMj6leS6E11xcPfuXTs7Oxsbm3r16jUO+TQJ+SQ5YBxw3BLIly/0Mkk49tVJHy+T1MRiaipvuaxXTzg7i7//lhc/3r0beifF9u1ixgzRo4e8giFXLgFfxYcP4sIFsWGDmDRJXhpZvnyoYrC3F1AMf/whAx9QDM+f08egyZh5gyQAZZA/f357e/s6deoY5AD1aFDRFQf9+vWztrZ+9uyZubn51atXjx496uDgcPjwYT0aKruaSAlAHxQvLs+e1VNYEmlftXYrekYohoIFRf36on9/efUiIhT37omAAHH9unx71vTpUjFUry5y5gxVDOfPS8UwcaJwdJS3ZmTOLG/FhGJo1Ureorl8ubzQEgGO4ODorZ61SEAPCHyAVtaDbiaJLkZXHJw6dWrcuHEZM2Y0CvmUL1/excWlb9++SQISB0kC8URAUQwNGsj3W86dKzw9xf37UjFcuya2bpV3WnbvLqpVC1UM798LKIb168WECVIxlCsnMmUSadMKBwd5g8aoUfLBD8ePCx8f8e1bPPWXzZIACSQRAtEVB0FBQalSpQKUDBkyPHnyBJmcOXPeRIQVOSYSMAACmkOI6IqHiOyay/58HoqhUCH5hIYBA+StEPv3S8Xg7y+vgoRimDZNPtmpalWRI4f0Mbx7JxCOWbdOKoaOHUWFCiJbNvm0hgIFBByzPXuKqVPlIyZR582bn+8aWyABEkgiBKIrDmxsbP79919AKVWq1JQpU06cOAFHQu7cuWFhIgFDI4C4hre3POgePSqHhikOrrDALud18WdmJkxM5IG/ShXRrZs85G/ZIvCTvHJFeHjIWScnAcVgbS2MjcXnz/JKjj17pLYYMkTeUQnvQrp0MjBRrJi8sWLgQHkxxK5dMqiB0IYuBsR1kgAJJGYC0RUHf/zxx7cQX+WECRMePHhQoUKFXbt2zZ49OzGPjX1LggTibMjQAcWLCzs72SCmyMMiZ3T0d+uWyJ9f2Nv/kGxtRfLkolEj+TSn+fPFgQPy8U2fPol798TBg2LxYnkHRJs28mmPmTPLfsPNcPGigKqYMUP07i3q1ROFC0s3Q5YsAkGKdu3k1QxLl4pDh+STpIOC5CL8IwESSJIEoisOatWq1bRpUyCCt+DatWsvX758/vx5VZypwMREAiQQ3wQiulArvD1ZMpErl4CDoXNnGWtYvVpeuvj0qfj4UQYmduyQb53o3180biylzy+/CHxQevKkQM0JE+RTGfC7RgvwVeTJI6pXF127ynsvEbn43/8Eb5oALqZ4IxDlM/fibc1sOCyBqMWBv79/r169smbNmilTpjZt2kAWoI106dKpVCpkmEggHgiwyXggYG4u/QTwFsBnAM8B/AfwIrx9K16+lI+U3rBBTJ4sr2aoWVM+AwoOia9fpR8C3gh4IEaMkNc8li4t4IFInVrAY9GwoejXT7i6ylstLl8Wfn7x0GM2meQI5MuXz9vb28vLa/fu3Ulu8IlswFGLgz///NPd3b1evXqtWrXy9PTs0aNHIhsCu0MCJBBbApD46dPL+x1atBBDhgjEJvbuldcrBASIR4/EkSPC3V38+afo0EHeTpk1q7wEEh6IK1fE9u0CUUV4IBDUKFLEJF262h07GiP4Uru2vCdzyRIZ17h/X0BhxLZrXC5pEoA+KF68uC0EaNIcf6IZddTiYPPmzUuWLFm4cOHs2bN37tzp4eERxGBkotl+iboj7Jz+EjAykhc/VqwoOnYUY8bIBzEdOyYeP5a3Wd68KfbskY9qGDxYQAp8H6Ppu3dGEA3QFlAYXbrIOzCtrUWKFAKxiRo15EWUf/0ln9xw9qzgi6m+Q+N/Eki0BKIWB48ePapQoYIygJIlSyZLlky5lVGxcEoCJJCECJiayusia9WS7oEpU+SrL0MGH2hmdnjGjK8IRoTMirJlZTXMwnNw967Yv1++IXP4cPnMx5Il5Yup0qQRRYv+d98EfMg3bohPn5SlOSUBEtA5gajFAfwEyfEj/95TiIOv+MF/n+V/gyfAASYKAoj0a+1HRHatlePPqFK9y5072Ng4dA1ubvI1E5qxidGjRbt28p6ILFlknffv5YuptmyRD5Pu3VvUrSsKFZJuhmzZ5KMaFHfFihXy3VR8ppPkxT8SSGgCRlGuMDg42NHRsen3z6dPn7p37/59rmmUi7MCCZBAHBDIl09eCuDlJTSTbh+9EOWoNGMTY8eKlSvlwf7JE/maiWvXhPq+iZCrFkTIM9bk4x2PH5ePekR9SAT4LCEXzM1FwYJSQEBGTJ8ub8W8dElAXkTZAVYgARKILYGoxUHHjh0zZcpk8f3Trl07Kyur73MWsV0vl0tgAlyd/hOAPihuEC+hSJFC+gnU9014eEgvAg72L16I//1PrF0r30HVpcsPz3S6eVMg9PD33/KJDk2bypCEhYW8daJ2bfksh02bxL17gq+Z0P/vOEeQeAhELQ6WRfpJPCNhT0iABPSYgEolr0UoWVK0aiWGD5fXKBwIeaYTYhPKVQsLF0r7b7+JEiVkTQz1+XP5xstJk0Tz5iJ3bpEunbwKcsgQsW6d9LKEPLQNtZhIgARiQSBqcRCLRrlIfBFguySQqAhEdMVDRPZYdN7ERFhby6N+167So4AD/5kzAj4GeBpOn5bPh4aPAQ4VVHv7Vt4/OXWqfCRDgQIiTRpRqZJ8BybCGVev8qZKwQ8JxIRA1OIgICBgB6KDIY0OHz58wPfP4MGDP/Hq4hAsnJBAEiWASIe3t7wM4uhRSQBTLy951g67nI/PP+iPUqVE9+7Sx4CV+vnJV1YuWiRvo4DdzEx8+CDQH1dX+ZAGGxvxyy+ibFn50OilS8XFiyIwMD47x7ZJQO8JRC0OVqxYsWDBAmWgc+bMOXny5IWQz6pVq+bNm6fYOY0RAVYmAcMhAB2AE3c7OzkiTJGHRc4k7F/y5KJYMQEvwty5Ah4FKIPLl4W7u+jbVz6+KWVK+YSGU6fk66Y6d5Y1U6WS4QknJ4Gd27lzvIsyYbcW16YHBKIWB6tXr+7UqZN6KGvWrDkU8pk6deqGDRvUdmZIgARIILEQSJZMwFvQsaOYNUscOybevRM3bsiXRwwcKN86YWEhvnwR0AQLF0rfQ4kSAn6IokUFdnRz5ghoiI8fE8tA2A8S0BGBqMWBt7d3/vz5le6ZmZkZGYUuUrJkyWvXrin2JDnloEmABPSEgLGxKFBAtGkjpk2T1yW8eSNu35aPaxw2TNSsKdKnl1ckXLokli0TffrI6ANiEL/+Ktq3F4hKIDbx/r2ejJPdJIE4IxB6pI+kvXfv3iWDDA+p8eLFi1y5coVkxbdv3z5//qzkOSUBEiABvSGgUsmHOrdoId82uXevvLzxwQP5+IRRo+RrrC0tsXcTOPNZtUpez1ipkoCnASdIrVqJqVPle7Ffv9abkbKjJBBbAlGLg2zZsl25ciV8+//++y+Kwtv1zMLukgAJJHEC0Ao5cojGjcW4cfLRTL6+4skTmcEsjNmzSzy3bon16+W7qapXl54Ga2t5/+TEiWLzZnH5snysk6zEPxIwHAJRi4O6deuOHj06zI0JAQEBY8eOrVevnuGQ4EhIgARIQCGQJYt0IcCRsGWLePhQKA9UcHERcDbkzi2r3L8vNm0Sf/whmjUTRYqIlCnle6qqVJHvl5oyRTohcEIVECBr8o8E9JNA1OJgxIgRr1+/LlCgwNSpU7du3bpt27YpU6Zg9s2bNyhKJKNmN0iABEggvghkzCgvTRg2TF6mcOeOQFjh4EF5+ULbtvKWhzRp5Hp9fMThw/K+yqFD5QulbG2FubmA16FqVakYEI/w8BBXr8qbJmRt/pFAYicQtTjInDnzyZMnCxUqNGzYsCZNmjRu3Hj48OGFCxc+fvw4ihL7+Ng/EiABEohbAmnTylseBg4Uq1aJM2fEmzfi5Ut5j8PKlWL0aPkIphIl5COYsNLHj8WhQ1IxDBmzPjAIAAAQAElEQVQimjQRNjbJ0qSp0aWLca1awslJyoutW6Vi4ANjwIopkRGIWhygw9bW1nv27Hnx4sXpkA8ymM2tuNdQHGeJDZEACZCAHhJIn16ULi3atRNjx4o1a6RigHfhxQupGFasEAhPtG4tHByEhYUqONj85UsjKIaFC8XgwaJxYygG6WPImVNUry7vlUD9GzfkFZF6iIFdNiQCUYiDf//999v3R5SnS5euZMgHGU0EV69e/fr1q6aFeRIgARJI0gRUKvkCCCiG9u3ldY5QDEgHDgR6eh7966+vY8bI5zXVqyfs7eWjG4OD5ZUNBw6IOXNEx47yrVRwTlSrJhDI2LxZPHrEd0ol6e+SjgYfhTgoVqzYq1evIu9bmTJlHj58+F8d5kiABEiABDQJ3Lol8ueXzoOGDd8ULBg8ebJYvFjs3ClfQfn2rbzg8cQJ4e4u75wsX16kSCHev5fPY0C1Zs1EjhzCyko0bCgmTJAvmoJPQrNl5kkgfghEIQ6Cg4NHjRr1/XUK2v9/+fIlfvrGVkmABEjAIAh8+KB9GLDDx5Axo3zyEnwGM2bI5zlCGVy6JK9U6NZNvpza2Fg8fSq2b5fhidq15Y2UefPKBzrNnCkgKfz9tbdMKwn8HIEIxYHSbMWKFW/evBnyLoUIJ/AcpIDUVRbglARIgARI4GcIJEsmb4/s0kW+9+HCBelFgAhwdZWCQHlvxZ070uUwYIB8bcQvv0gB0bWrFBN8odTPYOeyPxKIQhwcPnw45EUKUUyyZMnyY7OcIwESIAEdEYAP//x5+ZJG9RQWHfUlDlZrbi79Cv36yXdDeHvLGyn37ZMhhkaNBHa8QUECbgYEKeBmKFZMXsFQpIiMQfTtK+CH2LxZckAkIjg4DnrCJgyIQJRDiUIcRLk8K5AACZBAIiIAHYDovr29vNZPPYUF9kTUy5/oStq0okYNMXKk8PCQT3J8/Fg+c2n4cHmzg4WFfL3k5csyBuHmJgYOlM9oAoT06QWKNEXDli0CPok3b3ip409sCQNflOLAwDcwh0cCSYsAovhaBxyRXWtlPTJmzSoaNxaTJglPT+lUgAbas0fMny/vdGjVSt5gaWkpR4Pha4qGpk1F8eIiXTqRJo2wsxNwQjg7y1DFkyeyMv/0hkA8dpTiIB7hsmkSIAESkARSp5bT8H8R2cPXjI7FyEjkzSuUJyy5uMiD/alTwtdXvvrhxg2xe7eYN08MHSp++02UKiUyZ5ZNvn8v/v1XbNsmZs2S1zRAauTOLR/QtHatXFDW4F8SJUBxkEQ3PIdNAiSQcATy5RPe3sLLSxw9KleKKfKwwC7n4/kvRQr5xuratUX37uKvv8S6deL0aXkHxKVLWlZ8755YuFAKBSsrUbCgXAT1oTC0VKUpjggkymaiFge3bt0aPnz427dvE2X/2SkSIAES0AcC0AHw5MOHj85iijwsyOswRfTwurZtZdBBpRI3b8o7Jlq3lg9aUAuFp0912GWuOsEIRC0O/vrrr5s3b6ZJk0azT58+fbp27ZqmhXkSIAESIAFDIDBggHRyvH4tww39+4tixYSmUMiSRT7DsWtXsXSpQLTi+yN0DWHgPzcGA1s6anFw5MiRvn37hhm2mZlZ9+7dJ02aFMbOWRIgARLQJYGIovgR2XXZ18S97jRpRIMG8n7I8+fFq1di61b5AEdFKEATLF4sOneWKiFDBlGvnry18uBB4eeXuIfE3sWAQNTiwMfHJ0+ePOGbdHJy2rZtW3g7LSRAAiSgMwLw1SOWj4i+ZoIFdp31Sf9XnDatfHbCjBnyqQkvX0qhMHSoqFhRmJnJl1Lu2iWf3litmrxhEuqhZ0/5vso7d/TzPkn931hxNIKoxUG6dOl8tV2NUrJkydu3b8dRN9gMCZAACcQRAegARPQ1Eyxx1DabkTdANmwoL2w8ckS8eydfQTlrlrwDIkcO+TLJixflPRHt28v7Jiwt5W2WU6bIZ0IHBBCdfhGIWhxUrFjR3d09/KiMjIw+f/4c3h7ecvTo0QYNGlhZWalUKg8PD3WF4ODgMWPGwJ4iRYrKlStfvXpVXYSW+/TpkyFDhpQpUzZs2PDx48fqImZIgARIgATigEBEoZaI7OFXmTy5KFFC9O0r74B48EBgR71xoxgwQD5fAUXPn//nY/jlF1GypOjXT6xfL19BGd9PbAzfVVpiSMAoyvqDBg1atGjRwoULw9Q8depU7ty5wxi1zn78+NHOzm7OnDlhSqdMmTJjxgzYz549a2lpWaNGjQ8fQl9P4uzsvGXLlnXr1h0/ftzPz69+/fpBQUFhFucsCZAACZBA7AnAoYKAi2b8BXlYYI9do1mziubNxfTp4tQp6VQ4cUJMmyaaNhVwIXz9Ks6eFbNni1atRM6cInt20aKFmDlT3lQZvZPM2PWIS8WaQNTiwN7eft68eT179sTBG+f9Dx8+fP369datW4cOHdq2bdvorLhOnToTJkxoiq+IRm24DVxdXUeOHAm7jY3N8uXL/f3916xZgyrv3r1bsmTJ9OnTq1evXqxYsVWrVl2+fHn//v0oYiIBEiABEogzAtABmvEX5GGJk9bNzOQrIQYOFJs2ycc837snsHvv3Vs+1trYWPj4iH/+kT6GMmXklQrlyonBg8XmzWGevBQnHWEjsSMQtThAu126dDl8+DCO2TiQW1tbZ8yYsUmTJra2tv3790dp7NK9e/eePn1as2ZNZXFTU9NKlSqdPHkSs15eXoGBgeoixB2gHpQilGomRB/ea3xQhAWZoiRAUFEiUlcgKzWKyDMEFTkfdWlSBPX1a2DWrIHNmwfOmBF46lTgy5df9+8PGj/+W716wenTC3gOsOeHj6FZM2FlFWxt/a1166BjxwCKSYcEoiUO0L/y5cufOXPm2rVrK1euXLBgAQ7Ve/bsMTExQVHsEpQBFsysPMITOSGQV4yYJk+ePG3atCFmOVEXyRmNPxcXF4vvn+zwUwlx6NChXfxESsDT0xMIMY20FgslAVAiKwkiqj+CiopQaHmSBBU69v/+HTmy089vh63t9q5dty1evH/u3PN9+96rVetdzpzBKpXq/n2jdeuuHjyInx6TDglEVxwoXSxYsGCbNm3gSChdurRi+ckpvgnqFoKD5RdDPauZiaho+PDh8Gco6dGjR1ikSpUqdfmJlADCQwCFaaS1WCgJgBJZSRBR/RFUVIRCywkqFIT6X716lbp0sZ02Ldv27ea3bn198eLrrl1Bo0cX6tQJPz0mHRKImTiIw45aWlqiNTgJMFXS8+fP4SFAHkVfvnx58+YN8kpSFymz6imCEb9ofGCHM4MpSgIEFSUidQWyUqOIPENQkfNRl+orKPUA4jWTPn2yvHmNGzUyefsWoJh0SEBn4sDa2hoiQHGyYfxQA0eOHClbtizy9vb2+Pqpi3x9fa9cuaIUoZSJBEiABEjAMAncuiXy55cXLdapY5gD1J9RJYQ48PPzuxjyAZZ79+4h+/DhQ5VK5ezsPGnSpC1btuDY7+joaG5ujpgF6lhYWHTu3HngwIEHDhy4cOFCu3btbG1tq1evjiImEiABEiCBWBNI7At+v5s9sfczCfQvIcTBuXPnioV8wHPAgAHIjh49GvkhQ4ZAH/Ts2dPBwcHHx2ffvn2pvz98Y+bMmY0bN27ZsmW5cuUgGrZv325sbIxFmEiABEiABEiABOKbQEKIg8qVKwf/+HF3d8fA4DwYM2YMogafPn1CTMHGxgZGJZmZmbm5ub169crf3x/KQLkTQSnilARIgASSNgGOngTinUBCiIN4HwRXQAIkQAIkQAIkEHcEKA7ijiVbIgESIIHoE2BNEkjEBCgOEvHGYddIgARIIEkR+H7ZWZIadOIcLMVB4twu7BUJkIB+EGAv45JAvnzC21t4eYndu+OyWbYVcwIUBzFnxiVIgARIgATiiQD0QfHiwtY2nppns9EkQHEQTVCsRgIkYMAEODQSIIEfCFAc/ICDMyRAAiRAAiRAAhQH/A6QAAkYCgGOgwRIII4IUBzEEUg2QwIkQAIkQAKGQoDiwFC2JMdBAoZCgOMgARLQOQGKA51vAnaABEiABEiABBIXAYqDxLU92BsSMBQCHAcJkIAeE6A40OONx66TAAmQAAmQQHwQoDiID6pskwQMhQDHQQIkkCQJUBwkyc3OQZMACZAACZBAxAQoDiJmwxISMBQCHAcJkAAJxIgAxUGMcLEyCZAACZAACRg+AYoDw9/GHKGhEOA4SIAESCCBCFAcJBBoroYESIAESIAE9IUAxYG+bCn201AIcBwkQAIkkOgJUBwk+k3EDpIACZAACZBAwhKgOEhY3lyboRDgOEiABEjAgAlQHBjwxuXQSIAESIAESCA2BCgOYkONyxgKAY6DBEiABEhACwGKAy1QaCIBEiABEiCBpEyA4iApb31DGTvHQQIkQAIkEKcEKA7iFCcbIwESIAESIAH9J0BxoP/b0FBGwHGQAAmQAAkkEgIUB4lkQ7AbJEACJEACJJBYCFAcJJYtYSj94DhIgARIgAT0ngDFgd5vQg6ABEiABEiABOKWAMVB3PI0lNY4DhIgARIggSRMgOIgCW98Dp0ESIAESIAEtBGgONBGxVBsHAcJkAAJkAAJxIIAxUEsoHEREiABEiABEjBkAhQHiX/rsockQAIkQAIkkKAEKA4SFDdXRgIkQAIkQAKJnwDFQUJtI66HBEiABEiABPSEAMWBnmwodpMESIAESIAEEooAxUHMSLM2CZAACZAACRg8AYoDg9/EHCAJkAAJkAAJxIxA0hQHMWPE2iRAAiRAAiSQpAjoWBx8/fr1jz/+sLa2TpEiRe7cuceNG/ft2zdlAwQHB48ZM8bKygpFlStXvnr1qmLnlARIgARIgARIIF4J6FgcTJ48ef78+XPmzLl+/fqUKVOmTp3q5uamDHjKlCkzZsxA0dmzZy0tLWvUqPHhwwelKHTKfyRAAiRAAiRAAvFAQMfi4NSpU40aNapXr16uXLmaN29es2bNc+fOYZhwG7i6uo4cObJp06Y2NjbLly/39/dfs2YNiphIgARIgARIgATilYCOxUH58uUPHDjg7e2NQV66dOn48eN169ZF/t69e0+fPoVWQB7J1NS0UqVKJ0+eRF4zff78+b3GB0WB/ESDAEFFA1JoFbIKBRHVP4KKilBoOUGFgojqH0Ax6ZCAjsXB0KFDW7duXbBgQRMTk2LFijk7O2MWOKAMMM2cOTOmSkJeMSqzytTFxcXi+yd79uwwHjp0aBc/kRLw9PQEKEwjrcVCSQCUyEqCiOqPoKIiFFpOUKEgovqHPTl+ekw6JBBX4iCWQ1i/fv2qVasQLzh//jxiB9OmTcNU3ZZKpVLng4ODVar/ZhX78OHD333/PHr0CMYqVarA98AUCYEaNWoAFKaR1GGRQgCUyEpBEfmUoCLnoy4lKDWKyDPYk+Onx6RDAjoWB4MHDx42bFirVq1sbW3bt2/fv39/OAOAzOFe4QAAEABJREFUw9LSElNNV8Hz58/hPIBRMyHc8IvGB0XwQDBFSYCgokSkrkBWahSRZwgqcj7qUoJSo4g8A1BMOiTwozhI8I74+/sbGf3XB2NjY+VWRmtra+gDxQWHTn358uXIkSNly5ZFnokESIAESIAESCBeCfx3YI7X1UTUeIMGDSZOnLhz58779+9v2bJlxowZTZo0QWWVSuXs7Dxp0iQYr1y54ujoaG5u3qZNGxQxkQAJkAAJkAAJxJhATBbQsThwc3Nr3rx5z549CxUqNGjQICcnp/Hjxyv9HzJkCPQBihwcHHx8fPbt25c6dWqliFMSIAESIAESIIH4I6BjcYDjvaur64MHDwICAu7cuTNhwoTkyZMro4XzYMyYMb6+vp8+fUJMwcbGRrFHPr18WZw/L27dirwWS0mABEiABEhALwkkTKd1LA7ifJB16gh7e5E/P/VBnKNlgyRAAiRAAkmFgKGJA/V246OW1SiYIQESIAESSGQEEnt3DE0cBAWFPgvB11c8eybevxeBgbrZBghtIMChmWDRTVe4VhIgARIgARKICQFDEweBgcmU4devLywthYWFSJ5cJEsmUqUSGTOKHDlEgQLCzk6ULi2qVBF164qmTUXbtqJLF9Gnjxg8WIweLVxchKurmD9fLF8uNmwQ27cLT09x/Ljw8hLXrom7dwVkx9u34vNnERysrErLFDoAoQ0EODQTLLBrqU0TCZAACZCAPhIw3D4bGdzQQo/Ypqb/jSwoSHz8KF6+FI8eCW9v8e+/4n//E4cPi927xZYtYs0asWSJmDNHTJsmxo8XI0aI/v1Fjx7C0VH89pto2FDUrCkqVBAODuLXX0WePMLKSqRNK8zMhLGxMDcX6dOLbNlE3rzyWocGDUT37mLCBLF69X9r18wx2KFJg3kSIAESIIHEScDQxIGZ2VcF9MmTAprA31+8eiV8fMTt2+LyZXHmjDh6VOzdKzw8xNq1YtkyMXeumD5dHs5HjhQDB4qePcXvv4tWrUTjxqJWLVGxoihRQtjaymN/1qwiXTqpBlShgQvpOQgIEK9fy/bv3JF3SezYIRYsEKNGibFjlV6Enbq5ib//Flj72bPSA4Eehq3BeRIgARIggYQlwLWFJ2Bo4kA9wtSphZGRSJFCHtFxro8zfhsbeaSHDwCegEaNpAKAbwAeggEDBJQBTvfhOcCRe+lSqRvgUdizRxw5IvUEPA0IBzx+LHUGPBA4on/6JN68kUd3RBmuXhXnzoljx2QAAsEIKINOnWTYQmj7uLuL3r1FkyaiZEnpgYB7I3t2UaaMaN5c9OsnJk+W2mLdOunSgLhBy5A1fn5ShWhrjDYSIAESIAESiBcChiYOECnw8pKxg3z54oUXGoXnAAf1NGnkNQ3W1qJwYRlQKF9e1K8vnJzEuHEySAGRgZrhE+IUUAbwRkCvQLtAZ0BznD4tNm0Ss2eLYcNkVKJ1a3kxRLlyAmoGAQuoHBMTKXGwrqJFRaVKMtLRoYO8SOKPP8TUqWLhQrF+vYCUOXVKXL8unjwR8JeEXzUskDjnz4tLl5CVU+RhkTP8IwESIAG9J8ABxCUBQxMHCAEULy7iTxn8JPshQ8TmzdIbAZfA589CUxmgCId8uDQqVxYQAZACiGIYG8sVQkPAUXH/vjyiIyyyfbtYuVJeJDFxosBSUCSIg9SpI8qWlUoF4Y+UKeWVmFAt1asLtDl8uEA4Y84c+fgHe3t5/QQaRcQEeV4jCRRMJEACJEACYQgYmjgIMzxdzeJ0X+uqNe3JkgkcyEuVkndM9OkjYwrLlwsPD3HokLhwQd4W8eqVvA8TYQUoiWvXBBwD8Isg6LBggZgyRYZCEKFo3146EnCkt7MTuXLJKyXhkMCq37+XXoQDB6SM+Osv0bev9DTAjvTpk0nHjrU+fUqGPBKCKfA97NwpV/rsmfj2DTYmEiABEtARAa42cRCgOIiX7QDXhbe3vPsRMQ51ggX2GK0PIQy4ARCDKFRIXsdQu7a8gaJbN3nX5YQJ0h+wYoXYulVeG3Hxorh3T14d+fWrePs2VBmgVFEGzZuLIkX+W/O7d2bBwSplHsoAvgfEROBxsbQUiJjkyCHX1ayZ1BMuLgKN7N8vb+N8945XPyjMOCUBEiABAydgZODj093woANwuNVMsCRAd6AnLCxEwYKialUBv8LQoWLWLLFxo1i2LHTlZmaBM2ceSp489LYOiAC1MsCy0BaPHslbPRH+QCRixAjRsaOoUUPexpkmjUiVSoZsEPho00YMGiRmzpSXOxw7Ju7cEQEBoe3zHwmQAAmQgL4ToDjQ9y0Y4/5DAVhbvzc2Dn0gBA7/27dLJ4evr3yyk6IMtmyR1zSgyNExVBmkTStX5O8vbwo9ckTe0DF9uhgwQN70gaBG3rzyJk/U+fVXWR96QrnQYdMmGQ158EC2LJfX9nfrlrwL9Pz5/6awaKtIGwmQAAmQQAIRoDhIINB6sRoTE/lAp5IlRePGolcvMXGi9Dfs2yeuXJEBi48fpTI4ejRUGQwcGKoM8uSRt4xigAhnXLsmEINAJEIdzihbVuTKJZ8ZlTGjfDZlnTqic2fxxx/yCRMeHuKff0Ivk7S3lzd9KFNeJgmYTCSQCAiwC0mXgFHSHXoSG7nmtZCaQ4/IrllHyZubywdEVqggNQF8BtOmSZUAL8Lt2/IBlBEpA2treR0DWnj5Uj6bcs8esXSplB0QH02aiBYtUKIlLV8uduyQvoSnT+XDrLTUoIkESIAESCDeCFAcxBvaRNZwvnzy8Q9eXvIZkegaHADIx+IaSSwbPiFUYWEhChUS1ar9cKHDiRPytouAAPn8qMuX5bMply37TxmUKiUyZw7fmLTAadGggfQlZMkitUW2bPKxUfBn9OghH3G9ZIl8TtSlS+LFC95eIXHxjwQiI8AyEog5AYqDmDPT2yWgD4oXl759jMDOTiAPC/LxnSAd0qWTz3SqWVM4Osq3V8yZI5/3cPq02LVL+8orVgxVBkZG0nPg4yPOnhVbt8oXYo0eLV+UVbeufBpEpkwyopE7t3w2VPv2suV586TLAbrh9WveW6GdLa0kQAIkECUBioMoEbGCDgjMnCkfSv3kifjyRT7z8dw5sW2bFmWAnqHCvXvSHbJqlXyjZs+eAi6HokXlC7FSpZJ3bdSoIa9yGDNGPrly3z55k6efH5ZjIgE9I8DukkBCEqA4SEjaXFeMCRgbC0QW7O3lId/JSb7RatEioX5k0+fP4v59+WKLNWvkU6R69xaNGkmPSMaMckX+/uLmTXmB5NKlcsEuXUStWvIhkqlTy6dFFSki6tWTz6ueNEk+KurwYXlDJhqUS/KPBEiABJI2AYqDpL39dT16HKe1diEie5jKyZOLnDlF+fKidWv5JGk3N+HhIW/LfP5cvmDC21scOCDc3eVlCt26iTp1ZGjDwkK28fatfEsnghoLFshnTXboIKpUke/eNDOTl0E4OMgbMtHmoEFGx49brVihQs3r1+WC/COBnyPApUlAPwhQHOjHdjLUXub7fpmkl5c8qCtTHNRh/8khp0ghn9dUtaro2FHeOQkRgAP85csCsuD9e3H1qrykceFCMWqUcHSU11Hmzy8vX8BKISzQjf37xbp1YvZs42nTSnTpkgw+hsKFpQ+jbFn5kMpBg1AktmyRsQ8+cxrQmEiABAyMAMWBgW1Q/RsOdEDx4jIWoJ7CEq/DgFsCR/ratUXXrvItmsuWydADAhAfP4qXL+U7JmbMCF2/sfG3woVfqlShD4x6+lQ+02nDBjF9unzFdtOm8iXglpZSVeTJIx9JiQZdXAQqQF68eRPaSFz9u8WnRcUVyp9vhy2QgKETMDL0AXJ8JBBdAiqVvIyxaFFRqVLoIsmTB02adMLMLPRR08uXywdRQzr07y+aNxelSgkrK4GlvnyRd2weOiQWL5Z3TPz2m0BgIl06gVSihPQ0jBghi1Dh4UN580Vo6zH5B2UA34a9xqOikIcF9pg0w7okQAIkEC0CFAfRwsRKJAACNjZSE0AZQB9s3ChOnxY+PvLJ0Pfvy9slVqwQY8bIxzwg9AB3AurDeXDunHQkwJ0ApwJiHDlzyudMFyggL4Do3Vu+nGLrVvkASn9/VI8sffigvTQiu/batP5IgHMkQAIREaA4iIgM7SQQLQImJgKH/AoVpCz480/5EssTJ4Svr/Dzk9c8enjIGESvXgJRDIRLUBluBm9vsWeP+Ptv+XKKxo2Fra1ImVJe0FC+vOjQQd5YsWqVOHlSPHsmgkMDGtHqCSuRAAmQQFwRoDiIK5JshwR+IIDjPTwNjRpJBTBnjrz+EZogIEDee3nwoFi0SAwbJlq2lM96SpNGLvj0qYCqWLky1P1QrpyA+yF1avmu7SZNBHwVshL/tBCgiQRIIO4JUBzEPVO2qO8EcEjWOoSI7ForazUaG0s3Q5Uq8iGPiDWsXy/vd0D04fVr+QhIzE6aJB/ZhAo5csirGT5+DHU/rF6ttT2xbJm8DEK5/pFuBu2MaCUBEog5AYqDmDPjEoZOAP5/nOXjiHv0qBwqpsjDArucj4e/tGnlNYxwJAwfLi9dhGvhwQMBN8PNm/IJ03A8tG2rfa0owlLK9Y8WFtLN0KCB6N1bTJsmRcPZs+L5cz2JTWgfH60kQAK6IUBxoBvuXGsiJwAdUFwX76HQxGJqKvLnl5cu9uol/vxTs+S/fMOGokwZkSmTtHz4IN0MO3bIqxkGD5Yxi5Il5TOdEOAoVEhe9NC9u3zC9Jo18oIGHx++s0pC4x8JkIBWAkZarTSSAAkkKgIQK3BdwIGhmWDZulUe6Z89k2/Nvn5dXtkwf76A+6F1a1G2rMiaVcYm4IG4cUO+EnPBAnmnJZwQ5cqJbNnk4xny5pUPgOrcWT7vYcUKceSIvCTia+idm9ECcCvk6QuXLsnKly6J8+cFLHKGfyRAAvpMgOJAn7ce+56UCEAfwJmhmWBRAzA3l2+Zql1bODmJSZME3AMnTojHj8WnT+L2bfmUpyVLxOjR8m6ISpVEzpzC2Fi+1OrOHYEQxtKlAp6Jjh1F5crC2lqYmckKFSvKyqNGyRdW7d8vD/nhXzwBHQDfhr29QGX0BFPkYYEds7pKWDs0imaCRVed4XpJQE8JUBzo6YZjt0kgWgSSJxd58kj3QKdO8ibJ5cvF4cPSPQDR8OCBdBXAYTB+vLwKsnp1+XYJ1A8KEg8fytdZrVwpJkyQ107WqCEDHBANVlbSIQG3xLBhAi6KPXu09wEBDu0F8W+FDoA6gUbRTLDAHv8r5xpIwHAIGBnOUDgSEiCBaBNIlkzkyCHP+Nu3l++eWLxYeHpK9wBiEE+eyFDF2rXir7/kWyvr1BGFCslnN6FtX1/5AOl16+Q7MHv0EH37wiZTQECygQMrff5sLGeE9EacOydevBAJfwNFRLokIrvSYU5JgATCEKA4CAOEsyRgKARiNQ4jI/k4pjJlRKtWYuhQMW+evF3i2kUqeU4AABAASURBVDX5TCcc7M+eFf/8I2+F6NNHNGwoX231fSWqO3fSfPsWuj8ZPFi+dSJTJikpChQQNWtK9wP8E4rf4u5dGdH4viD/kwAJJEYCoT/mxNg19okESCDREFCpRIYM8n7LZs3EwIHypZRbt8oXVyodNDUNHDHitIlJkDJraxv61gkEL7y9pU9CueLB0VFUqSLDHIhQZM0q77OABBkyRN5esX27+Pdf+c7MhHc2KH3mlARIQJMAxYEmDeZJINER0IsOwd9QsuSzZMm+Kb11d5dvnUCEQrngEbNjx4Ze1oDwP5QBFACCF6dPi/XrxdSp8sEM8EPY2Ym0aYWFhXyedL16olcvKUEQ7Hj0SAfhCWUgcTi9dUucPy94W0ccImVT8UqA4iBe8bJxEjBkAhE9MlKxm5qK3Lmlq6BjR3mjhHJZw82bwt9fvjbizBkZoZg+XfTrJxo3FsWLS88EYH34IN9EtWuXmDtXFiEkkSOH+OUXGado317eiLF5s7h+Xc8CE1AGUEX29vIiD4wxkdzWgZ4wkUBEBIwiKqCdBEgg7ggYZkv58glEDby8xNGjcoCYIg8L7HI+gj9EKDJlkgd7RCgGDBCurmLLFoEFX7yQVzbgwL9nj1i4UF7xANFQoIC869LPTz5netUqMXKkwFKFC8tXVRUsKFXF8OHyZVeQGu/fC3wUXYJMmBSRPUy1eJqF4tHackR2rZVpJIGEJEBxkJC0uS4SMDQC0AE46UdEAAPDFHlYkI9dSplSPq2hVi3Rtau8VwKi4cYN6Wm4dk3AYTBxomjXTl73kCqV+PpVwAmxdausBs9EqVIyHpE1q+jRQ7RtK4XFvHny1ZfnzknZEaVeiV1vuRQJGDABigMD3rgcWlwTYHu6IJA8ubyXskkT+XjHlSvlG6rgJHj0SOzbJy9KgBqoUkVYWsqePXkiDhwQq1eH3mlZu7aoWlXKBaiKv/6S/glE/V+9MoQrGORo+UcC8UmA4iA+6bJtEiCBeCCAwES2bKJGDdGnj7w04eBB4esr3ryRz2BYtkwMGRJ6m6WRkYCMQMRh+XL5SOmmTQWi/hkyyCsYfv1V1K0rdQNEw9q18rkOfNlEPGwoNqnHBCgO9HjjseuxI8ClDJJAmjSidGnh6CjdBgg3IJTg7y+vbfznHzF+vIw1KK+hwtj9/ATiFLt3y4c8Dh8u2rQRyssmzMzkbZZwNvz+uxgzRkBnQHbcuaNnFz9igEwk8PMEdC8OfHx82rVrlz59enNz86JFi3p5eSmjCg4OHjNmjJWVVYoUKSpXrnz16lXFzikJkAAJRIeAqamAh6BZM/kIyFWrxP/+J54+lVcw3LwpQxKLFkl7+/byDgLlZROBgeLuXXHokHB3l4+a7tRJPnY6b175somsWf97bvS8kAdDYYcEkRGdbqBORJdDRmTHIgmTboXcYIloizrBkjCr5loSOQEdi4M3b96UK1fOxMRk9+7d165dmz59ehro/xBmU6ZMmTFjxpw5c86ePWtpaVmjRo0PvLQ3hAwnIQQ4IYHYEEiRQr4nAiGJLl2kR2HFCvmCifv35RuqHjyQt12sXCnfKNG1q3ywY4ECUhkoT2U4dUo+9GnyZNGzp6hXT9jYCBzaEd2oWVP07y8WL5ZBjXfvtHcpX77Y3Nahva24s0IHKDdYItqiTrDAHncrYUv6SkDH4mDy5MnZs2dftmxZyZIlc+XKVa1atTx58oAl3Aaurq4jR45s2rSpjY3N8uXL/f3916xZgyImEiABEohzAsrLJipUkDdEjBwp76Xcu1co90o8eybOnBEbN/733Gg7O6Gcxfj4yOc/urrK2yvKlpVGyIVatcSAAfJtltAT777LBeiD4sUFFkTPMUUeFuR1mCI624rIrsOuctUJT0DH4mDbtm0ODg4tWrTIlClTsWLFFsHTF8Lg3r17T58+rQlNHjJrampaqVKlkydPhsz9N/n8+fN7jQ8KAvmJBoFEBCoavdVtFbKKJn9DBfX1a2DatIFFiwY2ahTYt2/g9OmB//wTePZs4PPnMh09+nX+/K99+wbVqPEta9ZgQIBc2LdPzJwpXyehyIXs2YNr1frWv3/QwoVfT5wI8vdPFk2k8V3t27fAFCm0JNjje9XRaR8wmXRIQMfi4O7du/PmzcuXL9/evXu7d+/et2/fFXDzCYQGnwJK5syZMVUS8pALSl49dXFxsfj+gQcC9kOHDu3iJ1ICnp6eAIVppLVYKAmAEllJEFH9JU1QJ0/uev16p6XlzqpVd/Tqtf3vv7etWrXzr7+O9ux5sUGDO3Z2z9OlC8D35/Fj1b59Rq6uxk5OyapUMWvTpl7OnKJUqdfNmz8YMOCKq+upTZv2RQU4Xsp9fHatXaslwR4v64tJo9iTAx2TDgnoWBx8+/atePHikyZNgtvAycmpa9eu0ApqHCqVSp0PDg5Wqf6bVezDhw9/9/3z6NEjGKtUqVKXn0gJ1EC4VQhMI60Vs0JDrQ1K+FJhaqgDjKtxARFBAWbLljUHDCjj6vrrpk05zp5N+/RpsmfPAg8f/jpv3tc+fYKqVftmaSlfP/HypfmFC5m3bcs7Z06xIUMqtm5dr0+fhvPmNThypP6LF/XSp69XujQai/eUNWvd1q21JNjjfd1RrQB7cnyjmHRIQMfiIEuWLIULF1aPv1ChQg8fPsSsZcgzTTRdBc+fP4fzAEWaCeGGXzQ+KDLhJxoECCoakEKrkFUoiKj+EZRWQpkymVSqlKx792SzZxvv32/08GHQqlW7IBcWLBB9+4pq1USWLCAnHj1S7d1rNHOmcdeuySpUSGZpaZIlCxY06drVZMoUEw8Pk2vXTL580bqG2BuNjEwCArQk2GPfaNwtKbnwT3cEdCwOypUrd/PmTfXwvb29c8LjJoS1tTX0geKrROmXL1+OHDlSFhE8zDDFFwG2SwIkEO8EUqUKLFs2uFs3MWuW2L9fPHkiXr0Sx47Jhy706SMf6Zgtm+wDjKdOieXL5f2WLVuKokVFqlQie3apJ3r0kNc07Nwpbt0SgYGycuz+UqfWvlxEdu21aTVQAka6HVf//v1Pnz6NsMLt27fXrFmzcOHCXr16oUsqlcrZ2Rn2LVu2XLlyxdHR0dzcvE2bNihiIgESIAFDIpAunShfXjg5yadBHzgAL4J8AdXFi2LDBnlTZYcO8uFOadPKET9+LA4elDJiwABRv768J9PcXBQoIPOwzJ8vS1Hnm4xdyPqR/+XLF3qDpZeXfAOFMvX2FrBHviBLkwIBHYuDEiVK4PC/du1aGxub8ePHu7q6tm3bVuE+ZMgQZ2fnnj17Ojg4+Pj47Nu3LzUFrYIm8ilLSYAE9JxAypTypscWLeRbKOE8gAvh9Wvx8qV8zDNmR44UKLKzEylSyBdQ4XAOL8LMmfJp0IhTwLuAPSU8DfA3/PGHfGUlFocfQisS6IDixYVmgkVrTRqTGgEdiwPgrl+//uXLlz99+nT9+vWuXbvCoiQ4D8aMGePr64uiI0eOQD0odk5JgARIIAkSSJ9elCkj4EiYMEE6FeBa8POTbgY4G+bNkw9iqldPnvQbG8unQF66JDZuFBMnio4dBeKxGTIIZXHMwogiVPj4MQlS5JCjS0D34iC6PU1i9ThcEiABEoicgJGRyJZNXqbQvbuYMUPs2CHDBAEBcoo8LLBXrSrroB34Hk6flo4EuBPgVIBrQX0RA6qhMhaBE+JnLmLAWpgMhgDFgcFsSg6EBEiABISJifQfwIvQv7+ARwF+hUePfriIAc4DeCDgSACsx4/lZQoLFoiBA0WDBvLyBYQq8uQRtWvLN17OmiV27frZyx6xFiZ9JEBxEK9bjY2TAAmQgO4JaF7E4O4ur114+VJexHAq5IYI9UUM5uYiKEi+fWrvXjFnjnB2lm+RyJ9fXtyQN6+oU0cqhtmzxe7dVAzC4D8UBwa/iTlAEiABEtBCAM6D0qXDXsTg4yMOHxaLFokhQ0TTpsLWVioDKIY7d8SePVIx9Osn6tYNvVEiXz6Z79tXuLnJ0tu35QWSgh+DIEBxEI3NyCokQAIkkAQIqFTCykpUqiRfDDF5sti0Sfz7rwxJIPpw6FCoYmjSJFQxfP0qoAbgRYAygD6AXwFaAVEJeBqgHqAh4HuAnoCqQM0kAM/QhkhxYGhblOMhARIggTgkYGQksmYVlSuHKobNm0MVw6NHAoph4UIxeLCAYrCxka+3hg64dUvGHRB96NNHRiIQj1AUQ716QlEMiFlEohiw+Pnz4vLlOBwBm4oNgSQkDmKDh8uQAAmQAAmEIwDFkC2bVAxdu4opUwQUAw7nHz/KWysPHhQLFohBg0TjxuLXX/9TDLt2yac8QTHUri2gGMy/P77J2Vn8/bfYt09e63DjhgxY2NtLVRFunTQkKAGKgwTFzZWRAAmQgKESUBRDlSqiWzcxdarYskVcuSKgGB4+FAcOyAc7QjE0aiQKFxampvLBz97eYudO+Rjp3r1FrVoiTx4ZsFDgfPnCY5NCQmdTvdsAOiPFFZMACZAACcSUABRD9uzyYQxOTlIxeHiIq1flY5oePJCvlpg/X95F2bBhqGJAVEJp/9s3YyXDqa4IUBzoijzXSwIkQAJJlAAUQ44c8iVSUAzTpomtW6VigI9hx45QIMbGQaE5/tMRAR2JAx2NlqslARIgARJInASMjUWWLKFdMzGJ3sujQqvzX9wToDiIe6ZskQRIgARIgAT0msBPiQO9Hjk7TwIkQAIkkKgIpE6dqLqTpDtDcZCkNz8HTwIkQAKJh0C+fPKtUV5e8kkJiadXSbMnRkIkzYFz1CRAAiRAAomOAPRB8eL/3dOY6PqXZDpEz0GS2dQcKAmQAAmQQJIjEMsBUxzEEhwXIwESIAESIAFDJUBxYKhbluMiARIgARIwFAIJPg6KgwRHzhWSAAmQAAmQQOImQHGQuLcPe0cCJEACJGAoBPRoHBQHerSx2FUSIAESIAESSAgCFAcJQZnrIAESIAESMBQCSWIcFAdJYjNzkCRAAiRAAiQQfQIUB9FnxZokQAIkQAKGQoDjiJQAxUGkeFhIAiRAAiRAAkmPAMVB0tvmHDEJkAAJGAoBjiOeCFAcxBNYNksCJEACJEAC+kqA4kBftxz7TQIkQAKGQoDjSHQEKA4S3SZhh0iABEiABEhAtwQoDnTLn2snARIgAUMhwHEYEAGKAwPamBwKCZAACZAACcQFAYqDuKDINkiABEjAUAhwHCQAAhQHgMBEAiRAAiRAAiTwHwGKg/9YMEcCJEAChkKA4yCBnyJAcfBT+LgwCZAACZAACRgeAYoDw9umHBEJkIChEOA4SEBHBCgOdASeqyUBEiABEiCBxEqA4iCxbhn2iwRIwFAIcBwkoHcEKA70bpOxwyRAAiRAAiQQvwQoDuKXL1snARIwFAIcBwkkIQIUB0loY3OoJEACJEACJBAdAhQH0aHEOiRAAoZCgOMgARKIBoHEIg5cXFxUKpWzs7MDx6EDAAAO+0lEQVTS5+Dg4DFjxlhZWaVIkaJy5cpXr15V7JySAAmQAAmQAAnEN4FEIQ7Onj27cOHCIkWKqEc7ZcqUGTNmzJkzB0WWlpY1atT48OGDupQZEiCBJE6AwycBEohXAroXB35+fm3btl20aFHatGmVocJt4OrqOnLkyKZNm9rY2Cxfvtzf33/NmjVKqeb08+fP779/3r17h6LXr1+/4icqAuAZVRWWhxIgq1AQUf0jqKgIhZYTVCiISP9hT479OY4FmDLphIDuxUGvXr3q1atXvXp19fjv3bv39OnTmjVrKhZTU9NKlSqdPHlSmdWcIhhh8f2TI0cOFOXPnz8DP5ESyJIlS5s2bTCNtBYLJQFQIisJIqq/2IKKql2DKyeoaG5S7MmxP4d+wJRJJwR0LA7WrVt3/vx5HOM1Bw9lgNnMmTNjqiTkFaMyq54OHz4cDgMlPXjwAPaHDx8qs5xGRODRo0cAhWlEFWhXEwAlslLTiCRDUJHA0SwiKE0akeSxJ8dPL126dJgy6YSALsUBfif9+vVbtWqVmZlZ+MGrVCq1Ec4lleq/WbUdToVfvn/SpEkDO/wI3w38HyEBgIqwjAU/EiCrH3lomwuxEVQIhqgnBBU1o19+wZ4coIyMdHmEQgeSctIlei8vr+fPn9vb2ycL+Rw5cmT27NnIwk+ATaLpKkA1xQg7EwmQAAmQAAmQQLwS0KU4qFat2uXLly9+/zg4OLRt2xZzuXPntrS09PT0VEb+5csX6IayZcsqs5ySAAnEBwG2SQIkQAJqAroUB6lTp7bR+KRMmTJ9+vQwqEIeeDBp0qQtW7ZcuXLF0dHR3Ny8TZs26k5rzSDE8Oeff2KqtZRGNQEgIig1jcgzZBU5H3UpQalRRJ4hqMj5qEsJSo1CVxldioNIxjxkyBBnZ+eePXvCneDj47Nv3z4oiUjqowhfpjFjxmCKPFMkBICIoCLho1mkh6w0u59weYKKJmuCIqhoEtB5tUQkDg4fPuzq6qoQgfMABzBfX99Pnz4hpgB3gmLnlARIgARIgARIIL4JJCJxEN9DZfskoDcE2FESIAES0CkBigOd4ufKSYAESIAESCDxEaA4SHzbhD0yFAIcBwmQAAnoKQGKAz3dcOw2CZAACZAACcQXAcMRB3PnzrW2tjYzM7O3tz927Fh8AUv07bq4uJQoUSJ16tSZMmVq3LjxzZs31V0OjvhF2J8/f+7Tp0+GDBlSpkzZsGHDx48fq5dKChlAU4XcQKsM9kdQla9evarYMU2aoHx8fNq1a5c+fXpzc/OiRYt6eXkBBRJBAYJm+vr16x9//IEdUYoUKXLnzj1u3Lhv374pFcjq6NGjDRo0sLKywm/Nw8NDwYJp7Mi8efOmffv2FiEfZN6+fYummOKQgIGIg/Xr1zs7O48cOfLChQsVKlSoU6eO8mjuOCSlL00dOXKkV69ep0+f9vT0xK6qZs2aHz9+VDo/ZcqUGTNmzJkz5+zZs5aWljVq1Pjw4YNSBHpbtmxZt27d8ePH/fz86tevHxQUpBQZ/BQ0Fi5cWKRIEfVICUqNAhnshcuVK2diYrJ79+5r165Nnz5deVQ5iggKEDTT5MmT58+fj5/Y9evXAWfq1Klubm5KBcwm8V8fdkR2dnaAowBRT2NHpk2bNhcvXtwT8kEG+kDdIDNxQsBAxAF+dZ07d+7SpUuhQoVcXV2zZ88+b968OAGkd43gx+Lo6Pjrr7/id7hs2TKIJOU8D/IcZKCfwr8I+927d0uWLMFOv3r16sWKFVu1atXly5f379+vd2OPrMMRlEEJtW3bdtGiRWnTplWqEJTCQT3FAQ8/KHyXSpYsmStXrmrVquXJkwelBAUIYdKpU6caNWpUr149gGrevDmk+blz51CHrAAB52wTJkzA/gd5dYodGWgv7OgWL15cJuSD3++OHTs0vaTq9pmJNQFDEAdfvnzB8Q+/QzUF5E+ePKmeTbIZHPUxduXNZvfu3Xv69CnIwIJkampaqVIlhRLoBQYGqovg97OxsVGKUNOwE7ws2JVDFamHSVBqFEpm27ZtDg4OLVq0QKAK2hE7YsVOUAoHzWn58uUPHDjg7e0N46VLl+CHq1u3LvJkBQhaU+zIQIQhnlCqVCmlzdKlS2M2ieyylCEnwNQQxMHLly/hA9d8MxPyOBAmAL7EvApI8gEDBmBvhSM9+qkAARnklYS8YsQ0efLk6lNnlKqLkE9UKW47gzDK+fPnXVxcNJsFDcyCAKZKQl4xYpoEQd29exd+uHz58u3du7d79+59+/ZdsWIFyIAGpoCDqZKQV4yYJkFQgDB06NDWrVsXLFgQURgIKUTrMAs7gGAKPpgqCXnFiGnSZKVwwPCRAQ1MlYS8YsQ0IjIoglRV6itTzMKo5DmNEwKGIA4UECqVSslgiuOiSvXfLCxJMPXu3fvff/9du3at5thVqv+wREIpkiLN1vQ6/+jRo379+iGGYmZmFn4gKhVBhVL59u1b8eLFJ02ahKOdk5NT165doRVCy4RQqQhKqD/r16/HN2rNmjUQncuXL582bRqm6lKViqzUMH7IqFQxJqNS/bcI2koKuywMMyGTIYiDDBkyGBsba8pGvuK5T58+8AYfOnQoW7ZsyvfJ0tISGa2UUITQzJs3b1BBSfEMUFmJjqcIpmCY9vb2yUI+R44cmT17NrI4cUHPCAoQlJQlS5bChQsreUwLFSr08OFDZPC1wZSgAEGdBg8ePGzYsFatWtna2rZv375///6KX4qs1IjCZGJHBks9e/ZMs6kXL14ov1xNI/M/Q8AQxAFcT9jFe3p6qkEgX7ZsWfVskspAQcNnsHnz5oMHD1pbW6vHjjx+USCjWKAGcDhUKIEevKDqIl9f3ytXrihFSmWDnFarVu3y5csXv38QVm/bti3mcufOTVCaW7xcuXKal3ohoJ4zZ05U4DcKEMIkf39/I6P/dqo4aYHfBXXIChC0ptiRKVOmzLt3786cOaO0+b///Q+zBr/LUgabYNP/vscJtsr4WBGC64sXL166dOn169eh1nFmg+BofKwo8bfZq1cvxbGZOnVqnNUhBQQEoNuqkPv44RzeEu5F2BYWFp07dx44cOCBAwcuXLjQrl07nPdoXqOHxbUkPTeBj43GJ2XKlOnTp4eBoMJsWPygTp8+jW/O7du34TBfuHAhvmOoQ1CAECY1aNBg4sSJO3fuvH//Pn5oM2bMaNKkCeqQFSD4+flBfCMhf+/ePWSwo44dGbivateujQgXvplIyNSvX79AgQJomSmuCBiIOPjtt99cXV3HjRtXtGjRo0eP7tq1Szm5iStMetQO4sEQ0ZUrV4Y3WEmIgyr9HzJkiLOzc8+ePXGW7OPjs2/fPhwglaKZM2c2bty4ZcuWOE00Nzffvn27sbGxUpQEpwSludFLlCiB49zatWuhnMaPH48fGlwsSgWCUjiop25ubs2bN8dPDEevQYMGOTk5gZhSSlbnzp0rFvIBEJzOITt69GjkY0dm9erVOIepGfIpUqTIypUr0RRTHBIwEHEAIvhBQq1//vwZseSKFSvCkjQTwgphkqOjo4ICIj38i7CVIjMzM+zXXr16Bb8olEH27NkVe9KZHj58GIc9ZbwEpXBQT3FahhDMp0+f4JnDWZraTlBqFEoGahvfogcPHsBdd+fOnQkTJiDoqRSRVeXKlcPsmtzd3QEndmTSpUsHF+n7kA8yadKkQVNMcUjAcMRBHEJhUyRAAiRAAiSQlAlQHBjG1ucoSIAESIAESCDOCFAcxBlKNkQCJEACJEAChkGA4iAxbUf2hQRIgARIgAQSAQGKg0SwEdgFEiABEiABEkhMBCgO4n5rsEUSIAESIAES0GsCFAd6vfnYeRIgARIgARKIewIUBxExpZ0ESIAESIAEkigBioMkuuE5bBIgARIgARKIiIChi4OIxk07CegbgcqVK6tCPhcvXoyy746OjiF1VR4eHlFWZgUSIAESCEOA4iAMEM6SQEIT2LNnj3IgDz/dvXu3Zm+6du3q6+trY2OjGKEAGjdurOQx/eeff8zMzKZMmYL8rFmzUBMZJhIgARKIBQH9EAexGBgXIQF9IVCpUiUcyJWUPn36ESNGKHlMa9SooTkKc3NzS0vLZMmSaRqV/OLFi9u2bTtnzpwhQ4bAYmFhgZrIMJEACZBALAhQHMQCGhchgbgkkCJFChzIkYKCgl69elW+fHnklaRVB4RfN7wFvXv3XrNmTZcuXcKX0kICJEACMSWQkOIgpn1jfRJIWgQuXLiAAdvb22Ma/TRs2LDx48fv2LGjWbNm0V+KNUmABEggEgIUB5HAYREJJCiB8+fPZ82aNVOmTNFf6+7duydPnrx169bq1atHfynWJAESIIHICcRcHETeHktJgARiSwDioHjx4jFaukiRIrly5Ro9evSHDx9itCArkwAJkEAkBCgOIoHDIhJIUAIQBzGNKcDTcOTIEV9f39q1a1MfJOjW4spIwCAJfB8UxcF3EvxPAjol8OrVq0ePHsXUc4Au58iRA/rg+fPnNWvWfP/+PSxMJEACJPCTBCgOfhIgFyeBuCHg5eWFhmIhDrBUtmzZDh8+DHkBffDu3TtYmEiABJIygZ8fO8XBzzNkCyQQBwQuXLiQKVMmhAli1xYWhP/g7du3NWrUwDR2jXApEiABElAIUBwoHDglAR0TGDp06LNnz2LUCXd3d82nI2fJkuXGjRtnzpxJkyZNjNphZRIggURJQJedojjQJX2umwRiRGDu3LmpUqW6fPlylEt1794dNaOsxgokQAIkoJUAxYFWLDSSQKIjsHr16mvXrl28eLFAgQJRdm7cuHGoeevWLUQZoqzMCiRAAvFIQD+bpjjQz+3GXic9AlmzZs0b8kmePHmUo8+UKVNI3bwpU6aMsjIrkAAJkEAYAhQHYYBwlgRIgARIgATCEkhq8xQHSW2Lc7wkQAIkQAIkEAUBioMoALGYBEiABEjAUAhwHNElQHEQXVKsRwIkQAIkQAJJhADFQRLZ0BwmCZAACRgKAY4j/glQHMQ/Y66BBEiABEiABPSKAMWBXm0udpYESIAEDIUAx5GYCVAcJOatw76RAAmQAAmQgA4IUBzoADpXSQIkQAKGQoDjMEwC/wcAAP//GoimIgAAAAZJREFUAwCNWf7iDgdf0AAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "id": "6861a4f5", + "metadata": {}, + "source": [ + "![image.png](attachment:image.png)" + ] + }, + { + "cell_type": "markdown", + "id": "79925acf", + "metadata": {}, + "source": [ + "## Convergence Studies" + ] + }, + { + "cell_type": "markdown", + "id": "2e3c4a98", + "metadata": {}, + "source": [ + "```\n", + "input_params_paper = {\n", + " \"cell_scale_value\": 5, # 500 atoms\n", + " \"run\": 200000, # 2e5 steps \n", + " \"temperature\": [0,300,600], # Key points\n", + " \"thermostat\": \"nose-hoover\" # Paper's choice\n", + "}\n", + "\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3123b1ba", + "metadata": {}, + "outputs": [], + "source": [ + "input_params_scale = {\n", + " \"cell_scale_value\" : [3, 5, 7, 9],\n", + " \"run\" : [5000, 10000, 20000, 30000, 40000, 50000],\n", + " \"temperature\" : [500],\n", + " \"strain\" : [0.005],\n", + " \"seed\": [1357],\n", + " \"thermostat\" : [\"langevin\"]\n", + "}" + ] + }, + { + "cell_type": "markdown", + "id": "b5cfd4b3", + "metadata": {}, + "source": [ + "### Elastic constant vs MD steps" + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABFsAAAPdCAIAAADajPAUAAAQAElEQVR4AeydB1wUxxfHvePoTQFpioAgTRSxgaCCvfdubLHExF7zjzGx96gxauwFNWqMNRp7AyyIgg0BlSpFEAHpneP/O1Yvl6MdcBx3x7vPOM6+mZ158927Yd683Vl2EX2IABEgAkSACBABIkAEiAARIAJ1lQC7Hn2IQF0hQP0kAkSACBABIkAEiAARIALCBMgiEiZCx0SACBAB2SdAPSACRIAIEAEiQAREJUAWkaikqBwRIAJEgAgQASIgfQRIIyJABIhAdQmQRVRdgnQ+ESACRIAIEAEiQASIABGoeQLUQk0RIIuopshSvUSACBABIkAEiAARIAJEgAhIPwGyiKTvGpFGRIAIEAEiQASIABEgAkSACEiKAFlEkiJN7RABIlCSAEmIABEgAkSACBABIlDbBMgiqu0rQO0TASJABIhAXSBAfSQCRIAIEAFpJUAWkbReGdKLCBABIkAEiAARIAKySIB0JgKyRoAsIlm7YqRvjRFwd3f38PCoseqpYiJABOSZAA0g8nx1qW9EoOYJ0BhS84zLa6HqFlF5tVKerBGAJVC/fn3p13ru3Llt2rRRVlZu1aqVkLYBAQFubm6qqqqNGjVatWpVUVERv8Dx48cdHBzU1NSMjIy+/vrrpKQkfpboibNnz2K00tbW1tDQaNmyJZpITk7G6XFxcWPHjrW2tmaz2fPmzYOEHwIDA4cNG2ZmZsZisbZt28aXU4IIyBkBGkAqvKBVGED279/fqVOnBsWf7t27P378uMJWqAARkFECNIZUeOHKGkP4Jz548IDD4ZScHaHAn3/+iXnI4MGDkaZQFgGyiMoiQ3JpJAA7Z/LkyaNGjRJSLi0trUePHsbGxk+ePNmxY8fmzZu3bt3KlLl///6ECROmTJkC++T06dMoMHXqVCZL9Hjp0qVotF27dlevXn316tWWLVtevHhx7Ngx1JCbm9uwYUMUgNGFQ8GQlZXVtGnTDRs2GBoaCsopTQSIQK0QkK0BxNPTc8yYMXfv3vXx8WnSpEnPnj1jY2NrhRs1SgSIAENACscQRrHU1FRMdbp168YcCsbv3r1btGgRllcEhZQuSYAsopJMZF4CV8acOXO+//57HR0dzMVXrFjB7xLshBYtWqirq5uYmMyYMSMjIwNZ+LsLzwl+TlhCQGDKf/r0Cb8urE7CtdKnT5+QkBCURGAWcv755x94RZA1fPjwzMzMI0eOwBOCwrNnzy4sLEQxhF27djVr1kxFRcXAwADFIKl+2L59+8yZM2FmCFUFL1BOTg50s7e3Hzp06I8//oieYuRCsUePHkE3ADE3N+/YseP06dP9/PwgFz1gaXbdunWwgn755RcXFxfUBusLqzUTJ05EJTj87bffwAruIxwKBlhQOGX06NFwagnKKU0EpJkADSBSMoBgWMMojRVfGxsb+Iu4XO7t27el+ZtDuhEBhgCNIZIcQxjmmNuMHTu2Q4cOzCE/xpTsq6++WrlyZcmJE78MJRgCZBExHOQthokCs8fX13fTpk2rVq26efMm00M2mw2jAl4OFLhz5w6sJsgxy9+2bZuWllZc8QdrCRBOmjQJlsPFixexPAnTom/fvvn5+ZAjwPWBSuCEvXbtGqwpWCBXij/wmezbt+/MmTMog3NhhKDpN2/eoFjnzp0hFApRUVEaZXy+/fZbocLlH0JJNzc3vuHRq1ev9+/fR0ZG4iz0LiYmBgqiFx8+fIB6/fr1g1z0gHkJ1MTUROiU+vXrC0nokAjIBwGMDzSASNUAglEXIzAWueTjCyY9vSBNaogAjSGSnIQcPnw4LCxs+fLlJa8mpmENGzacMmVKySySCBEgi0gIiJwctmzZEr8NuGjgu2jbti1/ZXHevHldunSBt6Rr166rV6/+66+/0GElJSX4N+AdgkMJAbN/eIRgCx04cABuVgcHB5gEsbGxFy5cQGEE/GHevXu3o6Mj7Bw4f+7fv3/w4EE7O7v+/fuj8rt376IMrB3MqCAxNTVFSVhHEAoFY2Pj52V88BsWKlz+YXx8PDxR/DJMGkJIYBFB/1GjRqGb6B3MmB07dkAuegANLK4oKiqKfgqVJAIyTYAGEFw+qRpAfvjhh0aNGnXv3h2KUSAC0k+AxhBcI8mMIZiiYHzAPIfD4aBRwfDgwQNMz+BhZoQUl0+ALKLy+chqLgYjvupGRkYJCQnMIcyVHj164C+rpqYmjKWkpKTMzEwmSzAODg7GT8vJyYkR6urqWltbQ8gcqqmpWVhYMGnYHmZmZjCi+IdMW2gFthAMifHjx+OHigVOpoBgjCYsy/jo6+sLlhQlDYuOXwzuIKQZSVBQEOyxZcuW+fv7w1sVERFRWQcUamOqQp0UiEBdIEADCK4y86uXhgEErv6TJ0+eO3dORUUFilEgAtJPgMYQXCMJjCGFhYVjx45duXKllZUVWhQM6enp48aNgzmkp6cnKKd0WQTIIiqLjCzK/9VZ0KGB3ySXy0Xeu3fv+vbta29vf/bsWZgHv//+O4Rw+CAWCrABSkpQDyMUqlzokGkLFtfTp0/xVxz2GKwROJpSUlKY0/kx/EgwpUoNlTVa4PxhFmOYyhmrDNYaDtevX+/q6rp48WIM0L169dq1a9ehQ4fi4uKQJWLAQAN/dKmgRKyBihEB2SJQ6o+aBpBaGUA2b968bt26GzduYASTrW8RaVuXCdAYgqsvgUkIzB4/P79Zs2ZhiRlh1apVL168QOLOnTuYt0RGRg4YMACHCEePHr148SISkEM3CiUJkEVUkoncSvCzKSgo2LJli7OzM2b579+/53dVSUkJKw38Qzs7O5T09fVlJHAlvX371tbWljkUMcYPr3v37ljdfPnyJX6W+H0KnSjGu+Y6dOjg7e2dl5fHNIHZAyqH8wqHcE+x2f9+zxUUFCAsafJBWFbAAkxGRgZMKaECJW08oQJ0WJMEqG5JE6ABBMQlPID88ssvq1evhnO7bdu2aJ0CEZBpAjSG4PKJdwzR0tIKCAjgP3+A1WRra2scOjk52djYCGYNHDiwS5cuyDIxMYEaFEoS+HemWDKPJHJGwMLCAnbOjh07wsPDjx07tmfPHn4HYTxg0n/79u3ExESYEM2aNRs0aNC0adPu37+P9QY4Xhs1agQJv3yFiX/++Wf79u347WFdGSsTcBzhVyp0FkymMm6asyzrrrnQ0FDUCXdQdnY2EgiMFQSjRVlZedKkSa9evTp//jyWVBcsWMA4tbBAcu7cud27d6PXDx48mDNnTvv27WEvCSlTziFGlu+//37hwoWIfXx80COAGjFixJEjR5izoAYCAH78+BGJoKAgRg7dcIiARGxsLBLQn8mimAjIHAEaQCQ8gGA56aeffoJP28zMDIMeAgYZmfvakMJEgE+AxhCxjyFY8LUX+GDupKKiAoG6ujqTQJoJ9evX19TURBor4PwrQglBAmQRCdKQ83SrVq22bt26ceNG/CSOHz++fv16foddXFywtDBq1KiGDRvizzDkhw8fbtOmTf/+/eF+gUflypUrioqV2FoAvz3YIV27doVnCabXyZMnmzdvjmqrGaZOnero6Lh37174rJBAYDxd2traN2/ejImJwUrqjBkzYA4hMG3BTEKvd+7ciV7DjIFhBsWYLNFjQDtx4gScZr169UJHUHnLli2Z3bdRCdRA8Pf3Rxkk+vbtCyECdMMhQlxc3ObNm5GA/pBTIAKySIAGEAkPIPBLYzFl+PDhRl8+GEZk8ZtDOhMBhoBoYwhNQhha/4nLn4T8pygdVJUAWURVJSfF53l6em7bto2v4IULFzw8PJjD+fPnY5oOL9C1a9fGjx8PUwemC5MFLwocRJAw7yNq0KABfDspKSlMYXiNmGIwMCBk0ohRGK4PJJiAhtAc0h07dvT09ExOTsbp8DKNHDkSwuoH1AkNBQO8W0y1LVq08Pb2zsnJgfmxfPlyxkHEZM2ePTswMBCavH///o8//oC/i5FXKkYXvLy80tLSsEyLHv388898dIL6IB0ZGcnUDN1wKBigP5NFMRGQWgL4ltIAIg0DCEYSwdEDaYy3Uvu1IcWIAJ8AjSESnoTwyWOIEJyS8eVI8KdnSFMolUBtWESlKkJCIkAEiAARIAJEgAgQASJABIiAxAmQRSRx5NRgnSJAnSUCRIAIEAEiQASIABGQbgJkEUn39SHtJEhg0qRJrVq1kmCD1BQRkC8Cdbs3NIDU7etPvScC1SVAY0h1CVbvfLKIqsePzpYjAjQYydHFpK4QAUkToAFE0sRrtz1qnQiImwCNIeImWrn6yCKqHC8qTQSIABEgAkSACBABIkAE6gqButHPOmQRFRUVpaWlIa4bV5Z6SQSIgJgJYPSgMUTMTKk6IlBnCNAAUmcuNXVUJgnUIYsoPT1dW1sbsUxeqBpWmqonAkSgQgIYPWgMqZASFSACRKBUAjSAlIqFhERASgjUIYtISoiTGkSACNQuAWqdCBABIkAEiAARIAKCBCpnEeXm5gqeTGkiQASIABEgAkRAagmQYkSACBABIiAKgYotouvXr0+aNMnCwkJRUVFNTU1TU9PNzW3t2rXv378XpQEqQwSIABEgAkSACBABIkAEapQAVU4EqkOgPIvowoUL1tbWEydOZLPZixcvPnfuHKyjgwcPwiK6detW06ZNv/32248fP1aneTqXCBABIkAEiAARIAJEgAgQASJQiwTKs4jWrVu3efNm+IIOHToE42fAgAHdu3cfOXLkqlWr7t69GxYWpqWldfToUQlqL8NNZecV5BVwkzJyEWflFchwT0h1IkAEiIDcEaAhWu4uKXXoPwToG/4fHHRABEoQKM8ievz4MawgOIhKnMUTNGrUaNOmTQsXLuQd0L9yCeTmF+7xCm+79mabNbcQ7/UKh6TcMyiTCBABIkAEJEQAAzIN0RJiTc3UBgH6htcGdWpTxgiUZxHJWFekVV0szOzyDPvtdkhaNs81hBhpSMhTJK1XjPQiAkRAwgRqszkaomuTPrVd8wToG17zjKkFeSAgqkUUExOza9euH374YYHARx4A1HwfFNjsww8jhNqBhMMWFb7QuXRIBIgAESAC4iKgQEO0uFBSPSIRkHQh+oZLmji1J5sERJqU375929raGhbRli1b7t69e/jw4UOHDj1//lw2uyxprdNz8uEXEmoVEsiFhHRIBIgAESACEiaAoRgDslCjkEAuJKRDIiCLBPBNxvdZSHNIIBcS0iEREDcBWapPJItoyZIlCxcufPXqlYqKytmzZ6Ojo93c3EaMGCFLHa09XTVVFLVUOULtQwK5kJAOiQARIAJEQMIEMBRjQBZqFBLIhYR0SARkkQC+yfg+C2kOCeRCQjokAnWZgEgWUXBw8MSJE4GJw+FkZ2draGisWrVq48aNkFCokEAhl/u1i7lQMUgKuFwhoUwektJEgAgQAVkmUOoQPbGD2f3Qj6f9oouKimS5c6Q7EaiXmJGL77MQCJqECAGhQyIgkkWkrq6e8Dd5TAAAEABJREFUm5sLWMbGxmFhYUggJCYmIqZQIQFVJc4Md4vZXS2xJIPCiOd2awaJmpKw4wi5FIgAEZBeAqSZPBLAED2tU1OhIXpyR/O1l18vPvPyqwO+kYmZ8thv6lOdIPAxPXfun88muZjN6fbvJATf9u/cLWgSUie+AdRJkQmIZBE5Ozs/ePAAdfbr12/hwoVr166dPHkyhJBQEIVAcmZei0baj5Z081nSFbGbVUNlRQVRTqQyRIAIiELA29t7wIABWLJhsVgXLlzgn3Lu3LlevXrp6elBLvToo7u7O4T8MHr0aP5ZlKhrBJb9/QpD9OMfu/v/1N1vaY/pbk01lDkj2zZWUWQ/DEvqtc3797uh+YV1zKtf174E8thfLrdo4ekXTyI/fX/25TedmuK7jW84JiH2jbQvPI+Vxx5Tn4hA1QmIZBFt3brVyckJjaxYsaJHjx6nTp0yNTU9ePAgJBREIfAiJuWbY/5Tjvhl5hZ03Hh31D6fhPQcUU6kMkSACIhCIDMz08HBYefOnUKFIXd1dd2wYYOQnDmcNm1a3JfP3r17GSHFdY0AFtHPP4/FEJ2cmauroazEYWPtXFGBPd3N4vq8zp2a6eUWcH+5/mbAjvvPoj7VNTjUX5kmsP9euPfbjzDs/9fbRkNFEd9tfMNvBSdMP+a/6lJQfCrNQ75cXvqfCNSrV7FFlJ6eHhYWFhMTk5iYqKamtmvXrpcvX2LlFUZRhQDLWrjFicHBwQMHDtTW1tbU1IS7KSoqCsLIyEj+ki0/cfr0aWQJBdhm/AJIGBoaChWQqsNXsWnQp0kDNUt9TXM99fzColOPoyGhQASIgFgI9OnTZ82aNUOHDhWqbfz48cuWLevevbuQnDnEgIahgwkYixghxXWNwLXA+KKieg4m9Y3rqwn13VRX/ejk9ltHOjRQU3wdnz5098MVFwMzcnlvlhMqSYcyR8DMzAyTB8Ewc+ZM9ALTm7Icy8gVDGfPnrWzs1NWVkZ8/vx5wSxpSD+N+gRLHposH9DcykATCSb0b2HUukn9rLzCdVeCGQnFRIAIgEAFFhGMHxsbm969e/fv39/S0vLWrVs4R/SABdpSF25hYnXs2BE1e3p6vnjx4ueff1ZRUUG1JiYmX1Zsef+vXLlSXV0dcx1klQzNmzfnFSr+FxAQULKAoKR204HvU6FA80ZaiMc7myI+8TiqgO7BAAgKRKD2CBw/flxPTw8jyaJFi7D0U6oiubm5aQKfUsuQUKYJXA2Ig/597UtfVsOMeWjrxrcXug9t3QiGk8fDyB5bvW4FfcApFGSawJMnT4qnD7zo5s2b6Auzgy7mLeU4llGMCT4+PqNGjcKaC+YwiEeOHOnr68tkSUOcmp0/5+SzAm5Rv5ZGo9uZCKrEZrNWDbJnsepdfPHeNzxJMIvSRKAuE6jAIvrhhx+aNGly7949Pz8/Nze3WbNmVQoWjJlSF26XLl3at2/fTZs2OTo6Nm3atF+/fvr6+qhZQUGBWa9lYiy6YMTR0NBAVsnA4XCYYogbNmxYsoD0SALf83xEzY15FlGfFoY66kpxqTm3XydIj4akiTwRoL6IQuCrr746efIkFmWwIoO13pL+JaaS9evXw33EBCzZMEKK5YZAYkbuo+JJYd8WRuV0CoP21pGtjk1p30RHDaP31KN+M48/TUijm47KYSbtWZg2YPLAhH/++cfCwgKTHCgN86YcxzIKMGHbtm09evRYsmQJ1nYRd+vWDRImq9bjoqKiH88FxHzKNtFRXT+0BYvFElLJvpH2mPZNIFx+MZAWZ8GBAhEAgQosIhhCO3bscHFxad269aFDh0JCQjIyMnBadQKXy718+bKVlRUc0zCEnJycLly4ULJCf3//58+fT5kypWQWI4EyxsbG5ubmo0ePDg8PZ4RCsTSs735Mz01Iz8WIZGPIs4iUOQqjihds/nj0TkhbOiQCREBiBKZNm9a9e3d7e3sMIGfOnIED/OnTpyVbx1wn9csnOppudi1JqJYl1Wz+emA8t6hei0baJjrCt8yVrLlTs4bX53X+1s1Cgc26HBDXbavXCd8oLs4vWZQkskMgLy/vjz/+mDx5MoslbDmU0wn4iHr27MkvgPnMw4cP+Yf8RK1MQk48jsL3k8Nm7RjTWktFka+MYGJxT2ttVd69oMd9ec8sCGZRmgjUTQIVWESJiYnwETFodHV11dTUPn78yBxWOU5ISIBZtWHDht69e9+4cWPIkCFYnfXy8hKq8ODBg7a2tjDGhOTMIeyoo0ePXr9+ff/+/fHx8SiWlFSK81ca1neZW+bM9dTVlT9vtz22fRMMvPdCEsM/Vte8ZGhQTASIQHUIYMVHUVERiywlK1FWVtYS+JQsQBKZJnA1IB76l+8gQgF+UFVS+KGPzcVZri0ba6fnFPx4PmD0vkehCTSS8wnJXuLChQspKSmTJk2qlOqYeBgYGPBPQRoS/iE/Id5JCL/achKv49NWXQpCge97W7cyqY9EqaGButKiXtbI2nLjTVIG7/UqSFMgAnWZQAUWEYvFSk9PZ+6ixzqp4CGEVQPH5fL2MB00aND8+fNbtWr1ww8/9O/ff8+ePYK1ZWdnnzhxohwHUZ8+fYYNG9aiRQus8sLjhHOPHDmCWChIw/ouc8ucvbE2XzcsRna15t0lSGszfCaUIAK1SCAwMDA/P9/IqLz7pmpRPWq6hggkZ+b5fL5lrvSHiMpqt7mx9vkZrj/3t1NTUngcmdz3t3vbbr3NLSgsqzzJs/MK8gq4mHkjzsqTrq0psPyKGYWxsXFlLxNmRPxTioqKBA/5cglPQsB21olnuQVcd+uGUzs25atRagKLs3ZGWmk5BcwGDKWWISERqC0Ckm+3AosIP3IrK6sGxR8dHR34dhwdHXFUv359xFVTV09Pj8Ph2NnZ8U+HL4jZa44vOXPmTFZW1oQJE/iSchLq6uowjaR2fZfxETUvfoiI34txHXj7K5z2i87Ooz+ifCqUIAJVJICh6XnxB+dHREQgyQwpycnJSAcF8VZM37x5gzSzjhsWFrZq1So/P7/IyMgrV66MGDECI5urqytOp1B3CFwPjC/kFmFwNtVVr2yvFdisKR3Nb8zv3MW6YV4hd9utkH7b7z+JTK5sPXWhfG5+4R6v8LZrb7ZZcwvxXq9wSKSk4+/evbt169bUqVMrq4+hoSEzmDAnJiQkwE3EpAVjCTuZ4R0KTcjQ11TePMKBza7gJkB8h1cNag5tT/lFv4hOQYICEajLBCqwiO7evXtH4HP37ufDu3d5iaqBU1JSateuHWYn/NPfvn0rtJc31mwGDhzYsKFI+yXk5uYGBwdL7fou4yNqLuAjQsfdmjU00VHF2sylF+9xWCcDdZoIiI0AbBuYNAioccGCBUgsW7YM6YsXLyLdr18/pEePHo00447GKHT79u1evXpZW1vPmTOnZ8+emBUpKCigGIW6Q+AKs8tci6r7Bhs3UDs0qd2OMY56GkqYiY7Y47P0fEBqdn7dYVhhT7PzCnZ5hv12OyQtm+caQow0JPBmVHiuBAocPnxYX1+fGSIq1VyHDh2YHeqYs27cuOHi4sKkayu++OL9n0+iWax620a10tNQFkWNtmY6Qxx5myguuxjIpSfiREFGZeSXQAUWkVu5nwqxZGRkYFEWASUFF24XL1586tSp/fv3h4aG7ty589KlSzNmzEAZJkDo7e1dcs2mW7duKMyUWbRokZeXF+r09fUdPnx4WlraxIkTmSypitNy8t8lZUGl5v/1EWHxZpwTz0109FEkHHEoQIEIEIEqE3B3d8fvSDB4eHigtkmTJgkKkV6xYgXkJiYmGECSkpKwnoIB57fffoMPHPIaC1Sx1BH4lJn3MCwJaon+EBEKlwwsFmuAg/GtBW7MHsfHfaN6bPW6GhCHL1vJwnVQosBmH34YIdRxSDjsCqYfQqfUxCGXy4VFhMkDh/P5KV+0UpZjGVkTJkxYsmQJEghz586FFbRx48bXr18jxpLKvHnzIK+t8C4p88dzvNeQzO5i6WKpJ7oaS/rYqCspwEd0xj9G9LOoJBGQPwKVGJICAwNffvkgLQqLshZuhwwZgpXaTZs2tWjR4sCBA2fPnu3YsSO/wkOHDjVq1AirtnwJkwgLC0tMTGTSMTExY8aMwfru0KFDsdz76NEjIS8TU6zW4+DifbeNtVUaqCsJKTOirYkSh/0qNu1FDO9tRUK5dEgEiAARIAI1R+BGEO+WOVsjLXO9St8yV1Kr+mpKG4a1PDnNuameekJ67nfHn35zzD8uNbtkyTog+dxF2IQvo1MSM3LhF/os+vIfJOk5te9JgxkTFRU1efLkL3rx/r9YhmMZeSgcF8d7exXS8Aj9+eefMKhatmyJ9Rcs8jo5OUFeKyGvgDv75LOM3IJ2Zg3mdGtWKR30tVTmduedsvHa61Ryb1aKHRWWLwIVWET37t1r164d02VnZ2dHR8dWxR8MARhKGHk5cVkLtzgFY1BISEh2djY8SIMGDYKEH9atWxcdHc0usYAUGRnJrO+iJEai9+/f5+XlxcbGwqASfCoJudITXhVbRM0b/butAl83HXWl/i15d2sc86FtuPlUKEEEiAARkASBK8W7zPVrYSjGxjpY6F6Z22l2V0sOm3Uz6EOPrd5HHkYW1r2bkWAK/n43tMtmz0keT+qrKWqp/uuBYWhDolnGrtBMAcnEWHiF2WZlZSXYXFmOZZTx9PSE8YMEE4YPHw4HEeYhwcHBWJxlhLUSb7r2+mVMqraq4m+jHTkKFczrSmo4ycXcoqF6UmberzfflswlSbkEKFN+CFTwy9m1a9f48eP53b17925ERER4eDj8xbt37+bLKVEWgcD3PP+P0C1z/MLjnU2RvvTy/afMPCQoEAEiQASIgAQIpGTlPQjl3XHQpxoPEZWqp4qiwsKe1pfndGrdpD7W7JdfDBy+5+Hr+LRSC8uZMLeg8PLLuImHHrtuuPPL9TeRSVm5+YWhHzK+djEX6ikkBcW7zgrJ6bAKBO68/nDgPu++xM0jHIzrq1ahBiUOe8XA5jjx2KN3deS7is5SIAJCBCqwiJ48edK+fXv+OY0bNzY1NTUzM4OZ5OPjw5fLc6J6fQtifET/3VaBX2Urk/r2jbTg7z7tH80XUoIIEAEiQARqlAAcOAXcIhtDTYuGGjXRkLWh5plvXVYPaq6hzHkWldJ/+/3N19/k5MvtzqJY+1txMdBp3e2ZJ556vf0Ir1h7M51fhrd8vLR7S5P6M9wt5nZrBr8QUCNGGhI1JWHHEXIpVJZAfGrOotMvcdYkF7Medv++HwmSSoVOzRr2bm4If+byvwPhN6vUuVSYCMgHgQosotjYWP4ebkeOHDE0NGS6raOjk1TaG1GZXIoZAvj7F1L85r6yfEQsFmuCsxkK//GIXnwODBRqmwC1TwTqBoHq7zJXISc2mzW+g9mtBW497Qxgfe28G9rnt3s+xXs5VHiurBSAq+3Iw8h+24qldG4AABAASURBVO/1237f42FkSla+gZbyzC4Wdxe5//VthxFtTdSVeWaPsqLCdLemfkt7+P/UHTHSkMhKH6VZTxgw8049S87MwxxjSV+baqr6U39bZQ7bNyL50svPz0pVs0I6nQjIFoEKLCJNTc2ICJ43Fr0aOnSompoaEggQamlpIUGhHAJvP6RjwNJRVzLSVimr2AAHYy0VTlRylnfIx7LKkJwIEAFZIZCdJ71vopQVhjWtZ2p2/v3QxHr16vUV60NEpaptqK2yb0LbPePa6GsqRyRmjtn/6PszL1KyZPs2afxd8377cdaJp+3X3l5+MTDwfZqiAgswD3/d7uEP3Rb3sim5WQU8Qkoctq6GMmKkS2VFwsoS2Hkn9FF4spqSwo4xjsqc6r48oHEDtRnultBh3eXgzFzeVulIUyACdYdABRaRk5PT0aNHS+Lw8PBAVkk5SQQJvIrl3TuOxRv4ggTlgmlVJQUspEHyxyPaXwEYKBABGSaQK8VvopRhrOJW/VbQh/zCIisDDUt9TXHXXXp9ve0Nby10G+fcBNl/+cV03+p18cV7Wbw3KSopa8uNN5023plw6PE/L+PyCrk2hprLB9j5/th911dtuljrK1T0VlAQoCAWAr7hSb/d5m2EsHaIfdMKb/4UrUm470x0VOPTcuDSFO0MKkUE5IdABRbRggULjhw5snjx4oSEBKbTSCxcuPCPP/5AFiOhuCwCgcXbKtj9901EJQt/5cT7M3n7dUJ0Mu/NRSULkIQIEAHpJwDv0C4pfhOl9AOUmIYSuGWuZF+0VBTXDG5x5tsOzfQ1EjPy5px89rXHE1kZ87PzCs89jRm9z6fzL3d33Al9n5qjpcKZ0MH0n9kdr87t9LWruY668OslShIgiRgJfMrMm/vnc25RvWGtGw9xbCyumlUUFX7uZ4faDtwLD/+YgQQFIiB7BKqqcQUWUZcuXXbs2LF9+3YjI6MGDRro6OggsXPnzm3btnXt2rWqjdaV8wLL3VaBTwGrO52a6RUV1TvxOIovpAQRIAKyRUBBit9EKVska1TbtJz8eyG8Xeb6inuXOVHUbmum88+cjgt6WCkpsD3ffOz5qzemngWFXFHOlXwZeLGeRn1aci6g3dpbC/568Sg8mcWqh79WO8Y4Pl7afdUge/tG2iwWS/KK1fEWcV0Wn3kBT07ThuqrBvH2iBMjkB52Bm5WDeFEXfVPEBoSY81UFRGQcgIVWETQfsaMGaGhoZs3bx4zZszo0aORwOGsWbOQRaEcAoXcImYXy+YV+YhQybjibbhPPYnOLZDbzYjQTXEFqocISCGB9Jz8tGzhm+8hgVwKta2zKt0O/pBXyLXU17AykNAtc0KolTkKc7o1uzK3U3sznez8wjWXg4fsevgqlveeBqGStXj4MT13n3dYj1+9h+56ePJxVEZugYmOKgy5+//remyK0wAHYzgTalG9Ot704QeRt4ITlDhsmKbqyhzx0mCxWMsH2CkqsGCx3w7+fHOQeJug2oiAdBKo2CKC3iYmJvPnz99V/EEChxBSKJ8APM45+Vx1JQVzXfXySyK3m42+kbZKcmbe1YB4HFIgAkRA5ghoqtTImyhljoOUK3z5JW+M7Wv/ed/U2tIWJtmf3zhvGNpCS4UTEJs66PcH668EZ+fV8opYfiH3RmD8tKN+zutvr7vyOjQhQ0WRPdSx0YlpTl6LusCQa1Sl193UFmS5bDcgJnX91WB07ad+ts3LeLEHcqsTmjbUmNKxKWqAmyhHfreMRwcpEAFBAuVZRBW+cSgzMzMwMFCwOkrzCbwqfojI1kiLLcKTphwF9tj2vKeJjtH+CnyClCACMkWgkMv92sVcSGVICrhSek+UkKp14RD+OmZXz74tjWq9v/jTMLp9k1sL3fq1NCrkFu31Du+5zcv7be1sOhryIX3dleAO629/c8z/ZtAH6NPKpP66IS0eL+2+dVQrFws9aCsBYtRE+QTgrJt98ml+YVGv5gbji28tKb98lXNnd7U00FKOSs7a7x1e5UroRCIgWwTKs4gmTJjQo0ePv/76KyND+AG7oKCgH3/80dLS8unTp7LVYYlpG/hlozkRWxzV3oTDZvm/+8TsxyDiWVSMCBABKSGgqsSZQW+ilJKLUYYad14n5BVwmzZUt66lW+ZK6qWvqfL72NYHJrQ11laJTs6ecOjx/FPPkzJyS5asCQlMxJOPo4bsetDjV+993uGJGXl6GkrfdG56c37nCzNdxzo10VJRrIl2qc4qECgqKvrpfEBkUhY8dZuGObBYNfgEl7oy58e+tlDyd8/QmE+05xNIiD9QjdJGoDyLCGbPoEGDli1b1qBBg+bNm8M6GjBgQMeOHfX09Nq0afPu3bubN2+OHz9e2rokJfoEiratAl9b/F3sXXwjxx+PaH8FPhVKEAFZIqD85U2U9//X5dGSblM6mkMiSx2Qd10vF796sq+9EYtVg7PJKlDsbmdwY4Hb165m0Ov8s9juW73O+sdgBlyFqkQ5hcst8glLWnDqebu1t5acC3gWlaLAZnW3Ndg3vo3Pkm6YCjeTGotRlO7UkTJn/GMuPH+PK/Xb6FbaajVuqQ50MG5vrpOTz117mXeTXh2BTN2sywTKs4gUFRVnzZr1+vVrX1/fb775xt7evlGjRu7u7nv37o2NjT1+/DgkdZldOX3HX7LA97wnZSvceluwEsYJfuFZbFpOvqCc0kSACMgKATUljhKHvfpSUMeNd++H8vY0kxXN5V7PjNwCz+J70mpll7kK8Wooc5YPaH5+hquNoeanrPyFp1+MP/j4XVJmhSdWqsD7lOwdt0PcN3uO2f/o3LNYzHct9TV+7Gvjs6TrgYltezY3VFQob1ZQqbaosBgJhCZkLPub95DCgh5Wbc10xFhzWVWxWKyVA5uzWfWuvoq/X7w9Y1klSU4E5IOASGNf69at586d++uvv+7Zs2fNmjXDhg3T0ZHED1J2Ecd8yk7LKVBUYFVqOyOsx1gZaGTnF57zj5HdvpPmdZIAdfo/BIzqqyZn5j0MI4voP1hq94C5Zc5cT93WqHZ2mROl+61M6l+a3fF/vW2UOWxY1D1/9d7tGZZf7e25c/ILL714P+HQY9eNd7bcfBuVnAUDbEx7k3MzXG7O7/xNZwt9TRVR1KMytUIAl2/WiaeYG7ha6n7rZiExHWyNtCZ0MENzKy4FVv9LiHooEAFpJiCSRSTNHZBO3QKLt1WwMtDEarHoGmJJhnETHXv0Dl4m0U+kkkSACEgVAVdLPejzMDQJMQUpIXCl+Ja5PvaGGGmrp1LNng0vzXfuFtfndcb0N7eAu/Ha64E7H7yITqlaq69iU5f//cpp3e3ZJ595v/1YVFTPuanO1pEOj5d2Wz+0ZesmDaScRtV6LWdnrb0c/Do+XU9D6ddRrRTgtZFg9+Z3t9JRV4KH6sjDSAk2S00RgVogQBZRjUD/8hCRVmVrH+zYSF1JIexjpk84zaUqC4/KEwFpIQB/L+Yt4YmZcanZ0qJT3dYjM7fg7hvey1Wk85a5khfHTE/9jylOm0c41FdTDI5LG7LrwcpLgRm5wi+8KnkiI/mUmefxIKLvb/f677h/xOddana+kbbK7K6WXovd//ymw9DWjdWUxPweG6ZdisVO4NqrOCySototI1tJ3pWnrab4v97WaH3brZCEtBwkKBABeSVAFlGNXNkvFpF2ZWvXVFEc0roRzvqDtuEGBQpEQDYJaKsqtmhcH7qTmwgQpCHAHIK/pYmOWnPjSi9U1Zb+8N4Mb9P49gK3wa2MuUX1Dj+I7LnV687rD4w+2XkFeQXcpIxcxFl5ny2lQm6R55uEmcefwim04lJQUFyakgK7f0ujo5Pb3/9f14U9rU1FeD8eUz/F0kAg5lPW92deQpPpbk3drBoiIfkwoo2JQ2NtWOMbrr2WfOvUIhGQGAF2PYk1VZcaYu6aq9qf3nHFLxm4HvjhA63H1KXvDPVVzgi4WOiiRw/DyNkLDLUfrgYUv5i1hdTtMlchGl0N5W2jHY9Mbt+4ger71JzJHn6r/gnKzi/c4xXedu3NNmtuId7rFZ6dV3jofoTrhjuTDj+5HBCXV8jFH6CVA5s/Xtpt59jWna0aSvhuqwr7RQUqJJBfyJ1z8llaTkErk/qLelpXWL6GCrDZrJWD7FH5uaex/u+SkaBABOSSQOV8RDk5lfOZent7DxgwwNjYGGtdFy5cECQYHBw8cOBAbW1tTU1NZ2fnqKjPW067u7ujMD+MHj1a8CzB9K5du8zNzVVUVNq0aXPv3j3BrNpNf0zP/ZCWy2LVszWqymKkjaFWezMdLPWdfPyZSe12R65ap84QAUkRcLUofpQoLJGeCZQU8jLbgbVw5zXvlrl+LYzKLCTdGfAP3OBtgdCUzarXoanOrruhv90OScvmuYYQI73LMxQmU3xaTn01xUkuZpfndLw8p9NEF7P6akrS3TPSrkwCv958+zQqRVOFs2OMo6JC5WZrZVZapQyYZCPbNsapy/4OxOQECQpEQP4IiPQb43K5q1evbtSokYaGRng47wXGP//888GDByvEkZmZ6eDgsHPnTqGSYWFhHTt2tLGx8fT0fPHiBWqDYcMvM23atLgvn7179/LlgolTp07Nmzdv6dKlz54969SpU58+ffg2lWCxWkkzDiJzPXV1ZU7VFBjXwRQnwiLCEhESFIgAEZA5Am1MGygpsONScyISxbyBsqgoqNwXAnffJMCpAoPBvlFVVqm+VFPL/6spcX7sa3t5TqeOlg2P+Ag/5g5Jp2YN949v6/tjtxUDmzc3rvQ927XcPYk3b2ZmxvrvZ+bMmdACSxgrVqzASq6qqqq7u3tgIG/Pa8iFgoeHx3/PZlV2yVioQuYw+8vNkLkFhbBDLBpqbBzW0kRHjcmtxfj73jawzQLfp2FmUotqUNNEoOYIiGQRrVmzBj/+TZs2KSl9Xm1q0aLFgQMHKlQLhgrOHTp0qFBJWDJ9+/ZFhY6Ojk2bNu3Xr5++vj6/jJqamuGXD5xIfLlgYuvWrVOmTJk6daqtre22bdtMTEx2794tWIBJ5+bmpgl8GGFNxxgy0ER1/iD1bm6op6EMR9OtoM+3jKNCCkSACMgQAVUlhdamxY8S0Y1ztX3ZrgTEQQU4iDCFRUKmg62RVmZeAfxCQr2AJCuvoEdzA2WOglBWnTisfCefPHnyZek17ubNm6hgxIgRiDEzwQQDK7kogJlIjx490tPTIS8ZtLS0+DUgIbiwW7KwKJJcgZsh2629FRCben6Gi5TsBYI5yYIeVujF5htvPmXmIUGBCMgZAZEsoqNHj+7bt++rr75SUPg81LZs2fL169dVYwGP0+XLl62srHr16gVDyMnJSeiGuuPHj+vp6TVv3nzRokWljkR5eXn+/v49e/bkK4D0w4cP+Yf8xPr162FTMQFWE19eo4mg92mov3k1nt9V4rDHtDdBJUd93iGmQASIgCwScPly45wsKi83OudOJDnkAAAQAElEQVTkFzK3zEnJzLL6YLVUFLVUhW9AgERTRbH6ldedGho2bAiDhwn//POPhYWFm5tbUVHRtm3bsGiLlVx7e/sjR45kZWWdOHGiVCwwsJnTmbjUMqIvy2bnFezyDPtN4GbIHXdCD96PgKFbas2SF453NrU20EzJyodRJPnWqcV/CVCqZgiIZBHFxsZaWloKKgCrJj8/X1AiejohISEjI2PDhg29e/e+cePGkCFDMPR4eXkxNcDuOnnypKen588//3z27FlkMXLBODExsbCw0MDAgC9EOj4+nn/ITyxZsiT1yyc6Opovr9EEc9dcdSwiqDemfRM2q55PeFJoQumrUyhDgQgQAWkm4GrJ21zBJyyJyy2SZj3lWzfPNwlZeYWN6qu2bCwnN5IVcrlfu5gLXTVICrhcISEdikIAa6x//PHH5MmTWSxWREQE5hJYY2VOVFZWhpn0sLT1VhTATMbU1LRx48b9+/d/9uwZJCWD6MuyCmz24YcRQjVAwmGLNE8TOrEmDjkK7JWDmqPmE4+jXsWmIkGBCMgTAZF+aXDXCG1dcPr0aUdHx6qB4BaP2oMGDZo/f36rVq1++OEHjCZ79uxhaps2bVr37t3t7e1Hjx595syZW7duPX36lMkSijF48SVY1xE85MsxnMGvzQ98ec0l0nPyI5OyUH/zatzGjdON66t2t+WZfH88ov0VwIMCEZA9Ai0b11dXUviUlR8cz/Mby14H5ELjK593mTMs9W+ELHZRVYkzw91ibrdm8AtBf8RIQ6KmJOw4Qi6FCglcuHAhJSVl0qRJKAlzCDHWWBEzAWlGyBzyYxsbGw8Pj4sXL2INV0VFxdXVNSQkhJ/LT4i+LIvJQ1rxVhn8c5GABHIkpCQ4N9Ud4GBcVFRv2d+vuLTQIyVXhdQQEwGRLKLly5fPmjVr48aNXC733LlzMFrWrVu3bNmyqumgp6fH4XDs7Oz4p9va2pa6L0Lr1q0VFRVLjjKoQUFBQXCQgt8Jwxa/wlpMMLfMGWur6Kh/fuaqysqML95f4ax/TKbIb+Wrclt0IhGoLQJiabesbS0xXvXq1QsjBmbDz58/L9kWFlP69OmDXMyKSuZWU6KowG5vroNK4CZCTEHyBHLyC28H857G7COzu8yVCk1ZUWG6W1O/pT38f+qOGGlISi1JwgoJHDx4EIOAsbExvyQGBH4aQ4TgIV/u7Ow8btw4BweHTp06/fXXX1ZWVjt27ODn8hOiL8tqysjNkD/2tVFTUngalXL+WSy/m5QgAnJAQCSLaMCAAadOnbpy5QrGBRhCwcHBly5d6tGjR9X6r6Sk1K5duzdv3vBPf/v2LVzP/EN+IjAwMD8/38jIiC9hEqihTZs2zKOQjARpFxcXJl27MbOtgl31HERMF1wt9Mz11NNzC/5+/p6RUEwEiECpBMra1hJyrN1u2LCh1LMg3LZtG4Y1JGooMI8SPQhNrKH6qdryCXi9/ZiZV4glKkcT3i4X5ReWQK4Ym4BHSInD1tVQRoy0GGuuU1W9e/fu1q1bU6dOZXptaGiIRGXXW9lsNmY1JVdvUZXoQVZuhjTSVp3VlfcYxfqrr6XKfyU6aipJBEolIJJFhDOxzurl5ZWRkZGVlXX//n3+XbbIKiegPNZlEVAmIiICCcYXtHjxYphY+/fvDw0N3blzJ+yrGTNmoExYWNiqVav8/PwiIyNhgI0YMcLR0RETGmQhdOvWDYWRQFiwYMGBAwcOHToE82z+/Pmo9ttvv4W81gNjETWvxrYK/C6w2ayvnJrg8KhPJJapkKBABIhAqQSwxFvqtpbjx4/HIk737t1LPevFixdbt27FMFJqrliELsWPEj2OSM4vpGc8xEK0cpVcLd5lDg6iGrV7K6cTlZYmAocPH9bX1+/Xrx+jlLm5OYwirLEyh3l5eZj5VLjeij/Qz58/L7l6y1QiYqyqJDM3Q07paI7l2sSM3N9ulXKjIL+/lCACskVAVIuoar2CbQOTBgGnw4ZBArMTpIcMGbJnz55NmzYxu3ifPXu2Y8eOkCspKd2+fRvWl7W19Zw5c2B3YfFG4csGd2FhYYmJn5daR40ahcVdmE+tWrXy9vaG+VSqlwl1Sjgw2yrYNxLPI7wj2pioKLJfx6c/jfok4Y5Qc0RAvglgcWfMmDFYZMEEqJyeir5VVKmV2BpqNVBThJviZUxKqQVIWHMEcvILbwXzXszatwVv4b/mGqKaZZQAl8uFRTRx4kQO5/MjWLCc582bt27duvPnz7969WrSpElqampjx45lOjhhwoQlS5Yw6ZUrV16/fj08PBy20JQpUxBXf1lWWUZuhlTmKCwbwHvwweNhZMgH2vyJ+UZQLPMERLKI4BGGWVIifN6JuxwG7u7uWDsRDB4eHkz5yZMnw8WcnZ2NcWTQoEGM0MTEBOsxSUlJmIXAffTbb7/p6PDuwmdy4ThasWIFk0YMtxIkKOnv79+5c2dIaj3gD3BoQgbUEIuPCPVoqykOdODd3HyMtuEGDgpEQHwE4Ft2cXHhDz5lVSz6VlGl1gBPbwcL3o5zD0OTSi1AwpojcD8Eq9gFhloqjiYNaq4Vqll2CWDJNSoqCrMRwS58//33MIowwWjbtm1sbOyNGzc0NTWZAigcF8d7txUOU1JSvvnmG1tbWyzdohhWZtu3bw95NYOaEkdJFm6G7GKt393WoIBbtOJSIOZ41ew1nU4EpIGASBYRFkvOffmcOnXqhx9+gHd437590tABqdLh7Yd0DBBYEjbSVhGXYuOdzVDVlYB4/G1HgkItEaBm5YrAxYsX79y5Az9zhb3CkvCXDfxTq7aDf4fitxI9CPvs366wRSogLgJXAniT1z4tDGGXiqtOqkeeCMCYwWzeyor34lF+v+AmwtorLJ+cnBws0drb2/OzPD09+au6v/7667t377Amm5CQAGdRhw4d+MXqSGJZfzsYbw9Ck669iq8jXaZuyjcBkSwiLKPyw/Dhw9euXbtp0yZMKeQbTRV69+UhIm0MqVU4vdRTWjTWdjCpn1fI/ctPQu9TKlUNEhIBeSIAcygsLKx+/fqc4g+6NmzYMHd3dySEguhbRQmdyD90LfYRPX2XAh8yXyjdCXnQLreg8GYQb5e5vvK1y5w8XBvqg1wQaKKr9m3npujK6n+CsvMKkaBABGSagEgWUckeOjk5wd1cUl7HJcxDROK6ZY4Pc7yzKdLHH0UV0vb/AEGBCFSbABzdL1++fP7lg/qw4nv48GEkxB7M9dQNtVSwqOEXSU8Dip1umRU+CE1Mzy3Q11Ru04RumSuTEmXUq0cMqk7gO3fLRvVV36fm7PIMrXotdCYRkA4CVbGIsrOzd+zY0bhxY+noghRp8dlHJKZtFfgd69/SqL6aYmxKtucb3lPCfDkliAARYAiUta1lcnIyrJ6goCAUe/PmDdLMvrqGhob2Ah/kNmnSxNzcHAmxB3iMXYp3nHtIN86JHW7ZFV5+ybuTp4893TJXNiPKIQLVI6CqpPBTP1vUsdc7/F1SJhIUpJsAaVceAZEsogYNGuh8+SCtqal56NChX375pbyK614eHDjBcWnot9h9RCqKCiPbmqDmY4/eIaZABIiAEIGytrW8ePGio6Mjs7Xu6NGjkd6zZ4/QuRI4dPn8KBFtriAB2Lwm8gq4N4N4FhHdMsfDQf+IQI0R6G1v6Gqpi1/c6n94C0811g5VTARqnIBIFtGvAp/t27f/888/7969GzhwYI1rJ1MNhH/MyMnnqikpmOuqi11x5sVEXm8/VrAMI/aGqUIiIAsE3MvY1nLSpElF//2sWLGiZIdQZPDgwSXl4pK4FD9KFBCTkpaTL646qZ5yCDwIS0zLKWioqdzWTKecYpRFBIhANQnAB75iQHMOm3UrOOHua7qNpZo46fTaJCCSRTRp0qSJXz7jx4/v3bs3PEW1qbVUts3cMmdrpFUT+xqZ6qq7WTUsKqp3wjdKKntPShEBiROQnQaN66ua66lzi+r5hifLjtYyrOmVl7xd5no3N1Rgs2S4G6Q6EZAFAs0MNL925W2Ku/JSYG4BbbEgC9eMdCyNQHkW0cuKPqVVWHdlNbStAh8os7/CKb9o2rGKz4QSREBWCDBuInqUSALXK7+Qe0P+dpmTADhqgghUlcCcbs3gko1Myjp4P6KqddB5RKCWCZRnEbVq1crR0bFVGR9HR8da1l3Kmmd8RPbG2jWkVxcb/Ub1VVOy8i8XL3/WUCtULREgAjVBgHmUiN7TWhNshep8GJaUmp2vp6HU3pxumRNiQ4dEoEYIaKooLuljg6p33A6NS81GolqBTiYCtUGgPIsoIiIiPDw8ooxPeHh4bSgspW0WFRUxFpGdsVYNqajAZo11aoLKj9L+CqBAgQjIFIEOxY8SvfmQ/jE9V6YUlz1lmVvmetEtc7J36UhjGSYwxLFRG9MG2fmF6668luFukOp1mEB5FpFpRZ8qc5O/E2M+ZWNVUlGBZWWgWXO9G9XOREmB/SI65WVMSs21QjUTASIgdgI66kq2RrzlEp9w2nFO7HT/rTC/kHu9eJe5fvRi1n+pUIoI1DgBFou1cmBzFqvepRfvfcJolKtx4NSA2AmUZxEJNRYUFHTt2rWLAh+hAnX5kHEQNdPXVOJUAmllielpKPdtYYiz/iA3ESjISCA1iQBDwLXYTeRDbyVicNRM/Cg8KSUrH/Yn3TJXM4CpViJQJgH7Rtpj2/PuZFlxMbCgkFtmOcogAlJJQKTpe3h4uIODg729fb9+/QYXf4YUf6SyR7WjVND7VDQs9jcRoU6hML6DKSR/P3+fmkXb+IIEBSIgMwSY97Q+CJXn1dNavxhXAni7zPVqbshREOmvW60rTAoQAXkisKindX01xTcf0un1ifJ0WetIX0T6mzF37lxzc/MPHz6oqakFBgZ6e3u3bdvW09OzjjASpZuMjwgLJKIUrk6Z1k0a2Bpp5RZwT/tHV6ceOpcIEAEJE2hvrqvAZkUlZ0UnZ0m46TrSHJalrwd+QGfpljlAoFDTBKj+kgQaqCvBKIJ86823iRn0zCRIUJAZAiJZRD4+PqtWrWrYsCG7+NOxY8f169fPmTNHZnpZ84oyFpEEfEQsFovZhvu4bxSXW1TzPaMWiAAREA8BDWWOQ2PeXpQ+dJO9eIgK1+IbkZycmddATdG5Ke0yJwyHjomAZAiMad8Ec6H0nIJN12iLBckgl0QrdaENkSyiwsJCDQ0N4NDT03v//j0Spqamb968QYICCGAhJD4th8WqB+8NDms6DGplrKnMiUjMfEAPJNQ0a6qfCIiVgKulHup7SL9cUKiBcJlumasBqlQlEagUAQU2a9Wg5jjlL7+YZ1GfkKBABGSCgEgWkb29/cuXL9EfJyenTZs2PXjwAC6jpk2bQkIBBBgHkbmuuroyB4c1HdDKsDaN0coxn3eIxRSoGiJABGqcALMH94OwpKIicvCKmXYht+j6q3hU2pd2mQMFCkSg9gi0MdUZ78rXZAAAEABJREFU2roR2l9+MZBuZgEHCjJBQCSL6KeffuJyeduGrFmz5t27d506dbpy5cr27dsr7KG3t/eAAQOMjY1ZLNaFCxcEywcHBw8cOFBbW1tTU9PZ2TkqKgq5ycnJs2fPtra2VlNTa9KkyZw5c1JTeTsWIEsorFixAnXyg6Ehbwc2oTISOwxktlVoxLsfRjKNjnPmbedyK/jD+xR6FZpkkFMr8kSg1vrSukkDZQ77Y3pu2MeMWlNCThv2jUhKysyrr6bImJ1y2kvqFhGQDQI/9LHRUOa8jEn9y4+eeZaNS0ZaVmARtWrVaufOne3btx86dChgwS8UFBSUmJiYkJDQtWtXSMoPmZmZDg4OqEGoWFhYWMeOHW1sbDw9PV+8ePHzzz+rqKigzPviz+bNmwMCAjw8PK5duzZlyhTISw3NmzeP+/JB+VLLSEbI+Iia19i7WUv2wlJfs0NTXW5RvZOPeZZkyQIkIQJEQAoJqCgqtDPjPeJCO86J/epcDYhHnT3tDBQVKvi7hmJ1KVBfiUAtENDXVJnXvRka3nT9DW2NCw4UpJ9ABX85nJyc4CCCk2fs2LG3b99m+qOjowPnDJMuP+7Tpw/cSow1JVhy6dKlffv23bRpk6OjI6ysfv366evro4C9vf3Zs2fhVrKwsIDFtXbt2kuXLhUUFCCrZOBwOHANMaFhw4YlC0hMEhjLc2RJ0iJC15htuE8+js4r4LnvIKFABIiA9BNgPBj0KJF4r1Qht+hq8S1zfeiWOfGSld/azMzMMJMRDDNnzkR3i4qKVqxYgWmPqqqqu7t7YGAghKUGTFfs7OyUlZURnz9/vtQydVk40cXMUl8jOTNv602JPXZel3lT36tLoAKLaO/evfHx8fv27UPcs2dPjCCrVq1i7nCrcstcLvfy5ctWVla9evWCIQSj68KFC6XWlpqaqqWlBcun1NyQkBCMWebm5qNHjw4PDy+1TG5ubprAp9Qy1RSm5+RHJvH20m1uLLm75qBzDzsDfU3lxIzc64HxOKRABIiATBBgNlfwCUvCJF4mFJYJJZ9EJmMw1FLhuFrw9q6QCZ1Jydol8OTJky93mcTdvHkTyowYMQIx1mq3bt26c+dOFMCSa48ePdLT0yEXCj4+PqNGjRo/fvyLFy8Qjxw50tfXV6hMHT+Et3blQN4WC8cevQuOS6vjNKj70k+gAosIHVBRUcGv/c6dO6GhoUgcPHgQXh0YM3/99RdyqxASEhIyMjI2bNjQu3fvGzduDBkyBE4kLy8voaqSkpJWr149ffr0/8i/HMCOOnr06PXr1/fv3w9rzcXFBeW/ZP77//r167W/fExMTP7NEF8qOI43Vhppq+ioK4mv1oprwlgzpj3vaSKMNRWXphJEgAhIBwF7Yy1NZU5aTkHQe5oiiO2SXA3gvZi1Z3NDJU7Ff9TE1ipVJMsEGjZsCIOHCf/884+FhYWbm1tRUdG2bduWLl2KaYm9vf2RI0eysrJOnDhRsqMoBmNpyZIlNjY2iLt16wZJyWISWJYt2aj0SLAA1LeFIbeo3vK/A8FWehQjTYhASQKV+OMBbwxMlMjIyD///NPPz2/MmDElqxNFAh8Rig0aNGj+/PmtWrX64Ycf+vfvv2fPHgj5AX6dfv36wRO9fPlyvlAw0adPn2HDhrVo0aJ79+7wOCELIxdioYBxCo4mJkRH18jjfZ+3VZCsg4jpJiwiBTbrcUTym3ieVcYIKZYfAtQTeSTAUWA7NdVFzx7QHtygII7A/XLLHOZe4qiP6qhbBPLy8v7444/JkyezWKyIiAissfbs2ZNBoKysDDPp4cOHzKFgDB8RvxjkWCYutZgElmXRujSHpf3sVBTZjyOTL77gvbtFmlUl3eo4gUpYRCB19+7diRMnTpo0qbCwcNq0aZBUIejp6XE4HFg7/HNtbW0F78SDhxruIw0NjfPnzysqKvKLlZVQV1eHaRQSElKyAIYzLYFPyQLVl0h+WwW+zobaKj3tDHD4xyPahhsYKBAB2SDgYsGziB7Se1oFL1c10n7vPiWk52qqcDpa1uYDpdXoAZ1amwQuXLiQkpKCiQ2UgDmE2MCA94cVCQSkGSHSggFCZPElSEPCP+QnJLAsy29LOhON6qvOdLeEbuuuBGfklv5YOHIpEIFaJyCSRQRzZdWqVU2bNoVf+N27d7t27YqLi9vzX6+O6D1RUlJq166d4Ate3759a2pqytQA7xDWXVDm4sWLKiq8DegYeTkxvNLBwcFGRkbllKm5rFe1sa0CvzvjnXnczj2NoYGGz4QSREDKCbgWv6f1SUQybYsilit1pfiWuR52BnTLnFh41rVKDh482KdPH2NjY37H4Szip4uKigQP+XIkBOVlFSt9WRYn16UwrXPTJjpqH9Jyd9wpZeW6LpGgvko1gQosohMnTvTo0QO20N69e0eNGgXTxcvLa8KECaqqqqJ0KyMj43nxB4XhjEYyqvi9Q4sXLz516tT+/ftDQ0N37tx56dKlGTNmoAy8QzCHMjMzMULBNMKKCwL8UchCgD2GwkggLFq0CJqgTl9f3+HDh6MwnFeQSzjkFhSGJvDeK9Jcgi8jEuxjBwvdpg3VM/MKzz+NEZRTmggQAaklYGWgoaehlJ1f+Dw6RWqVlBXFim+Z4z1E1Ne+dhbFZAUU6VkqASzy3rp1a+rUqUyuYfG7DTHxYA4RJyQkwP+DhFBASVGKCZ1VNw9VFBWW9bdD3w/dj6BXsYFD3Qqy09sKLCL4kTU0NOBTjo6OXr9+vaUlz/Upeu/8/Pwciz84ZcGCBUguW7YM6SFDhsDFtGnTphYtWhw4cODs2bMdO3aE3N/fHxZOQEAAGoLPhwloGlkIYWFhiYmJSCDExMSMGTPG2tp66NChcCg9evSI72VCrsTC2/iMAm5RfTVFY22R3FliVwxrVIyb6Nijd1ijEnv9VCERIAJiJ4CfbYfiLdEehH4e0MTeRN2p8Fn0J6w9ayhzOlnRLnN157KLraeHDx/W19fv168fU6O5uTlMHWbrOUjy8vKw9uri4oK0UOjQoQO/GLJu3LhRajFkUQCBbrb67tYN8wuLVl4KorkKgFCQQgIVWEQxMTHnz5/v378/m11ByVL75u7ujq++YPDw8GBKTp48OSQkJDs7G46jQYMGMcKS5XGumZkZkxsZGblixQom/eeff75//x6jVWxsLAwqwaeSmAKSiZltFeyNtTHFkUyLJVsZ2rqxqqLC2w8ZjyOSS+ZKQEJNEAEiUFkCLsWPEvnQo0SVBVei/OWX8ZB1t9VX5iggQYEIiE6Ay+XCIpo4cSKHw2HOwp/yefPmrVu3DjOfV69eYVFYTU1t7NixTO6ECROWLFnCpOfOnQsraOPGja9fv0YMRxNOZLIoLkkAYJcPaK6kwPZ++/Fm0IeSBUhCBGqdQAV2DtZOal1FaVagFrdV4GPRVlUc7NgIh3ATIaZABIhAzREQV83Ma3Pg38jKo0eNqw6Vy9tlrviWuRZ0y1zVMdbZM2HGREVFYX1WkMD3338P22bGjBlt27bFkivMHk1NTaYACsfF8b5vOHRxccHKLAyqli1bYqn31KlTTk5OkFMoi4C5nvqUTubIXfVPUE5+IRIUiIBUEajAIpIqXaVQmVfvU6GVnbEW4loM45yboPVrr+IT0nOQoEAEiICUEzDRUW1UXzW/sOhJ5CcpV1Wa1XsekxKXmqOupNDZinaZE/+Fkvsae/bsWVRUZGVlJdhTeDNWrFgByycnJ8fLy8ve3p6f6+npCeOHfzh8+HA4iPLy8oKDg4cOHcqXU6IsArO6WBpqqcR8yt7rFV5WGZITgdoiQBZR1ckXcoteF7+etbmxdtVrEceZUKCNaYMCbtGpx9HiqI/qIAJEoGYJYNblalm8Bzc9SlQN0lde8hbsu9kaqCjSLXPV4EinEgGJEFBX5iztZ4umdnmGRidnISE9gTQhAmQRVf07EJGYkZ1fqKqoAF9w1WsR05nM/gonHkcVFHLFVCVVQwSIQA0ScCneXIHeSlRlxFjdv/qK9xBRX7plrsoQ6UQiIFkC/VsaOTfVyS3grr0cLNmWqTUiUAEBkSyipk2bJiUlCdaUkpICoaBE6tPiVzDwfRoqtTPWUmCzkKjd0KeFoY66Ulxqzu3XCbWrCbVOBCRPwNvbe8CAAcbGxvC9XLhwga/AuXPnevXqpaenB/nz58/5ciSmT59uYWGhqqrasGHDQYMGvX79GkJJBmZzhVfvU1Oy8iTZrty09SImNTYlW01Jwd2abpmTm6tKHZFzAhiKVwxsjlnTtcD4eyEf5by31D2ZIiCSRRQZGVlY+J/H4HJzc2NjY2Wqp+JXNrDYImpe2w8RMR1T5iiMameC9B+P3iGmULcJ1LneZ2ZmOjg48N9Xxu8/5K6urhs2bOBL+Ik2bdocPnw4ODj4+vXr8Db07NlTaJTjl6yhhL6WiqW+RlFRvUfhtEtkVRhfCeDdMtfVRp9umasKPjqHCNQSARtDLeaulhUXA/MK6K6WWroM1GwJAhVYRBeLPzgLk4biJC86f/786tWr+ZtiI7duhlexvG0VpMQiwiUY274Ji1XvXkhi+EfeS2MhoUAE6giBPn36rFmzpuTDzePHj1+2bFn37t1Lcvjmm286d+6Mcax169Y4Nzo6Gks/JYvVqMS1eA/uh2H0VqJKY4YRy1hE/VrQLnOVpkcnEIHaJTC/h5WuulLYx0yPhxG1qwm1TgT4BCqwiAYXf1gs1sSJE4uTvGj06NE3b97csmULv5Y6mMDf4y8+olreVoEP30RHrau1Pg6P+0YhpkAEiIAoBOBHgrPI3NzcxITnZRU6Bf7wNIGPUG41DzvQo0RVJRgQmxrzKVtVUcG9eNCrajV0HhGQLQJyoq22quL/etugM7/dCvmQloMEBSJQ6wQqsIi4xZ8mTZokJCQUJ3kRpghv3rzp379/rWtfiwrEpmSnZudz2KxmBhq1qIZQ0+M6mEJy2i86O+8/dzlCSIEIEAEhArt27dIo/ly7dg2rPEpKSkIFcLh+/XrtL59STSaUqXLo0FSXxaoXmpBBc4LKMrz85ZY5VSXaZa6y8Kg8Eah9AsPbNHYwqZ+ZV7jhqqSf4az9zpMGIhGQdKEKLCJGnYiICD09PSZNMUOAcRBZGWgqc6To77Fbs4YmOqppOQWXXrxn9KSYCBCBsgh89dVXz5498/Lyatas2ciRI3NySlmqXLJkSeqXT3S0mHe311ZTtC/eu59unCvrGpUqLyoquhoQjyzaZQ4QKBABWSTAZrNWDWzOYtU7/yz2SSQ9SymL11DedBbJIkKnb9++/eOPP06dOnWywAfyOhsYi0h6HiJiLgSGmHFOPDfR0UeRmDQwQumNSTMiUKsE4PuBLdS5c+czZ868fv36/PnzJdVRVlbWEviULFBNicvntxL9ZzPPatYp96dj+I1KzlJRZHexoV3m5P5qUwfllgB8RKPa8u5VXvZ3YCG3SG77ScwgAgEAABAASURBVB2TEQIiWUQrV67s2bMnjKLExMRPAh8Z6WONqBkoZdsq8Ds5oq2JEof9KjbtRQxv4we+nBJEgAiUQwArCLm5ueUUqG5WGefz30oEBcooQmJhAswtc12s9dWUOMJ5dEwEiIDsEFjcy1pLhRMcl3bCl7bJlZ3LJqeaimQR7dmzx8PDw9fX98KFC1hG5Qc5ZSJSt7BIiXLNG0nLtgpQhgk66kr9W/I2XzrmQ+MLg4Ri+SeQkZHxvPiDrkZERCAZFcXbXyQ5ORnpoKAgyN+8eYN0fHw80uHh4evXr/f390cxHx+fkSNHqqqq9u3bF1kSDu3MGigqsGJTsqOSsyTctIw2B9PxakAclKdb5gBBSgOpRQREI6CrobywpzXKbr7xNjmT3swGEhRqjYBIFlFeXp6Li0ut6Sh9DSdl5Man5bBY9WyNtKRPu3rMTv+XXr6n8UUKrw6pVBME/Pz8HIs/qHzBggVILlu2DOmLFy8i3a9fP6RHjx6NNNZ3kFZRUbl37x5MIEtLS5hD6urqDx8+1NfnbdWIXEkGeDkcTRqgxQehdOMcMFQcguLSIpOylDnsrja1cL0q1o9KEAEiUBkCXzk1sTHUTM3O/+X6m8qcJzVlSRF5ISCSRTR16tQTJ07IS5fF0A/GQWSuq66hLI33bLQyqW/fSCuvgHvaT8wPgouBHVVBBGqAgLu7O1wHggFubbQzadIkQSHSK1asgNzY2PjKlSsfPnzAck90dPTx48etrXnrlMiSfPj8KBG9lUg09MxriNytG6pL5fArWieoFBEgAp8JcBTYKwc2x8GfT6IC6G5/gKBQSwREsohycnK2bt3q5uY2e/ZsrL/yQy3pLOlmS7bHWER2xtLoIIK2LBaLcRP94fuOS08rgggFIiDFBJhHiXzCkujXWuFVgk17hXaZqxATFSACMkXAqanuoFbGRUX1ll18RcOgTF06uVJWJIvo5cuXrVq1YrPZr169evbl8/z5c7kiUZnOvHrP27SgefG2uZU5T3JlBzo00lThRCdne4V8lFyr1JLsE6AeSJ4AnLqqigpJmXlvE9Il37pstfg6Pj0iMVOJw+5mayBbmpO2RIAIlENgSR9bNSWFZ1Ep557FllOMsohAzREQySK6W9rnzp07NaeWlNcc9D4NGjaXVh8RdFNVUhjRhrep5R+0vwJwUCACUkwA8/t25jpQkB4lAoTyA7OngptVQ7HcsVx+W5RLBIiAxAgYaqvM6dYMzW24GpyWk48EBSIgYQIiWURV1snb23vAgAHGxsYsFuvChQuC9QQHBw8cOFBbW1tTU9PZ2TmqeGMoFMjNzZ09e7aenp66ujoKxMTEQFhq2LVrl7m5uYqKSps2be7du1dqmZoQZuQWYJESNUuzRQT1xjk3QXznTUJ0Mu1hBRIUiID0EnC10IVyPvQoESiUHYqKiph9t/u2MCy7FOUQASJQCgHpF012NW+qp56YkbftZoj0a0sayh8BUS2iJ0+efP/996NHjx4q8KkQR2ZmpoODw86dO4VKhoWFdezY0cbGxtPT88WLFz///DMMG6bMvHnzzp8//+eff96/fz8jI6N///6FhYVMlmB86tQplFy6dOmzZ886derUp08fvk0lWKwm0sFxPAeRkbaKroZyTdQvrjqbNtTo1EyvqKjeice8bYjFVS3VQwSIgNgJMI8S+YYnFxRyxV653FT49kNG2MdMJQW6ZU5uLil1hAj8SwDe8uXFWywc8Yl8+4FuIf6XDKUqS6Bq5UWyiGCfuLq6BgUFwVbJz89H4s6dO3DvVNgkDJU1a9bAhhIqCUumb9++mzZtcnR0bNq0ab9+/Zh9b1NTUw8ePLhly5bu3bsj648//ggICLh165bQ6TjcunXrlClTpk6damtru23bNhMTk927d0MugRAYyzxEJKXbKggSGOdsisNTT6JzC0qxKpFFgQgQAWkgYGespa2qmJ5bEFA8vEiDSlKoA7PLXGcrPS0VRSlUj1SSLQKxsbHjxo3T1dVVU1Nr1aqVv78/o/+HDx8mTZpkbGwMee/evUNCSvdXeHh4sP77ycnJYWqguMoE3Kwa9rAzKOQWLf87ED7hKtdDJxKBKhAQySJat27dr7/++s8//ygpKf3222/BwcEjR45s0oR3U1YVmuRyuZcvX7aysurVqxcMIScnJ/4NdRiSYHH17NmTqRZDkr29/cOHD5lDfpyXl4eS/GKQI12yGOS5ublpAh9Iqh9eFT9EZCfF2yrw+9jNRh++rOTMvKvFuzPx5bKfoB4QAbkioMBmOTfVQZcehtFbiYCh9MBYRH3sjUrPJikREJnAp0+fsM6rqKh49epVLPJiHbZ+/fo4G7PwwYMHh4eH//3338+ePTM1NcX6bGZmJrJKBi0trTiBj4qKSskyJKksgWX97WyNNCd3NMsr5CZl5OYVcLPyCipbCZUnAlUgIJJFFBYWBjcOaldWVsbQgGWR+fPn79u3D5IqhISEhIyMjA0bNmD15caNG0OGDIETycvLC1XFx8crKSk1aMB7XyEOEQwMDCBEQjAkJiYWFhYiiy9EumQx5K5fvx6+LCbAjwRJ9UNgsUUk5Q8RMd3kKLDHtucZrscevWMkFBMBIiCdBFwt9aDYw1IeJYKYQr2QD+khCRmKCqzudrTLHH0fqktg48aNmBIcPny4ffv2ZmZm3bp1s7CwQKXwCD169Gj37t3t2rWztrbetWsXpisnT55EVsmAuZChwKdkAZJUgYCJjtpf0zu8jEltt/ZWmzW32q69udcrPDef7nOpAks6pXIERLKIdHR00tN593Q2atTo1atXaCElJSUrq4rP68NHhBoGDRoEswqu6h9++KF///579uyBsGQoKirCoFNSDomgvKxiS5YsSf3yiY4Ww+tKcwsK8YcZrds30kYs/WFUexMOm+X/7lNg8Y7h0q8waUgE6iYBFwve5gp+kZ9y6G9/ad8A5jVEHS31tFXplrnSAMmJTELduHjxYtu2bUeMGKGvr+/o6Lh//36m4dzcXCT43h4FBQWs0t6/fx/CkgHGkqmpaePGjTGHgUOpZAFIUKHAfSq8h5AhpFAOgey8ggP3InbcCU3L5rmGEP92O2SXZxh5isqBRlliISCSRdSpU6ebN2+ivZEjR86dO3fatGljxozBmgokVQh6enocDsfOzo5/rq2tLbMvAlZb8vLy4M7mZ8GhBP8P/5BJoAaMU4JOoVKLoTCcWvBr8wMk1QwhHzIKuEX11RSNtWXDP66vqdLb3hC9/uMR7a8ADBSIgJQSsGiooa+pnFvAfRr1SUpVrFW1mFvm+ragW+Zq9TLIS+Ph4eFwBDVr1uz69evffvvtnDlzjh49is7Z2NjAyMFaKuYhmI1s2LABM424uDhkCQWU9PDwgGUFDxIsKFdXV/iXhMrgsCZuVEG1chwU2OzDDyOEOggJhy3SfFXoROk+JO2ki4BI37CdO3eOHj0aimOYWLRo0YcPH4YOHXrw4EFIqhCw4gJ/9Js3b/jnvn37FmMQDtu0aaOoqMhYXzjEMASXlIuLC9KCATWgJL8YspAuWQxysQfG09LcWIvFYom98hqqcHzx/goXnsXSHv81RJiqJQLVJ8BisRg30cNQepRIGGdoQsabD+lwd/e0463vCGfTMRGoJAEul9u6det169bBQTR9+nSs88JAQh2YgZw9exZzEh0dHTU1NU9Pzz59+mAFFllCwdnZedy4cQ4ODlgy/uuvv6ysrHbs2CFUBoeYNX25TyVVLDeqoE75Duk5+fALCfUREsiFhHRIBMRLQCSLCEODsbExGmaz2d9//z0WRbZu3Sr4tA+ySg3wKT8v/iA3IiICScYXtHjx4lOnTsFPHRoaCnPr0qVLM2bMQBltbe0pU6YsXLjw9u3b8EFjuGnRokX37t2RhQCvFAojgbBgwYIDBw4cOnQoODh4/vz5qBbLPJDXdHgVy/N6NxdxW4Wa1ka0+tub61gZaGTnF57zjxHtDCpFBIhALRBwoUeJyqB+NYC3SO9qqaetRrfMlcGIxJUhYGRkVOqNKqgD662Yq6SkpGBN9tq1a0lJSebm5pCXEzA1wjpvqT4isd+oUo4a8pGlqaKopcoR6gskqkoKO26HxKZkC2XRIREQFwGRLCIskCQkJAg2iTECQkFJqWk/Pz8swCAgFzYMEsuWLUN6yJAhe/bs2bRpEwweGDZYkunYsSPkCL/++uvgwYNHjhwJHzRWaGAs8RsKCwtLTExEGYRRo0Zt27Zt1apVrVq18vb2vnLlCuNlQlaNBr6PqEZbEW/lWHtm3ETHHr0rKioSb+VUGxH4TID+qzYBxkf0IiaVVkOFWF4utoj60S1zQlzosKoEMMEo9UYVfn1Yn23YsCGMHExjBg0axJeXmsAfVhhRsLJKzSVhpQgUcrlfuwiboBM7mN0PSdxy822njXemH/N7GJoI5pWqlgoTgQoJiGQRlfzm5ebmKikpVVi7u7s7zhUMHh4ezFmTJ0/GWJOdnY1xRHC4UVFRgesZFldWVhbMIRMTE6Y84sjIyBUrViDBBLiVIIEm/v7+nTt3ZoQ1Ghdyi4LjeDtMyJaPCEwGOzZSV1II+5jpE0435IAHBSIgjQQaN1Az1VXDOPMkMlka9aslncI/ZryOL75lrrnU7DJXSyioWXERmD9//qNHj9atWxcaGnrixIl9+/bNnDmTqfz06dOenp7h4eF///13jx49sETb88sbQSZMmLBkyRKm2MqVK69fv45imMNMmTIFsWRuVGFal+NYVYkzw91ibrdm8Auhm4iRntXFEj6iDk11uUX1rgd+GHvAt8ev3sd8IjNyebsvoBgFIlB9AhVYRNuLP3AywJNTnORFcONg7LCxsal+87JVQ0RiZnZ+oaqigrmeumxpDjf0kNaNoPMftA03KFAgAtJKgHETPQillYt/r9DVV/E46GChW1+t4mU4lKRABCok0K5du/Pnz588edLe3n716tXbtm376quvmLPi4uLGjx+PGc6cOXOQQBlGjjgqKgq5SCCkpKR88803tra2sJdiY2O9vb3bt28PuRwGiXdJWVFhultTv6U9/H/qjhhpSDo1a3jyG+cb8zuPc26ipqQQmpDx89+Bzutur7gYGPYxQ+I6UoNySKACiwjGDwKcPHv27EGCCUjDgYNYDnmU2yXmljlbI00Ftsxsq8Dv0DhnU6SxuBKfmoMEBSJABKSQgIsF81Yisoj+vTiXX/IeIqJb5v4lQilxEOjfv39AQEBOTk5wcPC0adP4VcIQio6OzsvLe/fuHYwlwdth4Dvi3+eC6RAK5ObmJiQkwFnUoUMHfg2UqD4BNSWOEoetq6GMGGl+hVYGmmsGt3j0Y7flA+ywNg0fkcfDyG5bvMYf9L0V9AEOdn5JShCByhLgWUTlnBNR/HFzc3vx4kVxkhe9efMGv38nJ6dyTpTLrMD3sretAv9C2BhqtTfTwXhx8jFtw82nQgkiIF0EOhQarceAAAAQAElEQVS/lSg4Li0pI1e6NKslbSITM4Pi0rAI1bM57TJXS9eAmiUCUkZAS0Xxa1fz2wvcjk5u391Wn8Wqdy8kcepRP7df7u71CvuUmSdl+pI6skGgAouI6cTdu3cbNGjApAsLC58/f/7pU118YwbjI2purMWgkLl4XAeemwgWUX4hV+aUF5fCVA8RkGYCehrKNoaa0PBROD1KBAz1rryKw38dmurqqNMtcyBBgQgQgc8E2GxWZ6uGBya2817cZXrnptqqijGfstdffe28/vb3Z168ik39XI7+IwKiERDJIpo3bx7z9iGYQ507d27durWJiQncx6I1ISelioqKGB+RfSNtGe1S7+aGehpKCem5N4M+yGgXSG0iIPcEGDfRg7DP+2pWp79ycO6VAJ5F1Jd2mZODa0ldIAI1Q8BER21JX9tHS7ptGtbSzkgrt4D7l19M/x33h+1++Pfz2LwCWgKuGe5yV6tIFtHp06cdHBzQ90uXLkVGRr5+/Ro20tKlSyGpO+F9ak5KVj6HzWpmoCGjvVbisEe3awLlj/m8Q0yBCBABKSTgWvwokU8YPUpULyop61VsGptVryftMieF31QpU4nUqeMEVJUURrYzuTyn45lvOwxwMMZszf/dp7l/PnfZcGfrzbcf0ugJ6jr+Bam4+yJZRElJSYaGvHu4r1y5MmLECCsrqylTpgQEBFRcvRyVCCz2wDYz0FTmKMhut8Y4NcH0wic8KTSBt4247HaENCcC8kqgfVMd/EgjEjPf1/l3ETK3zDk31dXTUJbXy039IgJEQIwEWCxWWzOdHWMcH/7QdV73Zg01lRMzcrffDnHdcGfmiaePI5KL5OKtjGIkRlXxCYhkERkYGAQFBRUWFl67dq179+44OSsrS0FBhg0DdKGy4dV7ZlsFWX2IiOlvo/qq3Wx57/T44xHtr8AgoZgISBcBLRXFlo3rQ6eHdd5NdDWAbpnDF4ECESAClSagr6Uyr7vVg/91hXXUzqxBAbfo8su4kXt9+m6//+fjqOy8wkrXSCfIOwGRLKKvv/565MiR9vb2ML579OgBJr6+vjZ17H1EQe95T+nZS2hbBTCuqTCheH+Fs/4xmfRqs5piTPUSgWoRcLXUxfkPQ+v0o0TRyVkvYlLhLutFu8zh20CBCBCByhNQ4rAHOBif/tbl8pyOo9uZqCiyg+PSfjgX4LTu1trLQe+SMitfJZ0htwREsohWrFhx4MCBb7755sGDB8rKvLsX4CD64Ycf5JZKaR1jtlVoLrPbKvD75GqhZ66nnp5b8Pfz93whJYhA7RGgloUJuBQ/SgQfUV2+weNq8S5z7c11Gmry/ugIM6JjIkAEiIDIBJoba28Y1vLRkm5L+9qa6Kim5RTsvxfhvtlzsscTzzcJXG6RyDVRQbklIJJFhN4PHz58/vz5jRs3Rhph4sSJgwYNQqKOhOTMvLjUHBarnq2RbN81h+vFZrO+cuLtr3DUJ7Iuz7eAggIRkE4CbUwbYGkzPi0nPLHuLmFeCYjH1ZG7XebQJwpEgAjUDoH6akrTOjf1XNTl0KS2blYNi4rq3XmdMOnwk65bPA/ej0jNzq8dtahV6SAgqkV0+/btH3/8cerUqZMFPtLRBUloEVh8y5yZrrqGMkcS7dVwGyPa8HzHr+PTn0bVxfdK1TBdqp4IVJeAiqJCmya8V8DBTVTdumTz/NiU7OfRKViE6m1vKJs9IK2JABGQUgIKbFZXG4Mjk9vfWej2tauZpjInMilr9T9BHdbf/vF8wOt43kPjUqo6qVWTBESyiFauXNmzZ08YRYmJiZ8EPjWpmHTV/SqW9wuxk/2HiBis2mqKAx2MkT5G23CDAgUiIH0E6vijRMyeCu3MdPQ1VaTv4pBGRIAIyAOBpg01lg9o/ujHbmsG21sZaGTlFZ7wjeq97d6ovT4YggoK6UVG8nCVRe+DSBbRnj17PDw8fH19L1y4cF7gU0/0dmS8JOMjsjfWlvF+/Kv+eGczHFwJiE/MyEWCAhGQaQLe3t4DBgwwNjZmsVgYpvh9OXfuXK9evfT09CB//vw5X56cnDx79mxra2s1NbUmTZrMmTMnNZW3dQq/QK0nOhQ/SuQTnlQ3b3D//GJWchDV+heRFCAC8k5AXZkzztn0+rzOJ6c597E3hAfJNyL5u+NPO226u/NOCM2R5P36/9s/kSyivLw8FxeXf0+qe6kgudh6W/C6tWis7WBSP6+Q+5dftKCc0mUSoAwpJpCZmeng4LBz504hHSF3dXXdsGGDkPx98Wfz5s0BAQFY7rl27dqUKVOEytTuoUNjbQ1lTkpWflAcz0Fdu8pIuPX3KdlPo3i3zPVpYSThpqk5IkAE6iYBrJp1sNDdPa7Nve+7zOpiqauuFJeas/nGW5f1d+afev4s6hM9dy33XwyRLKKpU6eeOHFC7lmU1cHM3IKI4i0am8vLXXNMT8c7myJx/FFUIe2yAhAUZJlAnz591qxZM3ToUKFOjB8/ftmyZcxb1ASz7O3tz549C7eShYVF165d165de+nSpYKCAsEyTDo3NzdN4MMIJRBzFNjtzXXQkE+tvJUIDddeuPYqHo23NW1goEW3zIEEBSJABCRHwLi+6qJe1g+XdP11lEOr4oXj889ih+x6OOj3B2f8Y3Ly6UVGkrsWEm5JJIsoJydn69atbm5us2fPXiDwkbCutdVccFxaUVE9Qy0VXQ3l2tKhJtrt39KovppibEq255uEmqif6iQCskIgNTVVS0uLwyll35T169drf/mYmJhIskcuFry3Ej0Iq3NvJWJumetjTw4iSX7d6nBb1HUiUIKAMkdhiGPjCzNd/57pOrR1IyUF9suY1EWnX7hsuLPp2mtMnEqcQQKZJyCSRfTy5ctWrVqx2exXr149+/IRvClf5jGU24FXsbwHDOTMQYQeqygqjGzLm+Edpf0VgINCXSWQlJS0evXq6dOnlwpgyZIlsJeYEB0t0VtMXYofJXockZxflx7wjU/N8XvH2wOzTwvaZa7UryQJiQARkBwBB5P6W0e28lnSdXEva2NtleTMvF2eYZ023pl+zO9haGIR1suLdcnOK8gr4CZl5CLOyivldoPiUlIQkQplExDJIrpb2ufOnTtlV/s5p6zHnSdNmsQS+Dg7OzMnREZGCog/J0+fPs3kCsYrVqz4nF38n6FhDf7tDGQeImokP9sq8El+VfxiIq+3H98V3xbIl1OCCNQRAmlpaf369bOzs1u+fHmpXVZWVob7iB9KLVNDQhtDTR11pay8whfRKTXUhBRWe634xaytm9Q30laVQvVIJSJABOogAV0N5ZldLL2/77JnXBt477lF9a4Hfhh7wLfHr95/P4/NyS/c4xXedu3NNmtuId7rFZ5LN9fJ4LdEJIuI36+YmJjY2Fj+YYWJzDIed8aJvXv3jvvyuXLlCiQIJiYmX2S8/1euXKmurt6nTx9klQzNmzfnFSr+FxAQULKAuCSfLSIZeYioUr021VV3s2qIU477RiGmQATqFIH09HQMRBoaGufPn1dUVJS2vrPZrA5NeTfO1am3El0J4D1E1Jf2VJC2ryPpQwTqPAGOAru3veGJac4353ce72yqpqQQmpCB+Pe7ob/dDknL5rmGECMNP1IWeYpk7QsjkkXE5XJXrVqlra1tamrapEmT+vXrr169GsIKOwtjptTHnXEiVl4Nv3x0dHQgQVBQUPgi4/2PacqoUaMwX0FWycDhcHiFiv81bMib1pcsU/2nouEADUlIR83yd9ccOoWAXzXiv/yisciBBAUiIEMEqqMqvEM9e/ZUUlK6ePGiioqUPsHvYsmziB6E1pVHiRLScp68S8Zl7UMWEShQqEkCWN4dN26crq6umppaq1at/P39mdY+fPgwadIkY2NjyLFiEhISwshLxmfPnoV7GZMZxJiulCxAEnkl0MxAc/Vg+0c/dls/xL6jZcMjPpFCPT38MILDFmmCLXQiHdYiAZEu2NKlS3fu3Llhw4Znz549ffp03bp1O3bs+Pnnn6ujt6enp76+vpWV1bRp0xISSnmyH8PT8+fPy9kSF+MUxixzc/PRo0eHh4eXqkz1n4p++yE9v7BIW1WxUX35vIWji40+upaSlf/Py7hSGZKQCEg/gYyMDAwXCFA1IiICiagontszOTkZ6aCgIMjfvHmDdHw8zwUB7xDMITixDx48CNMIQoTCQqnbRIh5lOhZVEp2ntTpBqRiD9cC44uK6rUyqY9BSeyVy3qFpL8YCXz69MnV1RWe4atXr2J82LJlC5Z6UX9RUdHgwYMxo/j777+fPXtmamravXt3DBTIEgo+Pj5YsR0/fvyLFy8Qjxw50tfXV6gMHco3AS0VxTFOppl5BfALCfUUkvScfCEhHUo5AZEsoiNHjhw4cOC7775r2bKlg4PDjBkz9u/f7+HhUeW+wXd0/PjxO3fuYBh68uRJ165d4cwRqg0zFVtbW5cy3oPk5OR09OjR69evQxNMZVAsKSlJqAYcVv+paObdrHAQsVgsVCh/QYHNGuvUBP069ugdYgpEQBYJ+Pn5ORZ/oPyCBQuQXLZsGdLw/yDdr18/pLF0gvSePXuQxoILpi8BAQGWlpZGXz4S3jgBalQYzHTVjLVV8gq5fu94npMKy8t6gcvF6zL9yEEk6xdS6vXfuHGjiYnJ4cOH27dvb2Zm1q1bNwsLC2iNldZHjx7t3r27Xbt21tbWu3btwmrLyZMnkSUUtm3b1qNHD8wxbGxsEKMGSITK0GGVCcjQibCLtFSF9ymFRFNF6u7EliGqtaKqSBYR1lnxmxfUD4cQCkoqlcbKCuYo9vb2AwYMuHr16tu3by9fvixYQ3Z29okTJ6aU/c5E2FTDhg1r0aIF1m+Yc2G2CdbApOHO5j8SjQQjrFTMPERkL4/bKvA5jGpnoqjAehGd8jImhS+kBBGQIQLu7u5Y3BUMHh4e0H/SpEmCQqRXrFgBecnyyMLECFlSFVgsVofiHefqwqNECek5jyN5hl8f2mVOqr6F8qgM1kratm07YsQIfX19LJRgaZXpJbM4q/LlNloFBQUlJaX79+8zuYKxj48P/Mx8Sa9evR4+fMg/5CdQIbzQ/MCXU0JuCBRyuV+7mAt1Z2IHM7/I5He0Z5UQF+k+FMkigl9o539fBo9DCKvRtX9PxfosHNNYmPlXVK/emTNnsrKyJkyYICgsK62urg7TSKiGsgpXVs5YRPARVfZEGSqvp6HMPMf8B7mJZOiykap1g4Br8aNED+vAo0TXAz8UFdVzaKzduIFa3bi21MtaIxAeHg5HULNmza5fv/7tt9/OmTPn6NGj0AarvZiQwOfz6dOnvLy8DRs2xMfHx8XFIUsoQG5gYMAXIg0J/5CfqP6t+/yqKCGdBFSVODPcLeZ2awa/EDREjPTXruY//x3Yf/t9xu8NOQXpJyCSRbRp06ZDhw7Z2dnBaTN16lQksP76yy+/iKV7SUlJ0dHRsIsEazt4Qpwc1AAAEABJREFU8ODAgQPL2i9BsCTSWIMJDg4WqgHy6odCblFwXBrqkW+LCB1k9lf4+/n71Cy68xU8xBuoNiJQdQLMo0QBsamp2XL+27xSfMscszpTdV50JhEQgQCXy23duvW6devgIJo+ffq0adNgIOE8RUXFs2fPvn37VkdHR01NzdPTs0+fPvAUIatkgAuXL4STWfCQL4dxxbzNDDGmOnw5JeSJgLKiwnS3pn5Le/j/1B0x0gWF3AZqium5BTNPPP35wivauUomLrdIFpGbmxsGiCFDhqSkpCQnJw8dOvTNmzedOnWqsIcZpT3uDOGiRYvgcY6MjMRwM2DAAD09PVTOry00NNTb2xumF1/CJLp16wbfFJNGDV5eXhEREb6+vsOHD4dLeuLEiUyWGOPIpMysvEJVRQVzPQ0xViuFVbUxbWBjqJlbwD3tHy2F6pFKRKDOEjDUVmnaUJ1bVM83vJRHJaUPSxU1SszI9Y3gdZAsoioSpNMqQwBLqFjb5Z9ha2vL7MUCSZs2bZ4/f47ZDlxD165dw6KtubnwPVEoZmhoKOgUSkhIMDAwgFwoVP/WfaEK6VA6CagpcZQ4bF0NZcRI62upnPzG+Tt33sNpxx69G7b7YURipnRqTlrxCYhkEaG0sbHx2rVrsXZy7ty5NWvW4BDCCkOpjztjuSUgIGDQoEFWVlYwYxDDOtLU1OTXBn9Uo0aNBO/QZbLCwsISEz/vQhsTEzNmzBhra2uYZ0pKSo8ePYKnmykmxvhVbCpqszXSVGCzkJDjgMWtCR3M0MHjvlFcTL6QokAEiIB0EHCx4O3BLd+PEl0PjMfA06KRtokO3TInHV87udbC1dUVC7v8LmLNV2gKoa2t3bBhw5CQEExjMF3hl+QnOnTocPPmTf7hjRs3XMrYCIpfhhJ1ioCiAvt/vW08vm6no64U+D5twI77l168r1MEZK6zFVhEGA5geMADI9gxOH/Hjh0bXsaG14IlSz6+7OHhoaqqev36dSyo5OXlvXv3DhITExPBs+DIhnOZzRbWDT4l5qloFP7zzz/fv3+PGmJjY2GnCS72IFdcIeg9c8uctrgqlOZ6BrUy1lTmYBnjQdhns1OatSXdiEDdIeD6eXMFef5hXgngPapBDqK6862u3Z7Onz8fC6mYbISGhp44cWLfvn0zZ85kVDp9+rSnpydmOH///XePHj0GDx7MX5+dMGHCkiVLmGJz586FFbRx48bXr18jvnXr1rx585gsiokAn4C7tf6VOZ3am+lk5BbMPvls6fkAmb2Djt8nuU0IWx1CHf3ll19grgjt0oa1EwiRJVRY/g5h1qNTcv8QEfqIoK7MGdamMRLHfGgbbmCgQASkhYBzU10Wq15iRl5SZq606CRWPZIych+F83aZ60u7zIkVLFVWFoF27dqdP3/+5MmT9vb2q1ev3rZt21dffcUUjouLGz9+vI2NzZw5c5BAGUaOOCoqCrlIIMAjhJXZw4cPt2zZEgu7p06dcnJygpwCERAiYKitcmKa08wuFhjGj/tGDdn1MPxjhlAZOpQGAhVYRN7e3iNGjCip6MiRI+/cuVNSLk+SoqKiLy8jqhM+onr16o1z5r2Y6Fbwh/cp2fJ0KakvRECmCTRQVzo+xen+/7oUFBblFXCz8gpkujsllb8R9KGQW4S1J1Nd9ZK5JCECNUGgf//+AQEBOTk5wcHB06ZN4zcBQyg6Ojqv+B4WGEtKSkr8LPiOYPzwD4cPHw4HEUqihqFDh/LllCACQgQ4CuzFvWyOfN1eV10pOI53B93fz2OFytBhrROowCJ69+6dvr5+SS319PQwZJSUy5MkLjXnU1Y+h82yMpTzbRX4V81SX7NDU11uUb2Tj6P4QkoQATkkIFNdys0vfBSe5Lz+ttO6223X3tzrFQ6JTPWgAmXplrkKAFE2ESACsk+gs1XDK3M7OZnrZOYVzv3z+ZJzL+kOOqm6qhVYRNra2mFhYSU1Dg0N1dLSKimXJwmzrUIzA01ljoI89av8vozvYIoCJx9HYykaCQpEgAjULoHsvIJdnmHb74SmZfNcQ4h/ux0Cidx4ij5l5jGbRvRtYVS7qOW2deoYESAC0kHAQEvl+FSnOV0tWSwsPUcP/v1BaALdQScd16ZevQosos6dO+/YsaOkstu3bxdl9+2SJ8qQpE49RMS/Lj3sDPQ1lRMzcq8HxvOFlCACRKC2CCiw2YcfRgi1DgmHXcHoLXSK1B7eCIov5BbZGmmZ69Etc1J7lUgxIiAjBKReTY4Ce0FP62OTnfQ0lF7Hpw/cef/8sxip17pOKFjB39QlS5ZcvXp1+PDhjx8/Ti3++Pr6Dhs27Pr168iSb0J10yJSVGCPac97moj2V5Dvrzf1TlYIpOfkwy8kpC0kkAsJZfTwSgBv8aWvvaGM6k9qEwEiQAQqS6BjM70rczp1aKqblVc4/9SL/515mZ1XWNlKqLx4CVRgETk6Op45c8bb27tDhw46xR8XF5d79+799ddfrVu3Fq8qItYmsWJB73kvI2puXFe2VeCDhUVkZaAxrbN5XgE3KSMXcVYe73YdfgFKEAEiIDECmiqKWqocoeYggVxIKIuHKVl5D0J5u4r3bUm3zMniBSSdiQARqCIBfS2VP6Y6ze3WjMWqd8qPuYMuvYp10WniIFCBRYQm+vfv/+7duzNnzmzYsGH9+vVnz56NjIwcOHAgsuQ4JGfmvU/NQQdtjf59dSwO60Iw1FY5/a3Ly5jUtmtvtllzC7H8PcktK9eR9CQChVzu1y7mQhwmdjDzfvvxuO+7oqIioSzZOrwR9KGAW2RjqGnRsK5sYCNbF4i0JQJEoOYIKLBZ83tYHZ/ipKeh/OZD+oAdD8760x10Nce7gportohQgaqq6pAhQxYvXvz9998PHjxYTU0NQvkOzL7b5nrq8rEQW6mLlZ1XcPB++A75fZK7UjSoMBGoXQKqSpwZ7hZYR4RfCJogRnpKR/P1V18vPf9qsseThDTe2g2yZDFcDeC9mLWPPc9BJIv6k85EgAgQgWoScLHUuzK3o6ulbnZ+4cLTLxadfkE35lQTadVOF8kiqlrVMn1W4Ps06G9nLOf76aGPJYMCm+3xMFJILk9Pcgt1jQ6JgJQTUFZUmO7W1G9pD/+fuiNGWktFcaxTEyUO++6bj722eTN2hZT3oqR6qdn594tvmevXkh4iKomHJPJMgPpGBAQJ6GuqHJ3stKCHFZtV74x/zKCdD95+oDvoBAlJIk0WUemUGYuoeZ20iNLLeJI7LSe/dFgkJQJEoIYJqClxYP/oaigjRprNZsFN9M/sjhijPmXlf3f86YK/nsvcL/Rm0If8wiIrAw1L/Tp3c3INf1+oeiJABGSMgAKbNadbs+NTnRtqKockZAzcef8vv2hZvy+auQayEpNFVPqVYu6aa173tlUADs0ynuRWU1JYfPqF99uPXK5sP7qAPlIgAnJAwMpA8/wM15ldLLCseO5pbJ9t93zCkmSoX4xri26Zk6FLRqoSASJQowQ6WOhendupUzO9nHzu92deLvzrRWYubW1Vo8j/rZwson9Z8FP4/kUkZuKweZ30EZX1JPf9kMTT/jETDj1223z397uhAk8vABUFIkAEaoGAEoe9uJfN6W87NNFRi03JHnvg0drLQTn5MrCLKzxa90J4u8z1o13mauGLQ00SASIgpQT0NJSPfN1+cS9r3lLXs1g4i97E0x10krhYIllEV65cuX79uqA6OLx69aqgRJ7SwXFpRUX1DLVU8L2Up36J2BfV0p7kntXFspm+5iQXMy0VTnRy9i/X33TYcGf6MT/PNwnkMhIRLBWTCwLS2Ik2pjpYVhzT3gQD1/57EYN2PmC83NKo6xedbgd/yCvkWjRUb6ZPu8x9gUL/EwEiQATq1WOzWTO7WJ6c5mygpRz2MRNG0aknUXQHXU1/NUSyiH744YfCwv8sOuLCQFjTytVW/XX5ISKGecknuSExb6i+YmBz3x+7bxnh0Na0QSG36Hrgh0mHn3TadHfnnZAPsrzhFdNriomA7BJQV+asH9ry4MS2ehpKbz6kD/79wW7PMPxIpbZHl1/yXszar4URi8WSWiXrvGIEgAgQgVoj4NRU98qcTp2tGuYWcP93NmD+qeeZdAddTV4NkSyikJAQOzs7QTVsbGxCQ0MFJfKUZpZX6+Ytc/zrqPbfJ7n5clUlhWFtGp/5zuXG/M5fu5ppqyrGpmRvvvHWZcOdb4763X2TIM2TMH4vKEEE5JJAN1uD6/M697QzyC8s2njt9eh9PlFJWVLY0/ScfO+Qj1CMXswKCBSIABGQAgLSqIKuhrLHpHbf97ZWYLMuPH8/YMf94DjeTsjSqKvs6ySSRaStrR0eHi7YWZhD6urqghJ5SmfkFuioK9nVyW0VRL+OVgaaywfAZdTt11EO7c10YAjdCPrw9eEnnTfd3X47JD5Vht+RIjoEKkkEpI0A/oLuHd/ml+EtNZQ5TyI/9fnNWwpvt7jzOiGvgNtUT93agHaZk7ZvEOlDBIiAFBFgs1kz3C3//MbZUEslPDFz8O8PTvjSHXQ1coFEsogGDhw4b968sLAwRgWYQwsXLoSQOZSZWARFs/MK8Hd6SR/b+//r0t5cR4Qz6noRFUWFIY6N//q2w60Fnad0NK+vxnMZbb0Jl9HtqUf87rz+AEuprjOi/hMByRJgsVgj2ppcndsJSxWZeYX/Oxsw7ah/YkauZLUor7XLL+OQ3ZdumQMFCkSACBCBigi0M9O5MrdTF2veHXQ/ng+Y8+dzeNorOonyK0dAJIvol19+gUfIxsbGvPhja2urq6u7efPmCpvy9vYeMGCAsbEx/kJfuHCBX37SpEmQ8IOzszM/y93dnS9HYvTo0fwsocSuXbugjoqKSps2be7duyeUW4XD3PzCPV7hbdfe7LTprvP620ceRkJShXrq5imW+po/97d7tKTbb6NbwZjkFtW7Ffxhsodfp413tt16G5eaXTex1FqvqeE6T8BER+3kN85L+tgoKbDxY+z1q/fNoA/SQAVOeM+3xbfMtTCSBn1IByJABIiA9BPQUVc6OLEdhnQFNuvSi/cDZWEHHemnKqihSBaRtrb2w4cPL1++PGPGDHiHbt++fefOnfr16wtWVGo6MzPTwcFh586dJXN79+4d9+Vz5coVwQLTpk37khO3d+9ewSx++tSpU3BbLV269NmzZ506derTp09UVBQ/twoJeId2eYb9djskLZu39TtipCHJyuMdVqHCunkKXEaDWjX6azpcRm5TO5o3UFN8n5qz7VaI64Y7U488uR38oaCQWzfJUK+JgOQJ4A/ndDeLv2e52hhqJmXmTTvq978zL2GQSF4TwRaZW+bMdNVsjcR0y5xg7ZQmAkSACMgpATabhSH9r+nOxtoqEYmZQ3Y9PPboXVERvSJSPNdbJIsITbFYrJ49ey5evHjWrFmdO3eGRJQAQ2XNmjVDhw4tWVhZWdnwy0dH543h8bgAABAASURBVD/3p6mpqX3JMYQxVvJcSLZu3TplypSpU6fCYbVt2zYTE5Pdu3dDLhRyc3PTBD5CuYKHCmz24YcRghKkIeGwRUWE8hT4BCz1NX7qb+dT7DJybqpT7DJKmHLED/63X2++fZ9CLiM+KkoQgZolYGukBaNoeuemLFa9U37RfX7zfhKZXLNNllv7Fbplrlw+lEkEyiNAeXWeQBtTnctzOnWz0c8r4P584dWsk8/oDjqxfCnKm+5v3749JycHzSBRakBWlYOnp6e+vr6VlRU8QgkJCYL1HD9+XE9Pr3nz5osWLUpPTxfMYtJ5eXn+/v6w0JhDxEjDi4WEUFi/fj1sKibAahLKFTzE9wl+IUEJ0pBAjgSFqhFgXEZ/ftPh9kK3bzo31VFXikvNgfOt48Y7kz2e3Awil1HVuNJZwgTKukH33LlzvXr1wnjCYrGeP38ueNq+ffvc3d21tLSQlZKSIpglf2lljsKSvrZ/TnNuVF81Ojl75F6fjdde46+p5HuamVtw9w1vwO9Lt8xJnj61KEAgNjZ23Lhxurq6WIRt1aoVJhVMZkZGBlZ+GzdurKqqiiXXUhdbUdLDwwNDh2Bg5kvIokAEappAA3WlAxPbLu1ry2GzLr+M67/j/qvY1JputBbql2yT5VlEv/76a2ZmJvRBomSAZwZZVQvwHcHsuXPnzpYtW548edK1a1c4c5iqvvrqq5MnT3p6ev78889nz54t1b+UmJhYWFhoYGDAnIIY6fj4eCSEwpIlS1K/fKKjo4VyBQ81VRS1VDmCEqQhgRwJCtUkYNFQ48e+tj5Luu4Y4+hioQuX0Z3XCdOO+rluvLP1xpuYT9K4QXA1u0ynS5IARqpSb9CF3NXVdcOGDSWVycrK6t27948//lgyS14lTk11r83rNLxN46Kiers9wwb9/uBNfClLTjXafZhDuQXcJjpqdfz1BjUKmSqvkMCnT58wMigqKl69ejUoKAhTEf6DAPPnz7927doff/wRHByM9OzZs//+++9SK8R6Cv8OfyRUVFRKLUZCIlATBFgs1rTOTf/6tgPWud4lZQ3d9fCoT2QRBveaaKxu1FmeRRQREYHlE3BAomQQ2o8bxUQPo0aN6tevn729/YABAzAevX379vLly8zpcBl1794dWaNHjz5z5sytW7eePn3KZAnF+DbwJfgSCB7y5crKyhiz+IEvL5ko5HK/djEXkkNSwOUKCemwygSwUD3AwfjENOe7i9ynF7uMPqTlbr8T2mnT3UmHH98IjC+gp4yqDLdun4hFllJv0B0/fvyyZcswpJTEM2/evB9++EFwW5eSZSDBYo3Ajbcy/yIILPFsHuGwZ1wbHXWl4Li0ATvuH7gXzsUSBboqkXAlgHaZkwhoaqRcAhs3bjQxMTl8+HD79u3NzMy6detmYWHBnOHj4zNx4kQ4kCH/5ptvsNTi5+fHZAnFmHXw7/BHQiiXOZSzAYTpFMXSQ6B1kwaX53TsbmuQV8hd9nfgzBNP03LypUc92dKkPIuI35NVq1ZhPZV/iER2djaESFQ/GBkZmZqahoSElKyqdevWWMIpmaWnp6egoCDoFEpISICbqGQNoktUlTgz3C3mdmsGvxDOQow0JGpKwo4j5FKoJgFzPfUlxS6jnWMdXS11sajh+ebjN8f8XTbc2XLjTXQyuYyqCZhOFxsB0e+8rbBJ6SnQ294QziLebeiF3DWXg8ceeBQjET9tVl7B3dfMLnOG0kODNKmDBC5evNi2bdsRI0bo6+s7Ojru37+fD6Fjx47IjY2NxUrr3bt3sWLbq1cvfq5gIiMjA7OXxo0b9+/f/9mzZ4JZ/LRcDiD83lFCGgjUV1PaP6HNT/1sFRVYVwLi+2+//zImRRoUkzkdRLKIVq5ciV++YN9gIEEoKKlyOikpKTo6GnZRyRoCAwPz8/NLZikpKbVp0+bmzZv8U5B2cXHhH1YtoayoMN2tqd/SHv4/dUeMNCRVq4rOEoWAMkehf0vj41OdPRe5f+tmoaehlJCeu+NOaOdf7k489Pjaq/j8QnLQiQKSytQgAdHvvK1BJWqgan1NlQMT264f2kJNSeFReHKfbffO+sdgClgDTf1bJRY+svMLGzdQbdFI+18ppeSRgJT3KTw8fPfu3c2aNbt+/fq33347Z86co0ePMjpv377dzs4Odg5mGr179961axdsJCZLMLaxsfHw8IDtdPLkSRUVFVdX15KrtygvrwMIukZBegjAXTm1U9PT37pgdI1Kzhq2+6HHg4iaHs+lp/vi0oQtSkXACtyCJV+8eKHz3w3iBHP5adhRz4s/kERERCAZFRUF4aJFi+CYjoyM9PT0HDBggJ6e3pAhQ1AmLCwMrid4qJF15coVrN9g8QYDDbIQunXrxt/Ie8GCBQcOHDh06BBzpy+qxaCGMtUM8Agpcdi6GsqIka5mbXS6iATM9NR/6GPz8Iduu75q3amZHlxGXm8/fvsHz2X0y/XX5DISESMVqwkCot95WxOt12idGNXHtG9ydW6n1k3qp+cWLDz9Ysbxp8mZeTXX6OXiW+b6tTBC0zXXCtVMBCokwOVyW7duvW7dOswxpk+fPm3aNBhIzFmwiB49egRTx9/ff8uWLTNmzLh16xaTJRg7OzuPGzfOwcGhU6dOf/31l5WV1Y4dOwQLMGk5HkCYDlJcr149KYHQyqT+5dmdetoZ5BcWrbgU9N0fT1Oz6Q66SlycCiyiBg0awPLBXy/82pFggra2do8ePUaOHFlhO7BtMNwgoCRsGCSWLVumoKAQEBAwaNAg1Dlx4kTEsI40NXkvplBSUrp9+zY81NbW1liz6dmzJ0YilMfpCLCXEhMTkUAYNWrUtm3bYD61atXK29sb5hOc15BTkF0CsEL7tjA6NsXJa7H7d+4WcBl9TM/9/W4YXEbjD/peDYjLJ5eR7F5d0lxaCZjqqv81vcPiXtYcNuvqq/he27zvFu8FJ3Z9s/MK777m7TLXpwW9mFXsdKnCyhEwMjKCI4h/jq2tLdZVcZidnf3jjz9u3boVa7UtW7acNWsWJhubN29GVjmBzWa3a9euVB9ROWdRFhEQOwFtNcW949ssH2CnqMC6Fhjfb/u959EpYm9FXiuswCKC1YGhAT6ilStX8reb27Nnz/3793///fcKobi7u+NcweDh4aGqqgo/dUJCQl5e3rt37yAxMTFhqkLCy8srKSkpNzc3NDT0t99+gw3GZCGG42jFihVIMAErN5CgpL+/f2eRX5HEnFvJmIpLlACmaP/rzXMZ7f7iMroXkvjd8acd1t/ZeO11VBI9ZSTRy0GNyT0BjgJ7ZhfLCzNdm+lrYBni68NPlp4PyMorEG/Hvd4mZOUVNqqv6tCYbpkTL1qqrdIEXF1d37x5wz/t7du3zKJqfvEHFg4/C2uycCjxD0tNYJLz/PlzWFml5pKQCEiSAHwYX7uan/nWxURHNeZT9og9Dw/epzvoRLoCFVhE8OFMmjTp7t27MD+QZsKYMWM6dOggUvVUiAhUlQBcRlhLhsvIe3GXmV0sGmoqJ2bk7vb87DK6EhAn+DaV7LwCHCZl5CLOEvdMrqo9kNHzZFLtjIwMzEgQoD3/Bl2kk5OTIQwKCkIaEyCk+TuyIIFDrLwgC15rpFEY6Tob7BtpX5rdcbIrb8vN475RfX+79zTqkxhpXA7gvSChj70h/mCLsVqqighUgcD8+fMfPXq0bt06jAAnTpzYt2/fzJkzUY+Wlpabm9vixYs9PT0xkmDF9ujRo0OK7+pH7oQJE5YsWYIEApaJsbYbHh6OoWPKlCmIxXLrPmqmQASqT8DBpP4/szthvM0vLFr9T9A3x/xTs+gOugq4VmARMWdramoGBwcz6b///nvw4MFwK+fl1eDt5kxbFBMBEGiiq7a4F1xGXfeMa+Nm1ZDFqgeX0YzjT1023N5w9XXsp6zc/MI9XuFt195ss+YW4r1e4ZDgRAp1h0CpN+ii+xcvXnR0dOzXrx/So0ePRhoubqQRkMDhtGnTkIaTGWkURrouBxVFhWUD7I5PdTLSVolMyhq+++HWG2/yxXG3ak5+4Z3gD2Dbt6VU3TIHjSjURQLt2rU7f/78yZMn7e3tV69evW3btq+++ooB8eeffyIXh3Z2dhs2bFi7di3f1ImKioqL420fj5IpKSnffPONra1tz549Y2Njvb2927dvDzkFIiAlBLRVFXd91XrVoOZKCuybQR/6br/3TKyLXFLSTTGqIZJFNH36dPiU0SqWQ0aNGqWmpnb69Onvv/8eEgpEQDIEFBXYve0Nj0xuD5fRrC6W+jyXUd4er7CguLSdd0N/ux2Sls27yQcx0rs8w8hTJJnrIiWtuLu7F/33g8Vd6AYX93/FRfw7b5EQykJhnELB1VLv2rzOQxwbcYvqbb8TOnTXw9CE6r7I1evtx8y8QmNtFUeT+kSYCEgDgf79+8M5nJOTgwVfZmWE0crQ0PDw4cMwcrKzs1+/fr1gwQIWi8VkwXHEDCw4/PXXX9+9e5ebm5uQkABnkSzcOAOtKdQtAiwWa0IHs7PfuZjqqsWmZI/Y43PgXjj+8NUtCiL3ViSLCOZQq1atUCcMITc3N7iYMSicPXsWEgpEQMIETHTUFvWyfvBD173j2wxoaYTZ2xGfSCEdDj+M4LBF+m4LnUiHRIAIgAAWF38d1WrnWEckAmJT+22/f/hBBBcWEvKqFK4W7zLX294If6GrVAGdRASIABEgAlUh0KIx747ofi2MCrhFay4HTzvql5adJ+/PGlQFlEizRhiUXC7vzTC3bt3q27cv2jExMeFv+4ZDCkRAwgTgMurV3HDH2NaZuYVpxd4hQQUgScrI/csv+lF4UmYuz3ckmEtpIkAERCHQv6XxjfmdO1s1zC3grrwUNOHQ47jUbFFOFCqTk194K5i3y1y/lvRiViE2dEgEiAARqHECWiqKO8c6rh5sr8RhRyRmFXDr7fYKa0vPGvwXvEgWUdu2bdesWXPs2DEvLy/mjvyIiAgDA4P/VkVHRECCBL40hTVsLVXOl6PP/0Oiraa44err0fsetVhxvfc27/+deXnCNyrofVqBOB6K+NwM/UcE5J2AgZbKka/brR7UXEWRfT80sdev3n8/j61sp++FJGbkFhhqqTiaNKjsuVSeCBABIkAEqk8A/vnxzqbnvnNZMdAOPv/tt0OxdoxqEf92O4SeNQAKkSyibdu2PX36dNasWUuXLrW0tMRpZ86ccXFxQYICEahdAoVc7tcuvN2xBNWAJOZTtpO5jpG2Creo3uv49FN+0T+eD+i7/V6LFTdG7vFZeznon5fvYz5lwf8peCKliYA0EqhVnXh/RzuYXZ7TyaGxdlpOwdw/n88++SwlqxI763y5Zc6Qzf78PEatdogaJwJEgAjUUQL2jbSdzHXpWYNSL79IFlHLli0DAgJSU1OXL1/O1PLLL78cOXKESVNMBGqRgKoSZ4a7xdxuzeAXghqIkYbEykA4mrrWAAAQAElEQVRz97g2Pku6+f7Ybd/4NpC4WupqKnOy8wsfRybvvxcx68Szjhvvtlt7a4rHkx23Q7zffqS9KQGQAhEolYBFQ40z37nM695Mgc269OJ9r23e90I+llpSSJhbUHgziLfLXD/aZU4IDR2WSoCERIAI1CSB9Jx8+IWEWoAkIT1n5F4fhJ8uBBx5GPkwLPFjem6dWjUWySISAodDFRUVRUVFJCgQgVonoKyoMN2tqd/SHv4/dUeMNCR8rQy0VHo2N/y+t83xqc4vlve8taDz5hEO45ybtGikzWGzEjPybr9O2HLz7YRDjx1W3ei62XP+qecYC55Hp2Amx6+EEkSACCgqsOd1tzr3nUtTPfUPabnjDz5ecTEwO6+wfDL3QxLTcwv0NZXbNKFb5spHRblEgAjUMQK10V1NFUWsHQu1DImOulJoQsbjiOQ/HkUtvxg4dr8vloxbr745co/P0vMBHg8iHoYmwmqSYxtJJIuosLBw8+bN7du3NzQ01BH4CAGlQyJQWwTUlDhKHLauhjJipMtSg81mWeprDm/TeM3gFpdmd3y1stfZ71yW9bcb6GBsqquGs8ITM88/i8VYMPj3By2W3xj0+4Plf786/ywm/GOGHI8C6DgFIiAiAQeT+pfndJrYwRTlPR5G9ttx72VMCtJlhStfXsyKX19ZZUhOBIgAESACkiFQ1rMGXG7R0cntfx3lMMPdorutASZFLFa9T1n5jyOTj/tGrbgUNPaAb/u1tx1X3xyx5+GP5wMOP4h4ABspLUduZkciWUQrV67cunXryJEjU1NTFyxYMHToUDabvWLFCslcPJluhZSXZgIqigptTBtM7mi+fYyj1+Iuz37ucfjrdvO6N3O3bthATTGvkPsiOuWIz7v5p1503eLlsPLG+IO+W268uR38ITEjV5r7VRO6ZecV5BVwkzJyEdO7nmqCsAzVqaqksHKQ/ZHJ7eH5Cf+YOXTXw99uhRSUtmcJvi03g+LRtb4tjBBTIAJEgAgQgdoloFrGswYaKor2jbSHODb+vrfNgYltMSkKXtX7n9kdt41qBRuph52Bma4am1UvJSv/SeSnE75RKy8FfQUbad3tVqtuDt/9cMm5gEP3I+6HJH6QWRtJJIvo+PHj+/fvX7RoEYfDGTNmzIEDB5YtW/bo0aPavajUOhEQL4EG6kpdrPXndbfy+Lr90597eC/u8tvoVpNdzWE1KXPYaTkF90ISd9wJnXLEr+2aW64b7sw88XS/d/iTyOTsvApuHBKvnpKvLTe/cI9XeIU7dUpeMWqxFgm4WTW8Mb9zv5a8d1z8euvt8D0+4R8zhPTBCiJ+OHoaym3NdISy6JAIEAEiQARqhYByuc8a8FXCqjFspMGOjWAj7Z/Q1nNxl6BVvS/P6Yip0cwuFj3tDMz11GEjpWbn+737dPJx1Kp/gsYd9HVadxsryMN4NtLLg/cj7oV8jE+VDT+SSBZRfHx8ixYtwEhDQwNuIiT69+9/+fJlJCgQAbkkwGKxmuiqDWrVaNkAu7Pfubxa2QsrJasH2w9v07iZvgaLVS82Jfvyy7i1V4JH7PGxX3G9z2/3sEBy6knUm/j0Qm6RPDGBR2iXZ9hvt0PSit/7hBhpSCCXp25SX6pAoL6a0s4xjvjrqKnCeR6d0m/7/WOP3gneQfH03ScddaU+9oYK+LNZhQak+BRSjQgQASIguwTURHvWQKiDsJGaG2tjarS4l82+CW3vLnKHjXRlTif8FZjVxbJXc4OmxTYSFsL8eTZS9Op/gsYffOy8/nbLlTeG7nrww9mXB+6Fe7/9GJeaLfiXQqiV2joUySJq3LhxXFwcVLS0tLxx4wYST548UVZWRoICEagLBBQV2FgpGe9sunmEw80Fbi+W9zwx1WlxL2uskehrKsMECo5LwwLJ/84G9Nrm3WLF9VF7fdZfDb4aEPc+pfSffXaepG9Cw+gDGyYhPQcL+QExqQ/DEm8GfTj/LOaYT+Ruz7Bfrr9ecTFw4V8vvj3mP+6A7+DfH3Tf6tVh/e3OG+/g+h5+GIFYMEDCYYs0egieRWn5I8BisfDX8fq8zq6Wutn5hT9fePW1x5OkjFzmGz6yncn9/3WZ4W4hfx2nHhGBukOAekoEyiIAG8nOWAt/BRb1st47vu2dRe7Bq3tfndtp+xjH2V0tezc3bNpQHSti6TkFT6NS/nwSveZy8IRDjzusv8PYSP87w7ORvESwkZi/KfjjklfAxWSmLH2qIxdpTjNkyJDbt2+jmblz5/7888/NmjWbMGHC5MmTIaFABOogAS0VRRdLvZldLLFG8nhpd58lXfeMaz3dralzUyyIK2TlFfpGJO/1Cv/u+FOXDXfgQZ521O/3u6EPQhPTcvKBK7caN6HBsMnOK/yYnhuRmPkqNtUnLOlW0IcLz2L/ePRuj1fYlhtvYNgsPv3iuz/8xx/0HbLrQY+tXi7rb8NIs/jxit2y6+3X3u66xWvAzvtj9/tCq/mnXvz8d+DGa69/vxvm8TDy7NOYa4Hx90MTsd4fmpARl5qjqsRJyshLK/YOQXN+gCS9uC98CSXqMgHj+qrHJjst62+nzGFHJ2fDTNrtFdZ27c1Om+46r7+Nv4L4ztdlPtR3IkAEiEAdIaDMUbA10hroYLywp/We8W3uLIQfqde1eZ12jHGc09Wyj72hhYCNdMovGjbSxEOPO8BGWnEDk5bvz7w4cC/c803Ce4EFZfwF2VPzt+4zFlEFl2nDhg0//vgjCg0fPvzevXvffffd6dOnIYSEAhEgAkbaqr3tjZb0sf3zmw4vV/S6Pq/zpmEtxzo1sTPSUmCzEtJz4Y355fqbrw74Oqy8cT/k4+93Q38rcRNazKesv5/HHvd9t9crbOuNNysvBWJcmHHcH6sp8DX3+tXbdcMdnG659Krtsmvt1t7qstmz/477Y/Y/mnrUb96p5z9deLXh6usdd0Jh2Jz2j7n6Kv5eSOKzqJSQhIz3qTlYnuEW38rHYtXTVOYYaatY6mu0Mqnf0VIPSzjDWjee5GI2s4vF/3rbrB7U/NdRDvsntD0xzenSrI57x7c20FLRUuUIXWVINFVo/30hKnX6kM1mTe5oXnxzafPDDyK23w6F2QwiiH+7HUK3WQIFBSJABIhAHSQAG8nGUGuAg/GCnta7x7W5vdA9eFVvzJR2jnWc060ZbCRMSDhsVnpuASYtf/nFwEaadPgJFpRbrLgx+PcHL6JTfvcsZdaUlVcgXpjsylbn7Oy8YMGCgQMHVvZEKk8EpINAzWoBE8jaUHNkO5N1Q1pcmdvp1Ypep7/t8FM/2/4tjRo3UG2gptTatIGHT6SQEocfRsC7tPJS0NLzr9Zffb39TujhB5EYF64ExHu//Qhf85sP6bEp2anZ+YXFlg0MGw1ljqGWCtZaHEzqu1rq9mpuMLR1o4kdTGe4W3zf23rVoOZbRzrsG9/mxFSni7Ncby90e/xjt8CVvcLX9Q1Y2ctnSbdbC9wuzHT9Y6oTlnC2jHRYMbD54l4237lbjO9gNsSxcQ87AxcLvRaNtc30NAq53K9dzOv99wNJAZf7XxkdEYF6zQw025rqHCntG063WdL3gwgQASJABEBAicPGTKl/S+MFPaxgI2FCErSq9435nWEjze3WrG8Lw2b6GrCRMnILopKzmhloYKkXZwkGzJrE/jelPIvoYkUfQeVKTXt7ew8YMMDY2JjFYl24cIFfZtKkSZDwA6wsJis5OXn27NnW1tZqampNmjSZM2cOs5EDkysYr1ixgn86EoaGhoK5lCYCUkJAVUmhnZnO1E5Nd45tff9/XWGZZOQUpGULL2xAkpKV38NWv6edwVDHRhM6mMI4WdzLeuXA5ltGOOwZ1+b4VKe/Z7reWuDm+2O3Vyt7ha3ti/jRj92w1gL58anOe8e33Tqy1cpB9t/3tpnhbjmhg9nQ1o17Njd0sdRr2bi+RUMNfS0VdWUOfiyVJaOqxIGVhUEKfiGcixhpSNSUhB1HyKUgZQRqQZ30nHx8n4UahgRyISEdEgEiQASIABEAASUO28pAEzbS/B5Wu75qc3OBG2ykm/M7bxvVKi1bQn9TyrOIBpf7GTJkCPpQfsjMzHRwcNi5c2fJYr1794778rly5QpT4H3xZ/PmzQEBAR4eHteuXZsyZQqTVTJu3rz5lwriUL5kAZIQAWkjAB9RfTUlGBVCikGip6G8cbjDvgltt45qtWqQ/f9628zsYjnRxWxYm8a97Q1dLfXgC4Jn2UBLRUMZKyMsoRpq9FDEnTprVAeqXFYIaJbxQnTIZaULpKdsEiCtiQARkB8CsJGaGWh2tmqoo66MOZJQxyAR+9+U8iwibrmfwsKK38HSp0+fNWvWDB06VKgnOFRWVoZjhwk6Op9fVWFvb3/27Fm4lSwsLLp27bp27dpLly4VFBSgfMnA4XCY0xE3bNiwZAGSEAEpJCCjN6HBI4ThSVdDGTHSUgiWVJISAjL6DZcSeqQGESACREAEAnWoiMT+ppRnEdUob09PT319fSsrq2nTpiUkJJTaVmpqqpaWFiyfUnNDQkKMjY3Nzc1Hjx4dHh5eapnc3Nw0gU+pZUhIBCRJQFWJbkKTJG9qS9IE6BsuaeLUHhEgAkRAfglI7G9KBRZR3759YZYwnOGxSUlJYdJJSUl2dnZMugoxfEfHjx+/c+fOli1bnjx5AncQTBehetDE6tWrp0+fLiRnDp2cnI4ePXr9+vX9+/fHx8e7uLigPJMlGK9fv177y8fExEQwS9rTpJ/8EqCb0OT32lLPeAToG86jQP+km0BsbOy4ceN0dXXV1NRatWrl7+/P6JuRkTFr1qzGjRurqqra2tru3r2bkZeMz549i4mQsrIy4vPnz5csQBIiQATEQkAyf1MqsIhgcvBtlY0bNyYnJzN9KygoePPmDZOuQjxq1Kh+/frZ29sPGDDg6tWrb9++vXz5smA98OugAEaZ5cuXC8r5adhUw4YNa9GiRffu3Zlzjxw5ws/lJ5YsWQKLjgnR0dF8OSWIQO0SUKvS66JrV+cabJ2qljsC9A2Xu0sqVx369OmTq6uroqIiZiBBQUFYnK1fvz7Tw/nz51+7du2PP/4IDg5Gevbs2X///TeTJRj7+PhgJjN+/PgXL14gHjlypK+vr2ABShMBIiBGAhL4m1KBRVRUVPwSk+I+CaaLBeKJjIyMTE1NQ0JC+NWlp6f37t1bQ0MDiy4YsPjyshLq6uowjQRr4JfE4o2WwIcvpwQRIAJEgAgQgVogQE1KAQGs8JqYmBw+fLh9+/ZmZmbdunWzsLBg9IKpM3HiRHd3d8i/+eYbBwcHPz8/Jksw3rZtW48ePbDqamNjgxg1QCJYgNJEgAjIFoEKLCIJdCYpKQneG9hFTFvwDvXs2VNJSenixYsqKiqMsPwYXiys5fBrKL8w5RIBIkAEiAARIAJ1mQAmGG3bth0xYoS+vr6jo+P+/fv5NDp27Ijc2NhYrALfvXv3snncuAAAEABJREFU7du3vXr14ufyEzCcMFfhH6LMw4cP+Yf8BOYnmNXwA19eVxLUTyIgOwQqsIhYxR9+d3DET4uSyMjIeF78QeGIiAgko6KiIFy0aBFGk8jISE9PzwEDBujp6Q0p3ssb3iEMMZmZmQcPHsQIEl/84W9qhzUY/kbeqMHLywt1wk89fPhwFMaiDlopJ2B0Qy5KUiACRKCmCTA/N/zi5CkwnappdFQ/ESACIMD83GpoAAkPD9+9e3ezZs2uX7/+7bffzpkz5+jRo0xb27dvt7Oza9y4MVZme/fuvWvXLthITJZgjOmJgYEBX4I0JPxDfqLkw8zoGgUiQARqmkAVBpAKLCLUOGnSpKHFn5ycHAwcxcmhkydPZn7w5cfwNWP1BQHFFixYgMSyZcsUFBQCAgIGDRpkZWUFMwYxrCNNTU2U8ff3h4WDXEtLS/h8mAAPErIQwsLCEhMTkUCIiYkZM2aMtbU19MGw9ejRI1NTU8jLCTC3kAtH+ZetFuh/IkAEaooA83PDL06eAtMpGkNq6ktD9RIBAQLMz62GBhAul9u6det169ZhWjJ9+vRp06bBQGLagkWEGQXcRP7+/lu2bJkxY8atW7eYLKFYcI0YkyXBQ37JJQIPMwcFBUFOA4jARaYkEagpAlUYQCqwiGCxwKfM6Dtu3DhjY2MmDeGECRPw2y4/uLu7Y5gQDB4eHqqqqliVSUhIyMvLe/fuHSQYIJh6SpbHuWZmZkwufEorVqxg0n/++ef79+9RA1zbzH4vjLycGMrDuEpJSWE2WpB8jNahHmLJN121FqGqDCksAW2rhrGss+RbYWaNA98feQq1O4bI9xemrJ+JJOVEuEZpVxZvjY4hWG+FI4g/Otna2kZFReEwOzv7xx9/3Lp164ABA1q2bDlr1qxRo0Zt3rwZWULB0NBQ0CmEKQ3cREJlcCj4MDPWcAEhJYUmISJ90cAKABGLVFoKCkFVUrhGr0OlCFdhAKnAIjpc7gfXXoYCm82GHxwWncBWC5JOApekm6xee7KlsGxpiysjxwqXulyK/sp0qPUxBPTwtZFMEEsrpLBYMJZTiWwRrpS2NTqGuLq6Cu6X+/btW+Y2k/ziD37pUJUJCgoKcCgxacG4Q4cON2/e5Etu3Ljh4uLCPyw1gWppElLOl7lkFjCWFEqzhBSu6asjOuEqDCAVWERomwIRIAJEgAgQASJABOSGwPz58x89erRu3brQ0NATJ07s27dv5syZ6B3mc25ubosXL/b09IyIiPDw8Dh69CjznDNyJ0yYsGTJEiQQ5s6dCyto48aNr1+/Rnzr1q158+ZBToEIEAEZJUAWkYxeOFKbCBABIkAEiAARqAqBdu3anT9//uTJk/b29qtXr962bdtXX33FVPTnn38iF4d2dnYbNmxYu3btt99+y2RFRUXFxcUxaXiEUPLw4cMtW7aE4XTq1CknJycmi2IiIM0ESLeyCJBFVBYZ8cuVlZWXL1+OWPxV10yNUFWGFJYtbXHFSGFAoCA6AfrCiM6qaiWJcNW4iXiWtOHt379/QEBATk5OcHDwtGnT+L0wNDSEnRMbG5udnQ3/z4IFC/i338BxBOOHX3L48OEokJeXhxqGDh3Kl0ttQtouQfmgZEtb9IUUBoQaDTVNmCyiGr18/6kc13LFihWI/yMV/4HYaoSqMqSwbGmLi0QKAwIF0QnQF0Z0VlUrSYSrxk3Es2QOr4j9kqFisnUJZEtbfA1IYUCo0VDThMkiqtHLR5UTASJQowSociJABIgAESACRIAIVJcAWUTVJUjnEwEiQASIABGoeQLUAhEgAkSACNQUAbKIaoos1UsEiAARIAJEgAgQASJQeQJ0BhGQNAGyiCRNnNojAkSACBABIkAEiAARIAJEQHoI1J5FJD0MSBMiQASIABEgAkSACBABIkAE6ioBsojq6pWnfkuSALVFBIgAESACRIAIEAEiIK0EyCKS1itDehEBIkAEZJEA6UwEiAARIAJEQNYIkEUka1eM9CUCRIAIEAEiQASkgQDpQASIgLwQIItIXq4k9YMIEAEiQASIABEgAkSACNQEAXmvkywieb/C1D8iQASIABEgAkSACBABIkAEyiZAFlHZbOpeDvWYCBABIkAEiAARIAJEgAjUNQJkEdW1K079JQJEgEeA/hEBIkAEiAARIAJEgCFAFhHDgWIiQASIABEgAvJJgHpFBIgAESAC5RMgi6h8PpRLBIgAESACRIAIEAEiIBsESEsiUDUCZBFVjRudRQSIABEgAkSACBABIkAEiIA8EJBFi0geuFMfiAARIAJEgAgQASJABIgAEZAGAmQRScNVIB2IQFkESE4EiAARIAJEgAgQASJQswTIIqpZvlS7DBFwd3f38PCQIYVJVSIgXwRkuzc0gMj29SPtiUBtE6AxpHavAFlEtctfWlqHJVC/fn1p0aZsPVj//ezZs4dfNiAgwM3NTVVVtVGjRqtWrSoqKuJneXl5tWnTRkVFpWnTpoKn8AuIkjh79ixGK21tbQ0NjZYtW6KJ5ORknBgXFzd27Fhra2s2mz1v3jxI+CEwMHDYsGFmZmbQetu2bXw5JYiAnBGgAaTCC1qFAWT//v2dOnVqUPzp3r3748ePK2yFCsgOAdL0PwRoDPkPjtIOyhpD+GUfPHjA4XBatWrFl/ATf/75J+YhgwcP5ksoUZIAWUQlmZBEqgkcPnwYRggTJk6cyOialpbWo0cPY2PjJ0+e7NixY/PmzVu3bmWyIiIi+vbti4nFs2fPfvzxxzlz5mBYYbJEj5cuXTpq1Kh27dpdvXr11atXW7ZsefHixbFjx1BDbm5uw4YNUcDBwQGHgiErKws22IYNGwwNDQXllCYCRKC2CMjQAOLp6TlmzJi7d+/6+Pg0adKkZ8+esbGxtcWN2iUCRIAhIG1jCKNVamrqhAkTunXrxhwKxu/evVu0aBFmQYJCyaZlozWyiGTjOlVKS7gyMO///vvvdXR0MBdfsWIF/3TYCS1atFBXVzcxMZkxY0ZGRgay8Hf366+/xs8JSwgITPlPnz7h19WgQQM1NbU+ffqEhISgJAKzkPPPP//AK4Ks4cOHZ2ZmHjlyxMzMDIVnz55dWFiIYgi7du1q1qwZPDMGBgYoBolYQv369dEpJsAjxNR5/PjxnJwc6GZvbz906FBYPugp4yaCUwiTCbhobG1tp06dOnnyZNhLzFkixliaXbduHaygX375xcXFBT2F9QWzirHHcPjbb7+BFdxHQhXCgsIpo0ePVlZWFsqiQyIgtQRoAJGSAQTDGkbpVq1a2djYwF/E5XJv374ttV8bUowI8AnQGCLJMYTBPn369LFjx3bo0IE55MeYkn311VcrV67E+ixfSIlSCZBFVCoWmRfCRIHZ4+vru2nTplWrVt28eZPpEpvN3r59O7wcKHDnzh1YTZBjlg+DQUtLi3G8YC0BwkmTJvn5+V28eBHLkzAt+vbtm5+fDzkCXB+oBE7Ya9euwZqCBXLlCu8Dn8m+ffvOnDmDMjgXVhmafvPmDYp17twZQqEQFRWlUcbn22+/FSrMP5w1a5aenh6MDZg6mCIwcijp5ubGNzx69er1/v37yMhI5CILa6tIMAFZ0I3fF0ZYfox5CdTE1ESoGGwzIQkdEgH5IIDxgQYQqRpAMOpi1MIil3x8wagXck+AxhBJTkLgtgoLC1u+fHnJ7xWmYQ0bNpwyZUrJLJIIESCLSAiInBy2bNkSvw24aOC7aNu2LX9lcd68eV26dDE3N+/atevq1av/+usvdFhJSQn+DXiHGMcLZv/wCMEWOnDgANysDg4OMAliY2MvXLiAwgj4w7x7925HR0fYOXD+3L9//+DBg3Z2dv3790fld+/eRRlYO5hRQWJqaoqSsI4gFArGxsbPy/jgNyxUmDmEzqdPn7516xYcLwsXLoTrhpHHx8fDE8WkETNpCJFGzBwijYB0QUFBYmIi0iIG0MDiiqKioojlqZicE6gD3aMBBBcZQwcTY9BAgglI18oA8sMPPzRq1Kh79+6MGhQTASknQGMILpBkxhBMUTA+YJ7G4XDQqGB48OABpmfwMAsKKV0WAbKIyiIj23IMRvwOGBkZJSQkMIcwV3r06IG/rJqamjCWkpKSMjMzmSzBODg4GD8tJycnRqirq2ttbQ0hc6impmZhYcGkMT8wMzODEcU/ZNpCK7CFYEiMHz8eP1QscDIFBGM0YVnGR19fX7AkP/3TTz/BKdyqVSuYQ7CafvnlF34WLDp+Gk4tpPkSfgJCoSxIKgw4RbCGCstTASIg6wRoAMEV5P/q+QkIMRogFpTgsPyAUypVvmRtcPWfPHny3LlzKioqJXNrVkK1E4EqEaAxBNj4P3x+AkIMCIgFJTgsP+CUssoXFhaOHTt25cqVVlZWQpWkp6ePGzcO5pCenp5QFh2WSoAsolKxyLxQ0KGBHxJzd9m7d+/69u1rb29/9uxZf3//33//Hf2EwwexUMDPr6QE9TBCocqFDpm2YHE9ffoUf8Vhjy1btgyOppSUFOZ0fgw/EkypUkM5d83xT3d2dk5LS/vw4QMk8G4xizFIIzBWGaw1pEtmwRKDjYcsEQMGGvijSwUlYg1UjAjIFoFSf9Q0gOAiYmyR8ACyefNmOMNv3LghOMWEJhSIgDQTkMkxRGA6IiuTEJg9fn5+s2bNwriEgJXiFy9eIHHnzh3MWyIjIwcMGIBDhKNHj168eBEJyKX5m1OLupFFVIvwJd00fjYFBQVbtmyBLYFZ/vv37/kaKCkpYaWBf2hnZ4eSvr6+jASupLdv39ra2jKHIsb44XXv3h2rmy9fvsTPEr9PoROrcNecYA3Pnj3DiinzMA8cR97e3nl5eUwBzB5QOZxXOEQW/zEqHCKrbdu2goM1hOUHLMBkZGTs2rVLqFhJG0+oAB0SAXkiQAMIrqaEBxC4wVevXn3t2jWMWmidAhGQaQI0huDyiXcM0dLSCggI4D9/AEPO2toah05OTjY2NoJZAwcO7NKlC7JMTEygBoWSBOqWRVSy/3VKYmFhATtnx44d4eHhx44d2yPwMh8YD5j03759OzExMSsrq1mzZoMGDZo2bdr9+/ex3gDHa6NGjSARHdc///yzfft2/PawroyVCTiO8CsVOh0mk2UZn1Lvmrt06RL8v69evcIKx4EDB5YuXfrNN98wuynAaEFi0qRJyD1//jyWVBcsWMA4tTBAQAccBgcHHzp06ODBg8zWEULKlHOIkeX7779fuHAhYh8fH9QGUCNGjDhy5AhzFrqJAIAfP35EIigoiJHDQsMhAhKxsbFIhIaGMlkUEwGZI0ADiIQHECwn/fTTT2gU4zN84AgYZGTua0MKEwE+ARpD8HMW7ySEzWbbC3wwd8JKMQTq6upMAmkmYPlYU1MTaayA868IJQQJkEUkSEPO061atdq6devGjRvxkzh+/Pj69ev5HXZxcYHlMGrUqIYNG+LPMOSHDx9u06ZN/xkTOK0AABAASURBVP794WMpKiq6cuWKomIlthbAb+/cuXNdu3aFZwmm18mTJ5s3b45qqxOgABw10Kdly5a//fYbvMNbtmxhKtTW1oYjKCYmBiupM2bMgP2DwGSZm5tDeU9PT3Qfq62w04YNG8ZkiR4D2okTJ+A069WrFzqCyqEDs/s2KnEs/vj7+6MMkn379oUQAV44HCLExcVt3rwZialTp0IumUCtEAHxEsAviAYQSQ4gGO6wmDJ8+HCjLx8MI+K9plQbEZAkARpDamgSIsmLKMdtkUUkhxcXs/9t27bxO3bhwgUPDw/mcP78+Zimwwt07dq18ePHw9SB6cJk7d69Gw4iSJj3ETVo0AC+nZSUFKYwvEZMMfhhIGTSiFEYrg8kmICG0BzSHTt29PT0TE5OxunwMo0cORLCaobevXs/e/YsPT09MzMTvuC5c+fCy8Svs0WLFt7e3jk5OTA/li9fzjiImFw3N7enT5/m5uZGRETA8GOElY3RBS8vr7S0NCzTokc///wzHx2gCYbIyEimcqzsCsqRBhMmi2IiILUE8C2VuQFEFJgyN4BgJMGgIRgw3orSUypDBGqXAI0hEp6E8C83hgjBKRlfjgR/eoY0hVIJkEVUKhYSEgEiQASIABEgAkRA6giQQkSACNQEAbKIaoIq1UkEiAARIAJEgAgQASJABIhA1QlI8kyyiCRJm9qSagKTJk1q1aqVVKtIyhEBIiCtBGgAkdYrQ3oRAdkgQGNI7V4nsohqlz+1LkUEaDCSootBqhABWSNAA4hsXbHY2Nhx48bp6uqqqalhLczf35/R/8OHD7iUxsbGkPfu3TskJISRl4zPnj1rZ2enrKyM+Pz58yULkIQIVIoAvnj4KlbqFCosRgJkEYkRJlVFBIgAESiHAGURASIgFQQ+ffrk6uqqqKh49erVoKCgLVu2MDvlFBUVDR48ODw8/O+//3727JmpqWn37t0zMzNLKu3j4zNq1Kjx48e/ePEC8ciRI32/vMGvZGGSEAEiIP0E6pBFhJEuLS0NsfRfFdKQCBABKSSA0YPGECm8LqSSVBKQaqU2btxoYmJy+PDh9u3bm5mZdevWzcLCAhrDI/To0aPdu3e3a9fO2tp6165dGRkZJ0+eRJZQ2LZtW48ePZYsWWJjY4MYNUAiVEbokAYQISB0SASkikAdsojS09O1tbURS9UFIGWIABGQFQIYPWgMkZWLRXoSgXIIXLx4sW3btiNGjNDX13d0dNy/fz9TODc3FwkVFRXECAoKCkpKSvfv30daKMBH1LNnT76wV69eDx8+5B/yE6gQyyhMiI2NpQGET0a+EtQbeSBQUxYRRgF5wEN9IAJEgAgQASJABOSLQHh4OBxBzZo1u379+rfffjtnzpyjR4+ii3D4mJqawufz6dOnvLy8DRs2xMfHx8XFIUsoQG5gYMAXIg0J/5CfWL9+PawgJsArxZdTgggQAWkjIE6LCCPLpEmT4HpWVFRUU1PT1NR0c3Nbu3bt+/fvpa3bldaHTiACRIAIEAEiQATkggCXy23duvW6devgIJo+ffq0adNgIKFnmL2cPXv27du3Ojo6mMZ4enr26dMHniJklQwsFosvLCoqYrH+PeTLYVylfvlER0fz5ZQgAkRA2giIxyK6cOGCtbX1xIkT2Wz24sWLz507B+vo4MGDsIhu3brVtGlTrMF8/PhR2jpP+hABIlAKARIRASJABOSagJGRkZ2dHb+Ltra2UVFRzGGbNm2eP3+ekpIC19C1a9eSkpLMzc2ZLMHY0NBQ0CmUkJAAN5FgASatrKysJfBhhBQTASIghQTEYxFhoWXz5s3wBR06dAjGz4ABA7p37z5y5MhVq1bdvXs3LCwMAwLjkpZCBKQSESACRIAI1FEC1O06ScDV1fXNmzf8rsMpZGpqyj9EQltbu2HDhiEhIX5+foMGDYJEKHTo0OHmzZt84Y0bN1xcXPiHlCACREDmCIjHInr8+DGsIDiISu1/o0aNNm3atHDhwlJz64gwO68gr4CblJGLOCuvoI70mrpJBIhA3SRAI17dvO6y0uv58+c/evQIi7mhoaEnTpzYt2/fzJkzGeVPnz7t6ekZXrwBd48ePQYPHszfQWHChAlLlixhis2dOxdW0MaNG1+/fo341q1b8+bNY7KqE9fsD6c6mtG5REDeCYjHIpJ3StXtX25+4R6v8LZrb7ZZcwvxXq9wSKpbKZ1PBIgAEZBKAhjfaMSTyitDSn0m0K5du/Pnz588edLe3n716tXbtm376quvmLy4uLjx48fb2NjMmTMHCZRh5IijoqKQiwQCPEJ//vnn4cOHW7Zs6eHhcerUKScnJ8irE+iHUx16dC4R+A+Byh+I3yKKiYnZtWvXDz/8sEDgU3nF5OcMLPns8gz77XZIWjbPNYQYaUjIUyQ/15h6QgSIwBcCNOJ9IUH/SzWB/v37BwQE5OTkBAcHT5s2ja8rDKHo6Oi8vLx3797BWFJSUuJnwXcE44d/OHz4cDiIUBI1DB06lC+vWoJ+OFXjRmcRAXERELNFdPv2bevil5pt2bLl7t27WD45dOjQ8+fPxaWuLNajwGYffhghpDkkHLaY4Qs1IfeH1EEiQASkkIACjXhSeFVIJaknQD8cqb9EpKCcExDzpHzJkiULFy589eqViorK2bNnsdDi5uY2YsQIOadYbvfSc/LhFxIqAgnkQkI6JAJEgAiUSkCGhGlljHiQy1AvSFUiIGECmBJgYiDUKCSQCwnpkAgQgZogIGaLCL7jiRMnQlEOh5Odna2hobFq1aqNGzdCUmeDpoqilipHqPuQQC4kpEMiQASIgEwTeJeUqa7Ewfgm1AtI1JQUDt4Pz8kvFMqiQyIgRKBuHmJKgJ+JUN8hgVxISIdEgAjUBAExW0Tq6uq5ublQ1NjYOCwsDAmExMRExHU2FHK5X7sIv80AkgIut84yoY4TASIgfwR8wpIG7nxwP/TjxA5mQr2D5H5I4up/gntt874V9KGoqEioAB0SgTpOgKYKdfMLQL2WHgJitoicnZ0fPHiA7vXr12/hwoVr166dPHkyhJDU2aCqxJnu1nR2V0ss9gACYqS/dbdQUxJ2HCGXAhEgAkRAFgmcehI1/qBvanb+hefvZ3SxnNutGcY6dAQx0rO6WLJZ9fQ1ld8lZU096ve1x5PwjxnIpUAEiABDAFOFGe4W+LHgJwMJYt5Uwa0pTRVAgwIRkAABMVtEW7duZTagXLFiRY8ePU6dOmVqanrw4EEJ9ERam+Dpde1VfItG2r5Luvv/1B2xfSPt3Z6fHWi8bPpHBIgAEZBZAoXconVXgv93NqCAW9S/pdGWEQ6qigpYBvJb2gMjHmKklRUVutsZ3lnk/q2bhaICy/PNRziL1l8Nzsjl7cAps10nxYmAOAngZ4IfC34y+OH4/tgdU4VdNFUQJ2CqiwiUR0CcFlF6enpYWFhMTExiYqKamtquXbtevnx57tw5GEXlqVAH8u68TvjmmP8fj97paii/jk+bfsz/97uhtERaB658Xesi9bfOEcjMLcCAts87HD3H8vaOMY4qigpIY2FbicPGiIcYaUgQNJQ5P/SxuT6vs7t1w/zCor1e4V03e55/FkM30QEOBSIAAvix4CeDH07we95UYf+98E+ZeZBTIAJEoKYJiM0igvFjY2PTu3fv/v37W1pa3rp1q6ZVl6H6n0WlQNvmxlqIHZs06Gajj1XVLTfe4pACESACREBGCbxPyR6+x+dW8AfM4X4b3Wp+DysWi1VhX5o21Dg8qd3BiW1NddUS0nPnn3qBSl7FplZ4opQVIHWIQA0ScGxS39ZIKyefe8ovugaboaqJABH4QkBsFtEPP/zQpEmTe/fu+fn5ubm5zZo160sTdf3/+NSc2JRsNqueg0l9hsXi3taYNlwOiHsZw7OUGCHFRIAIEAEZIvA8OmXQ7w+C49L0NJT+/MZ5UKtGoivPYrG62RrcmN95cS9rVUUF/3efBuy8v+RcQDIth4sOkUrKNQH8Rr524e1QcsznHZZQa7uv1D4RkH8CYrOIYAjt2LHDxcWldevWhw4dCgkJycigB2d5X6CnUZ/wn7WhlroyBwkEG0OtIcWzh1+uv8EhBSJABIiAbBH45+X7UXt9Pqbn2hhqXpjp2rpJgyror8xRmNnF8s4it4EOxkVF9U4+jnL/5e6Rh5EFhbQPZxVw0inyRmBgK+MGaopYUYUbVt76Rv0hAtJH4ItFVG3NEhMT4SNiqtHV1VVTU/v48SNzWMfjp+94FlEb088OIobG/B5WigqseyGJD0Lr9NbkDA2KiQARkBUCRUVF22+HzDrxLLeA29VG/8x3Lo0bqFVHeSNt1e1jHP+a3sHWSCstp2D5xcD+O+4/Ck+qTp10LhGQAwIqigqj2zdBRzweRCKmQASIQI0SEJtFBA9venp6WvEnNTVV8BCyGu2DlFfO+IiE1lBNdNS+cjKF5huvvcYMAwkKkiNALREBIlAlAjn5hfNOPd96k/cM5JSO5vsntNX44vquUn3/ntTeXOfSLNfVg+3rqym+jk8fve/RrBNP36dk/1uCUkSg7hEY52zKZtXzCU96E59e93pPPSYCEiUgNosI03orK6sGxR8dHZ2MjAxHR0cc1a9fH7FE+yRNjeUWFL6KTYNGQhYRJLO6WqorKbyMSb36Kh6HFIgAESAC4icgvho/pueO3f/o7+fvOWzWuiEtfu5vp4DJmvjq5yiwxzub3l3oPs65CSr+52Vcty1eO++EwAwTXyNUExGQJQKN6qv2tDOExkd8yE0EDBSIQA0SEJtFdPfu3TsCn7t3Px/evctLlN8Db2/vAQMGGBsbw7N04cIFwcLBwcEDBw7U1tbW1NR0dnaOiopCbnJy8uzZs62trdXU1Jo0aTJnzhx4pSCXwgBzKK+Qq6uuZKorfGOJnoby1E5NofPm62/ovnlwoEAEiIDUEsAS9eDfHzyNStFS4RyZ3H6sE+9mnprQtoG60prBLS7O6tjOrEF2fuHmG297/up9M+gDFt1qojmqU64IyGNnJrny9lc4/zQ2NStfHvtHfSIC0kJAbBaRW7mf8rubmZnp4OCwc+dOoWJhYWEdO3a0sbHx9PR88eLFzz//rKKigjLviz+bN28OCAjw8PC4du3alClTIJfC8CyK9xCRY5MGMPZKqje1k7mOulJ4YuYZ/5iSuSQhAkSACEgDgbuvE4btfhibkm2mq3Z+pqurpV5Na2XfSPuv6R1+G93KQEs5Kjlr2lG/SYefhH2k3XpqGjzVL3UEnMx1bAw1sTrwF23DLXUXp1YVosbFTUBsFpGgYoGBgS+/fJAWzCo13adPnzVr1gwdOlQod+nSpX379t20aZOjo2PTpk379eunr6+PMvb29mfPnoVbycLComvXrmvXrr106VJBQQGyhEJubm6awEcoVwKHnx8iMv3Ptgr8djVVFGd2scThtlt0ZwgwUCACREC6CMAzc+h+xJQjTzLZ5EgJAAAQAElEQVRyC5yb6pyf4WrRUEMyKmIVaVCrRncWun/nbqGkwPZ6+7HXr97rrgSn59BKuWSuALUiFQTwQ5hUvA33EZ9I2oZbKi4JKSGnBMRmEd27d69du3YMJWdnZ9gwrYo/LVu2rNrbWrlc7uXLl62srHr16gVDyMnJSeiGOqYtxKmpqVpaWhzO572tIeGH9evXa3/5mJiY8OWSSRQVFfkzG801KXNr2nHOTRrVV41PyznyUPguYckoSa0QASJABEolkF/I/enCq1X/BHGL6o1qa3J0slMDdaVSS9acUF2Z87/eNtfnd+5qo1/ALdrnHd51i9e5pzFc6FRzrVLNRECaCGBpQFtVMeZT9p3XCdKkF+lCBOSKgNgsol27do0fP57P5u7duxEREeHh4XPnzt29ezdfLnoiISEhIyNjw4YNvXv3vnHjxpAhQ+BE8vLyEqohKSlp9erV06dPF5Izh0uWLIG9xIToaEm/+Pl9as6HtFwOm9Wycek+IiipzFGY38MKiV2eYanZtPYJEhTqIgHqs7QRSM3Kn3T48XHfKBar3tK+thuGtVDiiO3vRWU7a66nfmhSu0OT2prpqn1Mz13w14vhex4GxKRWth4qTwRkkYCqksLodrwlXVo5lcXLRzrLCgGx/YV78uRJ+/bt+d1u3LixqampmZkZzCQfHx++XPQEl8tF4UGDBs2fPx/eph9++KF///579uyBkB/S0tL69etnZ2e3fPlyvlAwoaysDPcRPwhmSSD9tNhBZGukheGsnOaGODayMtCAObTXK6ycYpRFBIgAEZAMgcjEzCG7HzwITVJTUtg3vu20zk1ZLJZkmi6nla42Btfnd4bLCFo9jUoZ+Pv9JedeJmXklnOKdGaRVkSgsgTGFW/DfT80MeQDbcNdWXhUngiIREBsFlFsbKyRkRHT5pEjRwwNeftF4lBHRwduHCQqG/T09DgcDqwd/om2trbMXnOMJD09He4jDQ2N8+fPKyoqMkKpij/fMmda5i1zjLYKbNbiXjZIH3oQ8SEtBwkKRIAIEIHaIvAoPGnwrgfhHzONtVXOfOvSw86gtjQp2a4yR+E7d4s7C90HtzIuKqp38nF0l82eHg8iaLvOkqxIIk8ETHTUutvyfolHfGTsBnt5ugrUF/kmIDaLSFNTMyIigoE1dOhQNbXPm01DCBcNI69UrKSk1K5duzdv3vDPevv2LfxOzCG8Qz179kSZixcvMhvQMXKpir9sNFfmLXN8bbvb6rcxbZCTz91+O4QvpAQRIAJEQMIE/noSPf6gb0pWvkNj7QszXe2MtSSsgCjNGWqrbBvtePrbDnZGWmk5BSsuBfXbft8nLEmUc6kMEZBRAsw23Gf9Y1PpBnsZvYSktnQTqL5F9Ll/Tk5OR48e/Xwg8J+HhweyBASlJDMyMp4Xf5AHCwpJxhe0ePHiU6dO7d+/PzQ0dOfOnZcuXZoxYwbKwDsEcygzM/PgwYMwjeKLP4WFhciSnpCTXxj4Pg36tC57WwXkMoHFYv2vN89N9OeT6IjETEZIMREgAkRAYgQKuUXrrwR/f/ZlfmFRv5ZGp6Z30Nfive1AYgpUtqF2ZjqXZndcM9i+vprimw/pY/Y/mnniaWxKdmXrofJEQCYIdGiqa23A24b7NG3DLRMXjJSUNQJis4gWLFhw5MgR2DAJCZ/3QkFi4cKFf/zxB7LKx+Ln5+dY/EExFEZy2bJlSA8ZMmTPnj2bNm1q0aLFgQMHzp4927FjR8j9/f19fX0DAgIsLS2Nvnwkv3ECNCknvIxJLeAW6WsqN26gWk4xflZ7c50u1g0xKdly41+3GD+XEtJBgLQgAvJJIDO34Ns//Pd6h6N7c7o12zHaUUVRAWkpDwps1jhnU89F7uOLn7K4/DKu2xbPHbfpZQZSft1IvaoQYLFYE1xMceZRn3eYKiBBgQgQATESEJtF1KVLlx07dmzfvh0WSoMGDXR0dJCAY2fbtm1du3YtX2N3d/ei/37gWWJOmTx5ckhISHZ2NhxHgwYNYoQly+NsMzMzJldK4qfF72aFgwijmIgqfd/bhsWq98/LuFextIeSiMyoGBEgAtUl8D4le/gen5tBH5Q47G2jWi3oYcVms+rVq261Eju/vprS6sH2/8zuhHWlnHzulptve/zqdSMwHn8XJKYDNUQEJEBgiGMjLRVOVHKW55vPS88SaJSaIAJ1hIDYLCLwmjFjRmho6ObNm8eMGTN69GgkcDhr1ixk1cHwtHijudamFT9ExIdja6Q1yMEYhxuvvUZMgQgQASJQ0wReRKcM+v1BcFyanobSyWnOgx0b1XSLNVS/nbHWqW+ct49xNNRSiU7O/uaY/4RDj0MTMmqoOapWvgjIRm/UlDijirfh9nhI+yvIxiUjLWWIgDgtInTbxMRk/vz5u4o/SOAQwjoYsDbJ+IjaVLTRnBCcBT2sFRVY90ISH4YmCmXRIREgAkRAvAQuv4wbudfnY3qutYHm+RmulR2vxKtM9WtjsVgDHYzvLHKb2cVCSYGNgbT3Nu+1l4PSc+hVb9WnSzVIBYEJHcxYrHr4bpO1LxXXQyaVIKVLJyAei8inojcOZWZmBgYGlq6CPEqxQpmYkQfbprmxdqX610RXbWz7Jjhl4/U3MKuQoEAEiAAREDsBDC87bofMPPE0t4Dbxbrhme86mOh83iBU7G1JuEKsoy/uZXNzQefutvoF3KL99yK6bPY64x/D5RZJWBNqjk8gO68gr4CblJGLOCuvgC+nRGUJ4HfazYa3DfdR2oa7suyoPBEol4B4LKIJEyb06NHjr7/+ysgQvkUhKCjoxx9/tLS0fPr0abmayFUm4yCCOVSFp5NndW2mpqTwIjrlemB8FaHQaUSgjhHw9vYeMGCAsbExi8W6cOECv/fnzp3r1auXnp4e5M+fP+fL+QkYBn369EGu4Fn8XHlN5OQXzj/1fMvNt+jgZFfzAxPbaapI4yvdoF6Vg6muOvp1+Ot2TfXUEzNyF51+MWzPw5cxKVWukE6sMoHc/MI9XuFt195ss+YW4r1e4ZBUuTY6cZKLGSCc9Y9JI+cnQFAgAmIiIB6LCGbPoEGDli1b1qBBg+bNm8M6wuykY8eOmIi0adPm3bt3N2/eHD9+vJh0loFqmHezthZh3+2SnWmoqTy1oznkv1x/U1DIRYICESACZRIozoAX2sHBYefOncVH/0aQu7q6btiw4V/Rf1Pbtm2DOfRfmZwfwTz46oDvhefvFdistUPslw2wQ0Je+9zFWv/avM5L+tioKyk8i+I9MfW/My9BQF77K4X9gndol2fYb7dD0rJ5riHESENCnqIqXyxXS11LfY3MvMIzfjFVroROJAJEQIiAeCwiRUXFWbNmvX792tfX95tvvrG3t2/UqJG7u/vevXtjY2OPHz8OiVDD8n3I+IiqfFP+tM5NG6gphn3MPPuUxjv5/qZQ78RDoE+fPmvWrBk6dKhQdViIwUpN9+7dheTM4YsXL7Zu3Xro0CHmsNQ4Nzc3TeBTahkZEr6JTx/8+wMs2WipcI583f4rJ1MZUr5qqipx2NPdLO4sch/q2KioqN4pv+gumz0PP4iQyfWmqiGo1bMU2OzDDyOEVICEwxbP9EOo5rpwiEWcicVuoqM+kXQvaF244tRHyRAQ85DUunXruXPn/vrrr3v27MEEZdiwYTo6OpLpifS0kplb8Do+HfpUaqM5lOcHTRXFmV0scbjtFr1YAxgoEAHxE8jKyhozZgzcSoaGhuXUvn79eu0vH1nfKubum4Rhux/GfMo201U7P9O1YzO9cjouZ1kGWipbR7U6820H+0Za6TkFKy8F9d1+jzawEftVLioqep+SjW/aXq+wBX89n3nC/0NaDvxCQg1BQttdCDGp1CHMe00VTmRSllfIx0qdKEuFSVciIFkCYraIJKu8lLb2IialkFtkpK1ipK1aZRXHOZsaa6vEpeYc83lX5UroRCJABMoiMH/+fBcXl0Ff3nJWVrElS5akfvlER0eXVUzK5ZinwisyxeNJRm6Bk7nO+RmuFg01pFznmlCvrZnO3zM7rhvSAk74tx8yxh7wnXHcPzYlG21l06P/oFD5kJiRC8MS364l514O3fWg5YobLhvufH34yfqrr889jfUJS9bVUNJS5QhVDImm3D26JtTHGj1UV+aMbGuCJjwe0DbcwECBCIiBQG1aRGJQXyqreBbFe3i3dSX33RbqioqiwrweVhD+7hlKT0+CAwUiIEYCFy9evHPnzrZt2yqsU1lZWUvgU2F5KSyQX8j96cIreEW4RfVGtm18bIpTA3UlKdRTMiopsFljnZp4LuoyycWMzap3JSB+2tEn8FfsoUf/RbgAqdn5fpHJx33frbgYOGbfozarb7ZdcwuGJb5dJx9HP41KSc8t4LBZ1gaa/VsaLexhtX5oi5y8wq9dzIXqhqSAyxUS0mGlCEzoYMpi1fN6+zH8o/COVpWqhwoTASLAECCLiOEgzvgp827WKm2rIKjHsNaNm+lrpGTl7/MKF5RTWhYJkM5SRQDmUFhYWP369TnFH+g2bNgwd3d3JOQsYAqLBfvjvlGYPC3pY7NxWEslDg379bTVFFcMbH5lbid4zOZ3t9rnHf4bPfpf4qufnVcYEJN6xj9m3ZXgiYced1h/22HljeF7fJaef+XxMNInPCkpMw/fKzNdtZ52BrO7Wu4Y43hjfuegVb2vz++8c2zr2d2a9WpuqKOhPMPdYm63ZvALoQXESEOipiTsOEIuBdEJmOqqd7XWR/mjdCMJKFAgAtUm8H/2zgMuiuN74NwdvUuT3kFFlCoqqKAoVizYY8MoauyamL9EY4y9S5TYFTR2oyjGFhuigoUqCtKbSBGQ3u/u/46N9zsPhAPujitvP5PJ2zezM2++ey775u3O4p/GDiP8ugE6nU4sq2BvqPp1SZv3YC7zp+Hd4LCTz9ILympAwIQEkABXCKxdu/bNmzcxXzZoc//+/QEBASCIUsoorPQ69PxZSqGcFOXoTIeFrmYkEkmUBtjBsXTXVr64oN8gS83TTT7tEhCWTiaRAp6ngz8A0/DvPpYWlNdQIcrWwS4F+PC6BlpiXnlw7Mc99xJ9zkS47n5s9dtdT/9nP12JBY8RIOSWMv4M6arIunXTXDjIdM9km5tLB8T/PiJkzeBjsx1/9OjmaaNr2VWpqcstI0VZ6GoasW5Y5PqhkIMMmk4nkZOTM3PmTHV1dXl5eVtb28jISMKkioqKpUuX6uvry8nJ9ejR4/Dhw4SeLQ8MDCR9vdXUMPiwVePpLrG+AvxEK2oZ6/jxtC9sHAmIPAFeeUT8vzQIyKlKL6z8XFUPfxJ6tvHbrM3aDxNvdoaq1fXUg49Smq2AyrYQwLoiSwBuYgjvBkaYnp4OclZWFsjFxcUgx8fHg5yYmAhyXl4eyNra2tYsG2gMDQ1NTNif7QG98KYXaUXjDz1P/VSpoyJ7ZVF/j57awjsW3lkO97QVNQ1liwDESwAAEABJREFUjQtDs/YCmsKK2ouvssEfmHPq1egDz5y2PrRYd9txy4ORfzyddfLl6ssx2+8knHiadiMmJyylMDm/vKSqDmbEWBsRZBm8O/hrde9d3sGHyUvPR3nsf2K14e5wv9DlF6L9H6fcj8/PLKqi0yXUFKT7m6p7Oxtvm9Dr6g/932z0CPN1D5zr5DuqxyQH/V76KnLSFE6GKS8tCX8W1RVlIAeZk0N4Wufz588uLi5SUlJ37tyB68PevXtVVVWJHletWnX37t2zZ88mJCSAvGzZshs3bhBFbLmysnIuyyYrK8tWgde7A8w1TDUVwB26GonL0vIaNrYv+gS47BHRaLTNmzfr6ekpKiqmpTGe9fr1119Pnjwp+iC/jDAqqwTE3noqcN0HoYMJ/lr/34ju0MiFV1mZRZUgYEICSKApgYiICLvGDYpWr14N4oYNG0AODg4GefTo0SBPmzYN5CNHjoAs8ulyRDbctZdU1dvoq9xY4mKtpyLyQ273AJVkpZSbe/VfQ1Gmr6kaRJB66CiDTCZJQIiosKI2IbfsaXLhtaico0/SttxKWHEx5rsTL4ftD7XddN9y/Z3+2x+O9X82L/D12qtv9v6beDos43Zc7uuMYojXwZ1rZ7lM0O9HliXgxhx8Cv7P4D0hC/+K3Hs/6Z83uUn5FQ00upKMpINRl+lOhhs9rc7P7xuxfmjUr8MuLOi3cWzP7/oaOhipKctKtZuzQB24c+dOAwMDCAs7OTkZGxu7u7ubmZkRFoaHh8+ZM8fNzQ30CxYssLGxgcsLUcSWwx9omFthJrZSPuySySRwVqEj+JnR4NcJEiYkgATaS4DLHtGWLVsCAwN37dolLS1NmNSrV68TJ04QsjjkkcRLREZduDXYfqbqrpaa8Ldq779J3GoT20ECIkYAbl/gno81wYUIxujt7c2qBHnjxo2gZ0ugHz9+PJtSSHfhxmj7nYSf/35TT6WP7qVzcUF/LWV+T10LFzoqjTbXmT08CBoanb5pnPWZ753urBgIvkHy1lGv1w29vXzg6e+d9ky2WTuy+7wBJmNtdCGEYq6lqCrPcBWAeW5pzZsPpQ/fF1x8nQ2x/d+C3y0+FzX5SLjbnhDr3+5Zbbg3aNfjiYfDFv0Vuf563B8Pks+/zIKATHTW5w+fq2rqqZyjq25xcTzw3CByFfA8vdkl4N7mlNU20GQkydZ6yl72er4juwfM7RO2dgiEgK7+4Lzdq5e3i4mzuQb4gZzb06k129x5cHCwo6Pj5MmTtbS0YKLk+PHjzCYGDBgApTk5OXBZePz4cVJS0vDhw5mlrAKEpo2MjPT19ceMGRMdHc1axJRrefxBMy97fUUZybTCyqcphcxOUUACSKAdBLjsEZ05c+bYsWMzZsygUP6LpPfu3fv9+/ftsExID4E/bGC5fYeXVYBGmOnnEYy3iYJjP777WMpUooAEkAASYCNQVdew6GwkxC5Av7zxTXc5zh5qgvpim+SkJRdz8Oo/hUzSVJKx0lWGKapJDvqLXM1+HWN1YLrdhQX9Hqx2jdngkbhlRNjaITeWuJyY7bjDq9ePwyxn9zcaaa3dx7iLsbq8QuOJqK6nZhVXRWZ+vvsu7+yLrP0Pkn4JivM5EzHhUNiAnY+7/3q398Z77ntDph4NX3o+6veb7w6FpFyJyH6cWPA2p7SgrIb5Vdnaeirb4nhVdQ3/xH5seQk4y66KxBJwR2c5hPzkFr9pxD/LBu6bYrvQ1WxwNy1dVTkIekiIx5aWlnb48GELC4t79+4tWrRo+fLlcPdCDP3AgQNWVlbg58DE7ogRIw4dOgQ+ElHEmnfv3h2mXcB3unDhgqysrIuLS3JyMmsFQub1B83AHZrsqA99QZgIckxiQACHyCsCXPaIYFrF3Nyc1VgajVZfX8+qEWG5vKY+Mb8cBmhv9N8TySB3PPXUVYGZSGhn191EyDEhASSABJoSyC2tnnwk/N/4fGkK2W+q7WqPbmQyqWk11DQlICPFhVf/ZSQp4FTYGKgOteo6zclwmbsFhJgOz3S4ssg5ZM3gd5tGvPt9+JM1bld/6H9kpv3mcT3BZZ3uZDC0R1c4RE8VXFfGn2PwelI/Vb5ML/7nTW7A8wy45q/5+83cgNdjDj5z2vbQYv0dxy33n6cU+j9O+ePrxfEOh6RKS5JZl4AzUpcfZtV16WBzcNvurWQsAffvKlf/L0vAGWsoUMT45wF3Jvb29tu2bYMA0cKFC318fMBBkmjcwCN68eIFuDqRkZF79+5dvHjxgwcPGku+yvr16zdz5kwbG5uBAwdevnzZ0tLy4MGDX9Vo3OHDB81m9zeGrsBtzijER+uBBCYk0E4CjEtwOw9t7rCePXs+ffqUteTKlStwxWHViLAck11Cp0vod5HTUurAYyrNAfrRw1KSTHqS9Ck8tai5ctQhASQg1gTefCgZ5//83ccydQXpCwv6jrfTE2scbR+8vLQkeBQ8ffVfQUbSSF3BwUhthLXOrP7G4LJu9+p9Yo4jhJWerx0CIabYDR4Qbrrg0w98GAhAQRgKglGulppWOsoQngL/Bf6+0OgSdoaqTRfHA81AC82VQy32fFkC7smawcdnO/40vBtMqHXTVpKW5PKfewlh3nR0dCAQxBxBjx49iLVYqqurf/nll3379nl6evbu3Xvp0qVTp07ds2cPs2azAplM7tOnT7MxIj580MxEQ8Gtmyb8NnAZ7mbPDiqRAIcEuHyJ/O233+AKsnPnThqNdu3aNZh3gTkY4hVnDg0S6mpRmSVgv4MR114igtaIBH9HpzsZgrzr3ns6XPlAwoQERIAADoEbBG7H5U45Gl5QXmvZVfH6Ehe45+ZGq9gGXwmQSCQVeSlzLcX+Zurgw8wbYLJ2ZHdwb05/73R7xcDX64Ymbx0VsX7o34v6f2txvKq6hpVDLcGJ4nwJOL6OUJA6c3FxSUz83zMXSUlJRkZGYGB94wYeDshEolAocD9DyN/K4Y9yTEwMeFnfqsBrPbG+wpWI7EpchpvXrLF90SXAZY8IplUuXbp0+/ZtuLiDI5SQkHDz5s1hw4aJLsCvRhaV9Rn27bn6EhE0SKRl7uZyUpTorJJ/4/MJDeZIAAmIOQG4FfN/lLz4XFRNPQ3mia/+4GygJi/mTAR3+B2zjEImaSjKmGoqqspLK8tJsjUGGiVZxuoObHrcbZbAqlWrXrx4ATO2KSkp58+fP3bs2JIlS6CmsrKyq6vrmjVrQkJC0tPTAwMDz5w5M2HCBCiCNHv2bF9fXxAg/f777/fu3UtLSwNfaN68eZAvWrQI9J2SBlloQqSovLbhWhQuw90pZwA7FQUCXPaIAMnw4cOfPHlSUVFRVVX17NkzDw8PUIpDotGY32blfowIAGopycKsIQi77yVSaXQQMCEBJCDOBGobqKsvx+5pXIUSJolPzHbEe2Jx+D1Qv7E4XgONJg7D58oY+/TpExQUdOHCBWtr682bN/v5+c2YMYNo+eLFi1AKu1ZWVjt27Ni6dSvT1cnKysrNzSWqlZSULFiwoEePHnCTk5OTExoa6uTkRBTxPyeTSXP6M2JcgWEZMEvCfwOa6RFVSEDYCHDfIxI2AlyzN/VTRXlNg5wUpbuOEtca/bqhBa6mqvJSKQUVV3Ee6GsyuIcExI1AYUXtd8dfBkXnQOhg83jrjWN7SlLwei4WvwI5zhbHEwsWHRjkmDFj4uLiampqEhISfHx8mC1pa2sHBASAk1NdXf3+/fvVq1eTSP+tUAKBI4gaETX379+fmZlZW1tbUFAAwaL+/fsT+s7KJzroK0hTUj9VPsNluDvrHGC/Qk6g/X9Bmx04mUymNLc1W1nElMQjc731VaQoXKbKBKUsK7XEjbGUn9/9pJq2fLmC2QIKSAAJiACBpPzy8X8+j8z8rCQrGTi3z6x+jOlhERgXDoFDAlxZHI/DvrCaUBBQkpWa5IDLcAvFuUIjBZQAl+/dIQx97ct26dKltWvX6ujoHDt2TEBHz1WzohqXVbA34skjc0xLZ/U30lGR/Vhac/ZFJlOJAq8JYPtIoHMJVNc11DXQiipqIc/5XPXT5dgPn6uN1OWDFrsMtNDsXNuw904hwIfF8TplXNhpuwnMdmYsw/3wfUFWUVW7G8EDkYDYEuCyRzSOZZs0adLWrVt37doVHBwsDnwjG5dVcODNsgpMgLJSlJVDLWD3z8cpZTXi8qEnGC8mJCC2BGq//hznxdfZAXP7TLDTu77YxVxLketYsEEkgASEkYCZpuIgS2IZ7gxhtB9tRgKdS4DLHlHTwfTt27fZr5s1rSnUmtKq+pSCChiCnSE3v80KDTZNE+31zTQVPlfVnwhNa1qKGiSABESJAESHDoWksn6O8+CjlNNhGVvGW3dRkBalkeJYkAD/CYhYj3Mbw0SXcBluETuvOBy+EOCtR1RdXX3w4EF9fcazrXwZTqd1Ep3NWHfbWF1eXVGG10ZIUshrhneDXk48S/9UXgsCJiSABESVAIVMDghLZxtdYHgG795XZOsLd5EAEhAWAq6WmnAfUl7TEBSdIyw2o518I4AdtUyAyx5Rly5d1L5sICspKZ06dWr37t0tGyECpVGZDI+IR18iaspneE9tGwPVqjqq/6PkpqWoQQJIQGQIlNfUl1U3sA0HNKBnU+IuEkACYk6ATCbN6s94m+hMeAYuwy3mPwYcflsJcNkj2s+yHThw4J9//snMzBw7dmzLZoWGhnp6eurq6pJIpOvXr7NWTkhIgMNVVFTAuerXr19WVhZRWltbu2zZMg0NDQUFBajw4UMnf5UsKqsEDOP1sgrQBZEA1P+NYISJzr/KYnmHkijEHAkgAdEhoCQrpYyf4xSd84kjQQK8JTDZUV9empKUXxGeWsTbnrB1JCBaBLjsEXl7e8/5ss2aNWvEiBEQKWqVWGVlpY2Njb+/P1vN1NTUAQMGdO/ePSQkJDY29tdff5WVlSXqrFy5Migo6OLFi8+ePauoqBgzZgyVSiWK+J9TafSY7EaPiMfLKrAOzdlMY5ClZj2Vvu9+IqseZSQgHgTEZZRUGm2uswnbaEHTQKOxKXEXCSABJKAsKzXRXh84BITh+gqAARMS4JQAdzyiN61tLZszcuTILVu2eHl5sVVbt27dqFGjdu3aZWdnZ2pqOnr0aC0tLahTWlp68uTJvXv3Dh06FIrOnj0bFxfX7PoNEEoqY9ngWF6kpPzyitoGBWlKN21efZu1WbN/bnyb6Ebsx/iPZc1WQCUSQALCTkCu8XOcy4eYE5EiyFe4Wyx2M5OXlhT2oaH9HBPAikigDQTmODM+UPYwIT+7GJfhbgM3rCrmBLjjEdna2oJnYvuNDYraQZlGo926dcvS0nL48OHgCPXt25f5QF1kZGR9fb2HhwfRrK6urrW1dVhYGLHLmm/fvl3ly2ZgYMBaxEWZ+DarraEqhUziYrOtNmWtpzKmtw6dLrH73vtWK2MFJIAEhJSAjBTF0Vjtha/766ByEGAAABAASURBVHXuEeuGLXQ1BY2QjgXNRgJIgNcEzLWUBlpo0OgSwvndQl7jwfaRQPMEuOMRpaenp6WlpX9jS0trzyLRBQUFFRUVO3bsGDFixL///jthwgQIIj158gTGkZeXJy0tzfo8XteuXUEJRWzJ19cXAkpEys7OZivl1m5UJr8fmWNa/pNHN0ky6XHip5dp+MQwkwoKSECkCBSU18w+9Wrgrsdy0hRpSbI8RodE6vTiYJAA9wnMaVxf4eLr7Oq6TnuhgPujwhaRAC8JcMcjMmpt+2oInO1AjAgqjhs3btWqVRB8Wrt27ZgxY44cOQLKpolOp5NIzcRnZGRklFm2pgdyRUPEiPi20ByrzcYaClP7MGJfO+++BwisRSgjASQgGgSiGpey1FSUUZSREo0R4SiQABLgKYHB3bUM1eRLq+uvx+Ay3DwljY2LDgHueERsPOLj4+/evRvMsrFV4GRXQ0NDUlLSysqKWblHjx7EWnPa2tp1dXWfPzMWvCZKIaAEYSJC5nNeXFmXXlgJnfLh26zQS9O0wt1CVooclVXyIKGgaSlqOpkAdo8EOkwgIoNxrXMw6tLhlrABJIAExIIAhUya3d8Ihhr4HJfhBgyYkEDrBLjsEaWlpdnY2FhbW48ePXp84zahcWvdkCY1pKWl+/Tpk5j4v4XUkpKSIBYFFR0cHKSkpO7fvw8ypNzc3Ldv3zo7O4PM/xSdxbhZMdNUUJWX5n/v0KOWsuz3LoylqHbfe0+l0UGDCQkgAVEiENEYI3I0FniPSJSg41iQgJATmOxoICdFScwvf5FWLORDQfORAD8IcNkjWrFihYmJSX5+vry8/Lt370JDQx0dHUNCQloeSkVFRUzjBtXS09NBJGJBa9asuXTp0vHjx1NSUvz9/W/evLl48WKoo6KiMm/evB9//PHhw4fR0dEzZ87s1avX0KFDoYj/KTKT4RF1yiNzzMEudDVTkZNKyq8Iisb4OJMKCkhAFAjU1FPffSyFkTgYqkGOCQkgAYEgIPBGwF2Bl70emHk6DJfhBgyYkEArBLjsEYWHh2/atElTU5PcuA0YMGD79u3Lly9v2YqIiAi7xg2qrV69GsQNGzaADOGlI0eO7Nq1CxyeEydOXL16FRoEPaT9+/dDCGrKlCkuLi7gfYGzRKFQQM//RLxE1LkPtMCFb7GbGYx9//2k2gZ8jRJIYEICIkLgzYfSeipdU0nGQE1ORIaEw0ACSIAvBOY4G0M//8bnffiMy3ADCUztJSAex3HZI6JSqYqKioBOQ0Pj48ePIBgZGbE++QaapsnNzY3+9RYYGEhU+/7775OTk6urqyFwNG7cOEIJuays7MGDB4uKiqqqqsAd4t3K2tBXC6mBSovNZkzf2nf2I/5w4dNWls0pqT77IqsFg7EICSAB4SJARKEdjbqQSM0sHiNcY0FrkQAS4CcBy65KLubqNMYy3HhjwE/w2JdQEuCyR2Rtbf3mzRsg0bdvX4jtPH/+HEJGpqamoBHJ9D6vvLqeqiQraa7J8AM7cYyyUpSVQy3AgD8fp5TX1IPQpoSVkQASEEwCkZmMdwA6NwotmGTQKiSABFol8GUZ7qyaenx+pFVaWEGsCXDZI1q/fj2xavaWLVsyMzMHDhx4+/btAwcOiCpj4pE5O8MuZP5+m7VZnpMc9E01FIor6048TW+2AiqRABKQkJAQIggQO49sfFMRPSIhOmtoKhIQHALuPbrqd5Erqaq/EYOvGQvOaUFLBJEA1zwiW1tbf39/JycnLy8vGCjEheLj4wsLCwsKCoYMGQIakUzEd0LsDVUFYXSSFPJPw7uBJSeephVW1IKACQkgAaEmkFZY+bmqXkaS3FNXRagHgsZ3FgHsV8wJUJjLcIdlwgyLmNPA4SOBFghwzSPq27cvBIh0dXW/++67hw8fEl2qqamRSKL87Htk49Lb9oaCsiruSGvt3voqlXVU/0cpxCnAHAkgAeElENn4JSIbfVVpSa5dq4WXBlqOBJBAOwhMcTSw0lVaPcyijkorqqita6BV1TW0ox3BPwQtRAIdIcC1v7JHjx7Ny8s7duwY5B4eHsbGxps2bSIW0e6IfYJ87Kfy2uziavD4bAUjRgSsSCTS/43oDsK5l5nZxbi2DJDAhASEmEAE8RIRfolIiM8hmo4EOpmAqrz0RZ/+bz6U9tn6wGHLA8et948+SavF14o6+bRg9wJHgGseEYxMVlZ21qxZjx49SklJAeHkyZOmpqbDhw+/fPkylHIjCVYbxEtEllpKyrJSgmOZi7nGQAuNeip9//0kwbEKLUECPCUQGhrq6ekJMWqYFLh+/Tqzr2vXrsElSENDA/QxMTFMfXFx8bJly7p16yYvL29oaLh8+fLSUsaikcwKAiL89xKRwEShBQQLmoEEkADnBKrrGk48Szv4KKWsmhEagvyPh8mHQlIxUsQ5Q6wpDgS46RExeZmYmGzevDkjI+PixYsRERHTp09nFomSENX4xrO9kUC8RMQKdk3j20RBMTnv88pY9SgLFQE0tg0EKisrbWxs/P392Y4BvYuLy44dO9j0Hxu3PXv2xMXFBQYG3r17d968eWx1On33c2Vd6qdKMAOXVQAImJAAEmgfAQqZHNjkI60BYemSZJ7cAbbPSDwKCXQ6AV79e3j8+PGcOXO8vb2pVKqPj0+nj5MXBhAxIsF5iYg5xt76qqN76dDpErvvJjKVKCABESYwcuTILVu2EMu6sA4TgtUbNmwYOnQoqxJka2vrq1evQljJzMxsyJAhW7duvXnzZkNDAxQJTiICRGaaCl0UpAXHKt5Ygq0iASTAKwLlNfUQF2JrHTSgZ1PiLhIQZwJc9oiysrI2bdpkamrq7u6emZl56NCh3NzcI0eOiB7iugbamw+Mx2zsjQRlWQVWyD96WFLIpIfvC15nMD5mwlqEMhJAAmwESktLlZWVJSUl2fSwW1tbW8aygYZviVi4BQNEfAOOHSEBvhDgdydKslLKcuwXN9CAnt+mYH9IQIAJcM0jOn/+/LBhw8AXOnr06NSpU5OSkp48eTJ79mw5OTkBHn77TYvPLattoKnKS5lqKLS/FZ4daaqpOMXRAJrfeec9LrgJHDAhgW8RKCoq2rx588KFC5utsH37dpUvm4EB499Us9V4oYzM+AzNOhqpQY4JCSABJNA+AlQaba6zCduxoGmg0diUuIsEuE1AmNrjmkfk7e2tqKh4/fr17OxsuIcwNzcXJgxtt5V4icjOQJVEEtDlxVcOtZCRJEdkfn70vqDt48MjkIBYEIDwz+jRo62srH777bdmB+zr6wsRJCLBxa3ZOrxQQhQ69kMJtOyAC80BBUxIAAm0l4CctORiN7MV7hYQF4I2IF82xHz+QBN5afbAEZRiQgJiS4BrHtGHDx+CgoLGjBlDJnOtTUE+K8RLRIL8QEtXZdm5LoxpoV13E6k0Oq9gYrtIQGgJlJeXjxgxAqZy4NolJdX8ipEyMjLKLBvfxvruYylEobsIahSabxywIySABDpOQEaKstDVNGLdsMj1Q1//MtRaT2XCobDQpE8dbxlbQAIiQ4Br3ouWlpbIQOFkIESMSACXVWA1/gdXM2VZycT88hsxOax6lJEAEoDokIeHh7S0dHBwsKysLEdA+FgpsnEpS5hzIZEENArNRxjYFRJAAh0lABEhaUmyuqIMeEchiQUpBRUrL8XkllZ3tF08HgmICgGueUSiAoSjceSV1nwsrSGTJGwMBG7pbdYBqMhL/eDGeHxx3/2k2gYqaxHKSECUCFRUVMQ0bjCo9PR0ELOyskAuLi4GOT4+HuTExESQ8/LyQIboELhDlZWVJ0+eBNcIlJCoVAH6N/LFI8KXiOB0YeoMAtin6BL4zbNnT13l4sq6Jeei6qn4NpHonmkcWVsIoEfUFlpf6hKPzHXXVlaQEfTHcL2djbsqy3z4XH3+JeMG8csI8P9IQKQIRERE2DVuMKrVq1eDuGHDBpAh/gPy6NGjQZ42bRrIxNKXkZGRL1++jIuLMzc31/my8fM1IbCnhUSn0yO+xIhaqIZFSAAJIIF2EJCVohyaYa8kKxmVVbLjzvt2tCBqh+B4kICEBHpE7fkV/PfInJFAB4iIgclJU1a4W4Ls/yilolawPrcCVmFCAlwh4ObmBl4EawoMDISWvb29WZUgb9y4EfRN60ORsbExFAlCyi6u/lReK0Uh9dZXEQR70AYkgAREjICRusKeyTYwqJPP0u++zQUBExIQcwJc9ohMTU2LiopYmZaUlICSVdMpMnc7Jb4TIuAvETGHPNlR30RDoaiy7sTTNKYSBSSABASWQGQW4zNi1noqMJUrsEaiYUgACQg1geE9tRcMMoUhrLnyJqOwEgRMSECcCXDZI8rIyGB7Fr+2tjYnR6Re669toL7LKYMfjYNAfpsVDGNLUhTyTx7dQHk8NK2oohYETKJNAEcn7AQiGr9E5GDYRdgHgvYjASQgyATWDO/Wx7hLeW3DD+eiauoF6EVKQYaGtokqAa55RMGNG2C6d+9eo8jIgoKCNm/eLDjPooB5HU9vc8rqqDR1BWlDNfmOt8afFkZaa/fSU6mso/75OJU/PWIvSAAJtJsAsayCI36JiAOCWAUJtI8AzNXOnDlTXV1dXl7e1tY2MjKSaKeiomLp0qX6+vpycnI9evQ4fPgwoW+aX7161crKSkZGBnK422laQfA1MGF6cLo93M8k5Jb9duOd4BuMFiIB3hHgmkc0vnEjkUhz5sxpFBnZtGnT7t+/v3fvXt4NgP8tEy8R2Rl2gcHyv/f29Ugmk34ewQgTnX2R+eFzVfsawaOQABLgA4GymvrE/HLoyF5IotBgKiYkIFwEPn/+7OLiIiUldefOnfj4eLhLUVVVJYawatWqu3fvnj17NiEhAeRly5bduHGDKGLNw8PDp06dOmvWrNjYWMinTJny8uVL1gq8kHnRpraK7B/T7EgkiUsR2VcisnnRBbaJBISCANc8IlrjZmhoWFBQ0Cgystra2sTExDFjxggFCw6NJBaaE5ZH5piDGmih6WKuDtGt/feTmUoUkAASEDQC0VkldLoEhKC1lATuK0mCxgrtQQLtI7Bz504DA4OAgAAnJydjY2N3d3czMzOiKXB1YGLXzc0N9AsWLLCxsYmIiCCKWHM/P79hw4b5+vp2794dcmgBNKwVCBnugspYNkIpaPkAC41VQy3Bql9vvH2fx3gpAGRMSKBzCfC/d655RITp6enpGhoahCySOZ1OJzwie8P/5pOEaJg/D+8O1l6L/pCYx5iBBhkTEkACgkYgMoOxrIIjBogE7cSgPSJEIDg42NHRcfLkyVpaWnZ2dsePH2cObsCAAVCak5MDf+4fP36clJQ0fPhwZilTAMfJw8ODuQt1wsLCmLtMYfv27SpfNvDBmHpBE5YONh9kqVlTT/vhbFR5Tb2gmYf2IAE+EOCyRwQWP3z48Jdffpk/f/73LBvoRSPllFTnl9VKkkmFSK96AAAQAElEQVS99YXPI7IxUB3VSxumn3ffSxSA04EmIAEk0AyByKzPoMVH5gACJiTAIwJpaWmHDx+2sLC4d+/eokWLli9ffubMGaKvAwcOWFlZ6evrS0tLjxgx4tChQ+AjEUWseV5eXteuXZkakEHD3GUKED4q/bIJzhfPmOYxBTKZ5DfVVkdFNr2wcu3VODrcKDDLUEAC4kGAyx7R77//DrMm4BQVFhZ+ZtlEBmZUVgmMxUpXWU6aAoLQpR89ulHIpAcJ+ZGZjHloobMfDUYCwkmAU6sbqLToxosMLqvAKTKshwTaToBGo9nb22/btg0CRAsXLvTx8QEHiWgGPKIXL15AmCgyMnLv3r2LFy9+8OABUcSWk0gkpgZcCBLpf7tMvYyMjDLLxtQLoKCmIO3/nT1M+N6Kyz0dliGAFqJJSICnBLjsER05ciQwMPDly5fXr18PYtl4OgZ+Nh6V2Th9ayisq+KaaSpOdtAHYjvvJMIVHARMSAAJCA6B93nlVXVUJRlJSy0lwbEKLUECbSEgBHV1dHQgEMQ0tEePHllZWbBbXV39yy+/7Nu3z9PTs3fv3kuXLp06deqePXugiC1pa2uzBoUKCgogTMRWR+h2HYy6/DKqB5i99XYC8YIAyJiQgJgQ4LJHVFdX5+zsLMLsiGuEnRC+RMQ8KSuGWshIkl9lFIckfmIqUUACSEAQCEQ2zrnYGXUhk5uZbxYEC9EGJCACBFxcXBIT//f0eFJSkpGREYyrvnEjk/93a0ShUCCgBEVsqX///vfv32cq//33X9G4+ZnrYjzSWrueSl96LupzZR1zgCh8gwCqRYfA//7Zc2VM8+fPP3/+PFeaEsBGauqp8R8Zy7DAPIoAmsehSToqct7OxlB55933NBodBExIAAkICIGIRo8Il1UQkNOBZogqgVWrVr148WLbtm0pKSlw03Ls2LElS5bAYJWVlV1dXdesWRMSEpKenh4YGHjmzJkJEyZAEaTZs2f7+vqCAGnFihXgBe3cufP9+/eQP3jwYOXKlaAX9kQikXZN6m2iofCxtGblpRi8SRD2E4r2c06Ayx5RTU0NhJvhgrJs2bLVLFvLBoWGhkKEWldXF/4pXr9+nVnZ29sbNMzUr18/ZlFeXt6sWbMgbK2goGBvb//3338zi7gssDT35kNpA42upSSjpyrHohY+8Qc3MyVZyfd55cGxH4XPerQYCYguAeK5XPSIRPcM48gEgkCfPn2CgoIuXLhgbW29efNmPz+/GTNmEJZdvHgRSmHXyspqx44dW7duXbRoEVGUlZWVm5tLyBARgpoBAQG9e/cGx+nSpUt9+/YlioQ9V5KVOjTDXkaS/CTp05+PU4R9OGg/EuCQAJc9ojdv3tja2kLE+e3bt9FftpiYmJatqaystLGx8ff3b1ptxIgRcAEi0u3bt5kVwB2CkHdwcHBcXJyXl9fUqVOhN2YpjwTigRZ7Q2H6NmuzKFTlpRe5Mr69sPd+Yl0Drdk6qBRHAjjmTiWQW1qdU1JNIZNsDIRvKctOJYedI4E2ExgzZgzcP8A0bkJCgo+PD/N4mGkFPycnJ6e6uhriPzC1C9OyRCkEjsD5IWTIJ02aBBXq6uqgBbgPAY3IpB46ypvHW8Nw9j9Iep5SCAImJCDyBLjsET1ubnv06FHLHEeOHLlly5ZmLygyMjJweSKSmpoas53w8HAIQzk5OZmamq5fv15VVTUqKopZyiOBeIlIqB+ZY5KZ62KsqSSTXVx94RXjdVKmHgUkgAQ6i0BEBmPhlh46Sgoykp1lgxj1i0NFAkjg2wSmOBpMcdSn0SVWXIzOL6v5dkUsQQIiQoDLHhHXqcCUjJaWlqWlJUzhFBQUMNsfMGAABKmLi4tpNBpErmtra93c3JilTAH0ZSwbU98OgU6nR2cx7lfsjURh+lZeWnKFuwVwOPgoubK2AQRMSAAJdC4BIgrtaPS/qZ/OtQd7RwJIQEQItGsYm8ZZd9dWKqyoW3o+qp6Kj5O0CyIeJDwEuO8RvX79+ueff542bRrEfJipfUAgdnTu3DkIMe3duxeaHTJkCHg4RFPgDjU0NKirq0MQaeHChUFBQWZmjMfAiFJmvn37dpUvm4GBAVPfDiGruAquC1IUUk9dlXYcLoCHTO1jYKwuD4M6+SxdAM1Dk5CAuBEgPCJ7I2Fd3F/czheOFwmINgFZKcrhmQ6KMpKvMz7vuZco2oPF0YkOgfaOhMseEYRrXFxc4uPjwUWpr68HAfwZcEnaZ97UqVNHjx5tbW3t6el5586dpKSkW7duEU2tX7/+8+fPDx48iIiIWL169eTJk+Pi4ogi1tzX17f0y5adnc1a1FaZeGTOWk8FrhFtPVYw60tRyD96dAPbjoWmFeMimwACExLoPAIQqo3PZSxlicsqdN5JwJ6RABL4ioCJhsLuSb1BdTQ07d93eSBgQgKiSoDLHtG2bdv279//zz//SEtL//HHHwkJCVOmTDE0NOw4Ph0dHSMjo+TkZGgqNTXV39//1KlT7u7uNjY2v/32m6Oj459//glFbAkiSMosG1tpm3ajMkugvr2hSE3fju6l01NXuaK24ZBQrScDJwITEhAxArEfSqg0uo6KrK6QL2UpYucFh4MExJzAyF4637uYAIQfr8RmFVWBgAkJiCQBLntE4KtAVAdIgStSWVlJIpFWrVp17Ngx0HQwFRUVQZAH/CJop6qK8W+SzME31KAyt9J/D7SIlkdEJpP+b0R3QHQmPDOnpBoETEgACXQKgcjGZRWaLtzSKcZgp0gACSABJoG1I7vbGaqW1zQsPh9ZU09l6lFAAqJEgMsekZqaWnl5OQDS09N7+/YtCCUlJYQDA/K3UkVFRUzjBhXS09NBzMrKAuVPP/0UHh6ekZEREhLi6empoaFBfCite/fu5ubmCxcufPXqFfhge/fuvX///vjx4+FwHqXK2ob3eYwHWuxFYlkFVkoDLTT6m6rXUWl+95NY9SgjASTATwL4bVZ+0sa+BJMAWiWYBKQlyX9+Z99FXuptTtmmf+IF00i0Cgl0kACXPaKBAweCcwI2TZkyZcWKFT4+PtOnT3d3dwdNCykiIsKucYM6q1evBnHDhg0UCiUuLm7cuHGWlpZz5syBHLwjJSUlqCMlJXX79m1NTU1wk3r37n3mzJnTp0+PGjUKiniUYj+U0OgSuiqyOirC/W3WpnwgjvfzCMbbRFejPiTnM7zZpnVQgwSQAE8J0Gh04k1FB1xojqegsXEkgATaRUBXVc5vmh2JJHH+ZVZQ9Id2tYEHfUUAdwSNAJc9In9//2nTpsEgfX19IcKTn5/v5eV18uRJ0LSQ3Nzc6F9vgYGBcnJy9+7dKygoqKury8zMBA3rYnEWFhZXr16F9isrK2NjY2fNmtVC+x0vispkrLttJ6JrQNkZdhnRUxtcvt24mEzHfyvYAhJoO4HkgorymgZ5aUoPHcakT9sbwCOQABJAArwl4GqpuWyIBfTxy7W3STh/CiAwiRYBLntEampqurq6gIhMJv/888/BwcH79u3r0kXoVyOIyiqBQbVxWQU4QmjST8MtySSJf+PzidelhMZuNBQJiAQB4t+drYGqJIXL12SRwIODQAJIQCAIrHC3GGCuUV1P/eFsZCV+yVAgzgkawTUCXP7rS6FQIKrDal1RUREoWTVCJ0P46ssDLULv2n0LvrmW0mQHxveadt59D+P9VjXUI4FvEEB1hwhEZBbD8bisAkDAhASQgMASoJBJftNsuyrLpH6qXHstDu8WBPZMoWHtIMBlj6jpP4/a2lppael2WCY4h6QVVpZU1ctIkq10lAXHKq5bsmKohbQk+VV68ZOkT1xvHBtEAkigBQJEjAg9ohYQCVIR2oIExJeAhqLMn9/Zg2t0M/bj2ReZ4gsCRy5yBLjmER1o3Egk0okTJxpFRrZ///4lS5Z0785Y31l40REvEfXSUwGHQXhH0arluqpyc/obQbWddxNpNDoImJAAEuADgU/ltZlFVSSShJ1oLe7PB3TYBRJAAjwm0EzzjsZqaxu/27H5n4TYbMY7Bc1UQhUSEDYCXPOIwPmBBDGiI0eOgEAkkKuqqiAXNixf2Uu8RCQO07eL3cyVZCQTcstuvvn4FQLcQQJIgGcEiACRpZaSipwUzzrBhpEAEkACXCMwf6CJh1XXOipt8bmokqo6rrWLDSGBziNAluBS3+mNm6ura2xsbKPIyBITE+/du9e3b18uddI5zUQRC80ZiuxLREysXRSkF7qawu7ef5PqGmggYEICSIDXBCKJl4iMRf8Kw2uS2D4SQAL8IUAikXZPtjFUk88pqf7xciw+V8If7NgLTwlwLUZEWPn48WPmynJUKjUmJubzZ8a61USpMOZlNfVJBYyv9NgbqQqj/W21+fsBJhqKMlnFVZdeZ7X1WCGojyYiAcEjENk45+IgBnMugsceLUICSKCdBCCmfWiGvbQk+eH7giOhqe1sBQ9DAgJDgMse0cqVK4mvD4E7NGjQIHt7ewMDg5CQEIEZb5sNic0uodMlDNTktJRk23ywEB4gLy25wt3cTFPRQE0ewkRFFbWQV9U1COFQ0GQkIAQEauqpb3PKwFBHrseIoFFMSAAJIAGeEbDWU/l9bE9ofs+9xPDUIhAwIQHhJcBlj+jKlSs2NjaA4+bNmxkZGe/fvwcfad26daAR0kRM34rwl4ianpepfQz/XtQfBu649b7DlgeQH32SVltPbVoTNUhAQAiEhoZ6enrq6uqSSKTr168zrbp27drw4cM1NDRADyFrph6E2traZcuWQZGCgsLYsWM/fPgASv6nuJzSOioNArOGavL87x17RAIiQgCH0UkEpvUx8LLXo9Elll2ILiir6SQrsFskwAUCXPaIioqKtLW1wa7bt29PnjzZ0tJy3rx5cXFxoBHSRCyrIFYeEZVGCwhLP/gopayaERqC/I+HyYdCUjFSJKS/YXEwu7KyEuZi/P392QYLehcXlx07drDpYRcma4KCgi5evPjs2bOKiooxY8ZAZBv0fE4w9QA9Ohipgs8GAiYkgASQgBARgAvXlvHWll0VCytqwSlqoOIbyLw/e9gDbwhw2SPq2rVrfHw8lUq9e/fu0KFDweaqqioKhQKCMCYajR6dxXgPysFIjF56ppDJgWEZbOcLfCRJMpd/LWxd4C4SaDeBkSNHbtmyxcvLi62FWbNmbdiwgbgWsRaVlpaePHly7969UGRnZ3f27FmYuHnw4AFrHUKGUFIZy0YouZhHZDCuMI5GalxsE5tCAkgACfCNgLy05OGZDgrSlJfpxfvuJ/GtX+wICXCXAJfvcefOnTtlyhRra2uYNhg2bBjY+vLlS+H9HlHqp4rymgY5KUp3bSUYC99S53ZUXlMPcSE2G0ADejYl7iIBISUQGRlZX1/v4eFB2K+rqwtXrbCwMGKXNd++fbvKl83AwIC1qOMynU6PIuZc8CWijtPEFpAAEugkAmaaijsm9obO/N7R4QAAEABJREFUD4WkPkzIBwETEhA6Alz2iDZu3HjixIkFCxY8f/5cRkYGcECAaO3atSAIYyIeaOmtryJJ4TIoQaahJCulLCfJZiFoQM+mxF0k0HECndJCXl6etLQ0c2FMsAHi26AEgS35+vpCQIlI2dnZbKUd3E0vrCyurJOWJPfUVe5gU3g4EkACSKATCXja6M7pbwQGrL4cm11cBQImJCBcBLh/oz9p0qRVq1bp6+sTIObMmTNu3DhCFrr8v+lbcXpkDs4RlUab62wCAmua0984JvtzYUUtqxJlJCAyBCBcQyKRmg4HZnaUWbamFTqiiWhcd9tGX0VGUlgfLe7I8MXwWBwyEhBhAr+M7mFjoFpaXb/kfFRtA67GJMKnWjSHxn2P6OHDh7/88sv8+fO/Z9mEFJ4YLqsAZ0pOWnKxm9kKdwuIC8Eu5Mvdzee6GPteezvqj6cv03CFTaCCSbgJaGtr19XVfWb5WlpBQQGEifg8KuLrzw74EhGfuWN3SAAJ8IAAzOz8+Z2dipzUmw+lW28l8KAHbBIJ8JAAlz2i33//3cPDA5yiwsJCuNtgJh6OgGdNl1TVpRRUQPN2hqqQi1WSkaIsdDWNWDcscv1QyBe5mpVVN5BJEgXltd+deHk4JJVGo4sVEBysiBFwcHCQkpK6f/8+Ma7c3Ny3b986OzsTu3zLiRiRWC3cwje22BESQAL8J6DfRd5vqi30eyY8Mzj2IwiYkICwEOiIR9TMGI8cORIYGPjy5cvr168HsWzNVBV4VXR2CdhooqGgrigDgrgleWlJaUkyjB1ykI01FG4sdZlgp0el0Xfefe9zJgI8RnFjguMVWAIVFRUxjRtYmJ6eDmJWVhbIxcXFIMfHx4OcmJgIMvGykIqKyrx583788UeYvomOjp45c2avXr2GNi6PCTX5k+BfEDHngh4Rf4BjL0gACfCBwODuWksGm0FHa6++SSkoBwETEhAKAlz2iOrq6vg/z8oj0NGZjFVxxTBA9C2e4Bftm2Kzw6sX+EgP3xeMPvCMWJr8W/VFS4+jEWgCERERdo0bWLl69WoQN2zYAHJwcDDIo0ePBnnatGkgw6wNyJD2798/fvz4KVOmuLi4yMvL37x5k8Lf7wQQrymaaiqoKUiDPZiQABJAAqJBYNVQy/6m6lV11B/ORlXVMT5sKBrjwlGINgEue0Tz588/f/68aCCLbFwVV6y+zdrqiSORSNOcDIMWOxury+eUVE85Gh7wPJ1OxyfoWiWHFXhLwM3NDX6HrCkwMBC69Pb2ZlWCvHHjRtBDkpWVPXjwYFFRUVVVFbhDXF9ZG7poOUU0fonIwVAAv3XWsuFYigSQABJoiYAkhfzHdFtNJZnkgop1QW/hwttSbSxDAoJBgMseUU1Nzb59+1xdXZctW7aaZROMwbbBCiqNHpNVAgegRwQQ2FJPXZXgZQNGWmvXU+m/34xffC6qrKaerQ7uIgEk0DIB4iUiR/wSUcuYsBQJ8JYAts4TAlpKsv7T7ShkUlB0zoVX2TzpAxtFAlwlwGWP6M2bN7a2tmQy+e3bt9FftpiYGK7azI/GkvLLK+uoCtKUbtpK/OhP2PpQlpU6NMN+o6eVFIV0523e2IPP3n0sFbZBoL1IoNMI1FNpsdmMORd8iajTzgF2jASQAC8J9DVV/8mjG/SwMfjd2xy8QwASnZ7QgJYIcNkjetzc9ujRo5ZMEMiyyMaXiGwNVSnkZj5RIpAm89soEonk7WJyeWF/PVW5jKKqCYfCLrzKwuA4v08D9iecBN59LKttoKnKS5lqKArnCNBqJIAEkEArBBYOMh3aQ6uOSvvhXGRpVX0rtbEYCXQqAS57RMyxfPjwIScnh7krdALx0rPwPTLHd9B2hl1uLR/g3l2rroHmey1u9eXYylp8jZLvpwE7FDYCERnFYLKDYRcyzrkACExIAAmIIgG4vu2dbKvfRS67uPqnv2NxzlQUT7LojInLHhGNRtu0aZOKioqRkZGhoaGqqurmzZtBKXTAoomXiIzwpefWT52qvPTx2Y5rR3aHeFpQdM64P58n5+OCm61zwxodJSDMx/8354JXGGE+iWg7EkACrRJQkWc8Yy9NId+Pzz/+NK3V+lgBCXQWAS57ROvWrfP399+xY0d0dHRUVNS2bdsOHjz466+/dtbw2tdvUUVtemElHGtvgB4RYGg9wTzQIlez8/P7ainJpBRUjPV/HhT9ofXDsAYSEEsCMFEakcFY3N8RPSKx/AG0Z9B4DBIQWgK99VU3eFqB+TvvJr5KZ4THQcaEBASNAJc9otOnT584ceKHH37o3bu3jY3N4sWLjx8/HhgYKGjDbtkeIkBkpqkAcxst18RSVgJ9TdVvrxg4wFyjup666lKs77U3NfVU1gooIwEkAAQ+fK4uKK+VJJNsDFRhFxMSQAL8J5CTkzNz5kx1dXV5eXlbW9vIyEjCBlKTbffu3UQRaw43NmwVa2pqWCugzEpgRl/Dcba6VBp96fmoT+W1rEXNyKhCAp1BgMseUXFxcffu3VkHArugZNUIvkw80IJrQLXjTGkoypz+3mnlUAsSSeLCq2yvQ2EZjdG2djSFhyABUSVALNzSU09FVooiqmPEcSEBQSbw+fNnFxcXKSmpO3fuxMfH7927V1VVlTA4l2U7deoUiUSaOHEiUcSWKysrs9TNlZWVZauAu0wCgHHbhF7mWoowGbTiYjS4RswiFJCAgBDgskcEcSF/f3/WscEuKFk1EhISAr4L/2LVFKRxWYX2nSYKmbRyqOWZ753UFaTjc8vGHHx2Oy63fU3hUUhAJAlEZDKeG8FH5kTy5OKghILAzp07DQwMAgICnJycjI2N3d3dzczMCMu1WbYbN24MHjzY1NSUKGLL4S6fpa42WymxW1tbW8ayEUrxzBVkJA/PsJeTooSlFv3xIEk8IeCoBZkAlz2iXbt2wZyKlZXVvHnz5s+fDwJElpuNOLNCCQ0N9fT01NXVhevL9evXmUXe3t6gYaZ+/foxi0AIDw8fMmSIgoKCqqqqm5tbdXU1KDuYqusa6hpoK9wtnv3f4KFWXTvYmjgfPtBC89bygX2Mu1TUNiw+F7Ux+B2AFU8gOGokwEYgMrMENOgRAQRMSKBTCAQHBzs6Ok6ePFlLS8vOzu748eNNzcjPz7916xbczDQtIjQVFRVGRkb6+vpjxoyJjo4mlGz59u3bVb5s4IOxlYrbrkVXpR0Te8GoDzxKCUksAAETEhAcAlz2iFxdXZOSkiZMmFBSUlJcXOzl5ZWYmDhw4MCWB1xZWQlxJIgmNa02YsQIZlT69u3bzArgDkGRh4fHq1evXr9+vXTpUjK5o2OpraceeZLmuPX+wF2P+21/+Fd4JmiYPaLQVgLaKrIXfPotcmVMvAWGZUw+Gv7hc1VbG8H6SEDECJTX1CfmlcGgRPK5XBgXJiQg+ATS0tIOHz5sYWFx7969RYsWLV++/MyZM2xmnz59WklJCW5j2PTEbvfu3QMDA8GzunDhgqysrIuLS3JyMlHEmvv6+pZ+2bKzs1mLxFMeZ6s3o68hjH3VpZicEi5MZENTmJAAVwh01ItoagSEerZu3Xr16tVr165t2bIFdpvWYdOMHDkSajZ73ZGRkWFGpdXU1JgHrlq1Ci5ha9eu7dmzJ1zUJk2aBDWZpUyB84B1dV3DoZDUPx4ml1UzPqcDOcigqapj7DIbRKFNBCQp5LUju5+Y7agiJxWbXTL6wLOHCfltagErIwERIxCdVUKjSxioyWkp41sHInZucThCQ4BGo9nb22/bts3Ozm7hwoU+Pj7gILFZf+rUqRkzZoC3w6Yndvv16zdz5kyYzIU538uXL1taWh48eJAoYs3hzkSZZWMtElv51zFWvfRUPlfVLzkXhQ+PiO3PQAAHzjWPCGZHpk+fXlbGmPtkjhNmRr777juYjGFq2iqEhIRAUBuuNXDBKij4L8YKwsuXL0Hv7OzctWtXCEw9e/as2ZY5D1hTyOSAsHS2RkAjSeYaIrbGxWd3qFXXf5YNsNFXKa2un3c6Ysed9w1UmvgMH0eKBFgJEMsqOBr9b36HtRRlJIAE+EBAR0fHyoqxHjTRV48ePbKysgiZyJ8+fZqYmDh//nxit+WcTCb36dMH7oJaroalBAFZKcqhGfbKspIx2SXbbicQSswFnIA4mMe12/3du3cbGBjAVAgrNRUVFVBCEauScxliR+fOnXv06NHevXtfv349ZMgQiPnA4YSLtXHjRnCT7t69CzM97u7uzV6MOA9Yl9fUlzVGh6B9ZgIN6Jm7KLSbgIGa/JVFzt7OxtDCkSep3x1/mV9WAzImJCBuBAiPyB6/RCRuJx7HK0gEXFxcwOFhWpSUlGRkZMTcBeHkyZMODg4QAgK51USn02NiYsDLarUmViAIwC3B3im2IAeGZdx6g2svAQlMnU+Aax5RaGjo5MmTmw5oypQp4NI01XOimTp16ujRo62trT09Pe/cuQPXrFu3bsGBEO+GHCLdc+fOhZD3/v37u3XrBgFuULIlzgPWSrJSynKSbIeDBvRsShHd5fmwpCXJG8f2/PM7e0UZyVcZxaP+ePosuZDnvWIHSECQCEB0NDrrM1iEyyoABExIoLMIrFq16sWLF9u2bUtJSTl//vyxY8eWLFnCNKasrOzKlStNA0SzZ8+GaVai2u+//37v3j2YnwVfaN68eZAvWrSIKMKcEwLDrLoudGUs4vd/V9+kfarg5BCsgwR4SoBrHlFmZqaWllZTWzU0NLjyNiHMvsAUDhEIAhk6ajnkDRXalKg02lxnE7ZDQNNAw+e72Kh0aHd0b52bywb00FEuqqybdeql34MkKo3eoRbxYCTQZgKddkBifnllHVVJRtKyq1KnGYEdIwGxJ9CnT5+goKALFy7AlOvmzZv9/PxmzJjBpHLx4kUI+0yfPp2pIYSsrKzc3P8CGiUlJQsWLOjRo4eHh0dOTg5MCjs5ORHVMOeQwBqPbk4masSCtNV1VA6PwmpIgEcEuOYRqaiopKamNrUSJmCUlZWb6tuqKSoqAs+K8IWMjY11dXVbDnm3tX05acnFbmYr3C0gLgTHQg4yaOSl2QNHUIqpIwRMNBSCFjtP62NAp0v4PUj2DnhVWFHbkQbxWCQgLASIR+ZsDVUpZJKw2Ix2CjkBNL95AmPGjImLi6upqUlISPDx8WGtBK5OVVUV3NWwKkEOCQkJDAwEAdL+/fthIri2tragoACCRf379wclpjYRkKSQ/afbaSjKvM8r//XG2zYdi5WRANcJcM0jGjRoULMLrRw4cGBga6tvV1RUQMQZEgwvPT0dBJiJAeVPP/0UHh6ekZEREhLi6ekJ4aYJEyZAHRKJtGbNGmj577//Bo/r119/ff/+PYStoagjSUaKAjHciHXDItcPhRxk0HSkQTz2WwRkpSg7JvbeO9lGToryNLlw9IGnr9IZ36z8Vn3UIwHRIBCRQTwyh8sqiMb5xFEgASTQIU1ZDysAABAASURBVAJayrIHptvCBNHfkR8uv+746uQdMgYPFnMCXPOIfH1979y5M2nSpFevXpU2bi9fvpw4cSLMnUBRy5QjIiLsGjeotnr1ahA3bNhAoVBg/mbcuHGWlpZz5syBHLwjJaX/HjVZuXIlNLtq1SobG5uHDx/ev3/fzIzx3RtooSMJIkLSkmR1RRnIQe5IU3hsqwQmOujfWOpirqWYX1Y7/fiLI09SafgEXavUsIIwEyBiRPglImE+h2g7EkAC3CTgbKbxo0c3aBHCRPEfv1qvGJSYkADfCHDNIwI3BiI2oaGhEDtWa9ycnZ2fPn16+fJle3v7lsfj5uZG/3qDwLScnBx4UxCPrqurg9g0aAwMDCRYGlq7dm12dnZlZWVYWNiAAQNYSlAUGgKWXZVuLHEZb6tLpdF33HnvcyaipKpOaKxHQ5FAWwjkldbklFTDbKitoWpbjsO6SAAJIAFRJvCDq9ngbpq1DbTF5yLLaupFeag4NgEmwDWPCMY4ZswYcF3AL9qxY8f27duvXr2akZExduxYKMKEBL5FQEFGcv9U220TekFc7uH7gtEHnsVkl3yrsnjpcbSiRSAik/FoaA8dZUUZfDtRtE4tjgYJIIEOECCTSfum2OqpymUUVf185Q3MkHegMTwUCbSTADc9IjABAjsTJkxYs2bNzz//PH78eHl5eVBiQgItEyCRSN/1Nbz2g7ORujxMok8+Ehb4PB2viS1Dw1KhI4CPzLV0yrAMCSABMSbQRUH6zxn2UhTS3Xd5p55niDEJHHqnEeCyR9Rp48COhZ+AtZ7KzWUDRvTUrqfSN96MX3o+Gj+PK/xnFUfwPwLoEf2PBUpIQJwJ4NibI2BroLp+tBWUbL+dENkYUQcZExLgGwH0iPiGGjtqnYCyrNThmfYbxlhJkkm34nI9Dz7D9yxbp4Y1hIFAVV3Du8aXhh2NcaE5YThhaCMSQAJ8JzC7v9Ho3jpG6goVNQ11DbSiilrI4eLJd0Pa3GF1nZAZ3OYRtvsA4TkQPSLhOVfiYSmJRPp+gMnlRf11VWQziqrGH3p+8VUWPkEnHidflEcZm11KpdG1lWXhhy3K48SxIQEkgATaSwBuAHZN6v33ov4RmZ8dt9532PIA8qNP0mrrBfr7rWDekSdpYKqwGNze8yPix6FHJOInmA/D40UX9oZdbi0fOLibJswPrb0W9+PlWKGYJeIFCmxTNAgQD4E4GHeBP/miMSIcBRJAAkiA6wTgrjQgLP3go5Sy6gZoHPI/HiYfCkkV2HsAiA6BeWAkmCoUBoORmJolAL+9ZvXtVN6+ffvevXusB8PunTt3WDUoIwFOCHRRkD45p8/PI7qRSRLXonPG+T9PKSjn5ECsgwR4R6DdLUdmfoZjHQy7QI4JCSABJIAEmiVAIZMDw9hXVgAfiSRBmnwkbPj+0BF+jDTyj6ej/ng6+sDTMQefeh58Ntafkcb5Pxv35/Pxfz6fcOi516HnEw+HTTocBkdNORI+5Wj41KPh046FTz/2AtJ3x1/MOPFi5omXs04y0uxTr+aceuUd8GpuwKvvA1/PC3w9/zSRInzORCw4E7Hwr4hFf0X+cDZy8bnIJeeilpyPWno+atmF6F+uxUmQSGAe21hAQyGTEnLLckuraxsEOsDFZrk473LZI1q7di2V+tW5p9PpoBRnxDj2dhMgk0mL3czP+/TTUpJJLqjwPPj8enROu1vDA5FAZxGg0eiER+RojB5RZ50E7LfNBPAAJMB/AuU19USwhbVr0BRV1kKemF/+Po+RwNmIzy1797HsbU5ZXE7pmw+MFPuhNDa7JCa7JDqrJCqrBK66EZmfX2d8fpVR/Cq9+GV68Yu04vC0IkhhqUXPU4qepRQ+TWak0KRPT5I+hSR+epz46dH7gofvCx4kECn/fnz+v/H5997l332Xd+dt3u24vFtxubfe5P7zJvdm7EfoorCcYRirtSCDqZ/Ka1dejOm//VG39Xd7/XbPdfdjcNLmn45Ye/XNrrvvTz5Lh/uZp8mf3n0szS+rqWugwVGYOpcAlz2i5ORkKyvGUiHMUXXv3j0lJYW5iwISaCuBfqbqt5YPdDZTr66nrrwU43strkawHylu6wCxvsgTSPlUUVbTICdF6aGjLPKDxQEiASSABNpNQElWSlmO/YttoNFUktk0rue5+X3Pzuv71zynM987nf7eKXBunwBI3n1OeTuenON4Yrbj8dmOx2Y5QDo6y+HITEj2h2fYH5ph/+d39v7f2R2cbndgut0f02yJ5DfVdv9Um31TbPZOttkz2Wb3pN67IE3svXNirx1evbZ79do2gZG2TrDeMt56M6RxPcGG38f23Ohp9Zun1YYxVrP7G4FhYB7beEGjriBDl6BLkklQVF7bkFlUBU7ag4T8i6+zD4Wkbv4nHu5nZp18NfrAs77bHlquv9N7470he0IgqAXxKLjP2ftvYsDz9ODYj89TCt/nlRWU1zRQuek1Vdc1gBsmRGtXAEZeJy57RCoqKmlpaaxGgzukoKDAqkEZCbSVAFxx/prXd7m7BYkkceFVltehsIzCyrY2gvVFmEBoaKinp6euri6JRLp+/TpzpBCj3rhxI+jl5OTc3NzevXvHLMrLy5s1a5a2tjZcoOzt7f/++29mEdeFyMZH5mwMVKQoXL7kct1UbBAJIAEk0IkEqDTaXGcTNgNAQ6XR+5qqu5hrDLDQGGihOchS09VS062b1mBI3bWGdO/q3qPrUKuuw6y6evTUhjS8p/YIa0g6I3vpjOqlM7q3zpjeup42umNtdMfZ6hFpvJ3eBDt9L3v9iQ76kxz0JzsaTIHUx2BqH8NpTobTnQy/68tIM/oazexnNAtSf+PZ/Y3nOBt7u5jMdTH5foDJjH5G8FcGzGtqMLhD/65yTd46MnaDx6MfXa8s6g8eGjhXPw6z9HY2HtNbB+Z5u3VV0lCUaXSaJMpqGtIKKyGoBfEouM85+Cjl95vxyy9EzzjxcoTfU6etD83X3bHd9K/73pApR8J/OBu5Lihu3/2k02EZ/7z5GJZamJRfXlhRC5TYLGl2F5eCaBYLl/88jx07duXKlampqURn4A79+OOPoCR2OzXHzoWbAIVMWj3M8vRcJzUFaYiVex58dicuV7iHhNZzj0BlZaWNjY2/vz9bk7t27dq3bx/oX79+Dc7PsGHDysv/exsN3KHExMTg4OC4uDgvL6+pU6dGR0ezHc6t3YgMxktEjka47ja3iGI7SAAJiCYBOWnJxW5mK9wtIMwCI4QcZNDIS7MHjqBUEFLLBsMknYq8lKmmYh9jNfDQwLla5m6xcWxP/+/sz/v0u7dqUMT6oSlbR0X/OuzB6kGXFvSDcBYEo1YOtYDo0+heOv1M1Sy0FNUVpEmMUJNESVV96qfKVxnFd97mnXuZdeBh8m/B75aej/7u+EuP/aGOWx6Yr7ttv/n+sH1Pph4NX3Iu6tfrb/0eJP0VnnE7LvdFWlFKQXlxZV1VbQMEqf54mFwmJGtX8O0sk7nb0+7duxUUFLp3727SuPXo0UNdXX3Pnj3c7QVbE1sCMC10a/kAR6MuEIP+4VzU7zff1eHTt838GsRONXLkyC1btoBjwzpymLrz8/Nbt24d6K2trU+fPl1VVXX+/HmiTnh4+LJly5ycnExNTdevX6+qqhoVFUUUcT2PbPzaoAO+RMR1stggEkACIkdARoqy0NU0Yt2wyPVDIQcZNII8SjAPjART22cwmUzqoiBtrqUEQTAIZ0EwauVQy03jrP+cYX9xQf/7q10jfx0GXhM0/u+qQRd8+vl/Z/f72J7L3S1m9DUcaa3tZKxmpqmgKi8FiOh0CfB5kgsqXqYX34rL/etFpt+D5F9vvFt8LmrasRdD94UO3fdEgiQREJYOlVkTaCTJXPYIWNsXCpnL41dRUQkLC7t169bixYshOvTw4cNHjx7BrYZQsEAjhYKAjorchQX9Fg4yBWsDnmdMORqeX1aDT8QCDUxsBNLT0/Py8jw8PAi9jIyMq6srXKCI3QEDBly6dKm4uJhGo128eLG2ttbNzY0oYs1BX8aysRZxKBdW1GYUVUFlewNcVgEwcD1hg0gACYgaAXlpSWlJsrqiDOQgC/7wwEgwlXcGU8gkaNyyq1J/M/UxvXXnOBuvHma5dUKvwzMdLi/q//BHt5gNHilbR75a53535cBz8/semG73m6fVsiHm050Mh/fsCvPIphoKyrKSmooyRRV1RHSIlSpoymvqWTViKHPZIwKCJBIJbkHWrFmzdOnSQYMGgQYTEuAuASkK2XdUj+OzHeGfd3lNA+wefpKKH0fjLmQRaA3cIRhF165dIScSyIQSdsEdamhogCA2eEoLFy4MCgoyMzMDPVvavn07TPQQycDAgK2Uk93IxpeILLsqqjTO4XFyCNZBAkgACTRHAHVI4JsEJClkLSXZ7trKLuYaY21057qY/OjRbbtXr6OzHP/+wfnRT25vNg6/uWxAV2VZ5ebWrgCn7nnKJzqEmb7Zg4gXcMcjOnDgQE1NDaACodkERZiQAHcJDLPqemv5wC3jewY8Tz/wUGi+5sZdCNhaqwRgjoZZB671zN3169d//vz5wYMHERERq1evnjx5clxcHLMmU/D19S39smVnZzP1nAtRjR6RA75ExDkyrIkEkAASQAI8IACBLCqtmbUr5vQ3fpr8acaJVyP/eHot6kM9lZvr2rV3HPw+jjse0f79+ysrGWt/gdA0+fn58XtY2J94EDBQk4cbzdPhzXzNDZ+IFY+fQEuj1NbWhmJmUAjkgoICCBOBkJqa6u/vf+rUKXd3dxsbm99++83R0fHPP/+EIrYEESRllo2tlJPdiP88InxkjhNaWAcJIAEkgAR4SEBOurm1Kwabp36qUJCmvM8rX305dtCux8dD08TtOTrueETp6enq6upwAkFomtjW44ZqmJAAgwA3/oN/sWWN66WwNgaaMrF/IpYViHjKJiYm4BTdv3+fGH5dXd2TJ0+cnZ1ht6qK8WIPmfy/CyCFQqHRuD8rVlNPjftQCj06GqFHBBgwIQEkgASQQCcTaLoUhJwU5Qc387C17j+P6KapJJNbWrP1doLzjkc77rzPL2M8AtbJFvOl+//dEHClu02bNhG3GszWqqurQcncRQEJcJeAkmzzX3OTl6YsOx91920uLkbHFeACvnZFRUVFTOMGg4VJGRCzsrJIJNLKlSu3bdsWFBT09u1bb29veXn57777Dup0797d3Nx84cKFr169gnjR3r17wXEaP348FHE3vftYWkelaShKG6nLc7dlbA0JIAEkgASQQPsIyDe3doWKvNRiN/Nn/zd458ReZpoK5TUNR56kDtj5aM2V2OT8/z5c0b7uhOIoLntEv//+O9yasI4cHCRQsmpQRgJcJNDsE7He/Y2fJRfefJO76GyU846H224npBRUcLFTcWtK8L/mFhERYde4walZvXo1iBs2bAD5559/Bqdo8eIsYeC5AAAQAElEQVTFjo6OOTk5//77r5KSEuilpKRu376tqanp6enZu3fvM2fOnD59etSoUVDE3RTR+CUie8Mu4J5xt2VsDQkILgG0DAkgAaElICNJmdrH8P4q1xOzHfsYd6mn0q9Efhi2P3Re4OuXaUV00V16gcseEZBi+8MfGxurpobfJRTafxkCb7hcc0/ELhls3kNHaZGrmYaiTGFF3bHQtKH7nkw+EnYlIruqrkHgxyRYBkJ06FBI6h8PBfprbm5ubnDxYU2BgYHAES5HGzduzM3NrampefLkibW1NSiJZGFhcfXq1fz8/MrKSrhMzZo1i9BzNydeInLELxFxFyu2hgSQABIQEAIiagaZTBpq1fXKIudri51H9NQmkSQevi+YeuzF+ENht+NyqTS66I2bax5Rly5dwPMhkUiWlpYgEElFRWXYsGFTpkwRPXA4IsEh0PSJWNAYqCmsHdk93HfIsVkO7t21yCSJ1xmf1/z9xmnrw1+C4t58KIG7Z8EZgiBbQiGTA/Brbu06Q/Abi8JlFdqFDg9CAkgACSABQSBgb9jlyCyHh6tdv+trKC1Jjs0uWXwuasjekL9eZNbUUwXBQm7ZwDWPyM/Pb9++fXAH8PvvvzOXmzty5MizZ8+aXcGJWwPgQzvYheATaPaJWDBbikL26Kl90rtP2Fr3NcO7GarJV9Q2nH+ZNdb/+cg/ngY+Ty+pqoNqmJolABe7V+lFRRW1Zc2tXVGOa1c0S41FmVFUVVRZB39CrPVUWNQoIgEkgASQABIQJgKmmorbJvQKWztk+RBzVXmpzKKqX6+/dd7xyO9BUnGliNxHcc0jmjNnjre39+PHjxcvXgwykaZPn96/f39hOudoq4gS0FaRXTLYPOQnt/M+fcfZ6sJN6vu88o034522PVxxMTospZAmiiHgdpxMOORTee3l19kLzkTYbbq/6GyUinzza1coyUpBZUwtEIjIKIbS3noqMpIUEDAhASSABJAAEhBeAhqKMqs9uoFftNHTSr+LHPhCfg+SnXc83HDjbVYRYwVX4R0aWM41jwjagqSkpJSQkAACpBs3bowfP/6XX36pqxMR9xEGhUmoCZDJJGczjT+m2b36xR3+PXfXVqproN2I+fjdiZdue0L+fJwiPqtMsp1HiO4m5pUDgQmHnjtte/Dz1Tf/xudX11OlKeTUgoq5ziZs9UHTwIO1qtl6EfbdqKzPMAQHI1x3GzAIYkKbkAASQAJIoK0E5KUlvV1MYIr54HQ7az3lmnramfBMtz2Pl5yLis0uaWtrglOfyx7RwoULk5KSYHhpaWlTp06Vl5e/cuXKzz//DBpMSEBwCKjKS8O/5zsrBgYvdfmur6GijGRWcdXue4n9tz+cF/j633d59VTuf5pGcIbPtAQcwmfJhRuD3w3c9Xi4XygQiM4qodMleumprBxq8c+yAeG+Q3rpqy52M1vhbqEsJwkHQg4yaOCaCLuYWiAQkYEeUQt4sAgJIAH+EcCekAB3CUhSyJ42ujeXDjg/v6+rpSaNLnErLnfcn8+nHQt//L4Aplm52x0fWuOyRwTukK2tLdgNjpCrq+v58+cDAwOvXr0KGkxIQNAIkEik3vqq2yb0erXOfc9kmz7GXeCf9MP3BQv+iuy/nfFhsvTCSkGzmSv2lFTVBUV/WHI+ymHz/ZknXwaGZXz4XC0tSR7cTXPrBOsXvu43lw1YOdTSWk8FEEGPMlKUha6mEeuGRa4fCjnIoAE9phYIAOTkxjXfMUbUAiUsQgJIAAkgAeElADcJzuYap793urNioJedniSZ9CKteG7ga5hjvRKRDbOunTK09nXKZY8InEJa47M0Dx48ID7uYWBgUFhY2D7j8CgkwB8CEO6Y5KB/ZZHzg9WuCweZaihKF1bUHnmSOnhPyNSj4deiPlTXicKCKmmfKo6Hpk05Gu6w5cGqS7G33uSW1zbAYKc46h+b5RCzYVjAXKcZfY20VWSbYgdE4DKpK8pADnLTCqhhIwDRNtCYaCgANBAwIQEkgASQABIQVQI9dJT3TbUN/Xmwz0ATRRnJpPyKNX+/GbTr8dEnqWVCsg4Tlz0iR0fHLVu2/PXXX0+ePBk9ejSc+PT09K5du4LQQgoNDfX09NTV1QVf8/r168ya3t7eoGGmfv36MYsIARywkSNHQgXWo4gizEWaAK8GZ66l6DuqR7iv+5GZDhAwIZMkXqYXr74c67Ttwa/X377NKeVVxzxrt4FKe5lWtO12wpA9IUP2Ptl6O+FVejGVRu+urbRksNm1xc6vfhm6a5KNR09t9HO4exIiMhnLKjjgS0TcxYqtIQEkgASQgKAS0FWVWzfa6vnaIWtHdtdSkskrq9l+573z9kdwE5JbWi2oVv9nF5c9Ij8/v6ioqKVLl65bt87c3Bw6+fvvv52dnUFoIVVWVtrY2Pj7+zetM2LEiNwv2+3bt9kqQHfgDrEpcRcJdJCAFIU8wlobAibP/m/I6mGW+l3kymsa/nqROebgs9EHnv4VnlFaXd/BLnh9eHlNPYSAVl2Kcdz6YOqxF8dC09IKK6UopAHmGhs9rZ7+PPjuykFrhne3N+xCBreP19aIZfuRjV8icjTq+LIKYokPB40EkAASQALCSUBFTmqRq9nT/xu8a1JvCy3FitoGuAmBeNGPl2MT88oFdkxc9oh69+4dFxdXWlr622+/EWPevXv36dOnCflbOcR5ILLk5eXVtIKMjIz2l01NTY21Qmxs7L59+06dOsWqRBkJcJEAzHYsd7cIXTP47Ly+Y3rrSFPI7z6W/XrjndPWB+BsvEgrgiglF7vreFPZxVWBz9Nnnnhpv/n+kvNRQdE5JVX1qvJSE+z0/vzOPurXYWfn9/V2MTFQk+94X9hCCwTqqbSYxiV3MEbUAiUsQgJNCKACCSABESEgI0mZ4mhwb+WgU96OTiZq9VT61agPw/1CvQNehacK3O0TQOeyRwQtsiVZWVkpqfZ/tyQkJERLS8vS0tLHx6egoIDZeFVV1fTp0yGsBO4SU9lUqK2tLWPZmlZADRJolQBEUQZYaPh/Z//yF/cNY6y6dVWqbaCBszHt2Ishe58cDkktKK9ptRHeVaDR6FFZn3ffez/CL3Tgrscbb8Y/SymES4+phsKCQaaXFvSLWDd0/1Tb0b11lPALQrw7DV+3HP+xrKaeBvNkZpqKX5fgHhJAAkgACSABCQkJsYAAd1BDune9vLD/9SUuo3ppk0kSIYmfph9/Me7P5/+8+dggSOv6ctkjolKpe/bscXJyAkcFQjrM1L7TDrGjc+fOPXr0aO/eva9fvx4yZAh4OERTq1atcnZ2HjduHLH7rXz79u0qXzYDA4NvVUM9EuCEQBcF6e8HmNxdOTBosfN0JwMFaUp6YeXOu+/7b3/kcybiYUJ+Ax//bVfVNfz7Lu/nv2Odtj30OhT25+PU93nlcK2BmZh1o3o8+tH10U9uv4zq0ddUXZLC5X/mnLAS8zrEI3P2hqrwx0DMUeDwkYBgEsjJyZk5c6a6urq8vLytrW1kZCRhJ6nJtnv3bqKILb969aqVlZWMjAzkQUFBbKW4iwSQACsBWwPVQzMcHv3oNrOfoYwk+c2H0qXno2Fa+Ux4hoAsXsXlW6Xff/993759U6ZMKS0tXb16tZeXF5lM3rhxIysUzuWpU6eOHj3a2tra09Pzzp07SUlJt27dgsODg4PBTfLz8wO55eTr6wuWECk7O7vlytwvxRZFkQCJRLIz7LLdq/erdUN3TeztYNSFSqPfj8+fdzrCZeej3ffeZxbxcM3uvNKacy8z5wa8st10f8FfkZcjPhRW1CrJSEIIyG+qbdSvw2AmxmeQqSmGJjr1t0d4RI7Gap1qBXaOBJBA8wQ+f/7s4uIiJSUFtxbx8fEw66qqqkpU/fLmMuP/p06dggv+xIkTiSLWPDw8HG5RZs2aFRsbCznc9rx8+ZK1AspIAAk0JWCsobBlfK+wtUNWuFt0kZfKKq7acOOd846H++4nFVXUNq3PTw2XPSII6Rw/fvynn36SlJScPn36iRMnNmzY8OLFi44PSUdHx8jIKDk5GZoCdyg1NRWuX9ALJNDABcvNzQ0EtgSTN8osG1sp7iKBjhBQkJGc0sfg6g/O91cNmj/ARE1BOr+sFmI1rrtDvjv+4kZMTk09d9bsptPpb3NK/R4keR581m/7w3VBbx8nfqproOl3kfN2Nj47r2/kr8P+/M5+vJ2eqrx0R0bUoWPx4C8E4HzhQnNfYOD/kYAgEti5c6eBgUFAQICTk5OxsbG7u7uZmRlhqDbLduPGjcGDB5uamhJFrDnMyQ4bNgxmXbt37w45tAAa1gooIwEk8C0C6ooyq4ZZhq113zSup6Ga/Oeq+gMPk513PFp/PS6j874DyWWPKC8vr1evXoBAUVERIjMgjBkzhgjsgNyRVFRUBEEe8IugkbVr17558ybmywaa/fv3w6UNBExIgP8ELLoqrR9j9cLX/dAM+0GWmiSSRFhq0YqLMX23PdwY/C7+Y1n7TAKH6nFiAVwg4DIx5uAzvwfJcTml0Lidoeqa4d3urRz09OfBG8f2HGChIS3J5X/I7TMYjyII5JZWq8pJaynJ2Oj/N+tM6DEXHQI4EiEnEBwc7OjoOHnyZC0tLTs7O5jJbTqg/Px8uHuZN29e0yLQQIzIw8MDBCINHz48LCyMkFnzWnyZmRUHykiAhYCcNGV2f+NHP7r6f2fXW1+ltoF29kXW4L0hP5yNjM76zFKRTyKXb6T09fUh0gy2m5ub//vvvyC8fv0aAjUgtJAqKioI7wbqpKeng5yVlQVKiDXBRScjIyMkJMTT01NDQ2PChAlQR1tb25plA42hoaGJiQkImJBAZxEAt2RUL50z3zuBo7JyqIWeqlxpdX1gWMaoA0/H+j879zKznOUjZdV1DRDkgRgx5FV1Daw2F1bUXo7IXvhXhP3m+3MDXsMFIre0Rk6K4mHVddfE3q9+GRq02GXJYPNu2kokEon1QJQFgQCcWXUFmRNzHJ+sGUyXoAuCSWgDEkACbATS0tIOHz5sYWFx7969RYsWLV++/MyZM2x1Tp8+raSk5NXcKrhQE+Z/u7J8axFk0ICeLYnCy8xsQ8JdJMBVApIU8pjeujeWuFzw6Te4myadLnHnbd6EQ2FTjoY/TMin0f77Mwp/W+F+qdm7Jm6Zw2WPaMKECQ8fPgTjVqxY8euvv8LlZvbs2d9//z1oWkgREREwSQMJ6qxevRqEDRs2UCiUuLi4cePGWVpazpkzB3LwjuDyBHUwIQFBJqDfRX7lUMvQnwef/t5pdC8dKQrpzYfSdUFvnbY+/PFybFxOSW099ciTNMet9x22PID86JM00ECk+M/HKV6HnvfZ+uDnv9/ce5dfVUfVVpad0dcwwLtP9IZhx2Y7TuljoKkkI8hjF3Pb4DzCme2z7cHAXY/7bn9AnFkxZ4LDRwICSIBGo9nb22/btg3uNxYuXOjj4wMOcapatQAAEABJREFUEpudp06dmjFjhqysLJueuUsi/W9Oik6nk0j/22XW8cWXmZksUEAC3yZAIpH6m6kHzHW6t3LQRHt9uHF6lV4873SEh1/onbjcmubumr7dWDtLGB5ROw9t7rAdO3b88ssvUDJp0qSnT5/+8MMPV65cASVoWkhubm5wNWFNgYGBcnJyMHlTUFBQV1eXmZkJGoNvLBYHB44fP76F9rEICfCfAIVMcrXU/HOG/Qtf9/Wje5hrKVbXU69GfcgrrfF/nPLHw+SyakZoCHKQQZOUX777XmJUVgmdLmGtpwxRpn+WDQj3HbJ1Qq/B3bVkpSj8HwL22CYCMIN1KCQVziacUzgQcpBBU/V1DBCKMCEBJNC5BHR0dKysrJg29OjRIysri7kLAtzAJCYmzp8/H+Rmk7a2dl5eHrMI7lUgTMTcZQoyMjIs7zIrM/UoIAEk0CyBbtpKe6fYPP15yMJBpkoykikFFZIUEswXw99T+KsKh0AOMi/+tnLZIwJbmalfv34Q8Bk7dixTgwIS6HQC/DdAXVFm/kDT+6sGXf3Bea6zkYu5xunwDDYzQDPAQmNsb50t463BC/pn2UCIMlnrqcCsCVtN3BVYAhQyOSAsnc080EiSeXiZZesOd5EAEuCEgIuLCzg8zJpJSUlGRkbMXRBOnjzp4OBgY2MDcrOpf//+9+/fZxb9+++/zs7OzF0UkAAS6AgBbRVZ31E9nvsO+X2slUtzd028+NvKnT/Vwa1tHeGCxyIBESAAvo2DUZffxlpX1VFhhoNtRKCprqMe+M5+Zj8jHRU5tlLcFQoC5TX1cB7ZTAUN6NmUfNvFjpAAEmiWwKpVq168eLFt27aUlJTz588fO3ZsyZIlzJplZWVXrlxpGiCaPXu2r68vUW3FihXgBe3cufP9+/eQP3jwYOXKlUQR5kgACXCFgLKs1Bxnk2/dNXH9byt3PKLxLW4TGpdD4AodbAQJCDsB+BeuLCfJNgrQKMlKsSlxV7gIwBmE88hmM2hAz6bEXSSABLhOoE0N9unTJygo6MKFC9bW1ps3b/bz85sxYwazhYsXL9Lp9OnTpzM1hJCVlUWsHQW7EBGCagEBAb179w4MDLx06VLfvn1BjwkJIAHuEuDbXRN3PCJaixuVyp2vsnAXMbaGBDqFAJVGm+vMvi4iaBpotE6xBzvlFgE8s9wiie0gAT4QGDNmTFxcXE1NTUJCgo+PD2uPCxYsqKqqUlFRYVWCHBISAs4PCESaNGkSBIjq6uqghW8tSUfUxBwJcJeAWLXGt7+t3PGIxOrc4GCRQEcIyElLLnYzW+FuAdEDaAdykEEjL80eOIJSTEJEAM+sEJ0sNBUJIAEkgASEggDf/rZyzSMaNWoU8UlW4Lt169aSkhIQIBUVFbGu6AIaTBwQwCqiTEBGirLQ1TRi3bDI9UMhBxk0ojxgsRkbnEc4m3BO8cyKzTnHgSIBJIAEkABvCfDnbyvXPKJ79+7V1tYSSHbu3FlcXEzIDQ0NrCu6EErMkYCYE4CIkLQkWV1RBnKQxZuGSI0eziacUzyzInVScTBIAAkgASTQqQT48LeVax4Rnf7fZ2WBGKsMu5iQABJAAkgACSABCQlkgASQABJAAoJIgGsekSAODm1CAkgACSABJIAEkAAS6AQC2CUSECYCXPOISI0bc+iwx5QFRCAiV2W4IQEkwHsCxD83Afm3zy0ziEHxHh72gASQQBnxz41b/3gFoR1iRHhqkQAS4AMB4p9bm/7hd8wjYukK+vb29vZq3GpqahYtWtQoen3//fcstTpTLC8vh+4NDAxUcEMCSIDHBIh/bvAvTpQSMSi8hvD4t4PNIwEGAeKfG15AGCzwPySABNpIoB0XEK55RHPmzNHS0iIMnjlzpq6uLiGDcvbs2YJwUQOTsrOzS0pKSjtpg96BA+Sd1H+buwVThchgnlvbZn6tHCDaBispKcGPR8RS515DRPsH08q/Fr4UI2GeYm4rXtG7hnTuBQRObltPARzSiUm4rAVQaDBA4GlqE+F2XEC45hEFtLgJwo0RmUzW19cHP0258zbg0Hmdt6dn4TJYuKyF8yHCBgvgc7NAu4Op068hYD/8bPiRuNQHGswlkN9sRrgIt8la0buGdPoFBH5GbToFUL9zk3BZC6zQYIDA08Q54XZcQLjmEYGVmJAAEkACSAAJIAEkIEwE0FYkgASQgIQEekT4K0ACSAAJIAEkgASQABJAAqJOAMf3bQLoEX2bDbdLZGRkfvvtN8i53TCv2gNThchg4bIWzhkaDBAwcU4AfzCcs2pfTSTcPm4cHiV0eDkclxBVE65TIFzWws8ADQYIPE28JoweEU9P31eNw7ncuHEj5F9pub3DxfbAVCEyWLishdOEBgMETJwTwB8M56zaVxMJt48bh0cJHV4OxyVE1YTrFAiXtfAzQIMBAk8TrwmjR8TT04eNIwEkwEMC2DQSQAJIAAkgASSABDpOAD2ijjPEFpAAEkACSAAJ8JYAto4EkAASQAK8I4AeEe/YYstIAAkgASSABJAAEkACbSOAtZEA/wmgR8R/5tgjEkACSAAJIAEkgASQABJAAoJCoLM8IkEZP9qBBJAAEkACSAAJIAEkgASQgDgTQI9InM8+jp0/BLAXJIAEkAASQAJIAAkgAcElgB6R4J4btAwJIAEkIGwE0F4kgASQABJAAsJHAD0i4TtnaDESQAJIAAkgASTQ2QSwfySABESHAHpEonMucSRIAAkgASSABJAAEkACSIDbBES/PfSIRP8c4wiRABJAAkgACSABJIAEkAAS+BYB9Ii+RUb89DhiJIAEkAASQAJIAAkgASQgfgTQIxK/c44jRgJIAAkgASSABJAAEkACSOALAfSIvpDA/yMBJIAEkAASED0COCIkgASQABJojQB6RK0RwnIkgASQABJAAkgACSABwSeAFiKB9hJAj6i95PA4JIAEkAASQAJIAAkgASSABISfgPB5RMLPHEeABJAAEkACSAAJIAEkgASQgKAQQI9IUM4E2oEEmhJADRJAAkgACSABJIAEkACvCaBHxGvC2L5QEjA2Ng4JCRFK09FoJCCcBETMaryGiNgJxeEgAX4SwAsIP2kTfaFHRHAQuzwwMFBVVVXwh71ixQoHBwcZGRlbW1tWaxMTEwcPHty1a1dZWVlTU9P169fX19cTFby9vUlfbz179iSKjh8/PnDgwC6N29ChQ1+9ekXo25TT6fRjx4717dtXUVERGDo6Ovr5+VVVVUEj7969mzhxorGxMfQPStAwU2hoqKenp66uLhRdv36dqUcBCQgpAbyG8Pkasn379j59+igpKWlpaY0fPx6ugUL6y0GzJSQkEAJeQHhxAWH+ri5evAg3G3ChYGqYAlxJoGjlypVMDQoEAfSICA6YCygBcD++//77qVOnstknJSU1e/bsf//9F24LwPcAV+e3334j6vzxxx+5X7bs7Gw1NbXJkycTRRD2mT59+uPHj8PDww0NDT08PHJycogizvNZs2bBpWTcuHHQTkxMzK+//nrjxg2wBFoAvwjcsx07dmhra8Mua6qsrLSxsfH392dVoowEkACvCYjMNeTJkydLlix58eLF/fv3Gxoa4PIFVxVe08P2kYCYExCuCwhxsjIzM3/66SeY/yV2WfPXr1/DlG7v3r1ZlbyWhaV99IiE5Uy1ZKebm9vy5ct//vlnuPuHe/GNGzcya+/bt69Xr14KCgoGBgaLFy+uqKiAInAM5s6dW1paCvMEkIj6nz9/Bh+jS5cu8vLyI0eOTE5OhpqQiImcf/75p1u3blA0adIk+DN8+vRpiIRA5WXLllGpVKgG6dChQxYWFhC0gdANVANNx9OBAwfgJgDcDLamQANDAB/DyMho7NixM2bMePr0KVFHRUUFIBApIiICxgU1iaJz584BBAg3de/eHZwoGo328OFDoojD/PLly9DIhQsXfvnlF5ivBQjgGj169AgCVtACaHbv3j1t2jQIasEuawKkW7Zs8fLyYlWijAQEhABeQwT/GnL37l0IgEPE28bGJiAgICsrKzIyUkB+P2iGmBPAC4iAXEDgdwi3ZGDM77//DrdJsMua4A4QiuDmB27eWPUoEwTQIyI4CH0OLgq4PS9fvty1a9emTZtgEpEYEplMBqfi7du3UAFu3MFrAr2zszPEVZSVlYlQCswlgBL+1oL/EBwcDPETmBQZNWpU/Zfn0CD0AY1AEBb+JIM3Bbf1txu3v/76CyYb/v77bzgcjgWvDLqGoA1UGzRoECjZEvwJV/zGtmjRIrbKnO+mpKRAj66urk0POXnyJASmwWtqWgSDggGCD9m0qAUNuEPgGYIXxFoHvEpww1g1KCMBoSMAlwi8hjQ9a4J5DYH5LDC1rZcvOAQTEuARAbyACMhNCNyGaWpqzps3r+mJhvnl0aNHw01R0yLUAAH0iACCKCSIgf72228QooE4j6OjIzP0sXLlSghfmJiYDBkyZPPmzRDigNFKS0vDHTzcxxOBFHBSICIEvtCJEycgzAoTkHDfn5OTw3zdBTyHw4cP29nZgZ8DwZ9nz57BXYKVldWYMWOg8cePH0Ob4O3A7RRowP2AmuAdgZIt6erqxnxjg3/DbJU52QXXDkJSMGowu2kL4O/duXNn/vz5zTa1du1aPT29tl4aABR4RM02iErxICCyo8RriLBcQ2DGavXq1QMGDLC2thbZnyMOTNgI4AVEEC4gz58/h9sziAI1/fnApHZUVNT27dubFqGGIIAeEcFB6HO4GDHHoKOjU1BQQOyCuzJs2DC49VdSUgJnqaioqLKykihizRMSEiQlJfv27Uso1dXV4b4flMSuvLy8mZkZIXft2tXY2BicKOYu0Rf0Ar4QRGlnzZoFDhVEYIgKrDl0Yf6NTUtLi7Umh/KlS5fgX/j58+dv3bq1Z88etqOI5/2afbMQImkXLly4du0aOFRsR7W8C/ci4Em2XAdLkYAwEsBriLBcQ5YuXfrmzRu4gvH+Z4Y9IAFOCeAFpNMvIOXl5TNnzgR3SENDg+20ZWdnr1ix4uzZs22952FrR7R30SMSkfMrJSXFHAncstNoNNjNzMwcNWoUzCNevXo1MjLyzz//BCUEfCBnS3Cj31QD7RBKtsbZdom+wOMC5wT+SIM/tmHDBgg0lZSUEIczc4gjgSvVbGrfU3MGBgYQqpo+ffqOHTs2btxI/fJGE/QIIzp16hS4ZxAQg13WBJetbdu2/fvvv6xXcNYKLciWlpZMR7GFaliEBISOQLP/rvEaImjXkGXLlkE8H6a69PX1he43hgaLMAHhv4C059F9gboJSU1NzcjI8PT0hNlnSGfOnIFrBQighztAmLx2cHCAXUhPnjw5cOAACKx3TSL84+RwaOgRcQhKKKtFREQ0NDTs3bu3X79+cCv/8eNH5jDAT2D9lwB+BdR8+fIlUQFCSUlJST169CB2OczhX9fQoUMh/ALzl/DP8tGjR2wHciD+OqsAABAASURBVP2pOWb74P+Apwc5UwP/4FNSUpo+Srt79+7NmzffvXvX0dGRWZlz4bvvvgMyN27cYD0E+iUe62dVoowERIAAXkME5xoC1xmIDkFkGy6tJiYmIvDrwiGIPAG8gPDzAtK9e/e4uDjmqwljx44dPHgw7ILb5u7uzloE9z8zZsyAIgqFIvI/Qs4HKE4eEedURKWmmZkZ+DkHDx5MS0v766+/jhw5whyZsbFxRUXFw4cPCwsLq6qqLCwsxo0b5+Pj8+zZs9jYWAi86unpgYZZv1Xhn3/+gSkH+AcGk8owMwGBo27durEdBS7TNx6aM//WU3Pg1UCbeXl51dXVIECqq6uDZs+dO3f58mUI18DQrly54uvrO3XqVGgfioh08uTJvn37QnyM2CVy8NbWr18PsSMYPrQJCSAQRRzmU6ZMgY4gKrV9+3a41sNgYeDgB8KULbQAtoGFkEDIyckBAewHPSToCHYhgZyeng4CRMxAxoQEBJkAXkME5xqyZMmSs2fPnj9/HgLycO2CBFdFQf7xoG1IAC8g/LyAyMrKQnfMpKqqCtcK2IUZcEIAmUgKCgrq6uog40+UlQB6RKw0RE22tbXdt2/fzp074XcPLgTcxDNH6OzsvGjRIri519TUBD8B9AEBAQ4ODmPGjOnfvz9MRt6+fVuK5Uk8qNBygn97MHk5ZMgQiCyB63XhwoWeX76L2vKBLZfOnz/fzs7u6NGjEJkBARIR6QLnB8bl5OTUu3fvjRs3wr3CiRMnmE1BxObq1atN52YOHToEvsqkSZN0vmx7mrx9xGykWYFEIsEdCVANCgpydXUlegfXcfjw4VAfbAMLIeXm5kLLIID9oIcE7hPsQgJ59erVIGzYsAFkXiVsFwlwgwBeQ9goduI15PDhw3Blc3Nz+3L10rl06RKbebiLBASKAF5A2E4Hry8gbN3hbpsIoEfUJlwCWjkkJMTPz49p3PXr1wMDA4ndVatWwW06RIHu3r07a9YscHXAdSGK4O8rBIhAAx4FaLp06QKxnZKSEqIyRI1ACcnb2xuUIBAJKkN8g5Ahh46gOxAGDBgQEhJSXFwMh0OUacqUKaDseII2wULWBOEdaBZ8ucjIyPLycoi9vHv3DmJEMDsCeiKpqKiAGRDyInaZeUZGBmtTIMNwmKUcCmQyGZzJV69eVVZWwg0KuDrLly+Xk5ODw8E2aJM1gf2ghwT3Max6kAEd6DEhAUEgAD9UIb6GtEgQhgb/3FgT/DuFI4TuGsI6BEKGizMMBBMS6HQC8K8MLyCCcBPC+kuAewzi9oxVSchs54tQYo4eEf4GkAASQAJIAAkgASQgDATQRiSABHhDAD0i3nDFVpEAEkACSAAJIAEkgASQABJoHwH+HoUeEX95Y29CQmDlypXEozVCYi+aiQSQgGARwGuIYJ0PtAYJCBUBvIDw/3ShR8R/5tjj/wgIrIQXI4E9NWgYEhAKAngNEYrThEYiAcEkgBcQ/p8X9Ij4zxx7RAJIQBwJ4JiRABJAAkgACSABwSQgRh4RnU4vKyuDXDDPBFqFBJCAgBOAqwdeQwT8HKF5AkIAzWhKAC8gTZmgBgkIDgEx8ojKy8tVVFQgFxz6aAkSQAJCRACuHngNEaLzhaYiAYEigBcQgTodXDQGmxINAm3ziGpra0Vj2DgKJIAEkAASQAJIAAkgASSABJAAEGjdI7p37563t7eZmZmUlJS8vLySkpKrq+vWrVs/fvwIx4tHwlEiASSABJAAEkACSAAJIAEkIJoEWvKIrl+/3q1btzlz5pDJ5DVr1ly7dg28o5MnT4JH9ODBA1NT00WLFn369Ek0weCokICYEhCsYYeGhnp6eurq6pJIJLgiMY2Dy9Hw4cM1NDRAHxMTw9QzBTqdPnLkSChlPYpZSgiHDh0yMTGRlZV1cHB4+vQpocQcCSABJIAEkAASEDcCLXlE27Zt27NnD8SCTp06Bc4P3JcMHTp0ypQpmzZtevz4cWpqqrKy8pkzZ8QNGY4XCSABvhGorKy0sbHx9/dn6xH0Li4uO3bsYNMzd/38/MAdYu42FS5durRy5cp169ZFR0cPHDgQ3KesrKym1VAj0gRwcEgACSABJIAEGARa8ohevXoFXhAEiBgVm/ynp6e3a9euH3/8sUkJKpAAvwlU1zXUNdCKKmohr6pr4Hf32B/PCICjsmXLFi8vL7YeZs2atWHDBpijYdMTu7Gxsfv27YOpHGK32RwqzJs3b/78+T169AD3ycDA4PDhw01r1tbWlrFsTSuwafCnyAYEd5EAEhAEAtV1+FdSEM4D2iC4BFryiATXarQMCbAQqK2nHnmS5rj1vsOWB5AffZIGGpZyFMWLQFVV1fTp0yGspK2t/a2R19XVRUZGenh4MCuAHBYWxtxlCtu3b1f5soHXxNQ3K8APD3+KzZJBJRJAAp1IAC9NnQgfu+4MAu3pk1OP6MOHD4cOHVq7du1qlq09HeIxSICrBGBK/lBI6h8Pk8uqGaEhyEEGDUaKuIpZmBpbtWqVs7PzuHHjWjC6sLCQSqV27dqVWQfkvLw85i5T8PX1Lf2yZWdnM/VNBfwpNmWCGiSABDqdAF6aOv0UoAFCQYAjj+jhw4fdunUDj2jv3r2PHz8OCAg4depUs28zC8WY0UhRIPBlDBQyOSAs/cvef/8HjSSZo9/2fwfg/0SFQHBw8KNHj/z8/DgZEIlEYlaj0+kk0v92mXoZGRlllo2pbypQ8KfYFApqkAAS6GwCeGnq7DOA/QsHAY7uGmGW9Mcff3z79q2srOzVq1dhotTV1XXy5MnCMUS0UqQJlNfUQ1yIbYigAT2bEnfFgQC4Q6mpqaqqqpKNGwx54sSJbm5uILAmDQ0NCoXCGhQqKCiAMBFrnbbK8JODHx7bUaABPZuyzbt4ABJAAkigvQTK8K9ke9HhcWJFgCOPKCEhYc6cOcAF7jGqq6sVFRU3bdq0c+dO0GBCAp1LQElWSllOks0G0ICeTYm74kBg7dq1b968gQg2kWDI+/fvDwgIAIE1SUtLOzg43L9/n6kE2dnZmbnbDgF+cvDDYzsQNKBnU+IuEkAC3ySABVwlUFNPVZCRhAsRW6ugwUsTGxPcFXMCHHlECgoKtbW1QEpXVxfmX0GAVFhYCDkmJNC5BKg02lxnEzYbQNNAo7EpcVcYCVRUVDB9m/T0dJCJNbKLi4tBjo+Ph0ElJiaCTAR8tLW1rVk2KDU0NDQx+e8X4u7u7v9lIe/Vq1efOHHi1KlTMOOzatUqaHbRokVQv90Jf4rtRocHIgEkwAsCEB3yDnj1LPnTnP7GbO3jX0k2IJ2zi70KEgGOPKJ+/fo9f/4czB49evSPP/64devW77//HpSgwYQEOpeAnLTk/IEmy4aYw4wXWAL58iHmi93M5KXZA0dQiknoCERERNg1bmA5+DAgbtiwAeTg4GCQ4YoE8rRp00A+cuQIyC0nmNBhTuVMnTrVz88Pwt22trahoaG3b982MjJq+fCWS+GnCD+8Fe4W8COEmpCDDBr8KQINTEgACfCZwKfy2mlHX7xIKz74MOUHNzO4HMFFCWyAfLk7/pUEEpiQwFcEOPKI9u3b17dvXzhu48aNw4YNu3TpEtw6nDx5EjSYWiaApbwmQKXRF/4V2UtP5fUvQyPWDX3h626tp1LXgAEiXoPnU/tubm70r7fAwEDo29vb+2s1Ha5OoGdLUGf8+PFMZUZGBmu1xYsXgwYC4JGRkYMGDWJWa7cgI0VZ6GoKv8Nn/zcYfoogg6bdreGBSAAJIIH2Ecgqqpp0JCw+t0xDUXqbVy+Yl4HLUcS6Ya8b/0rCX8zqemr7WsajkICoEmjdIyovL4eJ1Q8fPsDcqry8/KFDh968eXPt2jVwikQVCo5LiAjcj88PSy36v6tv6BISGkoycwNeL/gr8lZcrhANQWRMxYEAAbjzIJFIP5yNHLDzcV5pDWgwIQEkgAT4SeDdx1Kvw2GZRVWGavJ/L3KGWULoHS5N0pJkcJB8Tkf4nIk8HZYJSkxIAAkwCbTiEYHz07179xEjRowZM8bc3PzBgwfMI1FAAoJAILBx6e3pToayUhSwx7WbJuQ3Yj5CjgkJdAoBKQpZWpJSXFkXk13SKQZgp3wggF0gAcEk8CKtaNrRF4UVtT10lP/+ob+xhgKrnTBfM72vIWhOh2dU12GYCEhgQgL/EWjFI1q7dq2hoeHTp08jIiJcXV2XLl3633H4PyQgAAQScstepBVTyKSZ/YwIczx764LwIr0ovwyn54EEps4hYGugCh2jRwQQMCEBJMA3Anff5s0+9aq8tsHJRO3Swn5aSrJNux7RUxtiRzBl83dkdtPSZjWoRALiQKAVjwgcoYMHDzo7O9vb2586dSo5ObmiokIcuOAYhYJA4PMMsHOEtbauqhwIkAzU5B2MutDpEjdjMUwEPDB1DgH0iDqHO/aKBMSYwMVXWYvPRdY10Dysup753klZVqpZGJIUss9AxvKbx5+mN1DxndtmIaFSHAkQHtE3R15YWGhoaEgUq6ury8vLf/r0idjlJA8NDfX09NTV1YVA7fXr15mHeHt7g4aZ+vXrxywiBDqdPnLkSKjAehRRxJZv374dqq1cuZJNj7siTwCmuK7H5MAw5zp/ta7oOFtGmCgYPSJAg6mTCBAeEcQwa/D15U46BdgtEhAfAnDL9OfjlLXX4mh0iWl9DA7NsCceI/8WgUkOBmoK0lnFVXff5X2rDuqRgLgRaMUjAmejvLy8rHErLS1l3QVdq7AqKyttbGyYHwBhrT9ixIjcL9vt27dZi0D28/ODvkBoOb1+/frYsWO9e/duuRqWiiSBC6+yahtovfRUICjEOsBRvXQoZNKbD6XphZWs+i8y/h8J8JyAfhc5dQXpeio9PreM551hB0gACYgxARqN/vvN+N33EoHB0sHm2716QRQI5BaSnDSF+ELR0Sdp4E21UBOLkID4EGjFI4J/KpaWll0aNzU1tYqKCjs7O9hTVVWFvFVMEOfZsmWLl5dX05oyMjLaXzZombVCbGzsvn37Tp06xapsKoMxM2bMOH78OCeWND0cNUJNoJ5KO/uCsVSOt7Mxm/OsoSjjYq4BowvG9RWAAqbOIAC/SSJMFJPVuYsrdMbgsU8kgAT4RaCugbbyUkxgGOMB8t88rX4a3g0uPpx0Pru/kZwUJS6nNDy1iJP6WAcJiDyBVjyix48fP2LZHj/+b/fxY4bQETohISFaWlrgbvn4+BQUFDCbqqqqmj59OoSVwF1iKpsVlixZMnr06KFDhzZbSihra2shlsVMhBJzESBw711ebmmNhqL0GBudpsMZZ8N4cO5GbA649E1LUYME+EDgP48oGz0iPsDGLpCAhISE2EGorG2YfyYiOPajJJn0xzTbuS6Mt4M4pNBFQXqKoz5UPhKaBjkmJIAEWvGIXFvc2o0PYkfnzp0DV2vv3r2vX78eMmQIuC5Ea6tWrXJ2dh43bhyCigo4AAAQAElEQVSx+6384sWLUVFR27dv/1YFQg8VVL5sBgYGhBJzESAQ2Limwnd9jWQkGYtus43Io2dXGUly2qfKdx/xmSU2NrjLJwK2hrjcHJ9QYzdIQAwJFFfWfXfiZWjSJwj1nJjjOM5Wr60Q5g80JZMkoIV4/EPZVnadXx8t4D6BVjwi1g7fvXv35ssGMmtRW+WpU6dCeMfa2trT0/POnTtJSUm3bt2CRoKDg8FN8vPzA7mFlJ2dvWLFirNnz8rKNrOyJOuBvr6+pV82OIq1CGXhJRD3oTQi87MUhTSz8bsKTQeiJCvl3kML9DB5BjkmJMB/Ar31GR5RVnFVUUUt/3vHHpEAEhBhAjkl1ZOOhMVml3SRlzrv09etG+PvXVvHa6AmP7rxexXHQlPbeizWRwKiR6AVj+jp06d9+vQhht2vXz87Ozvbxq13794PuPS1Vh0dHSMjo+TkZOgF3KHU1FRVVVXJxg00EydOdHNzA4E1RUZGFhQUODg4NNaSfPLkyYEDB0CmUtk/NyYjI6PMsrE2Iugy2vdtAgFh6VA4upeOlvI3XeKxNowJs+CYjzQaHSpjQgJ8JqAiJ2Wmyfg2YuwHfHCOz+yxOyQgygSS88snHQ5L+1SpqyJ7ZVF/O8Mu7R7twkGmcOzNN7kfPleBgAkJiDOBVjyiQ4cOzZo1iwno8ePH6enpaWlpEKI5fPgwU98RoaioCKI34BdBI2vXroUoVMyXDTT79+8PCAgAgTW5u7vHxcV9qRXj6Og4Y8YM2KVQmnmAivVAlEWAwKfy2n9ic2Eg3i0+M+3WTVNJVjKvrOZVRjFUxiTQBETUOFsDxp0KLq4goqcXhyUcBHJycmbOnEl8PgRmdGFGlbC7oqJi6dKl+vr6cnJyPXr0aOGW5urVq1ZWVjDBCnlQUBBxOJHDPZKJiYmsrKyDgwPMIBNKnuaRmZ8nHQnPLa0x11L8+wdncy2ljnRnracywFyDSqOfesZYm6EjTeGxSEDYCbTiEb1+/drJyYk5SLh2QDzH2NgY3KTw8HCm/lsCXHHAUYEEFdLT00HIysoC5U8//QSHZ2RkhISEeHp6amhoTJgwAepoa2tbs2ygMTQ0hMsNCJDAEfL39wdBSUmJpZa1goICXOxAA0WYRJ7A+ZdZdVSarYEqpBYGKytFGWmtDRVuxHyEHBMS4D8B4lWiaFxcgf/oBblHtI2PBD5//uzi4iIlJXXnzp34+Pi9e/eqqqoS/a9ateru3btnz55NSEgAedmyZTdu3CCKWHO4V5k6dSrc88TGxkI+ZcqUly9fEhUuXbq0cuXKdevWRUdHDxw4cOTIkXCHQxTxKH+cWDDjxIvS6no7Q9UrC/vrqsp1vKOFroww0cXXWSVVdR1vDVtAAsJLoBWPCCZXdHT+W8vr9OnT4LEQQ1VTU4PYDiG3kEdERNg1blBn9erVIG7YsIFCoUCEZ9y4cZaWlnPmzIEcrjjg5ECdllNqamphYWHLdbBUtAnUNdDOvmQsuj3X5auvsjY7auLBuTtvc+GoZiugEgnwlICdAePeKza7BB/d5ClnbBwJfIvAzp07DQwMAgICYG4XJnNhXtXMzIyoDDcecAfi5uYG+gULFtjY2MAdC1HEmvv5+Q0bNszX17d79+6QQwugISrs27dv3rx58+fPhxATKKGjw1x6doZony0Piv7gczqipp7m1k3z3Py+XRSk2Sq0bxdiRFY6ylV1VOKDFu1r5JtHYQESEB4CrXhE4KhAbIcYjpeXl7y8PCGDUllZmZBbyOFaQ/96CwwMhAj1vXv3CgoK6urqMjMzQQPXkWYbgUPHjx/PLIKY0saNG5m7TAECTXAxYu6iIMIEwL35VF6rpSQz0vo/R72FwfY3U9dQlCmpqn+a/KmFaliEBHhEoJu2kowkuaymIb2okkddYLNIAAm0QCA4ONjR0XHy5MlaWlowJ3v8+HFm5QEDBkApTPvCncbjx4+TkpKGDx/OLGUK4Dh5eHgwd6FOWFgY7MINTGRkJGsRyEQRlDJTLZc+AXLiadqqS7ENNPoEO73jsx3lpSWZXXRQIJFIRJgoMCyjpp79ZewONo6HIwEhItCKR9S3b98zZ840HQ+4MVAkISHRtAg1SIB3BE41Lro9q5+RtGQrP12wgUImeTZ+rQgfnAMamPhPQIpC7qWnAv3GZJVAjgkJIAE+E0hLS4O4jYWFBczDLlq0aPny5cxbmgMHDlhZWenr60tLS48YMeLQoUPgIzU1Ly8vr2vXrkw9yKCB3cLCQiqVCrsgEwlkoojYJfKOfwIEHLYdd95vuZUADc4fYLJ3sg1cWEDmYhrdS0dPVa6wou5q1AcuNotNIQHhItDKbeXq1atPnz69Zs0aCOkQAwPhxx9/PHv2LBQRGsyRAH8IRGd9js0ukaaQp39j0e2mZhCfaLgfn19V19C0tK0arI8E2kqAeNstBl8lais4rI8EuEGARqPZ29tv27YNAkQLFy708fEBB4loGDyiFy9eQJgIQj179+5dvHjxt1bQhSgKcQjk4J+w7rLKbEVQGZJvxz4B0kCl/d/VN0eeMFbHXjuy+7rRPchkEjTL3SRJIc8fyPi66/HQNCquzspduNia8BBoxSMaPHjwwYMH4cKho6PTpUsXNTU1EPz9/f38/IYMGSI8w0RLRYEAxPRhGJ42uhqKMiBwkmz0VYzU5avrqeAUcVIf6yAB7hIgFlcQRo+IuxywNSTQKQTgjgUCQcyue/ToQSx+UF1d/csvv+zbt8/T07N3795Lly6dOnXqnj17mDWZgra2NmvkByaFIRYEpRoaGhQKpdkiKGUmmQ58AqSmnrrobNTliA/gBO2a2HuRqxmrA8bsgivC1D4GqvJSGUVV/77L40qD2AgSEDoCrXhEMB6YOElJSYErxfTp06dNmwYC7MLlA4owIQG+Ecgvq7n1hrHoNidrKjCtgr8fY210YTc4BlecAwyY+E2AiBEl5JbBzQ2/+8b+kIDYE3BxcUlMTGRiSEpKMjIygt36xo1M/u8WCDTg3kBACQS21L9///v37zOV//77r7OzM+xKS0s7ODiwFoFMFEFpu1N1XUNdA62oohbymOzP6YWVMpLko7Mcp/QxaHebnBwoLy05ux+DDMSjINjFySFYBwmIGIH/XQ5aGJiBgcGqVasONW4gwG4LlbEICfCCwLkXmQ00eh/jLtaNL2Zw3sU4W4ZH9CTp0+dKXFqUc2xYkzsE9FTlIKQJP913H0u50yK2ggSQAMcE4I7lxYsX27Ztg5nc8+fPHzt2bMmSJXC0srKyq6vrmjVrQkJC0tPTAwMDz5w5Q3wFBEpnz57t6+sLAqQVK1aAF7Rz5873799D/uDBg5UrV4Ie0urVq0+cOHHq1Cli/W6IPi1atAj07U619dQjT9Ict9532PIA8ucpRVcW9Yc0zOp/LzK1u/FWD5ztbAzeV+yH0pfp+BG/VmkJcQU0/VsEWvKIwlv74lBlZeW7d+++1TTqkQC3CNTUU8+9zILWvJ0ZzzqDwHky11LqoaMMt6R33uLDAJxjw5rcIQBRSlsDxuIK0Vkl3GkRW0ECSIBjAn369AkKCrpw4YK1tfXmzZv9/PxmzJhBHH3x4kUohV0rK6sdO3Zs3bqV6c+Ab5Oby3gkAWpC2AdqBgQE9O7dOzAw8NKlS8xlpaZOnQoNbtq0ydbWNjQ09Pbt20QACo5qR4Lo0KGQ1D8eJpdVM956hfzgo5TTYRnmWortaK0dh8DczWRHfTjwWGga5JiQgLgRaMkjgmmSYcOGXb58uaKigo1LfHz8L7/8Ym5uHhUVxVaEu51NQAT7/+dNblFlnY6K7PCe7ZkqI8JEN2JyRBANDkngCRAPzsHMq8BbigYiAREkMGbMmLi4uJqaGojk+Pj4MEeora0Nfk5OTk51dTXEfyDgA/MXRCkEjsD5IWTIJ02aBBXq6uqgBS8vL9Aw0+LFizMyMmprayMjIwcNGsTUt0OgkMkBYelsB4JGktzSfRpb/Q7uzh9gSiZJPHpfkJhX3sGm8HAkIHQEWvqXBm7PuHHjNmzY0KVLl549e4J35OnpOWDAAA0NDQcHh8zMzPv378+aNUvoxowGCxcBOp0e8Jzxd2JWfyNJSku/2G+Ny7PxVaJXGcW5pdXfqoN64SQgBFbbGnQBK2OyP0OOCQkgASTQLIHymvqyxugQayloQM+q4alsrKFAfOsPw0Q85YyNCyaBlu4vpaSkli5dClMjL1++XLBgAQSd9fT03Nzcjh49CtMq586dA41gjgqtEiUCEZmf330sk5EkT+9j2L5x6anKORmr0ekS/8T+9yBE+9rBo5BAOwj0NlAhkSSyi6uLKmrbcTgeggS+EMD/izIBJVkpZTlJthGCBvRsSp7uLhhkCu3fiMnBCUTggEmsCLTkETFB2Nvbr1ixYv/+/UeOHNmyZcvEiRPV1NSYpSggAZ4SCGz8KusEO70uCtLt7sizcX2FG7H44Fy7EeKB7SSgLCtlpqkIB+Ma3AABExJAAs0SoNJoc5u8KAuaBhqt2fo8UtoYqPY3VW+g0U89YzyawaNeOGgWqyABfhPgyCPit1HYHxL4QuBjSfXdd4wVEbxdjL/o2vP/0b10JMmktzllKQXsL8W1pzk8Bgm0hYCtgSpUR48IIGBCAkigWQJy0pKL3cxWuFtAXAgqQA4yaOSl2QNHUMrTtNCVESY6/zKrtLqepx1h40hAoAh0nkckUBjQGEEl8NeLTCqNDlNW3bWVO2KjmoL0QAsNaCE4Fj9MBBgw8ZUAekR8xY2dIQHhJCAjRQFvJGLdsMj1QyEHGTT8H4qrpWZ3baXKOuq5l5n87x17RAKdRQA9os4ij/22TqCmnnrhVRbU62CACFqANM5WD/KbsR/pdDoIfE3YmXgTYHpENBr+9sT7p4CjRwItEoCIkLQkWV1RBnKQW6zLq0ISiUS8TRTwPAP+CvOqG2wXCQgYAfSIBOyEoDksBK5H55RU1et3kRvaoz2LbrO0xBCHWXWVlSKnF1bG5ZQy9vE/JMAvAjDhCr+98pqGtMJKfvXZef1gz0gACQg5AU8bXV0V2U/ltfBXWMiHguYjAU4JtM0jqqmp4bRhrIcEOkYAIjmBYRnQxpz+xhQyCYQOJgUZyaGNntWNGHxwroMs8fC2EZCkkHvpMb7Tiq8StQ0c1kYCAk5ARM2TopC/H2ACgzsWmoaRbeCASRwIcOQR0Wi0zZs36+npKSoqpqWlAZdff/315MmTIGBCAjwiEJ5W9D6vXE6KMsXRgFtdEA/O/fPmIxUfXuIWU2yHMwJfHpzDrxJxxgtrIQEk0KkEpjkZKstKQlj7fkJ+pxqCnQsMAVE3hCOPaMuWLYGBgbt27ZKW/m/54169ep04cULU4eD4OpMAsej2RAc9FXkpbtkxyFIDLvH5ZbUv04u41Sa2gwQ4IWD733daSzipjHWQABJAAp1LQFFGclZ/I7ABwkSQY0ICIk+AI4/ozJkzD5/R7gAAEABJREFUx44dmzFjBoVCIYj07t37/fv3hIy5yBAQnIFkF1c9aJyX8nbu0KLbbCOSkaSM6qUDymB8cA4oYOIjAVtDxgLc73PL8U1lPlLHrpAAEmg/gTnOxtKS5MjMzxEZxe1vBY9EAkJCgCOPKCcnx9zcnHVENBqtvh4XqmdFgjI3CZwJz6DRJQZaaJhrKXGzXQmJsY2far0dl1vbQOVuy9iacBHgs7W6KrKaSjINNPpbXNiDz+ixOySABNpFQEtJdqK9Phx65AnjdQkQMCEBESbAkUfUs2fPp0+fslK4cuWKnZ0dqwZlJMAtApW1DRdfZ0Nrczv2VVZooWnqa6LeVVmmrKYhNKmwaSlqkACPCJBIJFsDRpgIF1fgEWFstgUCWIQE2kfAZ6AJiSTxICE/paC8fS3gUUhAWAhw5BH99ttvS5cu3blzJ4SGrl275uPjs23btg0bNgjLINFO4SJwLTqnvKbBWF3ezVKL65ZTyKQxvXWh2RsxOZBjQgJ8I0B4RNHZ+CoR35BjR0gACXSIgKmmoocV4+sXQvQ2UYcGjAeLMQGOPCJPT89Lly7dvn2bRCJt2LAhISHh5s2bw4YNE2NuOHReEWAsuv08HVqf42xM5sai29AUWxrX+OAcTHpV1DawFeEuEuAdAcIjislCj4h3jLFlJIAEuExgoasZtBgUnZNfht9fARKYRJYARx4RjH748OFPnjypqKioqqp69uyZh4cHKFtNoaGh4E3p6uqCK3X9+nVmfW9vb9AwU79+/ZhFhAC3xSNHjoQKrEcRRRISjP9v3769T58+SkpKWlpa48ePT0xMZGjxP+En8CylMPVTpaKM5CQHxuPLvBhQLz0VEw2Fmnra/fg8XrSPbSKBZgn01lchkSRySqo/ldc2WwGVSAAJIAFBI2Bv2MXJWK2eSj/VOFkpaOahPUiAWwQ49Yja119lZaWNjY2/v3/Tw0eMGJH7ZYPoE1sFPz8/Eqmlj3KCe7ZkyZIXL17cv3+/oaEBPDToi60R3BVGAgHPGV9lBXdISZZri26zcSCRSGNtGA/OCcOKc2y2464QE4CftLmmIgwgFh+cAwqYkAASEBICC11NwdLzL7LKanBJLSCBSTQJcOQRkclkSnNbq0ggzrNlyxYvL6+mNWVkZLS/bGpqaqwVYmNj9+3bd+rUKVYlm3z37l0INPXs2RM8roCAgKysrMjISLY6sFtbW1vGsoEGkyATSC+sfPS+ACycw9VFt6FBtkSsOBeaXFhUgbP1bGxwl4cE/ntwDj2i5hmjFgkgAUEkMLibloWWYnltw4WXWYJoH9qEBLhBgCOPKCgo6NqX7dKlS2vXrtXR0Tl27FhHDAgJCdHS0rK0tPTx8SkoYNwEE61VVVVNnz4dwkrgLhGaVvPS0lKow+ZWgQbS9u3bVb5sBgYGoMEkyATOhDMCRIO7aZpoKPDUTjNNRWs9ZSqNfvstPjjHU9LY+FcEiK8S4XJzX0HBHSQgjgSEacxkMmnBIEaY6NTz9LoGmjCZjrYiAY4JcOQRjWPZJk2atHXr1l27dgUHB3PcC3tFiB2dO3fu0aNHe/fuff369ZAhQyCYQ1RatWqVs7MzdEjstprT6fTVq1cPGDDA2tq6aWVfX1/wl4iUnZ3dtAJqBIdAeU39lYgPYM9cFxPIeZ3G2ehBFzfxU61AARO/CBAxotjsEhqNzq8+sR8kgASQQEcJjLPV66osk19Wi8u0dhSlOB4vHGPmyCNqOpS+ffs+ePCgqZ5DzdSpU0ePHg0+jKen5507d5KSkm7dugXHgpcFbpKfnx/IHKalS5e+efPmwoULzdaXkZFRZtmarYNKASFwNfJDRW2DmabCQAsNPpg0xkaHRJJ4lVGcU1LNh+6wi/YR+NbqLBC0Hj58uIaGBolEiomJYW184cKFZmZmcnJympqaMLfy/v171lKm3NDQsH79ehMTE6hpamq6adMmGo3nc5/duirJSVHKaxvSCiuYlqCABJAAEhBwAtKS5HkDGJOVx0LTaDihI+BnC81rF4H2eETV1dUHDx7U1+fOUmA6OjpGRkbJyclgP7hDqampqqqqko0baCZOnOjm5gZCs2nZsmXgRD1+/JhbxjTbCypbJ9DhGnCFPR2eCc14OxvDPS4IvE46KnJOxmrQy83Yj5BjEkwCld9YnQX0Li4uO3bsaGq2g4NDQEBAQkLCvXv3IIbs4eFBpVKbVtu5c+eRI0f8/f2hJgS9d+/eDZe1ptW4q5GkkHvpqUCb0Vm4BjdgwIQEkIDQEJjuZKgkI5lcUPE48X9vOgiN9WgoEmiNAEceUZcuXdS+bCArKSmdOnUKbiBaa5yj8qKiouzsbPCLoPbatWsh4AMzvkQCzf79++HmBgS2BDc6EB2CeWJwomCWl60Ud4WOwJOkT+mFlUqykl723PG0OSEwzpbx4NwNfHCOE1idVGfkyJHNrs4ya9asDRs2DB06tKldCxYsGDRokLGxsb29PRwLl5eMjIym1cLDwyGCBMFqqDlp0iRwnCIiIppWq226OkvTSm3R4KtEbaGFdZFARwnk5OTMnDlTXV1dXl7e1taWuQgTTL2xpWbvamBOlq0aXDQImzZu3MhaxPnLz8ThQpcryUrN6GcEZh99kgY5JiQgYgQ48ojALWGmAwcO/PPPP5mZmWPHjm2VRUVFBdO3SU9PBzkrKwuUP/30E9yOwG1KSEiIp6enhobGhAkToDW4oFizbKAxNDRkOjzu7u4woQtKSEuWLDl79uz58+fBPctr3CByBXpMQkogIIxxzzrV0UBBRpJvQxhprS1FISXkliXnl/OtU+yIbwQgjgTzKXABMTBoZlWVAQMGPHz4MCkpCeyJjY199uzZqFGjQGZLXF+dxdZAFbrAxRUAAiYhICDkJn7+/BmCyVJSUnfu3ImPj9+7d6+qqioxpi+f/2D8HyZ5wbeZOHEiUcSaw8Qro0bjf2/fvqVQKJMnT2ZW6NmzZ2MJI4uLi2PqRVWY62IMfzRfZRRHZn4W1THiuMSWAEcekbe395wvG0zNjhgxAiJFnCCDOVe7xg0qr169GkSY1oULClw4YHbW0tISWoUcvCNwbKBOyyk1NbWwsJCoc/jw4dLSUpi8geASkS5dukQUYS50BFIKKkKTPpFIErxedJuNTBcF6UEWmqAMxgfngIIIpUOHDik2bnfv3r1//760tHTTwf3f//3f9OnTu3fvDndLcGlauXIl7DatxvXVWQiP6H1eeXVdM8/yNTUANUgACbSbwM6dO2FCBGZGnJycIBoM86pmZmZEazADy0w3btwYPHiwqSljOTWilJmrqakxq8HFBAJNrB6RpKQks1RTk/HXhHmgSApdlWUn2DGerTgWmiqCA8QhiTeBljyiN61traIDj4X+9RYYGCgnJ3fv3r2CgoK6urrMzEzQwAWr2abg0PHjxzOLIKYEQWpiF4rYkre3N1GEudARON0YIBrao6uBmjyfjSc+THQj5iP8nPjcNXbHOwIzZsyIjo5+8uSJhYXFlClTampqmvYFcyhEnDkqKur06dN79uyBvGk1rq/OoqMiq6UkQ6XR335kfDagaY+oQQJIgFsEgoODHR0dwYfR0tKCiY/jx483bTk/P//WrVvz5s1rWsSmOXny5LRp0xQU/vdxiOTkZF1dXQhEgz4trZlnybj+2C2bSfzfJZbh/jc+P/UTLg/Df/zYIw8JtOQR2drawhXE9hsbFPHQLt40ja0KIIHS6vqrUY2Lbjsb89+8YVZd5aQoWcVVsR/w9pT/+HnVo4qKCvhCgwYN+vvvv9+/fx8UFNS0pzVr1qxduxbuY3r16gWh71WrVm3fvr1pNa5rSCQSESaKwcUVuA4XG0QCXxMAL+Xw4cNwNYB52EWLFi1fvvzMmTNfV5GAqRAlJSUvLy82Pdvuq1ev3r59O3/+fKa+b9++0Bq0fPz48by8PGdn56KiImYpIcBVBS5HRPrW5C9RU1hycy0lmL6k0yVOPG3GAxSWUaCdSKApgZY8ovT0dLiapH9jg6KmzaEGCbSVwJWI7Ko6areuSv3N1Nt6bMfry0tLevTsCu2I3jcWYFCYgABE/2CaFgS2VFVVRSb/7wJIoVBovF99m7ABF1cgOGCOBHhNAP5R29vbb9u2DeZwFy5c6OPjAw4SW6enTp2CqLKsrCybnm0XAkTW1tZOTk5M/ciRIydOnAhTKkOHDoUoE+jBuYKcNXH9sVvWxjtLXuTKeLzwamROQXkz4ffOsgr7RQIdJPC/G4KmDRm1tjU9BDVIoE0EqDT66XDGmgreLnxadLupeWNtdEF5MzYXjAEBk0ARqGhudRawsLi4OCYmJj4+HuTExESQYY4WZJipgUnZyMjIrKys8PDwKVOmyMnJMZdMcGdZncXT03Pr1q1wH5ORkQFBpH379hHru0AjvE7/xYiyS3jdkfi0jyNFAs0S0NHRsbKyYhb16NEDrgzMXRCePn0KFxDWyA8omyaYQLl48WIL1RQUFMA1Sk5mfEeE9XCuP3bL2nhnyY7Gag5GXeqotMDnjD/fnWUG9osEuEugJY+IrSe4+bh7924wy8ZWAXeRQFsJPEzIzy6uVpWXGt+4EHZbD+dK/YEWmmBAYUVteCr7Aw9caR8b6QiBZldngQbhOgSTvsQyuNOmTQP5yJEjoIeJXrjFGTVqlLm5ObhDcJsSFhampaUFRZBYV2c5ePDgpEmTFi9eDDdJP/30E8wfb968GerwIfXSUyGRJHJKqnGGlQ+0sQtxJuDi4gIOD5NAUlISzPQyd0GAyI+Dg4ONjQ3ILaTLly9DqHnmzJnfqgOlCQkJ4IB9qwIX9YLQ1MJBjDDR2ReZFbUNgmAP2oAEOk6AI48Ipl3hegHxYrj/GN+4wWQqpI53jy2IOYHAxjUVpvUxlJOmdBYKaUnyqF460HtwbA7kmASKgJubG/3rLTAwECz09vb+Wk0nll3R1dW9fft2fn5+XV1ddnb2uXPnunXrBvWJBOEgohrsKikp+fn5ZWZmVldXg6e0ZcuWZpekg5pcT0qyUhZaitAsvkoEEDAhAd4RWLVq1YsXL7Zt25aSknL+/Pljx44tWbKE2V1ZWdmVK1eaRn5mz57t6+vLrAYCOE5w76Ou/tWj3TCT8uTJk/T09JcvX8L0CrQ2Z84cqCwOaWiPrqaaCmU1DRdfZYnDeHGMnUWAn/1y5BGtWLHCxMQEbjLk5eXfvXsXGhrq6OgYEhLCT0OxL9Ej8D6vLCy1iEImzepv1LmjIx6cu/M2r6YeF0Tu3FMhLr3jg3PicqZxnJ1KoE+fPkFBQRcuXIApXQgCwyTIjBkzmBZdvHgRJlaaLruflZWVm5vLrAaRpWfPnjVdjO7Dhw9wLMy5eHl5wXwKuF5sAShmC6InkMkkIkx08ll6PZUmegPEEYkhAY48ovDw8E2bNmlqapIbtwEDBmzfvn358uViyAuHzEUCjYtuSwzv2VVPVY6LzbajKSdjNW1l2erFCYMAABAASURBVPKahpDET+04HA9BAm0lYGvQBQ6JwVeJgAImJMBLAmPGjImLi6upqUlISPDx8WHtasGCBVVVVSoqKqxKkGHCl4hFgwzJ0tISHKdhw4aBzJrAofr48SOEo3Nycq5evcr6whJrNVGVx9vpaSrJ5JbW3Iz9KKpjxHGJFQGOPCIqlaqoyHjGQ0NDA/79AyCYCElMTAQBExJoH4HPlXVB0Yyn1LydTdrXAhePguku4sNEeGXnIlVsqgmB/ylsDVRh582HUhqNDgImJIAEkIBwEZCRpMx1YXwz4+iTNPAYhct4tBYJNCXAkUcE4eY3b97AwX379t21a9fz588hZGRqynivDpSYkEA7CFx8nV1TT+upq9zHmDFZ3o4WuHsI8eDcg4T88pp67raMrSGBpgQsuyrKSVEqahtS8SuHTemgRhQI4BhEn8CMvkYK0pTE/PKQJHy8QvRPt8iPkCOPaP369bTGL3Vs2bIlMzNz4MCBt2/fPnDggMjTwQHyiEADlfYXsei2szGJROJRL21qFnwzU02F2gbav+/y23QgVkYC7SAgSSH30mc8qxOND861Ax8eggSQgAAQUJGT+q6vIRhy9Ekq5GKccOiiQKAVj8jW1tbf39/JycnLywuGC3Gh+Pj4wsLCgoKCIUOGgAYTEmgHgX/j8z+W1qgrSHs2fguoHS1w/RASiTTORg+avYGPRAMFTLwnYNf44By+SsR70tgDEkACvCLw/QATSTLpRVoxXsp4hRjb5ReBVjyivn37QoBIV1f3u+++e/jwIWGVmpoa3D4SsrjkOE6uEiA+6wZzS7JSnbbodtMBEa8SPU8pLKyobVqKGiTAXQLEq0S4ADd3qWJrSAAJ8JOAjorcuMbPCR4LxTARP8FjX9wn0IpHdPTo0by8vGPHjkHu4eFhbGy8adOmrCxcfp77Z0J8WnybU/oqoxhmlWb2MxKoUZtoKNjoq1Bp9Ntx/1t3VaAs5JMx2A1fCNgaMhZXSMwvr67DNd/5Qhw7QQJIgAcEFjR+rfXO27yMwkoeNI9NIgE+EWjFIwIrZGVlZ82a9ejRo5SUFBBOnjxpamo6fPjwy5cvQykmJNBWAsRXWUf10umqLNvWY3ldn3iK70YMriXKa9LYvgTMrXZVlgEPPC6nFHF0GgHsGAkggY4R6KatNKS7Fp0uceJZWsdawqORQGcSaN0jYlpnYmKyefPmjIyMixcvRkRETJ8+nVmEAhLgkEBhRW1wo7/h3bhqJ4dH8a0aeEQkkkRk5ufs4iq+dYodiS2B/x6cy/4stgRw4EgACfCPAM96WtgYJroS8QH+xPOsE2wYCfCWQBs8IjDk8ePHc+bM8fb2plKpbF86g1JMSKBVAhdfZdVRaTb6KnaNr5W3Wp/PFSBs1d9UHTq9+QbDRIABE28J2OJ3WnkLGFtHAkiAHwScTNRsDFRrG2hnwjL40R/2gQRaJdD2Chx5RFlZWZs2bTI1NXV3d8/MzDx06FBubu6RI0fa3h0eIdYE6qm0v15kAoK5LiYkkkAsug3GsCXiw0REIIutCHeRAHcJ2DbOC+DiCtyliq0hASTAZwIkEmlRY5jodHhmZW0Dn3vH7pAAVwi04hGdP39+2LBh4AsdPXp06tSpSUlJT548mT17tpycHFe6x0bEisCdt3n5ZbWaSjKjeul0fOA8amGktY4UhfQ+rzwxr5xHXWCzSIAg0FtfhUyS+FhaU1BWQ2gwRwJIAAkIIwGPntrG6vKl1fWXI7KF0X60GQm04hF5e3srKipev349Ozt7+/bt5ubmiAwJtJtAwPN0OHZGX0NpyVZ+eFCts5KKvJRbNy3oPTg2B3JMSIB3BBRkJC20lKD9Vr/TCnUwIQEkgAQElgCFTPJpDBOdeJpeT6UJrJ1oGBL4FoFWbkw/fPgQFBQ0ZswYMrmVmt/qAPVIgCAQk10SnVUC4ZcZfQVr0W3CPNZ8nK0u7N6I+Uin00HAhAR4R+C/B+eyS3jXBbaMBISLAForpAQm2utrKErnlFTjFyyE9AyKudmt+DlaWozJcjFnhMPnCoHTjS9cevbW1VSS4UqDvGvEvXtXBWnKh8/VUVl4n8o7zNgygwDxVSJ8lYjBAv9DAkhAmAnISlG8nY1hBEeepOF8InDgJGEdwSHQikfUQUNDQ0M9PT11dXVJJNL169eZrXl7e4OGmfr168csIgT4tzRy5EiowHoUUcTMDx06ZGJiIisr6+Dg8PTpU6YeBQEkUFBW888bxuptc11MBNA8NpPkpCkePbVBGRyDD84BBkw8JEDEiN58KKHSMCDJQ87YNBJAAnwgMLOfkbw0JSG37GlyIR+6wy6QABcJ8NYjqqystLGx8ff3b2rxiBEjcr9st2/fZqvg5+cH7hCbknX30qVLK1euXLduXXR09MCBA8F9ysrKYq0gMDIawiBw7mVWPZXuYNSll74KY1/g/xvb+ODcrbjcBnweWuBPllAbaNlVCW4gKuuoKQUVQj0QNB4JIAEkoCovPa2PIXA4GpoKOSYkIEQEeOsRgaOyZcsWLy+vpkRkZGS0v2xqamqsFWJjY/ft23fq1ClWJZsMFebNmzd//vwePXqA+2RgYHD48GG2OrBbW1tbxrKBBhP/CdQ2UM+9ZCy6TcTT+W9AO3ocYK6hpiBdWFEXllrUjsPF9RAcd5sJUMikXnqMaYJYfJWozfDwACSABASOwLyBJnBZe55S9DanVOCMQ4OQwLcJcOQRmZqaFhV9dV9YUlICym8323pJSEiIlpaWpaWlj49PQUEB84Cqqqrp06dDWAncJaaSTairq4uMjPTw8GDqQQ4LC2PuMoXt27erfNnAa2LqUeAngVtvcsG10FaWHWHNeBSNn123uy8pCnlUL4a1N2IYD/u1ux08EAm0SoB4lQiXm2sVlIBVQHOQABJohoCeqhzxWb+joWnNFKMKCQgqAY48ooyMDCqVyjoEiL3k5LT/FQuIHZ07d+7Ro0d79+59/fr1kCFDoEGi/VWrVjk7O48bN47YbTYvLCwEe7p27cosBTkvL4+5yxR8fX1Lv2zZ2dlMPQp8I0Cn0wOeZ0B3s/obgZsBgrCkcbZ6YOq9d3k19V/9+EGJCQlwkYAd8Z3WbFzGg4tQsSkkgAS4SKBtTfkMNIUDbr35mF1cBQImJCAUBFrxiIIbNxjJvXv3GkVGFhQUtHnzZmNjY9C3L02dOnX06NHW1taenp537txJSkq6desWNAWtg5vk5+cHcquJRCIx68BtN4n0v12mXkZGRpllY+pR4BuBqKzPcTml0pLk6U6MZ4v51m/HO3Iw7AJzXRW1DY/f/y+G2fFmsQUkwEbA1qALaBLzyqrqGkDAhASQABIQagJWusqDLDVpdIkTTzFMJNRnUryM/+IRfWPU4xs3Eok0Z86cRpGRTZs27f79+xDe+cZBbVPr6OgYGRklJyfDYeAOpaamqqqqSjZuoJk4caKbmxsIrElDQ4NCobAGhQoKCiBMxFoHZQEhENAYIBpvq6umIC0gJnFoBplMGmOjA5XxwTmAgIl3BLRVZLWVZeHuIe4DPnbPO8zYMhJAAvwjsGgQI0x0KSK7uLKOf71iT0igAwRa8YhojZuhoSG4HI0iI6utrU1MTBwzZkwH+v3foUVFRdnZ2eAXgWrt2rVv3ryJ+bKBZv/+/QEBASCwJmlpaQcHB/DKmEqQnZ2dmbsoCAiB3NLqO28ZTzN6OwvSotsc0xlnw3hw7lFiQVlNPccHYUUk0GYCtvjgXJuZ4QFIAAkILoH+Zuq99FRq6mlnwhmPzQuuoWgZEvhCoBWPiKiWnp4OYRlCblNeUVFBeDdwFDQCclZWFih/+umn8PDwjIyMkJAQT09PaHzChAlQR1tb25plAw04YyYm/91Mu7u7+39ZyHv16tUnTpw4depUQkLCqlWroNlFixZBfUwCReDsi0wqjd7XRA1i6AJlGIfG9NBRstBSrGug3XvL8Os4PAqrIYG2EiAWV4jhxatEbTUF6yMBJIAEOkyARCItdGWEiU6HZVTX4bu4HQaKDfCeAEceEZjx8OHDX375Zf78+d+zbKBvOUVERNg1blANfBgQN2zYQKFQ4uLixo0bZ2lpOWfOHMjBO1JSUoI6LafU1NTCwv+++TV16lQ/P79NmzbZ2tqGhobevn3byMio5cOxlM8Eauqp518yPhI116X9r5zx2Wa27uCaPq7xw0TBsR/ZinAXCXCRAMaIuAgTmxJfAs2NPCcnZ+bMmerq6vLy8nDDEBkZSdSCyztb2r17N1HEmgcGBrJVq6mpYVY4dOgQTNrKyso6ODg8ffqUqUcBCIzoqW2oJv+5qv5KZDbsYkICAk6AI4/o999/9/DwAKcIHJLPLFurY3Nzc6N/vcHFRU5O7t69ewUFBXV1dZmZmaD51rrYcOj48eOZvUBMaePGjczdxYsXg6a2thYucIMGDWLqURAQAsExH+FSqKcqN7TH/1YFFBDbODfD00YXKj9PKSwo/99fQdBgQgJcJNBLT4VMksgtrckvw58ZF7liU+JOAG5YXFxcpKSk7ty5Ex8fv3fvXlVVVQJKLst26tQpcHsmTpxIFLHlysrKLHVzwf8hKly6dGnlypXr1q2Ljo4eOHDgyJEjs7IYk4BEKeaSFLLPQMYzPsefpjXgt865/oPABrlNgCOP6MiRI+C3vHz58vr160EsG7eNwfZEhwB4swFhjKeHZ/c3gsui8A7MSF0B5u9pdInbb3KFdxRouYATUJCRtOzKiJNHZ5UIuKloHhIQIgI7d+6EKdeAgAAnJydjY2N3d3czMzPCfm2W7caNG4MHD/7WVxbBWWKpq00cDvm+ffvmzZs3f/78Hj16+Pn5QUeHDx8GPWuCSdsylo21SBzkSQ4GagrS2cXVxBvF4jBkHKPwEuDII4JgDq5bwP9zLNQ9vkovTsgtk5UiT+1jINQDAeOJB+du4INzwAITzwjYGTKmrvFVIp4BxobFkUBwcLCjo+PkyZO1tLTs7OyOHz/elEJ+fv6tW7fAt2laRGgqKiqMjIz09fXHjBkD4SBCCfdFkZGRHh4exC7kIIeFhYHAmrZv367yZQOXibVIHGQ5acqc/ozH5o+FptHpdHEYMo5ReAlw5BHBFMj58+eFd5BoOf8JBDQuuu1lr68qL2SLbjdlNbq3DpkkAZP3WUX4sbmmeLijwVZs9AmP6DOiQAJIgFsE0tLSIG5jYWFx7969RYsWLV++/MyZM2yNnz59WklJycvLi01P7Hbv3j0wMBA8qwsXLsjKyrq4uBAfCyksLKRSqayf/QCZ9aMgxOG+vr6lX7bsbHF8nWZWfyOYG43LKQ1PLSKYYI4EBJMARx5RTU0NRIddXV2XLVu2mmUTzCGhVZ1O4MPnqn/j88AMb2fG5BAIQp20lGSdzTRgCMGxOZBjQgK8IEAsNxf3oZRKw5lUXgAWoDbRFL4RoNFo9vb227ZtgwDRwoULfXx8wEFi6/3UqVMzZsw1C7r0AAAQAElEQVQAb4dNT+z269dv5syZNjY2AwcOvHz5sqWl5cGDB4kiyEkkEuREghgIifS/XUIpIyOjzLIRSrHK1RSkpzoyHhU5EpomVgPHwQodAY48ojdv3tja2pLJ5Ldv30LImEgxMTFCN1o0mD8E/grPhJu6AeYaxKsR/OmUp72MbVxx7kbMR/ibx9OOsHGxJWChpaQgTamsoyYXlIstBBw4EuAuAR0dHSsrK2abPXr0YFv84OnTp4mJifPnz2fWaUGAu6A+ffoQMSIN/FJ8C6RYikCcP9CUTJIITfoU/7EMdjEhAcEkwJFH9Li57dGjR4I5JLSqcwlU1TVceJUFNohGgAgGAmmEtba0JDm5oOJ9Ht6tAg9M3CdAIZN66atAuzFZJZBjQgJIoOMEXFxcwOFhtpOUlGRkZMTcBeHkyZMODg4QAgK51QQzYjAXDF4W1JSWloYD79+/DzKRQMY3rgkUbLmBmvzo3oxVW4+FprIV4S4SEBwCHHlELZqLhUjgKwLXoz+W1TQYqskP7q71VYEw7yjLSg3upgkjgDAR5JiQAC8I2Bp0gWZxcQWAgAkJcIXAqlWrXrx4sW3btpSUlPPnzx87dmzJkiXMlsvKyq5cudI0QDR79mxfX1+i2u+//37v3r20tDTwhebNmwf5okWLiKLVq1efOHHi1KlTCQkJ0BFEn5hFRAXMmQQWDmJ8rfXmm9wPn/F1XCYVFASLAKce0evXr3/++edp06Z5sWyCNRS0RgAIwBRaYFg6GDLH2RjmvEEQmTTOVk9CQuJm7EcaDV/zEJmzKlgDsTUgFlfAGJFgnRe0RngJ9OnTJygo6MKFC9bW1ps3b/bz85sxYwZzOBcvXoS/WdOnT2dqCAF8m9zc/z63UFJSsmDBgh49enh4eOTk5ISGhjo5ORHVpk6dCg1u2rTJ1tYW9Ldv32YLQBHVMAcC1noqA8w1qDT6yWeMOwTQYEICgkaAI48IrhoQeo6Pj4crS319PQiPHj1SUWE84CFo40F7OpdAWGpRUn6FvDRlsqN+51rC9d6HdNdSlJHMKamOysLVwLhOFxtkECAW4E7KL6+sbWDsd/J/2D0SEAUCY8aMiYuLq6mpgUiOj48P65DA1amqqmp6MxMSEhIYGEjU3L9/f2ZmZm1tbUFBAQSL+vfvT+iJfPHixRkZGVAaGRk5aNAgQol5swQWujLCRBdfZX+urGu2AiqRQOcS4MgjgogzXBT++ecfaWnpP/74Ay4rU6ZMMTQ07FzTsXcBJBDwnDH9M8lBX1lWSgDN64hJslKU4T0Z3+bDB+c6ghGPbYFAV2VZHRVZiEHG5ZS2UA2LkAAS4DYBbI/nBCBGZKWjXF1PPfsik+edYQdIoO0EOPKIUlNTR48eDY3LyMhUVlaSSKRVq1YdO3YMNJiQAJNAZlHlw/cFsDtHJBbdhoGwJWLFuVtxufVUGlsR7iIBrhDAB+e4ghEbQQJIQNAIwK0jESYKDMuoqacKmnniZA+OtXkCHHlEampq5eWMJbb09PTevn0LLZWUlECsGQRMSIBJ4Ex4Jp0u4WqpaaapyFSKkuBipq6uIF1cWfc8pVCUxoVjERwC/3lEuNyc4JwStAQJIAEuERjdS0dPVa6osu5q1AcuNYnNIAGuEeDIIxo4cOD9xiUmp0yZsmLFCh8fn+nTp7u7u3PNCmyIuwQ6o7WK2obLr7Oh57kuxpCLZJKkkMf01oGhBcd8hBwTEuA6gf88ouwSrreMDSIBJIAEOpcA/A2dP9AEbDgemkal4RpFQAKTABHgyCPy9/efNm0aWO3r6/vTTz/l5+d7eXmdPHkSNJiQAEHgWtSH8toGUw2FQRaMVaoJpejlYxtXnLv3Lq+6DoP+gnF6RcuKXvoqFDIpr6wmr7RGtEaGo0ECSAAJSEztY6AqL5VRVPXvuzzEgQQEigBHHpGampquri7YTSaTf/755+Dg4H379nXpwvh0BigxIQEajR74PAM4zHE2JpNJIIhqsjdU1e8iV1lHffg+X1THiOPqRALy0pKWXZXAgJhsXNIQMGD6mgDuIQEhJwCXuNn9jGAQR56k0ukYJgISmASFAEceEYVCKShgvDHPtLqoqAiUzF0UxJxAaPKntMJKJRnJiQ6itug225klkUhjbRizA/jgHBsZHu2GhoZ6enrCjAyQv379OrOXa9euDR8+XENDA/QxMTFMPQgLFy40MzOTk5PT1NQcN27c+/fvQdlsysnJmTlzprq6ury8vK2tbWRkZLPV+KwkHpyLxgfn+Mwdu0MCSIAvBGY7G8tIkmM/lL5ML26pQyxDAvwlwJFH1NSPr62tlZaW5q+p2JvgEggMYwSIJjsaKMpICq6VXLJsXOODcyGJn0qr6rnUJDbzTQKVlZU2Njb+/v5sNUDv4uKyY8cONj3sOjg4BAQEJCQk3Lt3D65dHh4eVGozjzh+/vwZWpCSkrpz5058fPzevXtVVVXh8E5PdsR3WnFxhU4/E2gAEkACPCCgoSgz2ZExeXr0SSoPmscmkUA7CbTiER1o3GAW9sSJE40iI9u/f/+SJUu6d+/ezj6/HIb/Fw0CqZ8qwD0gkSTmODNC4aIxqBZG0U1bqVtXpToq7e673BaqYRFXCIwcOXLLli1eXl5src2aNWvDhg1Dhw5l08PuggULBg0aZGxsbG9vD8dmZ2dnZGSAni3t3LnTwMAAfCcnJyeo7O7uDpEltjqwC7M/ZSwbaHidbBo9oricUnzzmNeosX2+Eaiua6hroBVV1EJeVdfAt36xI8EkMH+AKZkk8Tjx0/u8MsG0EK0SQwKteETg/ECCedYjR46AQCSQq6qqIBdDXjjkpgTONAaI3LtrGakrNC0VSc1Y28YH52LbsOKcSHIQ8EFBHAkcHhMTE/B8mpoaHBzs6Og4efJkLS0tOzu748ePN60Dmu3bt6t82ZptB+pwN5lrKSpIU6rqqEn5jG8ecLdxbA0J8J9AbT31yJM0x633HbY8gPzokzTQ8N8M7FFwCBhrKIy0Zizceiw0TXCsQkvEnEArHlF64+bq6hobG9soMrLExMR79+717dtXzNnh8IFAWU3935GMDwt4OzOW1ASNOCTiVaKw1KKCMlwQTBBP+KFDhxQbt7t3796/f7/ZR3zT0tIOHz5sYWEBV7NFixYtX778zJkzTQfj6+tb+mWDcFPTClzXUMik3vqM5/dihPZVIq4zwQaFl0B1XcOhkNQ/HiaXVTNCQ5CDDJoqjBQJ70nlhuULBplCM8ExHz+WVIOACQl0OoFWPCLCvsePHzNXlqNSqTExMZ8/4zpIBBtxz69EfKiso1poKbqYq4sPCwM1eQejLnS6xM03+OCcIJ72GTNmREdHP3nyBByeKVOm1NTUNLWSRqPZ29tv27YNAkQLFy708fEBB6lpNRkZGWWWrWkFXmhsDRs9InyViBdwsU3+EqCQyQFh6Wx9gkaSzNHtB9uBAriLJrWPgI2Ban9T9QYa/dQz9p9H+xrEo5BABwlwdElauXIl8fUhcIcGDRoEtxEGBgYhISGt9v2tdaK8vb1JLFu/fv2YTcGtiRkH60Q1NDSsX7/exMRETk7O1NR006ZNcH/DbAQF/hCg0uinGx+Z83YxhvPJn04FpBciTBQckyMg9qAZrARUVFTAF4KL1d9///3+/fugoCDWUkLW0dGxsrIiZMh79OiRlZUFgiAk28ZXiTBGJAjnAm3oIIHymnqIC7E1AhrQsylxV9wILHBlhIkuvMoqrcZlioTj5Iu2lRx5RFeuXLGxsQEQN2/ezMjIgDsM8JHWrVsHmpZT5TfWiYKjRowYkftlu337NmiIxOE6UTt37jxy5Ii/v39CQsKuXbt279598OBBogXM+Ubg8fuCrOIqFTmpCXZ6fOtUQDoa1UuHQibFfijNKKwUEJPQjGYJ0On02trapkUuLi6JiYlMfVJSkpGRoCwNQiw3l1RQXlHLeNCIaSQKSEDoCCjJSinLsa9BChrQC91Y0GDuEnCz1OzWVamyjnruZSZ3W8bWkEA7CHDkERUVFWlra0Pr4LpMnjzZ0tJy3rx5cXFxoGk5fWudKDhKRkYG2iSSmpoaaIjE4TpR4eHh48aNGz16tLGx8aRJkzw8PCIiIogWMO8AgbYdSiy6Pa2Pgbw0+x+8tjUkhLU1lWRczDXA8OBYXF8BMPAqVVRUxDRu0EF6ejqIRCSnuLgY5Pj4eNCDYwNyXl4eyGlpadu3b4+MjIRqcJWYMmWKnJzcqFGjoAiSu7s7TKOAAGnVqlUvXrzYtm1bSkrK+fPnjx07tmTJEtALQtJSltVVkaXTJd58KBEEe9AGJNBuAmXV9XP6G7MdPtfZpIFGY1PirrgRIJFICxvDRAHPM2rqm/lGgrgBwfF2LgGOPKKuXbvCnQeVSr179y6x3G1VVVUHv9AaEhKipaUFzpWPjw/b518JIhBfamGdqAEDBjx8+BCmdaFybGzss2fPmDc9oGEmmBtmWTgXF3lkguGCkJxf/iylkEySmNVfUGbWuTCqtjQxrvFTrddjciAK0ZbjsG4bCMBMh13jBsesXr0axA0bNoAcHBwMMsyJgDxt2jSQIWgMsqys7NOnT+FqYG5uDu6QgoJCWFgYXGqgCFJqamphYSEIkPr06RMUFHThwgVra+vNmzf7+fnNmDED9AKSiFeJYrNLBcQeNAMJtINAcWXdikvR3s7Gy4eYQ1wIWoB8hbvFYjczMZxHg+FjYiPgaaMLsz+fymuvR+Mj6GxscJffBDjyiObOnQv3FnDfAA79sGHDwMaXL1925HtEEDs6d+7co0eP9u7d+/r16yFDhoDrAs0SiZN1ov7v//5v+vTpYIOUlBTcDK1cuRJ2icNZc5gtVvmyGRgYsBah3EECAY1vEHlYaet3ke9gU0J6uEfPrjKS5LRPle8+ir6zXd1JnxNxc3MDh5M1BQYGwg/G29ubVQnyxo0bQa+rqwuh7Pz8/Lq6uuzsbLjOdOvWDfREysjIIKoRu2PGjIFYd01NTUJCAkzNEEoByb+8SoRr2AjICRF2MzrB/noq7Yezkc9TilZdipk/0DRi3bDI9UMhh7CAjBSlEwzCLgWPgBSF/P0AxkK1x0LTaDS64BmIFokRAY48IriHOHHixIIFC54/fy4jIwN4IEC0du1aENqXpk6dCpO74GJ5enreuXMHQj23bt1iNgUzta2uE3Xp0qWzZ8+eP38+Kirq9OnTe/bsgZzZAlPg/8q5zK5FWyitqr8W9QHG6O3C/jgEKMUkKclKuffQgsHeFPUH52rxcyJwmvmbbA26QIe4uAJAwCSkBH6/+e5lerGijOSvY6yU5aSkJcnqijKQY3RISE8oj8ye5mSoLCuZVlh5PyGfS11gM0igPQQ48oig4UmTJq1atUpfXx9kSHPmzBk3bhwIHU86OjpGRkbJycnMpiCo0+o6UWvWrAGXbNq0ab169Zo1axbYBuEgZgtMAfw3loVzlZl6FDpI4OLrYL9oNwAAEABJREFUrJp6Wg8d5b4m/3sHrINtCuPhY20YS0oEx34U4cktiA4dws+J8P3X2UtPhUIm5ZfV5pbixzr4Th877DCBv15knn2RRSJJ/DHN1qKrUofbwwZElgD4zMSz90eepEK0X2THiQMTeAKcekQPHz785Zdf5s+f/z3LxpXRFRUVZWdng1/UbGvwz4P1gbr/6khIVFVVkVm+ZgAxKxq+psmkw2OhgUo7E85YGWaus9gtus2G1q2bppKMZG5pzeuMYrYikdml4OdEOuNcyklTujXeR8ZklXRG/9gnEmg/gbDUwt+D38HxPw/v7t6jKwiYkEALBOY4G0PwMDqrJCITnxNugRMW8ZYARx7R77//7uHhAU5RYWHhZ5atVdOaXScKlD/99FN4eHhGRkZISIinp6eGhsaECROgNc7XiYKjtm7deuvWLWgkKCho3759RAvQCCZeE3iQUJBTUt1FXmqsrS6v+xLw9mWlKCOsGcswBvPuwbnORlCGnxPppFNALK6AD851En7stp0EsoqqlpyLaqDRx9nqLmpcSaydDeFhYkNAS0l2oj3jEaSjT1LFZtA4UIEjwJFHdOTIkcDAwJcvX16/fh3cD2ZqdTTNrhMF8Zy4uLhx48ZZWlrOmTMHcvCOlJQYUXVZjteJOnjw4KRJkxYvXtyjRw/wrxYuXLh58+ZW7cEKXCEQ8Jzxhenv+hqCP8CVBoW6kXG2jAfnbsXl1jWI4GKyxRW1CtKSynLsq6uDRklWSqhPnOAbb2ugCkZGZ5dALi4JxynkBCpqG3zORHyuqrfRV9k5sTeJRBLyAaH5fCLgM9AEfiww35qcX86nLrEbJPA1AY48orq6Omdn568P5Giv2XWi5OTk7t27V1BQAM1mZmYGBgYyV4HjfJ0o8KD8/Pzg8Orq6tTU1C1btkhLS3NkE1bqGIH4j2Uv04spZNLMfkYda0lEju5vpq6hKFNSVf8s5ZOIDOnLMCASOOloOIwLPyfyBQlf/098pzXuQ2kDVQSdbb6ixM74QoBGo6+6FJOYX66lJHN0lqOATJnl5OTMnDlTXV1dXl7e1tY2MjKSgEFqsu3evZsoYs2PHz8+cODALo3b0KFDX716xSzduHEjaxvajZ9tZJa2LmANFgKmmooeVowHLI+FprGoUUQC/CPAkUc0f/788+fP888o7EmACQSGMQJEI6y1dVTkBNhM/pkGzuGY3jrQ342Yj5CLTIKJuomHwtI+VZ56lr7YzXyFuwXEhWB0kIO8GD8nAix4nMw0FRVlJKvrqUn5FTzuCptHAlwgsO9+0v34fGlJ8tFZDtoqslxoscNNfP782cXFRUpK6s6dO/Hx8Xv37lVVVSVazWXZTp06Bb7NxIkTiSLWPCQkZPr06Y8fPw4PDzc0NPTw8AAXi1mhZ8+ezGbi4uKYehTaQWChqxkcdT0mJ7+sBgRMIkVAGAbDkUdUU1Ozb98+V1fXZcuWrWbZhGGAaCM3CRRX1l1vvO//XowX3W4KdFzj+1RwK1BV19C0VBg1UVmfJx8NzyurMddS3DfVVk6astAVPyfC7zNJJpN666tAr/gqEUDAJOAEbsZ+9H+cAkbu8OplZ8hYOx7kTk87d+40MDAICAhwcnIyNjZ2d3c3M2PcdoNhENJhphs3bgwePNjU1BT0bOncuXOLFy+G4FL37t0hXkSj0R4+fMisIykpyWxEU1OTqWcKtbW1ZSwbU49CUwL2hl2cjNXqqfRTjU/mN62AGiTAUwIceURv3ryBywGZTH779m30ly0mJoanlmHjAkjgwqusugZaLz0VuHKxmSfOu7YGqoZq8lV11AcJBSLA4UnSpxnHX5ZU1cO4rizsTwQD5aUlYeoXPyfC5/MLpwB6jMnG9ZcAAybBJRD3oXTN37Fg38JBpl6Nr8iDLAgpODjY0dFx8uTJWlpadnZ24NI0tSo/P//WrVvz5s1rWsSmqaqqqq+vV1NTY+qTk5N1dXVNTEymTZuWltbM417bt29X+bKBb8Y8EIVmCcDUG+jPv8gqq6kHARMS4CcBjjwiiBc3TY8ePeKnodhXpxOop9L+IhbddhH3RbfZzgWJRCLCRMExOWxFQrcbHPtx/unX1fXUgRYa5+b37aKAr+c1cw75pvriEZXwrUfsCAm0lUBBec2CvyJq6mmDu2n+PKJ7Ww/naX3wUg4fPmxhYXHv3r1FixYtX778zJkzbD2ePn1aSUnJy8uLTd90d+3atXp6ekOHDiWK+vbtC61By8ePH8/Ly3N2di4qKiKKmLmvr2/ply07O5upR6FZAoO7aVloKZbXNlx4mdVsBVQiAd4R4MgjYnb/4cMH1idomXoUxIHAvXd5eWU1GorSoxtfmxGHIXM+xrE2jIXIIbpSUlXH+VGCVvNMeMaKi9H1VLqnje7JOX0UZNiXmBM0g0XeHmIB7uSCinKcMRX5ky2oA2zZrtoG6qK/InNLa8w0Ff6Ybkchk1quz+dSGo1mb2+/bds2CBAtXLjQx8cHHCQ2G06dOjVjxgxZ2VZefNq1a9eFCxeuXbvGrDly5MiJEyf26tULfCSIMkGz4FxBzppkZGSUWTbWIpSbEiCTSQsGMZ5dPPU8HX5aTSugBgnwjgBHHhFcUzZt2gSBXyMjI0NDQ1VV1c2bN4OSd2ZhywJIIOB5Blj1XV8jGUkKCJhYCVh0Veqhowy+xJ23eax6YZHpdPr++0kbbryj0yVm9zf6Y6qttCRHFwdhGaCQ2qmlJKunKgcnJe5DqZAOAc0WYQJw3VgX9DYqq0RZVvLEnD7Kgrciv46OjpWVFfMU9OjRIyvrq+DD06dPExMT58+fz6zTrLBnzx5wq/7999/evXs3W0FBQQFco+Tk5GZLUck5gXG2el2VZfLLau92xh9Tzu3EmnwmUF3XUNdAK6qohbyKN+9sc3TTs27dOn9//x07dkRHR0dFRcF14eDBg7/++iufcWB3nUjgzYeSyMzPUhTSzL6GnWiGIHc9rnF9hRtC+OAclUYHX+iPh4y/5SuHWvw+tidM1AkyarGyjXhwDr9KJFYnXVgGe/JZ+t+RH8gkiT9n2JtoKAig2S4uLuDwMA1LSkoyMjJi7oJw8uRJBwcHGxsbkL+Vdu/eDbPAd+/edXR0/Fad2trahIQEcMC+VQH1HBKAybgfh1ken+3gYaVdyMvbXw7twWqCQKC2nnrkSZrj1vsOWx5AfvRJGmi4bhhHHhEEgk+cOPHDDz/A7AhcOBYvXnz8+PHAwECuW8P7BrGHdhIIDGMEiEb30tFSbuXRgnZ2IPyHeTY+OPcyvTivVJhWDoXplhUXo/96kUkiSWwe13PlUEsSSbCeexH+n0aHRkB4RLjcXIcg4sE8IPAk6dO22wnQ8PrRVgMtmllmDYo6Pa1aterFixcwjZuSknL+/Pljx44tWbKEaVVZWdmVK1eaBohmz57t6+tLVNu1a9f69etPnTplbGyc17hVVPy3Gv5PP/305MmT9PT0ly9fTpo0CVqbM2cOcRTmHSEw1lbvzYfSvtsfOPLy9rcjFuKx/CQA0aFDIakwaVtWzVjOF3KQQcP1SBFHHlFxcXH37l+9Lgm7oOQnEeyrEwl8Kq/9JzYXDJjrYgI5pmYJ6KnK9THuQqdL/PNGQD5M1KyZXykraxvmnX79z5tciP4dmGY3q7/xV8W4IwAEiFeJwCOiw29LAOxBE5AAEEj7VLH0fBSNLjHFUX+ui+BeN/r06RMUFHThwgVra2uI8/j5+c2YMQPsJ9LFixfhn9X06dOJXWaelZWVm8v4kweaQ4cO1dXVgcMD8R8i7dmzB/SQPnz4AMd269bNy8tLWloaXC+2ABTUwdRWAnD7ezgk9eCjFLjxhWMh59HtLzSOSSgIUMjkgMYvYbJaCxpJMkcuDOtRLcscNQdxIX9/f9aGYBeUrBqURZjA+ZdZdVSanaGqjcF/37YT4cF2ZGgwswWH34gRDo+ouLLuuxMvnyYXyktTTs7pQ8S4wH5MAkXAWleFQibBrMT/s3cecE0kXQA3BUIH6aAI0qQpIKg0FcWuiF05G/ZeT+/EdnbsYseOvdezKwiIIgoqoiAdQaQISu8k34M988XQYQNJePsbx9k3szNv/stu5s3bnU0WKN8jXzFEZcglkFVQMv1MUE5hqaVm643DTCgUvvYqDxkyJDQ0tLCwMDw8fMaMGZwoZs6cmZ+fLytb/tUvTrmPjw/7KZj4+HiwmjjDunXriMJgUH379g3spaSkpOvXr3O+sEQUwLgBBGhNNfxtgG54SLMQyCksya7wDnG2DhKQc0oan66TRQReY3AZw9U+bdo08C9DAm4WO3bsaHzzWAP/EyguZZ4L/AJ6utjw70QgqMcPYXBHNTqVEpqUBROo/KBPDTp8yywY7fEyJDFTTkLk/PRuPfT59KGXGrrQQrLERWkGqtLQWXATQYwBCTQvgTIma+HFd7Hf89RlxQ5PsODRQjvN20dsvRkJwDAXBrtcCoAE5FxC3G0hBKTE6DLi3CvfgkSa7KVc6mQR9ezZMzIycvjw4ZmZmT9+/AAHcURERPfu3YXvZIC7FgyADHyZj+PU3g9NhvlpFRnGoI5qHGJMVkFAXlLUTk8RMu6E8LWbKDotd9ThlzHf89Rkxa7NtjZv1xp0xsC3BMwqfLNoEfH0BOHNv454tz4I9438LiZCPTrJUkmaUcejsBgSqCMBGObCYJerMEhAziUUml3sSA0Ezr764hf5fXKlR/qn2LQvZTJrOLABWXWyiKBedXX1zZs3g1/4xo0bmzZtgl0QClkoapK1LAQO2qmKNRUmdNMUodX1r0Xg+kiiwsSKc3fef2Px61sfMLAG79C3rEJtJclrc2x0lcv9DyQSwKpIJ/CfRZSQSXrNWCFBAG/+BIda42vBX489j4Niu0abmbThftgM5BiQQCMJlDGZMNjlqgQGxJGpOWVMFpccd4WYAJPJcnsQvubWx60PImZ0117koAeGMfQXYkjPtdeREOV2HEFuY0ItY9yoqChnZ+fs7GzONrKysv7444/Y2FhOoaCnC4pLD/FqLQsBZvM24WdIYqYonfoHLrpdt9PY10gVZk9j0/M+Jv121dTtaJ6Xeh71/Y9jr37ml5i2lb0226aNnDjPm8QGGk3AvF35+3uhSVmlZSRPiTVaNWGoAG/+dTyL8HOw8kYoFF7YW3dwJ3xkAEhgIJ+AuCgdBrsw5IWBL9QO8UIHXRcbrUWX3s86G5xXVL7aGMgxCDeBwpKyhZfeHfEtNzSGmalLi9Fn9dQOWtU3eHUfiCHNECH/w5i1WEQ7duzQ0NCQkZHhRC8rKwtCyOIUCnoaX+ar8gw++pgiLyk61FRdQQqfjqiSELdQikHvY6gCUj78MNHdD9+mer7JLy6z01U8P8MKzizoSXbA+sgnoK0oBb8HBSVlEak55Nfe4mvEm39d/gSSswpgPFpcxuxvrLK4j35dDsEySKBhBGCwC0NeGPgGVwx/Z/fUCfmalZt55/sAABAASURBVPgz/2l46pgjAYL1fYuGEWjhR/3MK554IvBuxSq4u8eYLnDQo1Ao4BGC2XkYi0IMaV4gqsUi8vPzGz16dOWGx4wZ4+3tXVkuuJKcplrLQlAQwbxpcSlzgpWm/9+9/urfQVDU5gc9wYAENf798I2vXPxnX31ZcPFdSRlrcEe1Ey6WYLmBkhgEggCVSjFtKwcWbHx6nkAoLEBKfvqW9T23KLuBCxkJUEcbpSrM1848E/w9p8hAVXr3GDP4g2xUdXgwEqiNAAx5YeDLHv72NlC+OMNKQVL007fsYQdfwGVbWwWYL6gEEjLyRx5++Sb+J8wDnp7SdUTntk3Wk1osoi9fvigrK1fWRlFRMTExsbJccCXSYiLgnOXSHyQg5xK2hF32U/Xdtz+zcvM6H5gAkpbQcVL62LODkowYPTW76HXcD1IqbGQlLBZr79OoNbc+slitxndrt8/ZnEEn393cSCXx8JoJrBpsCHMT5u1awzxFfjE+N1Izrdpz4aIIiMn449iriSdet5bAm39NxIDV8msfQpOywCY/NslSkkHys/s1tY15fESgmVWx0Gx9c66trrJUSnbhaI8Ar/DUZlYIm+cBgfeJmcMPvYhNz2sjJ359jo2NbvlSVTxop+oqa7GIZGVlY2JiKh8aHR0t8/ujdJXLCJakrKqX+VxstEhfy4L/sYB3CF+pasxpAnuDWJfvTkhSY+oh5Vgmk7Xuzqc9TyOhtoUOepuGmdCofP3xENATAxcBmI948DEZ5iZstnpbbn5yxDcWJFxlcLeOBGB87xf5fcyRAOdjr17GZGQXlESn5lb5JvfbLz9SswvrWK0QFzvkE/NvyDc6lXJofGcNeQkh7il2jc8JtFOQgFGyra5CfnHZjDNBJ/3j4HLmc51RvboTePwpZdzRgIy8YmN1mZtzbfRVpOt+LCklOSyiqurr0aPH/v37K+fs27dPyFbfrvwy34Le5S/z/cwrrtx94ZbQ8PtojT7BxINz90NTYEa/0ZU1vAJofdHl96cDyj8ntc7RaGlffQoFzaGG82yWI4kZin1e0cSTXRDv9YqCQWo+eorqeT5g8ATzysMOvZx08vWb+J+iNOoEq3Y+y+07achVfpN7im37Vbc+Dd7n/yo2o57tCFXxJ2GpOx9HQJfWOxlbaStAAgMSaEYCsuIinlO6juuiwWS12nA37J87n0pxvZlmPB/kNe35Im7WueDCEmavDkpXZlkry4iRV3dda6rFInJ1dX3w4MGoUaNev36dVbEFBgaOHDny0aNHkFXXRgSkHNfLfHa6iqM9Xv11/QP8jgpID8hRM6ugiT4PTI66DauFx0d101ZQlmYASZiN5nFT1VYPI+bpZ4KIyd2948xcbNtXWxQz+JgADWcoGn12wFP6IDQZzJtpp4NCEjMZdOoUWy2/v3ptGtaxbetypwfXzX92Tx24fERolPTcovHHA4/5xba0XwECeWRqzuJL71isVhOtNMd30ySEGCOB5iUgQqO6jejoOtAA5vfOBHyZfiYop7CkeVXC1htDAO7Pm+6Grfs3DG41f3Rrd6z5Hs2txSIyNze/du2an5+ftbW1fMVmY2Pz/PnzK1eudO7cuTEI+PNYzpf5VGXFkjLzX0RnXAv+yp/akq4V/Orffp8kyaDJNMnngUnXn38qpFEpjqbqoM/tZvpUK/g2/zgWCPaYuAjt+GRLJ7M2oAwGQSQAP/bZVb33D4N1cF+UwUxprb1qwQWAD9zTBuz1m3P+bVhytoQobVYPbf+/e//jaAx3eE4wnDd/SIOldHOu7XDzNlDD5vvhc8+/hRPBWV7o03APmX46KK+4zFpbYa2jkdD3FzsoQAQoFMqsnjqHx3cWE6H6RHwf7RGQlFkgQPqjqmwChSVl8y68Pe5f/pWzvwcYbB5mQqfVYpiwjyU9UXvDQ4YM+fLlC9hFW7dudXNzu379enx8/NChQ+uiCphSjo6O6urq8Od769Yt9iEuLi4gYQcrKyt21qxZs3R0dMTFxZWUlJycnD5//szO4kokJSVNmDBBQUFBQkLCzMwsODiYq0AjdzUVJJdUrDG66V7495yiRtbG/4fD7x/86i+69P5FdLqLtRaXwlN48HlgriaEbNfJrNwiehKW0vTfT0jOKhh9JOB9YqasuMi56d3sO1SxOIqQ0Rbi7khXs+iLnIQIXLA9tj/b7xWVhq+7VPoLKC1jwmRW392+cE+LTM2VZtDn99IFW8h1kKGSNKNS8SoE4qK03WNMNzoZi9AoDz6mOB18AT6TKsoJo6ikjAl/XQk/8jXkxQ+N7wyz8gLTS1S0xRAYYKJ2eaY1XM6fU3KcDrwA92+L6bqQdDQjt+iPY6/g7ipKo+4dZzbHXgfsgmbsW+0WESgnLi4+fPjw5cuX//XXX8OGDQMLBIR1CXl5eaampgcOHKhceMCAAcm/tvv377MLWFhYnDp1Kjw8/NGjR+Cy6NevX1lZGTuXnfj586etra2IiMiDBw/CwsJ27dolJyfHziUrMc2uvbG6TFZByfp/P5FVJ3/W4x+VPmCvH/xd0qnlD4rM7aXL+X00SM+115EQxSWG6nH2OraR1VKQKCxhPm3aJXFivueOOhwQnZarKiN2dba1hWbreiiNRfmPQBmTCfMRXHqBJC49j8liwczorieRNlu955wLhquYiS6jVq2KS5kXXyf02uWz7GpIbHqerLgIzG35r+i9rH8HeUlRLpI178LP80RrrcuzrNVkxWK/5w07+OLfZvL61qwn6bkb74YFxGZIitKOT+rSup7QSFcGK0QC1REw1ZC7Nc/WQFUafOZjjwY8/JhcXUnhlAtyr+LT80Yefvk2IRNu0WendXXigydZ6mQRNZj5wIEDN23aNGLEiMo1MBgM1V+bvLw8u8DMmTN79OihpaXVuXNnODYxMRFcUuxcdmLbtm0aGhpgO3Xt2hUKOzg4gGeJnUtWgk6jbhvZiUal3P2Q7NW041qyulBrPeCyhB+/CScCU7OLtJUkb861de6qKSZCm9VTO2hVX+L7aJBmiOB6zbWy/K0AjKWGVlzht99/+y2DlzsfvmYSzw9oK0pem2Pd9Eu18LJzLbRucVE6zEfArATxLCvEkAaJsbrsK1eHPWNNLTVblzJZMJ0BV3HvXT5HfGNg4q1lwoK72ZmAePsdz1xvhCb+KFCQFP17gIH/370W9dGDH90GM+ncrvXdBXY2OuUrXC24+A4myMCF0uDa+P/A84FfzgR8oVBauY8z76Da1Ms98T8f1JCvCLSRE4e5v576SjD/OOf8W7gBwmQ6X2mIylQmEPzlx/BDL+Iz8tu2Ll9luxt/rNrCW4uoMgW2xMfHR1lZWV9ff8aMGWlpaWw5OwH+JTB42rdvD5YPW8hO3Llzx9LScvTo0VCJubn5sWPH2FmciaKiomyOjTOrjmmTNrLT7cpfSV9962NuUVN/BqSOSja4WERKDsx6nqh4gnOCVbt7C7p3bCtL1AYeIVE6lf19NEKIcb0IECvO+UV+/9EkKxaCi8D56CtoC9xT8AvRtuKV8XopjIX5kwDMR8CsROUZCpi5GG7e9tocm0eLe0y21pRm0OEHxu3BZ2s370WX3r2O+9FyRgYFxWXHn8f22P5s7e1P37IKlaQZqwcbPv+71xx7HWkxkcafVrgTnp3WDQxRqOrUi3i40FKF9EnFwNiMf26XPxOxrF+HvkYq0F8MSIDPCcA1fmKy5UQrTRarFdwAV94MFe45Cz4/HbWq9yA02flY4M/8kk5tZWEWXldZqtZDmqZA81hE4Ds6f/68t7f3rl273rx507t3bzBd2B0+dOiQVMX28OHDJ0+eiIpW8ZxDbGzs4cOH9fT0Hj16NHv27IULF545c4ZdAzvh5uYm+2ur0rJil6whsbiPfjt5ieSswh0Pq32pqYbD+TOLyWSd9I9zPOD/OSUHZlLhbrJpWEdxUXQEkXm64Do3aSMD8/f3Q5PJrLequqCJqZ5v8orLYCb74kwrGMBVVYqvZahcDQQkROk1zFDARP56J5PAVQ7bRnaE35jiMiZ4JsccCei3x8/zRVxWgTAvxAQTVYd9Yuy2eW+6F56WU6QuK7bByfj5X72md9cGaDUgrW8WjUr5a4DB0YkWYHkGffk5WBgX5k78kQ+z7HDLcjRVJ8y/+lLC8kigWQjQaVS48NcOMQLf5sXXiVNOvRHu+16zQG58oywWC6au5l54W1zK7GOofGmmFcxeNb5asmpoHoto7NixgwcPNjExcXR0fPDgQWRk5L1799hdGj9+/Lt373x9fcHgGTNmTGFhITuLnWAymZ07d96yZQs4iGbNmgWOJjCQ2LnshKura8Wa4eVRYmIiW16vhLgozW1ERzjkzKsv4OmDhKAHmN2cfOr1hrth8EfZ20D54eIeDoY4F8iTs0q4ie7w+N2D84Ff5sEtpow50ET11JQuUgx844snZ5PPK5UQpY/t0u7OfLs7823HddEQF6FFpeWu+zes25any6+GvE/MhF8jPu9CvdSDEc8+ryiwhbY9/JyRV6whLw43ap/lvSZZa4H3rF5V1b1wP2PVfxfYGVS8tzD+eOBRv5iGUa17i01WMq+odMaZIMLJvH1kJwoFv13WZOyxIRIIUCiUqXbtj020lBCl+Uenjzz8Eix8EurFKkgiUMZkrf83bNO9cHDlTbLWPFJ+pvhrrFIni+j+/fvgiuFkArtgyXBKGpxWU1PT1NSMiopi1wBOHbCFevToce3atc+fP9+8eZOdxU7AUUZG/18P1NDQMCEhgZ3LTjAYDBmOjS2vb8JWV3GURVs4iyuuhxaVVrHSQ30rbMbyDz+mDHD3ex6VLiZC3TjMBLxDSnVbeakZdRbcpmGqlUJp9TruxzferA0Ko7H9XlGrbn6EP07nru0O/NGZQUdHn+D+vZCjeae2cltHdgKXEUyadlCRLixhXg3+OuzgiyH7/S8EJsDAl5xmmq+Wn3nFux5H2G313v0kMjO/RFtRcudoU+8/7eESEKXX6UetMbprKZa/b0kszL3l/ue554VhYW4mk7X0yvvPKTmKUoyjkyzE8XmBxvyJ4LG/E2jKvT5GKldmWavKiEWn5cJNL/jLz6ZsHduqjkBBcdnsc8GeL+OhwKpBhuuHGtOofDfnUqcfjxUrVpT9vuAbjMNACB1rfMjIyADvDVg4VVYFDXE+UMcuY2trGxERwd4FLxOYVexdXiTgFCpKicKcq4dPLC/qb4I6YST017UQ+KP8mV9i0kbm7gK7iVaaFArf/VE2AYoma0JNVryrVvnCIbxYogoGMTDjsutJJHRnfi/dLcNN+PAWA7phaBYCMmIi4C15uLj79TnWI8zbgKnw6Vv2ypuh3bZ4rb4VGvYtu1m0amSj6blFbg/CwS+03zs6p6hUX0Vq7zizJ0t7jrJoK0Kr089ZIxUgDgeDQcgW5nb3inr0KVWURj0y0QLuWkQ3MUYCgkjApI3srXm2xuoy4Dp2PvYh5y6mAAAQAElEQVSKFz++goilGXWG+/a4Y6+ehKXCz9DBPzrP6KFNofDjyLNOPyHgwOF0yABWAwOD6OhoSFSEaqPc3Nz3FRuUiIuLgyR4ckC4bNmygICA+Ph4Hx8fR0dHRUXF4cOHQ5nY2Fg3N7fg4GAoBgXGjBkjLi4+aNAgyILg4ODAXsh7yZIlr1692rJlC6hx4cKFo0ePzps3D8rwLrSWFP3H0RjqP/AsKio1BxKCFd4l/By07/mVoK/wdzjHXufGHFtdZVxEqCnO4dCKDxOR/uBcSRkT5nSJGZe1Q4yW9e9AofDjLaYpEGMb1ROgUCgWmvK7x5oFujqsHmzYXlEyt6j03KsEuBsMP/TiWvDXwhLBcHqnZhdu+DcMbKEjvrF5xWVGajKHx3d+uKiHk1kbWnPMNQJYzoW5nQ68IP0ar/6skpxz70PyPq/yxzS2jOiI6/WTDBeraw4CqrJi4CnqY6hSXMpccPHdfq8omF5vDkWwzVYx33PhtyYkMbO1hMiF6d0Gd1LjWyh1sohkZWXBVuHsA9ghkpKSnJIq00FBQeYVG+QuXboUkmvXrqXRaKGhoU5OTvr6+pMnT4YYjB9p6fLRuZiY2PPnz8EE0tXVBXMImnj58qWysjIcDiEmJiY9PR0SELp06XLz5s2LFy+amJhs3LjR3d19/PjxIOdpGNJJzcFAuaSMteJGKEzP87QtEisvLWPufRo1yiPgS0a+uqzYxRlWfw8wAEudxCZaUlX17usgEzU6lQLT89FppBnS+cXlT/zfev8Nat4z1nSqXflyiPXWDA9oSQRgTmd6d23vP3uW/yZ1LP+bfJeQuexqCLiMwNKITsvlWxhJmQVrbn3svv3ZyRdxhSVMUw25E5Mt7y20G9hRjdocthAnKGJhbltdhYKSsoUX36278wlGYJwF+D/9MSnrz6vvQc/pdu3B1QYJDEhACAhIMujg8JxW8eO460nkn1dDBP2VB0E8Ka/jfowsf6GroJ28xPU5NpYVj8zwbUfqZBENHTp08eLFYJAQ3QBz6M8//wQhsVtDbG9vD3Y5Z/D09AS3z6NHj9LS0oqLi798+QIS9ipw6urq9+/fT01NhazExMTz58936NCBXT/4lNatW8feHTJkCFhWhYWF4eHhM2bMYMt5l4BJwY3DTCRFacFffp4P/MK7hkisOSEjf8yRgD1PI8uYrKGm6g8W97DSViCxfqyqVgIwEu2prwTF7rz/BnHjQ2Z+8YTjgT4R38VEqMcmWQ43b9v4OrGGFkIAbmI2uooHx3d+6dp7ef8ObeTEswpKwNLos9t33NGAf0O+/T6gb2YqcPtacf2D/Y5nZ199AcW6aLU+M7Xrrbk2DoYq0JFmVu5X8wpSjDNTuxErs3m+jHc+9grcWb8y+f3/7zlFM88EgZ0J9yjXQYb8ri7qhwTqQwC8x2uGGMGwDRI33iZNPPH6Z5N8CaM+OgpzWfhBgbFKZn6JmYbczbk22kr8ssp2ddDrZBHt2LED3DUGBgbtKzZDQ0MFBYWdO3dWV6kQy9XlxP8aYAAd3PYwIjmrABJ8G8AQvRqUOHCv39uETGkG3X2s2T5nc1lxEb5VWIgVIx6cux3yDU5KI7uZklUIJi6cUxkx+rlp3XoZ/OdBbWS1eHhLI6AsLTavl67fX71OTenSx1AFfC2vYn8suPjOZqvXtoefwRRpXiAx33OXXnnfa5fPpTeJ4JYvX1N+htWVWdY99JX4xxZiI4LxFvwuHK1YmBvmywbvex4Qk8HO5dsEGJlzzgV/yyrUVpSEXwfoBd+q2hjFkpKSJkyYAIMWCQkJMzOz4OBgojb4Q/o9UGCoQ2RxxdevXzcyMmIwGBDf/H2pp0OHDsGwSExMzMLC4vnz51wH4i4/EJhopQleZSkGHfwVIw6/jEvP4wethFsHGOp4+MbAD0pxGbO/scrFGYLxRZA6WUSysrIvX768d+/e3LlzwTvk5eXl7e0tJycn3Ge0ut5NsNLs3E4ut6h0za2PcNarK9a8cpgImXfh7fJrH/KKy7pqyT9Y3H2YeZvmVaklt97XSEVchPYlI//D16zGcIj9ngsO6MjUXGVpxpXZ1pZa8o2pDY9FAjAI7tVB+fhkS/+/ey900FORYaTnFh/2iem589mkk68ffUopLWM2MaWIlJz5F96CzwrmdMGzDb6L63OsL8ywstZRgPFrEytTr+Y4FuYunnAi8IgvXy/MDT9e8BMW9OWntBj92GRLYZ0s+/nzp62trYiIyIMHD8LCwnbt2sUeuiRzbCdPnoS/rpEjR1Y+4wEBAWPHjp04cWJISAjEY8aMCQwMJIpdvnx58eLFq1atevfuXffu3QcOHJhQ1Zq3RGGMm5GAfQfla3OswSUO5tDwQy8CYwVgwoLHuHhYPfxqrL71ceuDz9DGVNv2h8YLzNqVdbKIoFdws+jXr9/y5cvnz5/fo0cPkLTYAGOIrSM7idAoT8PT7oem8CEH/6j0AXv9QDc6lbK8f4eLM63atpbgQz1bjkoSonQwiqC/t983/MG50K9Zoz0CkjILtBTKn8c1UJWBCjEgAVIIqMuJL+2r/+Lv3kcmWoAfhsVq5Rf5fdbZYLttz/Y8iWwaf/jHpKxZZ4P6u/vd/ZAMCoDn6vY829NTu1poCozlTyzMPcK8Ddhybg8+zznHvwtze76MvxyUCL7BA3901uH7p1ka/Ee+bds2DQ2NU6dOde3aVUtLy8HBQUdHh6hNlWO7fft2r169tLW1iSzO2N3dvW/fvq6urgYGBhBDDSAhCuzevXvatGnTp083NDQEITR0+PBhIosdFxUVZXNsbDkmmpgA/GLenGdj2lY2M78EJixuvP3axAq0kObyikpnng0+H5hAobRaO8RoraMRjJkFpe81WUT79u0rrPg6KiSqDILSSdL11FeRnmOvC9X+c+dTVj4ffQ++sKRs090wuNpTs4u0FSVvzLWZ10tXgP4cAamwBqeKFef+/fANhkoN6OPLmHTnY68y8oqN1WWuzbHRkEcTtwEU8ZBaCNBp1P7GqmemdvVdbj+7p46CpGhKduFeryjbrd4zzgT5RKQxmaxaqmhQ9ruEn1M93wzZ7//oUyr8jg7qqHp/YXfwXJlqCN6TCOKitF1jTDcOMxGhUR5+SnE68CIylbQlVRpEt4qDnkd933g3DDJWDjIELxwkhDXcuXPH0tJy9OjRysrK5ubmx44dq9zT1NTUe/fugW1TOQsk4COC6WBIEKF///4vX76EdHFxcXBwMGcWpIksyGUHNzc32V8bmExsOSaanoCytNilmdYDTVRLylhLr4TsfhzBgqmXptdDeFtMyykcezTA+3Mag049PN5iasWyFgLU3Zosoj179uTllT9wCYnKAWZEBKifpKs6r5eOjpJkem7RlvvhpFfesAojUnKGHXxx3D8ODh/frd3dhXad2greeAKUF8rQXU9JTkLke05RYP399Q8/JrucfJNbVGqlLX9pppWiFEMoEVXZKT8/P0dHR3V1dQqFcuvWLXaZGzduwNBEUVER5O/fv2fLITFr1iyYBhYXF1dSUnJycvr8+TMIawgwZIFKFi9eXEOZlpalqSC5YqDBS9fe+5zNu7WXBzvoSViqy6k3PXY8O/gsGv6MyQLyOu7HxBOBww+9hB9R8FfAxMHjxT0OjbcwUhdgFyj8OU200rwyy1pNViw2PQ+MIr5amDsuPW/+hXdwTkdZtJ0maEOW+v7hxcbGgt9GT0/v0aNHs2fPXrhw4ZkzZ7gqOX36tLS09IgRI7jkxG5KSoqKigqRhhjSIIFEenp6WVkZ7EKaCJAmsohdIga3UtavLTExkRBi3FwEYMLi4B+d59iX+wn3eUcvuvS+sEQwPj/QXMTq3m5Uas7wgy8/JmXLS4penGk1wES17sfyScmaLKK4uDgFhfJ1ySBROcCNhk/60CxqMOi0bSM7QdOXgxJfRv+3JjjsNkuAiduT/nGOB/w/p+TAtO7xSZabh3eUEKU3izLYaJUEROnUgSbly/DX98G5i68T5p5/W1zxeqLnlK7SYi1rbQyYlDE1NWV/iIzNFuS2trZbt25lS9gJCwuLU6dOhYeHwxgIpgBh4hYGLuxcrsSbN2+OHj3aqVP5tcyVhbsMOm2oqfrlWdZPl/aYYqslI0b/+rNgx6MIm61e8y68Bb8l4G0YJTjwRXT62CMBY44EPI9Kp1EpMDr3+tN+7zhzPZXyLzE0rFq+Osq8Xeu7C+zIX5i7cZ3MLiyZcSYoq6Ckczu5zcNNwHhrXH38fjSTyezcufOWLVvAQQRzJTNmzAADiUvpkydPjh8/XkxMjEvO3uWkBH+6nLucaa4s4nAGgyHDsRFCjJuRAJVK+XuAwbaRHelUCkxVjD8emJFb1Iz6CEfTATEZIw+/TMosaK8oeXOuTed2rQWxXzVZROz+bNiwIT8/n70LiYKCAhBCoiUHSy35CVbtgIDrzdDC5ptmSM0unHzq9Ya7YcWlzF4dlB4u7tHH6P8TWqAeBj4hAPPfoMn9j8l1/CoC/L7CfLzrjVCYzR1rqQEzW2IiNKihRYWBAwdu2rSp8vTtxIkT165d26dPn8o0Zs6c2aNHDy0tLRgJwbEwLxsfH1+5GEhyc3NhJHTs2LHWrau9feNrAABKV1n6H0fjwJV9do42NW8nV1LGuvch+Y9jgQ67fI8/j83ML4YydQzwV/0sIg1+O2EgEhj3Q4RGce7azmeZPdQMP6V1rERQihELc8/rVT4h7VmxMHdKVmEzKl/GZC26+C46LRecVx4TLcDibUZlmqZpNTU1IyMjdluGhoZcix88f/48IiJi+vTp7DJcCVVVVU7PT1paGviCoAw4qGk0WpVZkIuBHAI8q2Vsl3ZnpnaVEaMHf/k57NALEr8WyDOV+bfiW++SJp0MzC4stdBsfX2OjaaCJP/qWqNmdbKI1q9fD0MHznry8/NByClpmem/Bhioyoh9ycjf6xXVLAQefkwZ4O4Hk6wMOnWjk/FJly5K0i3okapmYd7gRrtqycNfS05hqU/E91orYTJZm+6F73gUASXBxb8VJrRodbpaoTwGggD4kcBZ1L59++oe3583b97gwYOrNKuIGiB2w9cAgEJFEBelgSfn5lzbewvtxndrJylKi03Pg7/Srlu8ll5+H/zlB1g7FQWrjiD38acUp4Mvppx68zYhE7ymk601fZf3chvRUYjfi6OVL29jcGySpXTF2GvI/ucwmVo1IN5Ltz/6/CziO/xYHJ1oqSxdrUuE94o0XQvgSY6IKL+LEk1GRkZqamoSaSI+ceIEeJXBEU3sVo6tra2fPHnClj9+/NjGxgZ2RUVF4UDOLEgTWZCLgf8J2Ogq3phr205eIvFHwfBDL8Frzf8685uGcFeHedvFl9+XlLEGd1Q7P72bvKQovylZd33qNMaCPnO6hqH2kJAQeXkS1v+BqgQ6yIiJbBxmAl046hf76VujFlaGSuoV8opK/772Yfa54J/5vd3ZtgAAEABJREFUJcbqMjBGmWitxXWa6lUhFuY1AXDWO5qWPzh3J6SWFedKypjLroacqHglbPVgQ3Dx45mt19k5dOiQVMX28OFDGKbA2KXy4ZcuXXr79i0YPJWzOCX4GgAnDSJtrC67eXjHwFV9Ng83MVKTAe/0jXdJIw8HDNz7/GxAfE5h+WIzBcWlIM/ILYI4v6jUN+I75M48G/zha5a4CG1G9/b+f/Va72SiLidO1CnccV8jlX/n2xmoSqfnNtvC3DfffT3iGwucd4w27dhWFhItISxZsuTVq1dbtmyJjo6+cOHC0aNHYR6E3fHs7OyrV69Or+QgmjRpElz4RLFFixaBFbRt27bPnz9D/PTpU/Y7h0uXLj1+/PjJkyfDw8OhIfA+zZ49mzgKY4EgoKssdXOuDXg2YKZy8snXl98kCITafKIkDFRcb4QS87Yze2jvdzYX9MdYarGIWrduDZYPjMb09fUhQQRZWdm+ffuOGTOGT85K86oBP3WDOqqWMVkrroeWNtW3O94l/By07/nloEQKpdXsnjo359rqKgvJw/fNezZ52jpU7mRW/lWop2GpuUWlsFtlKCgum3U2GIaYMLu8a7Tp9O5VLAhb5YEoZBMYP378u3fvfH199fT04E5FrJnJzoVEYmIiDHTOnTsnVv3LA1AMAr4GABCqDFIM+vhumjAXc2ue7WiLtmIi1M8pOWtuf3I++iq7oOSwb4zl5icWm55CDGmTNjIlZSw4ZK69jv/fvVYNNlKWaRE+Cja65l2Y+31i5t/XQ0GZeb10hpqqQ6KFhC5duty8efPixYsmJiYbN250d3eHmwO77zAtAhO+zs7ObAmRANsmOTmZSIPbB4qBt7lTp06enp6XL1/u1q0bkTV27FiocMOGDWZmZn5+fvfv3+dyQBHFMOZnAgpSDPBsOJqqlzJZcI1sffCZyeTJipr8DKEBusEYZtrpoEtvylfw3+BkvHKQIcz5NqAevjqkFosIrvbdu3fDLWP9+vXs5eY8PDz8/f0PHjzIVz1pRmXWDTWWEaOHJmWdelH16wok6gZG196nUaM8Ar5k5KvLil2YbrVioIEovZbzSKICWFVjCBiry2grSRaVMh9/Sqmynqz8koknAr0rFq88MsFipEXbKouhsGYCMGsDtlCPHj2uXbsGM7swJOIqHxwcnJaWZmFhQa/YwHbat28fJMvKcN0hLlS17FIoFDMNOXA7BLr2+cfRSFdZalEfvWPPY/d5RWcXlJv9EO/3jvZ8GX/wD3P/v3v9NcAAhiC1VCqk2eKizbMwd2p24cwzQeCsg/m7P/t2EFK61XZryJAhoaGhMC0CnpwZM2Zwlps5c2Z+fj7cLjiFkPbx8QHjBxJEGDVqFNxGiouLoQaudxrnzp0bHx9fVFQEtxS44RDlMRYsAmIitH3jzBY66IHaHr4x8y68hXlJSGOojgDcUsZ4BPhFfhcToR6ZaDnJWqu6koIlr2UkPXnyZBcXl2fPnsFlD2kiODs7W1tbC1Y/eaqtsrTYqsGG0MSuJxEJGb8tQQFCEgNUPuZIwJ6nkeCSgimNB4t6WOuULwZIYhNYFU8JwPDRybTcTVTlinNwlxl7NCDoy09pMfq56d1whQxSzgVM6MB4hasqBwcHGCS9/7VZWlrCzDHs0Wgtbu0KLjIN3pWVEJli2/7Jkh499JVOB3DPDYFEW0lKTkKAHzFvMBnOA+EOwLUw9+33SZwFSE8XlpSBOZSWU6SvIrVnrJkQzOOSjqjxFWINgk4ALsylffV3jzEVoVEefEwZdzQgLac5F0HhZ56fU7KHHXwRlpytKCV6eaY1zLPws7b10q0Wi4ioS1paGqZGiPTt27eHDRu2cuVKmC8hJBgDgTGWGtbaCoUlzFW3QmEEBhJyA9R5NShx4F6/twmZ0gy6+1iz/c7mMAQhtxWsrQkIDK34VKt/dHpG7m8rfsan5408/PJzSo6SNOPKLOsuWvJNoAz/N5Gbm/u+YgNV4+LiIJmQUP6o948fPyAdFlb+lcmIiAhIp6SUu91iY2Pd3NxgvhaKBQQEjBkzRlxcfNCgQXA4BDCEiIW84Z5mwrFJSkoqKCiAAMpgaAwBGFjkFpaCX4irEpAQ7xdxyVvmrnnFwtx2uooFJWWLLr1fd+cTOHB4gQJ+OFZc/xDyNUtOQuT4pC5SDPwkAy8wY51CQmBE57bnpnWDiwUumeEHX0ak8N23lZsd9Ivo9NGHA5KzCnWUJG/OtTXVkGt2lUhUoE4W0axZsyIjI6FVGG2MHTtWQkLi6tWrf/31F0gwEARgHLBlREdROvV5VPqNtyTP+WXmF4Mbd/m1D3nFZV215O8v6j7MvNzPQDSNsWARaK8o2amtLHj5vMJT2Zp/TMoa5fHy688CTQWJ67NtDNUE+POU7E6RkggKCjKv2KC2pUuXQnLt2rWQvnPnDqQHDx4M6XHjxkHaw8MD0mJiYs+fPwcTSFdXF8whMHVevnyprKwMWRBiYmLS05v562GghnAHaTERGXHukTdIQC7cHa9X7xSkGKendp3H44W5j/jF3nr/jUalHBrfuZ2CRL00xMJIoAUS6KatAAN9+JlOyiyAOUrfyNoXhm05lK4Ff5188nVOUWnX9vLX59hoyAvbLaVOFhGYQ2ZmZnDWwRDq2bPnhQsXPD09r1+/DhIMbAJwCS3uowe7G++Fpf8+/Q/CBgf/qPT+7n73Q1PoVMry/h0uzrTi8V9hgzXFA+tKYJKV5rFJFo6mbcBNBHPDyVkFK2+EpucWgyF0dbY1Dlw4Odrb28M8N2eAmw8UcHFx4RRCet26dSBXV1e/f/9+amoqOLETExPPnz/focP/X5yIj48nikFJzuDj4+Pu7s4pwXSDCZQxmVNs2nMdDpJSJpNL2MJ3wVBZ3v+3hblfxpBprnt/Tt328DNAXudoZKOjCAkMSAAJ1EoAxnI359p0ay+fW1Q61fPN2Vdfaj1E6AvAL+zep1HLroaUMllDTdXPTusqJ4yPQNfJIgIWzIofs6dPn8LkK5x7DQ0NnGoFDlxhRndtQzWZzPySjXfLH+bhyq3vblFp2aa7YRNOBKZmF2krSt6YazOvly78iNa3HizPbwQGm6p/+JrVze0psRLXhcCEU1O6DDdvc3mWlXLL+EgI35wRVIR8AuKi9Ln2Oosc9MAvBLVDDGmQSIhyO44gF0NfzoW5jwd6+MbAD27jsUSn5Sy8+J7FajW+W7uJ1kLy3nPjsWANSKAuBGC4f3Zat5Gd25YxWWtufYQRHSTqcqBQloF52+XXPux5Wv6kGNzJ3ceaMejC+cJtnSwiS0vLTZs2nT171tfXl3hMJS4uTkVFRSjPfWM6JUKjbhvZkUppdfv9t2ef0xpTVURKjtOBF8crvkgDP2l3F9p1aitUz2s2Bo5AH1tQXOrhE7Pf+7eVuE6/jN84zFhGTESgu4bKIwGCAEOENqundtCqvsGr+0AMaZAQWRhXJsBemJvJarX1wec559428p2rzPzi6aeDcotKYZ77H0fjXy3i/0gACdSVgCidunN0p2X99OGAE/5xs84G51X/zQwoI6whu7AEHGXXgr9SKa02Dzf5a4CBEK/OUieLyN3d/e3bt/Pnz1+1apWuri6c+GvXrtnY2EACAxcBsFum2pY/MbL61seGXT9MJuukf5zjAf/PKTkKkqLHJ1luHt5RQhSnV7lIC+oujUo99TKOS3vPgHhRXOWMCwruCjIBuGXBkEJBigExpAW5K02hu3jFwtybhpmI0CgPP6UMPfACJsUa1nBpGXP+hXfxGfltW4sfGt8Z+DesHjwKCQgyARJ0p1Ao83vr7Xc2h4voaXjqmCMBKVktawG65KyCMR4B/tHpEqK0E5O7jO+mSQJWPq6iThZRp06dQkNDs7Ky/vnnH6IvO3bsOH36NJHGmIvA0n768FOUlFmw83EEV1atu2nZhS6ebzbcDQM3Za8OSg8Wd8clmGuFJlgFYPY3u+I7LZxqgwTknBJMIwEk0KIIwPBrgpXmlVnWarJicel5ww6+uN2ghbk33QsnRjDHJlmCRdqiGGJnkQDpBBxN1S/OsILp6U/fsp0O+n9MyiK9Cf6s8NO3LLgLwdQ8sf5tLwNl/tSTRK3qZBFVbk9MTExERKSyvOkkfNyShCh9y/COoKDny/h3CT8hUcfw8GNKf3c/v8jvDDp1g5PxSZcu+FZJHdEJUDFpXIlLgM4WqooEmpaAeeMW5r70OgF+d0Dl3WPMDNVwyUoggQEJNJaAhWbrm3NtdZWlUrOLwFP0NOz/68Q2tmp+Pd438jt4h6C/espSN+famLSR5VdNydSrThZRWVnZzp07u3btqqqqKs+xkamIcNXVQ19phHkbFqvViuuh4O2ptXN5RaV/X/sw+1zwz/wSIzWZuwvsJllrwZRhrQdiAYEjUNaAlbgErpOoMBJAAg0lAI4dzoW5xx2t67M6b+J/rLn9EZpd2ld/gIkqJDAgASRACoF2ChLX59jY6irkF5fNOBt0wj+OlBVQSNGN9Eouv0mY6vkmr7jMWlvh2hybtq2FbZXt6ojVySJav3797t27x4wZk5WVtXTp0hEjRlCp1CoXseVqxs/Pz9HRUV1dHQb3t27dYue6uLiAhB2srKzYWbNmzdLR0REXF1dSUnJycvr8+TM7q8qEm5sb1LN48eIqc5tRuHqIkbykaERqzhHfmJrVAD/S4H3PLwclUiitZvXUvjXPVk9FuuZDMFdwCYjjSlyCe/JQ8yYggE20akUr/9bCfwtzv03IHLL/ea0LcydlFsw+G1xSxhrcUW1B7/LXfREkEkACJBKQFRfxnNJ1XBcNmOzeeDds7e1PpWXC9kUBMPN2Por4+3poGZMF0/owNQO9JpEhn1dVJ4vo/Pnzx44dW7ZsGZ1Od3Z2Pn78+Nq1a1+9elVr3/Ly8kxNTQ8cOFC55IABA5J/bffv32cXsLCwOHXqVHh4+KNHj+Dc9OvXr6ysjJ3LlXjz5s3Ro0c7derEJeeHXTCH/nE0Ak32e0dHp+VConIoLWPufRo1yiMgPiNfTVbswnQr14GGovQ6nZTKtaFEUAgwcCUuQTlVqCcSaD4CdV+YO7+4dPrpoIy8YmN1mR2jO1EolObTGluuDwEsK1AERGhUtxEdXQcawBV29tWXaaeDhOkF4OJS5tIrIQeeRcM5Wdhbd9cY05Y2HK3T4DslJaVjx/IXY6SkpMBNBLCGDBly7949SNQcBg4cuGnTJvApVS7GYDBUf23y8vLsAjNnzuzRo4eWllbnzp3h2MTExPj4eHYuZyI3N3f8+PFgqrVu3ZpTzj/poabqPfWVisuYK2+EMpksLsUSMvLHHn2152kk2OKOpuoPF/Ww1lHgKoO7wkpAQpQO9xoFXIlLWE8w9gsJkEHgv4W5O7eBH5CtDz7PPhecXVjCVTH8uPx5JSQ8OVtRSvToJEu4t3AVwF0kgATIIkChUGb11Dk8vrOYCNU38vtojwBwz3UVj7YAABAASURBVJJVeTPWk1VQMvnk65vvksBBvX1kp6X9OkBPSdaH76urk0XUtm1bcOdAX3R1dR8/fgwJcM6ASQOJBgcfHx9lZWV9ff0ZM2akpVXx6R7wL4GzqH379hoaGlW2Mm/evMGDB/fp06fKXEJYVFSUzbERwiaL4e9p83ATCVHa6/gfF98ksNsF39e14K+D9j0P/vJTmkHfM9Z03zgzWQlcqYJNCBNIAAkgASRQTkBclLZrtCmxMPejT6lOlRbmPv487sHHFBEaxWOCRRs58fJj8B8SQAK8JDDARO3yTGslacbnik9HhiRm8rI1ntf99Wf+qMMvA2IzJEVpJ126jOlS9aib53o0dwN1soiGDx/u5eUFqi5atGjNmjV6enqTJk2aOnUqSBoWwHd0/vx5b2/vXbt2gXHVu3dvMF3YVR06dAicURAePnz45MkTUVFRdhY7cenSpbdv37q5ubElVSaggOyvrTrLqsoDyRK2bS2xrF8HHSUpNRkx8Ehm5BZB/C7h52GfmNyi0i5are8v6j7cvC3YTmS12Iz1YNNIAAkgASRAOgH4geBamNsrPLWguBR+TVKzCydYtzs60WLfOHNLrf8/bUG6DlghEkACnARMNeRuzbM1UJVOzy1yvfkh8Uc+XI/EGA9SnCX5M03cQCoULotKywUvtKqM2NXZNj31lfhT4SbQqk4W0datW1euXAnajBo16vnz53PmzLl69SoIQdKwMHbsWHDvmJiYODo6PnjwIDIykvMZvPHjx797987X1xdMrzFjxhQWcn8SKzExEWyzc+fOiYmJ1ayAq6tr1q8Njqq5MI9yJ9toXZ9j/S4x03LzE4tNTyF+FvH9yiyrLcNNLs201pBvKYt48AgvVosEmoUANooEmpiA+a+FudXlxM005A77xMCvSbctXlZuXh+/ZfVuAV8LaWLg2BwSqJkAuGSvzrZ27qpxdmq3K0GJcD0SY7wjvrFFJdW+AF9znU2TC+p5+Mb+Uvjp2y8/r82x/neBrZF6i16yv04WEecZsrKyWrp06dChQzmFjUmrqalpampGRUWxKwGnDthCPXr0uHbt2ufPn2/evMnOIhLBwcFpaWkWFhb0ig1sp3379kGyrNIaDAwGQ4ZjIw5v4ri4tOzki7j93tHZFd/lhBjSZwK+DDNvQ6Pi+69NfDawOSSABJCAoBJQkGKcntr1wB/mni/j93H8puzzij7kE8O7mWlB5YV6IwEeE5AWE1k92Oj0y3gY18HoDlqDeK9X1EGf6M8p2e5PI+sY9jyJbHDY/SSyXuFzcjaoB0qCqoTCoLzni3hJBh12W3KoySK6U9tGCriMjAzw3oBdVGVtLBaL84E6ooyDg0NoaOj7X5ulpSW4lWCPRqMRBfgqplGp8OvFpdKpl3F0ak3wucrjLhJAAkgACSABmEfTUZI6HcC94BD+puDfBhIghUB9KxGhUT0rXY8w6msnLwFz3+5Po+oSwD5pcNjnFVX3cO7Vl3YKEqAeVzfxBgJAahqUD6txGz58OBxfc8jNzQVDBQIUi4uLg0RCQgIIly1bFhAQEB8f7+Pj4+joqKioSNQWGxvr5uYGLiAoBgXGjBkjLi4+aNAgOBwCGEIHKhbylpaWNuHYJCUlFRQUQABl+DDkFJYQhjinbiABOacE00gACSABJIAEaiUAvx3wC8JVDCQg5xLiLhJAArwmANcdXH1crYAkq6DExUZzfLd21YUJVu3qHiZaadY9TLLWrC5MtdXKysdBKdfp+m+3JouIWeNW+RG1/6rk+C8oKMi8YgPZ0qVLIbl27VoajQYeHicnJ319/cmTJ0MMxg8YOVBGTEzs+fPngwYN0tXVBXMITJ2XL18qKytDFoSYmJj09HRINC409dHgVJUR5/ZFggTkTa0KtocEkAASQAICTgB+O+AXhKsTIAE5lxB3kQAS4DUBuO7g6uNqBSQKkoyFDvqbh3esLmwa1rHuYeMwk7qHDU4m1YX5vfUUpBigXmWFoSNcwpa2W5NF1HgW9vb2rN83T09PcPs8evQoLS2tuLj4y5cvINH4tb62urr6/fv3U1NTISsxMfH8+fMdOnRgqwE+pXXr1rF32QlwNLm7u7N3+S1RxmROsWnPpRVISpnC9rVjrj7iLh8QQBWQABIQNgL4myJsZxT7I8gEBO56FDiFm+yvoxaLCNw1WVlZhDabN2/OzMwk0hkZGUZGRkQa45oJiIvS59rrLHLQI4xyiCENEglRbsdRzfVgLhJAAkgACVRPoKXk4G9KSznT2E9BICBw16PAKdxkfwW1WETgzGEvbLBt27YfP34QmpWWlkZERBBpjGslwBChzeqpHbSqb/DqPhBDGiS1HoUFkAASQAJIAAlUJgC/IPA7Ar8m+JtSGQ6XJCkpacKECQoKChISEmZmZsHBwewC4eHhQ4cOlZWVlZaWtrKySkj4/4fU2WXs7e0pv2+DBw8mctetW8eZo6qqSsibJMZG+IiAwF2PAqdw05zsWiwiFovF1oMzzRZioo4EwCMkSqcqSDEghnQdj8JiSAAJIAEkgAQqE4DfEfg1wd+UymQ4JT9//rS1tRUREXnw4EFYWNiuXbvk5OSIAjExMXZ2dgYGBj4+PiEhIWvWrBGr6guHN27cSP61ffz4kUajjR49mqgBYmNj41+ZyaGhoSDB0DIJCNz1KFAKN9HfVC0WURNpgc0gASSABJAAEkACSIBUAtu2bdPQ0Dh16lTXrl21tLQcHBx0dHSIFlatWjVo0KDt27ebm5tra2uD54e9jBNRgIjl5eXB+UOEJ0+eSEhIcFpEdDqdyIJYSUmJOIQzLioqyubYOLMwjQSQAF8RqMUiIjzCbI1hl50WuATh4+K4NWGSbwigIkJHgLjcBO4uUbPCRKeE7lxhh5AAPxIgLreaL8lac+/cuWNpaQk2DFg7YPkcO3aMOITJZN67d09fX79///6Q1a1bt1u3bhFZNcQnTpwYN26cpKQku0xUVJS6unr79u1BHhsby5azE25ubrK/NrDNQM6PrFEnJCB0BFgcz7jBdVeXUItFBDW6uLiMqNgKCwtnz55dkRwxderUutTOV2VycnJAH7gl/bo74f9IAAnwigBxucEVJ0yB6FRj7yG8Qo71IgGhIkBcbo28gYCVcvjwYT09vUePHsEAZuHChWfOnIE609LScnNzt27dOmDAgMePHw8fPhzGNr6+vpBVXXj9+vXHjx+nT5/OLgB2FNQGNR87diwlJcXGxiYjI4OdSyRcXV2zfm1hYWEgxBuIUP2ZYmf4lUADbiC1WESTJ0+G6ROivxMmTIC5ECINwkmTJsG1LUABlE9MTMzMzPx1d2rq/6F1wAVxUzfc0PZAVQFSWLC0hXMi3ApLS0vDH4+Qhea9hwj3HwxcEc0ekDD5p4CjxvriJeUeAr6gzp07b9myBRxEs2bNmjFjBhhIcF8COcROTk5LliwxMzNbsWLFkCFDPDw8QFhdAAeRiYlJ165d2QUGDhw4cuTIjh079unTBzxOID99+jTEnIHBYMj82jp06AAQMjNxEMLxZ1F9ElgBSYirL8JfOaAqKszTU1Ivwg24gdRiEZ2qcYNzL0CBSqW2bdsWLLpfd6dm+B9wNUOrjWhSsBQWLG3htAixwhQKBXonZKHZ7yHAE/5sBCigwrw+WYJFuF7aUigk3EPU1NQ4vxRiaGhILCinqKhIp9OrzAIlK4f8/PxLly5xOoi4ykhKSoJpFBUVxSXn3G32Gwj8NYI+EAtKECxtZWRkUGFe/2nVnTCFUu8bSC0WEbSNAQkgASSABJAAEkACAkfA1taW80shkZGRmpqa0AtRUdEuXbpUmQW5lcOVK1eKioomTJhQOYuQQG54eDgYYMQuxkgACQgcAbSI6nHKsCgSQAJIAAkgASQgKASWLFny6tWrLVu2REdHX7hw4ejRo/PmzSOUX758+eXLl48dOwZZBw4c+Pfff+fOnUtkTZo0ydXVlUgT8YkTJ4YNG6agoEDsEvGyZct8fX3j4uICAwNHjRqVnZ09efJkIgtjJIAEBI4AWkRNd8oYDMY///wDcdM12biWQFUBUliwtIUzw+cKg4ZcQeAU5tJf0HcFjj8qzOs/OcEi3CzagiPo5s2bFy9eNDEx2bhxo7u7+/jx44nzMnz4cA8Pj+3bt3fs2PH48ePXr1+3s7MjshISEpKTk4k0xOBZ8vf3nzZtGqQ5w9evX52dnTt06DBixAhwOoHpRTigOMvwVbpZTkGDCQiWttBNVBgg8DTwmjBaRDw9fb9VDudy3bp1EP8m5eMdUFWAFBYsbeG0o8IAAUPdCeAfTN1Z1bckUR4JExx4FDcX3iFDhoSGhhYWFoaHh8+YMYOzd1OnTo2KiiooKHj//r2TkxM7y8fHx9PTk72rr6/PYrH69u3LlhCJS5cuffv2rbi4OCkpCQwqzreSiAL8FjfXKWgYB8HSFvqICgMEngZeE0aLiKenDytHAkgACSABJIAEkAC/EEA9kAASqJIAWkRVYkEhEkACSAAJIAEkgASQABJAAoJKoF56o0VUL1xYGAkgASSABJAAEkACSAAJIAGhIoAWkVCdzpbXGewxEkACSAAJIAEkgASQABJoFAG0iBqFDw9GAkgACTQVAWwHCSABJIAEkAAS4AkBtIh4ghUrRQJIAAkgASSABBpKAI9DAkgACTQpAbSImhQ3NoYEkAASQAJIAAkgASSABH4RwP/5ggBaRHxxGlAJJIAEkAASQAJIAAkgASSABJqFAFpETYIdG0ECSAAJIAEkgASQABJAAkiALwmgRcSXpwWVQgKCSwA1RwJIAAkgASSABJCAQBFAi0igThcqiwSQABJAAvxDADVBAkgACSABoSCAFpFQnEbsBBJAAkgACSABJIAEeEcAa0YCQk0ALSKhPr3YOSSABJAAEkACSAAJIAEkgARqJPCbRVRjScxEAkgACSABJIAEkAASQAJIAAkIGwG0iITtjGJ/6kgAiyEBJIAEkAASQAJIAAkgASCAFhFAwIAEkAASEGYC2DckgASQABJAAkigBgJoEdUAB7OQABJAAkgACSABQSKAuiIBJIAEGkAALaIGQMNDhJ+AlpaWj4+P8PcTe4gEkABvCOA9hDdcsVYk0CII1PEG0iJYNFUn0SJqKtJ81o6np6ecnByfKcWtTkhIiLOzs4aGhri4uKGh4d69ezlLXLlyxczMTEJCQlNTc8eOHeys5OTkP/74o0OHDlQqdfHixWw5kcjMzJw3b56ampqYmBjUef/+fUJe95jFYh09erRbt25SUlLA0NLS0t3dPT8/H2r49OnTyJEj4UZGoVBACBJ28PPzc3R0VFdXh6xbt26x5ZhAAgJKAO8hTXwPcXNz69Kli7S0tLKy8rBhwyIiIgT0LwfVRgJAAG8gvLiBAFgiXLp0CQYbcKMgdjljuJNAVuXREWeZlplGi4jPz3uLVi84OFhJSencuXNgaaxatcrV1fXAgQMEkQewSb6/AAAQAElEQVQPHowfP3727NkfP348dOjQ7t272VlFRUVwFJQ3NTUlCrPj4uLivn37xsfHX7t2DcYTx44da9OmDTu3jomJEyfCrcTJyenZs2fv379fs2bN7du3Hz9+DIeDXaStrb1161ZVVVXY5Qx5eXmgD1tJzixMIwEkwCMCwnQP8fX1hdmcV69ePXnypLS0tF+/fnBX4RE3rBYJIAEgIHA3ENAZwpcvX5YtW9a9e3dIc4U3b97AlG6nTp245LgLBNAiAggCH+zt7RcuXPjXX3/Jy8vDWHzdunXsLoGp0LFjR0lJSfC0zJ07Nzc3F7J8fHymTJmSlZUF8wQQiPI/f/6cNGlS69atwesycODAqKgoKAnB09NTTk7u7t274HWBrFGjRsHP8OnTp8ETAoUXLFhQVlYGxSCAZaKnpwfTHioqKlAMJI0MU6dO3bdvX8+ePcHMmDBhAuh848YNos6zZ8/C5AdYRJA1ePDgv//+e9u2beC9gVxQDLxJ0BdZWVnY5QwnT5788eMHuGhsbW01NTXt7OzASuEsUGsaHFPnz5+/ePHiypUrYb4W2gLTyNvbu1evXnAsSMBbNW7cOAaDAbucAZBu2rRpxIgRnEJM/04A95qNAN5D+P8e8vDhQxcXF2NjY7hrnTp1KiEhAYZrzfYXgw0jAQ4CeAPhkxsInBMYksF88fr162F0BLucAUaAkAVzwTB445RjmiCAFhHBQeBjMFHA7AkMDNy+ffuGDRtgEpHoEpVKBaMCHClQAAbuYDWB3MbGxt3dXUZGJrlig7kEEMJvbVBQ0J07dwICAsC0GDRoUElJCcghgOsDKgEnLPwkgzUFw/r7FRuYJTDZAP4WKAPHglUGTYPvBYr16NEDhFwBfsKlqtnAtuEqXHkXTDgw+Qg5OILA9CLSEIuLi3/9+hXmRSBdQ4DeWVtbwzwr2GwmJiZbtmyBe0cN5StngTkEliFYQZxZYFVWtr44C2AaCfA/AbhF4D2kCe8hTpx/EvW9h8DNEA5n3w8hjQEJNC8BvIHwySAEhmFKSkrTpk2r/PcAgx+YQe7Tp0/lLJQAAbSIAIIwBPCB/vPPP+CiAd+IpaWll5cX0avFixeD+6J9+/a9e/feuHEjuDhALioqCiN4+A0GhxIEMFLAIwTWwvHjx8HNChOQMO5PSkoCXwoUhgCm0eHDh83NzcHOAeePv7//iRMnjIyMhgwZApU/e/YMyoC1A8MpkIDvBUqCdQRCrqCurv6+mg2uYa7CXLtgp4Hys2bNIuT9+/cHfxF0k8lkRkZGgoEHcrDvIK4hxMbGgv0GVhAYdKtXr961a9fmzZtrKF85C0CBRVRZjhIkIOgE8B4CZ1Ag7iEwY7V06VJwcZuYmIDOGJAAPxCo8QbSCwchxDni9SDkxYsXMDwDLxDRHGcMk9pv3751c3PjFGKakwBaRJw0BDgNNyO29mpqamlpacQumCt9+/Zt06aNtLQ0GEsZGRl5eXlEFmccHh5Op9O7detGCBUUFGDcD0JiV0JCQkdHh0iDd0VLSwuMKPYu0Ra0ArYQeGknTpwIBhW4lYgCnDE0oVvNpqyszFmSK/3p0ydwy6xduxZaIbJmzJgxf/58MMDAurOysho3bhzIaTQaxDUEMJ+gIfBrWVhYwCGrVq0CS6+G8pWzYCwClmRlOUqQgKATwHsInEGBuIfAre/Dhw8XL14EhTEgAT4hgDcQOBHNewPJycmZMGECmEOKioqgDGdITExctGjRuXPnOB+u4SyAaSBAkkUENWFoVgIiIiLs9mHIDkN/2P3y5cugQYNgHvH69evBwcEHDx4EITh8IOYKMNCvLIF6CCFX5Vy7RFtgccH0A/xIgz0Gpgs4mjIzM4nD2TH4kcCUqjLU8NRcWFgYOLjABAKvDrsq0G3btm25ubnQx5SUlK5du0IWmGoQ1xBAN319ffY9y9DQEI4tLi6u4RCuLDicbShyZeEuEhBoAlVe13B94T2E87Q2+z1kwYIF4M+Hqa62bdtyKoZpJNC8BPAGAvybdxASExMTHx/v6OgIs88Qzpw5A/cKSIAcRoAweQ1zwbALwdfXd9++fZAo+/UeOCiPAS0iYf4bCAoKKi0t3bVrF3hRYCj/7ds3dm/BtcJ5JRgZGUHJwMBAogC4kiIjI8FgIHbrGMPV1adPn+3bt8P8JVyW3t7eXAc24Kk58A716tVr8uTJVT7eBrYNuL+gL2CJWVtbg/+Hq0WuXVtb2+joaMKEgyzoI4xv4HBI1zH88ccfkZGRt2/f5iwP9iTxWD+nENNIQAgI4D2E6yQ24z0E7jPgHbpx4wbcWtu3b8+lGO4iAT4kgDcQrpPC0xuIgYFBaGgo+9WEoUOHwvAJdjU0NBwcHDizLC0tx48fD1kwiOLSsCXvokUkzGdfR0cH7Jz9+/fHxsaePXvWw8OD3VuYyQAHi5eXV3p6en5+vp6enpOTE/hh/P39Q0JCwPEKlgZI2OVrTdy9exemHOACg0llmJkAq6NDhw5cR4HJVM1Dc7pVGjOEOdS3b9+lS5eCMwfC9+/fiTpBbejO58+foUXwBV+9epV4lYjIBSEE6CCUhwR4mQj5nDlzwNiD8mAL3bt3b8uWLfPmzSOy6hiPGTNm7Nixzs7Obm5ucK+HzkLHwQ6EKVuoAdxN0BwESCQlJUECDDCQQwBlYBcCpOPi4iABHjNIY0AC/ExAB+8h37/D1coP9xC4WZ07d+7ChQvgkIebIYSCggJ+/uNB3ZAADkKachAiJiZmwrHJycnBvQIEMO1LJCBNBElJSQUFBUjjnygnAbSIOGkIW9rMzGz37t3btm2Dv/vz58/DIJ7dQxsbm9mzZ8PgXklJCbw6ID916pSFhcWQIUPA2QKTkffv3+d0gkOBmgNcezB52bt3b/Asga0CThtjY+OaD6k1F+wcuJuA5uDJIUKXLl3YR50+fRrmOWDGBQwnHx8f4sE5Ite8YgM3MYweIDlo0CBCDjMljx8/fvPmTadOnRYuXAim0YoVK4isOsYUCgXqBKo3b97s2bMn1LNu3TowHfv37w81gBcOmoOQnJy8c+dOSEyfPh3kEMB8gl0IkAYDDxJr166FNAYkwM8E8B4C1ztcrfxwDzl8+DD4ou3t7YmbIcSXL1/m5z8ewdMNNSabAN5AmvgGQvYJbFn1oUUkDOcb7AFOD8mtW7c8PT2Jji1ZsgSG6eAFevjw4cSJE8HUAdOFyILfV/C0gATG9CBp3bo1+HYyMzOJwuA1AiEEFxcXEEKCCFAYZkyJNMTQEDQHCTs7Ox8fnx8/fsDh4GUaM2YMCBsZoC1QjzPEx8cTdSoqKgYEBIDjJS8v7+nTp+w1IYhczkMgzT4KcsHee/XqVWFhYUxMzMqVK2m1LcYAh3AFKpUKxuTr16+haRiggKmzcOFCcXFxKAaeN2iOMwATkEOAcQynHNKADuQYkAA/EIA/VLyHcJ4IuEI5Az/cQzj1IdJwc+bUGdNIoLkI4A2ETwYhnH8AMMYghmecQiJdfr7c3Yk0xmwCaBGxUWACCSABJIAEkAASQAJIAAkggRZHAC0ioT3l2DEkgASQABJAAkgACSABJIAEaiWAFlGtiLBASySwePFiLS2tlthzwewzao0E+I0A3kP47YygPkhAgAjgDaTpTxZaRE3PHFsUAAJ4MxKAk4QqIgE+JsC7ewgfdxpVQwJIgBwCeAMhh2N9akGLqD60sCwSQAJIAAkgASSABJBAkxDARpBAkxFoQRYRi8XKzs6GuMngYkNIAAkIEwG4e+A9RJhOKPYFCTQlAbyBNCVtbAsJ1JdAs1tE9VW44eVzcnJkZWUhbngVeCQSQAItmADcPfAe0oLPP3YdCTSKAN5AGoUPD0YCPCbQgiwiHpPE6pFArQSwABJAAkgACfAFgaSkpAkTJigoKEhISJiZmQUHBxNq5ebmzp8/v23btuLi4oaGhocPHybklePr168bGRkxGAyIb968WbkASpAAEhAgAryyiIqKigSIAqqKBJAAEkACpBLAypAA/xL4+fOnra2tiIjIgwcPwsLCdu3aJScnR6i7ZMmShw8fnjt3Ljw8HNILFiy4ffs2kcUZBwQEjB07duLEiSEhIRCPGTMmMDCQswCmkQASECwCZFpEjx49cnFx0dHRgbsMTLpIS0v37Nlz8+bN3759EywoqC0SQAJIAAkgASQgrAS2bdumoaFx6tSprl27amlpOTg4wNCF6CyYOpMnT7a3twf5zJkzTU1Ng4KCiCzO2N3dvW/fvq6urgYGBq6urlADSDgLEGmYHc7m2AghxkgACfAhAXIsolu3bnXo0AFuIlQqdfny5Tdu3ADr6MSJE2ARPX36VFtbe/bs2d+/f+fD/qNKSAAJIAEkgASQQIsicOfOHUtLy9GjRysrK5ubmx87dozdfTs7O8hNSkpisVjPnj2LjIzs378/O5edAMOpX79+7F0o8/LlS/YuO+Hm5ib7awMbjC3HBBIQWAJCqzg5FtGWLVt27twJvqCTJ0+C8ePo6NinTx9wIm/YsAFuKDExMTIyMmfOnOF/igXFpcWlzIzcIojzi0v5X2HUEAkgASTAhwTwXsqHJwVVYhOIjY09fPiwnp4ezN7CoGXhwoXsIcq+ffuMjIzatm0rKio6YMCAQ4cOgY3EPpCdSElJUVFRYe9CGiTsXXYCnEhZv7bExES2vLoEXjjVkUE5EuA1AXIsotevX4MVBA6iKtVt06bN9u3b//zzzypz+UdYVFLm4RtrufmJxaanEB/xjQUJ/6jXdJpgS0gACSCBRhCAOyfeSxvBDw/lOQEmk9m5c2eYzAUH0axZs2bMmAEGEtEqWESvXr0CN1FwcPCuXbvmzp379OlTIosrplAobAmLxaJQ/r/LljMYDJgRZge2vMoEXjhVYkEhEmgaAuRYRE2jK09bgYmZQz4xe72isgvKXUMQQxok6CniKXasHAk0MwFsnmwCeC8lmyjWRz4BNTU1cASx6zU0NExISIDdgoKClStX7t69GyZ5O3XqNH/+/LFjx+7cuROyuIKqqiqnUygtLQ3cRFxl6rWLF069cGFhJEA6AfItoq9fv4KXecWKFUs5NtL1Jr1CGpV66mUcV7UgoVPJR8TVCu4iASRQHQE/Pz8Ymqirq1MolFu3brGL3bhxo3///oqKiiB///49W85OwJTtwIEDIZfzKHYuJEpLS1evXt2+fXtxcXFtbe0NGzbAtDHIMTSSAA3vpY0kyLvDseZfBGxtbSMiIn7ttYqMjNTU1ITdkoqN84EXGo1W5Z3B2tr6yZMncAgRHj9+bGNjQ6QbFuOF0zBueBQSIIsAycN9Ly+vDh06gEUEvuZnz56dOnXq5MmTVY5XyOoAWfXkFJZkV3iHOCsECcg5JZhGAkigKQnk5eWZmpoeOHCAq1GQw5hm69atXHL2rru7O5hD7N3KiW3btnl4eEDN4eHh27dv37Fjx/79+ysXQ0m9CKRkFWTkFcGdk+socVcaugAAEABJREFUkOC9lIsJ7jYjgSVLlrx69WrLli3R0dEXLlw4evTovHnzQB8ZGZmePXsuX77cx8cnLi7O09PzzJkzw4cPhywIkyZNcnV1hQSERYsWgRUEt5HPnz9D/PTp08WLF4O8wQEuELhMuA4HCci5hLhbJwJYCAnUkwDJFhHcLP7888+PHz+KiYldv349MTERbi6jR4+up1bNUFxaTERGnM7VMEhAziXEXSSABJqMAPh5Nm3aNGLECK4WJ06cuHbt2j59+nDJid2QkJDdu3fDdAyxW2UcEBDg5OQ0ePBgLS2tUaNG9evXr8o1dnHx3CrpcQnBI/cm/secc8FD9vvLild9LxUXpR31jc3ML+Y6FneRQNMT6NKly82bNy9evGhiYrJx40aYQBk/fjyhxqVLlyAXdo2MjGDOZfPmzbNnzyayEhISkpOTiTR4hKDkqVOnOnXqBIbT5cuXu3XrRmQ1LIbBBgw5uI4FCci5hLiLBJAALwiQbBHBbOvkyZNBUTqdXlBQICUltWHDBpg+AQnpgdwKy5jMKTbtueoESSmTySXEXSSABPiZQH5+vrOzMzh/VFVVa9DTzs4OfNqRkZFQBiwof3//QYMGQZor4OK5XEC4dotKy268/ep4wH+0R8CDjynpucWfkrLhzslVbLK1ln9U+pYH4TZbvTfdDUvJKuQqgLtIoIkJDBkyJDQ0tLCwEMYtM2bMYLcO9w2wc5KSkmAMA/6fpUuXsr3N4DgC44ddEmZSoEBxcTHUUHnWhl2sjgkchNQRFBZDAjwiQLJFJCkpCVOqoKu6unpMTAwkIKSnp0PM50FclD7XXmeRgx5MyYCqEEMaJBKi3I4jyMWABJqYADZXdwJLliyB6Vvw/9R8yN9//w2Gk4GBgYiIiLm5+eLFi2G38iHg9/61dm4WOL0rF2ixkvTcor1Po+y2PVt6JeRjUjaDTnXuqvFocY8u7eXhzgn3T7iLAhyIIT2/ly6dRjVUk8kvLjvuH9d9u/eK6x9iv+dCAQxIAAkAgcqDkAW9deFSwkEIwMGABJqAAMkWkZWV1YsXL0DvwYMH//nnn+Bunjp1KghBwv+BIUKb1VM7aFVf/797vXJ1mGitCRL+Vxs1RAJIgE3gzp073t7e7u7ubEl1icuXL587d+7ChQtv3749ffr0zp07Ia5cuF6L51Y+XCgln75lLbsaYuPmvedp5PecIhUZxvL+HQJcHdxGdOqgKg1dhjsncS8NXt0H7qiQBklvA+X7C+1OTenSVUu+pIx16U2iw27feefffkzKgkM4A6aRQMskAJcJXCxwyQSt7gODEJM2sinZ6E1tmX8L2OtmIECyRbR7927iUdp169b17dsXxhyamponTpxohp41qEmYjBGlU7c//AwTn6/jfjSoDjwICSCBZiMA5hB4p+Xk5OgVG+gxcuRIe3t7SHCF5cuXr1ixYty4cR07dpw4cSJ4ltzc3LjK4C4ngTIm69GnlLFHAgbv878W/LW4jGmmIbd3nJn/373n9dKVlxTlLEzcSxWkGHBHhTSRRaFQenVQvjLb+tpsawcDZRar1b3Q5CH7/SeeCAyIyWDBPlEOYyTQYghwdRQuFrhkFKUYK298nHU2+Hxg+ZrgXGVwFwkgAV4QINMiysnJgbHI169f09PTJSQkDh069OHDhxs3boBRxAvVeVenKJ32I684KhWf6OAdY6wZCfCEABg5cNt5/2uDNvbs2XPq1ClIcIX8/Py6rLHLdVTL3M0uLDn+PNZ+5zMYogXG/aBRKY6m6jfm2tyaZ+tk1kaEVu/fEUst+RMuXR4u7j7MTJ1GpTyPSnc+9mr4oZePP6UwmayWCRl7jQQ4CQzupAa7N95+LSnDl5mBBAZhIMDnfaj3L1l1/YFRiIGBwYABA4YMGaKrq/v06dPqSvK/XE9ZCpSMTMuBGAMSQALNSCA3N5ewbkCHuLg4SCdUfEjxx48fkA4LCwN5REQEpFNSUiCtqqpqwrGBpF27du3b/7doioODw4ED/y3k7ejouHnz5nv37sXHx9+8eRP828N/rbELR2EgCMSl562788l6i9eme+GJPwrkJETm2uv4/91rv7N553atiTINjg1UZdzHmfsss59opcmgU98nZs48G9zf3e96MI4CGwwVDxQSAr06KClJM9Jzi70/pwlJl7AbSIC/CZBmEcHULIw8nj9/HhQU1LNnz/nz59e949V9hBFqCA8PHzp0qKysrLS0tJWVFTEYAnlRUdGCBQsUFRUlJSWhADimQEhW0FMpt4ii0UdUb6B4ABIgmQDcT8wrNqh36dKlkFy7di2k79y5A+nBgwdDety4cZD28PCAdM0BnNjpvxZ62b9//6hRo+bOnWtoaLhs2bJZs2Zt3Lix5sNbTi6LxXoRnT7N803vXT6eL+PzistgnshtRMeAFQ5/DTBQkxUnEYWGvMTGYSb+f/cGW0uaQY9Ky/3zaoj9Dh/PF3EFxWUkNiRkVRUUlxaXMjNyiyDOLy4Vst5hd+g06ojObYDD1aBEiDEgASTAawKkWUQwcIERho2NTefOnU+ePBkVFQWTu3XUPq+ajzDC8MXOzg5cTz4+PiEhIWvWrBETEyPqXLx4MUzrXrp0yd/fHxoCx1RZGWm/nXrK5S8Hx6bnlqK3msCNMRJoJgL29vYwOucMnp6eoIuLiwunENLr1q0DOVcA+bBhw9hCcAexi8Eki7u7+5cvXwoKCuBWs2nTJlFRUXbJOiSEs0hhSdml1wkD3J+PPx7o9TmNxWrV20D57LSuj5f0cO7aTlyUxqNuK0kzwNZ64dr7rwEdFKVEkzIL1v0bZrvNe79XVFZ+CY8aFdxqi0rKPHxjLTc/sdj0FOIjvrEgEdzuoOZVEhhjqQHyZxHf03B9BQCBAQnwmABpFhHMvIKPiNBWQUFBQkLi+/fvxG6tcXUfYVy1atWgQYO2b98OE8Da2towH6ysrAy1ZWVlnThxYteuXX369IGsc+fOhYaGkvicXhs5cXERWkkZKz4jH5rDgASQABIQegIpWYU7Hn22dvNacSM0IjVHQpQ22VrT+8+eJ126dNdTolAoTUBARkxkrr0u+IvAa6QhL/4jr3jXk0ibrV5b7ofjoJDNH7xDh3xi9npFZReUu4YghjRIeOkpYjeOiaYjoKMkZanZuozJuvb2a9O1ii0hgZZKgDSLiEKh5OTkZFdsYLFw7oKsAXiZTOa9e/f09fX79+8PhlC3bt1u3bpF1BMcHFxSUtKvXz9iV11d3cTE5OXLl8QuZ1xUVAStswNnVg1pKpWiW/EqUTS+SlQDJsxCAkhAKAi8S/i58OI7u23eB5/F/MwvadtafPVgwwBXh/VOJtpK5Y8QN3EvxURoE600n/1pv3ecmYGqdF5x2VG/WLttz1xvhMan5zWxMvzWHLg9aVTqqZdxXIqBhE4l7Qedq3LcbS4CY7qUu4muBn2F895cOrS8drHHLZQAaTdQuFzBemldscnLy+fm5oL3Bvbk5OQgbgDdtLQ0qGTr1q0DBgx4/Pjx8OHDR4wY4evrC1WlpKSIiopyVquiogJCyOIKbm5usr82DY3yOwtXgep2iVeJovBVouoAoRwJIAEBJ1BSxvw35NvwQy+GH3p5J+RbKZPVtb28xwQL3+W9pnfXlhUXad7+0WlUJ7M2DxZ1P+liCTPlxWXMi68Teu/ymX/h7advLe4TRqnZhTfefl165f34468gDX4hrrMDkpxCfLyQi4rA7w7uqCYpSotLz3sT/1PgO4MdQAL8TYA0i+jZs2feHNuzZ//tPntWnmgABPARwVFOTk5LliwxMzNbsWLFkCFDqnt5msVigVcKynOFqr83z1Woql095fJXiaLScAHuquigDAkgAUEm8DOv+JBPdPdtzxZcfPcuIVOURh3Zue3dBXZXZlkPMFGlUZviAbk68oMbe28DlWtzbK7Otu7VQYnJanX3Q/Lgff6TT74OjBXyTxjlFpV6haeuu/Op727fblu8ll4JufE26XNKroKUqIw4nQsgSMRFae5PI79ktHQ3GhcZgd6VZNCHdFKHLlzB9RWAAgYkwEsCpFlEPWvcGtAFRUVFOp1uZGTEPtbQ0JBYa05VVbW4uPjnz/9PmYBDCdxE7JLsBIPBkOHY2PJaE3oVT81FpuIC3LWiwgL8TQC1QwIcBOCe5noj1Hqr1/aHESnZhYpSoov76L1Y0XvXGFOTNrIcBfku2UVL/tSUrvcXdh9qqg4mm2/k97FHX43yCHgalsoEO4nv9G2gQuC4exP/Y8+TyFGHX5qtfzztdJDny3iYm6NQWnVqKzvXXueAszmTxZpi89+C8uxmJltr+Ueluz+Nst/p43LqNZhSZUKEhd3NFpgYU/Hg3L0PyegDbIFnH7vclARIs4g4lf706dOHXxukObPqnhYVFe3SpUtERAT7kMjISOJjrxYWFiIiIk+ePCGykpOTP378aGNjQ+ySEhNPzcWm5+Fyc6TwxEqQABJoRgJgM3h/Tp14IrDfHr+LrxMKS5jG6jK7RpuCLbS4j76SNKMZdatX00bqMvuczZ8tsx/frZ0onRr85ef0M0ED9z6/+e5r+b26XnXxTWEWiwWW6kn/uGmeb8AKGu0RsNcrKujLz1ImS0tBAnp6eHznd2v63plv99cAAxtdRSmGCJhGixz0wC8EnYAY0vN76UqL0XvqK7FYrXwivoMp1WP7M/AEZuQWQRkMgkugczs5HSXJgpIy8I4Kbi9QcyTA/wRIs4ieP38OBgzRYSsrK3Nzc7OKrVOnTrWuApebW/VHGJcvX3758uVjx45FR0cfOHDg33//nTt3LjQhKys7bdq0P//808vL6927dxMmTOjYsWOfPn0gi6zQtrWEmAi1uJSZ+LOArDqxHiSABJBAExPIKyo9/TLeYbfvVM+g51Hp4F0ZYKx6eabV3QV2Iy3aMui8Wk2bp93UVJDcPLyj/1+9ZvXUlmLQI1JzllwOAd/I2YD4whLSPsPA0y5A5SlZhdeCvy65/L7rFi+wVDfcDfP6nJZXXCYvKTqkk9q2kR2f/9XLZ3kv6OnAjmpyEqJwCDswRGjQ96BVfYNX94EY0iCx1lE8PbWr73L7mT205SREkjILwBNo7eYNTYDpCHYX+3BMCBABCoUytsJNxP3gnAD1AVVFAoJAgDSL6NChQxMnTmR3+dmzZ3FxcbGxsYsWLTp8+DBbXmUiKCjIvGKDXM6PMA4fPtzDw2P79u1g8Bw/fvz69et2dnZQBsKePXuGDRs2ZswYW1tbCQkJMJZoNDJ/2mlUik7FIkswdQfNYUACSAAJCBaBxB/5m+6GWbl5/XPnU1x6HjgQZnRv77u8l8dEi27aCjDMEqzuVNZWWUbMdaAhuLmW9++gICn69WfBmtuf7MpXzIvOKuDTNQayC0uehJW/GtRnt6+Vm9eyqyE33yV9zymCCbge+korBxncW2gXtKrPgT86j+3STkNeonKv2RIJUTp4yRSkGF8aOsoAABAASURBVBBDmi0Hc3HlIMNXrg47R5uatpUtLmNCEyMPvxy8zx/cg7hCNxuUACWGm7elUynvEjKj8El+ATptqCqJBJqkKtIsojdv3nTt2pWtc9u2bTU1NbW0tMBMCggIYMurTNjb28P0FWfw9PQkSk6dOjUqKqqgoOD9+/dOTk6EEGIxMbH9+/dnZGTk5+eDOVSvdeTg8LoE4lWiaFxcoS6wsAwSQAL8QQBupIGxGbPPBvfc8ey4f1xOYWl7RckNTsYwRF412KjmQTZ/9KB+WsiKi8zrpQt2EfSxjZx4em7xjkcRdlu9tz74nJZTWL+6eFO6uJT5Ou7H7scRIw69MN/wZMaZ8leD4JcF/HWmGnLzeulcnGEV8k+/M1O7zuyhY6wuS4WMRmsiJkIbZdH29ny72/NsR5c7A6lhydmuN0K7bfFad+dTzHdcNKjRiJuwAiVpRm8DZWgQ3UQAAQMS4BEB0iyipKQkNTU1QsvTp0+rqqoSaXl5ebBbiLRgxXoqFcvN4ZRMk5w2bAQJIIFGEigqLbsW/HXIfv+xR189/JTCZLXqrqd4yqWL19Kek6y1JBn0RtbPz4eDAQB99Fluv2esqb6KVE5RqYdvjN22Z6tuhiZk5De95mCXfk7JPv48dsqp12YbHo85ErDPO/ptQmYZkwUG6kQrTY8JFu/W9ANzZXl/A2sdBd49vghG147RpoErHVYNMtRUkAAL2fNlvMMu3/HHXz38mCy4L181/Tlt3haJB+duvE0CA7t5NcHWkYCwEiDNIpKWlo6L+++bcSNGjJCQ+M/dD0IZGRlBxEf4iCJTcS5NEM8e6owE+JcA6Zp9zyna8yTSdqv3sqshn75li4lQnbu2e7ykx9lp3XoZKJPicyBdZ15UKEKjDjdv+3BRj+OTLDu3k4Ox4/nABPudzxZefBeenM2LFrnq/JZZcDUocfGld102ew1wf77pXviziO/5xWUKkqJDTdW3j+zk/3evZ8vsNw4zGWCiKivRdF98kpMQndFD+9mf9qendu1jqAJeqBfRGbPPvQWjcZ9XVFo2XzjTuGDiLieBnvpKytKMjLxi78+pnHJMIwEkQBYB0iyibt26nTlzprJanp6ekFVZzv8SwkcU8z0XZvX4X1vUEAkggRZI4GNS1tIr78EW2usVlZ5brCoj9teADgErHNxGdNSv8HK3QCZgAfYxUrk+x+bSTCsYR4Kv7E7It4F7n0/1fPMm/gfpQLIKSh59Sll7+2PvXT42W72XX/tw6/239NwicREatL56sOGDRd3frOqzz9l8TBeNtq3/myskXY26VAhkQKXjky39/uo1114H7LSU7MLdTyJB7XkX3r6KzQDXVl3qqVcZLEwKATqNOtKiLVR1JegrxBiQABIgnQBpFtHSpUtPnz69fPnytLQ0QktI/Pnnn+fOnYMsQiJYcTt5CVE6taiU+fVnMzx0IVisUFskgAR4SqCguBQ8Hhm5RRDnF5fCNM3Dj8ljjgQM2e9f/iBNGdO8ndx+Z/Pnf8NIV7e15G/rkvFUMb6tnEKhWGkrgEvk7gK7IZ3UwCvi/TlttEfAaI+XMMveyKF/UWkZ2A+7HkcML3816PGss8FnAr7Efs+DVuBELOitC8bY+3/6QuvTu2sbqsmAKcJXoMAw+2uAwUvX3nvHmVlqti5lsu59SB539FV/d7+zAfH43Ru+OllsZUZXWEQ+EWkpWejTY1PhrwRqI9AESLOIevXqtX///n379qmpqbVu3VpeXh4SBw4ccHd37927tyAyolHZy83hg3OCeAJRZyQgJASKSso8fGMtNz+x2PQUYg/fmOyCkh2PIl/H/aBTKUNN1W/Otbk519bRVF2ERtotXUjYtWpl0kb2wB+dvf+0d+6qIUqjvon/OdWz/BNGt98ngWVZ924ymazw5OxjfrGTT742W/8E7If93tHvEjLBB6WtJDnJWvPIRIt3a/vBifizXwcrbR6+GlR3nWsuyaDTnMzaXJtjc39hd+eu7cCpFZmau+b2J6stXqtvhUak5NR8OOY2MQFtJamuWvLw93b9LbqJmpg9NtciCJD58zl37tzo6OidO3c6OzuPGzcOErA7f/58wQVJvEoUlcb+YRDcrqDmSAAJCCQB8A4d8onZ6xWVXVAKHYB4n1f0yRdxqwYbzOul4/93733O5ubtWkMWhhoIaClKuo3oBD60mT20JUVpn1NyFl1633uX77lXX4hPGAFn8L+xvXDsqpIyC668SVx48V3XLU8H7n2++X64b+T3gpIyRSnGMDP1HaM6vVzRG8ytDU4m/Y1VZcWb7tUgtoaNTxipy7iN6Bi4ymGdo5GOkmRecdm5VwngLxrjEfBvyDfA0vgmsAZSCIy2LH9w7mpQYiOdnKQog5UgASEjQKZFBGg0NDSWLFlyqGKDBOyCUHCDvooUKB+NiysABQwtjgB2mC8I0KjUUy//W7SGrdDpgHg7XaXl/Q1UZcXYQkzUSkBFRmzlIMOXKxz+7KsvLyma8CN/9a2PE44H5hSWcHrhjvjG5hWV7n0a2Wunj+1W77+uf7gT8i09t1hClNarg9LqwYYPF3d/s8rBfZz5aEsNdTnxWtsViAIyYiIutu2fLu15YXq3gSaqNCrldfyPBRff2Wz13vU44ltmgUD0QriVHNxJTYpBj8/ID4wj/4044UaHvUMCtRIgxyKq9YtDeXl5nz59qlUbfiugq1y+AHck+oj47cSgPkigxRCAwTr4hbi6CxKQcwlxt44EZCVEFjjovfi7N7hE2siJz+qpfdQvdi+HFw7SHr4xhmoycel5YBh0bie30EHvyizr92v7nZrSdXp3bQNVGQqFUsfmBKsYhUKx0VU8PMEC+Cxy0FOWZqTnFu33jrbb5j3rbJB/VDqTyRKsHgmTthKidEfT8s+c4IeJhOm0Yl/4hAA5FtGkSZP69u175cqV3FzuV27CwsJWrlypq6v79u1bPulz3dXQI3xEabn4G1B3aFgSCSABEglIi4nIiNO5KgQJyLmEuFsvAuKiNHCJ+Cy376GnBD43rmNB0kNfyXNKl3dr+96Ya7u0r37X9vKidHJ+Mbna4s9dcD8u6av/YkXvQ+M7W2srgB306FPqhBOBfXb7nvCPy8ov4U+1hV4rcEtCH++HJmcXNvgUQAUYkAAS4CZAzv0dzB4nJ6e1a9e2bt3a2NgYrCNHR0c7OztFRUULC4svX748efJk4sSJ3I3z/b6mvIQojVpYwkzCBwb4/mShgkhAKAmUMZlTbNpzdQ0kpUwmlxB3G0BAhEbNLSoFnxvXsSDJKyq176AsIyaQrwZxdafBu8BnUEe1izOtnizpMdlaU4pBj03P23g3rJvb07+vffiYlNXgmvHAhhEw15DTU5aCYcndkOSG1YBHIYGWRKAefSXHIhIREZk/f/7nz58DAwNnzpxpYmLSpk0be3v7I0eOJCUlnT9/HiT1UIpvitJpVG0lSVAHF1cACBiQABJoegLiovS59joLHXRlKjxFEC9y0AOJhCi346jpdROOFsHbBlS5+gISkHMJW/Kunor0eieTwJUOm4ebGKhKw4j8clDikP3+ww+9uPH2K7E6RUvm02R9p1AoYyw1oDngDzEGJIAEyCJAjkXE1qZz586LFi3as2ePh4fHpk2bRo4cKS8vz84VxISushSoHYmLKwAF/gyoFRIQdgIMEZqNjuIrV4fXKx2CVvWd1VMbJMLe6abrH3rh6s5akkEf303zwaLuV2dbDzVVF6FR3iVkLr0SYu3m5fYgPPEHfruv7iwbXnJ45zZ0KiUkMRNXSG84RDwSCVQiQLJFVKl+gRfoq5QvrhCFFpHAn0nsABIQVAJMJmv66SC7bc/yistE6VT0DpF7IgkvHHjewC8ENUMMafTCAYrqArgpumjJ73M2f7nCYXn/DuqyYj/zS474xvbY8Wyq55tnn9PKmLj6QnXwSJArSjH6GKpARbi+AkDAgATIIoAWUS0k9Sp8RNFp+EmiWkBhNhJAAjwi8OVHfm5RaV5RqUZrIVnomUegGlwt+NzA8wb+t+DVfSCGNEgaXFvLOVBJmjGvl67fX72OTrTorqfIYrXy/pw2xfON/c5nHr4xP/KK2Siq+9wTu0AVCRRVT2BMl/IPE918l4Rfi6oeEuYggfoRQIuoFl56KuVPzUXhcnO1cMJsJIAEeEXg07fy99cN1GToNLxj8woyeN7A/6YgxYAY0rxqRhjrhT/LfsaqZ6d1e7bMfppdexkxeuKPgq0PPlu5eS298j7sW1ZRSRnX555AIowkmq5PPfSUVGQYYHN6hac2XavYEu8IYM18QAB/X2s5CZoKkiI0Sn5x2bcs/D5dLawwGwkgAV4Q+JiUDdUaq8tAjAEJ8C2B9oqSa4YYBa7ss31kJ5M2MuC+uPE2KSmz4MCz6L2/f+7pkE9MfnEp33aE/xWj06gjO5e7iXB9Bf4/WaihoBDglUVUWFgoKAhq1lOERoW7PJQBNxHEDQ54IBJAAkigYQQIHxFaRA2jh0c1MQFxUdqYLhr/zre7Nc92onU7W13F0wHxXDqcehlHp/Jq+MHVlrDuEivO+UV+T8bpWmE9x9ivpiVA8i2JyWRu3LixTZs2UlJSsbGx0Jc1a9acOHECEoIb9JSJxRXwVSLBPYeoeZMSwMZIJMBisT59K/cRmajLklgtVoUEeEqAQqGYachtdOqYX1yWXcDtDgJJTmEJTxUQ+sq1FCW7tpdnslpdD/4q9J3FDiKBJiBAskW0adMmT0/P7du3i4qKEtp37Njx+PHjRFpAY2IBblxuTkBPH6qNBASaQEp24Y+8YhqV0kG1fGpGoPsilMpjp2omICMmIlPxKS3OYiDBzz1xAmlYeqxl+YeJrgR9ZYJh1LAq8CgkgAR+ESDZIjpz5szRo0fHjx9Po9GIJjp16vT582ciLaDxfwtwp+UKqP6oNhJAAoJL4FPFS0R6ylJiIv/dVAW3L6h5CyRQxmROsWnP1XGQlDKZXELcrS+BQR3VpBj0hB/5gXE/6ntsw8rjUUhAiAmQbBElJSXp6upy8mIymSUlgu0cJ5abi07LZbHwGwuc5xbTSAAJ8JzAx4qF5oxwWQWek8YGeEIAP/fEE6wVlYqL0hxN1SGJHyYCCBiQQCMJcFlEjaytlbGx8fPnzzlruXr1qrm5OadE4NJaCpJ0KiW3qDQ5S0iWixC4U4AKt1gCfn5+jo6O6urqFArl1q1bbA43btzo37+/oqIiyN+/f8+WsxMwfzFw4EDI5TyKnUskYAZnwoQJCgoKEhISZmZmwcHBhJyv4k/4EhFfnQ9Upv4EGCK0WT21g1b1xc891R9eLUeM7VL+4Nz90ORsfC+rFlSYjQRqIUCyRfTPP//Mnz9/27Zt4BqCIcuMGTO2bNmydu3aWrTg72xROlVLURJ0xOXmAIIQBeyKABDIy8szNTU9cOAAl64gt7W13bp1K5ecvevu7g7mEHu3cuLnz59Qg4iIyIPPAl3EAAAQAElEQVQHD8LCwnbt2iUnJ1e5WLNLPiWVf4wIF5pr9hOBCjSGgIQoHX5J8XNPjWFY5bGmbWX1VaSKSpl33n+rsgAKkQASqCMBki0imM29fPny/fv3YSwChlB4ePi///7bt2/fmrWpbhrYxcUF6mEHKysrdj0xMTHDhw9XUlKSkZEZM2ZMaipvP1Kmp1zxndZUXG6OfQYwgQSaggD4eTZt2jRixAiuxiZOnAh3mD59+nDJid2QkJDdu3efPHmS2K0yhokbDQ2NU6dOde3aVUtLy8HBQUdHp3LJoqKibI6tcgGeSn7kFX+rcE03+qk5nqqJlSMBJNA8BGCARCzDjQ/ONc8JwFaFiADJFhGQ6d+/v6+vb25ubn5+vr+/f79+/UBYc4Dp3iqngeGoAQMGJP/awNACCQQoD9XCjcDb2/vFixfFxcVgiYFXCrJ4FH5ZRLi4Ao8AY7VIgDQCcOdxdnYGt5KqqmoNld65c8fS0nL06NHKysrm5ubHjh2rsrCbm5vsrw0sqCrL8E5IfIlIS0ECF+biHWSsWegItKwODTdvI0KjfPiaFZ5cvkx/y+o89hYJkEeAfIuoAbpVNw0MVTEYDBjWEEFeXh4kEMAKio+P9/T07FixwSzvmzdvwDqCLK5A1vyunkr5urdRaegj4gKMu0iA7wgsWbLExsbGycmpZs1iY2MPHz6sp6f36NGj2bNnL1y48MyZM5UPcXV1zfq1JSYmVi7AUwnxEpExfomIp5SxciQgyAQUpBh9DFWgB+gmAggtL2CPSSNAskVEpVJpVW0N1tfHxwdmcPX19WfMmJGWlkbUA3YOhUIBY4nYFRMTo1Kp4I8idjljsuZ39VQqnprD5eY44WIaCfAfAfD8wOSIu7t7raqBV7lz585btmwBB9GsWbPgDgMGUuWj4D4jw7FVLsBTyX8WURsZnraClSOBFkiguoVVYHTBFXbs2FElH7jPdOjQQVxcHLzHMBFTWNhsay+NqVhf4da7pKLSsipVRSESQAK1EiDZIrp58+aNX9vly5dXrFihpqZ29OjRWvWosgD4js6fPw/jm127doEXqHfv3mALQUkrKytJScm///47Pz8/Ly9v+fLlMLhJTk6GLK5A1vxue0VJGpWSU1iaml3E1QTPd7EBJIAE6kwAbhcxMTFycnL0ig2OGzlypL29PSS4AtyajIyM2EJDQ8OEhAT2Lp8kfi2rIMsn+qAaSEA4CNSwsAqMJdjh5MmTYB3BPaRyr2FwAiOcf/75Jzw8/MSJEzDggfFG5WJNI+mhp6QqI/Yzv+Rp2H8Tx03TLraCBISJAMkWkRPHNmrUqM2bN2/fvh1mbRuGbOzYsYMHDzYxMXF0dHzw4EFkZOS9e/egKiUlpatXr/77779SUlKysrJZWVkw1wuuKcjiCmTN7zLoNE0FCagcH5wDCBiQAK8INLpeGKN8+PDh/a8N6tuzZ8+pU6cgwRVsbW0jIiLYQri9aGpqsnf5IZFbVBqXkQeaGOPHiIACBiRAHoEaFlYhntIn4tu3b/fq1UtbW7tyywEBAXAP+eOPP7S0tPr16+fs7BwUFFS5WNNIYMZ2lEVbaOtyUFM/2QuNYkACwkGAZIuoMpRu3bo9ffq0sry+EpjQhfFKVFQUcSDcgGAmOC0tLT09/ezZs+D+bt++PZHFoxgXV+ARWKwWCdRAIDc3l7BuoExcXBykCU/Ojx8/IB0WFgZyMGwgnZKSAmkYx8AcCjuApF27duybg4ODw4ED/y3kvWTJklevXm3ZsiU6OvrChQvgyp43bx6U558QnpzNYrWCqV9FKQb/aIWakEYAK2o+AjBRW+vCKqmpqTAJO23atCrVtLOzCw4Ofv36NeTGxsbev38fJnAhzRWKmmqxytGW5RbR86jv3zILuHTAXSSABOpCgLcWUUFBwf79+9u2Lb9Q66JNDWUyMjISExPBLuIso6ioKCcn5+3tDabR0KFDObNIT+sp4+IKpEPFCpFALQRg2tW8YoNyS5cuheTaiu+bwYAG0sQQZNy4cZD28PCAMjUHmEaBORSiTJcuXW7evHnx4kUwnzZu3Oju7j5+/Hgii09i4pE5E3yJiE/OB6ohRATAhjlc28Iqp0+flpaWrrz0P4EBbjtw3wC7SEREREdHB1xJ4KAmsjhjsl5m5qyzyrSmgqSVtjzMoVwL/lplgWYWYvNIgO8JkGwRtW7dWv7XBmm4m5w8ebK6txLZcKqcBgbhsmXLwDEdHx/v4+Pj6OgI9s/w4cOJo06dOgXzuzC+OXfu3OjRo2G6t0OHDkQWj2I9lYrFFVJxAW4eAcZqkUAVBOzt7Vm/b56enlDOxcXldzFr3bp1IOcKUGbYsGFsIdxMOIsNGTIkNDS0sLAwPDx8xowZ7GJ8kvj4rXwtXSNcaI5PzgeqIUQEmExm59oWVoHRC8ySiImJVdlvHx+fzZs3Hzp06O3btzdu3Lh79y4YSJVLujbhYpVjK9ZXuBqcyGSyKmuCEiSABGomQJpFRDSzh2Pbt28f3CO+fPlSq/emymlgGo0GgxUnJyd9ff3JkydDDNYRmFhEQxERETDQMTQ03LBhw6pVq3bu3EnIeRf/8hHlwhiLd61gzUgACSABgsB/C83hS0QEDoyRAHkE1NTUal5Y5fnz5zDMmD59enVtrlmzZuLEiVCgY8eOMFe7ZcsWcAcxmUyu8mS9zMxVbZW7A4zVpBn0xB8Fr2IzqiyAQiSABGogQLJF5OLiAtYLEeBmMWDAAPAU1dA8kVXlNLC4uPijR4/S0tKKi4vBrIKJYQ0NDaI8xFu3bk1JSYGsyMjIpUuXUigUEPI0aCtJUimtsgpKvufgcnM8JS0AlaOKSIDXBIpKy6JSc6AVkza40BxgwIAEyCRgW9vCKidOnLCwsDA1Na2u1fz8fCr1/yMomMOF2VII1ZVvArm4KG2omTo0hOsrAAQMSKC+BP5/Pdf3SM7yH2rbOAsLaFpMhKapIAnKR6Xhg3OAAQMSQAI8JBCZklvKZMlJiKjLVv3QDg/b/r1q3EMCwkdgSY0Lq2RnZ1+9ehX8P1wdnzRpkqurKyF0dHQ8fPjwpUuX4uLinjx5Ai6joUOHgl1E5DZXPMayfOL4wceUrPyS5tIB20UCAkqAHIvIzMzM3NzcrJrN3NxcQOlwqa2rTLxKVD5xy5WFu0gACSABEgl8+pYFtZmoy1IoPHeAQ0MYkECLIlDdwioEBLBzwNvj7OxM7LLjhISE5ORkYnf16tV//vknxEZGRtOmTevfv/+RI0eIrGaMO7WVNVCVLi5l3glJakY1sGkkIIgEyLGIYI4kNjYW4ipDbGysIKKprLNehUUUiT6iymhQggSQAKkEPlZYRPglIlKhYmVI4P8EalhYZebMmfn5+bKy3A+s+vj4eHp6ElXQ6fR//vknOjq6oKAALKWDBw/KyckRWc0YUyiU0RVuoitBuOJcM54HwWgateQiQI5FpFnbxtWqgO7qq5QvwB2Ny80J6PlDtZGA4BD4VLHQnDG+RCQ4pww1RQL8QGC4eRsRGiU0KSus4h7CDyqhDkhAIAiQYxFxdTUsLOzhw4d3ODauAgK6Szw1F5mWA/50QegC6ogEkIBAEihjssKTy5feRh+RQJ4/VBoJNB8BeUnRfkaq0P6VoESIMSABJFBHAiRbRLGxsaampiYmJoMHDx5WsQ2v2OqoDZ8X01GSolBaZeaXZOQV87mqqB4SaGEEhKq7sd9zC0uYEqK09hWruQhV37AzSAAJ8JjAaMu20MLNd0mFJWWQwIAEkEBdCJBsES1atKh9+/apqakSEhKfPn3y8/OztLT08fGpiyr8X0ZclKbRWgL0jKxYFRcSGJAAEkACpBMgHpkzUpOhUnFZBdLpCkGF2AUkUBOB7npKarJiWQUlT8JSayqHeUgACXAQINkiCggI2LBhg5KSErVis7Ozc3NzW7hwIUeLgp3UVylfbi4aF1cQ7NOI2iMBvibwMal8oTl8ZI6vTxIqhwT4lQCNShllUe4mEooH5/iVMuoldARItojKysqkpMptBkVFxW/fvgEuTU3NiIgISAhH0FUuX1whChdXEI7Tib1AAnxJgPAR4bIKfHlyUCkkIAAERluUf5jIPzr96898AVAXVUQCfECAZIvIxMTkw4cP0K9u3bpt3779xYsX4DLS1tYGSbVBoDL+W4Abn5oTqLOGyiIBASLAYrGIjxGhj0iAzhqqigT4ikA7BQkbHQUWq9W1YFyGm6/ODCrDvwRItohWr17NZDKhu5s2bfry5Uv37t3v37+/b98+kAhH0CcW4Man5oTjdDZ9L7BFJFAbga8/C7ILS0VpVL0Kj3RtxTEfCSABJFAFgTEVHya6GvSVyWRVkY0iJIAEfidAmkVkZmZ24MCBrl27jhgxApoAv1BYWFh6enpaWlrv3r1BIhxBR1kSOpKRV5yRWwQJDEgACSABcgkQLxHpq0qJ0km7P5OrYV1rw3JIAAk0H4EBJqrSYvSkzIKXMRnNpwW2jAQEhgBpv7jdunUDB5G6uvoff/zh5eVFAJCXl6dQhGqtJAlRetvW4tC7KHQTAQUMSAAJkE3gv5eI1GTJrhjrQwJIgGcE+K9iMRGak5k66IXrKwAEDEigVgKkWURHjhxJSUk5evQoxP369dPS0tqwYUNCQkKtGghcAeLBObSIBO7EocJIQCAIEC8RmbSREQhtUUkkgAT4lsBYy3ag28NPKVn5JZDAgATIISCktZBmEQEfMTGxiRMnent7R0dHQ+LEiRPa2tr9+/e/cuUK5ApN0FMuX0wvGhdXEJozih1BAvxE4OO3bFDHSB19RIABAxJAAg0nABMrBqrSxaXM2yFJDa8Fj0QCLYMAmRYRm1j79u03btwYHx9/6dKloKAgZ2dndpYQJHQrLKJIoV6AWwhOE3YBCQgigbTswu85RVRKK0O18oX+BbELqDMSQAJ8QoBCoYztUr4M9+U3iXyiEqqBBPiWAE8sIujts2fPJk+e7OLiUlZWNmPGDJAITcCn5oTmVGJHkECrVq34CgLxEpG2kpSEKJ2vFENlkAASEEQCw8zaiNKocGMhlmwRxC6gzkigaQiQbBElJCRs2LBBW1vbwcHhy5cvhw4dSk5O9vDwaJrONE0rOhU+ovTcop95xU3TIraCBJBACyHw6VsW9NREHV8iAgwYyCeANbY0Aq0lRfsaq0CvrwahmwgwYEAC1RIgzSK6cOFC3759wRY6cuTI2LFjIyMjfX19J02aJC5evjJbte0LYIYUg95GrrxTuLiCAJ49VBkJ8DWBj0nlLxEZ40tEfH2WUDkkIEgExlZ8mOjW+2+FJWWCpHejdcUKkEC9CJBmEbm4uEhJSd26dSsxMdHNzU1XV7deeghWYT2V8sUVotJyBEtt1BYJIAE+J/ApudxHZIwLzfH5eUL1kIDgELDVVbTWlt85uhOlVauM3KLiUmZ+cangqI+aIoEmIkCaRfT169ebN28OGTKESiWtoTjragAAEABJREFUztoYNFs+sdxcFC6u0GxnABtGAkJIICu/JPFHAXTMGD9GBBQwIAEkQAYBGpVydJLlh69ZXbY8tdj01HLzkyO+sUXoLyKDLdYhTARIs16UlZWFiUvNfdFTLl8GKho/0lozJswlkwDWJfwECAdR29bishIiwt9b7CESQAJNQqCguPT487j93tHZBeWuIYj3ekUd8olBT1GT4MdGBIYAaRZRY3rs5+fn6Oiorq5OoVBu3brFrsrFxQUk7GBlZcXOSklJmThxoqqqqqSkZOfOna9du8bOaoIE8dRcJH6SqAlYYxNIoMUQCKv4EpEJvkTUqsWccuwoEuA9ARqVeuplHFc7IKFT+WIEyKUY7iKB5iLAF9dDXl6eqanpgQMHKlMYMGBA8q/t/v377AJgDkVERNy5cyc0NHTEiBFjx4599+4dO5fXCeKTRGk5RVn5JbxuC+tHAkighRAglsc1xoXmWsj5xm4igXICPP+XU1gCfiGuZkACci4h7iKBlkyALyyigQMHbtq0CQybymeCwWCAI4gI8vLy7AIBAQELFizo2rWrtrb26tWr5eTk3r59y85lJ4qKirI5Nra8kQlpMRE1WTGoJPo7Lq4AGDAgASRAAoFPhI+ojSwJdWEVSAAJIIEKAtJiIjLi3N83AwnIK/IxQgJNRoCvGyLZIgL7JCMjg7PHmZmZIOSU1Cvt4+OjrKysr68/Y8aMtLQ09rF2dnaXL1/+8eMHk8m8dOkSWD729vbsXHbCzc1N9temoaHBljc+oadS/ipRJC6u0HiUWAMSQAKtWhUUl8V8zwUS6CMCCBiQABIgi0AZkznFpj1XbZOttTJyi7iEuIsEWjIBki2i+Pj4srLfFrwHWyUpKalhiMF3dP78eW9v7127dr1586Z3795QG1EVmEOlpaUKCgrgRJo1a9bNmzd1dHSILM7Y1dU169eWmEjm58n0Kr7TisvNcdIuT+M/JIAEGkQgPCWbyWqlJM1Qlin3PzeoDjwICSABJMBNQFyUPtdeZ5GDHviFIA/iBb11XWy0Jp187eEbw2KxQIgBCSAB0iyiOxUbAH306FFFsjwCQ2Xjxo1aWlogb0AYO3bs4MGDTUxMHB0dHzx4EBkZee/ePaKe1atX//z58+nTp0FBQUuXLh09enRoaCiRxRmDvSTDsXFmNTL9n0WEnyRqJEc8HAnUSKC6ZVdu3LjRv39/RUVFCoXy/v37ynXAzzxMqUAu52ItlYuBBDzJUGzx4sWQrl8gtfSnpIovEeFLRKRSxcqQABIAAgwR2qye2kGr+gav7gPxrB7ax/xio9Jytz74POfcW3yhCBBhQAKkWUTDKjYYWEyePLkiWR6NGzfuyZMn4OFpPGg1NTVNTc2oqCioKiYm5sCBAydPnnRwcDA1Nf3nn38sLS0PHjwIWU0W9IiPtOJTc01GHBtqkQSqW3YF5La2tlu3bq2Oiru7O9yOqstly8H5fPTo0U6dOrElzZUgXiLCR+aaiz+2WwsBzBZwAhKidFE6VUGKAbGUmMjfAw02DjMRoVEefkpxOvAC184V8NOL6pNAgDSLiFmxtWvXLi0trSJZHhUVFUVERAwZMqTxmmZkZCQmJoJdBFXl5+dDTOVYOJJGo0F7IGyyoKtc/h5RSnZhdiEuN9dk1LGhFkcA/DxVLrsyceLEtWvX9unTp0oiISEhu3fvhkmTKnPZwtzc3PHjxx87dqx169ZsYXMlCIsIl95uLv7YLhJoUQRgwmiileaVWdZqsmKx6XlgFN0J+daiCNTUWcxrkQRIs4gIenFxcYqKikS67jGMS95XbHAI1ADJhIQEEC5btiwgICA+Pt7Hx8fR0RFqHj58OJQxMDDQ1dWdNWvW69evwV8EPijwRIFPCrKaLMiKi6jIMKC56LTyl6EhgQEJIAF+IAAzJs7OzuBGVlVVrVmfefPmDR48uDqzijgWpnU4lqvMJoSkxyVlzIiU8oUrjfFjRKTDxQqRABKohoB5u9Z3F9jZ6ioUlJQtvPhu3Z1PxaXMasqiGAkIOQGSLSKg5eXltXLlyunTp0/l2EBeQwgKCjKv2KDM0qVLIQmzv+D2CQ0NdXJy0tfXnzx5MsRgHUlLl3tmRERE7t+/r6SkBGZSp06dzpw5c/r06UGDBsHhdQykFNOrcBNFpZaPY0ipECtBAkig8QSWLFliY2MDt46aq7p06dLbt2/d3NxqLgYFfi1XKUvuepWc7Ual5haXMaXF6Bry4pxyTCMBJIAEeEpAQYpxZmq3ufbla1N5vox3PvYqNbuQpy1i5UiAPwmQbBGtX7++X79+YBSlp6f/5Nhq7ry9vT3r983T01NcXPzRo0dpaWnFxcVfvnwBCedwRE9P7/r166mpqXl5eSEhIRMnTqy5CV7k4qtEvKCKdZJOoEVVeOfOHW9vb3d395p7nZiYuGjRonPnzomJ1bKwG+/Wq+TU8OO3/5ZVoFAonHJMIwEkgAR4TYBGpfw1wODoRAtpBj34y8/B+/xfxf72GRVeK4D1IwF+IECyReTh4QGmS2Bg4K1bt25ybPzQVdJ1+M9HhE/NkU4WK0QCDSUA5lBMTIycnBy9YoNqRo4cCXMukOAMwcHBMNtiYWFRUYru6+u7b98+SJeV/fbxADiEd+tVQuXsEEZ8mxUfmWMTaWgCj0MCSKBhBPoZq/67wM5AVTo9t2j88cCjfjEwU92wqvAoJCCIBEi2iMCfY2NjI4ggGqAz4SPC94gagA4PQQI8IrBixYoPHz68/7VBK3v27Dl16hQkOIODg0NoaOivUu8tLS3Hjx8PuzQajbNYk6U/Ektvt5FpshaxISSABASdAOn6aylK3pxrO9y8TRmTteX+57nncWFu0hljhfxLgGSLaPr06RcuXODf7pKqmZ6yFNSXlFmQW1QKCQxIAAmQTiA3NxcMFQhQM3vZFUj/+PEDhGFhYZCOiIiAdEpKCqRVVVVNODaQtGvXrn379pCAAIbQgQMHICEtLc1RykRSUlJBQQEkkNX0gclkhSeXr9mAC801PXxsEQkgAU4C4qK03WNMNzoZi9AoDz6mOB3Ehbk58WC62Qg0QcMkW0SFhYW7d+/u2bPnggULlnJsTdCTpm9CTkJUSRqXm2t68NhiCyJQ5bIr0P87d+6Ym5sPHjwY0uPGjYO0h4cHpGsOMTEx6enpNZdp+tz4jLy84jIxEaq2UvkkS9MrgC0iASSABNgEKBTKRGuty8TC3N/zhh188S8uzM2mgwnhJUCyRfThwwczMzMqlfrx48d3vzaYvhVWgISbCJebI+P8Yh1IoAoC9lUtuwLlXFxcWL9v69atAzlXgCKc6/LHx8dXWczHx6fWxRi4aiZx92PFS0QGqjI0Ki6rQCJXrAoJIIGGE+hcsTC3jY5CfnHZgovv1v/7qaQMF+ZuOE88kv8JkGwRPatq8/b25n8QDdNQX6V8NfAoXFyhYfjwKCTQQgn81u1PFQvNmeBLRL9RwR0kgASamUDFwtxd51QszH3qRbzz0Ve4MHcznxJsnpcESLaIeKkqP9atW/EqEfqI+PHcoE5IQEAIfEoqf4kIv80qIKcL1awvASwvwAToNOrfvxbmDsKFuQX4TKLqtRMg3yJ68+bNX3/9NW7cuBEcW+2KCGaJ/56aQx+RYJ4+1BoJNDsBFov1n48Il95u9pOBCiABJFAVgX7GqncW2HVQ+W9h7mN+sXDjqqogypCAABMg2SK6dOmSra1tWFjYzZs3S0pKIOHt7S0rKyvAhGpUnXhq7uvPgjxcbq5GUJiJBJBAlQS+ZRX+zC+hUyn6qrisQpWEUIgEkEDzE2ivKHlzns0wM/UyJmvz/fB5F97iKrvNf1ZQA1IJkGwRbdmyZc+ePXfv3hUVFd27d294ePiYMWPatWtHqs7NWtnvjbeWFFWUEgVZzPdciDEgASSABOpF4FPFl4j0VKQZ9Ob5FFK9tMXCSAAJtFgCEqL0PWPNNlQszH0/NMXpgH90Wk6LpYEdFz4CJFtEMTExxHq4DAYjLy+PQqEsWbLk6NGjwgeO3aNfrxKhRcRGgglhIYD94D2BTxULzRmry/C+KWwBCSABJNAoAjCom2StdWmmtaqMWMz3vKEHXtz98K1RNeLBSIBvCJBsEcnLy+fklM8ZtGnT5uPHj9DNzMzM/Px8SAhrIB6ci8SZEmE9wdgvJMBLAsRLRGgR8ZJx3erGUkgACdSNgIVm67sL7ay1yxfmnn/h3YZ/w3Bh7rqRw1J8TYBki6h79+5PnjyBHo8ZM2bRokUzZsxwdnZ2cHAAibAGYnGF6FT0EQnrGcZ+IQEeEiB8RCZthPZlSx6yw6qRABJoGIFGH6UoxTg7revsnjpQ08kXcX8ce5WWXQhpDEhAcAmQbBEdOHBg3LhxgMPV1XXZsmWpqakjRow4ceIESIQ16CrjJ4mE9dxiv5AAbwlk5BYlZxVSKK0M1fCpOd6ixtqRABeBpKSkCRMmKCgoSEhImJmZBQcHEwUolbYdO3YQWVxxZmbmvHnz1NTUxMTEDA0N79+/z1VAuHfpNOqKgQZHJlpIM+hv4n8O3u//Ou6HcHcZeyeQBOqsNMkWkby8vLq6OrROpVL/+uuvO3fu7N69u3Xr1iAR1qCvUr5CVOLP/ILiMmHtI/YLCSABXhAgHETtFSSlGHRe1I91IgEkUCWBnz9/2traioiIPHjwICwsbNeuXXJyckTJZI7t5MmTYB+NHDmSyOKMi4uL+/btGx8ff+3atYiIiGPHjrVp04azQAtJ9zdWvT3ftoOK9PecIudjr44/x4W5W8iZF8JukmwR0Wi0tLQ0Tk4ZGRkg5JQIWVpBiiEvKcpitYrB5eaa6dRis0hAQAl8/JYFmhvhsgpAAQMSaEIC27Zt09DQOHXqVNeuXbW0tBwcHHR0yh8AAxVUObbbt2/36tVLW1sb5FwBjKUfP37cunULLCtNTU07OztTU1OuMrBbVFSUzbGBRPiCtpLUzXk2ThULc2+6Fz7/wjtcmFv4znJL6BHJFlHlj3bB7UBUtHx9aiGmqatc7iaKwsUVhPgcY9eQAA8IfKpYaK5eLxHxQAusEgm0OAJ37tyxtLQcPXq0srKyubk5eHgqI0hNTb137960adMqZ4EEarC2tp43b56KioqJicmWLVvKyqp4TsTNzU321wY2GBwolEFClO4+1mz9UGM6lXIvNBkX5hbKsyz0nSLNItpXsYF/+fjx4xXJ8mjPnj1wvzAwMBBujsTiClG4uIJwn2bsHRIgm0BYhUWEC82RzRXrExICvOtGbGzs4cOH9fT0Hj16NHv27IULF545c4arudOnT0tLS48YMYJLTuxCDdeuXQMr6P79+6tXr961a9fmzZuJLM7Y1dU169eWmJjImSVkaQqFMtlG6/IsaxUZRsz3PKcDL+59SBayPmJ3hJsAaRYRGD8QWCyWh4cHJIgA6fz8fIiFG6K+SvniCpFoEQn3acbeIQFSCeQUlsSl50GVxt3jZq8AABAASURBVOq40BxgwIAEmo4Ak8ns3LkzOHbAQTRr1qwZM2aAgcTV/MmTJ8ePHy8mJsYlJ3ahBvAvHT161MLCYty4catWrapcA5RkMBgyHBtIhDuUL8y9oLuVtnxecdm8C2833sWFuet6wrFcsxMgzSKKq9h69uwZEhJSkSyPIiIiYAKmW7duzd5PnipA+Iii8ak5nlLGypGAcBEITy7/dJu6rJi8pJA/Vyxc5w17IwwE1NTUjIyM2D0xNDRMSEhg70Li+fPnMICZPn06pKsMUIO+vj77NWmoISUlpbi4uMrCLUqoJM04N63brB7lL1+d8I8bfywwLQcX5m5RfwKC2lnSLCICwLNnz9gry4E3+f379z9//iSyhDjWrVhuLuFHfmFJFY8R/+o4/o8EkAAS+D+Bj0nEsgroIPo/E0whgaYhYGtrCwYPu63IyEhNTU32LiROnDgBzp8qF0uAXAhQQ3R0NHiKIA0BagAbSejfmoae1iXQaVTXQYYeEzpLMeiv438M3uf/Jh4X5q4LOSzTnARItogWL14M9xHoEJhDPXr0AK+0hoaGj48PSIQ4KEkx5CREmLjcnBCfY+xa/Qhg6doJ/FpWAb9EVDsrLIEEyCWwZMmSV69ebdmyBayaCxcuHD16dN68eewmsrOzr169WtlBNGnSJFdXV6LYnDlzMjIyFi1aBLbQvXv3oCrOGogyLTweYKJ2e76tvopU+cLcR1+Bv4jFYrVwJth9fiZAJVc5uIkQcyr//vtvfHz858+fwUZatWpVza34+fk5Ojqqq6tTKJRbt26xC7u4uICEHaysrIgsqJktZCegaSK36WPQ4deDc7lN3zq2iASQgCAS+FSx9Da+RCSI5+53nXFP8Ah06dLl5s2bFy9eNDEx2bhxo7u7+/jx49nduHTpEozdnZ2d2RIikZCQkJz832oBMNv7+PHjN2/edOrUaeHChWAarVixgiiGMZuAjpLUzbm2Q03VS5msjXfDFlx8l1dUys7FBBLgKwIkW0QwZaKqqgo9vH///ujRo/X19adNmxYaGgqSGkJeXh7YUQcOHKhcZsCAAXADIgLUSRSAOxEhIeL169dLSkoOHDiQyG2WWFe5fHEFXG6uWeBjo0hA4AgUlpRFpZVPoJi0QR+RwJ09VFgYCAwZMgQGJ4WFheHh4TNmzODs0syZM/Pz82VluZ9o9fHx8fT0ZJe0trYGRxPUEBMTs3LlSvY7RewCwpiod58kGfS948z+cTSiUyl3PyQ7HXwRXXHrq3dFeAAS4DEBki0iFRWVsLCwsrKyhw8f9unTB5SH20qttwkwZjZt2lTlGpcMBgNMLCLIy8tDhRCgQkJCxDDTM3bsWCmp8o8CQW6zBPALQ7uRqeWvSkMCAxJAAkigBgJwryhjsuQlRVVlql7JqoZjMQsJIAEkIEAEKBTKFNv2l2ZaqcgwwBxyOuB/P/Q/V5sA9QJVFXoClSyixvV4ypQpY8aMATc0XAB9+/aFygIDAxvzPSIfHx9lZWXwNcEUTlpaGlTIFYKDg9+/fw+eKC45sVtUVJTNsRFCXsR6FT4iuNR5UTnWiQSQgJAR+JiUDT0yVpeBWyUkMCABJIAEhJuApZb83QXdu7UvX5h77vm3m++FlZYxhbvL2DvBIkCyRbRu3brjx4+Dx/nFixfg3gEW4M9p8MO14Ds6f/68t7f3rl273rx507t3b7BwoE7OcOLECUNDQxsbG04hO91kn4vWq1huLj4jr6gUl5tj4+f7BCqIBJqJwCd8iaiZyGOzSAAJNBcBJWnG+en/Lcx97HncH8dxYe7mOhXYbhUESLaIoIVRo0YtWbKkbdu2kIYwefJkJycnSDQgjB07dvDgweBxcnR0fPDgAbGiC2c9BQUFFy5cqM5BBCVdm+pz0crSDBkxOpPVKvZ7+ScXoWkMSAAJIIHqCHz89p+PqLoC5MuxRiSABJBAcxMgFuY+PL5iYe64H0NwYe7mPiPYPpsA+RaRl5fXypUrp0+fPpVjY7fX4ISampqmpmZUVBRnDdeuXcvPz580aRKnkDMNfioZjo0zi9w0hULRU6lYXAFfGSSXLNaGBISOQGkZ83NyuUVk0ob71W2h6yt2CAk0BwFsk78JDOxYvjC3nrJUWk6R89FXJ/3jWLgwN3+fspagHckW0fr16/v16wdGUXp6+k+OrfEoMzIyEhMTwS7irOrEiRNDhw5VUlLiFDZXGq5taDoaF1cAChiQABKonkDM97yiUqYUg64pL1F9KcxBAkgACQgtAR0lqVvzbB0rFubegAtzN+Y847EkESDZIvLw8PD09AwMDLx169ZNjq1mbXNzc99XbFAsLi4OkgkJCSBctmxZQEBAfHy8j4+Po6OjoqLi8OHDoQwRoqOj/fz8wBlF7DZ7TPiIIlPLV9RtdmVQASSABPiWwKeKl4iM1GSoVArfKomKIQEkgAR4SkCSQd/HsTD3sIMvYr7jCIqnyLHymgiQbBEVFxdXt8hBDVoEBQWZV2xQZunSpZBcu3YtjUYLDQ11cnLS19efPHkyxGAdSUuXP5kGxSCcPHmyTZs24JKCND8EwkcUlUb+Atz80DvUAQkgAbIIEAvNGanjl4jIIor1IAEkIJAEKBULc1+caaUszYhKy3U68OIBLswtkGdSGJQm2SICj82FCxfqC8be3p71+waOJnFx8UePHqWlpYGV9eXLF5BoaGhw1rxly5bExEQqleQucDZRr7Tef8vN5ReX4oKS9SKHhZHA/wm0hBThI8KXiFrCucY+IgEkUCuBLlrydxfadW0vn1tUOuf82yO+MXlFpTCUysgtghgGVbXWgAWQQOMJkGxOFBYW7t69u2fPngsWLABvDzs0XlH+r0FVRkyaQS9jsuIzcLk5/j9dqCESaB4CTCYrDBeaax72fNcqKoQEkABBQFla7Pz0bjO6t9dRkhpl0dbDN8Zy8xOLTU8hPuIbW1SC3zUhOGHMQwIkW0QfPnwwMzMDv83Hjx/f/drev3/Pwx7wTdXg/NWtcBNF4uIKfHNSUBEkwG8EEn/m5xSVitKpuspS/KYb6oMEkAAS4BGBWqsVoVFXDTbynNLF82X8fu/o7IJSOATivV5Rh3xi0FMENDDwlADJFtGzqjZvb2+e9oF/Kv/vVSJcXIF/TglqIuAE/Pz8HB0d1dXVYcbh1q1b7N7cuHGjf//+ioqKIK9yzoXFYg0cOBByOY9iHw4JNze3Ll26SEtLKysrDxs2LCIiAoRNED5VOIgMVKXh578JmsMmkAASQAICREBFRux0QDyXwqdextH55hUJLt1wV2gIkGgR/cbk69evSUlJv4lawI5+xSeJovGTRC3gXGMXm4ZAXl6eqanpgQMHuJoDua2t7datW7nk7F13d3cwh9i7lRO+vr7z5s179erVkydPSktL+/XrB3VWLka65GNSFtRpjMsqAAUMSAAJIIHfCeQUloBf6HdZK5CAnEuIu0iAXAIkW0RMJnPDhg2ysrKamprt2rWTk5PbuHEjCMlVmm9rIx6Dwafm+PYEkacY1tREBMDPs2nTphEjRnC1N3HixLVr1/bp04dLTuyGhITs3r375MmTxG6V8cOHD11cXIyNjcHiOnXqVEJCQnBwcOWSRUVF2Rxb5QL1lRA+ImN12foeiOWRABJAAkJPQFpMREacztVNkEiI0sOTs7nkuIsESCRAskW0atUqmM2Fidt37969fft2y5Yt+/fvX7NmDYka83NVehU+orj0vJIyXG6On08U6ibMBPLz852dneFGpKqqWsd+ZmWV+23k5eUrl3dzc4MpHiJwLXdZuXCtEhaLRSw0ZyxIPqJau4UFkAASQALkEChjMqfYtOeqa7K11vOo74P2PXe9EZqRW8SVi7tIgBQCJFtEp0+fPn78+Jw5czp16gQzr3Pnzj127JinpycpuvJ/JeqyYpKitFIm6wsuN8f/Zws1FFICS5YssbGxcXJyqmP/wEpZunSpnZ2diYlJ5UNcXV2zfm2JiYmVC9RLkpZTlJ5bTKNSDNXwY0T1IoeFkUDTEMBWmpmAuCh9rr3OIgc98AuBKhBDem4v3dfxP1isVhdfJ/Ta6XPqRRzOOwMcDOQSINki+vHjh4GBAaeKsAtCTokQpykUim6FmygSF1cQ4tOMXeNjAnfu3PH29nZ3d6+7jvPnz//w4cPFixerPITBYMhwbFWWqbuQcBDpKEmKidDqfhSWRAJIAAm0HAIMEdqsntpBq/oGr+4DMaTFRWirBxtdmWVtpCaTXVi6/t+wQXuf+0eltxwmvOkp1vobAZItIvALHfj9HWjYBeFvbQr1Di43J9SnFzvH7wTAHIqJiZGTk6NXbKDuyJEj7e3tIVFlWLBgARhRz549a9u2bZUFyBV+TCp/Dt4EXyIiFyvWhgSQgHARkBCli9KpClIMiCFNdK5re/l/F9htGd6xtYRIVFruhBOBM88EJWTkE7kYI4FGEiDZItq+ffvJkyeNjIymTZs2ffp0SHh6eu7YsaORWgrQ4f9ZRGk5fKEzKoEEWhiBFStWgMPn/a8Ner9nz55Tp05BgiuwWCzwDt24cQOMqPbtuR9b5ypM1i7hIzLCl4jIAor1IAEk0JII0KiUP7q181nWy8VGC9KPw1L77PHd+SgCv1bUkv4KeNVXki2inj17RkZGDh8+PDMz88ePHyNGjIiIiOjevTuv1Oe/eokFuKPwqTn+OzWokSASyM3NJawbUD4uLg7SCQkJkIbbC6TDwsIgDTcZSKekpEBaVVXVhGMDSbt27dgGj4ODA3itQQhh3rx5586du3DhgrS0dErFVlBQAHKeBsJHZIw+Ip5SxsqRABIQagKyEiLrhho/WNTdVlehuJR54Fl0752+t98nwTyXUPcbO8dbAiRbRKCsurr65s2br1+/DpOvmzZtgl0QtpxALMAdm55bisvNtZyzjj3lGYGgoCDzig1aWLp0KSTXrl0L6Tt37kB68ODBkB43bhykPTw8IF1ziImJSU//79Hzw4cPZ2Vl2dvbq/3aLl++XPPhjczNzC9Oyiw3utBH1EiSeHgrRIAEWjwBmIA+N62bxwSLtq3FU7ILF116P+ZIAPHBtxbPBgE0hABpFlFUVJSzs3N2dvlT8mxFYMDxxx9/xMbGsiVCn2gjJy4uQispY335gc+2Cv3Zxg7ynABYLDDtxxk8PT2hVRcXF04hpNetWwdyrgDyYcOGsYXx8fHsYpDFFVxcXNgleZEgvkTUTl5CVlyEF/VjnUgACSABISRQfZcoFMoAE9WnS3v+2Vcfhl5v4n86HvB3vfEhIxdX6K6eGuZUQ4A0i2jHjh0aGhoyMr8tKSsrKwtCyKqmdSEUU6kUPRUp6FhUKr5KBBgwIAEk8B8B4iUikza/3ST/y8P/kAASQAJIoEEExERoCxz0vP7s6WiqXrFCd6L9Tp+T/rhCd4NotuCDSLOI/Pz8Ro8eXZnkmDFjvL29K8s5JUKWJh6cw1eJmvK0FhT+F0+MAAAQAElEQVSXFpcyYVoIYnzDsinJY1t1J0D4iPAloroTw5JIAAkggToSUJcT3+9sTqzQnVNYuuFu+Qrdz6O+1/FwLIYESLOIvnz5oqysXBmooqJi4z9rWLlafpboKUuDelFpuRBjaAICRSVlHr6xlpufWGx6CvER31iQNEG7DWsCj2qxBIgH3I3V0UfUYv8EsONIAAnwlgDXCt0TT7zGFbp5S1yIaifNIpKVlY2JialMJjo6Wub3R+kqlxEyiT7x1BxaRE1yXsE7dMgnZq9XVHZBKTQIMaRBgp4ioIGBfwjAH2Rseh7oY9ySFpqD/mJAAkgACTQlAVpVK3TvePQ5r6h8kNCUmmBbgkWANIuoR48e+/fvr9z5ffv2tajVt4EA4SOK+Z5bxmTBLgaeEqBRqadexnE1ARI6lbS/ba7KcRcJNIBAeHI2i9VKWZqhJM1owOF4CBJAAnxOANXjKwJcK3QffBbjsAtX6OarU8R3ypA2anR1dX3w4MGoUaNev36dVbEFBgaOHDny0aNHkMV3/ealQm1bi4uJUItLmQm43BwvOUPdmfnFGblF4BeCNGcASVpO4Zb74T4RaWiXcpLBdHMRIF4iMmkj21wKYLtIAAkggZZGQF9FmmuF7tEeuEI3CX8FQlkFaRaRubn5tWvX/Pz8rK2t5Ss2Gxub58+fX7lypXPnzkLJrrpOUamUX4sr4HJz1UFqrLywpOyQT7Tjfn+YB5IRp3NVBxJ5SdFrwV9dTr2x2eq19cHn6DQ8F1yQcLdJCeBLRE2KGxtDAkgACVQQYK/Qvaxf+QrdQV9whe4KLhhVIkCaRQQ1Dxky5MuXL2AXbd261c3N7fr16/Hx8UOHDoWslhaIB+cEeXEF/j1jTCbr5ruvvXf6bH8Ykfiz4H1i5hSb9lzqgiS3sNSxk5qchEhqdpGHb0yf3X5OB1+cffUlK7+EqzDuIoEmIED4iPAloiZAjU0gASSABLgIiInQ5vfW817WcyjHCt0nWvAK3QW4Qi/Xn0irVmRaRFC5uLj48OHDly9f/tdffw0bNkxCQgKELTCgj4hHJz0gJgMMmyWXQ75lFarLiu0Za2rVXmGuvc4iBz3wC0GjEEMaJMoyYuudTAJXOnhM6NzHUJlGpYQkZq659bHL5qfzzr999jmttIwJ5TEggVateM6guJQZWfGBMmNcaI7nsLEBJIAEkEDVBNRkxfdxrNC98W7YwL3PW+AK3UW4Qm9VfyAkW0RVNdESZfoquAA3yec9Oi13+ukg52OvQpOypBj0vwZ08F5mP9y8LZVKYYjQZvXUDlrVN3h1H4ghDRKieQadNsBE7fjkLq9cHVYPNjRQlS4uY94LTZ7i+cZ6q/eW++ERKfg0HYEKYx4SiEzNKSljyYqLtG0tzsNmsGokUDsBLIEEWjoB9grd8pKiMLSYeOL1jDNBCRn5LYQLeIcO4Qq9VZ1svrCI/Pz8HB0d1dXVKRTKrVu32Hq6uLiAhB2srKzYWZAICAjo3bu3pKSknJycvb19QUEBCPkk6ClLgSZwpeFr/cChkSE9twh8O/3d/Z6Gp9KolEnWmj7L7efa64ITnF2zhChdlE5VkGJADGm2nJ1QkmZM7679cHGPewvtpthqwX3we07RUb9YqNZxv//pl/E/84rZhTGBBMglEPYtGyoEBxHczSCBAQkgASSABHhPoNoWYCzxR7d2z/60h/EApJ+EpfbZ7dtCVuim4Qq91fxd8IVFlJeXZ2pqeuDAgcpKDhgwIPnXdv/+fXYBMIcgq1+/fq9fv37z5s38+fOpVL7oC6GhhrwEg04tKmV+/dlSZh2IjpMbF5aUHXwWbb/D5+yrL2Bb9jFUebS4xwYnE0Wphq9fbKwu+4+jMbiMjk606GekQqdSwOn0z51PXbc8nX02+GlYagk+TUfuWcTaWrX6+C0LMOBCcwABAxJAAkiATwjISojAeODBou52uorFZcyDz2J67/K59S6JxRK2T6cUFJcFxmYc9olZf+dTak5hdsX3GznPAkhyClv6W9Z8YUUMHDhw06ZNI0aM4Dw9RJrBYKj+2uTl5QkhxEuWLFm4cOGKFSuMjY319PRGjRoFJUHOFYqKirI5Nq5c3u3SqBQdpXI3UVRqLu9aEeKa2csn7HgUkVtU2rGN7MUZVscnWxIvaDW+4+BK6mesenSSZeBKh38cjYzVZUrKWA8/pUw/E2Tt5rXxblh4cvmkfuMbwhqQABD49MtHBGkMSAAJIAEkwD8E9FWkz07remSihYa8eGp20eLL74VghW4w6r5k5N1893XNrY9D9j83Wfdo7NFX2x5+vh3yTUFSVKaqFXqlxej8c1KaRROSLSJw4zx69IizJ7D74MEDTkm90j4+PsrKyvr6+jNmzEhLSyOOhURgYCDIbWxsVFRUevbs6e/vT2RxxW5ubrK/Ng0NDa5cnu7qqZRbRJG46HP9KQfEZAw96M9ePsF9rNntebbWOgr1r6n2IxSkGFNs299b2B1miabbtVeUEk3PLT7hHzdw7/NBe5+f9I/LyC2qvZamKYGtCCYBcG+yn5oTzB6g1kgACSABYSZAoVD6G6s+WdKTc4XuFdc/pAvUACCvqPRlTPrBZ9HTT7+x3PS05w4fGEedffXlY1I2/AwpSzMGGKvO7qmdXVAypdIKvZOttXwivrve+NCSxzwkW0QrVqwoKyvjvG5YLBYIOSV1T4Pv6Pz5897e3rt27Xrz5k3v3r3B5wOHx8bGQrxu3Towkx4+fNi5c2cHB4eoqCgQcgVXV9eKr8WWR4mJiVy5PN3VI14lQh9RfShHly+f8Mb52Cu4gNnLJwwzb0OlUupTTUPKGqrJrB5iFODqcGKy5UATVREaJSw5e8PdsG5bvGacCXr0KaW4FNemawhYPCYuPa+gpExchAYGN9KoKwEshwSQABJoWgJiv1bodjJTZ7FaXXqT2GunD8yQlvDrs/QwwI79nnst+OvKm6Ewjdtx3aM/jgXueBTxNDwtI69YlEY1byc31bb9gT/MX6zoHbjSwWOixcweOqqy4nMrrdA7vbv2tocRF18n2u/0OfUirpRfu8zTvwiSLSIwS4yMjDg1NjAwiI6O5pTUPT127NjBgwebmJg4OjqCoykyMvLevXtwOJNZPjadNWvWlClTzM3N9+zZ06FDh5MnT0IWV2AwGDIcG1cuT3d1lXG5uXoAhpkY8O32L18+IY1WsXyCb6XlE+pRXUOLitCoDoYqhydYvF7ZZ4OTcae2sqVM1pOw1Flng63cvNbd+fQxKQvuQQ2tHo9riQQ+fSt/ichQTRr+sFti/7HPSAAJ1EwAc/mJgJqs+N5x5ldnWxury+QUlm6sWKHbL/I7n+iYU1jiH5W+zytqyqnX5huf9N7lu+xqyIXAhPDkbCarlbqs2OCOaqsHG16fY/NhXb+bc23XOhoN6aTeRk6cQvn/zDJDhDar528r9MqKi2wd2ZHo8vp/wwbte/4yOp1PutxkapBsEcnKyhIOHHYHwBySlJRk7zY4oaampqmpCRYX1ABpiDlNL0NDw4SEBBDyT9BXKX9qDpweTPgj5R+1+E+T6pZPUGjE8gmN72VrSdFJ1lp35ts9XtJjVg9tJWnGj7xiz5fxQ/b7w0zM8eex33PwabrGY24RNRAvEeGyCi3iZGMnkQASEAoCXbTkYQDgNqKjvGT5Ct2TTpav0P0lI6/pOwdjyOi0nCtvEldc/9B/j1+n9Y8nnAjc/STyWcT3zPwSUTrVUrP1jO7tD4/v/MrV4aWrw8Hxnad317bQbA0urxq0lai0Qi/R5S3DO7aWEIlMzf3jeOCcc8GJP8heHqwGnZo7i2SLaOjQoYsXL46JiSH6BebQn3/+CUJitzFxRkZGYmIiYQtpaWmpq6tHRESwK4yMjAR7ib3LD4l28hLgsiwoKUvK5KNlwfmBDFsHuM5vvP3ae6fPDt4sn8BuqDEJfRVp10GGASt6n3LpMriTGpzTzyk5m+6Fg8to+uk3D0KTi0p/e0y0MW3hsUJJ4FOFjwjm3oSyd9gpJIAEkIBQEgCvvnPX31bo7rvbb/vDz3lFpbzub1Z+iW/k9z1PIsESM9vwuM9uv7+uf7j0JjEiNYfFatW2tbijqfo/jka35tl+XNf/2hybVYONBnZUU5UVa6Ri0OU/urXzWdbLxUaLSmn14GNKn92+oEZBcYsY55BsEe3YsQM8QgYGBu0rNnDdKCgo7Ny5s+aTlJub+75ig2JxcXGQBIcPCJctWxYQEBAfH+/j4+Po6KioqDh8+HAoQ6FQli9fvm/fvmvXroHRtWbNms+fP0+bNg2y+CfQaVRtpXLnWFRay/oGaB1PwcuY9KEH/ZdeCfmWVQh+XndeLp9QR5VqKAZns5eB8sE/Or9e5bBxmImZhlwZk/U0PG3O+bfdtnj9c/tj6Fd8mq4Gfi03i8VifUzKhv4bq8tCjAEJIAEkgAQEiACxQvfDXyt0H/KJ6c2DFbphRPE5Jfvi64TlV0PACDHd8Hjyydd7vaL8Ir9nF5aKiVC7tpef1VP7yESL1ysd/P/uvd/ZfIptexiKgI+IdJjQ5XVDje8v6m6lLV9UygQ1QKX7ocnwc0Z6W3xVIckWkays7MuXL+/duzd37lzwDnl5eXl7e8vJydXc56CgIPOKDYotXboUkmvXrqXRaKGhoU5OTvr6+pMnT4YYrCNp6fKXc6AYeKJcXV2XLFliamoKrTx58kRHRwfkfBX0VMq1xQW4uU4K+H+nn37zx7FAGCk28fIJXJo0YFdOQnSilSZMzDxd2mN2Tx0VGQa4rU8HfHE84N/f3e+oX0xadmEDqsVDBJRArWqDiziroESERgFnY62FsQASQAJIAAnwIQEYznGt0D3KIwBmQhuj6s+84mef03Y9jphwPNB0/eMB7s9db4ReDf4anVb+1RZNBYlhZuobnIz/nW8Xuq7/lVnWrgMN+xurKss01hFUR50NVGUuzrA6NL5zGzlx+CGbe/7t+OOBESnCPMVPskUEoCkUSr9+/cCHM3/+/B49eoCk1mBvbw+mJ2fw9PQUFxd/9OhRWlpacXHxly9fQMK1fPaKFSsSExPz8vLABrOzs6u1laYvQCw3F5la/sfd9K3zYYvpuUWrb4X2d38O3hVwzk6y1myW5RNIIaOrLL1ioMHLFQ6np3YdaqrOoFPhRG+5/9l6q/eUU6/vfUguLGkRXmZSYApxJWD2Q+/0lKV5MZMHNWNAAk1GQMgaSkpKmjBhgoKCgoSEhJmZWXBwMNFBGMNwhR07dhBZVcaXLl2C8sOGDasyF4VCQwDOMhgkT5b0XN6/g7gILfjLz6EH/Vdc/wADG+hjQXFpcSkzI7cI4vziqh+rKy1jhn3LPvfqy59XQnrv9DHf+GSK55v93tH+0VBHqYQozVpbYa69zvFJlkGr+/gu7+U+znyStVbHtrIiNPLH6qBzrQG6PKij2tOlPRc56MEg52VMxqB9z9fd+ZSVX1LrsYJYaXS0OgAAEABJREFUgBzK+/btKywsnxqHRJVBENE0Xmc9YgFufGquVSswDw4+i7bf4XPuVQJ4h/saqTxe0mODk0nzLp/Q+FNMo1J66ivtczZ/varPluEdLTRbQ++eRXyfd6H8aTow/94nZoKp3/iGsAYBJRBW8RKRSRsZAdUf1UYCQkng58+ftra2IiIiDx48CAsL27VrF/thlmSO7eTJkzAoHDlyZHUQYLp22bJl3bt3r64AygWUQHVqi4nQ5vXS9V7Wk71C91TPNzmFJR6+sZabn1hsegrxEd/Yol9TomAjPQ1L3f7ws/PRV53WPwaLYvWtj9fffo1NL1+kQVtRckTnNpuGmdxbaPfhn34XZ1r9NcCgj5GKohSjOgWaXi4uSlvSVx/sooEmqjDC8XwZ32uXz8XX5WO5pleGpy2SYxHt2bMHfDWgKCQqB3d3d8hqgQHcrNDrqLTcljwmJpZP6MWxfMKlmVbHJlnqKJWvxQd8hCPIiov80a3d9Tk23n/2nNdLR01WLKugBMy/YQdf9Nnte9gnJiWrfMqA3dm6zCexC2NCcAkQC80Z40tEgnsKUXNhJLBt2zYNDY1Tp0517dpVS0vLwcGB/eC9Ksd2+/btXr16aWtrV8mgrKxs/Pjx69evr65AlUehUAgIqFWs0H1ttjXMdi3orXvUL3avV1R2QblrCGJIH/SJfpfws+eOZ2AjTT8TdMgnJiA2I7+4TIpBt9VVgENOuXR5t6av9zL73WPMJlhpwm8EnUbOgJxHeDXkJQ5PsDg3rRvM9f/IK3a9Eep00D8o/gePmmuWask5AXFxcQoKCtABSFQOsRUfVIVcfgpNoYumgoQIjQLXQFJLXW7uZUy644Hy5ROSswrbyIkTyydYaZf/qTTFCWiONrSVpJb3N/D/uzfcOIaZqYuJUGO+5217+Nlmq9ekk6/vhHyDqSMI1c0nNYfK2CYPCXxEHxEP6WLVSKCBBO7cuWNpaTl69GhlZWVzc/Njx45Vrig1NfXevXvTpk2rnEVINmzYoKSkVEMBKFZUVJTNsYEEg9AQsNSSvz3Proee0umAeK5OgSOlg6p0TmG5jaSrLDXaoq3biI4PF3cP+aff+elWf/br0MtAubWkKNdR/L9rp6d4f1H3tUOMpMXoH5OyR3kELLn8PjW7kP81r4uG5FhE7JbgBpGf/9vi5QUFBSBkF2hRCREatb0isdxci3uVKDotZ5pn+fIJn75lSzPofw8w8Pqz5zDzNlQqpSX8DdCoFLhxuI8zf7Oqz7aRHbtotWayWvlFfl948d2L6PSDz6L3/j6fdMgnJr+aJ4/JwIV1NA+B7zlFqdlFFEorA1V8aq55TgG2igSqJAATtYcPH9bT03v06NHs2bMXLlx45swZrpKnT5+WlpYeMWIEl5zYffHixYkTJ6o0pYgCROzm5ib7awOvFCHEWGgIwG99blFpdkG55cPZKZBAODrRImRtv6dLe+4YberctR38EEB5zmKCmIaR7VS79s+W2Y/rogG/bjffJfXa6XPYJ6aoVODfnSbZIlq/fn1u7m+jfzCQQCiIZ50UnYkH56Jb0uIK6blFq26WL5/g9TkNLv7J1po+y+3n2OuIidBIQSpYlUiLiYzt0u7qbBufZfYLe+saq8lY6Sh4BnDPJ516GUenknwxtsKtuQl8qnAQaStKSjLoza1Ly2kfe4oEaifAZDI7d+68ZcsWcBDNmjVrxowZYCBxHXby5Mnx48eLiVWxtFdOTs6ECRPAHFJUVOQ6imvX1dU169eWmJjIlYu7QkAAfuVlxLnv8CCRlxS11JKXlRARgj5W7oKiFGPryE6359l2bieXX1y27eHn/nv8vD+nVi4pQBKSB2EsFotC+c0JEBISIi8vL0BEyFVVr2JxhchUYV6vkE2soLgMvB/2O3zOB5a/ckcsn7Be8JdPYHewMQktRcml/Tr8u8CuuvmkH3nFr+MysgtLGtMKHstXBMBBCvoY40tEQAEDEuAnAmpqakZGRmyNDA0NExIS2LuQeP78eURExPTp0yFdOcTExMTHxzs6OtIrNvAv3blzB5Ig5yrMYDBkODau3EbvYgXNT6CMyZxi055LD5CUMplcQuHb7dRW7tpsm91jTJWkGfEZ+VM9g6aceh37/Te/iAD1mjSLqHXr1mD5UCgUfX19SBABfMV9+/YdM2aMABEhV1U95YpPElWsLk9uzXxVG5PJuh78tfcunx2PImDE36mtrFAun9B45lQqRU5cVKaq+SQQzj731mz94yH7n2/4N+zhx5SM3KLGt4g1NCMBwkdk0gYfmWvGk4BNI4EqCNja2oLBw86IjIzU1NRk70LixIkTFhYWpqamkK4cDAwMQkND3//ahg4d2qtXL9jD5+IqsxJ6ibgofa69ziIHPfgRh85CDGmQSIjSYVfoA4xqRnRu+2yZ/aye2iI0yrOI7/3d/dwehMNQkOy+87w+0iwid3f33bt3g49o/fr17OXmPDw8/P39Dx48yPN+8GsD+irlK6pFC/Vycy+j0x0P+P95NYRYPmHvOLNbc22Fe/mEVo3YqpxPcrHRikrNlRajM1mtPiZln3wRN/tcsMWmp313+666GXr7fVJyVkEj2sRDm4cA+oiahzu2igRqI7BkyZJXr15t2bIlOjr6woULR48enTdvHvug7Ozsq1evVnYQTZo0ydXVFYqJiYmZcGxycnLS0tIgEBUVhVwMLY0AQ4QG9kDQqr7Bq/tADGmQtCgIUgy660DDR4t72HdQKiljHfGN7bXT58bbrzBdLkAcSLOIJk+e7OLi8uzZs7lz50KaCM7OztbW1gKEg3RVNRUk6VQK2MpgLZBeebNX+N/yCccDYeQnzaCvGFi+fIKTWUOXT2j2/jSJAlXOJ82z1zXVkPNd3uuVq8M+Z/MJVu0IWzoqLfd8YMKiS++t3by7b/f+80rIlTeJ8el5MPXQJMo2fyN+fn6Ojo7q6urgf7516xZboRs3bvTv319RURHkMDXLlrMTgGjgwIGQy3kUO5dIHDp0qH379jC4gcng58+fE0Ky4uzCki8Z5cvMGKujj4gsqFgPEiCHQJcuXW7evHnx4kUwYzZu3AhTuuPHj2dXfenSJbiBwACGLSESCQkJycnJRBpjJMBJADxConSqghQDYkhzZrWctLaSlOeUriddLLUUJL7nFC29EjLK42Xo1yxBIUCaRUR0GKZJwsPDifTt27eHDRu2cuXK4uJiQtICY7g2tIRxuTn4WwffRX/3516f08DkI5ZPmN2zhS6fUN8/bJg9gjkkmEmqPJ+kKis21FR907COj5f0fLum75GJFtPs2ndsI0ultEr8UXD97de/rn+w3+nTbYvX/AtvzwbER6TkCNYcTH1Z5eXlmZqaHjhwgOtAkNva2m7dupVLzt6FIQ6YQ+zdyonLly8vXrx41apV79696969O5hPMNypXKzBkrBv2XBsGzlxOYmqpo0hDwMSQALNR2DIkCGhoaGFhYUwaJkxYwanIjNnzszPz5eVleUUQtrHx8fT0xMSXAGENcy8cBXGXSQg3AR6G6g8WtLj7wEGEqK0twmZQw/6r7j+IV0Q3gIg2SKaNWtWZGQknOzY2NixY8dKSEiA6/mvv/4CSYsN/032pwrJ4goFxWUHvKPsdzwD30UZk9XPqPxPH5dPqO+fN8whgbVc83ySvKRof2PVNUOM/l1gF/JPv9NTu87rpdNFq7UojZqWU3T3Q/Ka25/6u/t13vRkxpmg489jP3zNLC0Ttlc5wVDZtGlT5QVwJ06cuHbt2j59+lRJPiQkZPfu3SdPnqwylxBCgWnTpk2fPt3Q0BDMJw0NjcqLTRElGxaD4xQORAcRQMDQ0glg/5EAEmhJBBh02hx7nWfL7Iebt2GxWl16k9hrp89J/7gS/h6ikGwRgTlkZmYG5x0MoZ49e164cAHmTq5fvw6SFht0lcsXV4gW/MUVwBdBLJ+w83FkXnFZp7ayl2daHZ1kqaMk1WJPbpN1XFpMpKe+0vL+Bldn23xY1+/STKulffXtdBXFRWiZ+SVPwlI33QsfeuCF6frHk06+Pvgs+nXcj8ISgf84QMPw5ufnOzs7g1tJVVW1uhrAcR0cHNyvXz92AUi/fPmSvctONPgDi5+SsqASkzbc08wgxIAEkAASQALCSQB79YuAiozYnrFm12Zbw8xgTmHphrthg/Y+fxGd/iuf7/4n2SJisVjMigUHnz59OmjQIOguzLymp/Nv/0FDXgc9wVyAu6C4tLiUmZFbBHF+cem7Lz+H7OdePqGbtgKv6WH9lQmIidCstBUWOuidm97tw7p+N+fauA40cDBQlhGjg6XqF/l9x6OIMUcCOq1/DPGuxxHPo77nFXF/P65ytUIjWbJkiY2NjZOTUw09gptSWVmZiooKuwykU1JS2LvsRIM/sIg+IjZDTCABJIAEkEDLJGCpJX9nvp3biI7ykqJRabnjjwfOPhuc+COfD2mQbBFZWlpu2rTp7Nmzvr6+gwcPhg7HxcXBUAMSQhPq2xF9lXIfEfwdsMB3WN+Dm6l8UUmZh2+s5eYnFpueQuzhE9NOQaKolCmNyyc00xmprlkRGtW8XetZPXVOuHR5v7bfg0Xd1w81HtxRTVGKAaYseIr2e0dPPPEarCOngy+23A9/GpaalS/Mnzy6c+eOt7e3u7t7dcQ45ZwvGsHlybnLLubaoA8sgoMu+nv5NxnQR8QmiQkkgASQABJogQRoVIpz13bP/rR3sdGC9MNPKX12++55EllQzF9PspBsEcFA5O3bt/Pnz1+1apWuri6c+GvXrsF8LSRabNBSlIC/APAYpuUIxudlCopLD/nE7PWKyi4odyxAvM872vNl/N5xZr5/9cLlE/j2L5lKpRiqyUy20To4vvObVQ7ef/bcOqLjCPM2beTEy5iskMTMo36x088EmW18PMDd75/bH+99SE7LKay5OwKXC+ZQTEyMnJwcvWID/UeOHGlvbw8JzqCoqEij0TidQmlpaVXO3TAYDBmOjbOSGtKfU3KAuaKUqLI0o4ZimIUEkAASQAJIoCUQkJUQWTfU+N5CO2ttBZhhh0Em2EX3Q5NhOpJPuk+yRdSpU6fQ0NCsrKx//vmH6OGOHTtOnz5NpFtmzKDTNBUkoO+R/L24Asxqg4ben1NhpvzUyzhQmDOcDogHZxc4PTmFmOZbAnAStZWkxnVtt3us2YsVvf3/7rVnrKlzVw0dJUlwVcJ4/XTAl3kX3nbd7NVrp8/f1z5cD/4KXmz+uTE1GOyKFSs+fPjw/tcG9ezZs+fUqVOQ4AyioqIWFhZPnjxhCyFN4tzNx4qXiIzUZeFEsJvABJ8TQPWQABJAAkiApwQMVGUuzOh2aHxnmKtNyiyYe/7tH8cCP6eUL83K03brUjnJFlHlJsXExERERCrLW5SEeJUoKrX8KRp+6DjMXidk5PtEpHm+iANfwcQTgXbbvA3XPuy3x2/bg4jvOUXgF+LSEyQ5hSj5YmIAABAASURBVML8tBVXf4Vst21rieHmbd1GdPL60/7Nqj6Hx3cG57WRmgyF0iouPe9yUOKfV0O6b39mu9V78aV3FwIToit9U7jg9/fKmoxPbm4uYd1Ai3FxcZAm1sj+8eMHpMPCwkAeEREBacLho6qqasKxQW67du3at28PCQgODg4Hfi3kvXTp0uPHj588eTI8PHzJkiVQ7ezZs6EMKYF4icgEv0RECk2sBAkgAbIJYH1IoLkIUCiUQR3Vni7tuchBj0GnBsRmDN7nv+7Op6zmfqSfZIuorKxs586dXbt2hXGJPMfWXNz5pF3wroAmUc2x3BzM+qdlF76Kzbj0OsHtfviMM0HgpjRc87DHjmcup96s+zcMfAXPo9K//iwA14E0g64sLaoozZARp4PCnAEk0mIt3bLlBCK4aSVpxsCOauC8vr+o+/u1/U66WM7qqW3eTo5OpXzLKrz1/tvKm6HwR2K56emcc8GnXsRFpYEt/Nt7ZUd8Y4tKmujx36CgIPOKDYCDDQPJtWvXQvrOnTuQHlzxsuK4ceMg7eHhAfKaQ0xMTPqvhV7Gjh3r7u6+YcMGMzMzPz+/+/fva2pq1nx43XPDvmVBYWN1XGgOMGBAAkgACSABJPAbAXFR2pK++k+X9hxoogrT9J4v4+13PoMJWUj/Vo6MnTrWQa1juToWW79+/e7du8eMGZOVlQXDlxEjRlCp1HXr1tXxcGEtplux3FwU75+ayyooeZ+YefPd191PIhdcfDdk/3OTfx513eI17uirFTdCj/jFPglLhen/4jKmKJ3aQUV6gLHq7J4620d2ujrbOmh1nw/r+p2dbtWKxZpi89+cOvuMgKSUKWzfumH3rsUmZMVFehuouA40vDnXFs7++endYM7GWlsBpm0y8ooffExZ/29YfHrewWfRezneK4P0IZ+Y/OLy18x4jc7e3h6ses7g6ekJjbq4uHAKIV3lfQbkw4YNg/JEiI+P5yw2d+5ckBQVFQUHB/fo0YMo0/i4pIwZnlL+/TGTNjKNrw1rQAJIAAkgASQglAQ05CUOT7CAsYeestTP/BKYkB16wD8o/kezdJZki+j8+fPHjh1btmwZnU53dnY+fvw4TOi+evWqWfrGP43qKZO/3FxhSdnnlOwHockwWl1+NWTU4ZcWG5+Yrn887OCLJZdD9nlF/Rvy7WNSdl5xGZXSSlNBwr6DkouN1gYn47PTuvr/3evzhgGPlvTwmGixYqDBmC4aXbTkFaUY4MoEaOKi9Ln2OjAyBr8Q7EIMaZBIiHI7jiCXPwJqQQIBOL+2uoowZ3NxphVYR9fnWP81oINjJzUQng6I52rg1Ms4OpXkuwdXE4K7G/M9t7hiYUaN1uUvEApuR1BzJIAEkAASQAK8JgDDjPuLuv/jaCQtRv/0LXuUR8DiS+9Ssgp53S5X/SSPaVJSUjp27AhtSElJgZsIEkOGDLl37x4kWnLQVpIEs4RGpfzIL24Ah9IyJszTP/ucdsI/bvWt0AnHA223ehuseTjA/fmc8293PIq4Gvw16MtPmNSHylVkGFba8s5dNVYOMjg2yRI8kp83DvRd3stzStd1Q40nWWt111Nq21qCCgpB6WoCQ4Q2q6d20Kq+wav7QAxpkFRTFsVCSIBBp1loys+1193/R+f84rLsAm53EEhy8L2yas58ZGouOGC7acvXfJVVc3StYiyABJAAEkACSECoCIjQqFNs2/sss4fhK4XS6tb7b713+RzyiS4qbaJH9IEmyRZR27Ztk5OToV5dXd3Hjx9D4s2bNwxGS19/VkyEdnpquWemrIwFk8f51T9uxGKxwCx+GZN+PvDLprth0zzfwN8EGD/2O32meL7ZeDfs3KsE/+j0pMwCYCsjRjfTkBth3mZpX/39zuZ3F9h9XN8/cGWfSzOt3UZ0mtlDp6+Riq6ylCi9IWcZPAZwoIIUA2JIQ3MYWiYBGTER8BNy9R0k0vheGReUit2C4tJ+RirHJ1seKDcmuS3JiiIYIQEkUEcCWAwJIIEWRADGnDB8vTPPrnM7ufzisu0PI/rt8fMKT4WxMfy2wvg5I7cI4vzqR9GNgdWQsXIN7Q0fPtzLywsKLFq0aM2aNXp6epMmTZo6dSpIagh+fn6Ojo7q6uoUCuXWrVvski4uLiBhBysrK3aWvb09Ww6JcePGsbP4MFFUUvYm7oeVm1fXLV6Wm5+wX0zPzC9+m/DzevDXnY8i5p1/O3Dvc6O1j6DYH8cCV938eNw/zutzWuz3vFImS0yEaqAqPaij6rxeOjtGdbo+x/rtmr4h//S7Nc9291izhQ56jqbqJm1kpRh0Puw+qiTQBMqYzCn4XlndTiFc6R6+sV23PO2+/RnE7Cu9bkdjKSSABJAAEmixBLDj/xHo2Fb2+hybPWNNlaUZXzLyt9z/nFVQctg3BsbPFpueQsyj31aSLaKtW7euXLkS+jRq1Kjnz5/PmTPn6tWrIARJDSEvL8/U1PTAgQOVywwYMACcTkS4f/8+Z4EZM2YQcoiPHDnCmcVXabBrD/nE7POOzq549AjivV5RB55Fe39ONdvwZMShl39eDYHde6HJ4cnZBSVlNCqlvaJkbwPlaXbtNw4zOT+928sVvcPWD3i4uMeh8RbL+xuMttSw0JSXlxQFU5CveorKCCUBcXyvrG7nlbjS4eqGaxyOgBjScO3zaDYLmsCABJAAEkACSED4CMD4drh5W+9l9rN76rgO7HDCP26f12+jaF78tpJsEXGeFXDpLF26dOjQoZzCKtMDBw7ctGnTiBEjKucyGAzVX5u8vDxnAQkJiV85qrKy/LvKLY1KPUV88JRD+9MB8VbaCmDVqMmK2egojO/WbvVgwxOTLb3/7Pl544Bny+xPunRZM8RoopWmra6iupw4tcbXfjgqxiQSIJ8AA98rqwNUWlVXOlz7uARFHeBhESSABJAAEkACvxGQYtBXDDTooa8MY+bfMlq14sVvKzkW0Z3aNq6e1H3Xx8dHWVlZX18fPEJpaWmcB54/f15RUdHY2HjZsmU5OeVr3XLmEumioqJsjo0QNnGcU1gCs8VcjYIkr6jsxYpeAa4OF2ZYbR7ecXp3bQdDFW0lKREaOSeFq0XcRQKNISAhShelUxXq/l5ZYxoTzGOru9JBLpgdQq2RABJAAkgACTQzAfgNhTEzlxIgATmXsJG75Ay+h9W4DR8+vGFagu8IzB5vb+9du3a9efOmd+/eYOEQVY0fP/7ixYtgL61Zs+b69etV+pegpJubG7iPiKChoQGSpg/S1byYLisuIi6Cr/00/QnBFpEATwhUd6WDnCftYaX8QwA1QQJIAAkgAd4QgN9QGXHu0TJIQE5ug+RYRMwat7KyBq6dN3bs2MGDB5uYmDg6Oj548CAyMpK9kDe4jPr06QNZ48aNu3bt2tOnT9++fVsZjaura9avLTExsXKBJpDgi+lNABmbQALNTgCv9GY/BagAEkACPCeADSCBpiXQZL+t5FhETQBHTU1NU1MzKiqqcludO3cWERGpMovBYMhwbJWPbQIJvpjeBJCxCSTQ7ATwSm/2U4AKIAEkgASQgJARaLLf1iosooahHDRoEDhjiGM3b96cmZlJpDMyMoyMjIh0Y2KoB5w8YBdVruTTp08lJSVVZlUu3CwSfDG9WbBjo0igiQngld7EwLE5JIAEkAASEHoCTfPbSppF9OjRI/ZLPtu2bfvx4wdxhkpLSyMiIoh0dXFubu77ig0KxMXFQTIhIQGEy5YtCwgIiI+P9/HxcXR0VFRUJF5JiomJ2bBhQ1BQEGTdv39/9OjR5ubmtra2cDjfBnwxnT9PDWqFBMglgFc6uTyxNiSABJAAEkACTfDbSppFxGKx2CeMM80W1pAA2wZMGghQZunSpZBYu3YtjUYLDQ11cnLS19efPHkyxGAdSUtLQxlRUVEvL6/+/ft36NBh4cKF/fr1e/r0KZSHLAxIAAkgASRQJQEUIgEkgASQABJAAlUSIM0iqrL2Ogrt7e3BiOIMnp6e4uLi4HdKS0srLi7+8uULSNiLxUHC19c3IyMDvFLR0dF79+7l+lRRHdvFYkgACSABJIAEkIDwEcAeIQEkgATqRYA0i4hSsbHbhj12mk8SYHGBJhxfJ8IkEkACvCJAXG5wxQlTIDrFK2RYLxJAAhwEiMsNbyAcSDCJBKomgNLKBBpwAyHNIoK2XVxcRlRshYWFs2fPrkiOmDp1Kp/c0XJyckAT8C8RnyfCGAkgAd4RIC43uOKEKRCdwnsI7/5ssGYkwCZAXG54A2EDwQQSQAJ1J9CAGwhpFtHkyZOVlZUJXSdMmKCurk6kQThp0iR+uKmBSomJiZmZmVnNtEHrwAHi+rffPEeAqgKksGBpC2dUuBUmXvmDvx9hCs17DxHuPxi4Ipo9IGGenoL64hW+e0jz3kDg5Nb3FMAhzRgES1sAhQoDBJ6GehFuwA2ENIvoVI0bP4yKqFRq27ZtwU7j+EBRUyeBQ1M32bj2BEthwdIWzowQK9yI52aBCp+GZr+HABf4sxGggArz+mQJFuF6aSt895Bmv4HAX2O9TgGUb94gWNoCK1QYIPA01J1wA24gpFlEoCUGJIAE/sfeuQdVVX1xnPPjpaJivjXfo5FKomblqyQTn5iOOk4+SNSxMQ3f0x/aGFOmjVOKj6LyBYRAMwmYMCKYQPkAEyUJiBwVQUNIQ3zw1Ph9vVsPx3tRzoV74dzL985qu/bea++9zufsszjrbjQSIAESIAESIAESIAESsCwCzIgs637RWxIgARLQCgH6QQIkQAIkQALWQYAZUf3dR0dHx48//hhl/S1Zt5XgqgU5bFne4s7QYUCgqCfADaOeVe0sSbh23FSOsji8etdlBVXLugWW5S22Bx0GBLOKuQkzIzLr7XtictxLX19flE+0argCVy3IYcvyFredDgMCRT0Bbhj1rGpnScK146ZylMXhVXldFmRmWbfAsrzFNrAmh3E5GhRzE2ZGpMGbTpdIgARIgARIgARIgARIgATqiQAzonoCrbFl6A4JkAAJkAAJkAAJkAAJkMBDAsyIHlLgfyRAAtZLgFdGAiRAAiRAAiRAAs8iwIzoWXTYRwIkQAIkQAKWQ4CekgAJkAAJ1IYAMyLjqP3yyy+TJ0/u3LmzJEmRkZHy4MrKSl9fX7Q3bdrU3d09PT1d7iorK/Px8Wnbtq2Tk9Pbb7999epVuauwsNDLy8tZ94Fy69YtuSsnJwcLYQgGLlu2rLy8XO5Sr2zatOmVV15p0aJF+/btp06dmpWVJY/VpsP+/v4DBgwQ/3uvYcOGHT58WDisTW+Fb3IJ2tgVK1asEC3a9Bm7FE7K0rFjRy17K3yzspIxBLFOF/OcoZg86FluDGEAMflmsLLQIS6HAQRx43EA8TL5nrHcAILtwRhSx/3AjAi7yAi5d++em5vbzp079cZs3rx5y5YtaP/tt9/wlunh4XHnzh1hg1fkiIiIsLCw48eP3713ngQXAAAQAElEQVR719PT88GDB6Jr9uzZqampMboPFDznoh0GkyZNwloYgoEHDhxYvXq16DKqTExMXLp0aVJSUlxc3P3798eOHYs5xQzadLhLly6ff/75Gd1n9OjRU6ZMEbmlNr0VJEWJ+/7dd98hnRNVlJr1uX///nmPP2lpaXAVollv4ZuVCZ5BxhBdzIsxR9Cz0BjCAGKOzWBloUNcDgMItgoDiNgMypIxBBujjm/R2s6IlHdbG/qECRM2bNgwbdo0pTs4DfDz81u3bh3aXV1dAwMDi4uLQ0JCYFNUVLRnz54vv/xyzJgxgwYNCg4Oxjvo0aNH0ZWZmYmnevfu3TgMgezatSsqKkoc48TGxmZkZMAYQzAQw9F7+/ZtjDJKML+3tzfegPEGtm/fPpw7paSkYAbNOoxjsYkTJ76g+3z22WfNmzdHOqdZb0FSCBLdOXPm4B4999xzokXLPtvZ2SFpF9KuXTs4rGVv4Z6VCWOIWYOeJcYQBhAz/QS0stAhLocBhAFE7ARlyRhikhjCjEi5qWqpX758+fr16ziBEeMdHR1HjRp18uRJVJGBVFRUyF2dO3dGyiS6Tp06hZPf1157DWaQoUOHoip3wQzGaIeMGzeurKwMU0GvtSA3w9jWrVuj1L7DOCXD4Ri+DMMu1763OIjDmR5yV7AVUhufbWzqZ0tcuHABW6tnz57vvPPOpUuX4LCWvYV7jUEs4hYwhpgpRDOA4Bk3909ALGHFwgCCn56mfWviSwieFzM9lZp9CWFGhJteV0E6hCk6dOiAUgh00YjSwcFBPjpAr7Krffv2aJEFVdijihJmUIRgOCZBo6jWosQhwKpVq0aOHImQgeFiKuUS0EUjSqyFFWEmRNkFD0WjKFGFPXSUMIMiBMMxCRpF1agSZ2g4GkJWuXjx4oiIiH79+ol5lPNDF40osRCWk5dQdsE9uR0KqrCHghJmUIRgOCZBo6gaWyJzO3v27KZNm5QDxWzKVaCLRpRYDovK9souOCm3Q0EV9lBQwgyKEAzHJGgUVfUlMvCgoKAjR47s2rULw4cPH37z5k0omEE5P3TRiBILYTkYCFF2wT3RKEpUYQ8dJcygCMFwTIJGUWVpSEDAUUKDLhpRgh4YyqOUXWAut0NBFfZQUMIMihAMxyRoFNValCaOIY89MIfDlhVDGEAe7wUbc2wGeXLrVsSjrXzkoYtGlHj2EQFkAsouMJfboaAKeygoYQZFCIZjEjSKai1KBhBAMxNexhCwFVJHwsyIBEYTlJIkybPg4ZekqqrcDkXZJUlP2KjswiTGygcffHD+/PnQ0FDlQEmqWl25tNIGurJLkqqGqO+CpXpxcXFJTU1NSkp6//33582bl5GRIcZKUtXSSpdEr1wquySpaggMVHbBUr3k5uYuX748ODi4SZMmhqMkqcoB5ep6lsouSaoaAjOVXbBUKRMmTJg+ffpLL72EE63o6GiMCgwMRAmRpKqlleuiSynKLkmqGgIblV2wpFRLQJKqeCph6hkruySpagjMVHbB0lhhDAExk+NlAAFVWUyOV565gZX6Wl6SqqKBEqbe+souSaoaAjOVXbA0VhhAQMwceBlDAFaWOhJmRiSTrL3SUfcPdim/PikoKBDfr6CrvLy8sLBQnl3ZlZ+fL7dD+eeff+RRytkwvKKiQnTBzFjx8fH56aef4uPju3TpIsbCKyjKJZReNazD+CKqd+/eQ4YMwamLm5vbtm3btOxtSkoK0L388st2uk9iYuL27duhipulTcK49UKcnJyQGuH8WsuEhatWX2r8FjCGiB1o8hDNACLAitLkeMW0jaFkAAEB5Q/curw18SVE+cgY/VQqB9eka+0lhBlRTXdMRX/Pnj3xNMbFxQlbZBR4Mx4+fDiqeFe2t7eXu/Ly8v744w/RNWzYsKKiotOnT8MMkpycjKrcBTMYox0SGxvr6OiIqaAbJUiX8cVMeHj4sWPH4KQ8Fro2HZY9FAr8Lysr07K3b731VlpaGg61hCCRmzNnDvRevXppnzDYZmZmdurUScuExU6w+lKztwDPIGOI2H7mCNEMIGb9CShuXGMoGUDwQmWStya93YIAiB+UmsULbxlDTBhDmBFhRxkhd+/exfsuBGMuX74MJScnR5KkFStWbNy4MSIiAs+kt7d3s2bNZs+eDRtnZ+eFCxeuXr36559/Pnfu3Ny5c/Gt/JgxY9DVt2/f8ePHL1q0KEn3geLp6eni4oKusWPH9uvXz8vLC0MwcM2aNeht2bIluoySpUuXBgcHh4SEtGjRAl+fQEpKSjBDXRyGJzp/k6CY3OG1a9f++uuv2dnZSDPWrVuXkJCABEOz3oIkwLoqPvjCo02bNmjQrM/YS0jXsXXxejdjxozbt2/PmzdPs96CsPUJYwhCB2OI2NgMIGbdDAKylZUMIGbdM3wJMfd7qZZfQpgRGRctz5w5M0j3wbBVq1ZBXb9+PfQPP/wQSdGSJUtwSnDt2jWc6uBHHdohW7dunTp16syZM0eMGIFM6dChQ7a2tmiH7N+/HwkS8h/IgAEDvv/+ezRCYBAdHd2kSRMMwUAM/+KLL9BurPj7++Pcyd3dHecAQn744QcxiTYdzs/PRx6ItBBfe+CVPSYmxsPDAw5r01s49gzRps9Xr16dNWsWCE+bNs3BwQEvpt27d8dVaNNbONawYo7VGUPMGvSsJoZo85FkADFHTDBqTgYQBhCVG4YxxNi3aGZEKrfWIzNkFzhFVUpAQAD68C27r69vXl5eaWkpvoPHKQEaheCW7Nix4+bNm8XFxUiHunbtKtpRtm7dGmc4+J4eAqVVq1ZoFNKtW7eoqCgMwUAMd3R0FO1GlUo/hY7zKzGDNh3es2cPDohwSF1QUHD06FGRDsFhbXoLx/QkISHBz89PNGrT57CwsL///ru8vBx5+4EDB3AUqWVvhW9WVjKGINYh4kGgmDzoWXQMadgAouZBYwBRQ8msNgwgiBuIHhAoDCB6m40xRAZSi7doZkQyPSokQAIkQAIkQAIkQAJWToCXRwKGBJgRGTJhCwmQAAmQAAmQAAmQAAmQQGMhYK0ZUWO5f7xOEiABEiABEiABEiABEiCBuhBgRlQXehxLAlogQB9IgARIgARIgARIgARqT4AZUe3ZcSQJkAAJkED9EuBqJEACJEACJGB6AsyITM+UM5IACZAACZAACZBA3QhwNAmQQP0RYEZUf6y5EgmQAAmQAAmQAAmQAAmQwJMEGr7GjKjh7wE9IAESIAESIAESIAESIAESaCgCzIgainzjW1d3xdnZ2ZIkpaam6mosSIAESMAIAgwgRsCiKQmQgAEBxhADJGx4RIAZ0SMQ/EMQ8Pb2RsayePFiURXlkiVL0IguUYWCKsTe3r5Dhw4eHh579+7977//RK9eCeOpU6fKjV27ds3Ly3N1dZVbzK24u7uvWLHC3KtwfhJ4gkBjrXh7M4A01nvP6yYBUxBgDDEFRc5RGwLMiGpDzbrHIGkJCwsrKSkRl1laWhoaGtqtWzdRFeX48eOR2OC7lsOHD7/55pvLly/39PS8f/++6H1GaWtr27FjRzs7u2fYsIsESMByCTCAWO69q6XnHEYCJiXAGGJSnJxMLQFmRGpJNR67wYMHI/8JDw8XlwwF4WnQoEGiKkpHR0ckNs8//zyM165de/DgQaRGAQEBolcufX19AwMD0YsDJUhCQgKSKCjit+ZQhX7kyBFM3rRp09GjRxcUFGCevn37tmzZctasWcXFxWKqysrKzZs39+rVC2Zubm4//vijaNcrv/766z59+jRp0gQnVzNmzEAvvm1KTEzctm0bFoJgdTRmZGRMnDixefPmMPPy8rpx4wYaIe7u7h/oPq1atWrTps1HH32EddEOMZwZjRQSIAFDAogJDCAMIIYbgy0koJKApmNI06Z8CVF5Hy3OjBmRxd2y+nB4/vz5+/btEyvt3bt3wYIFQn9aiWQGMQK5k57BmjVrZs6cKQ6UcKY0fPhwPQNUkTXt3Lnz5MmTubm5MPbz8wsJCYmOjo6Li9uxYwcMIEhO4I+/v396evrKlSvnzp2LPAftSjlz5syyZcs++eSTrKysmJiYN954A73IhYYNG7Zo0SKsDkFqh3LUqFEDBw6EPczy8/OxKCyFIH/D+VVycvL27du3bt26e/dutMPScGa0U0iABKolwADCAFLtxmAjCagkwBjCGKJyq5jQjBmRPkzWQQAnJ8ePH8eJypUrV06cOIEMBI3PlhdffBH2ejY4h8GpjjhQwpmSg4ODngGqGzZsGDFiBI6JFi5ciDwHaQ/0119/HYc88fHxMLh3796WLVuQmI0bNw7HRDj2gT/ffvstupSSk5Pj5OTk6enZvXt3zIAcBr3Ozs5YtFmzZlgdYmtri/nx/dPGjRvhMMwwLVb566+/YAxByoREyMXFZc6cOT4+PtDRWO3MaKeQAAlUS4ABhAGk2o3BRhJQSYAxhDFE5VYxoRkzIhPCtJ6p2rZtO2nSJByY4GQGCqo1XltlZaUkSTWaGRoMGDBANHbo0AGpC3IeuVpQUAA9IyOjtLTUw8MD+ZWQoKCgixcvokspMEAuhOGIpPv375d/405pAz0lJQUpkJgHJfIiNMqzDR06VJIeXQUOly5cuPDgwQOVM2MeixM6TALmIICIgbjBAMIAYo7dxTkbAwHGENxlvoQAQn0KM6L6pG1Jay1YsCAgIADvNFDU+J2ZmdmzZ081lno29vb2okWSJFlHC6ri368TZXR0dOrjD3Ikw79K1KJFi7Nnz4aGhnbq1Gn9+vVubm63bt3CPHqC2SZPnvx4pod/4q1F/IqdnqVcVTmzbE+FBEgAcSMgQFsB5OHTrvuPAYT7kwS0T4AxRL5HfAmRUZhVYUZkVrwWPPn48ePLdZ9x48bVeBnHjh1LS0ubPn26oaWDgwOOWQzb1bf069fP0dExJyent+LTtWtXwxns7OzGjBmzefPm8+fPZ2dnwyvY6DkwePDg9PT0Hj16KCbr7eTkBEtIUlISSiHQ+/TpY2tri2q1M6OdQgIkUC0BBhAGkGo3Bhvrh4AVrMIYwhhSz9uYGVE9A7eY5ZAJ4NgHAsXQ6bKysuvXr1+7dg3HMhs3bpwyZYqnp+e7775raIncA/lJVlbWjRs3KioqDA1qbMG3I2vWrFm5ciUOrC5evHju3LmvvvoKut7AqKio7du34yvgK1euBAUF4SzIxcUFNnAgOTkZCRIcQOPSpUv//fffWbNmnT59+tKlS7GxsfgiSs7ZcnNzV61aBW9x1rRjx47ly5djhqfNjC4KCZBAtQQQNxA9IFAMDRhADJmwhQRIQEkAoQMBBAJF2S50xhDBgaWNjY2pIDAjMhVJK5ynpe5T7YXFxMR06tQJyQa+xYmPj0cqcvDgwWrD1qJFi5CZDBkypF27didOnKh2thobP/300/Xr12/atKlv3744szp06JDhb+i1atUqPDx89OjRsPnmm2+Q0vTv3x8z07ohsQAAAnRJREFUI5uCYzhoggM4aOrcuTPcQAqEeVxdXZHzODs7/+9/jx4EJHUlJSWvvvoqEicfH5/33nsPMzxtZnRRSIAEnkZAFz9aVtvLAFItFjaSAAkoCTCG8CVEuR/MrT96ETT3MpzfUggEBARERkYaeotGdIl2KJW6D858CgoK4uLi5s+fLycVwkYukYfgHObOnTsY4e7ujiQKysCBA2GAKnTkG9Ah3t7eyr/54+vriwMftNvY2EiStGzZsj///LO8vBwr4nXK8G/+jBw5MiEhAec/xcXFv//+u/xvar/wwgunTp1CI9bq0aMHJuzTpw9yp8LCQjRmZmZu3boV86MdYm9v7+/vX1RUhHmQgIn2p80MewoJkICSAIJDZGSkskXoaESX0KHgYYQwgAggLEmABGQCiA8IF3JVVtCILlGFggACYQwRQFiahAAzIpNg5CQkQAIkYBICnIQESIAESIAESKC+CTAjqm/iXI8ESIAESIAESMDGhgxIgARIQCsEmBFp5U7QjwYnkJCQ4Ofn1+Bu0AESIAFLJMAAYol3jT6TQH0RqHkdxpCaGZnTghmROelybhIgARIgARIgARIgARIgAW0TYEZkuvvDmUiABEiABEiABEiABEiABCyNADMiS7tj9JcEtECAPpAACZAACZAACZCAtRBgRmQtd5LXQQIkQAIkYA4CnJMESIAESMDaCTAjsvY7zOsjARIgARIgARIgATUEaEMCjZUAM6LGeud53SRAAiRAAiRAAiRAAiTQOAk8edXMiJ7kwRoJkAAJkAAJkAAJkAAJkEBjIsCMqDHd7cZ3rbxiEiABEiABEiABEiABEng2gf8DAAD///cJ5QgAAAAGSURBVAMAsqDmdIctUVAAAAAASUVORK5CYII=" + } + }, + "cell_type": "markdown", + "id": "5d47fc89", + "metadata": {}, + "source": [ + "![image.png](attachment:image.png)" + ] + }, + { + "cell_type": "markdown", + "id": "097d2ab1", + "metadata": {}, + "source": [ + "### Elastic constant vs System size" + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABFsAAAXRCAIAAADOngVVAAAQAElEQVR4AeydB1wUxxfHPXoH6SJIFUFBRLCBCvbeexQl9thLTEQTY+waC1FiL9h7jbGiYG9gAQuCdBFEQHrn7v+Djfe/0MtxXHn7eY6zb2Zn3nyXm5s3725PikMHESACRIAIEAEiQASIABEgAkRAUglINaCDCEgKARonESACRIAIEAEiQASIABEoSYA8opJE6JwIEAEiIPoEaAREgAgQASJABIhAVQmQR1RVUlSPCBABIkAEiAARED4CZBERIAJEoLYEyCOqLUG6nggQASJABIgAESACRIAI1D0B6qGuCJBHVFdkqV0iQASIABEgAkSACBABIkAEhJ8AeUTCd4/IIiJABIgAESACRIAIEAEiQAQERYA8IkGRpn6IABEoTYA0RIAIEAEiQASIABGobwLkEdX3HaD+iQARIAJEQBII0BiJABEgAkRAWAmQRySsd4bsIgJEgAgQASJABIiAKBIgm4mAqBEgj0jU7hjZWx8EWCxWZGRkffRMfRIBIiAOBGgOEYe7SGMgAvVEgCYQAYCvuUckAOOoC14C7u7ueElMnz6dVzljxgwoUcQokcEpRFZWVk9Pr0ePHvv372ez2UxpiTQzM/Pnn382MzNTUFDQ0dFxdXW9fPkyU8fExMTT05PJC08aGRmJofHKtWvXuObduXPHwcEBY8GIdu7cydUjc/bs2ebNm8vLyyM9f/48NFzZvn27qakprsK19+7d4+qrnsnLy9uwYYOdnZ2SkpK2trazs/OBAwfy8/PRwt27dwcMGGBgYACbL1y4AA1Xzp0716tXL9RH0cuXL7l6yhCBuiPAzA80h+BFxxURnUMww2D2trW1VVZWxgwzfvz4T58+1d1fDrVMBECAJhCRW4TgrjGydu1aTHrz5s1jTnnTadOmoUgIl3y8RgomTx6RYDjzpxcjI6MTJ05kZ2czzeXk5Bw/frxJkybMKZP27t07Li4Or9urV6926dJl7ty5/fv3LygoYEp5UyyMsEz38vIKDg7GsmDYsGFJSUm8FYQz7+PjgwEy0rVrV8bIiIiIvn37durU6cWLF0uWLJkzZw68IKbo0aNHo0aNcnNze/XqFdKRI0c+efKEKTp58iQmiKVLl+IqXNunT5/o6GimqERa3incITg269atmzp16sOHD58+fTpz5sxt27a9efMGl8DnhKcEwsiXEBTBd8KFJfR0SgTqlADNIcArBnNIVlbW8+fPf/31V6TYXgkJCRk4cCCGRkIE6pQATSDAK0ITCKyFPHv2bPfu3S1btkS+hGARiBURdlVK6CXzlDwiUbrvrVu3hv+D9z/GaGQwPdnb2zOnTIpIiL6+fuPGjVEZvsHFixevXr3q7e3NlPKmf//9NyrAkUBECBGS2bNnT5gwARUQLIqKipo/fz62DSDQQLDc79y5s6KiInqEv4EFPZQQXLty5crvvvtORUUFLyo4A1Aysnz5clgLe6DHJYyy9qmWlhYGyIicnBzTIIJC6AubHNbW1pMnT544ceLGjRuZIigRK/Pw8LCyskLarVs3aJiizZs3T5o0CfVxFZQY2o4dO5iiKqa4CoGgW7duwRFq1aoVwlNAgfmladOmaKFPnz6rVq0aOnQo8iUEvtmyZcu6d+9eQk+nRKBOCWBawCsFUwfTCzL4sy8xh+A1q09ziHDPIerq6jdv3sT+TrNmzdq3b4+JNyAgoLobOszfAKVEoOoEaAIBKxFahMDajIyMsWPH7tmzp2HDhjjlldjY2FmzZh09elRWVpZXL7F58ohE7NZ///33Bw4cYIzev38/lv5MvrwUURSEKbDuKV0Bi54rV66kp6eXKEJlQ0PDFStWMHEYlAYFBSESgpV9YGAg4ir379/Hqwh6Rv744w/sPWCrEv4G/Ci8T0N/5syZLVu27Nq1KzQ0FJsQtra2UJaQe/fuwY8qU9asWVOiMvcUW6G6uroIsKALrhKBoJ49e3JPYa2/v39+8UfXShfBu0NNhHewhuC9CnmmCKVVFEwl8GpKLCgxuSgrK1exBapGBARMgOYQ8ZtDUlNTsXuloaEh4L8lMeiOhlBdAjSBiNYEgu3afv36YaFS4kaz2WzszC5atKhFixYliiT2lDwiEbv1+AuGQxIZGYkwzoMHD8aNG1fpABAbiYyMLF0NUVQ4ANjtaNOmDTwZtMbU0dTUlJaWVlVVhcsEgRI+D0If8+bNQ+jDyclp69athw4dysnJQREEzsnixYstLS0RZRo+fDgcISixW4lr8SLEhnTbtm2nTJkCZQlxdHR8Wc4x/b9fl2IuhO+EqA4cIThyCPWMGjXqyJEjTFF8fLyenh6TR4p8QUFBYmIi8qWLoIEepYWFhaiJPCPIM0XMaVVS+HvAW5WaVIcICAkBmkPEbA7BVIwZGFO0mpqakPyNkRliTIAmEBGaQE6cOIHd6rVr1zJ/kLzp+vXrZWRk+Pj5Hd7GRTRPHpGI3ThtbW24+wcPHkSkCBmcVjoADoeD7cPS1Tp37hweHn7r1q1hw4a9efOmU6dOK1euLF0NGsRSvL294ZAwgggMdhciIiJQBOnQoQNSRpB/9+4d8iNGjMjOzjYzM4MvdP78efgnUJYQRUVFi3IOeGUlKuMUg4XnBv8KrtSKFStmzJixYcMG6BnhHSOGDCVXw81AiSLeU958iSJUrlRqcEmlbVIFIlCnBPA6wtRBc4h4zCGIhI8ePRoT8vbt2+v0z4YaJwIMAZpARGUREhMTM3fuXGwcKygoMPeOm2JR9+eff2Jdx7sE4pZKbIY8ItG79RMnTsTfMRY0yPzX+rLP4KKYmpqWWSYrKwtHCPuLN27cwPoAHlFeXl7pmni7nTZtGjec8+rVK8RGzM3NS9eEhnmBGRkZvX///q+//oLbA9cF3hfeuVHKKzX71By3hfbt28MM5hTxKN7wTkJCAjY/EP5CaekixIKgx7SOUFiJq5gilFZREBkD3ipWpmpEQEgIYOqgOQT3QtTnEEyqI0eOxObUzZs3KUCEG0oiGAI0gTCchXwCgduDtZCDgwOWQ5A7d+5s3boVmcLCQqy+UNSkSROcQqKiohYuXGhiYsKMS2JT8ohE79b37t0bfgsEsZpKrb99+3ZQUBCiQJXWbN68OSI5OcWfhZOTk8NrhntJ69atEUQqEc5BHabC48ePmQxS5LmfIoMvNHDgQLwC/fz8Hj16BDNQgVcQ6uF6WSUyZX5qjvda5F+8eNGoUSNkIIhNYU2ADCNw8NA4/D2cli5ycnKCHvZjpuC9CnmmCKVVlO+++87HxweW8NYHRu6TJ3j1lOcrAWqs5gRoDmHY4ZUrunMI4w5hVwhTELP7wwyKUiJQ1wRoAmEIC/kE0q1bN6y7uIsrLIrGjh2LU+wFu7m5BQYGIs+IgYHBokWLrl+/zoxLYlPyiETv1uOvGXEJCDKlrc/NzUXcIzY29vnz52vWrBk0aFD//v3Hjx9fuqarq+uuXbuwixAZGXnlypUlS5Z06dKF2WjEVsHdu3fRSGLxV3F+/vlnuDQzZ87EiwdvwJcuXZo9eza3wQcPHmzYsCEkJAQRodOnTyNKiyLsQO/bt+/169fh4eGHDx+Gd2RsbAw9r0BZwsvinpb5qTmExY4dO4aBI/q0ceNG+FpcM+BBYZNjwYIFKN2/fz+6/vHHH5m+YM+NGzfWr18fHByMFKuHefPmMUWov3fvXtTHVfPnz4+OjkY7TFEVUzTl7OyMeQdjR+gMgz116lS7du1ACS1kZGSAGAR57OMigy6QhyQnJ+P07du3yGM4yMfHxyNPQgQEQABTB/7mIciU7o7mEMwJQjaHFP1kGe8cgm2X4cOH+/v7Hz16FLtXmD0g2CYrfTdJQwT4TgDzBmYPCDKlG6cJREgmEFVVVRueQ1lZWUtLCwrcMiaDPCPYPtbX12/WrBmKJFnIIxLJuw+/BVKm6deuXcOuJ1wa7OL4+vrCbbh48aK0tHTpyggxwcfo2bOntbU1XAucYjXPVFuxYgXcJHNzcx0dHWhatmyJeCtW+Z06dbK3t//111/RBfSMINgKtwr6lStXbtq0Ce1Ar6GhsWfPHngLuPbWrVt///03XoHQ11JWrVqFfY42bdqcOHECkw7cGKZBU1NTOHUIRrVq1QpmYNTcsBjCPqh84MABWAI/7eTJk/BYmKtGjRrl6emJweIqeIBoobTbxtQsL5WXl0dk6aeffoJviQA6DEPXc+bMwSyDS7BeARYI8vC+kFm2bBnyEHiVOO3Xrx/yo0ePRn7nf39VFnoSIlB3BDCBQMpsn+YQ4Z9DPn78iDkEKeYuzMaMPHz4sMwbSkoiwHcCmD0gZTZb6wmkqFW8L9MipAhEZf8qXoRUdjWV/4cAeUT/wSHMJ1jNX7hwobSFUKKI0SPDKT7y8/MTEhKwWP/++++lpMq+yx4eHngHTUpKys7ODgsL+/PPP7lOCxb3iHjk5OSgMaZlrPURaUlPT0fcA0UIKDF6pJgW4WZkZmZikxIBGWgggwcPfvz4cWpqKuojvoQoCpS1lAkTJiCogo7S0tLgbJR4zp6LiwvCYtidwk5qiVAPNlODg4OxgYo9raH//XWgGTNmYNrFVXDqOnfuXAMLMR8tXrwYAWhgBMz79+/DThkZGTSFKBwA8gpuEPQQd3d3Xj3yy5cvh56ECNQdAfz5Yboo3T6UKGL0yOCvEUJzCAOESYVtDsGeF+5RCcGEw1hLKRGoCwKYHDBXlG4ZShQxemSYP0uaQBggTFpfEwjTO5NiyxhbwEy+RIpV0Lx580ooJfC07LVy3YKg1okAESACRIAIEAEiQASIABEgAsJBgDwi4bgPZIW4EqBxEQEiQASIABEgAkSACAg3AfKIhPv+CL11EhJs/e233zQ0NIT+bpCBRKBeCdSoc5pDaoSNLiICRKCIAE0gRRToHz8IkEfED4rUhrgTWL58OXlE4n6TaXxEoA4J0BxSh3DrpWnqlAgIkABNIAKATR6RACBTF0SACBABIkAEiAARIAJEQAQJSIbJEuQRcTictLQ0pJJxZ2mURIAI8JkAZg+aQ/jMlJojAhJDgCYQibnVNFCRJCBBHlF6erq6ujpSkbxRdWw0NU8EiEClBDB70BxSKSWqQASIQJkEaAIpEwspiYCQEJAgj0hIiJMZRIAI1C8B6p0IEAEiQASIABEgArwEyCPipUF5IkAEiAARIALiQ4BGQgSIABEgAlUhUFceUW5ublW6pzpEgAgQASJABIgAESACRKCWBOhyIlAbAvz0iK5fv+7u7m5ubi4rK6ukpKSqquri4rJ69epPnz7VxkS6lggQASJABIgAESACRIAIEAEiUEcE+OMRXbhwoVmzZhMmTJCSklq0aNG5c+fgHe3btw8ekY+Pj5mZ2fTp0798+VLrMVADRIAICI5Adl5BXgE7KSMXaVZegeA6FuWeCJoo3z2yXYIImJiYsP57zJw5E+PncDjLly83MDBQVFR0dXV98+YNlKXF29v7v1ezcnJySler3EZjewAAEABJREFUroYmkOoSo/pEgF8E+OMRrVmzZuPGjYgF7d+/H87PgAEDunfvPnLkyBUrVvj6+oaFhampqR06dIhfRlM7REACCNTzEHPzC3feCXdcfdNhlQ/SXXfCoalnm4S+eyAiaEJ/l8hAIlBE4NmzZ3Hfjps3b0I1YsQIpBs2bNi8ebOXlxcq6Ovr9+jRIz09HfrSgoXNtwaK/ldQUChdp1oamkCqhYsqEwH+EuCPR/T06VN4QQgQlWlc48aNMcUsXLiwzFJSEgEiIGwEsE+53S/sz1uhadlFoSGkyENDkaIK7hRBqwBOZUVUTgQETUBHRwcODyOXL182Nzd3cXFBgMjT03Pp0qVDhw61sbE5ePBgVlbWsWPHyjQOMSLmciYts05ubm4az1FmHUZJEwjDgVIiUF8E+OMR1Zf11C8RIAJ1QUBaSurAw4gSLUMjI0UzRgkq/z+VJmj/h0E5IiAyBPLy8o4cOTJx4kR4OBEREfHx8T179mSsl5eXh5v08OFD5rREmpGRYWxsbGho2L9//xcvXpQoZU7Xrl2r/u0wMjIqVpad0ARSNhfSEgFBEeD/+ubjx4/bt29fvHjxAp5DUMOhfogAEeADgfScfMSFSjQEDfQllHTKJQA4QMQ9ZTLQQM/kKSUCREAICVy4cCElJcXd3R22wR1Cqqenh5QR5Bklc8pNraysvL29L126dPz4cQUFBWdn59DQUG4pN+Ph4ZH67YiJieHqS2cwUWC6KKGHBvoSSjolAqJDQJQs5bNHdOvWrWbNmsEj2rRpk6+v74EDB/bv3//y5UtRQkK2EgGJJ6CqIKumKFMCAzTQl1DSKZcA4AAR95TJQAM9k6eUCBABISSwb9++Pn36GBgYcG1jsVjcPIfDYbH+f8rVt2/ffty4cXZ2dp06dTp16pSlpeW2bdu4pdwMokxqPAdXXzqDiQLTRQk9NNCXUNIpESACdUGAzx4RtkMWLlz4+vVrbJmcPXsWOyKIODPfVqwL66nN+idAFogjgYzc/AkdTEqM7Hsn0wI2u4SSTrkECtlsIOKeMhloCBqDglIiIIQEoqKifHx8Jk+ezNimr6+PDG9QKCEhAWEiKCsQKSmpNm3alBkjquCqEkU0gZQAQqdEQMAE+OwRvXv3bsKECRiDjIxMdna2iorKihUr1q9fDw0JESACIkEgK6/g5zOB7k4ms7taYIcSNiOd263pDFdzJbmSgSOUSpBUOFRFORkgAijgQkWkyEND0ECDhAgIJ4EDBw7o6ur269ePMc/U1BROEfPoOWjy8vLu3Lnj5OSEfAWCONLLly8bNWpUQZ1Ki2gCqRQRVSACdUqAzx6RsrJybm4uLEYAOiwsDBlIYmIiUhIiQASEnwDe2hefDbr5LmHa4YBJHU39l/YI+KU70mkuZvKy0sJvf/1aCEQA9XRJ9/s/d0GKPDT1axL1TgRqSEACLmOz2fCIsI0rI/PvXg+LxZo3b96aNWvOnz//+vVrd3d3JSWl7777joExfvx4Dw8PJv/7779fv349PDwcvtCkSZOQTp8+nSmqcYrpApMG5ttHHl0fe3TrZqULTY1bowuJABGoFgE+e0Tt27d/8OABLMCOy8KFC1evXj1x4kQooSEhAkRA+Ansux9x6dUnGSnWT72tNJTk5GSktFTkkVKgo4r3DqB83n2e5O0/82gA8lW8iqoRASIgeAI+Pj7R0dFYpfB2/dNPP8EpmjFjhqOjY2xs7I0bN1RVVZkKqBwXF8fkU1JSpk6dam1t3bNnT1S7e/du27ZtmaLapJg0MN/GJGd1XO878aB/IZtTm9bo2qoSoHpEoEEDPntEmzdvbteuHcAuX768R48eJ0+eNDY23rdvHzQVCKaSAQMGIKyE7ZkLFy7w1nz37t3AgQPV1dUxJcGzwnzElCISNXv2bG1tbUSlUOHjx4+MnlIiQARqTOBhWOLaq8G4/Jd+1m1NNZEhqQGBZnqq7z+nPwxLptVMDejRJURAYATgzCAqbmlpydsj1iFYwMDzycnJuXPnjo2NDbfUz8/P29ubOd2yZUtUVBSWIgkJCQgWdejQgdHzJW1l1DC/kJ2YkRsQ9ZUvDVIjRIAIVEqAnx5Renp6WFgYnJPExEQEmrdv3x4YGHju3Dk4RRXbkZmZaWdn5+XlVaIaWuvYsaOVlZWfn9+rV69+/fVXhW+/CT1v3jwEtU+cOHH//v2MjIz+/fsXFhaWuJz3lPJEgAhUTOBTSvbsYy+wiB9i33iCU8nHKlR8LZXyEjDTUVGSk87OLwz/ksGrpzwRIAJEoCoEECbqYV30BPCrr/8NSVXlKqpDBIhAbQjwzSOC8wPXpXfv3nBOLCwsEIyuull9+vRZtWrV0KFDS1yydOnSvn37btiwwd7e3szMrF+/frq6uqiTmpqKuNOmTZu6d++OoiNHjgQFBVWrRzRCQgTElUANxpWTX/jDkYCkzLzmjdTWDLHFLmkNGqFLGALSUqwWBmrIB35MRUpCBIgAEagugd42RU+9u/46HlGs6l5L9YkAEagBAb55RIsXL27SpMm9e/f8/f1dXFxmzZpVA2t4L2Gz2f/88w/C2b169YIj1K5dO+4H6gICAvLz8xHvZuobGBggrv3w4UPmlDdFRDuN5+AtojwRIAIMAbzj/nbxzauPqRpKsrvcHBTl6AkKDJiap7aNNXBxUCx5RMDAT8nOK8grYCdl5CLNyito0KABP1untoiA0BDobKmDUPOn1BzMzEJjFBlCBMSZAN88IjhC27Ztc3Jyat269f79+0NDQzMyMmpDLiEhAS2sW7cOcacbN24MGTIEQaQ7d+6gzfj4eDk5uYYNGyLPiJ6eHpRMnjddu3at+rfDyMiIt4jyRIAIMASOPY0+6R8jxWqwbYy9kaYSoxSttLzvIp47dw5bKtra2oh6vXz5svSgOBwOYtQo5W64lK5TA42tYVGMiDyiGqCr4JLc/MKdd8IdV990WOWDdNedcGgqqE9FREB0CSjISnexKvpQzNWg/39wTnSHQ5YTAeEnwDePKDExETEiZsBaWlpKSkpfvnxhTmuWIkaECwcNGjR//vxWrVohBtW/f/+dO3dCWVqwrMGaprTew8Mj9dsRExNTugJpiICEEwiI+rr80htAWNTLqlNTHWREUcr7LiL0zs7O2Fgpb1Cenp4sFqu80hrrmRjR209pBYX0m7Y1pvifCxEd2u4X9uet0LTsotAQUuShoUjRfzAJ0wluGUJ5FNCr8T3pU/zBuav0wbkaE6QLRZmA4G3nm0fEYrHS09OZT6jBB+E9hbIGA8O2royMTPPmzbnXWltbM8+a09fXz8vL+/r1/89gQUAJYSJuTW5GXl5ejefg6ilDBIgACCSk58w4GpBfyMFb73QXM2hEVBDnKfO7iG5ubsuWLevevXuZ43r16tXmzZsR0y6zlFHW7JO3ZtrKysUPVwj7ksm0Q2ktCUhLSR14GFGiEWjwXuNxLmjuiRcLTr5ceOrVotOvfj4T6HEucMn5oF8vvP7t4ms4/Cv+frvq8tu1V96tuxq84VrwxuvvN994v+VmyNZboV63Q//y/bDDL2zXnbA9d8P33Y848CDi4MPIw48ijzyOOvYk+uSz6FP+MWcCPp57/vHCi9hLrz5dDvx0JSju2uu462/ib779fDv4s+/7hDshX+6FfnnwIfFhWOKT8KRnkckBUcnPo7++jEkJ/JjyOjYV7nFwfFrI5/QPCenhXzIiEzOjk7JikrNiU7LjUrMT0nK+pOfCefiamZealZ+Wk5+ZW5CdV5iTX5hXwC4oxA6hiD2FGeG7nRTQK/H3Ws3TLs105WWkopOz3salVfNSqk4EiEC1CfDNI0KUxtLSsmHxoampmZGRYW9vjzMNDQ2k1barQQM5Obk2bdq8f/+ee21ISAjz2DoHBwdZWVnur0rHxcW9fv3aqbJflea2QxnhIEBW1DOB/EL2zKPPP6flNtVV+WOEHVaW9WyQYLvPysoaM2aMl5cXdlgq6Llmn7yVkmK1aKyOZumDc4DAF0nPyUdcqERT0MCLeB719eLLT+dexJ59/vF0wMeT/jHHn8bAmTn8OOrgoyjvh5H7H0TsvR+x6274zjthCCt5+X7YevsDQkybb4ZsvBHyx/X3668Fr70avPrKu5WX3/7+99vfLr359eKbXy68hlv189mgn84E/nj61YJTr+adfDnn+ItZx17MOPp8+pHn0w4HTDnkP9Hb//sDzybsf+q27+nYvU++2/Nk1O7HI3Y+Grbj0dDtDwf/9WCg14P+2+733Xqvt+e9nlvudt98t+umO64b/Tr/4dtpg6/zutsd1t5uu+ZWm9U+Dqt87FfetFtxo+XyGy1+u2697JrVr9csf7lqsfSq2ZIrJov/MfP4x2LJFculV5v9crX5sms2v123XX7d7vcb9ituOKy82Wa1T7s1Ph3W3kKbHdff7rzBt8tGv66b/LpvvtNzy53ennf7/Hmv/7Z7A73uD/rrwZDtD4bteDhy56NRux6N2f147N7HbvuejN//9PsDTyd5P5t80H/qIf/phwNmHA2Ydew5Rj3vxP99zsVnAz3OBS395nP+/vcbcFv9z1uuz/kuLu0vvyLCuEG4ZUhBG+Sz6KtfwFFlUZaXcbEsittfex1f5YuoIhEgAjUkwDePyNfX9zbP4ev776mvb1GmYuvgPr0sPlAtIiIC2ejoaOQXLVp08uTJPXv2fPjwAQuXv//+e8aMGdCrq6tPmjRp4cKFt27devHixbhx42xtbcvbBkZ9EiJABEoTWP3Pu2eRX1XlZXa5OajIy5SuIN6a+fPnYxtl0KBBFQ+zxp+8tWU8oo8pxe1TUlsCqgqyaool/0qh0VGRn9DB+Jd+1kv7Wi/uY/VT72aLejVb2MNyfnfLud2azu5qMbOL+Q+u5tNczKZ2NpvU0fR7ZxN3J5PxHYzHtW/yXbsmo9sYjXQ0HO5gOLR14yH2jQe1MujfslE/20aImvZqodejuV43K90uzXSwMO3UVLujhbaTuVY7U822JpqOxg1bN9FoZaRhZ6hu01iteSM1K33VZnqq2F8w01E21VY21lIy0lRsrKFooK6gpyavoyqvrSKnqSynoSSrpiCDV5ySnLSCrJScjJSsNEuqap/cZHMaFLA5eYXs3AJ2Vl5hRm5Bek5Banb+16z8pMw8RJmwwRGXmhObkv3xazZiCxGJmeFfMj8kZIR8zgiOT4ej8jo2LfBj6quYlBfRKQFRX59GJj+JSH4UnvTgQ9K90MS7IV9833+5FZzg8+7zjbefr72JvxIUfzkwDpGxCy8/cX3OE8/gc0YffRLN+JwHHkQitrbn3r8+J0oxdjiiJW45AnoyUnxbcpRoXFxP+9jqY2hXySMCBRIiUMcE+DY9uVR4VDwKf39/BJQgqLZgwQJkli1bhvyQIUN27ty5YcMGODx79+49e/Zsx44doYds2bJl8ODBI0eOdHZ2VlJSgrMkLS0NPQkRIGuBtGMAABAASURBVAJVIXDu+UdmybJ5VCszHZWqXCJOdS5duoQNHE9Pz0oHJV/TT962NKQYUaV0q1GhkM3+3sm0xAXQFHI437U3ntzJbEpns+ku5jNc4QJZzO7WdG73pvN7WC7sCQfJ6ufeVh59rJf0tf61f/PfBrRYPrDFikE2qwbbrhliu25Yyw3D7TaOsNs8stWWUa3+HG3v9V3rv8a23jHOYZeb457xjvvc2xz4vu3BiW0PT2p3ZHK7Y1Pan5zW4dT0Dmd+cDo3w/nCTOeLszpent3pytxO1+Z1vj6/880FLrcXuvr+6HpnUZd7P3V9sLjrQ49uT5Z0f7a0u/8vPZ7/2uPlsp6By3u9/r3X2xW9g1f2CVnVJ3R13/C1/SLX9YtY2zdsTd/Q1X3er+r9bkXvN7/3Clre89VvPV8u6xHwS1ELT5d0e+zR7eHirvd/7nJ3URe/H11vL3TxWeByc37n6/M6X5nT6fLsjn/P6nhxpvP5GU5nf+hwenqHk1PbH5/S/tjkdkcmtcMoDnzfZr+7497xjrvdHHaOc9g+trXXd/Zbx9j/ORrDL+KwYXjL9cNs1w61XT3EZuVgm98HtvhtQHNwg8+5pK8VfE44nD/2tFzQw3Je96ZzujWd1cVihqs5yE/rbDalkyl8zskdTVOz8tOKv+7Fe7+gSc/J59VQvlICXa30ZKVZ8GlDP6dXWpkqEAEiUBsCfPOIeI148+ZN4LcDed6iMvOurq6c/x7e3t5MzYkTJ4aGhmZnZyNwxLubq6CgsG3btqSkpKysLLhDRvQcOYYXpUSgCgRex6Z6nAtCRSxosAuOjKQJ3KGwsDANDQ2Z4gPDHzZsGCYiZPglNo3V0dTbuLQCergCQNRaFOVkJnY0RcxHrThShBQhIKzFleRkat22sDTAYrGkpViy0lLyMtKKctLK8jKIjKkrymooyWmpyCPKpKumoK+uYKChaNhQqYmWkom2MrYzLHRVmuqpNtNXbW6ghr86W0N1OyMN+yYNHYw125hotjPT6mCu5WSh3bGpNiJdXZrpYpHdvblezxb6vW30+9o26t/SYKCdwaBWCJEZIlY20tFoVJsmY9o2GdvO2K298QQnk++di/2cTgiyFXk+M7tYzOpa5AvN617kF/3Yq9lPva3gKXn0tV7ar8h3mtHFAtbiBjX47wGNqoLsf3V0VgkB3H1nC21UojARIAilkFHiQ4BvHtG9e/fatGnDgGnfvj3iPK2Kj5YtW/r4+DB6SokAEah3AsmZedMOB+QWsLs005nXrWm921MvBixevBibNthnYQQ2IOx84MABZPglplrKKvIyOfnsD19q9TsE/LJH1NuJSc4asfOhbWN1/6XdETDxX9pjmouZvCx9NEAYb2x5Ab0CNj16sdr3q8+3J85V+0q6gAgQgeoQ4JtHtH37djc3N27Xvr6+ERER4eHhc+fO3bFjB1cvehmymAiIEQHEK+YcfxGbkm2speQ5yl6qil9fEHoC5X0XMTk5GT7P27dvMYL3798jHx9f9B1lfX19G54DpU2aNDE1NUWGXwK2LQzU0Frgx1SkJLUksPNOWMjnjMOPo+RkpBGCkJORUpITn+hQLeEI2+UI6CF8hyAe4kKwDSny0NAtA43qSo/m+ogcvotLi0qiB1dWFx7VJwLVIMA3j+jZs2dt27bl9mxoaGhsbGxiYgI36dGjR1w9ZYgAEahHAhtvhNz/kKgoK73bzVFdqdQnWOrRstp1Xd53ES9duoR4db9+/dD86NGjkd+5s+zfNEMFvgvzVaLXseQR1RZtfGrOaf+PaGVWFwukJMJPAOE7BPEQyqOAXi1vlqayXHszTTRCH5wDBBIiUHcE+OYRxcbGNmrUiDH04MGD2IJl8pqamklJSUyeUiJABOqRwJWgOGy0w4A/RrRspq+KjNiIaznfRXR3d//vVxQ5y5cvLz1q1Bk8eHBpfS01NsVfJaIYUS0x4vI998LzCtlti78Vg1P+CLVSxwQQEUIojwJ6tcfc26ZocUUeUe1JUgtEoAICfPOIVFVVIyL+/fm8oUOHKikpMb1CqaamxuQpJQJEoL4IhHxO//H0K/Q+tbNZ/5YGyJDUNYGWhhro4l1cWj49XAEgaipJGblHn0Th6pldKUAEDCQSR6BXCz0Wq8GrmJTYlOwaDp4uIwJEoDICfPOI2rVrd+jQodLdeXt7o6i0njREgAgIjEBqdv60wwFZeYVO5lo/9WomsH4lvCNjTSVVeZncAnboZ3q4Qs3/FvY/iMjJZ9s2Vu/ctOihWzVviK4kAqJJQFdVwdG4IWy/9rroa5DIkBABIlAugZoW8M0jWrBgwcGDBxctWpSQkMAYg8zChQuPHDmCIkZDKREgAoInwGZzFpx8GZGY2VhDcdsYexlpvr3qBT8W0epRSorFfHCOvkpU4xsHZ/7Qw6IA0ayuFixW1X7HtMad0YVEQFgJMB+cu/Y6TlgNJLuIgMgT4NvaqEuXLtu2bdu6dWujRo0aNmyoqamJjJeXl6enZ9euXUWeEw1AmAiQLdUisO32h1vBCXIyUjvHOWipyFfrWqpcSwK2hupoITA2BSlJDQgcehiZnltgqafSw1qvBpfTJURAPAj0ttHHQPyjviak5yBDQgSIAN8J8M0jgmUzZsz48OHDxo0bx4wZM3r0aGRwOmvWLBSREAEiUC8Ebgd/9rwVgq5XD7ZhVufIkwiMgG3xwxWCYtNq3KMkX5iZW7D/QdHXU2d2sUDATZJR0NglnAAi/HZGGhxOg+tvPks4Cho+EagjAvz0iGCikZHR/PnztxcfyOAUShIiQATqhUBEYubcEy/xJurW3niEo1G92CDhnTIeET1coWZ/BseeRH/NyjfRUupnW/SsrZo1QleJEAEytQICfYrDRPTBuQoQURERqA0B/nhElf7iUGZm5ps3b2pjKF1LBIhAtQhgf33aYf/0nAIH44a/9m9erWupMr8IGGspqSrI5BWwQz6n86tNCWknJ79w971wDPYHV3P68hs4kEg4AcYjehyenJyZJ+EoxGP4NAphI8Afj2j8+PE9evQ4depURkbJRyq9fft2yZIlFhYWz58/F7bBkz1EQFwJcDicn84GhnzO0FGV3z62tZwMf17p4oqr7sbFYrGYMFHQR/qd1uphPh3w8Ut6roG6whB7w+pdSbWJgDgSMNZStm6kVsjm3HxLT5wTxxtMY6pvAvxZJ8HtGTRo0LJlyxo2bNiiRQt4RwMGDOjYsaO2traDg0NUVNTNmzfd3Nzqe7AC7p+6IwL1RmD33fB/AuNkpFg7xrbWU1OoNzuo4wYNmK9vBcWSR1SNv4b8QvZOvzBcMM3FnPx5cCAhAiDQt/iDc/RTrUBBQgT4ToA/HpGsrOysWbOCg4OfPHkydepUGxubxo0bu7q67tq1KzY29ujRo9Dw3XRqkAgQgTIJPPiQuP5aMIp+G9Dc0UQTmboX6qFcAv/GiMgjKpdQGQUXXsTGpmRrq8iPakPffyuDD6kkk0Af26InzmGGT83Ol0wCNGoiUHcE+OMRce1r3br13Llzt2zZsnPnzlWrVg0bNkxTkxZkXDyUIQJ1TuDj16xZx56zOQ2GOxiOa29c5/1RB5URaNlYA1WC49LzCtjIkFRKoJDN2VEcIJrSyVRBVrrS+gKvQB2KAwETExPWf4+ZM2diYBwOZ/ny5QYGBoqKitjYreAr0GfPnm3evLm8vDzS8+fP49q6FgtdVQtdlfxCzu1geuJcXcOm9iWOAJ89IonjRwMmAsJEICe/cPqRgK9Z+YhLrBpsg7d7YbJOQm0x0lRUV5TNK6SHK1T1D+BKUFx4YiagjSWXvqrMqF61CTx79izu23Hz5k1cP2LECKQbNmzYvHmzl5cXKujr6/fo0SM9vYzHojx69GjUqFFubm6vXr1COnLkyCdPnuDyuhbm+QpXgwT2VaK6HhC1TwSEhQB5RMJyJ8gOIlBLAtjaXHr+9evYNE1luZ1uDrS5Xkue/LocfikcVLRGXyUChEqFzeb85fsB1SY6m6rIyyBDQgTqgoCOjg4cHkYuX75sbm7u4uKCWdTT03Pp0qVDhw61sbE5ePBgVlbWsWPHShuAanCWPDw8rKyskHbr1g2a0tX4ruld/FWiOyFfMnML+N44NUgEJJmAVANJHj2NnQiIEYHDj6POPv8oxWrgNca+sYaiGI1M5Idi01gdYwikx82BQmVyKzghOD4dvpC7k0lldamcCPCBQF5e3pEjRyZOnIjNi4iIiPj4+J49ezLtysvLw016+PAhc8qbIkbErQZ9r169yqyWm5ubxnOgZi2leSO1JppKuQVs3/cJtWyKLicCRICXAMWIeGlQXtwJiO/4/COTV/z9FuNb3MfKyUIbGRLhIdDSsMgjek0PV6jslmCH3qs4QDSuvbG6kmxl1amcCPCBwIULF1JSUtzd3dEW3CGkenp6SBlBnlEyp9wUShRxT5GHhnvKzaxdu1b922FkxIfHhMBtY56vQE+c40KmDBHgC4G68ohycnL4Yh81QgSIQKUEPqfl/HD0eQGb079loymdzCqtTxUETID51FxwfFpuQaHguhbBnh58SHoVk6IgKzW5k6kImk8miySBffv29enTx8DAgGs9vA5unsPh8J5y9cjw6sur5uHhkfrtiImJwVW1lz42jdCIb3BCTj7NJyBBQgT4Q4DPHhGbzV65cmXjxo1VVFTCw8Nh46+//orpBhkSIkAE6oJAXgF7xtHnX9Jzm+mpbhjeksVi1UUv1GZtCBg2VNRQks0v5ITEl/wN69o0K37XbrsdikGNbtNEW0UeGRIiUFUCNa0XFRXl4+MzefJkpgF9/aLHW/NGexISEhD/YUp5U9SsSjV5eXk1noO3hRrn7QzVDdQVsvIK74Z8qXEjdCERIAIlCPDZI1q1apW3t/eGDRvk5OSYnmxtbffu3cvkKSUCRIDvBFZcfhMQ9VVVQWaXm4OSHH0Tne+A+dAgi8ViwkSBsSl8aE5Mm3gWmfwkIllWmjXNheKcYnqPhW9YBw4c0NXV7devH2OaqakpXB3m0XPQ5OXl3blzx8nJCfkS0qFDB241FN24caPMaijiu2A+6VX8fIVrr+P53jg1KAIEyMS6IcBnj+jQoUO7d+8eO3astPS/PyLRsmXL4ODgujGeWiUCkk7glH/MkcfRLFaDP0e3MtFWlnQcQjx+xiOirxJVcIu8bhc9Ym64g2EjdXouSAWcqIhvBNhsNjyiCRMmyMj8u5fEYrHmzZu3Zs2a8+fPv3792t3dXUlJ6bvvvmO6HD9+vIeHB5OfO3cuvKD169djhYMUgSZcyBQJIGU+OHfz3ec8+pUzAeCmLiSDAJ89otjYWAsLC150mHHy8+nHlXmRVJ6nGkSgKgQCP6b8cuE1as7rZtnV6v9fBYaGRNgIMB5RID1urpwbE/Qx9U7IFylWg+ku5uVUITUR4DMBuDHR0dETJ07kbfenn36CbzNjxgxHR0csaeApuMrBAAAQAElEQVT2qKqqMhVQOS4ujsk7OTmdOHECDhW2fb29vU+ePNmuXTumSACpg3FDHVX59JyCB2GJAuiOuiACkkCAzx5RixYt7t27xwvu9OnT9vb2vBrKEwEiUHsCSRm50w8HYIOwu7Xe7K7/2YaofeOCbEFC+rItftxcyOf0HPoydFm3nPkNokGtGhtrUaizLECkqwMCPXv25HA4lpaWvG0jTLR8+XJ4Pjk5OXfu3LGxseGW+vn5wfnhng4fPhwBory8vHfv3g0dOpSrF0BGWorVq0XRLti1IPrgnAB4UxcSQYDPHtFvv/02a9YsRJARGjp37tyUKVMQfV62bJlEsKRBEgFBESgoZM8+/uJTao6ZtvLmUXZS2FoXVNfUT80INNZQbFj8cIX38ek1a0GMr4KjeO1N0cJuhquYB4jE+CbS0ARMgPng3I238Xg7EHDX1B0REEsCfPaIBgwYgNjxlStXsMsCRwgbJ3///XePHj3Ekh0NigjUF4H114IfhiUpyUnvcnNQU6Cfbamv+1CNfjEl2hpq4IIg+lUiUPivbPct+gZR7xb6TfX+/XjSf8vpjAgQgZIE2plqYpPla1b+04jkkmXCcU5WEAHRIsBnjwiD79WrFwLNGRkZWVlZ9+/fR1QaShIiQAT4ReDSq0977kWgtY0j7GgFCQ6iIraN1WBqEH2VCBR4JCopE3/SUMyiD3+CAgkRqBoBGWmpHs2LPjhHP9VaNWBUiwhUQqA2HlElTVMxESACfCfwLi7t5zOBaHa6i3lf26Lf6UOeRCQI2DamGFEZN2qHXxib08C1mY5NY/UyiklFBIhAOQSYD85dexPPxkuonDqkJgJEoIoE+OwRSUlJSZd1VNEaqkYEhJWAUNiVmpU//UhAdn5hp6bai3o1EwqbyIgqE6CHK5RG9Skl++zzj9DT00EAgYQIVIuAk4WWqoLMl/TcgOiv1bqQKhMBIlCaAJ89ovPnz5/7dpw8eXLx4sWNGjXavXt36Y5JQwSIQLUIYBdw3skXUUlZhg0Vt462l6anKVQLnxBUNlBX0FKWK2BzgoX94QqCg7X7bnh+Iae9maaDsabgeqWeiIBYEJCXke5uXfzBOXrinFjcUBpE/RLgs0c0iOcYPnz46tWrN2zYcOnSpfodJPVOBMSAgKdPiO/7L/IyUjvHOTRUlhODEUnaEFgsFvPBsKCPKZI29jLHi73t40+jUTSrS1OkJESgPgiIdp+9bfQxgOtv4jkcDjIkRIAI1JgAnz2i0na0a9fOx8entJ40RIAIVJ3AjTfxW28XPY9r3TBbZlVd9WuppvAQaFn8q0T0uDnmjuy7H5FbwG5lpOFsodWADiJABKpPwMVSR0lOOjYlm379ufrwJPAKGnJFBOrWI8rOzt62bZuhoWFFJlAZESACFRII+5Kx4NQrVHF3MhliT68mkBBVYbxZWrvg/qVk5R1+FInMrC4WiJ4hQ0IEiEB1CSjISndppour6IlzgEBCBGpDgM8eUcOGDTW/Hcirqqru37//jz/+qI2JdG01CFBVsSOQkVsw7XAA0rYmmkv7WYvd+CRrQEyMKDQhIye/ULJGXmq03g8jM/MKrRupdbMuWs+VKicFESACVSLAfHDu6us4+uBclXhRJSJQDgE+e0RbeI6tW7devnw5Kipq4MCB5fROaiJABCoigHe4H0+9+pCQoacm7zXWXlaazy/YivoW/jIRtFBfTUFbRa6QzXkblyaC5vPNZHj4Bx4UBYhmdjGnABHfsFJDEkmgi5WuvIxUVFLWu7h0iQRAgyYC/CHA5wWWu7v7hG+Hm5tb7969ESnij6XUChGQPAI77oRdexMvK83aMc5BV1VB8gCI24ix+rct/tWd17Gp4ja26oznyOOo1Ox8Mx1l5gdVqnOppNalcROBcgioyMt0ttRB4bXXcUhJiAARqBkB/nhEgZUdNTOOriICkkzgbsiXjdffg8DvA21aN2mIDIkYEGA8Ikn+KlFOfuHee+G4lTNcLaTpIfIAQUIEakegT/ET58Tnq0S1o0FXE4GaEeCPR9SqVSt7e/tW5Rz29vY1M46uIgISSyAmOWv28RdsToNRjkZj2hpJLAfxG7itoQYGJckxohNPoxMz8gwbKg5qZQAUJESACNSSQDdrPVlpVmhCxoeEjFo2RZcTAYklwB+PKCIiIjw8PKKcIzy8aDuQFzHliQARqIBAdl7h1MMBqdn5dobqvw9qwWKxKqhMRSBw9+7dAQMGGBgYsFisCxcuQMPIuXPnevXqpa2tDf3Lly8ZJdLk5OTZs2c3a9ZMSUmpSZMmc+bMSU0V0MfYmBhRyOd03GVYImmSV8DedbfoHWG6izl9L07S7j6Nt44IqCvKOplro3H64BwgkBCBmhHgj0dkXNlRM+PoKiIgBgSqOwQOh+NxLvBdXJqWstyOcQ4KstLVbUEC62dmZtrZ2Xl5eZUYO/TOzs7r1q0rof9UfGzcuDEoKMjb2/vatWuTJk0qUaeOTvXU5HVU5RH9k8yHK5x/8TEuNUdXVX64g2EdEaZmiYAEEuhrW/RTrVeC4iVw7DRkIsAXAvzxiEqY8vbtW6wwLvEcJSrQKREgAuUR8H4YeeHlJ2kp1l9jWxtoKJZXjfS8BPr06bNq1aqhQ4fyKpF3c3NbtmxZ9+7dkecVGxubs2fPIqxkbm7etWvX1atX//333wUFBbx1mHxubm4az8Eoa5MiWsWEiYI+ptSmHeG8tmKrCgrZ2/3CUGdqZzNy9cGBhAjwi0CP5vp418A+S3RSFr/apHaIgEQR4LNHFB4ejp1arDb69es3uPgYUnxIFFMaLBGoMYEn4Umr/nmHy5f0tW5vpoUMiQAIpKamqqmpycjIlO5r7dq16t8OIyP+fKHrX48oVuIewP1PUFxUUlZDJdnv2jUpjZo0REC0CAiVtZrKcu1MNWHSVXriHCiQEIHqE+CzRzR37lxTU9PPnz8rKSm9efPm7t27jo6Ofn5+FRuGatisLf0dAHd3d+yncqV9+/bcduLj47H7q6+vr6ys3Lp16zNnznCLKEMERJRAXGr2zGPPC9mcQa0MJjqbiOgoRM7spKSklStXTps2rUzLPTw84C8xEhMTU2ad6iq/eUSSFSNiszletz+A1aSOpkpyZTifKCIhAkSgxgToiXM1RkcXVkpAEirw2SN69OjRihUrdHR0pIqPjh07rl27ds6cORWjzCznOwC4qnfv3nHfjitXrkDDCNyh9+/fX7p0KSgoaOjQoaNGjXrx4gVTRCkREEUCuQWFPxx5npiRZ6Wvum5oSxaLnqYgiNuYlpaGgHbz5s1/++23MvuTl5dH+IgrZdaprtLWUB2XfEjIyMor43N6KBJLufH2c2hChqq8jFsH8vbF8g7ToOqZQK8W+njfeBmT8iklu55Noe6JgAgS4LNHVFhYqKKiAg7a2tqfPn1CxtjYGK4LMhVIed8BwCVYjiAQxIimZlFEGEoIXK/Zs2e3bdvWzMzsl19+0dDQeP78OfQkNSVA19UzgeWX3uCdTF1Rdrebo6IcPU1BELcjPT0dey6Yss6fPy8rKyuILov70FNT0GUervBJUj44x+Fw/vItChBNcDLBH3kxBkqIABHgJwFdNQWH4l+uu/aanq/AT7DUloQQ4LNHZGNjExgYCHbt2rXbsGHDgwcPEDKC0wJNzcTPz09XV9fS0nLKlCkJCQncRhB9OnnyZHJyMpvNPnHiRG5urqurK7eUm4Eee8Bc4eopQwSEisDxp9HHn8Zge+/P0a2aaCkJlW3iaEzRmDAt9OzZU05ODqFmBQWFIpUA/7UsDhMFxQrokd8CHFnZXd0J+YLBKspKT+xoWnYN0hIBIlBrAn1sG6EN8ogAgYQIVJcAnz0ihGvgosCIVatWRUVFderU6cqVK1u3boWmBoLY0dGjR2/fvr1p06Znz5517doVHg7TDtyhgoICLS0tBJGmTZuGLV5zc3OmiDddWwffiuZtn/JEoPYEXkR//e3iG7TzY89mrs10kSGpLoGMjIyXxQcujIiIQDY6Ohp5bJog//btW+QRrEY+Pr5o9xTRIbhDmZmZ+/btg2sEJQQhblQTjNg0LvrgXNBHifCIECDyKv4G0dh2TTSV5QRDmHr5RoD+lyACvW30MdpnUckJ6TnIkBABIlB1AnzziFq1auXl5dW2bduhxQ/ARVwIq5DExEQEduDJVN0g3pqjRo3q168f4k4DBgy4evVqSEjIP//8w1SA6/X161cfHx9/f/8FCxaMGDEiKCiIKeJN6+Jb0bztU54I1JLAl/TcH448zytk92qhN8O1DK++lu1LyOWYB+yLD4wXEwKyy5YtQx7xH+QxjSA/evRo5Hfu3Il8QEDAkydPMGlYWFg0+nbw68EJaL9SkagY0ZOIZP+or3LSUlM6m1VKhioQASJQYwKNNRTtDNU5nAY33nyucSOifCHZTgRqToBvHlG7du3gpRgYGHz33Xe3bt1iLNLU1GSx+PMFcSxajI2NQ0ND0XJYWBi8r/3793fr1s3Ozu63335zdHT866+/UFRCEEHifiUamRKldEoE6pdAfiF75rHn8Wk55jrKG0fYsVj8ebHU76DqpXdXV1cEInjF29sblri7u/MqkV++fDn0peujyMTEBEWCESZG9OFLRmau+D9cgfkG0QhHQz01QX86UTB3k3ohAsJDoLcNfXBOeO4GWSJKBPjmEe3atSs+Pn737t1Ie/bsibXFihUrmA+u8IVHUlISdnAbNSp6qWdlFf0AmZTU/42XlpZmPq3Hl76oESIgGAJrrrx7GpGsIi+zy81RVUFw3+wXzOiolwoI6Koq6KspYCv3bZyYP1zhZUzKvdBEaSnWdBcKgVbwF0FFgiYQGxs7btw4LS0tJSWlVq1aIW7MWPD582fspGB7F/revXsz+7BMEW+KPRfWf4+cHKH4oFqf4g/OPQpP+pqZx2sw5YkAEaiYwP+diorrVaVUQUHBzc3t9u3bHz58QGbfvn1mZma9evU6depUxZeX+R0AKH/88cdHjx5FRkb6+fkNGDBAW1t7yJAhaMrKysrCwmLatGlPnz5FvGjTpk03b94cPHgwikiIgKgQuPAi9sCDSFi7aaSdhW7RExqR/4/QiVgTYMJEgeL+VSLmG0SDWzU20qRHhoj1H7RIDe7r16/Ozs6ysrJXr159+/YtVhEaGhoYAWLFWEuEh4dfvHjxxYsXxsbG3bt3z8zMRFFpUVNT+/bjIEX/YwlUuo7gNSbaylb6qoVszs239ME5weOnHkWYAD89Ii4GU1PTlStXwpM5ceKEv7//mDFjuEVlZlDHvvhAKfc7AAj7BAUFDRo0yNLScsKECUjhHamqqqIOZrErV67o6OjATWrZsuWhQ4cOHjzYt29fFJEQAZEg8OZT6uJzRU9lnNXFolcLfZGwmYzkLwHmq0Svxfpxc8HxaT7vPrNYDWZ0qSxAxF+41BoRqJDA+vXrjYyMDhw40LZtWxMTBrtoBwAAEABJREFUk27dujEPZ0JE6PHjxzt27GjTpk2zZs22b9+Ozdnjx4+X2RiLxWJ+GoRJy6yTm5ubxnOUWYfvyr7FT5y7+jqO7y1Tg0RAjAnUiUcEXr6+vnBj3N3dCwsLp0yZAk0FUvoz/YhHKyoqXr9+PSEhIS8vLyoqChrMX9xGmjZtevbsWUS3sXnz6tUrNzc3bhFliICQE0jJypt+JCAnn+1iqTO/h6WQW0vm1REB2+LHzQV+TKmj9oWh2b98w2AG1mfmOhQFBQkSYSFw6dIlR0fHESNG6OrqYj92z549jGVwYJDhRnuwMysnJ3f//n0oSwucJQSRDA0N+/fvj4BS6QrQlP3AWxTUpTAfnLv/ITEtJ78u+6G2iYBYEeCzRxQdHb1ixQozMzPsuMCNwf4KYsnMw53EChsNhgjUlEAhmzP7+IuY5Owmmkp/jm4lLcWqaUt0nWgTYD41F56YmSGmD1cI/5JxOfATbtJMVwukJERAeAiEh4cjEIStVWy8Tp8+fc6cOYcOHYJ5VlZWcHI8PDy+fv2K3dh169bFx8djGYOiEoKa3t7e8KwQQYIH5ezsjPhSiTo4RVOp346YmBhoBCBN9VTNdZTzCzm33/3/VxwF0C91QQTKICA6Kr55RMeOHevRowd8oV27do0aNSokJOTOnTvjx49HqEd0aJClRKDOCWy68f5eaKKCrNTOcQ4aSvTbLHUOXGg70FGVb6Re9HCFN2L6wbkdfmEcToPu1rrNDdSE9i6QYZJJgM1mt27des2aNQgQTZs2bcqUKXCQgEJWVvbs2bNYwGhqaiopKfn5+fXp0weRIhSVkPbt248bN87Ozq5Tp06nTp2ytLTctm1biTo4ra8H3vYpfuLcVfrgHO4BCRGoGgG+eUTu7u4qKioXLlzALgjCxBYWtClYtTsg+rVoBFUncO113Ha/MNRfP6wlLRPBQcKF+eBckDh6RB+/Zp1/EYv7O7MLvRcAA4lwEWjUqFHz5s25NllbW0dHRzOnDg4OL1++TElJQWjo2rVrSUlJpqamTFF5qZSUVJs2bcqMEZV3SV3re9sUfT3V7/0XSXi+f13DpPYlhADfPKKPHz+eP3++f//+mBokhB0NkwhUi8CHhPSFp17hkkkdTQe1aowMicgR4K/BjEcklg9X2HUnvIDN6Wihbd+kIX+hUWtEoPYEnJ2d379/z20HQSFjY2PuKTLq6uo6Ojpwcvz9/QcNGgRNBcLhcOBEwcuqoI6Ai1oYqDXRVMotYPu9/yLgrqk7IiCiBPjmEenq6oooAjKbCAiAQHpO/tTDAZl5he3NND36WAmgR+pC+AnYGKrDyECxixElpOWc9C/6ygQFiHB/RVfE2PL58+c/fvx4zZo1Hz58OHbs2O7du2fOnMmM9/Tp035+fuHFD+Du0aPH4MGDe/bsyRSNHz/ew8ODyf/+++/Xr19HNfhCkyZNQjp9+nSmSBhSFovVpzhMRB+cE4bbQTaIBAG+eUQiMVoykgjUCwE2m7Pg1KvwL5mN1BW8vmstI02vu3q5D0LXKRMjikjMhMMsdMbVwqA998LzCtgOxg3h/9eiGbqUCNQVgTZt2pw/f/748eM2NjYrV6709PQcO3Ys01lcXJybm5uVldWcOXOQQR1GjzQ6OhqlyEBSUlKmTp1qbW0Nfyk2Nvbu3btt27aFXniE+eCcb3BCTn6h8FgltJaQYUSAVmb0N0AE6pzAX74fbr79LCcttWOcg7aKfJ33Rx2ICAH8MRgwD1f4lCYiJlduZnJm3tEnRV/JmNXVAhvVlV9ANYhAfRDo379/UFBQTk7Ou3fvpvD8RggcoZiYmLzin/2AsyQn9//n3yB25O3tzRi7ZcuWqKio3NzchIQEBIs6dOjA6IUntTPUwB5cZl7hvdBE4bGKLCECQktAcjwiob0FZJiYE/B9n7DZJwSDXDm4RSsjDWRIiACXgG3xB+fE6atEBx5EZOUV2jRWc7XU4Q6TMkSACAiYgJQUq1eLoucr0AfnBEyeuhNRAnz2iMzMzJKSknhZILIMJa+G8kRAcghEJWXOPf6Cw2nwXbsmo9o0EdTAqR+RIcB8cC7wY6rIWFyhoWk5+d4PI1FlpisFiICBhAjUJwHmq0Q+bz/nFbDr0w7qmwiIAgE+e0SRkZGFhf/5xCpiyrGxRc9gFQUaZCMR4CeBrLyCaYcD0nIK7Jto/Dbg/0965Wcf1JaIE7A1LAobik2M6PCjqPScAgtdFWZzWiA3hzohAkSgbAKOJpraKvJ4D3oYRh+cKxsRaYkAlwDfPKJLxQfavX79enG2KDl//vzKlStNTEygJyECEkWAw+H8fDYoOD4db0g7xjrIy0hL1PBpsFUkwMSIwhMzEV2p4iVCWw1bAPvuR8C8mV3MpaRYyJAQASLAVwLVa0y66INzerjm2ut4pCREgAhUQIBvHtHg4oPFYk2YMKE4W5SMHj365s2bmzZtqsACKiICYkkAS8O/X32SkWJtH9taX11BLMdIg6o9AU1lucYaimjnTazIP1zh+NOY5My8JppKA1oaYEQkRIAI1DuBPjaNYMONt58LCumDcyBBIkIEBG0q3zwidvHRpEmThISE4mxRkpub+/79+/79+wt6WNQfEahXAg/DEtdeDYYJv/SzbmuqiQwJESiPABMmCopNKa+CSOhzCwp33w2DqT+4mtPz5cGBhAgIA4F2ZpoaSrLYqngamSwM9pANREBoCfDNI2JGGBERoa2tzeQpJQKVEBDT4tiU7FnHXhSyOUPtG09woo+Miult5t+wmMfNBYl4jOhMwMfPabn6agpDWzfmHxtqiQgQgVoRkJWW6mGthybog3OAQEIEKiDAZ48IPd26dWvJkiWTJ0+eyHNAT0IEJIFATn7hD0cCsCHXwkBtzVBbFou+TSEJt70KYyy/yr8xoo8iHCPKL2Tv8CsKEE1zMaOvzJV/q6mECNQDgT62Rc/ghkfEZnPqoXvqkgiICAE+e0S///57z5494RQlJiZ+5TlEhAaZSQRqRYDD4Sy7+DrwY6qGkuzOcQ4KsvQ0hVrxlJCLGY8oMikrNTtfRId86eWnj1+ztZTlRtMj5kX0FvLXbGpNmAg4W2irysskpOc+j/4qTHaRLURAuAjw2SPauXOnt7f3kydPLly4cJ7nEK5BkzVEoG4IHH0Sfcr/oxSrwbYx9kaaSnXTCbUqbgQaKssZNmQeriCSv0qEjeftfh9wVyZ3MlOUo10AkCAhAkJEAGHbbta6MOjq63ikJHwmQM2JCwE+e0R5eXlOTk7iAofGQQSqQSAg6uvvf7/BBYt6WXVqqoMMCRGoIoGWhuqoGRQrkh7RtTfxYV8y1RRkxrVvglGQEAEiIGwEehc/ce7a63gOhz44J2w3h+wRFgJ89ogmT5587NgxYRkcn+ygZohApQQS0nJ+OBKQX8jpa6s/3cWs0vpUgQjwErBpXOQRBYqgR4QF1rbbRQEid2dTVQVZ3kFRnggQASEh4GKpoygrHZuSLaLbLkKCkcwQbwJ89ohycnI2b97s4uIye/bsBTyHeEOk0Uk4gbwC9oyjzxPSc5vqqmwYbsdiifDTFCT8VtbX8Fs21kDXr0XQI/J9n/AuLk1ZTvp7J3qsIu4hCREQRgKKctJdrIo+uUAfnBPG20M2CQcBPntEgYGBrVq1kpKSev369Ytvx8uXL4VjsGQFEagTAqv/eesf9VVVXmaXm4OKvEyd9EGNijUBm8ZqGF9UUlZqlig9XIEbIBrX3rihshyGIFpC1hIBySHQp/iDc1eD4vCylZxR00iJQNUJ8Nkj8i3ruH37dtUNoppEQLQInA34ePBRFGzeMqqVmY4KMiREoLoENJTkmhQ/iuP1J1H6KtGjsKQX0SnyMlKTOplWd8hUnwgQAUES6GKlKycjFZmUFRyfLsh+qS8iICoE+OwRicqwyU4iwBcCr2NTl5wPQlNzujXt3rzoV/CQJyECNSDAPIM78KMoeURevkXfIBrdxkhXVaEGQ6ZLiAAREBgBFXmZzsWP/KEPzgmMOXVUXwRq1i//PaJnz5799NNPo0ePHspz1Mw4uooICDOB5My8aYcDcgvYXa1053VrKsymkm3CT8C2+HFz8LGF31TGwoCorw/DkmSkWFNdzBkNpUSACAgzgT42zE+1xgmzkWQbEagvAnz2iE6cOOHs7Pz27dvz58/n5+cjc/v2bXX1osco1dcIqV9xJFD/YyooZM8+/jw2JdtES2nLqFZSUvQ0hfq/KSJtwb8xotgUURnFX8UBomGtDRtrFP2YkqiYTXYSAYkl0N1aD1sYIZ8zwr5kSCwEGjgRKI8Anz2iNWvWbNmy5fLly3Jycn/++ee7d+9GjhzZpAn9SEV5/EkvqgT+uPH+wYckJTnpXW6O6or00GFRvY/CY7eNQdHOUUxydkpW3n+tEsYzxLJuBydgH+AHVwoQCeMNIpuIQGkC6kqyThba0F97HY+UhAgQAV4CfPaIwsLC+vXrhw7k5eUzMzNZLNb8+fN3794NDQkREBsC/wTG7boTjuFsGN6ymb4qMiREoJYEsFgx1lJCIyLxgyHb/Yq+QdS/pYGJtjJsJiECfCJAzdQtgb7FH5y7EkQfnKtbztS6KBLgs0ekqamZnl70GJPGjRu/fv0aRFJSUrKyspAhIQLiQeB9fPqiM68wlqmdzbAiRIaECPCFAPPBOeH3iD4kpDNfzp7ZxYIvA6dGiAAREAyBHs31ENp98yktOokWZoJBXkEvVCRcBPjsEXXq1OnmzZsY4siRI+fOnTtlypQxY8Z069YNGhIiIAYEUrPzpx32z8ordLbQ+qlXMzEYEQ1BeAj86xEJ/ePmtvuGcTgNejbXowCp8PzxkCVEoCoEtFTk25lqoea1NxQmAgYSIvB/Anz2iLy8vEaPHo3mPTw8fvzxx8+fPw8dOnTfvn3QSKLQmMWLAJvNWXDyZWRSVmMNxW1jWstI8/nlI160aDTVJsA8bk7IY0TYWr746hPGNqsrBYiAgYQIiBiBPrZFT5xjwrwiZjqZSwTqkgCfl3SampoGBgYwWEpK6qeffrp06dLmzZsbNmwIDQkREHUCW2+H3gpOkJOR2jnOQVNZTtSHw2f7qblaE7BpXPRwhY9fs79mCu/DFXbeDStkczpb6rQ01Kj1iKkBIkAEBE2gV4sij+hFdEpcarag+6b+iIAQE+CzRyQtLZ2QkMA73qSkJCh5NZQnAqJI4Na7z54+obB8zRBbZi8feRIhIXD37t0BAwZgO4bFYl24cIFr1blz53r16qWtrQ39y5cvuXpkcnNzZ8+ejSJlZeWBAwd+/PgRyvoVNQVZ0+IHFQhtmCg+NeeMfxGoWRL+DaL6/UOh3olALQjoqSk4GhftU1+nJ87VAiNdKn4E+OwRcTicEoyw7JCTo930ElToVMQIRCRmzjtZtJ52a2883MFQxKyXAHMzMzPt7Oy8vLxKjBV6Z2fndevWldDjdN68eefPnz9x4iDTZTcAABAASURBVMT9+/czMjL69+9fWFgIff0KEyYSWo9o993wvEJ2W1NNSP2Cot6JQC0JxMbGjhs3TktLS0lJqVWrVgEBAUyDnz9/dnd3x/YK9L179w4NLdoIY4pKpGfPnm3evLm8vDxSTCYlSoX5tLdNUZjoShU9ImEeCdlGBPhHgG8e0dbiAxuxe/fuLc4WJVu2bJk5c6aVlRX/DKaWiICgCWTmFkw95J+eU4B9tV/7Nxd099RfFQj06dNn1apVQ4cOLVHXzc1t2bJl3bt3L6FPTU3dt2/fpk2bUGRvb3/kyJGgoCAfH58S1XCKPZ00ngOaOpWWxR+cCxLKhyskZuQeexqF4VOACBBIRJrA169fsVciKyt79erVt2/fYirQ0NDAiLCrO3jw4PDw8IsXL7548cLY2BhTBDZWUFRCHj16NGrUKMwwr169Qjpy5MgnT56UqCO0p4xH9Cwy+Ut6rtAaSYYRAQETKPKI+NIlnB8IZpOdO3ciwwjyWVlZSPnSBTVCBARPAH/Si868Ck3I0FWV3z62tZwM314ygh8L9cglgP3g/Pz8nj17MhrsB9vY2Dx8+JA55U3Xrl2r/u0wMjLiLaqLvDDHiPbfj8jJZ9sZqndqWvQjj3UxfGqTCAiGwPr16/FyPnDgQNu2bU1MTLp162ZuXvRbw4gIPX78eMeOHW3atGnWrNn27dsRQD5+/Hhpqzw9PXv06OHh4YE9X6RoAZrS1QS8pVLagDI1hg2VWhqqczgNbryNL7MCKYmABBLg2/IuovhwcXHBfklxtih5//799evX27VrJ4FkacjCSaC6Vu26G34lKF5WmrVjXGtdNYXqXk71hZNAfHy8nJxcQ56Hvujp6UFZ2lqsdRBQYiQmJqZ0Bf5qbBqrocHYlOykDOHau03Nyj/0qChANLOLBYvFgpEkREB0CVy6dMnR0XHEiBG6urqIEu/Zs4cZS25u0etOQeHfqV5aWhoTxf3795lS3hQxIu6WCvS9evUShi0VWFJFYcJE116TR1RFYFRN/AnwzSNiUPn6+nIXGYWFhS9fvkRsmimilAiIHIH7oYkbrgXD7GUDWjgYayJDIq4EOBwOi1XGQl9eXl6N56jr4asqyJrx7+EKfLT24KPIjNyCZnqq3a31+NgsNUUE6oVAeHg4AkFNmzbFpu306dPnzJlz6NAhWIKAj7GxMfZBsHTJy8tbt24dNkri4sr46R7osY2CSxhBHhomz5uiKWY/BakAtlR4u64438emESo8CktKzRLeJ1vCQhIiIDACfPaI5s2bt6/414fgDnXu3Ll169YITPv5+QlsPNQREeAXgZjkrNnHn7M5DUY4GI5r14RfzVI7wkBAX18fyx0serjGJCQkYE3DPa3HDPMkw9exqfVoQ4muM3ML9j+IgHJmVwspqTL8RhSREIH6JVCt3tlsNtYna9asQYBo2rRpU6ZMgYOEFmRlZc+ePRsSEqKpqamkpITVS58+fRApQlFpYbH+/1oQki2V0kaWpzHVVu5hrbtjXGsFWWlEpPMK2Fl5BeVVJj0RkAQCfPaITp8+bWdnB3B///13ZGRkcHAwfKSlS5dCQ0IERIhATn7h9CMBX7PybRurrxxsw2L9/51PhEZBppZHwMHBAUufmzdvMhWwB/z69WsnJyfmtH5T/MnBgEBherjCsSfRKVn5WEL1sy3aV4Z5JERApAk0atSoefP/PybH2to6OjqaGREmh5cvX6akpGBauHbtWlJSkqmpKVPEm2JXhTcoJDxbKrxGVpzfPKoV5pk2a3wcVvk4rr656054bn79P2+zYpuplCFAaV0Q4LNHhLkD0wQMvXLlyogRIywtLSdNmhQUFAQNCREQFQLY7VtyPujNpzRNZbmdbg7YQhMVyyXWzoyMDCxiICAQERGBDLO+SU5ORv7t27fQv3//HnlmEaOuro6paeHChbdu3Xrx4sW4ceNsbW27l3okHa4SvDAekfDEiLA7sPteODj84GouTQEigCARfQLOzs6YELjjQFDI2NiYe4oMpggdHZ3Q0FB/f/9BgwZBU0I6dOhw89uWCopu3LghJFsqMKYqkp1XsOde+LbbH9Kyi0JDSP+8FbrdL4wiRVWhR3XEkgCfPSI9PT0sPgoLC7GzwiwvsrKyyos4iyVQPg2KmqlPAoceRZ17Hou1n9cY+8YaivVpCvVdNQJYtdgXH6i+YMECZJctW4b8pUuXkO/Xrx/yo0ePRn7nzp3IQ7Zs2TJ48OCRI0dibaSkpISwtpDMVC0aqyMk+Sk1J1E4Hq5w2j/mS3ouXghD7BuDGwkREAMC8+fPf/z48Zo1az58+HDs2LHdu3fPnDmTGdfp06f9/PzCw4sewN2jRw/MEtwnKIwfP97Dw4OpNnfuXHhB69evDw4ORurj4zNv3jymSCRSaSkp74eRJUw98DBCRorPy8ISXdApERBaAnz+0//++++xwrCxKfqUEaYSDPvJkydWVvR7RCBBIhoEnkUmr7xcFFLw6GPtZEFPGRbAXeNDF66urojs8Yq3tzfadXd351Uiv3z5cughCgoK27ZtQ1gbuzZwh4yM6vzJ2ui0KqIiLyM8D1fIL2TvvFMUIJrmYiYrzef3i6rQoDpEoC4ItGnT5vz588ePH8dyZeXKlZ6enmPHjmU6iouLc3Nzw7plzpw5yKAOo0eKyDNKkYEgInTixIkDBw60bNkSs83JkydF67G66Tn5iAthILwCDfS8GsoTAckhwOd3OKw29u7dO3Xq1AcPHsjLy4Mjtl0XL16MDAkREH4Cn9NyZhx9XsDm9G/ZaHKnMj47LvxDIAvFgADzwTlh+J3W8y9iY1OydVTlRzoKi8co4veXzBcWAv379w8KCsrJyXn37t2UKVO4ZsERiomJycvLi4qKgrMkJyfHLfLz84Pzwz0dPnw4AkSoiRaGDh3K1YtERlVBVk1RpoSp0EBfQkmnREBCCPDZIwI1zBGIRxsaGiIPmTBhQpmfwUURCREQKgJ5BewfjgR8Sc9tpqe6YXhLFouepiBU90eCjLE11MBog+r7cXOFbM4OvzBYMqWTKX2bDhxIiIDYEChks793Krnr5+5kgrAw/8ZILREBUSLAf4/o1q1bS5YsmTx58kSeo2Ikd+/eHTBggIGBAYvFunDhAreyu7s7NFxp3749twiZR48ede3aVVlZWUNDw9XVNTs7G0rRkuy8AqzC6cGXQnLXfv/7zfPoFDUFmV1uDkpyJTfPhMRIMkMSCAhJjOifoLiIxEwNJdmx7YwlATuNkQhIDgFFOZkZruZzuzVFXAijRjq7q8WEDiYr/n6TlpMPDQkRkDQCtfOIStH6/fffe/bsCacoMTHxK89RquJ/FJmZmXZ2dl5eXv/RFp/07t077ttx5cqVYl1RAncIRejr6dOnz549mzVrlpSofR0wN79w551wx9U3HejBl0W3tJ7/nXoWc/RJNIvV4M/R9ibayvVsDXUv2QRaGKjhTzE+LSchPae+SLDZnL9uf0DvE51NleVpgwAkSIiAWBGQl5We5mLmv7RHwC/dkY5wNHLb/+Sk/8fhOx7GJGeJ1VBpMESgCgT47BHt3LnT29v7yZMnCPWc5zkqtqRPnz6rVq0q82O48vLy+t8OTU1Nbjvz58+fM2fO4sWLW7Ro0bRp0+HDh6Mmt5Sbyc3NTeM5uPp6zyA6tN0v7M9boWn04Mt6vxkNGryKSfnlwmsYMr+7ZRcrXWTKEFIRAUERgAdirqOC3urxGdw+7z6//5yuIi+DbWNYQkIEiID4EVCSk5GTkdJSkUfaRFNp/VA7XVX5kM8ZQ7Y/eB79VfzGSyMiAhUQ4LNHlJeX58TXXzn08/PT1dW1tLScMmVKQkICMxJk4HRBj7709PRcXFzu37/PFJVI165dq/7tEJ5nScFIaSmpAw8jkOEVaOjBl7xABJNPzMidfiQgr5Dd3VpvVhcLwXRKvRCBigm0bKyOCkEf05AKXjgczl++RQGi8R2M1ZVkBW8A9UgEiIDgCdgaql+Y6WzdSC0xI2/M7seXAz8J3gbqkQjUFwE+e0STJ08+duwYvwaD2NHRo0dv3769adOmZ8+ede3aFTEfNB4eXvQ02OXLl8NNunbtWuvWrbt16xYaGoqiEuLh4ZH67YiJiSlRWo+nqdl5acXRIV4boKEHX/ICEUC+oJA969jzuNQcM23lzaPspKToaQoCoE5dVE7AhvGIYlMqr1oHNe5/SHz1MVVBVmpSx5Lfva6D3qhJIlCvBKhzHgIGGoqnp3foaqWbW4A3xxfYGeFwODzllCUCYkuAzx5RTk7O5s2bEbSZPXv2Ap6jZvxGjRrVr18/GxubAQMGXL16NSQk5J9//kFTbDYb6bRp077//nt7e/stW7Y0a9Zs//79UJYQeXl5NZ6jRGm9nLLZHO+HEcryMmr04Mt6uQH/7XTd1eDH4cnKctK73BzUFGgv/L906Kz+CLQ0LI4R1dPj5rYVf4NoTNsmWipFP6JQfxioZyJABARNQEVeZs94x4nORbshf1x//+PpwNyCQkEbQf3VEQFqtnwCfPaIAgMDW7VqJSUl9fr16xffjpcvX5ZvQFVLGjVqZGxszASCkMdlzZs3R8qItbV1dHQ0kxfmNCEtZ/z+p8svvX3wIdG9g0kJUyd0MHkdm5KRW1BCT6d1RODiy9i994s+u7hxhF1TPdU66oWaJQI1INDcQA0By89puZg0anB5bS55Fpn8NCJZTlpqamez2rRD1xIBIiCiBKSlWMsGNF85qAVmobPPP7rte/o1M09Ex0JmE4EqEuCzR+Rb1nH79u0qWlNBtaSkpJiYGMYXMjExMTAweP/+Pbc+wkfwl7inwpnxDU7o/ee9+x8SFWSl8gvYM7tY8D74ck43C3cnk0VnggZ63Q/5nN6gpgddV0UC7+LSfj4biMo/uJr3sW2EDAkREB4CSnIyFrpFD1cQ/K8SeRUHiIY5GDZSVxQeIGQJESACAibg1sFkv3sbhIywRTJk+4PwLxkCNoC6IwKCJMBnj4hr+sePH2NjY7mnFWcyMjIQR4KgWkREBDII+ED5448/Pnr0KDIy0s/Pb8CAAdra2kOGDEEdFou1aNGirVu3njlz5sOHD7/++mtwcPCkSZNQJJySW1D4+99vvvd+lpyZZ91I7fLsjn1bGpR48OV0F/PPaTlZeQXhXzIHeT248KKq9IRzyEJuVWpW/rTDATn57E5NtX/s2UzIrSXzyiMg3nqb4q8SBX5MFeQwAz+m3An5gh3iH1zMBdkv9UUEiIAQEnBtpnv2B6fGGoqRSVlDdzx8HJ4khEaSSUSALwT47BGx2ewVK1aoq6sjYtOkSRMNDY2VK1dCWbGt/v7+9sUHqi1YsADZZcuWSUtLBwUFDRo0yNLScsKECUjhHamq/vvRpnnz5nl4eMyfP9/Ozu7WrVs3b940NxfS9+8PCRlD/np44EEkRoco0PkZTha6/44C28By3x58iXxzA3U4Sx0ttLNp5UUwAAAQAElEQVTzC+edfPnrhddwpXAVCX8JFLI5c0++iE7OMmyouHW0PRZ//G2fWiMCfCHAPG7utWC/SvRX8SPmBtkZNNFS4ssoqBF+EaB2iEC9EGimr3p+ppOdkUZKVr7bvien/YXoIVX1AoQ6FVcCfPaIli5d6uXltW7duhcvXjx//nzNmjXbtm1DDKdifK6urpz/Ht7e3oqKitevX09ISMjLy4uKioKmxOOzFy9eHBMTk5mZ+fDhw44dO1bcRb2UYkwnn0UP2Hb/bVyaprLcvgmOywe2UJCVrsAYLRX5gxPbzula9Azow4+jRu56HJuSXUF9KqoBAU+fEL/3X+RlpHaOc2ioLFeDFugSIiAAArbFD1cIFKBH9D4+/fqbzyxWgxldhHSDSQDYqQsiQARKENBVVTg5tX0/20b5hZxFZwL/uB7MZtftA+hKGECnREAABPjsER08eHDv3r0//PBDy5Yt7ezsZsyYsWfPHjgzAhiJsHWRmp0/6/iLn88GIeDjbKF1dW6nbtZ6VTESIYsFPZvtd3dUV5R9FZPSf+u9uyFfqnIh1akKgetv4pnnaK0bZst8KqkqV1EdIiB4As0bqUuxGnxJz/2cliOY3rf7Ff0GUR8bfW4cWzD9Ui9EgAgIOQFs5m4bYz+zeK/kL9+w2cdf5OTTA+iE/KaRedUjwGePKDk52crKitcEnELJqynOi3kSEJXc9897/wTGyUixfu5tdXhiOz01hWqNuauV3uXZHW0bq3/Nyp9w4OmfPqG0JVMtgGVW/pCQsfDUKxS5O5kMsTdEhoQICC0BRTnppsWfsA0UyFeJIhMz/371CTRmuBbFqJEhIQJEgAhwCUhJsRb1svpjeEtZadY/QXGjdz/Gfg23lDJEQNQJ8NkjQlzIy8uLFwpOoeTViHe+kM3ZdiuU+bRbE02lMz84/eBqjnmkBqM20lQ6Pb3Dd+2acDgNtviEfO/9jB5/WQOM3EvSc/KnHfbPyC1oa6q5tJ81V1/3GeqBCNSQAPPBOcE8bm6HXxib06CrlS7FTmt4t+gyIiABBEY4Gh2e1E5dUfZlTMrgvx68j6dH40rAXZeMIfLZI9qwYcP+/fubN28+adKkyZMnI+Pt7f3HH39IBswGcanZ3+15vOlmCPyiwa0M/pnTsZWRRm3Gjjj1miG2G0fYyctI3Qn50n/b/VcxKbVpUGKv5XA4P55+FfYlU09N/q/vWstK8/kvX2LB0sDrlACixGg/6GOdv+pjU7LPvfiIvmZ2qWWACG2QEAEiIM4E2ptpnZ/hZKKlhHlj2I6HWJyI82hpbBJDgM/rQhcXl5CQkCFDhqSkpCQnJw8dOvT9+/edOnWSBJ7X38T3+fPek4hkZTnpzSPtPEfbqyrI8mXgwx0ML8x0ZmafETsfHXkchfU9X1qWnEa2+4Vdf/MZsf4d4xx0VOUlZ+A0UpEm8C1GlFbXL/ndd8LyCzkdzLQcjBuKNDEynggIkIDkdmWmo3J+hnNbU82M3IKJ3s8OP46SXBY0cnEhwGePCFgMDAxWr1599uzZc+fOrVq1CqdQirfk5Bf+euH1tMMBKVn52NO9PKfT0NZ8/o6KdSO1S7M79myul1fI/uXC6wWnXmXlFYg3VT6ODjtYG2+8R4O/D7Rp3YQWfCBBIhoEmjdSk5ZiJWbkxtflwxW+pOeeeBYDIrOLn3KJDAkRIAJEoGICDZXlDk9qO6y1YSGbgyXQ73+/QabiS6hUlAmIv+1884hCQ0PHjBmTlpbGyyw1NfW7774LDw/nVYpZ/n18+iCvB8wGybTOZmd/cDLVVq6LMaopyO5yc1jS1worpPMvYof89TD8S0ZddCRmbUYnZc05/oLDaTC6jdF37ZqI2ehoOOJNQEFWuqmuCsYYVJcPV9h7Pzy3gG3fRKODuRb6IiECRIAIVIWAvIz0xhEtF/VqhsoHHkROPVT0TV3kSYiAKBKQ4pfRf/zxh5GRkZqaGm+D6urqUKKIVyk2eQ6Hc+Rx1ECv++8/p2uryB+a2Najr7WcDN+QlgbFYrGmdjY/OrkdukOnA70eXHsdV7paDTXieFl2XuG0IwGp2fl2Rhq/D2ohjkOkMYk5AYSdMcK6e7hCSlbekUdFn3iZ1cUCMwz6IiECRIAIVJEAJo2ZXSy8vrPH4udWcMKInY/iUulHFKsIj6oJFwG+Ld/v3r07YsSI0oMbOXLk7du3S+tFXYNlxLTDAb9ceI29VRdLnWvzOnW21BHMoNqbaV2Z07GtSdHnd6cfeb76n7f5hWzBdC1avcBlXXwu8F1cmpay3M5xrbGbJVr2k7V1SEB0mm5pqA5j684jws5uZl6hdSO1rla66IiECBABIlBdAv1bGpyY2l5bRQ5vuIO8HtRpTLu6tlF9IlBFAnzziKKionR1y3hD1dbWjokp+oR6FQ0SiWqPw5P6/HnvxtvPstKsX/pZH3Bvo60iL0jLddUUjk5pN7WzGTrdcy9i7J4nCXX5NQP0IoqCpd7Fl5+kpVh/jW3dSF1RFIdANhMB5lnYWGHAw+c7jfScfO+HkWiWAkSAILZCAyMCdU+gdZOG52c4W+qpJKTnjtz16Pqb+Lrvk3ogAvwkwDePSF1dPSwsrLRpHz58UPvvR+lK1xEhTUEhe/ON99/teRyXmmOmrYzX/+ROZjX7uaFajlpWWmpJX2uEPlTkZZ5GJvfdeh9+Wi3bFKfLQWP1lXcYESghqoYMCREQRQKI3shIsZIy8zDn8N3+I4+jU7PzzXWUe9vo871xapAIEAGJImBU/BuMnZpqZ+cXTj8SsPtuWF3s41SClIqJQE0J8M0j6ty587Zt20qbsXXrVrF5+nZMctao3Y+33v7A5jQY4WD49+yOzPZt6VELTNPbptGlWc5W+qqJGblj9z7ZeYcmoCL2canZs449L2RzBrUymOhsUqSif0RANAkUPVxBTxW2B/L74QrZeYX77hc99maGqwVCqeiChAgQASJQGwJqCrIH3NuMa9+Ew2mw5krwkvNB9Kn+2vCkawVJgG8ekYeHx9WrV4cPH/706dPU4uPJkyfDhg27fv06ivg4pPpq6nLgp75b7wVEfVWVl9k2xv6PEXbK8jL1ZQxvv8zPAgxt3RgOwLqrwVMPFz1IgLeCpOVzC7A79TwxIw+b6+uGtmSxWJJGgMYrZgRaNi76KtHr2FT+juvEs2i8TAwbKg5sZcDflqk1IiD8BGJjY8eNG6elpaWkpNSqVauAgADG5oyMjFmzZhkaGioqKlpbW+/YsYPRl0i9vb1Z/z1ycnJK1JHMUxlpqZWDbH7t35zFanD8aYz7gacIREsmChq1aBHgm0dkb29/5syZu3fvdujQQbP4cHJyunfv3qlTp1q3bi1aUEpYm5VX8POZwFnHXqTnFNg30bgyt9MAO+FaQCjKSW8aYbdmiK2ctNTNt58Het1/++k/j0EvMSLxPv3t4ptXMSnqirK7xjmAjEgPlownAiBgU/xwhUC+ekR5Bezdd4sCRD+4mstK8+2NANaSEAHhJ/D161dnZ2dZWVns5L59+3bTpk0aGhqM2fPnz7927dqRI0fevXuH/OzZsy9evMgUlUjV1NTieA4FBYUSFST2lMViTepousfNUUlO+sGHpKHbH0QnZUksDRq4qBDg5xth//79o6Ki4BetW7du7dq1Z8+ejYyMHDhwoKiwKNPON59S+2+7f9I/hsVqMKuLxalpHYw0lcqsWb9KFov1XbsmZ37o0FhDMSopa8j2B6f9xe2BFlUhfPxp9IlnRTdr6xj7JlrCeKeqMgqqQwR4CXBjRHz8UP655x/jUnP01OSHO/D556R5La9WnioTAYERWL9+vZGR0YEDB9q2bWtiYtKtWzdzc3Om90ePHk2YMMHV1RX6qVOn2tnZ+fv7M0UlUrzt6vMcJUrptHtzvdPTO+irKYR9yRy8/UFAVDIxIQLCTICfHhHGqaioOGTIkEWLFv3000+DBw9GMBpKEZLsvAJsnSZl5CJFaOhswMfiH0LNxLrh6OR2P/ZqJuSbqS0NNS7P7ujaTCe3gL3oTKDHucCc/EIR4l9LU19Ef0WACI382LOZi6WAHoaO7kiIQJ0SaKavKiPFSs7Mi03hzw99FBSyt/uFweapnc3pqfTgQCJpBC5duuTo6DhixAhdXV17e/s9e/ZwCXTs2BGlsbGx2IDw9fUNCQnp1asXt5Q3k5GRYWxsbGhoiO3gFy9e8BZx87m5uWk8B1cvIZkWBuoXZznbNFbD9DVmz5OLL2MlZOA0TFEkwGePSBQRcG3OzS/ceSfccfVNh1U+SHf6hcG1QESou7Xe1bmdncy1uTWFOdNQWW7/hDYLeliyij/CO3znw5jkLGE2mF+2fUnP/eHI87xCdq8WejNc/93t41fj1A4RqEcCCrLScIpgAL++SnQ5MC46OUtTWW5MWyM0S0IEJI1AeHj4jh07mjZtev369enTp8+ZM+fQoUMMhK1btzZv3hx+jpycXO/evbdv3w4fiSniTa2srLy9veE7HT9+XEFBwdnZOTQ0lLcCk1+7dq36twNRKUYpUamemsKpaR16NNfDRvPcEy89fUI4HI5EEaDBigoB8oj+vVOIDmHT9M9boWnZBVAh3Xr7g/fDyN1uDnvGO2DpAKWoiJQUa063pocmtm2oJPs6Nq3/tvu3gz+LivE1szO/kD3z6PP4tBxzHeWNI+xYLFbN2qGriIBwErAtfrgCXx43x2Zz/vL9gGFO6miqJCcUj4eBMSREQJAE2Gx269at16xZgwDRtGnTpkyZAgeJMQAe0ePHj+HqBAQEbNq0acaMGT4+PkwRb9q+fftx48bZ2dl16tTp1KlTlpaWZT5u18PDo/hRU0WJ+P02Iy+QCvKYZ3aOc5jauegXFD19QueffClRn16pgAwVCRUB8oj+vR3SUlIHHkb8e/Ltv4OPIhEjYrFEcnndqanO5TmdWhlppGbnT/T233j9fSG7jjZmvvGqv/9X//PuaWSyirzM7vGOqgqy9WcI9UwE6oSAbfHDFYL48XCFG2/jQxMyVBVk3DoY14mt1CgREHoCjRo1QiCIa6a1tXV0dDROs7OzlyxZsnnz5gEDBrRs2XLWrFmjRo3auHEjiioQKSmpNm3alBkjkpeXV+M5KmhEvIukpVhL+lqvGWKLzIWXn8btfZKUkSveQ6bRiRwB8oj+vWXpOflpxdGhf8+L/4MG+uKsSCaNNRQRrZ5QvO7x8v0wfr94zkHnX3xENA93aNNIO3MdFWRIiECdEaifhpkYETyiWn7gBJdjKsAY3J1M1GjvACBIJJKAs7Pz+/fvuUMPCQkxNjbGaX7xISX1/6WRtLQ0AkooqkDwsnr58iW8rArqUBEIfNeuycHv22I7xj/q65DtDz8kZEBJQgSEhMD/X/Z8MejKlSvXr1/nbQqnV69e5dUIZ15VQVZNUaaEbdBAX0IpWqdyMlK/D7L5c3QrRdmih2D223o/IOqraA2hYmvffEr1EYwXWQAAEABJREFUOBeEOrO6WPRqoY8MCREQPwLN9FVlpVkpWfkfv9bq4Qp+IV9ex6YpyUl/72wqfpRoRPwmILbtzZ8///Hjx2vWrPnw4cOxY8d27949c+ZMjBbhHBcXl0WLFvn5+UVERHh7ex86dGjIkCEogowfP97DwwMZyO+//47lTXh4OHyhSZMmIZ0+fTr0JBUT6NhU+/wMJyNNxejkrKHbHzz4kFhxfSolAgIjwGePaPHixYWF/3m4GfZOoBTYeGrcUSGb/b1TySUCNAVsdo3bFJ4LB7VqfHGWs5mOcnxazqhdjw48iMB9ER7zamzJ18y8aYcDcvLZLpY683tY1rgdupAICDkBeZl/H64QVIsPzuFV/9ftDxjp2HZNROu7kbCZhAjwkUCbNm3Onz9//PhxGxublStXenp6jh07lmn/xIkTKMVp8+bN161bt3r1aq6rEx0dHRcXx1RLSUmZOnWqtbV1z549Y2Nj796927ZtW6aI0ooJWOiqnp/h3LqJRlpOwYT9T08+K/q8YsWXCKSUOpF0Anz2iEJDQzGJ8EK1srLCHgyvRjjzinIyM1zN53ZrirgQLESKPDRKciUDRygVRbHUU700q2O/lo0K2Jzf/347+/iLzNyiZ0iI4lgYmwvZnDknXmDLvImm0tbR9tJSIvl1L2YslNaSAJYjAwYMMDAwYLFYFy5c4LYGH2D58uXQKyoqurq6vnnzhlsUHx/v5uamr6+vrKzcunXrM2fOcIuEM2PbuOgXJGvjET2JSPaP+oq48ZRORV9xFs5hklVEQDAE+vfvHxQUlJOT8+7duylTpnA7xZxw4MABODnZ2dnBwcELFizArMKUInCEqBGT37JlS1RUVG5ubkJCAoJFHTp0YPSUVoWAtor8sSntB9oZYEHy89mgtVffscX3e85VAUJ1hIEAnz0idXV1BJF5BwZ3CAsOXk295SvrWF5WepqLmf/SHgG/dEeKPDSVXSRK5SryMl5j7Jf1by4jxbocGDforwcfEtJFaQD/tXXjjff3QhMVZaV3uTmoK9HTFP5LR8LOMjMz7ezsvLy8Sox7w4YNmzdvhv7Zs2dY6PTo0SM9/d+/ebhD79+/v3TpElZFQ4cOHTVq1ItyflGkRJv1dfrvV4k+ptbYAK/iANEoRyNdNYUaN0IXEgEiQARqT0BBVvrP0a2w9Yymdt0Jn3H0eXbefz5hBD0JERAkAT57RAMHDpw3b15YWNFv/2EYcIcWLlwIJfIiIYgIYQNVS0UeKfIiYXO1jMRe18SOpientddTk/+QkDHQ68GlV5+q1YKQVL4aFLej+Ccm1w9vad1ITUisEiIzJMyUPn36rFq1Co4N77gRIPL09Fy6dCn0NjY2Bw8ezMrKOnbsGFPn0aNHs2fPbtu2rZmZ2S+//KKhofH8+XOmiDfFHnAaz8FbJOB8y2+Pm8O4atD1i+iv9z8kYjcEez01uJwuIQJEgAjwlwAWJPN7WHqOaiUnLXXtTfyo3Y8S0nL42wW1RgSqToDPHtEff/yBiJCVlZVp8WFtba2lpVXpkyurbi7V5AsBB2PNf+Z0cjLXysornHP8xfJLb/IKROnrUqGf0388/QooJnc0RdgdGRIiUJpAREREfHx8z549mSJ5eXkXF5eHDx8ypx07djx58mRycjKbzT5x4gQ8H1dXV6aINxWeH1i01FPFuiE1Oz8muSYPV2B+g2iwfWPDhkq8AxSHPI2BCBABkSWASenolHYNlWQDP6YO+uvB209pIjsUMly0CfDZI1JXV8eC459//pkxYwaiQ7du3bp9+zY2X0Ubkjhar60if3hSu5ldzDE474eR2JuJS63JMguXC1jScvKnHQ7IzCtsb6a5uI+VgHun7kSIANwhWKunp4eUEeQZJU7hDhUUFGDLBp7StGnTzp8/b25e9HJAEa94CM0PLCJwbdVIFbbV4KtE7+LSfN4lsFgNZriWMUa0SUIEiIBoEBBHK9uYaF6Y6WymoxyXmjNi58PbwZ/FcZQ0JmEnwGePCMNlsVjYlF20aNGsWbM6d+4MDYlwEpCWYi3qZbV3vKOagsyL6JR+W+/fDxX252Cy2ZwFJ1+FJ2Y2Ulfw+q61jDT//4CF82aRVTUmgBmJey2Hw+Ge/vLLL1+/fvXx8fH391+wYMGIESOCgooe486tzGTgL6nxHIyyvlKbxuroOjA2BWm1hAkQ9bNtZEY/2FUtcFSZCBABgRAw1lI+/4Ozk7kWtjsnH/T3fhAhkG6pE+EmIFjr+LOg3Lp1a05O0ac/kSlTBDso6q0aBLo317s8u1MLA7XkzDy3/U+8bofC66jG9YKt6uX7wefdZ2yW7xzngDCXYDun3kSMgL6+PizmBoWQT0hIQJgImbCwMC8vr/3793fr1s3Ozu63335zdHT866+/UCTM0rLYI3pdzQdwh33J+Ceo6JHBM7tYCPPoyDYiQAQkmYC6kuzBiW1HORqxOQ2W//122cXXBYWi9Hl+Sb534jF2/nhEW7ZsyczMBBFkSounpyeKSISWQBMtpbM/OGEa4nAabLwRMvmQf0pWnmCsrVYvvsEJW3xCcMmqQTZ2RkVPIkaehAiUR8DU1BRO0c2bN5kKeXl5d+7ccXJywmlWVhZSKan/T4DS0tJsof/xMSZGFPQxFcEu2F9F2eEXhpd2d2s9a3oGSRWRUTUiQATqg4CstNS6YbbM5+EPPYqafMg/PSe/PgyhPiWRwP8XBLUZfUREhJaWFlpAprSUeB43qpEIGwEFWen1w1tuGN5SXkbqdnBC/233seoSKiMjEzPnnniBhd3Ydk1GtjESKtvImHonkJGR8bL4gCURERHIRkdHs1isefPmrVmz5vz5869fv3Z3d1dSUvruu+9Qx8rKysLCYtq0aU+fPkW8aNOmTXCcBg8ejKK6k9q3bKmnigBpWk5BdHKRR1eVBmOSs86/iEXNWV0pQAQMJESACAg1Aczb013Md45rrSAr5ff+y4idj2JTRONLzkKNlYyrAgH+eETcjlasWMFsvnI12dnZUHJPKSPMBEY6Gp2b4dREU+nj1+xhOx8efxpdra3ouhtaVl7B9CMBWAjaN9FYNqB53XVELYsoAX9/f/viA/YvWLAA2WXLliH/008/wSmaMWOGo6NjbGzsjRs3VFWLHk4gKyt75coVHR2dAQMGtGzZ8tChQwcPHuzbty8uEWaBO2StX2R/1R+usOtuWCGb06mpdisjCqsK870VN9toPESgNgR62zQ6Na2Djqp8cHz6IK8HL2Oq/eXJ2vRO10omAT57RL///js2a3lRwkGCkldDeWEm0MJA/e/ZHbtb6+UVsD3OBf14OrDefzQNXtlPZwIxLWqryO8c5yAvIy3MAMm2eiHg6uqKvxNe8fb2hiXYbly+fHlcXFxOTs6dO3dsbGygZKRp06Znz579/PlzZmbmq1ev3NzcGL2Qp7bMrxJV7XdaP6flnPL/iBHRN4gAgYQIEAERItDSUOPiTGcrfdXEjNxRux5dKf4ypHDaT1aJBwE+e0RYkWAJwosGSw1NTU1eDeWFnIC6ouxuN4efe1tJsRqcff5xyPYHkYlFXxKrL7P33ou4HBgnI8XaMa61nppCfZlB/RIBYSBgW/xwhSrGiPbcDcfWRhuThu1MaRIWhrtHNhABIlANAgYaimd+cOrSTCe3gD3j6PPtfh+wyKzG9VSVCFSHAN88ooYNG8LzgTtkaWmJDCPq6uo9evQYOXJkdUwSwroSZ5KUFOsHV/Mjk9tpq8ghODNg2/3rb+LrhcLDD4lrr75D17/2b97GhFZ1IEEi0QRsGxd9+A0eUaUrg+TMvKNPogELASLMzMiQEAEiQAREi4CKvMye8Y7uTiYwe8O19z+dCcQuD/IkRIDvBPjmEXl6em7evBlv0r///jv3cXM7d+68f/++8D/Tlu9YxaNBJ3Ptf+Z0cjRumJ5bMO1wADyTAsE+CjM2JXvW8RdsToOhrRuP72AsHlSFfhRkoFATaKqnIicjlZ5TEJVUycMVDjyIyM4vREzJxVJHqIdExhEBIkAEyicgIy21fGCL3we2kGI1OB3wcfz+JylC+Tjc8kdAJaJBgG8e0YQJE9zd3X19fWfMmIE8I2PGjOnQoYNokCAryyKgp6ZwfGr7SR1NUbjrTvjYvU8S0nOQF4Dk5BdOPxyAfe4WBmprhtjSJrcAmFMXwk9AVlqqefFDtAMr/FWitJx874eRGA4FiAChfKESIkAERIPABCeTfe5tlOWkH4cnD93+sH4/zC8ayMjKahLgm0fE9Kuqqvru3Tsmf/HixcGDBy9ZsiQvTxh/3IYxktJKCWAF9mv/5tvHtkbw+klEcr+t959GJFd6VS0rINj464XXQbGpDZVkd45zUJClpynUkihdLj4EEPbBYCr+ndbDj6IQR7LUU+nZXA+VSYgAEZB4AiIPoEsz3TM/OBmoK4QnZg7e/kAASxGRR0YDqA4BPntE06ZNCwkp+g3N8PDwUaNGKSkpnT59+qeffqqOSVRXGAn0tW10cZYzFlhf0nPH7Hm85244nJa6M/TIk2gExxEi3zamtZGmUt11RC0TAZEjwDxuLvBjSnmWZ+UV7L0XjlIEiKTwKkKOhAgQASIg+gSsG6ldmOVsZ6iekpU/du/jc88/iv6YaAR1QaAmbfLZI4I71KpVKxgCR8jFxeXYsWPe3t5nz56FhkTUCZjrqFyY6Ty4lUEhm7P6yrsfjjxPy8mvi0EFRCWv+PsNWv6pt1XHptrIkBABIsAlwMSI3sSmsdkcrpI3c+xJ9NesfGMtpX62jXj1lCcCRIAIiDoBXVWFE1M79LXVzy/kLDj1atON9+XNhKI+UrJfwAT47BEhbsBmszEGHx8f5ucOjYyMEhMToSERAwJKcjJbRrVaOdhGVpp17U38IK8HwfFp/B1XQlrO9CPPMdNhMTets1m5jVMBEZBUAk11VeRlpNJzCyKTyngsfk5+4Z7iANEPLuYy0nye4SUVOY2bCBABISKgKCftNab1D67msGnb7Q9zTrzAvIc8CRGoDQE+v186OjquWrXq8OHDd+7c6devHyyLiIjQ06MPsoOEmAiLxXJrb3x6ulNjDcWIxMzBfz3gY9g6r4A94+jzL+m5WPNtGN4SfYkJNRoGEagNgf9eCz+nuYEadEFlPVzhTMDHz2m5jdQVhrY2RB0SIkAEiID4EZCSYv3c2wrrBBkp1uXAuO/2PE7MyBW/YdKIBEmAzx6Rp6fn8+fPZ82atXTpUgsLC4zkzJkzTk5OyJCIE4FWRhp/z+7Yqal2Tj4bYeul54NyCwprP8BV/7z1j/qqKi+zy81BWV6m9g1SC0RALAm0ZH6n9WNqidHlF7J33gmDEvFVORk+T+9oloQI1DkB6oAIVJnASEejQ5PaqivKPo9Owf5syOf0Kl9KFYlASQJ8fsts2bJlUFBQamrqb7/9xnT1xx9/HDx4kMmXl969e3fAgAEGBgaICVy4cIFbzd3dHTsHxxYAABAASURBVBqutG/fnlvEZDgcTp8+fVCB9yqmiNK6JqCpLOf9fdu53ZqyWA2OPokesfNRTHJWbTrF3vahR1FowXN0KzMdFWRIiAARKJOADeMRlYoRXXz56ePXbG0VudFtm5R5ISmJABEgAuJEwMlc+9wMJ2MtJUx9w7Y/vBf6RZRGR7YKEwE+e0Slh6agoCArK1taz6vJzMy0s7Pz8vLiVTL53r17x307rly5wii5KUJSLBaLe0oZAROQlmLN72F5wL2NhpJs4MfUAV73/d4n1MyGoI+pS84H4Vq4WN2s6WOWIEFCBMol0NJQA2VvPv3n4QqFbM52vw/QT+5kRg+sBwcSIkAEJIGAuY7K+RnObU0003ML3A88O/qkaGtVEgZOY+QvAT57RIWFhRs3bmzbtq2+vr4mz1Gx0YjzrFq1aujQoaWrycvLoylG0B5vhVevXm3evHn//v28yhL53NzcNJ6jRKkATiWhC9dmupdnd2Sehvm997PNN0OwMqvWwJMycqcfCcgrYHez0oVHVK1rqTIRkEAC5jrKCrJSGbkFETwPV7j2Oj78S6a6ouy49sYSyISGTASIgMQS0FSWOzy57VD7xlh+LD3/etXlt8hILA0aeM0I8Nkj+v333+GljBw5MjU1dcGCBXBypKSkli9fXjPjcJWfn5+urq6lpeWUKVMSEv4ff8jKyhozZgzCSnCWUK08Wbt2rfq3w8jIqLxqpK8lAcOGSqemdxjXvgmH02DrrVD3A0+TM6v6s7wFhezZx1/EpmSbaCltHtVKin4+pZY3o/4up54FRkBGWqqFgTq6Q3AVKYTD4Xj5FgWIvnc2UZGXgYaECBABIiA5BORlpDeNtFvYwxJD3ns/YtrhgMzcAuRJiEAVCfDZIzp69OiePXt+/PFHGRkZeCx79+5dtmzZ48ePq2hNiWqIHaHB27dvb9q06dmzZ127dkXMh6kzf/58JyenQYMGMaflpR4eHvDNGImJiSmvGulrT0BeRnrVYNsto+ywdX0vNLH/1nsvor9Wpdk/rr9/GJakJCe9y80R29tVuYTqEAEiwPwqEfdxc7eDE97FpSnLSbs7mRAcARCgLogAERA2AiwWa3a3ptvG2MvJSPm8+zxy16P41BxhM5LsEVoCfPaI4uPjbW1tMVoVFRX4Icj079//n3/+QaYGMmrUqH79+tnY2AwYMODq1ashISFMU5cuXYKb5OnpWWmb8vLyajxHpfWpQi0JDLE3vDizo5m28qfUHExGhx9FYuu6gjYvB37adTccFTYMb9lMXxUZEiJABKpC4F+PqPhxc3iVbbtdFCAa18FYQ0muKpdTHSIg4QRiY2PHjRunpaWlpKTUqlWrgIAABkhGRsasWbMMDQ0VFRWtra137NjB6EunZ8+ebd68OZYZSM+fP1+6gthoRGsgA+wMjk9pr6Us9+ZT2qC/7r8u9QQa0RoOWSswAnz2iDCJxMXFwXoLC4sbN24gg9gO5gtkaimNGjUyNjYODQ1FO3CHwsLCNDQ0ZIoPaIYNG+bq6ooMSb0TgGNzcZZzHxv9/ELOrxffzDv5Miuv7Mj1+/j0n84EwuBpnc36tzRAhoQIEIEqErA1LPrU3JtPqYVsDqKsL2NS5GWkJnc0q+LlVI0ISDKBr1+/Ojs7y8rKYrP17du3mzZtwoqCATJ//vxr164dOXLk3bt3yM+ePfvixYtMEW/66NEjbNq6ubm9evUK6ciRI588ecJbgfL1SMDBuOGFmc5NdVU+p+WO2Pno5tvP9WgMdV1jAtl5BXkF7KSMXKTlrSRr3HjpCxmPqLS+hpohQ4bcunULF8+dO/fXX39t2rTp+PHjJ06cCE0tJSkpKSYmBn4R2lm8eHFgYODLbwc0W7ZsOXDgADIkwkBAVUF2+9jWv/SzlpZiXXz5aZDXgw8JGSUMS8vOn3bYPyuv0NlCa1GvZiVK6ZQIEIGKCZjrqCjKSsvLSsd+zTr4MBKVx7RtoqMqjwwJESACFRNYv369kZERlg1t27Y1MTHp1q2bubk5cwlcnQkTJmCPFfqpU6fa2dn5+/szRbypp6dnjx49PDw8rKyskKIFaHgrUL5+CRhpKp2d4dSpqXZ2fuHUw/5774Ujll6/JlHv1SKQm1+480644+qbDqt8kO66Ew5NtVqobmU+e0Tr1q1bsmQJjBg+fPi9e/d++OGH06dPQwlNBYIgNePdoE5ERATy0dHRUP7444+YmyIjI/38/AYMGKCtrQ2PC3X09fVteA5omjRpYmpqigyJkBBgsViTO5khcq2rKh+akDHI6/4/gUXBQ8bjT8zIlZWWWtLX2slca9uY1jLSfP47rBACFRIBcSAgLcU68H2b+z93wUvJc3SrPeMdZrj+u6QTh+HRGIhAXRK4dOmSo6PjiBEjdHV17e3t9+zZw+2tY8eOKI2NjcUC2tfXNyQkpFevXtxSbgaLk549e3JPUefhw4fcU24mlx54y2Uh8Iyagux+9zbftSt65tOqf94tvfA6v5DNLEIEFnYQ+KBFvkM2m4OIUEZO/na/sD9vhaZlF33ICCny0GSV85kjvgy7Dlei7du3X7BgwcCBAys1FBswmJIgqIlLkFm2bJm0tHRQUNCgQYMsLS2xYYMUE5CqKn3VBJBERtqaal6e07G9mWZmXuHmmyGICzEev+Mqn3ZrfYJiU/dOcNRUpq89iMwNJUOFhwB2yx5+SGy/9laHdbeR4tWkrlj6l9+Ex16yhAgIEYHw8PAdO3Y0bdr0+vXr06dPnzNnzqFDhxj7tm7d2rx5c0NDQzk5ud69e2/fvh0+ElPEm8bHx+vp/f+n85CHhrcCk6cH3jIc6ivFhtHqwTa/9LNmsRo8CU/OzC1gFiECCzvU18CZfuHVFxSyc/ILM3ILUrPy4Qd+TsuJTcmOTsoK/5IR8jn97ae0oI+pz6O/PotMfhSWdC/0i+/7BJ+3n6+9jr8c+Oniy9izAR9PPos++iTq0KPIffcjdt8N2+73YeutUKzo/rgevPbqu5WX3y6/9OaXC0GLzwb+ePrV/JMvZx17/sORgCmH/Cd6P3Pb9+S7PY9H7no0dPsD7Iz323qv15a73Tb5uf7h64x3rjW3sBq0X3HD9rfr1r9es1x61dTjH7MlV/COJoUtv4cRzCi46YGHETJSdei28KdpbKhULNzxlJlBeBq3jVe8vb0VFRUxVSUkJOTl5UVFRUGDGHeZl+PCwYMHl1lEynonoKuqcGRSu+ku5ov7NNtzLxxePnx9WIV02+0PCIPWqcePjkiIgPgRwDbndr+wrbc/4HWE0SHdeusDNPRqAg0SSSVQjXGz2ezWrVuvWbPG3t5+2rRpU6ZMgYPEXA+P6PHjx1jSBAQEbNq0acaMGT4+PkxRiZTFYnE1WIewWP8/5eo96IG3XBb1lGEVf2Jlt5vjkr5WWNP/WYuwA7s4fJGdV5iWk/81M+9Lem5canZMclZkYuaHhIzg+LTXsamvYlICopKfhCdhx+pOyJfbwZ9vvIm/GhR36dWn8y8+nvaPOf40+vDjKO8HEXvvhe+8E/aX7wdPn5BNN96vvxa85sq73/9+s+zi6yXng34682rBqZdzT7yYefT5tMP+kw8+cz/wdNzeJ6N3Pxqx8+Hgvx4M2Ha/z5/3emy+03WjX+cNvk5rb7Vd7eOw8qbd7zdaLLvW7JerFkuumHpcsVh61erXaza/XbdbcQN+YLs1t+CKdP7Dt+umOz233O279d4Ar/tDtz8csfPRmD2P3fY9/f7As8mH/KcfCZh17MXcEy8Xnn7189mgpedfL7v4Bs7PmivBG669hzsEp+gv37Bdd8KB1Pth5JHH0SeexZwJ+Hj+RezlwLirr+Nvvv18OzjhXmjiw7CkpxHJz6NTXn1MffMp7f3n9LAvmZFJWXDM4tNyEjNyv2blp+cWZOcX5hWyOZyivxIdFfmkjDy8rxWd8PyDJj0nn0fB5yx/PCI4JBUI81E3PhtOzYkOARlpqcV9rDpb6hx8VPRtB17D69rj5+2L8kRAbAhIS0nhtVNiONDU6f5Zie7olAiILoFGjRohEMS139raOjo6GqfZ2dlLlizZvHnzgAEDWrZsOWvWrFGjRm3cuBFFJURfXz8+Pp6rxO4twkTcU25Gnh54y2VRr5kezfU6NdUucxHCasBy2/sY4Yvenv+GLzquv91+zbfwxfJ/wxdmHkXhC8tfrlovu9Zy+Q37lTfbrPbpsPZ2pw2+rhv9um++09vzXv9t9wf99WDYjkejdj/+bu+TCfufTvT2n3o44Iejz+ccfzH/5KtFZwI9zgX9euH18r/frvrn3bqrwX9cf+/pE4oN4h1+Ybvvhh94EHnoUdSxJ9Gn/D+eex578eWnf4Lirr/57PMuwe/9l/sfEh+HJz+L/PoyJiUoNvVdXFpoQkZ4YmZ0ctan1JyE9NykzLzU7PzMvMLcAnYBu9i9+C92aSmWnIyUspy0moKMprKcjqq8gbqCkaaiqbZyU10VK31Vm8ZqrYw0HI0btjPV7Gih7WKp081Kt2dzvX62jQbaGQy1bzzS0XBM2yZu7Y2/dzaZ0skU+92zu1rM6970x56WP/e2QjjutwHNVw5qsXao7YbhLTePtNs6xn772Na73Bz2uzsenNj26OR2J6a2P/tDhwsznS/P7nhtXiefBZ19f3S991OXRx5dny7t9vzXHmd+6KCnpqCmKNPgvwc0qgp1+FEI/nhE7AqPwsLC/w6KziSRQEZOQVp20edBeQcPTZ16/Lx9UZ4IiA0BvGrw2ikxHGigL6GkUyJABEoTcHZ2fv/+PVcfEhJibGyM0/ziQ0rq/0sjaWlpLHBQVEI6dOhw8+ZNrvLGjRtOTk7cU8oIIYH0chYhSZm5Cel5CF8Ex6cz4YuPX7P/H77I+Td8UZZ/0UBWmqUgK6UiL6OhJKutIqenJt9YQ9FYS8lMR7mZnmrzRmotDdXtm2i0NdHsYKYFl6xLM53u1nq9W+j3b9locCuDYa0NR7cxGtuuyYQOxhOdTad1Npvhaj6nq8WCHpaLejXz6GP1a//mvw9ssWqwzfphthtH2HmOarVtjP3Oca33jHc84N7m8KS2x6a0OzWtw7kZTpdmOf8zp+ON+Z1vLXS5s8j1/s9dnizp5v9L95fLerz+vVfwyt6hq/tErO0btqZvyKo+b1b0DlzeC77Hs6XdH3p0u/dTV/gkNxe4XJvX+fLsTvBVzvzgdHJahyOT28GH2efeZvd4x7/GtoZvs3lUqw3D7eDtrBxs89uAFkv7Ncd+98KezeZ1t5zVtekPruaTO5l972zq1sEEXtNIR6OhrQ3hR/W1bdSrhX5XKz34V84W2u3NtByMNeF32TRWt9JXs9BVhT9mpKnUSF1RV1UBfhrcnkI2+3unkk8HgKaAza67P63/v+zrrg9quSYExO4a/InDvy8xLGigL6GkUyJABComgFcNXjsl6kADfQklnRIBIlCawPz58x8/frxmzZr54st3AAAQAElEQVQPHz4cO3Zs9+7dM2fORDU1NTUXF5dFixb5+flFRER4e3sfOnSI+zmX8ePHe3h4oBpk7ty58ILWr18fHByM1MfHZ968edCTCC0BTI+YJEuYBw3iJEv7WXl/34YJX5yZ/m/44urcTjfnd4argPDFw8X/hi9e/dbz7Ype71f1hmsRua5f6Oq+wSv7wOV4uayn/y89nizp/mBx1zuLutxe6Hp9fucrcztdmtXx/AznU9M7HJ/a/vCkdge+b7t3guNONwev71p7jrbfNNJu3bCWq4fY/j7IZtmA5h59rX/qbbWgZ7M53ZrO7GIxzcV8UkfTCU4m49obj2rTZLiD4WD7xgPsDHrbNELIq4uVbqemOk7m2m1NNVs3adjSUKOFgbqlnqq5joqxlrJhQyWEWbRV5DWU5OCwKchKy0pLsVisEsMX2lNFOZkZruZzuzXFDYKRSJGHRklOBqd1JFL8ardv377MT7KiwdWrV6ekpCADSUpK4o1NQ0MimQTqxeOXTNSiN2qyuJoE6NVUTWBUnQj8h0CbNm3Onz9//PhxGxublStXenp6jh07lqlx4sQJlOIUS5d169ZhPTN9+nSmKDo6mvnFRZwiIoSaBw4caNmypbe398mTJ9u1awc9idASKG/aLGRzOlvqujbTZcIXjib/hi+sG6k11fs3fGGg8W/4Ql1RFotyeRlp+BdCO1LxMExeVnqai5n/0h4Bv3RHijw0dTo0vnlE169fz83NZWzFfklycjKTLygo4I1NM0pKJZBAvXj8EsiZhiwJBOjVJMJ3mUwXDgL9+/cPCgrKycl59+7dlClTuEbp6+vDz4mNjc3Ozkb8Z8GCBSzWvzvrCBzB+eHWHD58OCrk5eWhhaFDh3L1lBFOAjRtCud9qcAqOJ9yMlJaKvJIka+gJl+K+OYRcZgnRBQbxZsvVlBCBIoIwL+Hlw9fX2Aef1Gv9I8IiCMBejWJ412lMREB8SIgZKOhaVPIbohwmcM3j0i4hkXWCCsBePnw9QXm8QsrBrKLCPCBAL2a+ACRmiACRECSCNC0KUl3u3pjra1HxO2NVXzwnnLzlCECRIAIEAEiQASIABEgAkSACAgnAb55RBwOx93dfWjxkZOTM3369OLs0IkTJwrnyMkqIlBdAlSfCBABIkAEiAARIAJEQPwI8M0jmjBhgq6urnrxMW7cOAMDg+KsOpTjx48XBnDw2WBGGh1EgAjUDQHmJYZXmbgKM8C6gSd0rZJBREDABJjXl7jOHhgXM0ABU6XuiIDkEGBeYnit1Uz45hEdqPComXH8vSo9PR0NGhkZMa4apUSACPCXAPMSw6tMXIUZIM0h/P2zodaIAEOAeX3Vy+whmE6ZAdIEwtxuSokA3wkwL7Eav5z55hHV2AKBXYiwVUxMTEpKClJ0ijSVDh4CAEJYeHj8myUs/4L4739lYlFVVcWfkBgLzSH//SsoeVbmX0XJShJ2TkzKvOFlYqEJpExWkqMs869CcoZf3kj5jqW8jkRLXyaWWs4hEuQRSUlJGRoawiVVU1PDog0pSQkChKUEEOaUsDAcSqSlsbBY//5qB4rEUmgOKfE3UPoU9720UsI1xKTMP4DSWFgsmkDKRCVBytJ/FRI0+PKHSljKZFMaC4tVqzlEgjwisJMMoVESASJABIgAESACRIAIEAEiUFUC5BFVlRTVIwJEQPgIkEVEgAgQASJABIgAEagtAUn0iOTl5X/77TektYUnXtcDCGEpfUsJS2km0Eg4FgkfPv4AyhTCUhoLX5mUbl5UNRKORcKHX95fLWEpkwxhERgWCfWIli9fjj+yMilLrBJACEvpu09YSjOBRsKxSPjw8QdQphCW0liISWkm0Eg4FgkfPv4AypT/YimziiQqCUuZd70usEiiR1QmXFISASJABIgAESACRIAIEAEiIIEE6s8jkkDYNGQiQASIABEgAkSACBABIkAEhIwAeURCdkPIHLEkQIMiAkSACBABIkAEiAAREFYC5BEJ650hu4gAESACokiAbCYCRIAIEAEiIGoEyCMStTtG9hIBIkAEiAARIALCQIBsIAJEQFwIkEckLneSxkEEiAARIAJEgAgQASJABOqCgLi3SR6RuN9hGh8RIAJEgAgQASJABIgAESAC5RMgj6h8NpJXQiMmAkSACBABIkAEiAARIAKSRoA8Ikm74zReIkAEigjQPyJABIgAESACRIAIMATII2I4UEoEiAARIAJEQDwJ0KiIABEgAkSgYgLkEVXMh0qJABEgAkSACBABIkAERIMAWUkEakaAPKKacaOriAARIAJEgAgQASJABIgAERAHAqLoEYkDdxoDESACRIAIEAEiQASIABEgAsJAgDwiYbgLZAMRKI8A6YkAESACRIAIEAEiQATqlgB5RHXLl1onAkSACBCBqhGgWkSACBABIkAE6ocAeUT1w516JQJEgAgQASJABCSVAI2bCBAB4SJAHpFw3Q+yhggQASJABIgAESACRIAIiAsB0RgHeUSicZ/ISiJABIgAESACRIAIEAEiQATqggB5RHVBVfLalKQRR0ZGslgsSRoxjZUIEAG+EaAJhG8oqSEiIJEEaA6po9tOHlEdgeVPs+7u7iwWa/r06bzNzZgxA0oUMUpkcAqRlZXV09Pr0aPH/v372Ww2U1oizczM/Pnnn83MzBQUFHR0dFxdXS9fvszUMTEx8fT0ZPLCk+bk5GCAtra2MjIygwcPLmHYnTt3HBwcMBaMaOfOnbylZ8+ebd68uby8PNLz58/zFm3fvt3U1BRX4dp79+5xizgczvLlyw0MDBQVFUHmzZs33KKqZ9LS0pYuXWplZYX29fX1u3fvfu7cObSMFpDp1auXtrY2btbLly+h4cru3bvRo5qaGopSUlK4esoIIwHRscndnSYQ8Z9AkpOTZ8+e3axZMyUlpSZNmsyZMyc1NVV0/kjJUqEmQHOIOC1CuH9q06ZNw2Kj9JIPa5U+ffqg6MKFC9zKkpMhj0jY77WRkdGJEyeys7MZQ/HiPH78ON72mFMm7d27d1xcXGRk5NWrV7t06TJ37tz+/fsXFBQwpbwpnCv8oXt5eQUHB1+7dm3YsGFJSUm8FYQtX1hYCP8E7/FwLUrYFhER0bdv306dOr148WLJkiWoAy+IqfPo0aNRo0a5ubm9evUK6ciRI588ecIUnTx5ct68eXBacBWuxYs/OjqaKdqwYcPmzZsB59mzZ3Bm4Fump6czRVVM4cw4OTkdOnTIw8Pj+fPnd+/ehRk//fQTs0CBO+rs7Lxu3brSrWVlZeEmYhSli0hDBGpDgCYQsZ9APhUfGzduDAoK8vb2xsQ+adKk2vzN/OdaOpF4AjSHiM0cwvwtYxGIFRE2f5lT3hQ+EtwhXo1E5ckjEvbb3bp1a/g/CC8whiKD6cne3p45ZVJEQrCCb9y4MSpjVX3x4sWrV6/irZEp5U3//vtvVIAjgYgQIiTYWZwwYQIquLq6RkVFzZ8/Hy8GCDSQhw8fdu7cGXMBeoS/gQU9lBATE5OVK1d+9913KioqeFFt27YNSkYQY4G1sAd6XMIoa5MqKyvv2LFjypQpGGCJdhAUQl94AVtbW0+ePHnixIlYEzB1oIQ/A7cEsRqk3bp1g4Ypgs+D5QLq4yooMTS0jyJsjeAUntLQoUNtbGwOHjwIL+XYsWMoqrqALfxSzDWgitiUpaUlLEc4CKDQCHyzZcuWlXbtUAQnbfHixe3bt0eehAjwkQDmBLxMMG8wbSKDv3maQEBDbCYQzFfYDBowYIC5uXnXrl1Xr16Neb7MHTGMmoQIVJeABM0hZaERp0UIxhcbGztr1qyjR4/KysrilFewg4wF0v79+3mVEpUnj0gEbvf3339/4MABxlD8sWLpz+TLS/GmaGdnh6VP6QrwK65cuVI69IHKhoaGK1asQKwJggux3dirVy+4B4GBgYir3L9/H68i6Bn5448/WrZsiTAI/A34UTdv3oT+zJkzW7Zs2bVrV2hoKDYhbG1toSwh9+7dg3tQpqxZs6ZE5YpPEQjq2bMntw6s9ff3z8/Ph6Z0Ebw76PPy8gICAnivQp4pQsQpPj4ep6gGgVPn4uLCFOG0KsJms0+cODF27Fh4g7z1MVgZGRleDeWJgCAJ0ARSJu3Ss4R4TCCISKupqdGcU+ZNJ2XNCNAcUiY3kZtDsErBzuyiRYtatGhRYkTYAh4zZoyXlxdWiSWKJOdUsjwiEb2v+AuGQ4LgA8I4Dx48GDduXKUDQWwE9UtX2717N1b5Wlpabdq0gSeD1pg6mpqa0tLSqqqqeDFAoITPgygQYhdNmzZ1cnLaunXroUOHcnJyUARxdnZGTAMxEESZhg8fDkcIyujoaFyLGAj2pNu2bYvwCJQlxNHRETGTMmX6f78uVeLC0qdwYPT09Lh65LEtmpiYCE3pImigR2lhYSFqIs8I8kwRk+KU0SNFnlEiXxVB41+/fgX5qlSmOkRAYARoAikTNV7deI1zi5AXgwkkKSkJAfxp06Zxx0UZIlB7AjSHlMlQ5OaQ9evXY6+kzM/vYEGIld6gQYPKHKmEKMkjEoEbra2t3a9fv4MHDyJShAxOKzWaw+FwP/zGW7lz587h4eG3bt0aNmzYmzdvOnXqhLdP3grcPGIp3t7eiG8wgggMdhcQSGEqdOjQgckgRf7du3fIjBgxIjs728zMDL7Q+fPnsbyAsoQoKipalHPAKytRudJT3jFiyKjP1XAzUKKI95Q3X/UitFOxoClU4G0cp/Uo1DURYAhgxsC8QRMIQ4M35X21lnj9lijiPeXN4yreU958iSLefsvMoz70vC3gtFqSlpaGG928efPffvutWhdSZSJQMQGaQ8rjw/uCLfESLlHEe8qbx1W8p7z5EkXl2cDVoz7yvC3glCtY1P35559Y15WucOnSpdu3b3t6enIrS2aGPCLRuO8TJ07E3zHWNMhUxWK4KKampmXWlJWVhSOECM+NGzdWrFgBjygvL690Tfg/2GjkBnNevXoVGhpqbm5euiY0zAvMyMjo/fv3f/31F9yeGTNmwPtiPsOGClzh46fmEI/CDg235YSEBGx+IPwFTekibABDj2kdobASVzFFuAQVyiyCviqio6PTsGFDkK9KZapDBARJAPOGeE8g2Lip7sdu8ZIv8XoX6QkkPT29d+/e4IDdKEzygvzror4kgQDNIaXvsmjNIVh9YZnUpEkTTHSQqKiohQsXmpiYYFxwh8LCwjQ0NKCHQINNc1dXV2QkSsgjEo3bjbc6+C0QxGoqtRh/3EFBQfiDrrQmdhMRyWE+CycnJ1dYWMi9pHXr1ggilQjnoA5T4fHjx0wGKfLcj4rBFxo4cODWrVv9/PwePXoEM1CBV/j4qTnEppjvLzHtw8FD48xSoHQRwsGoBvsdHBx4r0KeKYIDidkNp6gGAeo7d+4wRTitikhJSY0aNero0aOfPn3irZ+ZmQnIvBrKEwEBE6AJpDTw0rOETgwTAAAAEABJREFU6E4giA717NkT8xv2ehUUFEoPljTiRKBexkJzSGnsojWHuLm5BQYGcre5DQwMFi1adP36dYwLW+S8RdBs2bLlwLevr+NUQoQ8ItG40YhsIPgAQaa0xbm5udjsjI2Nff78OTZKBw0a1L9///Hjx5euCad/165dCJ5GRkZeuXJlyZIlXbp0UVNTQ01sFdy9exeNJBZ/Fefnn3+GSzNz5ky8fhAdwhvt7NmzUY2RBw8ebNiwISQkBBGh06dPz507F3psQu/bt+/169fh4eGHDx+Gd2RsbAw9r0BZwsvinpb3qbm3b9/ChuTk5NTUVGQgTIPTp0/HJseCBQuAZf/+/ej6xx9/ZIpgz40bN9avXx8cHIzUx8dn3rx5TBHq7927F/Vx1fz586Ojo9EOihDmQh3Qww4rhuDu7q6kpPTdd9+hqOqCyxEoa9eu3aFDh2A2uKGjVq1aZWRkoBEMAcZDjzyCacjHx8cjD0EGpx8+fEAebiTyqIw8CRHgCwHMG/iDhyBTukGaQPA6Fd0JBNEhuEPYecEQ4BphMoHwbm+VvuOkIQLVJYCpAxMIBJnS19IcIvxziJaWlg3Pge1j7AI3a9YMdxMZnhIbaBBKwjYxMvUugjSAPCJB0q5VX/BbIGU2ce3atUaNGsGlwS6Or68vQjQXL14sc9pCiOngwYN4+7S2toaHg9NTp04xba5YsQJukrm5uY6ODjQtW7ZEkARr+k6dOtnb2//666/oAnpGEGyFWwX9ypUrN23ahHagR8h1z549zs7OuPbWrVt///03XoHQ11L69u2LjtAa4k7IQJgG8XKFUwclXA6YgVFzw2JOTk4nTpzADgcsgZ928uRJeCnMVQjjeHp6YrC4Ch4gWuC6bT/99BOcohkzZmCrGJ4hfCpVVVXmqiqmDRs2RMRs3Lhxq1atgp1Ad/z48T/++ENdXR0twKuEsl+/fsiPHj0a+Z07dyIPQQanU6ZMQb5z587IozLyJESAXwQwe0DKbI0mEJGeQDAVP3nyJCgoCLtLmKUZiYmJKfNek5II1JgAJhBImZfTHCISc0iZ946UXALkEXFRCGMGq/kLFy6UtgxKFDF6ZDjFR35+fkJCws2bN7///nspqbLvrIeHx8OHD5OSkrKzs8PCwv7880+u09K+fftXr17l5OSgMablNm3awCvABiRCHChCQInRI8W0CDcDu5LYjERABhrI4MGD4Q8gkoP6iC9169YNysqk8nL4aTCJV7jXuLi4ICyG3amIiAgm1MMtGj58eHBwcF5eHva0hg4dytUjA58HbeIqrCTgfkDDCMJEy5cvj4uLAwR4g9gyYfTVSuH8rF27NiQkBO0DDm4HsKBlNIK4E+8okEd30EOQwSmvoDL0JESgNgQwOWCuKN0ClChi9Mgwf3g0gTBAmFSEJhBE/pk7yJtig4wZCKVEoDYEMD9guijdApQoYvTIMH97NIcwQJhUCOcQxjAmxSoIW8BMvkSKu4l1SwmlJJyWvW6WhJHTGIkAESACgiVAvREBIkAEiAARIALCSIA8ImG8K2QTESACRIAIEAFRJkC2EwEiQAREiQB5RKJ0t4TE1gqCrUJiYZ2aoaGhQT/3UaeEqXHxJkATCE0g4v0XTqOrawLCN4fU9Yj/0z4tQv6Dg38n5BHxjyW1JBkEMBktX75cMsZKoyQCRIDPBGgC4TNQao4ISBgBmkPq6IaTR1Q1sFSLCBABIkAEiAARIAJEgAgQAXEkIEEeEYfDSUtLQyqO95HGRAT4R4BaKocAZg+aQ8phQ2oiQAQqIUATSCWAqJgI1CsBCfKI0tPT1dXVkdYrcOqcCBABUSWA2YPmEFG9eeXZTXoiICgCNIEIijT1QwRqQkCCPKKa4KFriAARIAJEgAgQASIgBgRoCESACJRPgDyi8tlQCREgAkSACBABIkAEiAARIAKiRaD61lbPI8rNza1+F3QFESACRIAIEAEiQASIABEgAkRASAlU7hFdv37d3d3d3NxcVlZWSUlJVVXVxcVl9erVnz59EtIxkVmSQYBGSQSIABEgAkSACBABIkAEak+gIo/owoULzZo1mzBhgpSU1KJFi86dOwfvaN++ffCIfHx8zMzMpk+f/uXLl9obITwtZOcV5BWwkzJykWblFQiPYWQJESACkkyAxk4ERI4AvZ/W4JYRtBpAo0uIAF8IVOQRrVmzZuPGjYgF7d+/H87PgAEDunfvPnLkyBUrVvj6+oaFhampqR06dIgvdghDI7n5hTvvhDuuvumwygfprjvh0AiDYWQDESACRIAIEAERIoB3zxq/n4rQMPlrKkHjL09qjQhUi0BFHtHTp0/hBSFAVGaLjRs33rBhw8KFC8ssFTklNma2+4X9eSs0LbsoNIQUeWgoUiRyt5IMJgJEgAgQgXokQO+nNYBP0GoATQwuoSEID4GKPCLhsVIAlkhLSR14GFGiI2hkpAhRCSp0SgSIABEgAkSgXALS9H5aLptyCwhauWiogAgIhEBVl/sfP37cvn374sWLF/AcArFQQJ2k5+QjLlSiM2igL6Gs5ilVJwJEgAgQASIgQQRSsvPw7lliwNDQ+2kJJryngANEvBrkoYEeGRIiQATqmkCVPKJbt241a9YMHtGmTZt8fX0PHDiwf//+ly9f1rVxgmxfVUFWTVGmRI/QQF9CSadEgAiUQ4DURIAISC4BDofzKCxp+hF/FXkZvHuWAAENvZ+WYMJ7CjhAxKtBHhrokSEhAkSgrglUySPy8PBYuHDh69evFRQUzp49GxMT4+LiMmLEiLo2TpDtF7LZ3zuZlugRmgI2u4SSTokAESACREDiCRCA/xOAL+QbnDB856Mxex5fe/35wYdEdyeT/xcX5+j9tBhDuQktQspFQwVEQCAEquQRvXv3bsKECbBHRkYmOztbRUVlxYoV69evh0ZsRFFOZoar+dxuTbElg0Ehnd3VYpqLmZJcycARSkmIABEgAkSACBABNptzNSiu/7b733s/C4j6KicjNb6DsW1j9ZmuFrzvp8jjHZbeTyv4gym9CBEmaBUYTkVEQEwIVMkjUlZWzs3NxYgNDAzCwsKQgSQmJiIVJ5GXlYYL5L+0R8Av3Z8u6W7TWH3BqZeY7sVpjDQWIkAEiAARIAK1J1BQyL7wIraX590fjj5/8ylNSU56amez+z91WTHIRl9dkff9FO+qeG+FpvadincLQARQwPXg5y6PPbqNamMEjXgPmUZHBISHwDePqEKL2rdv/+DBA1Tp16/fwoULV69ePXHiRCihETPBDha2uLRU5LNyC3489QrR/78DP4nZGGk4RIAIEAEiQARqTCC3oPD40+ium+7MO/kyNCFDVUFmTleLBz93XdLXWldNgdss9/0U76rIc/WilTExMWH995g5cyaGcO7cuV69emlra6OQj1+rBijgOvgwsuN637MBH9ERCREgAoIhUCWPaPPmze3atYNBy5cv79Gjx8mTJ42Njfft2wdNxXL37t0BAwYgsoQp48KFC7yV3717N3DgQHV1dVVVVThX0dHRKI2MjETNEnL69GkUlRBYwltNX1+/RIVanmqqyE93NUcjG669x+yPDIn4EKCREAEiQASIQPUJ5OQXej+IcP3Dz+NcUHRylqay3KJezR4s7rqgZ7OGynLVb08Ernj27Fnct+PmzZuwmPkSdWZmprOz87p166DhuxhoKCZn5j2L+sr3lqlBIkAEyiNQuUeUnp4eFhb28ePHxMREJSWl7du3BwYGYncETlF5jXL1mDLs7Oy8vLy4GiaDBjt27GhlZeXn5/fq1atff/1VQaFoY8nIyOjbzFP0/++//66srNynTx/mqhJpixYtiioV/wsKCipRWvvTic6memrysSnZhx9F1b41aoEIEIEaEChvVwVTUMUbtBwOB1MH9k1K7MVwbajrXRVuR/Wcoe6JAD8IZOQW7LwT1nH97eV/v41LzcGb4y/9rO//3GVmFws1BVl+9CCkbejo6GDLlZHLly+bm5u7uLjAVjc3t2XLlnXv3h15voujiSbafBH1tZDNQYaECBABARCoxCOC8wO/pXfv3v3797ewsPDx8amWTViRrFq1aujQoSWuWrp0ad++fTds2GBvb29mZtavXz9dXV3UkZaWZuYdJj1//vyoUaNUVFRQVFpkZGSYakgxZ5WuUEuNopz0wh7N0Mi22x9Ss/KRISECREDABMrbVYG+4g1aT09PuEMVW1vXuyoV906lREAkCKRk5Xn6hDivu73uanBiRp5hQ8XVQ2zu/tRlcifhe/JQXQLNy8s7cuTIxIkTK51YeK3Izc1N4zl4iyrIW+mrKstJp+cWhHxOr6AaFREBIsBHApV4RIsXL27SpMm9e/f8/f2xLzJr1qza981ms//55x9LS0ts8cIRateuXZmbuAEBAS9fvpw0aVJ5PYaGhhoYGJiamo4ePTo8PLzMajWbjLhNDXMwtNRTSc3O337nA1dJGSJABARGoLxdlYo3aBF53rx58/79+yu2s653VSrunUqJgJAT+JKeCy8IvpCnTyjeB810lDeNsPP90XVsO2N5GWkhN57v5mGhkpKS4u7uXq2W165dq/7tMDIyquK1MtJS9k0aorI/fXAOFEjKJEBKfhOoxCOCI7Rt2zYnJ6fWrVtjeQEnJCMjo5Y2JCQkoJF169Yh9HTjxo0hQ4YgiHTnzp0Sze7bt8/a2hpdl9Azp/CjDh06dP369T179sTHx6NaUlISU8Sb1mwy4rYgLcVa3McKpwceRMamZCNDQgSIgJATyMrKGjNmjJeXF6LHFZuKCa2ud1UqNoBKiYBwEohLzV5+6U3H9bd33gnLzCtEyMLrO/ub812wSygrXcmyQThHVHursCbBBg1mjGo15eHhkfrtiImJqfq1DsbFHlFkctUvoZpEgAjUhkAlU1tiYiJiREwHWlpaSkpKX758YU5rnCJGhGsHDRo0f/78Vq1aIQzVv3//nTt3QsmV7OzsY8eOVRAgwsQ0bNgwW1vb7t27//PPP7jw4MGDSEtIjScjbjtdmum2N9PMK2BvvhHCVQomQ70QASJQAwKYWLBFghmm4msFs6tSsQ1USgSEjUBUUqbHucDOG3y9H0bmFrBbGWnsm+B4dW6n/i0NpKVYwmatwOyJiory8fGZPHlydXuUl5dX4zmqfnkbk6KvEvlH0sMVqs6MahKBWhGoxCNisVjp6enMh2CxzcF7CmXNetbW1paRkWnevDn3csSCmGfNcTVnzpzBRu/48eO5mgoyysrKcI2w3Vu6To0nI25TGLJHH2ucnnvx8e2nNGRIiAAR4DsBfjV46dKl27dve3p6Vtpgnz59BLOrUqklVIEICAOB0M/p80++7LLR7/jTmPxCDrYCj0xqd36GUzdrPbwPCoOF9WjDgQMHdHV1+/XrJzAbWjXRgAcam5KNeJ3AOqWOiIAkE6jEI+JwOJaWlg2LD01NzYyMDHt7e5xpaGggrRk4OTm5NjkPCVcAABAASURBVG3avH//nnt5SEhIiSfXITw9cODAKj4vITc39927d40aNeI2yN+MnZFG/5aNOJwG664F87dlao0IEAH+EoA7FBYWpqGhgW0XCBqH2+Pq6opMBVKnuyoV9EtFkklA2Eb9Ojb1hyMBPT3vnn8Ry+Y0cG2mc2Z6hxNTO3RsWvRjO8JmreDtYbPZ8IgmTJjATCmMAcnJyS9fvnz79i1OsZ5BPj4+Hnl+iYq8jHUjNbTmT2EiUCAhAnVPoBKPyNfXFysMrvj6/nvq61uUqdQ8eFCYJiCoGRERgQwTC1q0aNHJkyf37Nnz4cMHLy+vv//+e8aMGajDCJR3794tHZ7u1q0bKjN1fvzxxzt37qDNJ0+eDB8+HAErzFZMUV2ki3o1k5Vm3Q35cj80sS7apzaJABHgC4HFixcHBgZiqmEEbW7ZsgWrGWQqkLreVamgayoiAvVIICDq6/cHnvbfdv/q63js+vVuof/3rI7e37dlnv5cj4YJVdc+Pj5YukycOJHXKoSjsUHMRI1Gjx6NfIkP//NWrlnesfirRLhHNbtcSK4iM4iAqBCoxCNyqfCodJD+/v6YJiCouWDBAmSWLVuG/JAhQzB3bNiwwdbWdu/evWfPnu3YsSP0jOzfv79x48Y9e/ZkTrlpWFhYYuK/DsnHjx/HjBnTrFmzoUOHIuj0+PHjElEm7lV8yRhrKY9rb4ym1l59x8YeGnIkRIAI1D2B8nZVytug1dfXt+E5YGCTJk1MTU2RgdTjrgp6JyECQkKAw+E8/JA4ZvfjYTse+r7/IsVqMLiVwY35nXe6OdgaqguJkcJjBlYjIGZpaclrkru7O5S8snz5ct4Ktc8zfql/FD1cofYsqQUiUDmBSjwi3gbevHmDzVdGkP9WVNH/rq6uvPMF8t7e3swF2G4JDQ3Nzs7GVm6J70CvWbMmJiZGSqqkbZGRkdwZ58SJE58+fcrLy4uNjYVDxfutJKZ9vqezuzZVlZd58ynt0qtPfG+cGiQCRKBMAuXtqly6dAk7LNXdoA2rv12VMkdHSiIgYAJ4F74d/Hnojoff7X3yKDxJVpo1ytHo9kJXz9H2lnqqAjaGuquYgKNJ0ePm3n5Ky8gtqLgmlRIBIlB7AiW9jhIt3rt3r02bNoyyffv2WIK0Kj5atmyJODKjl5BUU1luuqs5BvvH9fc5+YXIkEgeARqxoAmUt6tSxQ1arP8GDx7MNbp+d1W4ZlCGCAieAJvNuRIU12/r/Yne/i+iU+RlpCZ0MPZb1GX98JYm2sqCt4d6rJRAI3XFxhqKbE6Dl9EplVamCkSACNSSQCUe0fbt293c3Lh9+Pr6RkREhIeHz507d8eOHVy9hGQmOpvqqynEpmQfeRwlIUOmYRIBIiCpBGjcYkKgoJB97vnHHlvuzDj6/G1cmrKc9LTOZvd+7vL7IBssuMVkkGI6DCZMRB+cE9PbS8MSLgKVeETPnj1r27Yt12RDQ0NjY2MTExO4SY8ePeLqJSSjKCe9oGfRJ4m33f6QmpUvIaOmYRIBIkAEiIAoEsgtKDz2JLrLJr8Fp16FfclUU5CZ063p/Z+7evS11lVVEMUR1ZnNQtowPVxBSG8MmSWOBCrxiGJjY7lPtT548KC+vj4DQVNTMykpiclLVDqstWEzPdXU7Pztfh8kauA0WCJABIgAERAVAtl5hfvvR7hs8FtyPigmOVtLWe6n3s0eLO66oIdlQ2U5URkF2elgrAkIz6O+ItCHDAkR4AcBaqNsApV4RKqqqhEREcylQ4cOVVJSYvJQqqmpMXmJSqWlWIv7WGHIBx5GxqZkI0NCBIgAESACREBICKTnFG3YdVx/e8Xlt/FpOfpqCsv6N0dcaIarhaqCrJAYSWZUkUAzfVVVeZnMvMLg+PQqXkLViAARqBmBSjyidu3aHTp0qHTT3t7eKCqtlwSNazOdDmZaeQXsTTf+/yOzwjVwsoYIEAEiQAQkjMDXzLzNN0Oc193ecO19UmaekabimiG2d35yndjRVFFOWsJgiMlwsQlrT79KJCY3k4Yh7AQq8YgWLFhw8ODBRYsWJSQkMENBZuHChUeOHEERo5G0lMViefQtChOdfxH75lOqpA2fxksEhIsAWUMEJJ5AQnrO2ivvnNff3norNC2nwFxHefNIO9+Frt+1ayIvQ76QaP99MF8lehZJv0ok2veRrBd+ApV4RF26dNm2bdvWrVsbNWrUsGFDTU1NZLy8vDw9Pbt27Sr8w6sjC1saagywM+BwGqy7GlxHXVCzRIAIEAEiQAT+Q6DUSWxK9m8XX3da77vrbnhWXmHzRmrbx7a+Od9laGtDGelK3t9LNUYKYSTAeEQBUV+F0TiyiQiIEYHKZ8wZM2Z8+PBh48aNY8aMGT16NDI4nTVrlhhBqMlQFvVsJivNuheaeC/0S02up2uIABEgAkSACNSUQGRi5s9nAl3/8D34KCq3gG3fRGO/u+M/czr2tW0kJcWqaat0ndARaNVEQ1qKFZeaA+9X6IyrU4OocSIgWAKVe0Swx8jIaP78+duLD2RwCqWESxMtJbf2JoCw9kowm81BhoQIEAEiQASIQF0TCPmcPvfEi66b/E76x+QXcjqYaR2b3O7cD05drfRYLPKF6hq/oNtXkpNpYVD0ICt/+uCcoNlTf5JFoCKPqNJfHMrMzHzz5k2NgYn6hbO6WqjKy7yNS7v4KlbUx0L2EwEiQASIgJATCPqYOu2wf88tdy++/ISNuC7NdM7+0OH41PZOFtosFvlCQn73am6eQ/HDFfwj6YNzNWdIVxKBSglU5BGNHz++R48ep06dysjIKNHQ27dvlyxZYmFh8fz58xJFknOqqSz3QxdzjHfj9ZCc/EJkSIhAeQRITwSIABGoMQH/yOQJ+58O8Lp//c1n+D59bPQvz+544Pu2zO/V1LhZulAkCLQxKfpVIv8o8ohE4naRkaJKoCKPCG7PoEGDli1b1rBhwxYtWsA7GjBgQMeOHbW1tR0cHKKiom7evOnm5iaqQ+eH3ROdTRupK8SmZB9+FMWP9qgNIkAEiIDIE6AB8IsAh8O5H5o4evej4Tsf3Qn5Ii3FGmLf+Ma8zjvGOdg0VudXL9SOkBNgHq7wPj4tLSdfyE0l84iA6BKoyCOSlZWdNWtWcHDwkydPpk6damNj07hxY1dX1127dsXGxh49ehQa0R05XyxXkJWe38MSTW27HZqSlYcMCREgAkSACBCBWhKAL+Tz9vOQ7Q/H7XvyODxZVpo1pq3R7YUuW0a1aqqnWsvG6XI+EhBAU7pqCkaaimxOgxfRKQLojrogApJJoCKPiEukdevWc+fO3bJly86dO1etWjVs2DBNzaIYLreCJGeGtTZspqeallOw3S9MkjnQ2IkAESACRKD2BArZnMuBn/puvT/5kP/LmBR5GSl3J5M7i7qsHdrSWEu59u1TC6JIwNG4aNEVQA9XEMWbJ0Y2i/dQquQRiTeCWo5OWoq1uK8VGvF+GPnxaxYyJESACBABIkAEqksgv5B9JuBjjy13Zh178S4uTVlOerqL+f2fuy4f2MJAQ7G6rVF9cSLgaNIQw6GvEgECCRGoIwLkEfEBrKuljpO5Vl4Be/ONED40V59NUN9EgAgQASIgaAI5+YVHHkd12ej34+lX4V8y1RVl53Vv+mBx18V9rHRU5QVtDfUnfASYGNGL6BS4zcJnHVlEBMSBAHlEfLiLLBbLo481Gjr/MvZ1bCoyJESACAg9ATKQCNQ/gay8gr33wl3+8P3lwuuPX7O1VeTgBcEXmtfdUkNJrv7tIwuEg0BTXRU1BZns/EIED4XDIrKCCIgbAfKI+HNHbQ3VB9oZcDgN1l8L5k+L1AoRIAJEgAiIL4G0nPy/fD90XO+76p93n9NyG6krLB/Q/P7PXae7mKvIy/B73NSeaBOQkmI50K8SifY9JOuFnUD1PKKcnBxhH1D92beoVzNZada90MS7IV/qzwrqmQiIFYG7d+8OGDDAwMAAkdgLFy5wx3bu3LlevXppaxf9MOXLly+5em6Gw+H06dOnxFXcUiazfft2U1NTBQUFBweHe/fuMUpKiUBdE0jOzNt0473zutt/XH+PvLGW0rqhtncWdXF3NlWQla7r3ql9ESXgWPyrRAH0q0SV3z+qQQRqQqBKHhGbzV65cmXjxo1VVFTCw8PRz6+//rpv3z5kKpbyVjO46t27dwMHDlRXV1dVVW3fvn10dDSUEFdXVyxiuDJ69GgoyxRhW80YaSq5tTeBqWuvBrPZHGRIiAARqCWBzMxMOzs7Ly+vEu1A7+zsvG7duhJ67qmnpyemEe5p6czJkyfnzZu3dOnSFy9edOrUCe4TdxYqXZk0RIAvBBLSclb/87bj+tvbbn9Izymw0FXxHNXq1gKX0W2byMlU6e2YL2ZQI6JIgIkRPYtMxnaPKNpPNhMBISdQpSl41apV3t7eGzZskJP792PNtra2e/furXRsWLWUuZoJCwvr2LGjlZWVn5/fq1ev4F9hm5bb2pQpU+K+Hbt27eLq/59p0EA4VzOzu1qoKsi8i0u78DKW11rKEwEiUDMCcFQw/wwdOrTE5W5ubsuWLevevXsJPXOKWWXz5s379+9nTstMUWHSpEmTJ0+2traG+2RkZLRjx47SNXNzc9N4jtIVSEMEqkIgNiV72cXXHTf47rkXkZVX2MJAbee41jfmdR5s31hGukpvxFXpheqIMQE7Qw1ZaVZCeu7Hr9liPEwaGhGoLwJVmogPHTq0e/fusWPHSkv/G9Bv2bJlcHBwpUaXt5rBvmzfvn3hYtnb25uZmfXr109XV5fbmpKSkv63A0Ekrp43I5yrmYbKcjNcLWDnphshOfmFyJAQgdoSoOurSSArK2vMmDEIK2EWKe/SvLy8gICAnj17cisg//DhQ+4pN7N27VrMQozAa+LqKUMEqkggIjHzpzOvXDb4HnoUlVfAxk7/ge/bXJ7dsbdNIykpVhUboWpEQFFOuoWBOjj4RyUjJSECRIC/BKrkEcXGxlpYFC30uX2z2ez8/HzuabUyuPaff/6xtLTs1asXHKF27drxfj0ATR09elRbW7tFixY//vhjeno6NCVEmFcz3zubNFJXwHbgoUeRJcymUyJABARAYP78+U5OToMGDaqgr8TExMLCQj09PW4d5OPj47mn3IyHh0fqtyMmJoarp0ydEBCvRt/Hp885/qLbJr9T/h8L2BxnC63jU9qfmd6hSzNdFot8IfG62QIZjWPxwxWeRX4VSG/UCRGQLAJV8ojgnJT42vHp06cR3qkZqoSEhIyMjHXr1vXu3fvGjRtDhgwZOnTonTt3mNYQiTp+/Lifn9+vv/569uxZFDF63lSYVzMKstILeljCWq/bH1Ky8pAhIQJEQGAELl26dPv2bU9Pz6r0yGL9f1XK4XBYrP+fci+Xl5dX4zm4esoQgQoIBH5MmXrIv5fn3UuvPrE5DbpZ6Z6b4XR0cvsO5losVhl/ZhXlUsuGAAAQAElEQVQ0RUViS6D6A3M0aYiLAsgjAgUSIsBvAlXyiH777bdZs2atX78e4Z1z585NmTJlzZo1y5Ytq5kxaAQXYgcXW7mtWrVavHhx//79d+7cCSUEjXfv3t3Gxmb06NFnzpzx8fF5/vw59KWFxfr/+4pQrWaGtja00ldNyyn4y/dDabNJQwSIQN0RgDsUFhamoaEhU3ygo2HDhrm6uiLDK4hCS0tL8waFsFODMBFvHcoTgRoQeBqRPH7/04FeD268/Yz3qH62jf6Z03Gfe5vWTYrWsjVokC4hAlwCDsaayIckpKdm1/BDOrichAjUAwFR6LJKHtGAAQNOnjx55coVFosFR+jdu3d///13jx49ajZArEWwVmnevDn3cmtr6zKf8tS6dWtZWdnQ0FBuTSaDFoR5NSMtxVrcxwqmHnwYFZOchQwJESACgiGAHZbAwMCX3w50umXLlgMHDiDDK3Jycg4ODjdv3uQqkXdycuKeUoYIVIsAduXuhnwZuesRBBm8Cwxt3fjmfJe/xrZmvvtRrdaoMhEok4COqryJlhKH0+B5NH1wrkxCpCQCNSdQJY8Izffq1evOnTsZGRlZWVn379/vyfONZJRWS7AWadOmzfv377lXhYSEGBsbc0+5mTdv3uTn5zdq1IirYTJoQchXMy6WOk7mWnmF7M03QxibxT6lARKBuiCAOYfxbtB4REQE8szuSXJyMvJv376FHpMJ8kzAR19fHxFmrqC0SZMmpqamyEC6devm5fXvg7wXLFiwd+/e/fv3Y4sH8Wo0O336dNQhIQLVIsBmc26+/Tz4rwcIDSFAJCct9V27Jr4LXTePbGWhq1KtpqgyEaiUABMm8o+khytUiooqEIHqEaiqR1S9Vr/VLm81s2jRIgSd9uzZ8+HDByxQEHGaMWMGLgoLC1uxYoW/v39kZCRCUiNGjLC3t3d2dkYRRIRWMwimefSxhs3nX8S+jk1FhoQIEIEaEMBsgEkAgmvhwyCDMDXyly5dQr5fv37Ijx49GnnuJ2+hKU8wwyQmJjKlo0aN8vT0xITTqlWru3fvYsIpc1+GqVwipVMiAAKFbM6lV5/6br035ZD/q4+pCrJSE51N7/7UZc0Q2yZaSqhAQgT4TqBN8VeJ/OmrRHwnSw1KPIEqeURSUlLSZR2V0itvNTNkyBAsXzZs2MD8rtHZs2c7duyI1hD8uXXrFuJRzZo1mzNnDiJRPj4+6BlFkLCwMBFazdgaqg9qZQCz118LRkpCBIhADQi4urpy/nt4e3ujHXd39/+qOcuXL4e+hKDO4MGDuUpstfBWw0YMNLm5uQEBAZ07d+ZWowwRqJhAfiH7tH9Mj8135hx/ERyfriIvM8PV/P7PXZcNaK6vrlDxtSJXSgYLFQHHYo/o1ceUvAK2UBlGxhABUSdQJY/o/Pnz574diO0sXry4UaNGu3fvrnTw5a1mcOHEiRNDQ0Ozs7Nfvnw56Ntzco2MjO7cuZOUlIQ1CsJHf/75p6Zm0fcIUR+CtYtorWZ+7NlMTlrqXmji3ZAvsJ+ECBABIkAERJpATn7h4cdRrn/4LToTGJ6YqaEku6CH5YOfu/7U20pbRV6kh0bGiwQBM20V/NXl5LPffKKPn/D/jlGLkkygSh4RPBauDB8+fPXq1QjvXLp0SZLBVWXsRppKbh2MUXPt1eBCNgcZEiJABIgAERBFApm5BXvuhnfe4PvrhdexKdnwf5b0tYIvNKdbU3UlWVEcEdksigSkpFgOxc8tDIiihyuI4g0km4WXQJU8otLmt2vXzsfHp7Re6DWCNnBWFwtVBZl3cWkXXsQKum/qjwgQASJABGpNIDU73+t2aMf1t1dfeZeQnmugrrBiUIv7P3eZ2tlcWV6m1s1TA0SgegQcTYo+O0NfJaoeNapNBCojUBOPKDs7e9u2bYaGhpU1TuUNGirLzexiARCbbrzPyS9EhoQICIoA9UMEiECtCCRn5m28/r7jutsbb4R8zco30VLaMKyl36Iu4zuYKMhK16ppupgI1JQA81Ui/6hkDoc+e1JTiHQdEShFoEoeUcOGDTW/Hcirqqru37//jz/+KNUaKcog4O5k0khd4VNqzsGHkWUUk4oIEAEiQARqS4DP139Oy1l1+a3zuttevh/Scwss9VT+HN3KZ4HLyDZGcjJVet/ks0HUHBH4RsC2sbqctFRiRl5UEv3g4Tco9D8RqDWBKs3sW3iOrVu3Xr58OSoqauDAgbXuXSIawFbiwp7NMNS/fD+kZOUhQ0IEiAARIALCSSAmOeuXC0Gd1vvuvR+RnV+I1ecuN4drczsPatVYRrpK75jCOS6ySmwIKMhK2xqqYzj+9FUiUCAhAnwiUKX53d3dfcK3w83NrXfv3ogU8ckAiWhmiH1jK33VtJwCOEUSMWAaJBEgAkRA1AiEf8n48fSrLhv9jjyOzitktzFp6P19m0uznHu10JeSYonaaMhecSbgaNwQwwuIot9pBQYS8SYguNFV5BEFVnYIzkwR70laiuXR1xqDOPgwChuQyJAQASJABIiAkBB4F5c269jzbpvvnAn4WMDmdGqqfXJq+9PTnVyb6bJY5AsJyV0iM/5PwKHYI3oWSY+b+z8TyhGBWhKoyCNq1aqVvb19q3IOe3v7WvYtUZd3bqrtbKGFfcdNN95L1MArHyzVIAJEgAjUE4GXMSmTD/r3+fPe5cA4DqdBd2u9CzOdD09q185Mq54som6JQOUEGI/oQ0IGfRS/clhUgwhUjUBFHlFERER4eHhEOUd4eHjVuqBaRQRYLJZHH2vkLrz89DqWflgNJEiIgOQRoBELDYEn4Ulu+54M/uuBz7vPLFaD/i0bXZ3bae8Ex1ZGGkJjIxlCBMomoKUib6ajjLIA+ioRKJAQAX4QqMgjMq7s4IcBEtSGTWP1wa0MMOC1V9/RQzPBgYQIEAEiIGACmHvvhHwZsfPhqN2P74UmSkuxhjsY+ixw8fqutXUjNQEbI+bdicXwTExMWP89Zs6ciZHhD2n58uUGBgaKioqurq5v3ryBUpDCfJWIPjgnSObUl3gTqMgjKjHyt2/fXrt27RLPUaICnVZKYGHPZnLSUg8+JN0NTay0MlUgAkSACBABfhFgsznX38QP9HowYf9TrCMxFY9r38TvR9eNI+zMdVT41Qu1I2YEnj17FvftuHnzJkY3YsQIpBs2bNi8ebOXlxcq6Ovr9+jRIz09HXqBiaNx0e+0BtDDFQRGvOKOqFT0CVTJIwoPD7ezs7OxsenXr9/g4mNI8SH6wxf0CIw0lcZ3MEava6+8K2TTb6uBBAkRIAJEoG4JYLK9+DK29593px0OCIpNVZSVntTR9N7PXVYNtsWcXLd9U+siTkBHRwcODyOXL182Nzd3cXFBgMjT03Pp0qVDhw7F0ujgwYNZWVnHjh0T5FiZ32l99TE1t6BQkP1SX0RAXAlUySOaO3euqanp58+flZSUEBq+e/euo6Ojn5+fuEIpc1z8Us7qaqGmIBMcn37hRSy/2qR2iAARIAJEoDSBvAL2qWcx3Tb5zT3xMuRzhqq8zKwuFvd/7vJr/+Z6agql65OGCJRHIC8v78iRIxMnTmSxWBEREfHx8T179mQqy8vLw016+PAhc8qb5ubmpvEcvEW1zJtqK2spy+EvnL6ZXEuSdDkRYAhUySN69OjRihUrsFMiVXx07Nhx7dq1c+bMYZqgtFoENJTkZnaxwCWbbrzPyaetHZAgEToCZBAREHUCmF0PPYp0/cP3p7OBkUlZDZVkf+xpeX9x1x97NdNSkRf10ZH9gidw4cKFlJQUd3d3dA13CKmenh5SRpBnlMwpN8ViSf3bYWRkxNXXPgPHrHXxM7j96RnctadJLRCBBg2q5BEVFhaqqBR9zFpbW/vTp0/gZmxs/P49PUUaJGoiE5xMDNQVPqXmeD+MrMn1dA0RIAJEgAiUQyAzt2D33bBOG3yXXXyDaVZHVX5pX+v7P3ed1bWpuqJs6YtIQwSqQmDfvn19+vQxMCh6PBJTHz4Jk0HK4XB4T6FhxMPDI/XbERMTwyj5lbYxaYim/Olxc6BAQgRqTaBKHpGNjU1gYCD6ateu3YYNGx48eICQkZmZGTQkNSCgICu9sGczcx0VS10VhLyTMnKRZuUV1KApuoQIEAEiQAQYAqnZ+VtvhTqvv73mSvCX9NzGGoor/8feecA1kXQB3CT0LgLSiygCIh0LiKBgO8Vez4aK5Tx7uU/09Dz72dvZC3pn73oWFJSiAgqKovReBJHeCST5XljN5QJCgBBS3v6e6+yb2Zk3/02GffM2s6Mtgn8ZMLd/F3lpCaIM7pFACwikpaX5+fl5eXkR52pqakKCPSiUm5sLYSJQcoi0tLQS28aR28pDu6+LKxSCP9bKqvB0JIAEuPKIfv31VzqdDrC2bNkC44Kzs/ODBw8OHjwIGpSWERhto3P9p75vM4rstz6x2+IH++OBydU1+BBdy3DiWSJLICgoyMPDA+ZlSSTS7du3Wf28efPmkCFDIGoN+sjISJYeEvPnzzc2NpaVlVVXVx81alRsbCwo68vGjRvhXJYQtzj1i6FGKAjAvNLOR7FOO57ufRJfVFFjpCa/c7xlwGrX6X0MYAZKKLqARgoygbNnz2poaAwfPpww0sjICEaMJ3VLz4GGSqUGBgY6OjpCmp9ioaMkJUEuKKcm55Uz28V/SAAJtIJAEx6RtbX14cOHe/XqNXbsWGgF4kLR0dF5eXkwHTJw4EDQoLSMALWWdvZFyqGniSWVzNAQ7A/4JxwJSMJIUct44lmiSqC8vNzKygpGIY4Ogt7JyWnHjh0ceji0s7OD25eYmBhfX1+YOh08eDCN1vBcQ48ePb4tq5sdFRUF56IIOIFKai1E1MH/gT0xWuYUV226Fw1xIRg/y6pru3dWPDjFxm+Fy0R7PUlKE3/gBLyzaJ6AEIAZYRhSZs6cKSHxNdIIMynLli3btm3brVu3Pnz44OnpKScn9+OPP/LZYGkJirUu84XCEfhTIj6jx+banUAbGNDEH4zevXtDgAgmaOGr7u/vTxigqqoKwwGRxn3LCFDI5Po/Ijr7MkWC3MQVaVlzeBYSEFICw4YNg9A0MSPD3oXp06dv2LDB3d2dXUmk582b179/f0NDQ1tbWzg3IyMjNTWVyOLYS0hIwEQvIRBQ4sjFQ0EjAFH0Y4HJEFFnxdVLKmtmnX115kVKVQ3dSlf5xHS7h0udR1ppU8gkQTMe7RFeAn5+funp6bNnz2bvwi+//AJO0cKFC+3t7bOysh4/fqyoqMhegD9pu68/JSrgT3PYChIQYQJN3H8fP348JyfnxIkTsIepVrjJ2LRpEwwNXBIJ+s4TL3A6zOCOHDlSWVkZBpE+ffoQdRYUFCxevLh79+4w3aKvr79kyZLi4mIoXF+E/YmX0qoaiAtx9As0oOdQiu0hdhwJtJIAxJFgZtfIyOh7SzwlJCTAdA8UmDx5cnJycoPNtd3isD1BUAAAEABJREFUuQ02h8rvEYDoEESBIJYO4ySUgT2kTwYnLx9k0stI9fzsXrd/dhrcQ5OMvhDQQeEpAbj5gWiziYkJe60wLwz3IRBkrqqqCgwMtLCwYM/lW9oel5vjG2tsSNQJNOERQfdlZGRgOvbp06eJiYmQOH36dJcuXYYMGXL16lXIbVzgjqTBJ16SkpL69etnamoaEBDw7t279evXQytQ1ae6bffu3VFRUT4+Po8ePZozZw7oGxShfuJFUUZSSfZr/J3VO9CAnnWICSSABFpG4MiRIwp1G4whT548kZKSql8PBMDPnz/v6+t78uRJmPFxdHTMz8+vX6ztFs9lbwvTTRKgkMkQRecodi4k1aW7+tX5ffubqMMdKkcuHiIBkSdgV+cRJeeV55dVi3xnsYNIoE0JNO0RsZqHmdTNmzenpqZevnw5PDx8ypQprKzvJb73xMu6det++OGHnTt32tjYgH81fPhwDQ0NqARmWW7cuOHh4WFsbDxw4MCtW7feu3evtrYWsuqLUD/xQqPTZzkacXQKNLV1K1hw6PEQCSCBZhGYOnXq27dvYeK2W7duEydOhEnc+qfD6DRu3LiePXu6u7vfv38fCpw7dw72HNKmi+dytIWHDRLILa36592nL2XVEBfiKACasqqG/0BwlMRDwSGAlvCQgIqcVDcN5stRInANbh5ixarEkkAzPCLg8+zZs5kzZ3p6etJotLlz54KmBUKn0+H+AwLQEGgCRwhmatmXkGKvsLi4WElJCTwfdiUrLdRPvMhKSSx0NV7q1g3iQtAj2C8e2NXL2UhOijNwBLkoSAAJNIuAsrIy+EL9+/e/fv16bGzsrVu3Gj9dXl4eXCMYUuoXk27LxXPrN4caFoGMgopTwcnjj77svc1/w92PHeUwrs5igwkk8C8Be0PmW4nQI/qXiCCl0BYhIsCVR5Senr5p0yYI5ri5uaWlpR05ciQ7O/vYsWMt62dubm5ZWdmOHTuGDh36+PHjMWPGjB07NjAwkKO2/Px8CEnNnz+fQ08cgh8l7E+8SEtS5rt0CV83KOJX99fr3C10lMcceRmS1MBzO0SXcY8EkEALCDAYjOrqJp4ngQIxMTFaWlotqB9P4S2BxNzSw08Thh8Mdt75bMv9mPC0Qgajg76qXFZhJUTROdoCDcbVOZjgobgRIN5K9DoVF1cQtyuP/eUxgSY8oosXLw4aNAh8oePHj0+aNCk+Ph5clxkzZsjKyrbYEIgRwbmjRo1avny5tbX1mjVrRowYweFflZSUDB8+3Nzc/LfffoPC9UVgnnipb1ozNBARkpIgd1KQlpagPI3JTcwtW3k1sriiphlVYFEkINIEYPYksm6DXqakpEAyPT0d0gUFBZCOjo6GdFxcHKRzcnIgnZycvH379oiICCgWEhIyceJEGKx++OEHyAKBOZ3Dhw9DAmTVqlUwmkGdYWFh48ePhzEHAuCgR+E/AfBaozKLd/nGuu0JcN8btPtx/MdPJWRSh75dOv0+skeI98DbPzt166zIEVeHGDtoYBTlv8HYIhIQHAIOdTGiD1klVTUNv2ZAcExFS5CAIBNowiPy9PRUUFC4fft2RkYG3Gd07dq19Z1RU1OTkJAAb4dVlZmZGdy+sA5LS0shfATt3rp1S1JSkqX/XkI0nnjZ4GFu2EnuU3HVuttRcH/wvc6iHgm0H4F2aDk8PNymboO2V6xYAckNGzZA+u7du5CGeRNIT548GdLErIqMjExwcDC4QDBYgTsEg8PLly816n6mCCWTkpLy8vIgAZKZmTllypTu3btDjFpKSio0NNTAwAD0KHwjQKMzXqUUbLoX3e+PZx6Hn//5LCnpS7kUhTzQVGPnOEuInF+a12emo6GW8tcJOPa4OkTXIcYOGr5Ziw0hAcEkABFUNQVpKo0eldXw2ryCaTZahQQEjUATHhHcNIBbAjEcMrmJktx3DG4+HBwcYFqXdQqEnlj3IjBTO3jwYCgDdzxwc8Mq00hCNJ54kZeW2D/ZhkIm/fM++9bbrEb6i1lIQHwIuLq6Mv67+fj4QPdhsua/asbGjRtBr62t/eDBg8+fP1OpVJjHuXDhAvg8oCckNTWVKAaHly9f/vTpExTLysq6ceOGubk5KFH4QIBaSw+K/+J9M6r3Nr+Jx0POvEjJKqqUlaT80FPz4BSbiPXuZzwdJjroQfC8vjEQESLi6rCHdP0CvNNgTUhAOAiQSCT7uhXn8ME54bhgaKWgEmjCz2HNrbbM/u898bJ69eorV66cPHkyMTHx8OHD9+7dW7hwITQB0SFwh8rLy0+fPg2uUU7dRqN9DQS7ublBYSgGIpJPvFjrqSxz6wa923DnY0ZBBSRQkAASQAKiQaCSSvP9mLPiSqT9liczzry69Co9r4yqJCMx1lbnxHS7txsGHZlqN9JKG99AIBqXG3vBTwJfF1dILWxpo3geEkACHZrwiFpJ6HtPvIwZM+bYsWM7d+7s2bPnqVOnYIK2X79+0FZERERYWFhUVFTXrl21vm0w0QtZIElJov/Ey8IBXR0MO5ZV1y67EllLo0OvUZAAEkACwkugpKrmTmTWT39H2G5+Mv+viJtvs0qqatUUpKf21v9rTq+I9YP2TrQe3ENTRpIivH1Ey5FA+xKwN1QFAyLSC+l0BiRQkAAS+D6B7+a0rUf0vSdewJzZs2cnJCRUVlZGRkaOGjUKNCD1yzMYDENDQ8gCEYcnXihkEtwfKEpLRKQVHglIgl6jIAEkgASEjkB+WfXlV+meZ1/ZbX6y9HLkww85lTU0HRVZr35G1xf0DVvrtnVMT+du6pKUtv0bJHTc0GAk0AICPbSVZCTJRRU1SV/KWnA6noIEkAAQwL9GAEGwRE9VbtPoHmDTAf+EN+mFkEBpHgEsjQSQQDsR+FRUefZFyqTjIQ5b/dbcjAqI+1JDY3TVUFg0oOs/i/s9/9+AX0eYw3w2hUxqJwOxWSQgggRgZsFKVwU6Fo7vaQUKKEigRQS48oi6dOmSn/+f9+QUFRWBskUt4klNExhtrTPSSptGZyy/EllWXdv0CVgCCSAB8SQgGL1O/lJ2NCBp1J8vHHc8/f1edFhKAZ3RoaeO8uoh3f1W9Pdb4bJqSHcLHWUSCR0hwbhgaIXIEXCoe3AuHH9KJHJXFjvENwJceUSpqam0b8sbEJZVV1dnZeF6aAQM3u9JJNLm0RY6KrJp+RWb7n3kfQNYIxJAAkigdQQYDEb0p5K9T+KH7AsauCfwj0ex7zKKSKQOvQxV148wh3DQvcX9fh7QtauGYuvawbORwDcC+P/3CdjVvZUoIq3g+0UwBwkggcYINOER3a3boAJfX9+6JHN369atzZs3s37eA7koPCegLCu5d6IV3F5cDc98GJXN8/qxQiSABJBACwjQ6YyItMJtD2JcdgX8cDD4oH9C3OdSCTKpv4n6tjE9X611v7qg75x+Rrod5VpQOZ6CBJBAywjY6neEG4bU/IovpdUtqwHPEiwCaA3fCTThEY2u20gk0syZM+uSzN3kyZOfPHmyZ88evlsrXg327tLpJxdj6POam1HZxZWQQEECSAAJtAuBWhr9RWLe+tsf+mz3H3f05Ymg5PSCChlJ8pAenfdNsor4ddD52b1+7K2vrijdLuZho0hAzAnALGr3zsx4bASGicT8o4DdbymBJjwiet2mr6+fm5tbl2Tuqqur4+LiRowY0dJG8TwmAW7+LXM36amjXFxZs+raOzodV9XkhhmWQQJIgGcEqmpo/jGfV197Z7/Vb+qpsL9C03JLqxWlJUZZax+davtm/aDj0+3H2Ogqy0nyrEmsCAkggRYRsKt7Tyv+lKhF8PAkJMDd+4hSUlLU1NSQFv8JSEmQ90+2lpWkvEjMP/08hf8GYItIgCcEsBLhIlBWXfvP+0+LLr6x2/xkzrnwaxGZRRU1qvJSkx30zs5yCF/vfmCyzbCeWnJSEsLVL7QWCYgwAfu6nxK9xuXmRPgaY9fakkATMSJW0/7+/mvXrvXy8prNtrFyMdF2BIzVFdaPMIf6d/nGffxUDAkUJIAEkEBbECgsp14Lz/A699p285NFF9/+8z67nErTUpbxdDS8PK/Pq7VuO8ZZDuiuIS2Bb1NtDD/mIYF2IWBvoArtfswqrqTSIIGCBJBAswhw5RH9/vvvgwcPBqcoLy+vkG1rVktYuMUEpvTSG2TemUqjL70cWVWDI12LQeKJSAAJNEAgt6Tqr9C0qadC7bf6rb7+3i8ml1pLN+wkt8DF+M7PTi/XDNw4skefLp0kKFz9vWigAVQhASTQ9gR0O8p2VpKupTPeZRa1fWtfW8D/kIDIEODqL9yxY8d8fHzCwsJu3759i20TGQoC3hESifTHOEt1RenE3LLtD2IE3Fo0DwkgAaEgkJ5fcTIoedzRl723+6+//eFFYj6NzjDTUlrubuK7rP+zVa5rhpla6anA+CMU3UEjkYCYE4CvKhEmisAH58T8o4DdbxGBJj0iZq1UKtXR0ZGZwn/tREBVXmr3BCto/FxI2rPYXEigIAEkgASaS4DBYMR/Lj3on/DDgeD+u55tfRADN08MRgdbfZW1P5gGrnZ9uNR5qXu37pqKcHfV3MqxPBJAAu1LgFhc4XUqvpWofa8Dti6UBLjyiLy8vC5evCiU/RMho11M1Gc5GUKHVl9/l1eGLxwAEjwXrBAJiCYBcITeZRT98SjWbU/g4H1Be5/ER2eXUMgkp66dNo/qEertdnOh07z+xgad5EWz/9grJCAeBBwMmT8lepNWiIvTiscFx17ykgBXHlFVVdXevXtdXFwWL168gm3jpSFYFxcE/jfUtHtnxbwy6v+uv4dbHC7OwCJIAAmILwEanRGWnL/x7kenHU9H/fniaEBScl65FIXsZqqxa7xl+Dr3C159pvc11FSWEV9G2HMkIEIEzLQU5aQoJVW1CbllItQt7AoS4AcBrjyi9+/fW1tbk8nkDx8+vP22RUZG8sNAbIONgIwk5cAUaykJsn9s7t9h6Ww5mEQCSEDsCFRSa6m19PyyathXUGtZ/YfDgLhc75vve231m3Qi1Odl6qfiKrhPGm6pdWiKzZsNg057Okyw1+soL8U6BRNIQKQJiEvnJChkaz0V6C0+OAcQUJBAswhw5RE9a2h7+vRps1rCwjwhYKqpBJEiqGrr/ejE3FJIoCABJCCGBKpraMcCk+23PrHb4gf744HJVTW04IQvyy6/tdvyxPPs60uvMvLLqcqykuPtdE/NsH+zftCfP9p6WGkrSONLhMTw84JdFhcC9gYdoasRuLgCUBBTwW63kABXHlEL68bT2obALEdD525qVTXMxbhhMrhtGsFakYBAEAgKCvLw8NDW1iaRSLdv32bZdPPmzSFDhqipqYGeI149f/58Y2NjWVlZdXX1UaNGxcbGss7iSBw5csTIyEhGRsbOzi44OJgjV5APITp0JCDpgH9CSSUzNAR7SP/5LLGSSrsd+am0qlZDUfZcKTYAABAASURBVHp6H4MLXr3Df3XfPcHK3bwzRJgFuUdoGxJAAjwhYF/3U6LwNFxcgSc4sRIxIsCtR/T69etffvll8uTJY9k2MeIkSF0lk0lwi9NRTvLjp5I9T+IEyTS0BQnwmEB5ebmVldXhw4c56gW9k5PTjh07OPRwCO7N2bNnY2JifH19GQzG4MGDabQG3uJ15cqVZcuWrVu37u3bt87OzsOGDUtPF5onUSlk8tmXKdBZdjkXktqvm9pSt643fuob6u22ebSFU1c1SQq3gzx7VZhGAkhASAnY6KuQSR0yCio/l1QJaRfQbCTQLgS4+mN5+fJluPmIjo6+detWTU0NJJ4+faqsrNwuFmOjQKCzksyOcZaQOBGU/DIpDxIoSEAkCQwbNmzLli0wD8PRu+nTp2/YsMHd3Z1DD4fz5s3r37+/oaGhra0tnJuRkZGamgp6Dtm7d++cOXO8vLzMzMz279+vp6d39OhRjjJwWF1dXcK2gUYQpLSqBuJCHJaABmJEywd1tzNQJcM9EUc2HiIBJCAGBBRlJLtrKkFHw1MLYY+CBJAAlwS48oi2bdu2b9++f/75R0pK6sCBAzD5OnHiRH19fS7bwGJtQWBID80pvfQYjA4rr74rrqhpiyawTiQg1AQgjgTBIiMjI/B2ODpCpVIjIiIgfMTSQ/rly5esQ1Zi+/btMPtDSP16WMX4nICbHiVZzp8DgQb0fLYEm+MlAawLCfCCgIMh86dE+OAcL1hiHWJEgCuPKCkpafjw4UBFWloabjJIJNLy5ctPnDgBmsble78BgLPArRo5ciTcZygqKvbp04f1vArMyC5evFhNTU1eXh4KZGZmQuEGRXh/A9Bgd1qgXD/C3EhNPru4au2tKAb4Ri2oAk9BAqJIAAYHhbrt0aNHT548gakcjl7m5eXRaLTOnTuz9JDOyclhHbIS3t7exd82CDex9O2boNHpsxyNOGwATS2dzqHEQySABMSNAPGeVkFfXEHcrgr2V+AJcOURqaqqlpYylzXT0dH58OEDdKqoqKiiogISjQu4Tw3+BgBcrH79+pmamgYEBLx79279+vUyMl9fiLFs2bJbt25dvnz5+fPnZWVlI0aMgBuX+q0I9W8A6nenZRo5KYn9k6wlyKT7Udk33mS1rBI8CwmIHoGpU6e+ffs2MDCwW7duENCuqmr4eXoSicTqO8wpkEj/HrL0MA2kxLax9O2bkJWS8HI2WjywK8SFwBLYL3XrttDVGMYEOERBAkhAnAnY1y2u8PFTSXk1c+UVcUaBfUcC3BPgyiNydnaGeVaoFO4tli5dOnfu3ClTpri5uYGmEYGsYd/5DcC6det++OGHnTt32tjYdOnSBQJQGhoaUB6mYk+fPr1nzx53d3fI+vvvv6Oiovz8/CCLQ7j8DQDHWaJ3aKWnsnyQCfTrtzsf0vOb9lGhJAoSEHkCEHwGX6h///7Xr1+PjY2FSRaOLkMUmkKhsAeFcnNzIUzEUUxgD2l0xvy/InrqKL9e6x7xq3v4ukHzXbpIS1IE1mA0DAkgAb4R0FGR1VaWgVHiXUYR3xrFhpCAsBPgyiM6fPjw5MmToave3t6rVq36/Pnz2LFjwXUBTQuETqffv3/fxMRkyJAh4Aj17t379u3bRD0RERE1NTWDBw8mDrW1tS0sLOo/3M/9bwCqBfJX0UTveLVf4GLcy1C1nEpbduVtLQ2fmeEV1+bVg6UFlgAEf2Ac4DBPSkrKzs6OmOghsiDt6OhIpAV/7xfz+WVS/v9uvGd06NBJQVpKgozRIcG/amghEuAbATtDVWgrHN9KBBRQkAB3BLjyiFRVVcE5gQrJZPIvv/xy9+5dCNF07Mj86R4omyswF1tWVrZjx46hQ4c+fvx4zJgx4F8FBgZCPTBlKyUlxV4zzNqCErLYhfvfAAjmr6LZ+9L6NIVM2jvJSlFa4k160eFnia2vEGtAAoJDAMaKyLoNTEpJSYEk8ZvDgoICSEdHR4M+Li4O0sRAkZycDN96mFuBYiEhIRDWlpWVhYg0FAOByDbM70ACZMWKFadOnTpz5kxMTMzy5cuh/IIFC0AvFHI+hLl63iQH/XZ5y5BQIEIjkYA4E7A3YN6hvU7FtxKJ86cA+948Alx5RBQKBdwY9orz8/NBya7hPg0xIig8atQouAuxtrZes2bNiBEjjh07Bsr6AvO7JFIDD/dDSRLpX/33ikFQq/jbJji/igbjeSu6HeW2jLGAOg89TcQfUwIHFJEhEB4eblO3QY/Ah4Hkhg0bIA3zMpAeXrfiC0SwIU2MITIyMsHBweACde3aFdwheXl5CDJDLBpOAUlKSoL5FEiATJo0af/+/Zs2bYJRKCgo6MGDBwYGBqAXfEn4XPoiMZ9M6jCtDy74KfiXCy0UbgJCaj2xuMLb9CIaHQLJQtoJNBsJ8JUAVx4R+BscRlVXV0Mwh0PJ5aGampqEhIS5uTmrvJmZGUzQwqGmpiaVSi0s/HcRffDEIEwEWewCNYA/RkwJE/oGi0GWYP4qGgzjuYyy1hllrQ1j3/IrkWX4Y0qe88UK24mAq6srjD/s4uPjA7Z4enqyKyG9ceNG0EM0G3ybz58/w0gCkyAXLlzo3r076AlJTU0lihGHCxcuBA2MZhEREf379yeUgr8/VxcgcjfrDFMhgm8tWogEkAD/CZhqKipIS8DNQFwOc1ks/huALQojATG3uQmP6GDdRiKRTp06VZdk7vbt2/fzzz+bmpq2jB24Ug4ODnFxcazT4+PjidlZOzs7SUnJJ0+eEFnZ2dkfPnyo/3A/1AAlWcWgMKTrFwO9WMmmURY6KrLpBRUb734Uq45jZ5GA+BAoqaq5WbewpKejofj0GnuKBJBAswhIUMg2+ipwSkQaPjgHGFCQQNMEmvCIwPkBgfnXY8eOQYIQSFdUVMC+yeq/9xuA1atXX7ly5eTJk4mJiYcPH7537x5M1kJtysrKc+bMWblypb+//9u3b6dNm9azZ0/3b6+lF5nfAEBP20KUZSX3TbImkzpcj8i8/z67oSZQhwSQgHATuB6eWUGlddNQ6GvcSbh7gtYjASTQlgSIB+dep/770E1btoZ1IwGhJ9CER5RSt7m4uLx7964uydxBeMfX17d3795N9v57vwEYM2YMOFQ7d+4EhweiTzdu3OjXrx9RGzhdo0ePnjhxopOTk5ycHDhLFMrXJWWTkkThNwBEN9to38tIdaFrV6h87a2o7OJKSKAgAXElIIL9ptMZf4WmQcdmOBpC6B4SKEgACSCBBgk41C03F5GGHlGDeFCJBDgJNOEREcWfPXvW8dvKcjQaLTIykv2nPkSZBvff+w0AFJ49e3ZCQkJlZSXUNmrUKNAQIiMjc+jQofz8fAhDgTukp6dH6GGfmpoqAr8BgI60qSx172alq1xcWbPiyju4f2rTtrByJIAE+EkgKOFLSl65orTEWBsdfraLbQk8ATQQCXASsNZToZBJWUWVn4pwepQTDh4jgfoEuPKIli1bRrx9CNyh/v3729ragqMSEBBQvzrUtDsBSQp5/2QbWUlKSHL+yeDkdrcHDUACSIBXBM69ZC66Pd5eV15agld1Yj1IAAmIJAEYJcy0FKFrIvdWIugTChLgPQGuPKJr165ZWVlB4xC0gUBNbGws+Ejr1q0DDYoAEjBSk//Ng7mU3+7HcR+yigXQQjQJCSCB5hJIzSsPiP8CZ83oi2sqAAYUJMAnAllZWdOmTevUqZOcnJy1tXVERATR8OfPnz09PbW1tUE/dOjQhIQEQi84e3sDVTAmAt9KBBRQkEBTBLjyiPLz8zU1NaGqBw8eTJgwwcTEZM6cOVFRUaBpE8FKW01gkoPeYPPONTTGsiuRlVRaq+vDCpAAEmhnAn+FpjEYHVxM1GHKo51NweaRgNgQKCwsdHJykpSUfPjwYXR09J49e1RUVKD3DAZj9OjRycnJd+7cefv2rYGBgbu7e3l5OWQJjtgbMt/TijEiwbkiaIkgE+DKI+rcuTMMBDQa7dGjR/Cdh/5UVFSwFjyAQxRBI0AikXaMs9RQlE7MLdv2IEbQzEN7/iWAKSTABYEKau3V8AwoiItuAwQUJMA3An/88Yeent7Zs2d79eplaGjo5uZmbGwMrUNEKDQ09OjRow4ODt27dz9y5EhZWdmlS5cgS3DEvi5GFJNdUoZvKRScq4KWCCoBrjyiWbNmTZw40cLCAu6zBw0aBH0JCwtr8fuI4HQUPhBQlZfaM5H5rCNMLfvHfOZDi9gEEkACbUTg1tus0qpag05yECNqoyb4US22gQSEjcDdu3ft7e0nTJigoaFhY2Nz8uRJogfV1dWQkJGRgT0IzBFLSUk9f/4c0uwCxUrYNvYsPqQ1lWV0VGTpjA5v03HFOT7wxiaEmwBXHtHGjRtPnTo1b968Fy9eSEtLQ4/hy79mzRpIoAgyAedu6nP6GYGFv1x//6WUOXxDGgUJIAHhIsBgMM6/ZC66Pb2PAZlMEi7j0VokINQEkpOTIRDUrVs3X1/fBQsWLFmy5Pz589AjmBQ2MDDw9vYuLCykUqk7duzIycnJzmZ7EyAU6tBh+/btyt82iDXV6fi6cyAenEtFj4iv2LExYSTAlUcEHRs/fvzy5ct1dXUhDTJz5kz2JbNBgyKYBFYP6W6qqZhfTv3l+jsGgyGYRqJVSAAJNEIgNLkg7nOprCRlgv2/byNopDxmIQEkwCsCdDrd1tZ227ZtECCaP3/+3LlzwUGCyiUlJW/cuBEfH6+qqionJxcQEDBs2DCYLIYsdgGXqfjblpHBfPCVPZcPaTt8KxEfKGMTIkGAW4/I399/7dq1Xl5es9k2kSAg4p2QkaQcmGwjJUF+Fvfl77p3O4p4h7F7SEDkCBCLbo+x1VGWlRS5zmGHkIBAE9DS0jI3Z67dSlhpZmaWnp5OpO3s7CIjI4uKiiA09OjRo/z8fCMj5kMZRC6xl5aWVmLbCCU/9/YGzMUV3qQX1tLo/GwX20ICQkeAK4/o999/Hzx4MDhFeXl5ECBmidD1VjwN7q6p6D3MFPq+5X5MwudSSLRA8BQkgATahUBWUeXj6BxoeiYuug0UUJAAfwk4OTnFxcWx2oSgkIGBAesQEsrKyurq6gkJCeHh4QL47IxJZ0VFGYkKKi02B//6w+VCQQLfJcCVR3Ts2DEfH5+wsLDbt2/fYtu+WytmCBgBT0fD/ibq1bX0pZcjq2txMW4BuzxojoAREChzLoSm0Rkd+nbpBFMbAmUYGoMExIHA8uXLQ0NDt23blpiYePHixRMnTvz8889Ex69duxYQEJBctwD3oEGDRo8eDXPHRJbg7Clkkq0+M0wUjm8lEpyrgpYIJAGuPCIqlero6CiQ9qNRXBEgkUi7x1uqyktFZ5fseRzP1TlYCAkggfYmUFVDu/w6A6yY6fifaWnQoCABnhDAShon4ODgAPPAly5dsrCw2Lx58/79+6dOnUqckp2dPX36dFNT0yVLlkACyhBe2o9YAAAQAElEQVR6QdsTD869TsPFFQTtyqA9gkWAK4/Iy8sLpkYEy3C0ppkENJRk/hhnCSedDE5+mZgHCRQkgAQEnMA/77MLyqnayjLuZp0F3FQ0DwmIKoERI0ZERUVVVVXFxMTMnTuX1U1whDIyMmDKOC0tDZwlKSkpVpZAJezqlpuLSC3E1ZUE6rqgMYJGgCuPCAaCvXv3uri4LF68eAXbJmidQXsaJzDIvPOUXvoMRocVV98VVVAbL4y5SAAJtC8BuH0h1lSY2sdAgsLVWN2+BmPrSAAJCCABaz0VCTIpp6Qqq6hSAM1Dk5CAgBDg6q/s+/fvra2tyWTyhw8f3n7bIiMjBaQPbGZgsgkC60eYdVGTh5Fx7a0ouN9qojRmI4H2JhAUFOTh4aGtrU0ikW7fvs0y5+bNm0OGDFFTUwM9+1hUUFAAEzfdu3eXk5PT19eHSdzi4mLWWeyJjRs3wrks0dTUZM8VhPTbjKKorGIpCfJkB1x0WxAuCNqABISSgJyURA9tJTA9Ah+cAwooSOA7BLjyiJ41tD19+vQ7daJacAnAyHhgsg1MFz2IyrkekSm4hqJlTRMQixLl5eVWVlaHDx/m6C3onZycduzYwaH/VLft3r07KirKx8fn0aNHc+bM4SjDOuzRo0f2tw3Ks/QCkiACRB6W2p0UpAXEJDQDCSABYSRgZ6AKZr/GxRWAAgoS+A4Brjwi1rmZmZlZWVmsQ0wII4GeusorBpuA5RvvfkzLL4cEChIQWALDhg3bsmXL2LFjOSycPn36hg0b3N3dOfQWFhY3btyAsJKxsfHAgQO3bt1679692tpajmLEoYSEBISGCFFXVyeUArLPLa16EJUNxng6GsJe7AUBIAEk0HICDnU/JQpPxcUVWs4QzxR5Alx5RHQ6fdOmTcrKygYGBvr6+ioqKps3bwalyNMR1Q7O72/cy0i1nEpbdiUS39omqlcZ+wUEiouLlZSUwPOBdH1JSEjQ1tY2MjKaPHlycnJy/QKgqa6uLmHbQMMfuRSWUUNj2OqrwBQGf1rEVpAAEhAMAry3glhcIe5zaUlVDe9rxxqRgEgQ4MojWrdu3eHDh3fs2PH27ds3b95s27bt0KFD69evFwkC4tgJCpm0b5K1oozE2/SiQ08TxREB9lkMCOTn58Pczfz58xvsa+/evc+fP+/r63vy5MmcnBxHR0coX7/k9u3bYTKIED09Pv2ep4ZGvxCWBsbMxAARUEBBAkigdQQ0FGX0VeUYjA5v8KdErSOJZ/OagADVx5VHdO7cuVOnTv3000+WlpZWVlYLFy6EewgfHx8B6gea0kwCOiqyW8f0hJMOPU2ISCuABAoSECUCENcZPny4ubn5b7/91mC/hg0bNm7cuJ49e7q7u9+/fx/KwEAHew7x9vaGQBMhGRnMVwNxFGiLw0cfcnJLq9UUpIdZaLVF/VgnEkAC4kaAeCtRBHpE4nbhsb9cE+DKIyooKDA1NWWvEw5Bya7BtNARGGmlPcZGh87osOxKZGnbRdKFjgsaLPwESktLhw4dqqCgcOvWLUlJySY7JC8vD65RQkJC/ZLS0tJKbFv9Am2hOR+SCtX+2FtfSoKrIRoKoyABJIAEGiFgb8hcXAF/StQIIswScwJc/bmFuNDh/671BIegbJLd91bO9fT0JLFtffr0IapKTU1lU39NXrt2jchl3wv+yrns1gps+vdRPXQ7ymYUVG68Gy2wRqJhSKBZBCA6NHjwYCkpqbt378rIyHBzbnV1dUxMjJZWqwMy3DTWVJmPn4pfpxZKkElTe+s3VRbzkQASQAJcEbCvW1zhbUZhDY3O1QlYCAmIGQGuPKKdO3eeOXPG3Nx8zpw5Xl5ekPDx8dm1a1eTrMq/s3IunAgzuN+Wvc1+8OABaED09PRYSkj8/vvvMHc7bNgwyKovAr5ybn2DBVCjJCO5f5I1mdThxpvMf95/EkAL0SQxJ1BWVhZZtwGHlJQUSKanp0MaYtSQjo5mevJxcXGQzsnJAT1Eh8AdgpHn9OnT4BqBEoRGo0EWiJubG8zmQAJk1apVgYGBUGdYWNj48eOh8MyZM0Hf7kIsuj2sp1ZnJa7cuXY3GA0QUwLYbaEi0FVdQUlGoqqGHv2pRKgMR2ORAJ8IcOURubi4xMfHjxkzpqioCG5Exo4dC7cgzs7OTdoIzkyDK+fCidLS0sSit7BXVWUGc0FJoVDgkCW3bt2aNGmSgoICZNUXCS5WzoWpX7jRYUn9SlBjb6j684CuwGHtzahPRZWQQEECgkMgPDzcpm4Dk1asWAHJDRs2QBriP5AePnw4pCdPngzpY8eOQToiIgI8nKioqK5du0LMhxDW73+SkpLy8vKgGEhmZuaUKVO6d+8OAxoElEJDQw0MDEDfvlJYTr0TyZybmNm3/Y1pXxTYOhJAAjwkQCaT4M89VBiOPyUCCs0VLC8GBLjyiICDtrb21q1bb9y4cfPmTXBy4BCUrZGAgAANDQ0TE5O5c+fm5ubWryoiIgLmfSEqVT+L0CQkNL1ybrusE0WYJ0T7JW7drPRUSqpqV1yNpNEZQmQ5miryBFxdXRn/3SBADb329PT8r5qxceNG0NcvD8UMDQ0hCyQ1NZUoBunLly9/+vSJSqVmZWXByAahb1C2u1wJz6iupffQVrIz6NjuxqABSAAJiBIBYlSJwLWUROmiYl94R6AJjwi8DphGhRgLe4vFxcU//vjj917fwV7ye2mIHV24cOHp06d79ux5/fr1wIEDIZjDUfj06dNmZmaOjo4ceuKQy5VzuV8niqhWPPeSFPKBSdZyUpTQ5IKTwQ2/lUU8yWCvkQA/CcB8xF8hdYtu9zUkkUj8bBrbQgJIQOQJEMvNvU4thHkike8sdhAJNJdAEx7Rrl279PT0lJSU2OtVVlYGJWSxK5uVnjRp0vDhwy0sLDw8PB4+fBgfH0+sfsuqpLKy8uLFi40EiMCn4mblXOn2WCeK1QshShiqyW/06AEG73kc9yGrGBIoIkwAuyaYBPxjPmcVVarISY601hZMC9EqJIAEhJeAlZ6KJIX0pbQ6owCfkBfey4iWtxWBJjyioKCgCRMm1G984sSJEOGpr2+BRktLy8DAAIJR7Odev369oqJixowZ7MrvpeW/v3Lu905BfX0CE+x1h/bQrKExllx+W0n9+kv0+sVQgwSQQBsROFe36PYkBz0ZSUobNSGG1WKXkQASIAjAwGKhowzp8DR8CSFgQEEC/yHQhEeUlpamoaHxnzPqDtTU1Fg/Vq5TtHyXn58PVYFfxF7F6dOnR44cqa6uzq78XrpakFbO/Z6Rgq8nkUjbx/bsrCSd/KV86wPmEl6CbzNaiAREhkBibumLxHwyqcP0PgYi0ynsCBJAAvwk0GRbrAfnmiyJBZCAuBFowiNSVlZOSkqqDyUxMVHpv4/S1S8DmgZXzgXlqlWrQkJCUlNTAwICPDw8wL8aM2YMlCcEKofYlJeXF3HI2rsJw8q5LGuFMdFRXmrPBGuw/O/QdL/oz5BAQQJIgD8Ezr1k/oLI3ayzbkc5/rSIrSABJCBuBOwMmEv74uIK4nbdRbK/PO9UEx5R//79Dx06VL/VgwcPcrP6doMr51IolKioqFGjRpmYmMycORP24B0pKiqyWjlz5oyOjs7gwYNZGiIBvpmAr5xL2CnU+37d1Lz6GUEX/nfj/ZfSakigIAEk0NYESqpqbrzJhFZmOn5dFg/SKEgACSAB3hIg3tMa/7msuKKGtzVjbUhA2Ak04RF5e3s/fPhw/Pjxr169Kq7bwsLCxo0b5+vrC1lNdr7+Srg+Pj6ysrJwem5uLpVKTUtLA42enh57Vdu2bcvIyCCTOW2DmJKAr5zL3gvhTa8e2t1UUzG/nLr6+rt2XZFGeBGi5UigeQRuRGRWUGldNRQcjTs170wsjQSQABLgmoCagrSRmjwUf5NeCHsUJIAEWAQ4vQ5WBpGwsbG5fv16UFBQ3759Ves2R0fH4ODgq1ev2traEmVwL2IEpCUoB6fYSEuQA+K+nK9bC1jEOojdQQICRYBOZ/wVwnxkbmZfAxIJF90WqIuDxiABUSNAvJXodSouriBqVxb700oCTXhEUPuIESMgkgN+0Y4dO7Zv337jxg2I1YwcORKyUESVgElnxbU/mEHvtj2Iif9cCgkUJIAE2ohAcGJecl65orTEWFvdNmoCq0UCgkQAbWlPAg6GHaH58DSMEQEGFCTwL4GmPSIoKysrO2bMmNWrV//yyy+jR4+Wk8Mf/gIVEZcZfQ1cu6tX19KXXHpbXYuLcYv45cbutSOBcy9TofXx9rry0hKQQEECSAAJtB0BYnGFdxlF1Fp627WCNX8jgP8LDQGuPCKh6Q0ayjsCJBJp53hLVXmp2JzS3b5xvKsYa0ICSOBfAmn55c/icuEYF90GCChIAAm0NQFjdfmOcpIw3fnhU3Fbt4X1IwEhIoAeUasvluhWoKEos3OcJfTvZHDK84Q8SKAgASTAWwJ/haQxGB1cTNS7qCvwtmasDQkgASRQnwBMdxI/JYpIxQfn6uNBjfgSQI9IfK89Nz13N+88tbc+lFx5LbKwnAoJFLEmgJ3nKYEKau3V8AyocqajAexRkAASQAJ8IGBvyHwrUXgaLq7AB9jYhNAQQI9IaC5Vexn663DzLuryn0uq196KwsW42+sqYLsiSeD2208lVbX6qnKuJhoi2UHh7hRajwRElIC9Qd3iCqmF+DddRK8wdqslBLjyiB48eODr68tePRw+fPiQXYNpUSUgK0U5ONlGkkJ6+CHnWjjzJZKi2lPsFxLgJwG4FzkfkgotzuhrQCbjottAAgUJIAF+ELDQUZaikPPLqan5FV/bw/+QgNgT4MojWrNmDY32n9XG4G85KMWenrgAgNFzxaDu0NuN9z6m5pVDAgUJIIFWEghLKYjNKZWVpEyw12tlVXg6EkACSIB7AjKSFEtdZSgfjm8lAgoo4kbgO/3lyiNKSEgwNzdnr8HU1DQxMZFdg2nRJjCvf5c+XVQrqLRlVyJraLhkp2hfbewdPwgQi26PsdVRlpXkR3vYBhJAAkjgGwG7urcSReBbib4Bwf+RAFcekbKycnJyMjsscIfk5eXZNZgWbQIUMmnvRGslGYnIjKJD/gkC3lk0DwkIOIFPRZWPoz+DkTP64poKgAEFCSABvhKwN2AurvAaY0R8pY6NCTQBrjyikSNHLlu2LCkpiegKuEMrV64EJXGIezEhoK0iu21sT+js4WeJGGoHDih8IBAUFOTh4aGtrU0ikW7fvs1q8ebNm0OGDFFTUwN9ZGQkS19QULB48eLu3bvLycnp6+svWbKkuPi779w4cuSIkZGRjIyMnZ1dcHAwqxI+JC6EpdHoDIi7mmoqtbI5PB0JIAEk0FwCxALcSV/KcRXZ5qLD8qJKgCuPaNeuXRARMjU1hbsHEDMzs06dOu3evVtUoWC/vkdghKX2WFsdOqPDsiuRJVU13yuGeiTAP2bcVgAAEABJREFUKwLl5eVWVlaHDx/mqBD0Tk5OO3bs4NB/qttgdIqKivLx8Xn06NGcOXM4yhCHV65cgYmedevWvX371tnZediwYenp6URWW++ramiXXtUtut3XsK3bwvqRgCgRwL7wioCqvJSxOvNJH3xwjldIsR5hJ8CVR6SsrPzy5cv79+8vXLgQokP+/v5Pnz5VUVER9s6j/S0g8PvIHnqqspmFlRvvfGzB6XgKEmgWAXBUtmzZMnbsWI6zpk+fvmHDBnd3dw69hYXFjRs3IKxkbGw8cODArVu33rt3r7a2lqMYHO7duxecJS8vL5ji2b9/v56e3tGjR0HPIdXV1SVsG0duyw7vv88uKKdqK8sMMu/cshrwLCSABJBAKwkQD859yP5uFL2V9ePprSSAp/OZAFceEdhEIpEGDx68evXqRYsW9e/fHzQo4klAUUZy/yRrMqnDzbdZd999Ek8I2GthIVBcXKykpCQhIcFhMJVKjYiIgDGNpYc0zPuwDlmJ7du3w5QQIeA1sfQtTjAYjHMhzEW3p/YxkKBwOwK3uDk8EQkgASTQIAFXU/WTM+zmOxvnl1VTa+kV1AZmjho8UaiVldRa6KxYdVmorxc/jW/s7/HBgwerqqrAGkg0KJCF0goCwnqqnYHqooHdwPp1t6KyiiohgYIEBJBAfn7+5s2b58+fX9+2vLw8Go3WufO/IRpI5+Tk1C/p7e0NbhUhGRnMR93ql2mWJjKj6H1msZQEebIDLrrdLHJYGAkgAV4ScDXRgLGo93Y/uy1+9lufHA9Mrq75z3tWeNmYYNQFHTwWmAydFZ8uCwZ44bCiMY9o37595eXMl89Aor7s379fOLqIVrYBgSUDu9roq5RW1a64EkmjM9qgBaxSxAjwuzslJSXDhw83Nzf/7bffvtc2iURiZUHohkT695Cll5aWhigTS1j6FifOvWQGiDwstTspSLe4EjwRCSABJNAaAhAqORaYdOhpYkklMzQE+wP+CUcCkkQ4UgRdhg5CN6GzgA72kAaNCHcZuonCPYHGPKKUlJROnTpBXZCoLxzrcUMxFPEhIEEh759kLS9FCUspOB70dRFC8ek+9lTACZSWlg4dOlRBQeHWrVuSkg287UdNTY1CobAHhXJzcyFM1Nb9+lJafT8qG1qZ6YiLbgMGURXsFxIQdAIUMvnsyxQOK0FD6kAaf/TloL2Bg/d9lSH7gggZuj+IQ4YdCCbkhwPBhAw/GEzIiEPBhHgcek7IyMPPCRl1+DlT/nwxqk5G//mCkDFHXhAy9sgLQsYdfUkImETIhGMvCZl4LOSrHA+ZWCeTjocQMvlECCFTToQS8uPJ0Pl/hXfoQIIOdvjvBhoJcmN3wv8tjkeiTICrz8GmTZsqKirYMVRWVoKSXYNpcSNg0En+t5E9oNd7H8dHZeJPM4GEqAnMqAnj89YQHRo8eLCUlNTdu3dlZGQavCqQa2dn9+TJE1YupB0dHVmHbZS49Cq9hsaA+KqlLq5M00aMsVokgASaJlBaVVNSFx1iLwqa/PLq0qrahNyy+M9fJe5zKSGxOaUcEpNdEpNdAvvo7BJCPn4qIeRDVgkhUVnFhLzPLCbkXWYxUzKK3tVJZEYRIW/Tiwh5k15ESERaISHhaYWEvE4tJORVasFXSSl4VScwP0tIaHIBISHJ+YS8TMpPzavIK6uGDrL3F9KgyS2tWnn13dpbUT4vUl4k5uWWVDEY+OQLsBE74coj+v3338vKytjZgIMESnZNg+nvvUvE09OTxLb16dOHdbqrqytbDmny5MmsLI5EO75LhMMSsT2cYKf7Q0/NWjpj6ZW3GHcWsY+BgDxvDSNPZN0GeCFSDUlijeyCggJIR0dHgz4uLg7SRMAHokPgDpWXl58+fRpcI1CC0GhfH453c3NjLeS9YsWKU6dOnTlzJiYmZvny5VDtggULoLa2kxoa/UJYGtQ/ExfdBgooSAAJtB8BRRlJJVnOJWdAo64ovXl0j4tzezPFq/fFOrng1Rvk7zm9CflrTi9Czs/uRci52b0I8ZnlQMjZWQ5fxdPhbJ2c8bQn5PRMe5BTM+wJOTnDnpAT0+0IOT7djpBj0+y+ie2xaUw5OtWWkCNTbQn580dbQg7/aANyaIoNIQen2BByYLI1yDL3bhqK0tBBDuSgUZWXehaXezEsfeO96Kmnwnpt87fe9GT80ZfeN9+feZ4SnPAlp7gKfSQObiJ5yIVH1KEDfBTAS2Hv/7t371RVVdk1DabhvqTBd4lA4aFDh2Z/2x48eAAalsydO/dbTvbx48dZevZEO75LhN0MMU/Dp2LbmJ6aSjLJX8q33I8Rcxqi1H2IDh0JSDrgnwDzZ9Av2EMaNPz3e8PDw23qNjADfBhIbtiwAdIQ/4H08OHDIQ3zJpA+duwYpCMiIsLCwqKiorp27ar1bWOtiJCUlJSXlwfFQCZNmrR//36IdVtbW8PcDYxCBgYGoG878f2Y87mkWk1B+oeeWm3XCtaMBJAAEmiSAI1On+VoxFEMNDQ6o5dRJ0djNaZ0VXOsE6euaiD9uqkR4txNnZD+JuqEuJioE+LaXYOQAd01voqpxoA6GWjamRA3s84g7uadCRlk3pmQwT00CRnSQ5OQoRaa30RrqAVThvXUIgRGUUKGW2oRMsJSG8TDSpuQkVbahIyy1gGBs+gMBnSwfpfLqmo3jDD/eYAxmGGkJk8mdSiurIGQ1KVXGZv+iZ5++lWf7f6Wvz8ee+TF/66/PxWcHBj/5VNRJdwYc1SFh8JOoAmPqGPHjuD5wI2viYkJJAhRVlYeNGjQxIkTm+z8994lAidKS0trftugWtCwRE5O7luOJrTF0rMn2vFdIuxmYFpFTmrvRCsSqQPMrzyJ/iz0QMS4A3Q6A0b5l0l5t95kkkiC8rw1BI3hDw+7+Pj4wFWCODO7EtIbN24Eff3ykGVoaAhZIKmpqUQxSIMsXLgQNNXV1REREXx4qQCxpsKPvfWlJJoYeME2FCSABJBA2xGQlZJY6Gq81K0bBEmgFdhDGjRyUpyBI8gVDflelzWUZEbb6KweYnpyhv2zVa7Rm4Y+WOJ8YLL14oFdh/To3EVdnkImlVbVvkkvuhKeAZO/M8+8ctzxtOfGx6P/fLH62rsTQUkQYsosrKDjKlNC/kFp4g8zzKGC7wG3FL///jtruTmYi33+/Pmff/7Zmr4HBARoaGiAowURodzcXPaqLly4oKam1qNHj1WrVpWWlrJnEWlq+71LhDAA9+wEYA5prnMX0Pzvxvvc0ipIoAg4gRoaPS2/HCa6zoekbv4n2uvca/e9gaYbHsEo/+PJsGOByV9KG37eurSqRsC7JrDmffxU/Dq1UIJMmtpbX1CMRDuQABIQYwLSkpT5Ll3C1w2K+NUd9pAGjWjzgA5CN6GzjXRZRpJirq0EYaWVg7sfn27/dCX4SEMeLXM+NMVmiVu3YRaaXTUUYCQvq66NzCi6FpG57UHsrLOv+/3xzGKj76jDz1defXcsMOlp7OeMAvSRhOzT1IRHNHPmTJiLffbsGUymQpqQKVOm9O3btzUdhdgRuD1Pnz7ds2fP69evBw4cCNO0RIVTp069dOkS+Evr16+/cePG2LFjCT37Pq/93iXCbgamWQRWDjYx11IqKKeuvvYe/GeWHhPtTqCqhpbwudQv+vOp4OT1tz/MOPPKZdcz0/WPXHYFwETXhjsfTz9P8YvJTcwto9bSYZQ3UpM36aygrtjw89aKMpLt3iMhNeD8S+YviIZaaHZWanixByHtF5qNBISDQCuszMrKmjZtWqdOneTk5KytrSGkTFRWVla2aNEiXV1dWVlZMzOzo0ePEnoh2kNECELWnRSkYQ9pIbK8xaZCN6GzzeqytATFVFPJw0p7xSCTo9Ps/Fa4QBzp8fL+f/5ou8y92/CeWvBHU5JCqqDS3mUW33iTueNh7GyfcOedz3r85utx6PmKK5FHAhLhrzBMRNIwjtTiK9f2JzbhEREGKCoqxsR8/ZXInTt3Ro8evXbtWgjUELkt2E+aNGn48OEWFhYeHh4PHz6Mj4+/f/8+UQ+EjNzd3SFr8uTJ169f9/Pze/PmDZHFsSeRSCwN3IWTSP8esvTSvH6XCKtmTLATgPHi4BRraQkyhB2IR4PYczHNHwJl1bUQiHgQlX00IGnNjfeTT4Q4bvc32/Bo0L4gr/PhW+7H/BWaFhT/JS2/AgZluFgwiA8y7zzX2WjzaIu/5vQK/mVA7Oahz1a5HvrRFr5QDT5vXUun86cvItZKUQX1dmQWdGqm49fn9yCNggSQgOATKCwsdHJykpSUhHuV6OhomMZVUVEhzF6+fPmjR4/+/vtvuEGC9OLFi+EGicjCvWgTAJ/KpLPicEutZe4mf061fbyc6SP5reh/dKrtikEmIyy1TDUVpSjkyhpaVFbxzbdZOx/FwV9hmIjs8duj4QeDl11+++ezxMcfc1LyyuHPMe9ZYY0tIsCVRzR//vz4+HioPzk5GZwZmCa5du3aL7/8AprWi5aWloGBQUJCQv2qbG1tYRiqn6XWTu8SqW8halgEumoorhtuBofbHsbG5TTwrCNkofCEALgrheVUiNfficw64Jew4mrkuKMv7bc8sfjNd/jB5wsvvPnjUezl1xmhyQWfiqsYjA6K0hIWOkowj7XQ1XjnOMvL8/qEervFbBoKg/jJGfbrhptP72Pg3E1dT1VOgvJ1QPje89Ywu8aTLohbJVdeZ1TX0iGOam/QUdz6jv1FAkJN4I8//tDT0zt79myvXr0MDQ3d3NyMjY2JHoWEhMycOdPV1RX08+bNs7KyCg8PJ7JY++rq6hK2jaXHhIgRkKSQ4S5oWE+tJW7dDv9o+2hZ/+hNQ/xXuhybZrdqsMlIK20zLSXwo6pq6B8/ldyO/LTLN27eXxEDdgfArOWwA8FLLr095J/w6ENO0peyWhrOPLbPp+PrDVDjjYM7BJFiKAOOkIuLy8WLF318fG7cuAGa1kt+fn5GRgb4RfWr+vjxY01NTf0sKSmpdnmXSH0L20sjmO3CjfWA7urUWvrSy2+rar6udyyYpgqLVeD85JZUvUopuBaesds3btHFNyMPP7f6/bHN5iej/3yx9HLkPr/4m2+yItIK88qo0ClVeSkbfZUxNjpL3brtm2R1c6FjxK/u7zcO/mexM8xj/TLUdKKDXp8unTSVZchkEpRvRLh53rqR0zGLRQCmACE6B4eejoYkUhPYoRgKEkACgkPg7t279vb2EyZM0NDQsLGxOXnyJMu2fv36QW5WVhYM1M+ePYM7pSFDhrByicT27duVv23gWRFK3IsDAZhhNFZXGGqhuWhgt4NTbB4udYaJyGerXE9Mt1s9pPtoa+0e2krSEmS4ZYrJLrn77tOeJ/EL/o5w2xNovsF36P4g+HMPM54Po7ITc0tr0EfiyyeGK4+IwWDQ656W8fPz++GHH8Aw+GLnfVvEFg6/J2VlZZF1GxRgvUsElP9hx6MAABAASURBVKtWrYLJldTU1ICAAA8PDzU1tTFjxkCZpKSkTZs2wSwLZD148ADGIBiAIGANWSAwN9OO7xIBA1AaJ0AikXaOt+okLxWbUwrzH40XxlwOAnDfnFlY8SIx70JY2vYHMfP/CocxEUbGXtv8Jx4PWX39/eFnif+8z36fWVxSVQvnairJ9DJSnWivC2Pr4R9t/lncDzyfN+sH3VrotG+S9fJBJmNsdG31O3ZSkIbrAuVbIHJSElISZKgB9pBuQQ08OUXYK3kam5tZWKkiJznSWlvY+4L2IwFxI5CcnHz06NFu3br5+vouWLBgyZIl58+fJyAcPHjQ3NxcV1cXZmmHDh165MgR8JGILNbe29u7+NsGk78sPSbEkACFTDJSkx/cQ/PnAV33T7a5v8Q5etPQwNWup2bY/2+o6VhbnZ46yrKSFCqNDjdR8Od+n1/8TxfeuO8NMt/waPC+wJ8vvNn3JP7+++z4z6XgR4khwLbuMlceEUyQbNmy5a+//goMDBw+nPkCEHBvOnfu3KRx4NuASwMCJVnvEqFQKFFRUaNGjTIxMZk5cybswTtSVFSEMjCs+Pv7wyxL9+7dYdwZPHiwn58flIcsEPCXWG7YpEmT9vP3XSJgAEqTBNQVpXdNsIRip+veawYJlPoEYCxLySt/Fpfr8yLl93sfZ/u8HrgnwGz9o35/PJt6KmzdrQ/Hg5J9P36GMbGyhkYmddBTlXXupja1t/66H8xgesl3Wf+YTUND17pdnd9353grGFtHWGpb6CgryeCyB/Vht7+G+GXdJAc9GUlK+1uDFgg2AbRO0AjAdLCtre22bdvgTmb+/Plz584FB4kwEjyi0NBQCBNFRETs2bNn4cKFcMdCZLH2+GNmFgpM1CcAPpJBJ3l3884/uRrvnWh9b3G/j78PCf5lwBlPe+9hpuPtdK10leWkKDU0RvznsvtR2Qf8E36++GbwPqaP5L438Ke/I/Y+jrv37lNsTkl1LT6YUx9w8zRceUTge7x582bRokXr1q3r2rUrtHD9+nVHR0dINC6urq6M/24+Pj6ysrIw15Kbm0ulUtPS0kADESeiHkiA05Wfn19dXZ2YmHjgwAH2VxVB4Kgd3yVCWIj7JgkMNO08vY8BFFt59V1hOfNRLkiLrVRSaXE5pY8/5pwMSl53K2r66TDnnU9N1z8csDtg1tnXG+9Fn32RCjGE5C/lMC0kRSF3UZcfaKoxy8lwo4f52VkOEGGP3Tws+JeBf83pvXVMz7n9u8D0UndNRVkpvLcWjs9UYm7p88Q8cGun9WZ+KYTDaLQSCSCBbwS0tLQgEPTtqIOZmVl6ejocVlZWrl27du/evR4eHpaWlnCDBBO1u3fvhiwULglgsfoEyGSSnqrcQNPO812Md0+wurOo34eNQ16sGQj3AzAlOtFe11pPRUFaopbOSMwte/gh5+DTxMWX3g7dH2y+wRemVuf/Fb7bN+5OZFb0pxL88UJ9vI1ruPKI4NsOUR0I/P72229Edbt27Tp37hyRxj0S4CCw9gczY3X53NLqNTfFaDFuGH4+ZBX/8/7Tn88Sf7n+buLxkD7bmEu9DdkfNO+viK0PYi6EpQcn5GUUVNIZHWQlKaaaikN6dJ7fv8u2MT0vePV+/r8BMZuHPl3pesbT4TePHp5ORgO6axipyUtJcPUl5bgEeCggBM6HMBfddjPrDH/kBMQkNAMJIAHuCTg5OcXFxbHKx8fHGxgwZzdq6jYy+d/xmUKhQECJVRITSIAnBMhkko6KLNwPwJTozvFWt392ito4OMR74LnZvX4dbjbZQc9WX0VRRoJGZ8DUqu/Hz4efJS69HPnDQfCRHsHc69zz4Tsfxd5+mwX3J1X4A+9GL8m/X+ZGi3FmysjISEo2+YgO51l4LCYEIIJxYLKNJIUEX86r4Rki1muIeuaXVb9JL7z1NnPfk/jlVyLHHHlhu/mJ5cbHIw49X3Tx7S7fuKvhma9SCnJKqqDvSjISlrrKHlbaiwZ03TXe8tqCvq/WukVvGvJoWf/j0+29fzD7sbe+U1c13Y5yFAglwAkookKgtKrmRkQm9GZmX1x0GzCgIAHhI7B8+fLQ0NBt27YlJiZevHjxxIkTP//8M3RDSUnJxcVl9erVAQEBKSkpPj4+58+fH1P3i2jIRUECbUeARCJpKcu6mKh7OXfZMc7y5kKn978NDlvr9tecXhtGmE/ppW9v0BFuPGDuNSWv/En05yMBScuuRML9idmGRy67nnmde73jYezNN5lRmcUVVObPktvOVOGqmSuPiEajQSy4V69empqaqmybcHUVreUnAQsd5VWDu0OLG+9Gw3cSEsIodDojp7gqNDn/6usMmGX5+cKbEYeCwfOx2+I39sjL5VfeHfBPuPU26216UUE58/lANQVpO4OOY211VgwyOTDZGuZyIjcMer9xyN1F/Q5NsVk1pPsEez0HQ1UNJRkSCdcc6yDyG7hD5VRaVw0Fp66dRL6z2EEkIJIEHBwcbt26denSJQsLi82bN+/fv3/q1KlETy9fvgy5cGhubr5jx46tW7cuWLCAyMI9EuAnARKJ1FlJxrmb+ux+RtvH9rz+k+O73wa/Wud2wav3Rg/zqb31exmqqshJMhgd0vIr/GJyjwUmrbj6zuPw8x6/+TrvfDrb5/X2BzHXIzLfZRSVV4uvj8SVR/T777/v3bt34sSJxcXFK1asGDt2LJlMZv9JDz8vPLYlLATmOndxNO5UWUNbdvltjcCvHVlLo2cUVAQnfPkrNG3r/ei558MH7ws0/+1Rn+3+k0+E/nLjPcyy3I/K/pBVUlo3Xmgry/Tt0gkC1v8banp0qu39Jf0+/D4k/Ff3Gz857p1ovcSt2yhrHWs9FRU5KWG5XmgnbwmAO008MjezrwH8ueJt5e1dG7aPBMSIwIgRI6KioqqqqmJiYubOncvqOcwRnz17Nisrq7KyMjY2Fu6O8JvOgoOJ9iUAH0UNRRmnrmqeTkZbx/S8uqDv2/WD4Bbl4tzem0b1mN7HoLeRaid5KfCRMgoqn8bmHg9KXnXt3ag/X4CP5LTjqefZV3AjdDU84216YWlVTfv2hW+tc+URXbhw4eTJk6tWrZKQkJgyZcqpU6c2bNgAcWS+WYkNCSMBMpm0Z6KVsqzku8zig/4NvIG3vTpVXUtLzC17Gvv5zPOU3+58gG/+gN0BpusfOe98Nv30q/W3P5wMToFAc/znsqoaOoVMMugk199EfUZfg1+Hm52aYe+3on/s5qEvvd0uzesDAeufXI2H9dTqoa2sIC3RXj3CdgWQwPPEvOS8cvhUjLHVFUDz0CQkgAS4I4ClkIAoEAAfSU1B2tFYbUZfw82jLa7M7xuxflDEr+6X5/WBQ5i5g0leKABdzSqqDIj7AjdCv1x/P+bIy54bHztu959x5tXmf6KvvE6PSCssEVEfiSuPKCcnp2fPnoBJQUEBwkSQgCmT+/fvQwIFCTRCQEtZdtsY5ifnz2eJr1MLGinZRlkV1NqY7JJHH7KPByZ534z68WQoTH6A8+O+N3C2T/imf6LPhaTBNz8lr7yWzpCSIHfTUHA305jTz2jzqB7nZvcKXO0Kzk/g6gHnZ/faNMrCy7mLu3nnrjDxIolLvbXRFROdaolFt8fb6YJTJDq9wp4gASSABJCAqBDopCDdp0snCBn9PsoCJnnDf3WHUNLV+X23jrHwdDR06tpJQ1Ea+vqpuCoo/svp5yn/uxE17uhLy42P+2zzn3467Pd7Hy+9Sg9PLSiuEIU4Elceka6ubnZ2NkDp2rXr48ePIfH69WtpaSYmSKMggUYIDLfUgptCOqPDssuRbTqvAF/I95lFd999OuSfAMHfCcdeOmz1M9/gO+xA8IK/32x/GAvf25dJ+TD5wWB0kJeimGsp/dBTc4GL8Y6xPS/N7fNyzcDYTUOfrHA5NdNh/Qjz6X0NXUzUDTrJS1K4+o40QgCzxJBAen7F07hc6DiEFmGPggSQABJAAkhA8Al0lJfqZaQ6tbfBxpE9Lnj1ebXO/d2GwdcX9N0+tudsJyPnbmqaSjLQi5ySquCEvLMvUmGuefyxEKtNj3tt9Zt6KnTj3Y8XwtJepRQUCuHLV7i62xszZoy/vz8gWLp06fr167t16zZjxozZs2eDBkXICLSHufC90leVA1dkw+0PrW+fwWB8Ka2OSCu4EZG593HckktvR/35wnrTY/hCjjz8Ag73PIm/HpH5OrUQikFzHeUkrfRURllrL3HrtmeC1Y2f+ob/6v7h9yEPljofmWq3Zpjp5F76fY07aavIknGpN+CFwgsCjz5md5ST6m+i3kVdgRf1YR1IAAkgASSABNqBgLKcpL2h6pRe+hs8zP+a0zt0rdv7jYNv/OT4x7ieXv2M4M+ctjLTR8otrX6RmO/zMnXdrQ8Tj4fYbH5iv8VvyonQDXc+/BWaFpqcn19W3Q7WN6dJrjyiHTt2rF27FqodP358cHDwTz/9dO3aNVCCBgUJNElAQVpi3yRrCpkUlVWSll9OraXDFwP2FU0t+0inMz4VVb5Myrv8Kn3Hw9if/o744UCwxW++EPwZdzRk5bV3B58mQlDoXUZRUV3EFsK7vQxVISS1arDJoSk2dxc5wdzG2w2D7/zsdGCyzYpBJuPsdO0MVNUUpEkkXOqtyesm/AXaoweV1Fr4bA+z0Hr+vwHbxli0hwnYJhJAAkgACSCBtiKgJCNpZ9BxkoP+ryPMz8/u9dLbLWrj4FsLHXeOt5zXv8uA7uo6KrLQdl5ZdUhy/vmQtPW3P0w+EWq3xc9u85NJx0N+vR11PiQVbu1g2prBYEDJ7wnx95TLO8bvVcK9niuPiL26Pn36rFixYuTIkexKTCOBxgnAl2fDCPOr8/tA9MZ+6xP4YsD+eGBy9bf3hdXQ6OAsBcZ/ge/J5n+ivc69dt8baLrhkeOOpz+eDFtzM+pYYNLDDznR2SXlVBqJ1AG+b05dO/3YW997mOmxaXaPljlHbxoC4d2rC/runmC1aGA3DyttS10VmNto3DDMFXACQUFBHh4e2traJBLp9u3bLGtv3rw5ZMgQNTU10EdGRrL0kDhx4oSrq6uSkhJkFRUVgaZB2bhxIxRgiaamZoPFmqWEz/OxwGT4bDvvfNZnu/+18EzQNKsGLIwEWkgAT0MCSAAJtBMBRRlJG/2OE+311v5gdnZWrxdrBn78fQjMSsP92HyXLm6mGnqqTB8JpsTDUgr+Dk3fcOcj3NrB7Lbt5icTj4WsvRXl8yLlRWJebkkVy0eCv57E39P6d4xt1MvGPKK7TW1tZBNWK5IEIHQD4dRDTxNLKpmr3cP+gH/CnwGJr1IKXHY9M13/yGVXwMwzr+B7cvp5il9MbmJuGcy1S5BJXdTkXburezoa/uZhfsbT3n+lS+zmofB9u+DVZ9uYnvNdjIdaaJpqKslJSYgkNzHvVHl5uZWV1eHDhzk4gN7JyanBSHVFRcXQoUOJsDb2evzuAAAQAElEQVTHWRyHPXr0yP62RUVFceQ29xBms44EJMGnGj7bcC7sIQ2aJmOhUBgFCSABJIAEuCWA5QSegLy0BMxKw42f9zCz054Owb8MhGnrfxb32zvR6idXY3ezzgad5EikDoUVNa9SCy6GpW+8Fz31VFivbf7Wm56MP/ryfWYR3B/C31D4Swp9hT2k2/rvaWMe0ehGtzFjxoCVKEiASwKSFPK5kFSOwuAjWegolVbV0ugMGUly986Kg807z3U22jLa4u85vYN/GQDOz9NVrj6zem0c2WOWk9FA087G6grSErjUGwdIkT0cNmzYli1bxo4dy9HD6dOnb9iwwd3dnUMPh8uWLVuzZg1EsyHduEhISGh+29TV1Rsv3GQuhUw++zKFoxhoJMiNDbMc5fEQCSABJIAEkIDoEYBpawsd5bG2uv8banpqpn3g6gExm4beX9Jv/yTrnwcYw72fkZo8mdShuLImOa+8q4YC3B9yQGjrv6eN/ammN7rRaDQOW3l4iFWJHoHSqpqSuugQe9dAU1ZV6+PpELbWDb4bvsv7n5hhv264+bQ+Bv26qempyklQGvuIsleFaSTQXAIJCQna2tpGRkaTJ09OTk5u8PTq6uoStq3BMoTye59w0BMFcI8EkAASQAJIAAkQBGQkKT20lUfb6KweYgr3fs9WuUZvGvpwqfPuCZbFlTUlDd0xtunfU7zdJK4L7tucgKKMpJIs54NtoFGRk7LUU+msJEMiielqB22OHhtoiEDv3r3Pnz/v6+t78uTJnJwcR0fH/Pz8+gW3b9+u/G3T09OrX4Cl+d4nHPSsMphAAkgACSABJIAEGiQAPpKZltJA086d5KXh/pCjDGja9O9pEx7RDz/8QLySFczaunUr62fKcOtgbm4OShQkwCUBGp0+y9GIozBoaul0DiUeIgE+EBg2bNi4ceN69uzp7u5+v+590+fOnavfrre3N4yBhGRkZNQvwNLgJ5yFopEEZiEBJIAEkAASaJxAu/w9bcIjggnU6uqvK4j/8ccfBQUFRB9qa2vj4uKINO6RADcEZKUkFroaL3XrBl4+lIc9pEEjJ8UZOIJcFCTATwLy8vLgGiUkJNRvVFpaWoltq1+ApcFPOAsFJpAAEujQoQNCQAJIoGUE2uXvaRMeEYNtpXD2dMt6iGeJOQFpScp8ly7h6wZF/OoOe0iDRsyZYPcFgQDM+8TExGhpabXSGPg8w6caPtv4CW8lSTwdCSABJIAEhIgAz03l/9/TJjwinvcQKxRzAhARkpIgd1KQhj2kxZwGdr9JAmVlZZF1G5RMSUmBZHp6OqQhXg3p6OhoSEO8GtI5OTmQBoEEHCYmJkI6KioK0lAY0iBubm6shbxXrVoVGBgIdYaFhY0fP76kpGTmzJlQppUCn2r4bOMnvJUY8XQkgASQABIQcwJ8/nvahEdEqttYlwSOWGlMiBkB7C4SaAcC4eHhNnUbtL1ixQpIbtiwAdJ3796F9PDhwyE9efJkSB87dgzSIJCAw7lz50K6f//+kIbCkAZJSkrKy8uDBEhmZuaUKVO6d+8+duxYKSmp0NBQAwMD0KMgASSABJAAEkAC4kagCY+IwWB4enrCHQNIVVXVggULIAEye/ZscSOF/UUCSID/BFxdXWEUYhcfHx8wA8YldiWkN27cCHoQSMAhu0Bh0IOkpqZCLiRALl++/OnTJyqVmpWVdePGjf8uFQP5KEgACSABJIAEkIC4EGjCI5o5c6aGhgax9uy0adO0tbWJNChnzJghXJDgDgkMLsENCSCBtiFAfMXgWyaqQnSwbeBhrUigvQgISrvE90tURw/oF9FBQcGNdiABkSNAfMXgu9YyacIjOtvo1rIm2+us0tJSaFpPT49w6nCPBJAAbwkQXzH4lomqEB3EMYS3HxusDQkQBIjvl6iOHtAvooM4gBCXu5322KwoEyC+YvBda5k04RG1rFLBPAsCXBkZGUVFRbAHC2FPvGME9wQBAIJYCBTse8TCToOVbhCLoqIifIREWHAMYX0AGkw0+KlosKT4KJFJg9e6QSw4gDTISnyUDX4qxKf73+spYmmQTINYWjmGiJxH9P3bMTKZrKurC96xkpISlII9CgcBxMIBhDhELAQHjn19LCK/8gqOIRyfgfqH9T8V9cuImwaZNHjF62PBAaRBUGKlrP+pEKvuf6+ziKVBMvWxtHIMESOPCNihIAGRIoCdQQJIAAkgASSABJAAEmg1AfSIWo0QK0ACSAAJIIG2JoD1IwEkgASQABJoMwLi6BFJS0v/9ttvsG8zqkJZMQBBLPWvHGKpzwQ0Yo5FzLsPH4AGBbHUx4JM6jMBjZhjabr7wEj8BLE0eM0RC9+wiKlHtHHjRviQNUhZbJUABLHUv/qIpT4T0Ig5FjHvPnwAGhTEUh8LMqnPBDRijkXMuw8fgAYFsYgplga73ZSyLT4t4ugRNcUZ85EAEkACSAAJIAEkgASQABIQFwLoEYnLlW7HfmLTSAAJIAEkgASQABJAAkhAYAmgRySwlwYNQwJIQPgIoMVIAAkgASSABJCA0BFAj0joLhkajASQABJAAkig/QmgBUgACSABkSGAHpHIXErsCBJAAkgACSABJIAEkADvCWCNIk8APSKRv8TYQSSABJAAEkACSAAJIAEkgAS+SwA9IhYaTCABJIAEkAASQAJIAAkgASQgdgTQIxK7S44dRgIdOiADJIAEkAASQAJIAAkgga8E0CP6CgL/QwJIAAkgAVEkgH1CAkgACSABJNAEAfSImgCE2UgACSABJIAEkAASEAYCaCMSQAItJIAeUQvB4WlIAAkgASSABJAAEkACSAAJtAcBHreJHhGPgWJ1SAAJIAEkgASQABJAAkgACQgRAfSIhOhiiZ+p2GMkgASQABJAAkgACSABJNDGBNAjamPAWD0SQAJIgBsCWAYJIAEkgASQABJoJwLoEbUTeGwWCSABJIAEkIB4EsBeIwEkgAQEjAB6RAJ2QdAcJIAEkAASQAJIAAkgAdEggL0QEgLoEQnJhUIzkQASQAJIAAkgASSABJAAEmgDAugR8QAqVoEEkAASQAJIAAkgASSABJCAkBJAj0hILxya3W4EUlNTSSRSuzXf3g1j+0gACbSGAA4graGH5yIBJIBjSBt9BtAjaiOwvKnW09OTRCItWLCAvbqFCxeCErIIJSTgEERSUrJz586DBg06c+YMnU4ncjn25eXl//vf/7p06SIjI6Ouru7q6vrPP/8QZQwNDffv30+kBWcfEBAwatQoLS0teXl5a2vrCxcusNsWGBhoZ2cHfYEeHTt2jD3rxo0b5ubm0tLSsL916xZ71pEjR4yMjOAsODc4OJiVxWAwNm7cqK2tLSsrC2Q+fvzIyuI+UVJSsm7dOlNTU6hfU1PT3d395s2bUDPUAIkhQ4aoqanBxYqMjAQNS06cOAEtKikpQVZRURFLjwkk0BoCxOCAA0iLBxChGEAKCgoWL17cvXt3OTk5fX39JUuWFBcXt+Zjg+ciARYBHENE6SaEdVnnz58PNxv1b/ngXmXYsGGQdfv2bVZh8UmgRyTo11pPT+/y5cuVlZWEoVVVVZcuXYI/e8QhsR86dGh2dnZqaurDhw8HDBiwdOnSESNG1NbWErnse7g3gg/64cOHY2NjHz16NG7cuPz8fPYCgpZ++fKlpaUluDfv37+fPXv2jBkz7t27RxiZkpLyww8/ODs7v337du3atXAfAMWIrJCQkEmTJk2fPv3du3ewnzhxYlhYGJF15cqVZcuWgdMCZ8G58OVPT08nsnbu3Ll3716A8/r1a3BmwLcsLS0lsrjcgzPj6Oh4/vx5b2/vN2/eBAUFgRm//PILcYMC7qiTk9OOHTvq11ZRUQEXEXpRPws1SKA1BHAAEfkB5FPdtnv37qioKB8fHxjY58yZ05rPDJ4rngS+12scQ0RmDCEuMdwEwh0RTP4Sh+x78JHAHWLXiFUaPSJBv9y2trbg/0B4gTAUEjA82djYEIfEHiYy4Q5eR0cHCsNd9Z07dx4+fAh/Golc9j24E1AAHAmICEGEBGYWZ86cCQUgQJGWlrZ8+XL4MoCABgS8kf79+0PABFoEfwNu6EEJAudu3rz5xx9/VFBQgC/VoUOHQEkIxFjAWrAH9HAKoWzNHqyFtsDNMDY2hgrBbWAFfCAoBG3BF9jMzMzLywv8JbgnINoCJfgz4JZArAb2bm5uoCGywOeB2wUoD2eBErp29OhRyIKpETgET2ns2LEWFhbnzp0DL+XixYuQxb2AteCXwlgDVCE2ZWJiMnfuXAgHASioBHyzDRs2QNQI0hwCTtqaNWv69OnDocdDJNBKAjAmwNcExg2iHkjAZx4HEKAhMgMIjFcwGeTh4QGD5MCBA7du3QrjfIMzYtBrFCTQXAI4hojMTQhc+qysrEWLFl24cEFSUhIO2QVmkOEG6cyZM+xKUU032C/0iBrEIljKWbNmnT17lrAJPqxw60+kv7eHP4pWVlZw61O/ADhODx48qB/6gMK6urqbNm2CWBMInAjTjUOGDAH3AIIzEFd5/vw5fItAT8iuXbtg1gTCIOBvgB/15MkT0F+/fn3fvn3Hjx9PSEiASYiePXuCkkOCg4PBPWhQtm3bxlG4/iEEW1RVVQk9BIIGDx5MpGEP1oaHh9fU1EC6fhZ4d6CnUqkRERHsZ0GayIKIU05ODhxCMRBw6lxcXIgsOORG6HT65cuXp06dCt4ge3norISEBLsG00iAnwRwAGHRFocBBPqopKSEYw7romOi9QRwDGExhO+X8N6EwF0KzMyuXr26R48erB4RCZgCnjJlyuHDh+EukdCI4R49IiG46PAJBocEgg8Qxnnx4sW0adOaNBpiI1C+frETJ07AXX6nTp0cHBzAk4HaiDLwDadQKIqKivBlAAEl+DwQBYLYRbdu3SBEc/DgwfPnz1dVVUEWiJOTE8Q0IAYCUabx48eDIwTK9PR0OBdiIDAn3atXLwiPgJJD7O3tIWbSoCz478+lOE6EQ/C4Xr9+DUMzpEHAgencuTMkCIE0TIvm5eXBYU5ODhxCghBIQ2FIQy6NRoNDSBMCaSKL2MMhoYc9pAklpLkRqLywsBDIc1MYyyABvhHAAYRALQ4DSH5+Psxnz58/n+gy7pEATwjgGEJgFPYx5I8//oC5kiVLlhDdYd/DDSHc6Y0aNYpdKW5p9IiE4IqrqakNHz783LlzECmCBBw2aTSDwWA9/MZeuH///snJyf7+/uPGjfv48aOzszP8+WQvwEpDLMXHxwfiG4RABAZmFyCQQhTo27cvkYA9pGNiYiAxYcKEysrKLl26gC9069Yt8E9AySGysrJdv7OBV8ZRmP0wICDA09Pz5MmT7HMb7H2ELkN5loaVACVksR+yp7nPgnoaF6gKCrBXDocoSKDtCTTRAowYMG7gACLyA0hJSQlcaHNz899++62JzwRmI4HmEMAxBGgJ+00I3NQdOHDARQrswAAAEABJREFUx8en/l3K3bt3nz59un//fuimOAt6RMJx9WfPng2fY7ingQQ3FoOLYmRk1GBJSUlJcIQgwvP48eNNmzaBR0SlUuuXBP8HJhpZwZx3794lJCQYGxvXLwka4gump6cXFxf3559/gtuzcOFC8L6IZ9igAEta9tRcYGCgh4fH3r17Z8yYwaoK4lHsMZzc3FyY/IDwFxSonwUBH9DDsA6hMI6ziCw4BQo0mAV6bkRdXb1jx45AnpvCWAYJ8JMAjBs4gIj2AFJaWjp06FCYwILZKBjk+fnp4m9b2Fr7EMAxRNhvQuDuC26T9PX14U4JJC0tbeXKlYaGhvB5AncoKSlJRUUF9CCggUlzV1dXSIiVoEckHJcb/tSB3wICsZomLYYPd1RUFHygmywJs4kQySGehZOSkqLRaKxTbG1tIYjEEc6BMkSB0NBQIgF7SLMeFQNfaOTIkQcPHgwICAgJCQEzoAC7tOCpOagKJj537Ngxb9489qogNkX8folQgoMHlRO3AvWzIBwMxcB+Ozs79rMgTWSBAwlOERxCMRBADW4YkQWH3AiZTJ40adKFCxc+ffrEXr68vBwgs2swjQT4TAAHENEeQCA6NHjwYBjfYK5XRkaGz58ubE4cCOAY0h5jSCAPb0KmT5/+/v171jS3trb26tWrfX194dMLU+TsWaDZt2/f2W8/X4dDMRH0iITjQkNkA4IPIJCob3F1dTUEN7Kyst68ebNt27ZRo0aNGDGCPZzCOgWc/uPHj0PwNDU19cGDB2vXrh0wYICSkhIUgKmCoKAgqCSv7qc4//vf/8Cl+fnnn+H7A9Eh+EO7ePFiKEbIixcvdu7cGR8fDxGha9euLV26FPQwCX369OkPHz4kJyf/9ddf4B0ZGBiAnl1AyeFlsQ4bfGqOcIeWLFkCDh70EaSgoICocMGCBTDJsWLFCsBy5swZaHrVqlVEFtjz+PHjP/74IzY2FvZ+fn7Lli0jsqD8qVOnoDyctXz58vT0dKgHsiDMBWWAHsywQhc8PT3l5OR+/PFHyOJe4HQIlPXu3fv8+fPR0dHADRqytrYuKyuDSsBygAl6SEMwDdI5OTmQBoEEHCYmJkIa3EhIQ2FIoyABnhCAcQM+8CCQqF8hDiDwPRXeAQSiQ+AOwcwLdAFcIxhMQNint+pfcdQggeYSgKEDBhAQSNQ/F8cQwR9DOnXqZMG2wfQxzAJ3794driYk2HIsQAOhJJgmhoRYCXpE7Xq5m9M4+C0gDZ7x6NEjLS0tcGlgFufZs2cQorlz506DwxaEmM6dOwd/Ps3MzMDDgcOrV68SdW7atAncJGNjY3V1ddBYWlpCkATu6Z2dnW1sbNavXw9NgJ4QCLaCWwX6zZs379mzB+oBPYRcT5486eTkBOf6+/vfu3cPvoGgb42Al1VRUbF9+3ZonZCxY8cSFcLXFZw6cJnA5QAzoNfgNRFZjo6Oly9fhhkOsARquHLlCngpRBaEcfbv3w+dhbPAA4QaWG7bL7/8Ak7RwoULIdYEniH4VIqKisRZXO47duwIEbNp06Zt2bIF4AC6S5cu7dq1S1lZGWoArxKUw4cPh/TkyZMhfezYMUiDQAIO586dC+n+/ftDGgpDGgUJ8IoAjB4gDdaGA4hQDyAwFIeFhUVFRcHsEjFIwj4jI6PBa41KJNBiAjCAgDR4Oo4hQjGGNHjtUMkigB4RC4UgJuBu/vbt2/UtAyVkEXpIMOq2mpqa3NzcJ0+ezJo1i0xu+Mp6e3u/fPkyPz+/srIyKSnpwIEDLKelT58+7969q6qqgsqImh0cHMArgAlICHFAFgSUCD3sYVgENwNmJWEyEgIyoAEZPXo0+APFxcVQHuJLbm5uoGylsHoHVhECLhCrThcXFwiLwexUSkoKEephZY0fPz42NpZKpcKcFsuJInLB5wHfD86COwlwPwgl7CFMtHHjxuzsbIAA3iBMmYCyuQLOD/hv8fHxUD/AgcsBWKBmqAfiTkQXWHtoDvQgkGApiQQUBr1ICXaG7wTg6wNjRf1mQQlZhB4SxEcOBxACCLEXogEEIv/EFWTfwwQZ0RHcI4HWEIDxAYaL+jWAErIIPSSIzx6OIQQQYi+AYwhhGLGHuyCYAibSHHu4mnDfwqEUh8OG75vFoefYRySABJAAEkACbUIAK0UCSAAJIAGhIoAekVBdLjQWCSABJIAEkAASQAKCQwAtQQIiQQA9IpG4jPztRCPBVv4a0j6tqaio4Os+2gc9tioSBHAAwQFEJD7I2Il2I4BjCI4hbfHh48ojaouGsU4kIKQEwCPauHGjkBqPZiMBJNC+BHAAaV/+2DoSEHYCOIa00RVEj6iNwGK1wkoA7UYCSAAJIAEkgASQABIQKwJi5BExGIySkhLYi9UFxs4iASTAKwIweojYGMIrMlgPEkACTRLAAaRJRFgACbQjATHyiEpLS5WVlWHfjrixaSSABISXAIweOIYI7+VDy8WcQLt3HweQdr8EaAASaISAGHlEjVDALCSABJAAEkACSAAJIAEkIAIEsAstIIAeUQug4SlIAAkgASSABJAAEkACSAAJiAiBtvKIqqurRYSQgHYDzUICSAAJIAEkgARaSCArK2vatGmdOnWSk5OztraOiIggKvr8+bOnp6e2tjbohw4dmpCQQOg59j4+PqT/blVVVRxl8BAJIAEhIsBLj8jX1xfGEWNjY0lJSRhKFBUVXVxctm7d+unTJyEigqYiASQgYATQHCSABJAALwkUFhY6OTnBvcrDhw+jo6P37NmjoqICDTAYjNGjRycnJ9+5c+ft27cGBgbu7u7l5eWQVV+UlJSy2TYZGZn6ZVCDBJCAsBDgjUd0+/bt7t27z5w5k0wmr169+ubNm+AdnT59GjwiPz+/Ll26LFiw4MuXL8IChW92VlJrqbX0/LJq2FdQa/nWLjaEBJCACBDAAUQELmK9LqCCHwT++OMPPT29s2fP9urVy9DQ0M3NDSZzoWGICIWGhh49etTBwQHuao4cOVJWVnbp0iXIqi8QItJk2+oXAE11dXUJ2waaxgW/1I3zwVwk0HYEeOMRbdu2bffu3RALOnPmDDg/Hh4eMK0yceLETZs2PXv2LCkpCaZSzp8/33bdEMaaq2toxwKT7bc+sdviB/vjgcmgEcaOoM1IAAnwnwAMFziA8B87tigaBO7evWtvbz9hwgQNDQ0bG5uTJ08S/QIHBhKsaA+FQpGSknr+/Dko6ws4SxBE0tXVHTFiBASU6hcAzfbt25W/beCDgaYREb8vdSMwMAsJ8JsAbzyiV69egRcEAaIGzdfR0dm5c+fKlSsbzBVPJcwDHQlIOuCfUFLJDA3BHtKgwUiReH4esNdIoFkEcABpFi4sjAQ4CCQnJ0MgqFu3br6+vjCNu2TJEmLS1tTUFJwcb2/vwsJCKpW6Y8eOnJyc7OxsjtPhEEr6+PiAZwURJPCgnJycIL4Eeg6Bqoq/bRkZGRy57If4pWangWkkwH8CvPGIvms3ZnyHAIVMPvsyhSMTNBJkvCIcVPAQCSABTgIUHEA4keAxEmgGATqdbmtru23bNggQzZ8/f+7cueAgwfmSkpI3btyIj49XVVWVk5MLCAgYNmwYRIogi0P69Okzbdo0KysrZ2fnq1evmpiYHDp0iKMMHEpLSyuxbaD5nuCX+ntkUI8E+EOA9/ffmZmZR44cWbNmzQq2rfHOBAUFQYhJW1ubRCLdvn2bVdjT0xM0LIEBiMhKTU1lKVmJa9euEblCsS+tqoG4EIepoAE9hxIPhYYAGooE+EUABgoYLjhaAw3oOZR4iASQQH0CWlpa5ubmLL2ZmVl6ejpxaGdnFxkZWVRUBKGhR48e5efnGxkZEVnf25PJZAcHhwZjRN87pb4evrzwFebQgwb0HEo8RAJIoC0I8Ngj8vf3J36MuGfPnmfPnp09e/bMmTMwuDRuenl5OUy0HD58uH6xoUOHwqhEyIMHD4gCenp6hIbY//777/Ly8jCRQ+QKxV5RRlJJVoLDVNCAnkOJh0gACSABDgIwUMBwwaEEDeg5lG11iPUiAWEm4OTkFBcXx+oBBIUMDAxYh5BQVlZWV1cHJyc8PHzUqFGgaUQYDAbc54CX1UiZJrPgywtfYY5ioAE9hxIPkQASaAsCPPaIvL29V65c+eHDBxkZGQg9Z2RkuLi4TJgwoXHTwZnZsmXL2LFj6xeDiDNrKReIYhMFIITNUkLi1q1bkyZNUlBQIHLZ99XNXOaF/dw2TWcVVc7sa8jRxCxHo1o6nUOJh0gACSABDgI0Oh2GCw4lDCnR2SW1NBxDOMDgIRLgJLB8+fLQ0NBt27YlJiZevHjxxIkTP//8M1Ho2rVrAQEByXULcA8aNGj06NGDBw8msmbMmAE3OUQapmJ9fX2hGPhCc+bMgf2CBQuIrJbtG/xSw9cc7wpaxhPPQgLNJcBjjygmJmbmzJlghISERGVlJXgpmzZt+uOPP0DTMoGBSUNDw8TEZO7cubm5ufUriYiIgJEIxqP6WaBp1jIvUJ4/kl9WveJqpKej4RK3rjADBI3CHtILXY3lpDgDR5CLggSQABJgJyArJQHDxZKB/xlAYEhZefXdgr/fVNXQ2AtjGgkgAQ4CDg4Ot27dunTpkoWFxebNm/fv3z916lSiTHZ29vTp001NTZcsWQIJKEPoYZ+eng65kAApKiqaN2+emZnZ4MGDs7KygoKCevXqBfoWC/GlXurWDe4HoBLYQxq+5nhXADRQ+EdAjFvisUckLy8PYRngqa2tnZSUBAmQvLw82LdAIHZ04cKFp0+f7tmz5/Xr1wMHDiQqZ6/q9OnTMCQ5OjqyK1lpmM75tspLMQSsWPr2TWx9EPM2vWjNjffz+xuHrxsUttYt1NvNTr+jBIXHl6N9u4mtIwEk0HYEJClkSz0VGDrC17mHrxu0wMU4Lqc0o7DCL+bzjDOvSqpq2q5prBkJiACBESNGREVFVVVVwUwuTLmyegSOENwtUKnUtLQ0cJakpKRYWTBF6+PjQxzu27cPCsA9CczVQrCob9++hL41e2lJynyXLvB1fv6/AfDVntJLDzStqRDPRQJIgHsCPL4F79Onz4sXL6D54cOHr1y5cuvWrbNnzwYlaFogkyZNgnpgCsfDw+Phw4fx8fH3799nrwfCUBDv/l6ACEpKc73MCxTmj7xMyrv5JotE6vDTgK7y0hJSEmRlWckRB4Nnnn39+GMOH2zAJpAAEhABAsl55V7nwt32BKrIScIwAhPJjl3Vzs/upSgt8SqlYPLx0C+l1SLQTewCEhArAvBFhq/zqeCUfn88++d9A6t+ixUN7CwS4CcBHntEe/fu7d27N3Rg48aNgwYNunLlioGBAYRxQNNK0dLSgqoSEhLY67l+/XpFRcWMGTPYlYKcrq6l/XrrA1g4tbe+rX5HSIDISFKGW2pD4tRzzvW4QYmCBJBAiwmI8Ikfsoqhd9oqsuyx5T5dOl2a10dNQRQIMq0AABAASURBVCo6u2TCsZcZBRVQBgUJIAHhIqCuKF1QTo3MKBIus9FaJCDUBHjpEZWWliYlJWVmZubl5cnJyR05cuT9+/c3b94ET6b1jPLz8yGQDX4Re1Xga40cOVJdXZ1dKcjpowFJMLMLg93qIabsdk7vayBFIUekFb5JL2TXYxoJIAEk0CCB95lMj6injjJHroWO8rUFjjoqsqn5FeOPvYzLKeUogIeiSgD7JTIErHRVoC/vMtEjAgwoSIBPBHjmEYHzY2pqOnTo0BEjRnTt2tXPz4/7HpSVlUXWbXBKSkoKJNPT00G5atWqkJCQ1NTUgIAADw8PNTW1MWPGQBlCEhMTg4KCvLy8iEPB3yd9KTvyjPnbqg0jzJVlJdkN1lCUGWXNDBOdDsYwETsYTCMBJNAwASJGVN8jgtJGavI3fnI06azwuaR64vEQmGoBJQoSQALCQsBSjznTkVFQmV9WLSw289lObA4J8JwAzzyiNWvW6OvrBwcHh4eHu7i4LFq0iHtb4RSbug1OWbFiBSQ3bNhAoVCioqJGjRplYmIyc+ZM2IN3pKioCGUIOXPmjI6OzuBvy2ISSoHdMxiMX299oNLoLibqIyy16ts5x5n5DriHH7Iz8EGX+nRQgwSQABsBGp3x4VNdjEiXeefElvM1qaksc3V+Xxt9leLKmmmnwgLjv3zNwP+QABIQeAJKMpLG6vJgJhEKhgQKEkACbU2AZx4ReDWHDh1ydHS0tbUFXyUhIQGCPFxa7+rqCg4Du/j4+MjKyvr6+ubm5hJLvvj4+Ojp6bFXuG3btoyMDDKZZ11gr5zn6ZtvskKS86UlyJtHWZBIpPr1m2oqOXdTozM6nH2RWj8XNUgACSABFoGUvLIKKk1WkmKs3sB72IhiKnJSF7x69zdRr6yheZ17fffdJ0KPeySABASfgJUe88G5t/hTIsG/VGihqBDgmTuRl5cHMSICS6dOneTk5L58wVlJgkeHwnLq1gcxcLDUvZt+JzlINChezl1Af+V1OkzrQgJFbAhgR5FA8whE1S2r0ENbiUJuYHqFVZeclMSpGfYQlK6hMZZefvtXaBorCxNIAAkIMgHrOo/oHXpEgnyR0DbRIsAzj4hEIpWWlpbUbcXFxeyHoBMtaM3uzfaHMQXl1O6dFefW+TzfO79/NzWTzgrlVBo4Rd8rg3okgASQAPEsTU/dhh+ZY+cjJUE+MNlmeh8DBqPD+tsfDvonQDSevQDf09ggEkACTRNgLa6AX9imYWEJJMALAjzziOBLa2Ji0rFuU1VVLSsrs7GxgSMVFRXY88JUYa0jLDn/angmWL9trIUkpTHg4EZ69WOGic6+SK2h0eEUFCSABLghEBQU5OHhoa2tDV+i27dvs065efPmkCFD1NTUQB8ZGcnSQ8LV1RWULJk8eTIohUUaWVahfhcoZNKmUT2WuHWDrL1P4n+/F02nMyCNggSQQBsTaHn1ZlpKUhRyUUVNegGuod9yjHgmEuCeQGM36NzXAiWfPXv2lG179uzr4bNnzAQUEE+prqWtvRUFfZ/SS9/OQBUSjcsoG201Bens4qoHUfhqtsZRYS4S+JdAeXm5lZXV4cOH/1XVpUDv5OS0Y8eOuiPO3dy5c7O/bcePH+fMFtRj5rIKWSVgnSUXMSIoBgKO34pBJr95mEPa52XqiquROOcCKFCQgMASgOiuubYSmIdvJQIIKMJAQOht5JlH5NLoJvScWtqBE4HJSV/K1RSk1gz9zwuIvleftARlZl8DyD0ZnAxhN0igIAEk0CSBYcOGbdmyZezYsRwlp0+fvmHDBnd3dw49cSgnJ6f5bVNWbvgJtOrq6hK2jTixfffJX8oqa2hyUhQjte8uq9CghbOcjPZPspYgk25Hfpr/V0QlldZgMVQiASQgCASInxKhRyQI1wJtEAcCPPOI2GF9/Pjx/bcN0uxZYpVOySs/9CwRurx+hLmy3H9eQATK78nUPgYykuQPWSVhKQXfK9M+emwVCYgWgQsXLqipqfXo0WPVqlWlpaUNdm779u3gLBHCsdxlg+X5oCR+RGShrUxpdFmFBi0ZbaNzYoadtAT5aWzu9NNhuIhLg5RQiQQEgYBV3VuJcHEFQbgWaIM4EOCZRxQcHOzg4EAg69Onj42NjXXdZmlp2ay3tRI1iMCewWCsv/2BWkt37qY20or59lUuO6UqLzXOVhcKn8K3tQIFFCTQNgSmTp166dKlgICA9evX37hxgzO+9K1Rb2/v4m9bRkbGN3V7/k8sNGeh03BQq0nLBpp2/turt6KMRHha4aTjIbklVU2eggWQABLgPwFrvY7Q6IdPJTX4u2IAgYIE2pgAzzyiI0eOTJ8+nWXts2fPUlJSkpOTly5devToUZZefBJ3Ij89T8yT+v4LiBpBMbsf822t/rGfk7+UNVIMs5AAEmgxgblz57q7u1tYWEyePPn69eswcfPmzZv6tUlLSyuxbfUL8F9DeETc/4iovoUOhqpX5/dVV5SOzSkdfywkPR9/ul0fkjhpsK8CScCwk5ySjATMq8blNBzBFkir0SgkIKwEeOYRvX79ulevXiwMurq6BgYGhoaG4CaFhISw9GKSKKqgbrkfDZ1dMrCroZo8JJolxuoK7mYaDEaHMy9SmnUiFkYCSKAFBGxtbSUlJRMSElpwLp9PqaXRoz8xl1VocYyIMNhMS+n6gr76qnLpBRXjjr2MyWbWSWThHgnwhEAltRbu5vPLqmFfQa3lSZ1iVQmJRML3tPL+imONSOA7BHjmEWVlZWlpaRGtnDt3TlNTk0irqqrm5+cTafHZ//EoNq+M2lVDYV5/45b1ek7dMtzXIzILy6ktqwHPQgJIgEsCHz9+rKmpYY1gXJ7VLsWSvpRX1tDkpShdmj/VwmGwQSd5cIpMNRW/lFZPPB4Snoo/XOQghIctJ1BdQzsWmGy/9YndFj/YHw9MBk3LqxPXM63xPa3ieumx3/wnwDOPSFFRMSXla0Bj7NixcnJyRGdAqaSkRKT5s2/3Vl6nFlx6xfy9wdbRFlISLSTcp4uqhY5SVQ39Qlhau/cIDUACAk6grKwssm4DO2HMgWR6ejqkCwoKIB0dzQzYxsXFQTonJwf0SUlJmzZtCg8PT01NffDgwYQJE2xsbJycnCBLwIV4ZK6HjjK5+csq1O+ahpLMlXl97Q06llbVTjsd9iw2t34Z1CCB5hKA6NCRgKQD/gkllczQEOwhDRqMFDWX5Nf3tGYUNfdELI8EkEBzCbTwfr1+M7179z5//nx9vY+PD2TV14uqhlpLX1f3AqJJ9nq9u3RqcTchXE68rfVcSFp1LS6S22KQIn4ido8gAL4NuDQgcLhixQpIbNiwAdJ3796F9PDhwyE9efJkSB87dgzSUlJS/v7+Q4YM6d69+5IlSwYPHuzn50ehUCBLwCUqswgstGzpsgpwLocoy0n+Naf3gO7qMP8y93z47bdZHAXwEAk0lwCFTD778usMKetc0EiQeXbLwapWtBPEU3OJX8pKq2pEu6fYOyTQ7gR4NjzBXci5c+dWr16dm/t1lhESK1eu/PvvvyGr3fvJNwNOBifHfy5TlZdaM8y0lY0Ot9TSVJL5Ulp9N/JTK6vC05GAaBNwdXVl/Hfz8fGBLnt6ev5Xzdi4cSPo9fT0AgMD8/Pzq6urExMTDxw4oKra9AuU4cR2FyJG1JPrd7NyY7CsFOXEDPvR1tq1dMayK5E+gvrzRW76gmXalwB83eJySvLLqyEuxGEJaPC2noNJk4fqitI6KrIMRoeozOImC2MBJIAEWkOAZx7RgAEDDh06dPDgQS0trY4dO8LtBSQOHz68f//+gQMHtsZEITo3Pb/ioD/zx9m/DjfrKC/VSsslKWRPJ0Oo5PTzFPgzAwkUJIAExJkAc1mFuiUQevIuRkTwhNFm70RrT0fmgLPxXvTeJ/E45hBkcM8lgbT88gN+CW57AqecDFOWlVSSleA4ETSKMty+l4/jXDE8ZHXZuu6nRJF1wWGWEhNIAAnwnADPPCKwbOHChTDbunv37ilTpkyePBkScLho0SLIEgeBG4hf73yorqU7GncaY6PDky5P6aUvL0WJzSkNTsjjSYVYCRJAAsJLIPFLWVUNXUFawrBTs1ewbLLXZDLpNw/zFYNMoCTM7Gy485FOZ0AaBQk0QiC/rPp8SOqYIy9cdgXs84tPziuvoNbG5ZTOcmS+Q4L9RNDU0unsGkxzQwDf08oNJSwj1AQExHheekTQJT09veXLlx+p2yABh6AUE/nnfXZQ/BcpCnnLaAsSicSTXsNM20QHPajq1HPOZ7JBiYIEkIBYEXhf9+SMhY4SeC9t0XESibTErdvmUT1IpA5/haYtvRJJrcVb2LYgLfR1VlJpdyKzZvu87r3NH5znt+lFZFIH525qeyZYhf86yEa/40JX46Vu3SAuBF2FPaRBIyfFGTiCXJTGCXxbXAGfmmucE+YigdYS4I1H1OQbh8rLyz9+/NhaYwX4/OLKmt/vMdez+nlA1y7qCjy0dLaTEfylAV8LZt14WC1/q8LWkAAS4AGBD1nMuyKePzLHYdn0voYHJttIkEn33n2aez4cpvw5CuCh2BKopdHhj9GKK5F2W54svRz5NDa3ls6AD+T6Eeaha93+mtN7nJ0uxDCBj7QkZb5Ll/B1gyJ+dYc9pEEDepTmEuipqwz3ADklVTnFVc09F8sjASTAPQHeeEQzZswYNGjQ1atXy8rKONqOjo5eu3Zt165d37x5w5ElSoc7mS8gqu6iLr/AtQtv+6WnKjfUgvlyp9PPk3lbM9aGBJBAGxBowyqJGFFPXZU2bKOu6pFW2qdm2stKUgLjv0w7FVZUgW9Fq+MirjsGg/E+s+j3ex/7bH8648yrm2+zKqg0PVXZJQO7+q1wube435x+RhqKMhx4ICIkJUHupCANe0hz5OIhlwQAnUlnRSgcmVEEexQkgATaiABvPCJwe0aNGrVhw4aOHTv26NEDvCMPD49+/fqpqanZ2dmlpaU9efJk+vTpbdSHdq82Iq3w4ivmy0+2ju4pLcH7BXyJt7XefvsptxSniNr9aqMBSKB9CNTQ6DFts6xCg/1x7a7xt1dvZVnJN+lFk46Hfi7BwadBTiKuTMsvP+jPXC9h5OEXZ1+k5pVVd5STnN7H4MZPjkGrB6wY3L2rBi+fiRBxmi3tHrG4wjtcXKGlAPE8JMANAd54RJKSkosWLYqNjQ0LC5s3b56FhYWOjo6rq+vx48ezsrIuXLgAGm6sEcYycJuy7lYUg9FhnK1uX+OWv4Cokb7bGXS01Veh0uh/h+DbWhvhhFlIQJQJJHwuq66lK8pIGKjK8aefMPJcnd9XQ1E67nPpuKMvU/PK+dMuttLuBIj1EsbWrZew9wlzvQQZSbKHlfbpmfav1rlvHm0Bnw0SiTc/l233zgq+AcRbid5hjKidLxU2L+IEeOMRsSDZ2touXbp03759x44d27Jly7hx41Smqb+RAAAQAElEQVSF5C0frC40N3HmeUpsTilMm60bbtbcc7kv7+XMfBjvr9C0SiqN+7OwJBJAAiJDgPgRkYW2chstq9AgqO6aihANMOwkl1lYOf7YS8KGBkuiUgQIwN8X9vUSIDxIZlsv4dAUGzezzpIUHt82iAC3tu4CESN6n1mMyz+2NWqsX5wJ4NDGdvWbn8woqNjnFw/nrf3BTLXVLyCCer4nQ3po6qnKFlbU3Hyb+b0yqEcCSECECbzPYv6KwFJXmc991FOVu7bA0UxLKa+MOuVEaFhyPp8NwObamgBrvQT7/66X8Otws1Dv/6yX0NaWYP0NEuimoSArSYEYcXIe50+1GyyPSiSABFpAAD2iFkD7egqDwdhw50NVDb23kep4O92v2rb5j0ImzXJkvt7hdHAKzhK1DWMxqxW7K2wEorJKwGQLHX57RNCouqL0lfl9ehmpllbXzjjzyi/6MyhRhJ0A/Al7n1m06V40a72EcioNpt4Wf1svwcu5i4YS53oJwt5rlv1ZWVnTpk3r1KmTnJyctbV1REQEkfX582dPT09tbW3QDx06NCEhgdDX39+4ccPc3FxaWhr2t27dql+AVxoJCrln3Rf/bTpzWoRX1WI9SAAJsBNAj4idRvPSDz/kPIv7IkkhbR3Tk0Rq8yeqJzroKcpIJOeVP4vLbZ6hWBoJIAEhJ1DzbVkF/seICHJKMpLnZ/dyN9OorqXP/zviRoRQBauJPuD+G4H0/Armegl7A0cefnHmRQrbegl9g1YPWDm4u8ivl1BYWOjk5CQpKfnw4cPo6Og9e/aoqKgAHvASR48enZycfOfOnbdv3xoYGLi7u5eXN/ALupCQkEmTJk2fPv3du3ewnzhxYlhYGNTQRmKlx5wKwcUV2ggvVosEgAB6RAChJVJSVbPxLvMNSz+5GPPnj4eCtMSPvfTB1pPBuAw3YEBBAmJEIP5zKbWWriQjoa/Kp2UV6sOVkaQcnWY31laHRmesvPbuFA5E9RkJtia/rPp8SOrYIy/673rGXC/hS7m0BHmEpdbpmfZha4n1ElRJpDaf3RMESH/88Yeent7Zs2d79eplaGjo5uZmbGwMhkFEKDQ09OjRow4ODt27dz9y5EhZWdmlS5cgi0P2798/aNAgb29vU1NT2EMNoOEow8PDb4srMN9I1kS1mI0EkECLCLSVR1RVJeJLte7xjcstrTbsJLdwQNcWkW/JSZ5OhhJkUmhyAf6+uSX48BwkILQEojKZd0I9dZVJJFI7dkKSQt493mq2E/MJ3i33Y3b7xsGcejvag01zQ6CSSrv77tNsn9e9t/lvuPPxTXoRa72EiPWDDv9o62bWWUqirW4GuLGQ/2Xu3r1rb28/YcIEDQ0NGxubkydPEjZUV1dDQkbm67OCFApFSkrq+fPnoOQQiBENHjyYpRwyZMjLly9Zh6wEVFjCtrH0zU0QiyvEZMNkLK6u1Fx4WF50CfC0ZzweBOl0+ubNm3V0dBQUFCDuDKauX7/+9OnTkBAlicwoOh/KXAh765ieMG/Kt65pKcvCfB40h7OzAAEFCYgPgagspkfULj8i4oBMJpPWjzBbPaQ76A8/S1x3+wOEjCCNImgEvq6XcDXSfsuTJZfePo3NraUzeuoo43oJcKXg/gQCQd26dfP19V2wYMGSJUvOnz8Pegj4GBgYQMynsLCQSqXu2LEjJycnOzsbsjgE9J07d2YpIQ0a1iErsX37duVvG0SlWPrmJnRUZNUUpOAKfvzE/D1hc0/H8kgACTRJgMce0ZYtW3x8fHbu3AnTKkTbPXv2PHXqFJEWjT38mVl7k/kCojE2Ok5d1fjcKa+6Zbj/eZ+dXVzJ56bbpTlsFAkgASBAeESWOsyfOsBh+wqJRPp5QNetYyxIpA4Xw9Lhbru6Fuet2/ea/Ns6g8GAiOKme9F9dzydcebVzTdZ5VSabkdZMVkv4V8QjaZg9tbW1nbbtm0QIJo/f/7cuXPBQYIzJCUlb9y4ER8fr6qqKicnFxAQMGzYMIgUQVZ9IZH+DdgCdhLp30NWYXCuir9tGRkZLH1zEyQSyUqX+fXHtxI1Fx2WRwJcEuCxRwSzLCdOnJg6dSprBLG0tIyNjeXSGqEo5vMyNTq7RFlWsk1fQPQ9FDBJ3KeLKkwUgRnfK4N6JIAEhJHA92ym1tJjs0shFyb4YS8gMrW3weEptpIU0v2obK9z4eXVtQJimNiawVovwePw8zMvUr6UVneUk5zWR//GT32DfxkgDuslcH/ptbS0zM3NWeXNzMzS09OJQzs7u8jIyKKiIggNPXr0KD8/38iI+Zgokcvaa2pqsgeFcnNzIUzEymUlpKWlldg2lr4FCSu9Oo8os6gF5+IpSAAJNEmAxx5RVlZW167/+V0NzMTU1NQ0aYewFMgqqtzzmPkCIu9hpmoK0u1itlc/5ttaYWq2DG9B2uUCYKNIgL8EmMsq0OgwC6OnKsvflptobbil1hlPBzkpSnBC3o+nwgrLqU2cgNltQKCgnPpXQ+slnJrBXC9hy+iedgaCuF5CG5BoRpVOTk5xcXGsE+Lj4w0MDFiHkFBWVlZXV09ISAgPDx81ahRoOKRv375PnjxhKR8/fuzo6Mg6bIsE8VMijBG1BVusEwkAAR57RD169AgODoZ6WXLt2jWISrMOhToBYfHf7nyorKE5GHacaK/XXn0ZaKrRRU2+tKr2WnjLQ/DtZTy2iwSQQHMJEI/MQYCIRGrgsZzm1sbb8s7d1C949VaRk4QbtQnHQ/BpXt7ibaS2yrr1Eub4vO611W/9t/US+nVV2z3BKvxX98M/2rqbi916CY3g4shavnx5aGjotm3bEhMTL168eOLEiZ9//pkoAzctAQEBycnMBbgHDRo0evRo1goKM2bM8Pb2JootXboUvKA//vgjNjYW9n5+fsuWLSOy2mhPrLyfml9RVIFTD23EuK2qxXqFggCPPaLffvtt0aJFMDpAaOjmzZtz586FEWfDhg1CwaJJI30/fvaLyZWkkLaN6Ukmt9utCTQ9ux8ziH/mRQr+prnJq4YFkICwE3j/baE5weyIjX7Ha/P7airJJOaWjT8akvylTDDtFA2rYMwPTviy4tt6Cf6xzPUSLHSUiPUS/vbqPd5OV1FGUjQ623a9cHBwuHXr1qVLlywsLDZv3rx///6pU6cSzWVnZ0+fPt3U1HTJkiWQgDKEHvbp6emQCwkQiAhdvnz57NmzlpaWPj4+V65c6d27N+jbTlTkpIzU5KH+yIwi2KMgASTAWwI89og8PDxgXHjw4AGJRAJHKCYm5t69ezDLwluj26W2supa4gVE8/p36dZZ8b828PtonK1uRznJjILKxx9z+N02tocEkAB/CRCr7UOMiL/NNqM1GBKv/9S3i5p8VlHlhGMhUXUuXDPOx6JNEWB8Wy+hz3b/6af/XS9h0YCufiv6/7PY2cu5i4bS1zWjm6oM85kERowYERUVVVVVBTcqMHvLVNX9A0coIyODSqWmpaWBs8RaJgoyIXbk4+MDCULGjx8PASIoCTWMHTuWULbp3kq37j2tGcyVJ9u0IawcCYghAR57REBwyJAhgYGBZWVlFRUVz58/Z4WbIUuoZc/juJySKn1VucUDu7V7R2SlKNP6MB96xre1tvu1ED8DsMd8JVBdS4vNYa63K8geERCBSZqrC/pCsCK/nDrlZGhIUj4oUVpPID2/4pB/gtveQNZ6CSp16yVcX8BcL2HVkO5dNdp5hq71fcQauCSAiytwCQqLIYEWEOC9R9QCIwT/FJjyPPcyFezcMtqCny8ggha/J9P7GkhRyG/SiyLSCr9XBvVIAAkIO4H4nLIaGgNugnU7CtayCvXBqilIX5rbp08XVYiozzz7ylcUItj1e8knDbFewrijL/vverbnSXzyl3JpCfIIS61TM+xfrXXfMrqnvSGul8CnayE4zVjr1S03l1EEMUPBsQotQQKiQYDHHhGZTKY0tAk1rFoa3fvWezqjw0gr7f4m6gLSFw1FmVHW2mDM6efJsEdBAkhAJAm8zyqCfkGAiERqt98uggFciqKMpM+sXoPNO1Nr6T/9HXEVV3/hEty3YhzrJcCEF5nUoR+ul/CNj5j/b6alJEkhQRg2s7AtXkgo5nSx++JOgMce0a1bt25+265cubJmzRotLa0TJ04INebzIWkfskqUZCR+HWEmUB3xcmYuw/3oQ05GQYVAGYbGIAEkwCsCgv8jIo6eQhT9yFTbCXa6MIv0y/X3J4KSOArgYX0CjayXEOLthusl1Ccmnhr4coFTBH2PxMUVgAIKEmg5gQbO5LFHNIptGz9+/NatW3fu3Hn37t0GWhYSVXZx5Z7HzLcW/G+YKYRlBMrq7pqKELOC244zL1IEyjA0BgkgAV4RIBaaIxbe5VWdbV2PBIW8c7zlvP7MKZttD2J3PIzFh3waZA5YojKLN/8T3ch6CZ1xvYQG2Ymr0kr364Nz4goA+40E2ooAjz2i+mb27t3bz8+vvl5YNBvvfiyn0mz1VaY46AugzV51y3BffZ1RXCk6r8HlDWesRZwIBAUFeXh4aGtrk0ik27dvs7oOEeshQ4aoqamBPjIykqVnJeCWdNiwYZDLfhYrt90TVTW0+M+lYIaFDnONKUgIiwDStT+YrRlmCgYfC0xacyOqlkaHNApBgFgvwb1uvYTTz1O+lFaryElO7a2P6yUQfHD/PQK4uML3yKAeCbSSQNt6RJWVlYcOHdLV1W2lle11+pPoz74fP0uQSdvG9iSTBfEhfuduat07K4LPdvlVentRwnaRQLsTKC8vt7KyOnz4MIcloHdyctqxYweHnnW4f/9+uHdnHQpaIi6ntIbGUJWX0lFpdFkFQbP7mz0LXIx3wOBJ6nAlPGPRxbfg4H3LEdP/meslhKax1ktIqlsvYbil1sm69RK2jsH1EsT0g8F9t4nFFaKyinGKgXtoWBIJcEOAxx5Rx44dVb9tkFZUVDxz5syuXbu4MUXQypRX1/525wNY5eXcxVRTCRICKHAzN8eZ+bZWn5epNTgFK4BXCE3iCwGI82zZsqX+K0GmT5++YcMGd3f3Bq149+7d3r17YYxqMJdQVldXl7BthJJve7jvgbYgQATfdEgIo0zupX9kqq0UhfzoY85sn9dl1bXC2ItW2lxJpd1792mOz+teW/3W3/4QkVZIInXo11Vt13jL8F/d//zRdpB5ZykJHv85bqXNgnu6eFvWRU1eUVqiqoYeVxc9Fm8Y2HskwEsCPB6C97FtBw8e/Oeff9LS0kaOHNm4yd974sXT05PEtvXp04e9npCQkIEDB8rLy6uoqLi6ukI8ij239el9T+I/FVfpdpRd6tb+LyBqpDujrLXVFKSzi6seRGU3UgyzkAASYCdQUVExZcoUCCtpamqy6znS27dvV/626enpceS29WFU3atOLYXtkTkOLEMttHxmOchLUV4m5f94MjS/rJqjgKgeEuslrLz6zn7Lk8WX3OHzjQAAEABJREFU3vrH5tbSGT20lX4dbhZat17CBHs9RRlJUe0+9qstCJDJJEs95jO07/A9rW3BV9DqRHv4SIDHHhH4MDO/bTA7O3ToUIgUNdmd8u888QInQg3Z37YHDx6AhhBwhyBr8ODBr169ev369aJFi8hkXvYlJrvkbN0LiDaPtpCVohCNCuZeWoIys68B2HYyOJnBYEACBQkggSYJLF++3NHRcdSoUY2X9Pb2Lv62ZWRkNF6Y57msGBHPa+ZzhY5d1S7N66MqL/U+s3jC8ZCsIlFeOxjG4Q9ZzPUS+m73n3761Y03meVUGkyu/TzA+Mny/veXOHs5d8H1Evj8CRSl5nBxBVG6mtgXwSHAGy/ifVNb4x3+3hMvcJa0tDTM4BKiqqoKGkLgbmbJkiVr1qzp0aNHt27dxo8fDyWJrNbsK6m11Fp6Xlm1YSf5o1NtZ/czGtBdozUVNnkuTwpM7WMgI0n+kFUSllLAkwqxEiQg2gTu3r379OnT/fv3N9lNGFiU2LYmy/OwQNW3ZRWEa6G57xGw1FW5Or+vtrJM8pfy8UdfJuYyV4z4XmEh1WcUVBzyT3DfGzji0PPTz1Ny/7tewuohpt06Kwpp19BswSFgrVe33FxmkeCYhJYgAREgwBuPyNra2sbGxvo7m42NTYtJBQQEaGhomJiYzJ07Nzc3l6gHEmFhYaCHKd7OnTu7uLg8f/6cyOLYN+s3ANU1tGOByfZbn9hv8eu93Q9mZ1cP6c5RoWAewszrOFvm8hWngvFtrYJ5idAqJgHB+QfuUFJSkoqKikTdBoaNGzfO1dUVEoIjsTmltXRGJ3kpLWUZwbGqNZZ01VC4/pOjsbp8dnHVhGMh7zJE5JausJz6V916Cc47n+15Eo/rJbTmQ4LnNkmA8IjiP5eWi+Wv8prkgwWQQMsI8MYjSklJSU5OTvnOlpzcwtt0iB1duHAB7l327Nnz+vXrgQMHgocD/SQq3LhxI7hJjx49srW1dXNzS0hIgCwO4f43ABAdOhKQdMA/oaSS+cNf2B96mngsIKmCyjzkqFYAD+fULcPtF5Ob/KVMAM1Dk5CAQBGA8DIEtiO/bWDbvn37zp49CwnBkai6OWChXlahPkxtFdlrCxytdJULK2qmnAx9kZhXv4ywaCqpzPUSvM69dmBbL8Gpa6dddesl4HoJwnIdhc5ODSUZmCWhMzrAvK3QGY8GIwGBJcAbj8igqa1l/Z80adLw4cMtLCw8PDwePnwYHx9///59qIpOZ77XYv78+bNmzYIAFNzKdO/evcEFo7y9vb/9BKC48d8AUMjksy8533MKGgkybxCB2W0qXdQV3M2YD/idfs7ZizZtFytHAoJAoKysjPBuwBiYmYF0ejpzPfqCggJIR0dHgz4uLg7SOTk5kNbU1ISBhSWg0dfXNzJiLtsIaQER4nZHNB6ZY0cKMe0Lc/uA51BBpc06+/qhsC0JQ6Mznifkrbz6DhyhxZfewjwUhPJ6aCut+8EsZI3bBa8+uF4C++XGdFsQELSfErVFH7FOJMBnAm1yuw/3HxC6ucu2tb5XWlpa4HYRgSBIQ4Xm5uawJ8TMzIy4ASIOWXvufwNQWlUDcSHWiUQCNKAn0oK/93LuAkZej8gsKKdCAgUJiA+B8PBwmBwBgS6vWLECEhs2bIA0DEKQhokVSE+ePBnSx44dg7RQyPu6heYshHyhuQZRK0hLnPF0GNpDk0qj/3zxzSVheJ0asV7Cln+i+273n3Y67MabzLLqWh0VWdZ6CXP7d9EUlecbG7xqqBQcAvieVsG5FmiJyBDg0iPitr/JyclWVlYw8wq3IKPrtjF1G7fnf79cfn4+BHkIX8jQ0FBbWxtmfFnFIXwE/hLrsAUJRRlJJVkJjhNBA3oOpcAe9jZS7amjXF1LvxCaJrBGomFIoC0IuLq6wg0ru/j4+EBDnp6e7EpIb9y4EfQcAnoYrjiU7XtYVUNLyGU+ASt6MSICrLQE5c+ptlN66dEZHbxvRh0JSISrQGQJ2j6joOLw0wRivYRTz5nrJSjLSv7YW//agr7BvwzA9RIE7XqJgz3WxOIKuAC3OFxs7CO/CPDYI1q6dKmRkdHnz5/l5OQ+fvwYFBRkb28fEBDQeHcafOIFlKtWrQoJCUlNTYUaPDw81NTUwL2Cqkgk0urVqw8ePHj9+vXExMT169fHxsbOmTMHslosNDp9liPnMzOgqa17Qq/F1fLzRMDiVfe21nMhaXA7xc+mRast7A0SaH8C0dklNDpDTUFKU0lEllWoz5RCJm0b0/MnV2PI2vkobtuDGIFyioj1EsYffem889nux9/WS+ipdXKG/et17mC5g6EqmUwC41GQAJ8J9NRVJpE6ZBVV5pZW8blpbA4JiCoBHntE4MBs2rRJXV2dXLf169dv+/btS5YsaRxfg0+8UCiUqKioUaNGmZiYzJw5E/ZQuaLi16VLly1b5u3tvXz5cghJ+fv7P3nyxNiY+We18YYayZWVkljoarzUrRvEhaAY7CENGjkpzsAR5Aqs/NBTS0tZJq+s+u67TwJrJBqGBJBAkwQ+ZBVDmZ46cN/Tpvfc0Eh7ColE+t9Q03U/mIERJ4NTVl9/X0tj/kwUDttLYDrpn/efvL6tlxCeVkgidXDq2mnneMvXv7pDXGuQeWcpCR7/6WyvzmK7QkpAQVqim4YCGP8ugzlQQAIFCSCBVhLg8bBOo9EUFJjfUojnfPrEvCk3MDBgf7ytQXMbfOJFVlbW19c3NzeXSqWmpaX5+Pjo6emxn75mzZqMjIzy8vKXL1+C68We1bK0tCRlvkuX8HWDIn51hz2kQdOyqtrrLEkK2dPREFo/HZwiULOtYBIKEkAC3BMgfkQEHhH3pwhvybn9u+wab0khk65HZP504Q34JPzvC0Tknifkrbr2zn6L36KLX9dLMNdSAm8tpG69hIn2ekoykvw3DFvkHQGRqgkXVxCpy4mdEQACPPaILCws3r9/D/3q3bv3zp07X7x4ASGjLl2Yv/gHpeALRIRg8q+TgjTsIS34Bte3cHIvfXkpStzn0uAEIV7Wtn6/UIMExIrA1xiRLvNVjOLQ8Qn2eken2sLA+yT688wzr0qqavjTa5g5AtSs9RLAJWNfL+HBUmfw1jSVRfbBRf5AxlbagoC1PnNweFe3Rn9b1I91CjkBNL/ZBHjsEf3666/0uh/ebNmyBQI7zs7ODx48OHjwYLPtwhNaSkBZVnKiAzOYdjK4ha+BamnLeB4SQAK8IVBJpcV/LoW6xCRGBD0FGdxD89ysXgrSEmEpBVNOhOaVVYOy7YRYL2HQvqARh57jegltxxlrbiMCrBgRnc5ooyawWiQgVgR45hFZW1sfPny4V69eY8eOBYIQF4qOjs7Ly8vNzR04cCBoUHhM4PvVzXYyIpM6QIwoLod5U/X9gpiDBJCAIBKIzi6Bmxx1RenOStKCaF+b2dTXuNPleX06yUt9/FQy4VhIZmEFz5sqLKf+HZrGWi8hMbcMAlPDe2qdmG6H6yXwnDZW2HYEumsqSkuQS6pqU/LL264VrBkJiA8BnnlEvXv3hgCRtrb2jz/+6O/vTxBUVVUlkUT5Z8FENwVtr6cqN9RCE6w6hWEioIAiAgTErAtRdU/CQICIRBK78dNCR/nagr46KrIpeeXjj4bE18XKWn/9q2poxHoJvbb5/Xr7A7FegqMxc72E8Lr1EiBCBa5R6xvCGpAAfwhIUsjwZYG23mUUwR4FCSCBVhLgmUd0/PjxnJycEydOwH7w4MGGhoabNm1q8K2prbQYT+eGAPG21juRn3BpTm5wYRkkIFAEorJKwB7wiGAvhtJFXeH6T327aSjklFRNPB7yNr2wxRDqr5dQQ2OYaymt/cE0ZI3bxbl9BHG9hBb3Fk8UMwKsB+fErN/YXSTQJgR45hGBdTIyMtOnT3/69GliYiIkTp8+3aVLlyFDhly9ehVyUfhJwFa/o62+CpVG/ysE39bKT/DYFhLgAYGoLOakr9h6REBQS1n26vy+1noqRRU1U0+FBcV/ASX38r31Eha6Gj9e3v/BUud5/Y1xvQTueWJJwSRALK4QmSnMC3ALJlm0SiwJ8NIjYgE0MjLavHlzamrq5cuXw8PDp0yZwsrCBN8IzHVmLvH3d2haJZXGt0axISSABFpJoIJam5hbBpX01FWGvdhKR3mpC169nbupVVBpc869/uc983UOTdL43noJ4F8F/zLgl6GmJp2/vtSuyaqwABIQcALWdWtRxnwqqa7Fv/ICfq3QPCEg0CYeEfT72bNnM2fO9PT0pNFoc+fOBQ0KnwkM7qGppypbWFFz400mn5vG5pAAEmgxgehPzGUVNJjLKoj7os/y0hKnZtoPt9SqoTEWX3p7NzKrklpLraXnl1XDvoJay4Lc4HoJP/TUPDHd7tU6t21jevYyUiWTxe5HWSw+mBBJAvAnvqOcJJVGj8kuFckOYqeQAD8J8NgjSk9P37RpU5cuXdzc3NLS0o4cOZKdnX3s2DF+dgnbIghQyKTZTkaQPvM8BVfnBA58EGwCCbSeQFQW8xkYS/EOELEwSktQDk62mdpbv4uaglNXtaOBSfZbn9ht8YP98cDkqhpaQFyu17lwzvUSxlmG/+p+ZKodTAxBDazaMIEERIkAiUSy0qt7KxEuriBK1xX70k4EeOYRXbx4cdCgQeALHT9+fNKkSfHx8YGBgTNmzJCVlW2nrmGzHSba6ynKSCTnlT+NzUUcSAAJCAWBqLpfBRCrSAmywXyzDSZ3toy2OPyjjc/L1IP+iSWVzNAQ7A/4J/z5LBGCRX4xn2s41ktw0FOSkeSbhdgQEmgvAri4QnuRx3ZFjwDPPCJPT08FBYXbt29nZGRs3769a9euogdL6HokLy3xY299MBvf1goQUJCAUBDAGFH9ywRz4cbqCudCUjmyQNOvm9rKQSa4XgIHGTxskkBWVta0adM6deokJydnbW0dERFBnFJWVrZo0SJdXV2YzzUzMzt69GiHDh2ILPa9j48PfCzZpaqqir0Af9LfFlco4k9z2AoSEGECPPOIMjMzb926NWLECDKZZ3WKMHe+dc3T0VCCTApLKSAmnvnWLjaEBJBACwiUV9cmfmEuq4AxIg56pVU1EBfiUIKmkkpb7NYN10vgIIOHjRMoLCx0cnKSlJR8+PBhdHT0nj17VFRUiFOWL1/+6NGjv//+OyYmBtKLFy++c+cOkcWxV1JSymbbZGTa4Yd/RIwo+Ut5cUUNh3l4iARaRkBsz+KZ96KhoSG2EAW541rKsiMstcDCU8+TYY+CBJCAIBOIzi5hMDpoKsloKLbD3ZUgk1GUkVSSleCwEDSg51DiIRJoksAff/yhp6d39uzZXr16GRoaurm5GRsbE2eFhITMnDnT1dUV9PPmzbOysgoPDyeyOPYQINJk2zhy+XOoKi+lryoHbb2vW7IfEihIAAm0jADPPKKWNY9n8YEA8bbW+++zPxVV1jWHO+S9EiUAABAASURBVCSABASUwHv8EdF3rgyNTp/lyFwqhj0fNLV0OrsG00iAGwJ37961t7efMGECTOba2NicPHmSdVa/fv0gNysri8FgPHv2LD4+fsiQIaxc9kRZWZmBgYGuru6IESPevn3LnsVKV1dXl7BtLD0PE7i4Ag9hYlXiTAA9ItG/+hY6yn26qNbSGedecj6FL/qdxx6KOwEh6/8HXGjuO1dMVkpioavxUrduEBeCIrCHNGjkpDgDR5CLggQaJ5CcnHz06NFu3br5+vouWLBgyZIl58+fJ045ePCgubk5+DlSUlJDhw49cuQI+EhEFvve1NTUx8cHfKdLly7JyMg4OTklJCSwFyDS27dvV/62QVSKUPJ2b1233FxkBnONSt7WjLUhAbEigB6RWFxu4m2tF1+ll1Uzl2kSiz5jJ5GAEBJ4n1kEVvfUEet3swKBBkVakjLfpUv4ukERv7rDHtKgabCkuCqx39wSoNPptra227ZtgwDR/Pnz586dCw4ScTJ4RKGhoeDqRERE7NmzZ+HChX5+fkQW+75Pnz7Tpk2zsrJydna+evWqiYnJoUOH2AsQaW9v7+JvW0ZGBqHk7d5ajzlcRGYUMRgM3taMtSEBsSLAY4+oS5cu+fn57ASLiopAya7BNP8JDOiu0UVdvrSq9urrNhmR+d8jbBEJiB4BmLBIziuHfkFcF/Yo9QlAREhKgtxJQRr2kK5fADVIgBsCWlpaEAhilTQzM0tPT4fDysrKtWvX7t2718PDw9LSctGiRZMmTdq9ezdkNSJkMtnBwaHBGJG0tLQS29ZIJS3O6qGtTCGT8sqqPxW3w2J3LTa71SdiBUiAxwR47BGlpqbSaDR2G6urq7Oystg1mOY/ATKZNKcf8xH8My9Samn42D3/rwC2iASaJvAxqxgmebWUZdQVpZsujSWQABJoKQEnJ6e4uDjW2fHx8QYGBnBYU7eRyf/eGlEoFAgoQVYjAsGZyMhI8LIaKdN2WTKSFFNNRaj/XQYzwgwJFCSABFpA4N+vfQtOZj8FQswgoPH19YUEIbdu3dq8ebOhoSHomy14Ak8JjLXR7SgnmVlY+Tj6M08rxsqQABLgDQHiTUT4yBxvaGItSOD7BJYvXx4aGrpt27bExMSLFy+eOHHi559/huIQznFxcVm9enVAQEBKSoqPj8/58+fHjBkDWSAzZszw9vaGBMjvv/8OdzvJycngC82ZMwf2CxYsAH27CC6u0C7YsVERI8Azj2h03UYikWbOnFmXZO4mT5785MmTPXv2iBg1YeyOrBRleh/mHBi+rVUQLx/ahAQ6dECPCD8FSIA/BBwcHGDG9tKlSxYWFjBvu3///qlTpxJNX758GXLh0NzcfMeOHVu3bmW5Ounp6dnZ2USxoqKiefPmmZmZDR48OCsrKygoqFevXkQW//ffFlco4n/T2CISEBkCPPOIIKwMoq+vn5ubCwlCqqurITA9YsQIkeEl1B2Z3tdQikJ+m14UkVYo1B1B45GASBL46hHpMn8nLZId/Nop/A8JCAABuDOJioqqqqqKiYmZO3cuyyJNTc2zZ8+Ck1NZWRkbG7tixQqY6iVyIXDk4+NDpPft25eWlgY3OXDPA8Givn37Evp22RMeEQwgNDourtAuVwAbFQUCPPOICBgQZVZTUyPSuBc0AuqK0qNttMGqU8H4tlbAgIIEBIhAaVVN8hfmsgr41JwAXRU0BQm0kgBfTjdWV5CXolRQaQm5pXxpEBtBAiJIgMceERDy9/dfu3atl5fXbLYN9CiCQMDLuQuY4fsxJz2/AhIoSEA0CAQFBXl4eGhra8Ns7u3bt1mdunnz5pAhQ2CaBvSRkZEsPSTmz59vbGwsKyurrq4+atQomAwGZTvKx08l0LqOimwnBVxWAUigIAEkwC0BCpnUsy62jIsrcIsMy7UFASGvk8ce0e+//z548GBwivLy8grZNiGnJDrmm3RW7G+iDnH1My9SRKdX2BOxJ1BeXm5lZXX48GEOEqB3cnLasWMHhx4O7ezszp49GxMT4+vry2AwYOCi0f6zTiaU4adEZRZDcxY6SrBHQQJIAAk0i4C1XkcoH4nvaQUKKEigRQR47BEdO3bMx8cnLCwMpmlvsW0tsg1PahMCc52Zy3BfDc8orqxpbgNYHgkIJoFhw4Zt2bJl7NixHOZNnz59w4YN7u7uHHo4nDdvXv/+/Q0NDW1tbeHcjIyM1NRU0HNIdXV1CdvGkcvDw6gspkdkqavCwzqxKiSABMSEAPGeVowRicnlxm62BQEee0RUKtXR0bEtDMU6eUWgX1c1U03FCirt0ivmC+l4VS3WgwSElADEkSBYZGRkpKenx94FIr19+3blb1uDBYhird8THpGFDi6r0HqWWAMSEDsCxALccZ9LK6ntGesWO+7YYREiwGOPyMvL6+LFiyLERwS7QiJ9fVurz4vUGnxbqwheYZ51qZJaS62l55dVw76CWsuzegWmoiNHjijUbY8ePXry5ImUlFR907y9vYu/bRkZGfUL8ERTUlWTkofLKvCEJVbSEgJ4jrAT0FSS0VCUptEZHz4xo83C3h20HwnwnwCPPaKqqqq9e/e6uLgsXrx4BdvG/45hi40QGGmtra4onVNSdf/911crNFIYs8STQHUN7Vhgsv3WJ3Zb/GB/PDAZNCKGYurUqW/fvg0MDOzWrdvEiRNh+KrfQWlpaSW2rX4Bnmg+1D0yp6MiqyrfgFfGkyawEiSABESYAIlEIsJE+OBck1cZCyCBBgnw2CN6//69tbU1mUz+8OED3GoQEhkZ2WDbqGwvAtISlJl9DaD1k8HJDAa+vgBIoPyHAESHjgQkHfBPKKlkhoZgD2nQiFikSFlZGXyh/v37X79+PTY29tatW/+hwMcDwiOyrFstio/NYlNIAAmIDgFrPeavECMzikSnS9gTJMBHAjz2iJ41tD19+pSPPerQoQO21jSBqb0NZCTJHz+VhCYXNF0aS4gZAQqZfPYl52qEoJEg83jEEByuMDVQXV3dXva8/7rQHP6IqL2uALaLBISeAOERvctEj0joLyV2oF0IiOz9TbvQFKJGO8pLjbfTBYPxba0AQZilTWwvraqBuBBH1aABPYdSQA7LysogFg0C9qSkpEAiPZ25cEhBQQGko6OjQR8XFwfpnJwcSCcnJ2/fvj0iIgKKhYSETJw4UVZW9ocffoCsdhGMEbULdmwUCYgSAeKVRBkFlfll7Ta5I0o8sS/iRoD3HtHr169/+eWXyZMnj2XbxA2rUPR3tpMRidTBPzY36UuZUBiMRvKHQG5plZy0hJKsBEdzoFGUkeRQCshheHi4Td0G9qxYsQKSGzZsgPTdu3chPXz4cEjDoATpY8eOQVpGRiY4OBhcoK5du4I7JC8v//LlSw0NDcjivxRX1qTWvTHZQhtjRI3jx1wkgAS+S0BJRtJYXR6yMUwEEFCQQHMJ8Ngjunz5spOTE8zI3rp1q6amBhJPnz5VVsY/8829Lvwo30Vdwc20M7R0+jnn81GgRBFDArU0OsQMB+4OfJ7wZWZfQw4CsxyNaul0DqWAHLq6ujL+u/n4+IBtnp6e/1UzNm7cCHptbe0HDx58/vyZSqVmZGRcuHChe/fuoG8X+Vi3rIKeqixEbtvFAGwUCSABwSPQEous9TrCaZEZuNwcYEBBAs0jwGOPaNu2bfv27fvnn3+kpKQOHDgQExMD86/6+vrNMwpL84vAXGcjaOpGRGZBORUSKOJMIDy1YMSh51vux5RV19599+knV+Olbt0gLgRMYA/pha7GclKcgSPIRWklgfd1HlFPfBNRKzni6UhA7Ange1rF/iMgpAAEwmwee0RJSUnEAyrS0tLl5eUkEmn58uUnTpwQiL6iEfUI9DJShfuw6lr636Fp9TJRIS4EwB/+5fq78cdCYnNKVeQkd4zteWCSDTg/8126hK8bFPGrO+whLS1JERci/O0n8W7WnjrMdaL42zK2hgSQgEgR+LoAd2YRxMZFqmPYGSTQ9gR47BGpqqqWlpaC2To6Oh8+fIBEUVFRRUUFJFAEkAC4rF51YaLzIalVNW35omsB7Dya1KEDnc64GJY+cE/A1fBM4DHZQe/pStfJvfTJZBIcglMkJUHupCANe0iDBqUtCETVLTQHcxNtUTnWiQSQgPgQMNVUkqKQiypq0vLxvkt8Ljv2lDcEeOwROTs7P3nyBEybOHHi0qVL586dO2XKFDc3N9CgCCaBH3pqaSnL5JVR70Z+EkwL0ao2IvAhq3js0Zdrb0XBn08zLaUbPznuGGeJbwjlAe3mVFFcUZNewLx3QY+oOdiwLBJAAg0QgNkrc20lyMDFFQACChJoFgEee0SHDx+ePHkyWODt7b1q1arPnz+PHTv29OnToEERTAKSFPIsJ+Zv6E89x7e1CuYl4r1VxZU1v935MPLw88iMIgVpid88zO8tcrIzYP4kl/eNYY2NEiAemdNXlVOWE9B1/Bo1HzPFngACEDAC1nrM529hbBcwu9AcJCDoBHjsEamqqmpra0OnyWTyL7/8cvfu3b1793bsiHdagERwZZKDvrwUJf5zWVBCnuBaiZbxggCDwbj9NsttT+C5kDQ6o8NIK+2nK11mORlJUHg8FPDCWLGog/CIiBeJiEWHsZNIAAm0JQHCI3qXUdSWjYhr3dhvkSbA49sgCoWSm5vLTiw/Px+U7BpMCxoBZVlJcIrAqlPBybBHEVUCCZ9Lp5wMXXYlMq+suou6/EWv3gen2GgoyYhqf4WiX1FZzBsXfGROKC4WGokEBJ8AsbjCh08l1FoBfVmC4DNEC8WTAI89IpiB5uBYXV0tJSXFoRTYQ7E1bJaTIZnUITghLzanRGwhiHDHK6i1Ox7GDjsQHJpcICNJXj2k+8Olzo5d1US4y8LStai6pbctceltYblgaCcSEGwChp3klGQkwB2Ky2EucyXYxqJ1SECACPDMIzpYt5FIpFOnTtUlmbt9+/b9/PPPpqamAtRjNKUhAnqqcsMstCDnVHAK7FFEhgBMUvh+zHHfE3gsMKmWznA36/xkucvPA7pKS1BEpo/C25HCcmpGQSXY3wM9IqCAggSQQKsJwG0YESaKzGTGn1tdH1aABMSFAM88InB+QOD269ixY5AgBNIVFRWwbxxnUFCQh4eHtrY2fJNv377NKuzp6QkalvTp04eV5erqytJDgljOgZWLiRYQIJbhvhOZlVtS1YLT8RQBJJCeXzHb5/X8vyI+FVfpdpQ9NcP+1Ex78H4F0FTxNOnDJ+ar5WFOV1kWl1Vo248A1o4ExIeATd3iCvhTIvG54thTnhDgmUeUUre5uLi8e/euLsncxcXF+fr69u7du3Fby8vLraysDh8+XL/Y0KFDs79tDx48YC8wd+7cbznZx48fZ8/CdAsI2Oh3tDPoWENjnA/Bt7W2gJ9gnVJVQzvonzBoX+CzuC+SFNKiAV0hNORu3lmwrBR7a97XvYnIAgNEYv/vkPV+AAAQAElEQVRJQABIgIcEvsaIcHEFHjLFqsSAAM88IoLVs2fPWCvL0Wi0yMjIwsJCIquR/bBhw7Zs2TJ27Nj6ZaSlpTW/baqqquwF5OTkvuVoKisrs2dhumUE5jobwYl/h6VVUmmQQBFSAkHxX4buD9r7JL66lt6vq9qjZf1XDekuK0UR0u6IsNkfiB8R6eLwJcIXGbuGBPhNwFKXuQB30peykqoafreN7SEB/hLgYWs89oiWLVtGvH0I3KH+/fvb2trq6ekFBAS02GI4V0NDw8TEBCJCHKvYXbhwQU1NrUePHqtWrSotbfgXhNXV1SVsW4vNEJMTB5lr6qvKFVXUXH+TKSZdFrFuZhdX/nzhzYwzr1LzKzQUpQ9NsflrTi9jdQUR66bIdAdjRCJzKbEjSEBwCKgrSuuoyDIYHT7URaEFxzC0BAkIMgEee0TXrl2zsrKCDt+7dy81NTU2NhZ8pHXr1oGmBQKxI3B7nj59umfPntevXw8cOBA8HKKeqVOnXrp0Cfyl9evX37hxo8H4EpTcvn07hI8IAd8MNCiNEKCQSbPr3tZ65nkKnc5opCQfs7AprgjU0Ogng5Ld9gTej8qG6zinn5H/ShcPK+Zv87g6HwvxnUBBOTWriLmsAj41x3f22CASEHEC1vrMMBEuriDilxm7x1MCPPaI8vPzNTU1wcIHDx5MmDABYjtz5syJiooCTQtk0qRJw4cPt7Cw8PDwePjwYXx8/P3794l6IGTk7u4OWZMnT75+/bqfn9+bN2+ILPa9t7d38bctIyODPQvTDRKYYK+nJCORklfuH/uf90o1WBiVAkLgVUrBiIPPtz6IqaDS7Aw63lvUb/0Ic0UZ/LG+gFyfhs0g1t02UpNX+vdKNVwStUgACSCBZhGwrntwDhdXaBY0LCzmBHjsEXXu3Dk6OppGoz169Ag8FoBbUVHBkze0amlpGRgYJCQkQJ0cYmtrKykp2WCWtLS0EtvGcSIe1icgLy3xY28D0J/Ct7UCBYGXvLLqlVffTTweEve5tKOc5M5xltfm9zXXVhJ4w9HADsSPiPDdrPhREFcC2O82JICLK7QhXKxaRAnw2COaNWvWxIkTIXRDIpEGDRoE0MLCwnjyPiKIPkGQB/wiqJNDPn78WFNT02AWR0k85IbATEcDCTIpLKUgCh9B5oZXO5Wh0Rl/h6YN3B1w400midRhSi/9pytdJzrokcmkdrIIm20egfeZzLeFoEfUPGpYGgkgAS4IWOgowZ+CzyXVOcX4Og0ueLV5EWxACAjw2CPauHHjqVOn5s2b9+LFC4jPAAAIEK1ZswYSjUhZWVlk3QZlUlJSIJmeng7KVatWhYSEpKamBgQEeHh4qKmpjRkzBsokJSVt2rQpPDwcsojH82xsbJycnCALpfUEtJRlPay0oZ5Tz5NhjyKABMBZHXvkxa+3P5RU1fbQVrr5k+P2sT07yksJoKlo0vcIfMgqgayeuNAcUEBBAnwnkJWVNW3atE6dOsnJyVlbW0dERBAmwL3HokWLdHV1ZWVlzczMjh49Sujr72/cuGFubg63OrC/detW/QLtqJGTkjDprAgGRGYwZ14ggYIEkEDjBHjsEUFj48ePX758OYwmkAaZOXPmqFGjINGIgG8DLg0IlFmxYgUkNmzYAK5UVFQUnGtiYgKVwB68I0VF5jdcSkrK399/yJAh3bt3X7JkyeDBg/38/KA8nN5uIloNz+nHXIb7n/fZn+p++S1anRPu3hRX1Ky//WHkn8/fZRYrSkv8PrLH3UX9bPQ7CnevxM/6/LJqYlkFcGjFr/fYYyTQzgQKCwthFlVSUvLhw4fR0dF79uxRUVEhbIIbmEePHv39998xMTGQXrx48Z07d4gs9j3ckEyaNGn69Onv3r2D/cSJE8PCwtgLtHvapm5xhXd1seh2NwYNQAKCT4D3HhH4KmvXrvXy8prNtjUOwtXVlfHfzcfHB6ZnfH19c3NzqVRqWloaaFiLxUEiMDAwPz+/uro6MTHxwIEDqv99VVHjzWFukwQsdJT7dulEozN8XqY2WRgL8IcAfEVuRGS67Q34KzSNwegwxkbHf5XLTEdDCpnvj8nxp8Mi3QqxrEIXdXlcAEOkrzN2TkAJ/PHHH3Ajcfbs2V69ehkaGrq5uRkbGxO2gqsDk7BwWwL6efPmWVlZwaQtkcW+379//6BBg7y9vU1NTWEPNYCGvQCRhrsUtjeAMMPChJ4PeytcXIEPlLEJESLAY4/o999/h4gNOEV5eXkwB8MSESImLl2Z258ZJroUll5WXSsufRbgfsbllE46Ebry2ru8MmpXDYWLc3vvm2StoSgjwCajaY0RiMoshmz8ERFAEHRB+0SRwN27d+3t7SdMmKChoWFjY3Py5ElWL/v16we5WVlZMAn17Nmz+Pj4IUOGsHJZCXCc4G6HdQhlXr58yTpkJdrxFSDE4grvM4thcpNlDyaQABL4HgEee0THjh2DYA7Ejm/fvn2Lbfte86gXWAKuJhowgV1aXXvldYbAGikOhpVX1257EDP8YPCrlAJZScr/hpo+WOLsaKwmDn0X4T4SMSL0iET4EmPXBJlAcnLy0aNHu3Xr5uvru2DBgiVLlpw/f54w+ODBg+bm5rq6ulJSUkOHDj1y5Aj4SEQW+z4nJ6dz584sDaRBwzpkJSB89O0NIMUZ/H0FSDcNBfiTAXOayV/KWPY0kcBsJCDGBHjsEVGpVEdHRzHmKTpdJ5NJXv26QH/OvkippdEhgcJnAjBD+TAq231v4Img5Fo6Y0iPzn4rXX5yNZaS4PHXls/9wuaAAHpEAAEFCbQXATqdbmtru23bNggQzZ8/f+7cueAgEcaARxQaGgphooiIiD179ixcuNDPz4/I4tiTSCSWBoZrEunfQ5Zeuv1eASJBIRMLt+DiCqzLgQkk8C+Beike31p5eXldvHixXiuoEEoCY211VOWlMgsrfT9+FsoOCLPRqXnlnmdf/3ThTXZxlZ6q7BlP++PT7XVUZIW5T2j7VwJfSqvhssLtUw8d5a8q/A8JIAE+EtDS0oJAEKtBMzOz9PR0OKysrFy7du3evXs9PDwsLS0XLVo0adKk3bt3QxaHaGpqsgeFcnNzIUzEUabdD631mMtF4OIK7X4h0AChIMBjj6iqqgqGEhcXl8WLF69g24SCBRrJQUBGkjKtjwEohXQZbrBcGKWqhrbvSfzg/UGB8V+kKOQlbt2eLHcZaPrv4xnC2Cm0mZ3Ahyzmj4i6qMkrSEuw6zGNBJAAfwg4OTnFxcWx2oqPjzcwYP6xq6nbyOR/b40oFAoElFglWYm+ffs+efKEdfj48WMBfECGWFwBY0Ssy4QJJNAIgX+/9o0U4j7r/fv31tbWMJp8+PDh7bctMjKS+xqwpEARmN7HQEqC/Da9KCKtQKAME1VjnsXlDtkfdMA/gVpLd+6m5ru8/4pBJuCaimp/edWvoKAgmNPV1tYmkUi3b99mVXvz5s0hQ4aoqamBnn0gKigogFmb7t27y8nJ6evrL1mypLiY6aWwTmzTBPHInGXdSlC8agjrQQJIgHsCy5cvDw0N3bZtW2Ji4sWLF0+cOPHzzz/D6UpKSjClu3r16oCAgJSUFB8fn/PnzxMvQoTcGTNmeHt7QwJk6dKl4AX98ccfsbGxsPfz81u2bBnoBUqs9JhR6Njs0qoamkAZhsYgAQEkwGOP6FlD29OnTwWw52gSNwTUFaXHWOtAyVPBKbBHaTsCn4oqF/wVMevs67T8Ck0lmSNTbc/P7mWkJt92LYpSzeXl5VZWVocPH+boFOhhMnjHjh0c+k912+7du6OiouCm59GjR3PmzOEo03aH7+sWmrPAR+baDjHWLNIEWt85BweHW7duXbp0ycLCYvPmzfv37586dSpR7eXLlyEXDs3NzWHo2Lp164IFC4is9PT07OxsIg0RISh59uxZS0tLGEOuXLnSu3dvIktw9joqsmoKUrV0xsdPfF34W3AIoCVIgHsCPPaIWA1nZmZmZWWxDjEhvATmODOX4fb9mJOeXyG8vRBky2to9OOBSe57Ax99zKGQSXOdjfxWuvzQUwvCGoJstkDZNmzYsC1btowdO5bDqunTp2/YsMHd3Z1DD7dBN27cgLCSsbHxwIED4abn3r17tbUNLDTfFq8TIZ6as9RlTt9yGIaHSAAJ8IfAiBEjYEKkqqoqJiZm7ty5rEY1NTXBz4EbmMrKSoj/rFixgjUUQ+AInB9WyfHjx0MBKpUKNdQffFjF2jEBln/9KVFGUTuagU23hgCeyzcCPPaI6HT6pk2blJWVDQwM9PX1VVRUYPYFlHzrDzbEcwImnRVdTNTpjA5nXmCYiOd0O4Qm5/9wIHj7w9gKKs3BsOP9Jf3WDTfHn5fwHnSjNRYXFyspKUlINPCrnu3bt8OARoienl6j1XCVmVtalVNSRSJ1MNdS4uoELIQEkAASaCkB4qdEuLhCS/nheWJEgMce0bp16w4fPrxjx463b9++efNm27Zthw4dWr9+vRgRbXZXheAEr7ow0dXwjOKKGiEwV0hM/FJaveJK5OQToQm5ZZ3kpXZPsLo6v6+pJt4l8/v65efnw8TN/PnzG2zY29sb/CVCePI6ESJA1FVdQV66AQesQRtQiQSQABJoGQHiPa24uELL6OFZYkWAxx7RuXPnTp069dNPP1laWlpZWS1cuPDkyZM+Pj5ixVT0Otuvq5qppiIEMS6+Yq5PKnod5HOPaHTG+ZDUgXsCbr7NIpE6TOuj/3Sl63g7XRKpgddZ8Nm2Nm5O4KovKSkZPny4ubn5b7/91qBxPH+dSFQm84H+nvgjogZxoxIJIAGeErCsezo3Lb+isJzK04qxMiQgagR47BEVFBSYmpqyQ4JDULJrMC10BEgkkpcz822tPi9TqLX4ttZWXUCYqxv15/MNdz6WVtXCbfHthU5bRvdUlpNsVaV4cosIlJaWDh06VEFB4datW5KSfLoEUVlFYCzx5kRIoIguAewZEmh/AipyUsQKPfjgXPtfDLRAsAnw2COCuNDh/y73BIegFGwIaF3TBDystNQVpT+XVN+P+tR0aSzREIGiCuq6W1Fjjrz4kFWiKCOxebTF7Z+diEcaGiqOurYlANGhwYMHS0lJ3b17V0ZGpm0bY6s9KqsYjsAZhj0KEkACSKCtCXxbXIE58rRZW1gxEhB6Ajz2iHbu3HnmzBlzc/M5c+Z4eXlBwsfHZ9euXULPSew7IC1B8XQ0BAynglMYDAYkULgnQKczroVnDNwTeCEsHeCNtdV5utJ1eh8DChkfk+OeYmMly8rKIus2KJSSkgLJ9HTmE54QoIZ0dHQ06OPi4iCdk5MDaYgOgTtUXl5++vRpcI1ACUKjtfkrO3JLqmBaAS67uTb+YAyuAwoSQAJtTsCq7sG5yIzCNm8JG0ACwkyAa4+Iu066uLjEx8ePGTOmqKgI7kXGjh0LdyHOzs7cnY2lBJrAj730ZSTJHz+VaM253gAAEABJREFUhCTnC7ShAmZcbE7JpBMhq6+/LyindtNQuDyvz96J1hBwEzAzhduc8PBwm7oNurFixQpIbtiwAdIQ/4H08OHDIT158mRIHzt2DNIRERFhYWFRUVFdu3bV+rbxZOEEqLwRIQJEXTUU5KRwWYVGOGEWEkACPCNAPInwLrMYZzN5xhQrEkUCPPaIAJG2tvbWrVtv3Lhx8+bNLVu2wCEoUUSAQEd5qQl2zNWHT4v821p5dLXKqmu3/BM9/ODz16mFclKUtT+YPljq3KdLJx5Vj9X8S8DV1RX+2LMLRKch29PTk10J6Y0bN4K+fnnIMjQ0hKw2lfeZzAdXLHBZhTaljJUjASTARsBMS0mSQoIpuczCSjY1JpEAEvgPAZ55RAkJCVOmTCkpYS6jxGqhuLj4xx9/TE5OZmkwIdQEZvczIpE6+MfmJuaWCXVH2tp4uL3+5/0ntz0Bp56n0OiMYRaafitc5vU3lqTw7BvX1l3A+tuCALH0tqVAeURt0U+sEwkgAYEhICNJId5+FplRJDBGoSFIQOAI8Oz+bNeuXXp6ekpK/3k4XllZGZSQJXD9RoNaRMBITd7drDOcegbf1goUviPJX8pmnHm16OLbzyXVBp3kfGY5HJ1mp60i+53iqBYjAu+JZRXqHusXo25jV5GAgBAQVzO+PjiHHpG4fgCw39wQ4JlHFBQUNGHChPpNTpw48enTp/X1qBFSAl79jMDyGxGZ+WXVkEBhJ1BVQ9vzOG7o/uDghDwpCfIy926+y/q7dtdgL4NpsSXwuaTqS2k1c1kFLWWxhYAdRwJIgP8ErHRVoFGMEQEEMRLsajMJ8MwjSktL09Bo4M5PTU2ND79XbmavsXjLCfQyUrXUVa6upV8IY67l1fKKRO7Mp7GfB+0LPPQ0kUqju5ioP1nef5m7iYwkReQ6ih1qIQHiR0TdNBRlpfBT0UKGeBoSQAItIEDEiD58Kq6h4RsFW8APTxELAjzziJSVlZOSkuozS0xMVPrvo3T1y6CmZQTa5SwSiTSnLkx0PiQVQiLtYoOgNZpZWDHvfPhsn/CMgkotZZlj02x9ZjkYdJIXNDvRnvYlQCw01xMfmWvfy4CtIwHxI9BFTV5RRqKqhh7/uVT8eo89RgJcESBzVYqLQv379z906FD9ggcPHnTG1bfrcxFmzQ89tbSVZfLKqHcis4S5HzywnVpLPxKQ6L438HH0ZwkyaX7/Ln4rXIZaaIHfyIPasQo2AiKQjMpk/qy5Jy6rIALXEruABISKAJlMIh6ce5fBXO5SqGxHY5EAnwjwzCPy9vZ++PDh+PHjX716VVy3hYWFjRs3ztfXF7L41Btshi8EJCnkWU7MXxOJ+dtaXyblDTsQtPNRHEy89TJSfbDU2fsHM3lpCb5cBGxEyAgwGIyoLOZSnBgjErIr1x7mYptIgOcErPSYP198h4sr8JwsVigqBHjmEdnY2Fy/fj0oKKhv376qdZujo2NwcPDVq1dtbW1FBRf24yuBSb30FKQlEnLLAuO/fFWJ03+5JVVLL7/98WRY0pdyNQWpvROtrszrY9JZUZwYYF+bRyCnpCqvrJpCJhHL4DbvZCyNBJAAEmgdASJGJICLK7SuW3g2EuAZAZ55RGDRiBEj0tLSwC/asWPH9u3bb9y4kZqaOnLkSMhCETECSjKSkxz0oFOnn6fAXnyklkY/+yLFbU/gnchPJFKHGX0N/Fe6jrXVJZFI4gMBe9oCAlF172btpqGAi220gB6eggSQQCsJWOsxl5uLzy0tq65tZVV4OhIQSQK89IgAkKys7JgxY1avXv3LL7+MHj1aTk6uQwdQo4ggAU9HQzKpQ3BCXkw281kgEexhvS69SS8cefjF7/eiS6trrXSV7/7cb9MoC2VZyXoFUYEEOAl8XVYBf0TECQaPkQAS4AcBDSUZbWUZBqPDh7q3ovGjSWwDCQgVAR57RELVdzS2VQT0VOWG9dSCKsQhTFRYTl1z4/3YIy+js0uUZCS2jrG4udCpZwOLhgEPFCTQAAHCI7LEz0wDbFCFBJAAPwgQa3DjT4n4wRrbEEIC6BEJ4UUTGJOJt7XeiczKLakSGKN4bAidzrjyOn3gnoDLrzOg6vF2uk9XuU7tbUCBABkcoyABLggwl1Woe2rOQqRiRFz0HIsgASQgMAQIjwh/SiQwFwQNESwC6BEJ1vUQLmts9DvaG3SsoTHOh6QJl+VcWhv9qWT8sZf/uxFVWFHTvbPitQV9d0+wUlOQ5vJ0LIYECALZxVX55VQJMslMS4nQ4B4JIAGhIiAKxhKLK2CMSBSuJfahDQigR9QGUMWpSi9n5jLcf4elVVBF6seapVU1v9/7OOJQ8Jv0Inkpyq/Dzf5Z0s/BUFWcri32lWcE3tcFiLp1VpSRpPCsUqwICSABJNAcAj11lUmkDp+Kq0T4sY7m8MCy3yMgpnoee0QPHjzw9fVlZwmHDx8+ZNdgWpQIDDLX1FeVK6qoufEmSzT6xWAw7r775LYn8OyLVDqjw3BLLf+Vrl7OXSQpPP6yiAYu7AU3BIifMlviI3PcwMIySAAJtA0BBWkJEw3mWyLe1c3RtE0jWCsSEFYCPL7JW7NmDY1GY4cB95egZNdguv0J8M4CCpk028kQ6jvzPIUODgSkhFkSc8umngpbcultbmm1kZr8+dm9/vzRVlNZRpj7hLa3P4H3dYs7Wegy35DY/tagBUgACYgrAXxPq7heeex30wR47BElJCSYm5uzN2tqapqYmMiuwbSIEZhgr6ckI5GSV+4X81l4u1ZJpe3yjR12IOhlUr60BHnlIJNHy5z7m6gLb4/Q8q8E2vs/mBXCGFF7XwRsHwkgASYBXFyBSQH/IYGGCPDYI1JWVk5OTmZvCNwheXl5dg2mRYyAvLTE1D4G0KlTQvu21ifRn933Bv75LKmGxhjQXf3JcpfFbt2kJfAnH3BVUVpLIKuosqBuWYXumsznVVpbHZ6PBBohgFlIoFECXxdXyCwSgWc6Gu0oZiKBZhPgsUc0cuTIZcuWJSUlEYaAO7Ry5UpQEoe4F1UCM/saSpBJr1IK3mcWCVcfMwoqvM69nns+HG5btZVljk+3O+PpoN9JTrh6gdYKMgEiQATuEC6rIMiXCW1DAuJAoG4gIpdW1abklwt9f7EDok6gklpLraXnl1XDng/Ld/HYI9q1axdEhExNTY3qNjMzs06dOu3evVvUr5q4909TWWaklTZQOBWcAnuhkOpa2p/PEgftC/SLyQV37idXY7+VLkN6aJJIJKGwH40UFgLv637E3BOXVRCWC4Z2IgHRJSBJIVtoM3/QiGtwi+5FFpGeVdfQjgUm2299YrfFD/bHA5NB06Z947FHpKys/PLly/v37y9cuBCiQ/7+/k+fPlVRUWlZH/AsISIwp24Z7vtR2RBsEXyznyfkDdsfvMs3rqqG3qeL6sOlzv8baionJSH4lqOFQkcgqm5ZhZ66zLsQoTMeDUYCokogKytr2rRpMGkrJydnbW0dERFB9JRUb4OpXiKLfe/j48NRsKqqir2AwKbxp0QCe2nQMBYBiA4dCUg64J9QUsl8swvsIQ2a/7N3HnBRHF8c946OUgRERBEQRcWCVCkWFGxRY2+xYSdqbNHEEo29JBY0xl7QxN5NLCgqolIEFMROFcSCgPTO3f8HG+9/HgiH3MGVt59xfftmdubNd4+5efP2dsUaKRKxR4TOYIzo2bPnggULZs6c2aVLF2goyQOBNoZaTma6xRzuIf84Se7v+4y8H449HLM/KCY5W6+eytaRHY5NcWjRkH7gIckXTYpt43K5/3lEFCOS4stIpssagY8fPzo7OyspKV25cuXp06ebNm3iLd2+5dsOHDiAKc2QIUPK7b+mpiZf2beqqtLxVFLGI6IYUbnXlJS1S6CgiPP0TcbF8Df4uzvoL3jPETSKbNG7Lbwui6bqbdu2MasjEMpNvPZIkGECzNtajwXFZ+YVfm03xXheUTFn/91Y1023/wl/w2bVcXcyuTm/64AOjfGHJ8ZWqWr5JvD6Y25aTqGSAqslPVZBvj8J1HuJIrBhwwYjI6ODBw/a29ubmJi4urqamZkxFhrwbRcuXOjWrVuzZs2YLIE9vjv4yhoI5ErsYYcmJbftPH2bkV/02btSJNZgMkyGCaTnFgbGpBy4Gzv/VPg3W++0+fXqN9vu/Hkz6kNmfkZpdIi/79CIdXopGo9oy5Yt2dklv9KDUDZ5enryd4lkWSXgYq5v1qBuZn7RyZDXktbH0Fep/f64u+rfp1n5RR2MtC/O7LT82zaaqkqSZifZI2MEmAAR3CEVxbKPLpSxvlJ3iIDUELh48aKtre2wYcP09fWtrKz27t1b1vT3799funRp0qRJZbMYTVZWlrGxcZMmTfr16/fw4UNGKbDPz8/P4NsEcmvl0EhHTaeucmEx99nbzFoxgBqVWwJcLjchNcf7ybst119OORzivP6m5YprI/cErvz36enQ1/DS8bHUUFXER7SBhoqmmuAPGaDREOe0TTQeUWxsrK6uLq4xhLJJ4HncKEZJJgmw2axJnUrW0uDuIyAjIX1MzS746XT4kJ0Bz99laqkprRvc7uz3Tm3pFiYJuTwiMsPPz69///6GhoZYtT1//jyv1rNnz/bq1UtPTw/6sLAwnh7Cnj17XFxcNDU1kZWWlgaNOBLjEbVrXLIoK476qU4iICUEJMtMTEt27tzZokULb29vDw+PWbNmHT58WMDEQ4cOaWhoDB48WEDPHLZq1crLywue1bFjx1RVVZ2dnSMjI5ks/v26deu0Pm2ISvFn1ZaMEc+y9GeN4QlptWUDtSsnBBCHfJyYfiokYcU/T0bsDmi/4lrn325N+yt0643I60/fMz87b1JfradFwzluLfaMtbnzU7dHv/bcN96Oy+VOcDIVoARNEYcjoBThoWg8Ip5BK1euzMnJ4R1CyM3NhRICJXkgMNi6MRaf8Cn3flL7b2vlcLhHg+K7b/JlYlbDbZvc/LHrKPum8Nzk4VrIVR8Ro7a0tNy+fbtAr6HHTGX9+vUCehxipOrdu/fixYshiy9F0IPmxAeXaiYCX0uAw+FYW1uvXbsWAaJp06ZNmTIFDpJAZQcOHBg9ejS8HQE9c+jg4DBmzBgMO507dz558qS5ufkff/zBZPHvFy1alP5pS0hI4M+qRZn5KVFYAnlEYroI8lttWk6Bf3Tyvjsx806G9fb0a7PMu98fdxecfnTwXlxQbGpmXpGSAsuikeZQmybL+lkcn+oQ/mvPuz933zPOdo6bec82BkY66iwWC/jUlBWnu5jNdm2BuBAOsYcMjVifgCVij2jFihWII8N6XsrJyYGSd1iu8KX1XXd3dxbfhgFI4HQ4kX369EER/lVhgTJ0WJMEVJUUxjgYo8W9d2JwdSDUVsKyxOCd/ovPRaTlFLYy0DjzveNvQy1166nUlj3UrlgJYBxYvXp12dXcsWPHLlu2zM3NrWzrc6w9PKYAABAASURBVObMWbhwYdlRpWzJr9bgT4CJEbUvXZH96nroRCJABERLoFGjRhYWFrw6W7duHR8fzzuEcOfOnRcvXkyePBlypYnNZtvZ2ZUbI1JRUUEgmpcqrapmCjAeEcWIaoa2DLeC77j4lJyrj99uvvZi8qFg5/U3O6y8/t3eoNWXnp19kPj8XWYRh6ulpuTYTHdSJ9NNwyyvzO78ZEXvy7M7bxxmObGTqUMzXeR+iY+KksK0rs1ClvQI/cUNe8jQfKmwSPQi9ohAh8Uqce94xoWHh+vo6PAOyxWwjmtZ3vouCmMRl/csl8uXL0PDnzw9PVmsz5rjzxWjTFV/mcA4R2NlRTYWn0JfffxyKTHmZOQVLr/45Nvtd2FDPRXFpf0s/v2hk41xJR9CMRpEVUszger8DCAhNTc9t1BZgW1ODzOU5s8A2S57BBA6hsPD69fLly+NjUvW8nia/fv329jYYGbC01QgYOYTFhYGL6uCMhKVZVn6cIWY5Oz0HEl8DJJEsSJj+AnkFRZjuflkcAJmWcN3BbRffq3L77c8/n6w7WaUz7OkxLRcFG6qo967jcG8HuZ7x9neW9g9bFmPY1MdMBMbYtOkdSNNzA9RRsikrqyI8ljLxh6ykGd9dTGReUT169fX0dFhsViIHUNgkpaWVo8ePYYPH16xfV9a38VZWF/hPcsFdULDS/C1Nm/ejLg2T1NWqM5spmxtpBGGgF49lcFWjVFyX42/rRVfS+cfJnbfeNvLP47DrdPf0vDGj12xMqGoILLPOfold0m+O1ydnwEwAaJWjTQwmss3Reo9EZAsAnPnzg0MDFy7dm1UVNTRo0f37NkzY8YMnokZGRmnTp0qGyAaN27cokWLmGIrVqzw9vaOiYmBLzRp0iTsPTw8mCzJ3+vUVTbWVYedjxLpxjlgoPRFAqnZBfeikvf6xcw9EdZri1+bX0vugvvpzCPMsu7HpWbmF2HJr21jzeG2TZb3tzg5zfHR8p5+P3XbNdZmlmuLHhYNG2urwS/4Yu0SliGymSLCNfBPMCXFMMF73NyuXbvu3r37559/fnWvfX199fX14WVNmTIlKSmJV09OTs6oUaO2b98Of4mnLCtUZzZTtjbSCEkATghKej999yql5AmEkGsgRSVljtobOOdEWHJWfrMGdY9M7vjHKKuGmtLxgoga4ENNfB0BTIA+/QogPaGKPwNgZhtt6TEeX4e+Vs6iRuWDgJ2d3blz544dO9a2bdtVq1ZhAjN69Ghe148fP47JDOYYPA0jxMfHv337lpHT0tKmTp3aunXrnj17JiYm+vn52dvbM1lSsbcsDRPRjXNScbFqzEgOhxuXnH054u1G7xcTvYId192wXnV99L6gNZefnXuY+OJ9ZjGHW19dybm57pTOpltGWHrP6fJkZa9/f+j821BLd2dTe1MdTVUpfoSvyDyi8ePHu7u737p1a/r06ZCZhAHF0dHxq68lYkdHjhy5efPmpk2bgoODu3fvjpgPUxsWeJycnAYMGMAcfmlfndnMl+okfaUEWjTUcGnZgMutc/BeTbytNaegaP2V57097wTGpKoqsRf0anlldmfn5nqV2kkFiEClBBCm5v0GAEKl5fkLPE5Mx2F78ohAgRIRkDAC/fr1i4iIyMvLe/bsGZZc+a2Dq4NVVy0tLX4lZCzRenl5QUDCyu+rV68wJ8Farbe3d3WmOqit5lPJT4nq1AmjhyvUPHpJajGvsPjR67Tj9+OXXXg8dKd/u+XeLht9px95sP1W1M3nSW/T82Csia76N+0Mfuxhvn+8bcCi7g+W9jgy2WFJX4tBVk1aGmgoydA9OCLziEANSUNDA4MLBKQLFy4MHDhw8eLFBQUFOPyKNGLEiL59+2IJp3///leuXHn58uWlS5dQz8WLF+EmYVEHcsWpOrOZimum3IoJTC59DPfJkASx3qaMZTzvJ+96bPbbdTu6iMN1a61/fW7XGd2aqyjSu18qvj6UK3YC+HAyD5qjGJHYWVMDRIAIVJFAB6MSfy8sIR0jVRVPpeJSTCAlK/9O5Ifdt6NnH3/YY/PtNr96f7v93sKzEYcDXoW8+phdUKysyG7fRGukndHKAW1Oezg+XtHLd0G3HaNtfnBt4dq6YSMtaboL7rPrJMSBiD2iadOmwW9BuzExMfBn1NXVT5069dNPP0FTzdSoUSNjY+PIyJLn/cMdio6O1tbWVizdUPOQIUNcXFwgUJIQAgiqtjLQyCkoPnr/swf4iNC8+JQcRHWn/RWamJbbWFtt7zjbfePtjHRK7o0WYStUlVQQyMrKCivdYG1sbCzE+NInR6WmpkJ++vQp9C9evID87t07yEgQcBgVFQUZS8WQURiyqFJ8ak5GXhG+XeixCqJCSvUQASIgKgJtDLUU2azkrPw3pXEAUVVL9UgUAQ6HG/Mh699Hb367+nzCwfsd1/rYrPYZu//+uivPL4S9iUzKKuZwdeoqd26hN61Ls60jO1yf2+Xpil4XZ3ZaP6T9OEcTWxOdeiqCr0mVqA6K1hgRe0Rwhzp06AAT4Qh17dr16NGjCDGfOXMGmmqmlJSUhIQE+EWoZ+HChY8ePcIMhknQIH598OBBCJQkhACLxZrcueRtrV7+sQVFIn6jFuK8225E9thy+9aLD0oKrBndzHzmde1h0VBC+k5m1DyBkJAQq9INTc+bNw/ismXLICOeDBmhZsgjR46EvGvXLshIEHDI3C3TpUsXyCgMvajSo9I3EbU2oMcqiIoo1UMEiIDICKgqKbRqpIHq6KdEgCAzKbegOCwh7WhQ/C/nIwbvuNd2uXf3TbdnHn24wzca86X3GfksVp1menX7tm+0oFfLg+52QYtdQ39x+2tSx0XftB7QoXGLhhqKMnQXXFUvq4g9IoRfOaUvlPXx8fnmm29gjZGRUXJyMoQKUrnru1DOnz8/ICAgLi7O19e3f//+enp6gwYNQj0GBgZt+TZomjZtamoq+HZb6CnVIoFvLQ31NVTwF3gp4o0IzfB7+aHP1jubr7/ML+IgEnVldpcFvVqpKdNtciJkLH1VIUSMwYc/YS0G3XB3d+dXQl6+fDn0SBBwyJ9QGHpRJeZHRO3E8yYiURlJ9RABIiC3BJiHK2ACLbcEZKDjHzLzb7/8sNM3+odjD91K7oK7OvDPe4vPRfwdGP8gPi2noFhFkW1ppD3KvumqgW3PfO/0eHmvm/Nd/vzOeka35t1a6TfUVGWx6B02/30QROwR2drarl69+q+//rp9+zazLhsbG9uwYSWL9+Wu7yooKERERAwYMMDc3Hz8+PHYwzvS0ChZ0vjPdvpPsgkoK7LHO5nAxr1+sZh3QqhmepeeN+PIg3EH7scmZ8PX2jbK6u9JHZvr16tmtXQ6ERAHASZG1I4eqyAOuFSnPBGgvoqJACbKqDn6Qxb2lKSCQDGHG5WUdTH8zYarz8cfuG+3xgcJAg7/CX+DLA63jl495S7mDTy6mmGO5DOvy5MVvS7McF43uN1YB2Mb4/p1VeToLriqXlMRe0Senp4PHjyYOXPmkiVLmjdvDmtOnz7t5OQEoYJU7vqumpqat7d3UlJSQUHBq1evsOKLcFO5lWC2PXDgwHKzSFm7BEZ3bKqmpPD0bUZATEp1LCks5uy7E+O6yfdSxFs2q85EZ9MbP3ZFDIrForWN6nClc8VFgMPhPn5T8qC5do21xdUG1UsEiAARqAYBexOdveNs/hhllZyVX1DEySkoqkZldKpoCAjUgovyIP7j34GvEPZB8KfNr1cRCJp17CGCQggNIUCESZBZg7r9LQ1/6t3Sa4Ld/SWuIb/0ODzRfmGfVpgjNdeX67vgBGBWeihij6h9+/YI7KSnp//6669M27///vuhQ4cYmfbyRkBbXXmoTRP0et+dWOy/LgXHpfbbdnf1pWfZBcXWTbX/+aHTsv4WGqpKX1cbnUUEaoDAq9SczNLHKrRoSDHMGuBNTRABIlBlAgZaqghlO6y7Ybvax3bN9d23Y/ILi6tcC50gOgJY30/KyLv1IunPW1Ezjz7ovsm3za/eg3f4/3L+8dGg+LCEtLxCjpqSglVTbSw3rxnU9tx0pycret340QVu7XSX5i4t9fU16B2MX389ROwRlTVEVVVVSYkmrzwwcidM6mSKNYybz5OikjKr2nksXM0/FT5sV8CL95n11ZU2DGl32sOpjWHJM0OrWhWVJwI1SSCi9E1EFo00leT4V6o1CZzaIgJEoEoEcguKEGf442ZURm5JaAj7rTcid/hGIyhRpXqocHUIFBVzIt9nXghLXHfl2dj9QXZrfOzX3phwMPh37xf/Pnob8yGby62jr6Hi0rLBdBczuD03fuz6eEWvc9Od1wxqN7qjsVXT+urKdBdcda7AZ+eK2CMqLi7euHGjvb29gYGBDt/2WZt0IE8ETPTq9mjdED3ef7cKb2st5nARJu6+0fd06GucO8re6OaPLiPsmrLZdJsceEhLkl87I16nofP0IyJAoEQEiIAEElBgsw/6C967wWi+2xs45XDIrxce77odjcn6/djUhNScwmIRPzNWApnUgEnZ+UWhr1L/CohbdPbRgO13EQLqscVv9vGw3bdj7kQmJ2cVYI7TQr/et5aGC/u0OjzRPniJ2/0lbl4T7H/q3aq/paFZg3oKKFEDhsplEyL2iFasWLF58+bhw4enp6fPmzdv8ODBbDZ7+fLlcsmWOv0fAeYx3GcfvE7Jyv9PVeF/Ea/TB++4hzBxRl4RVtnPTndaN7h9/brKFZ5EmURAgggwMSJ60JwEXRKxm0INEAFpIpCZV4i4kIDF0KRmF6RkFVx/+v5QwKv1V55jsj58d0Dn326Z/3LFfo0PJvEef4Wu+OfJXr+Yf8LfYHL/Ji23iJwlAY6fDrlc7rv0vJvP32+/GTnjyINuG33bLvcesjNg6YUnx+4nhL9Ozy/iqCsr2BjXH+tgvG5wuwsznJ+s6H19Xtdto6w8upp1MW/QQEPlU2X0v9gJiNgjOnLkyN69e+fPn6+oqDhq1Kh9+/YtW7YsMDBQ7P2gBiSYgJ1JfcsmWvjL/zuwkre1pucULj3/+Ns/72Kk0FBRXN7f4uJMZ+um9SW4c2QaERAkUPJYhcQMaClGBAiUiAARkEACGqpKmmqCN1xBo6+hsvibVqsGtPnexWxgB8OOpjpNdTBpZ3O5dZIy8/HVfPXJu4P34tZcfvbDsYdDdgY4rb8JZ8lx3Y1BO+5h0r/636f778Zejnj7MP7j+4y8Yg5XAvsuPpPgHL58n3n+YeLay8/G7AuyWe3jsO7GRK+QjddeXop4G5tcchecgaZq91b6M7s1//M761vzXR4v73Xme6dVA9uOsm9qaaStRq8SEd/lqaxmEXtE7969a9euHRqtV68ewkQQ+vXrd+nSJQiU5JYAi8Wa1LkZuv9XYFzeF364iaUUBJFcN/v+FfgKIy8G4hs/dnV3NpXnl4WBGCVpJBCXkp2VX6SiyG6hT4/lomd3AAAQAElEQVRVkMYLSDYTAdknUMzhTHASfIsjNEUcbteW+mMdTX7u3cpzpNWJaY5+P3V7vqp38BK3f2Z22j3WBiuV07o0+9bSEGudjbXVFNkseD1v0/Mexqdh0r/vbuyqf59OP/Jg0A7/jmtvtPzlivP6m0N3+sN9Wnf5mde92KuP3z16nfYhMx8rRzJAGaG24LjUQ/5xP59+1P+Puxa/evfc4jfnRNgev5i7Ucmp2QUKbJZ5w3qY0sDP/HtSx9Bf3AIXux5wt5vfq2Xf9o1M9eqy6S44ifkcsMu35Gu1TZo0efv2Lc5u3rz5tWvXIAQHB6uoUNQPJOQ6fdPWAENnclbBhbDEsiCwpjJiT+C8k+EoYNag7tEpHTEQ62vSI1PKoiKNFBBgbpmzMNQkf14KrhaZSATkkoCasuJ0F7PZri0QFwIA7CFDo66siEOBhFl7Aw2Vdk20erUxwErlom9abxtldcrD6d7C7i9W97m/2PX8DOedo62X9rOY3MkUE33rptqNtFQx1Yd/lZiWG/Lq4z/hb3b7xSz/56nH36Hfbr9nt8an1dKrXX67NXx3wJzjDzdcff5XQNz1p+8fJ6bDi8AKqYABEnIIw96k5fo8ff/Hjcjv/w7t+vutdsuvDdsV8OvFJydCEjDyFxRx6qkowlcc72i8YUg7+JBPVvS6NrcrpjRTu5h1aqGnW4/mwxJyMcsxQ8Qe0aBBg27cuIF2Zs+evXTp0hYtWowbN27ixInQUJJnApgaujuVvK11353P3taanV+EdaNvtt65H5uqqsT+qXfLK7O7OJnp1SgraowIiJRAdFJWy4YaDqY6Iq2VKiMCRIAIiJKAipLCtK7NQpb0QOACe8jQVLUBxECwfNnBSLtPu0aTOpn+0s/iz++sz053Dljk+nJ1n4BF3c9877T9O6sl37Se6Gzap62BpZG2voYKi1WnoJgTn5qDr/7zYW92+kYvvfBkyuGQfn/ctV51Hc6Sy++3RpWsk4Zt9H5xJOjVzefvn73NSM8phE9SVQurU76wmPP8XcbZB69X//v0u72BVquuO62/OflwyKbrL688fvcqJQeVG2qpurXWn9W9OXzC2wtcHv3aE77iigFtR9g1hQ+pqqSAMpSkgoCIPaL169cvXrwYPR86dOidO3e+//77U6dOQQkNJTknMMLeqH1jrZ96tywo5qRklbwPLiE1Z9KhYKwbYRmpp0VDn3ldp7s0V1YU8WdSzrFT92uYQG5B0fcuzfeNt53jZi6Jz7GtYRzUHBEgAhJMABEhfOcicIE9ZNFaqqjAbqSlZmNcv197wyldmi3rb7FzjM2FGc73l7jBWbr7c7dTHo5bR3ZY1KcVFkwxB2jXWEuvXskjlPKLOHEpOQExKWcfJG6/FbXk3OOJXiF9tt6xXHmtza/e3Tf5jtkXtOBU+ObrL4/dj/d9kfTyfWZmXqGQxmOILij6bxJSdojOyCsMikk5eC8W9ffddqfNMu/ennfmnQzfdzfWPzolLadQkc1qZaAx2KrxL31bH53c8eHSHv6LXPeNt5vXsyV8QmNdugtOyOsgicXEOPt0cHCYN2/et99+K4n9JptqnICmqtLfkzs+ep2OcLnNah/bNddPhiT8+Z21c3Pd/eNt94yzbVJfvcaNogaJgCgJ5BcW77od03GdT+ffbtmt9dlNbzwUJV2qiwhUkQAVl1QCSgpsfOPbmegM6NB4Wlez5d+2wRzgnx86hfzS48Xq3n4Luh2f6rBlhCWWUMc6GCMCY9FIU6duibOUU1Ac8yH7blTyqdDX225ELjob4X4wuOcWv3bLr7X71bvH5tvjDtxfeObRVp/Ik8EJdyI/RCVl5RSUvHCJIcEM0Zh+MJMQDNG5hcX+UckoP+2vkM6/3Wy//NqIPYEr/nmK+p+8ySgo5mioKNqb6sBn+21o+39/6PRkZa+rc7psHtFhcudmTs316pdaxVROe2knIBqP6GJlm7RjIvurTwALM/vvxv7B9z44yIcC4naPtXEtfWFR9ZugGohALRLAJ3yHb/TWG5EZ9MbDWrwM1DQRIALSTEBFUaGprrpDM91BVk2muzRfNbAtIjCXZ3d+sLTH81W9b813QWRm0zDL+T3Nv+vYtFvLBojYaKkpoceZ+UWRSVl+Lz8cD07Y4vPypzOPxu6/77b5tsUyb8sV13p7+oXEpf55K0pwiL4VlZVfhPLeT94npOainsbaaj0sGs5ybbFrjM2dn7o9Wt7z5DRH+GzDbY3aNtaCeSgjiYlsqjYB0XhEAyvcBg0aVG07qQKpJ6BQ3vvgvPzjlBXoLlupv7jUARAo9xN+0D9WkS2aYRZNUCICRIAIyC0BVSUFU726iMwMsWkys3uLtYPaHZxgj4hN+K89n6zo5TOv61+T7BHJmetmPtLOqIt5A/OG9RDhAa703MKkzHwLQ02vgDgc8icsy3Zu0WCco/HSfhbHpjiEL+t5b2H3veNs5/Uw793WwEhHncVi8ZcnWYYJiOarmlPhVlxcLMMEa6xr0t5QZl7574ODXtq7RvYTARDAJzkj9/+3Z0CDBA30ECgRASJABIiAmAjUVVFsrl8Pvg0iObPdWqwf0v7wRPtrc7tGrOgVsbzntbld9oy1ycwrwoAsYAA0OQVFKwe0ndTJ1NFMV0u9JNwkUIYO5YSAaDwiOYFF3awOgS+9Dw766lRL58okAWnsFD7JmmqKApZDA72Akg6JABEgAkSgZghgBDZvqGFrolNfXRkDskCj0KCAgJIO5ZOAyDyib775Jj09nYG4Zs2atLQ0Rk5JSbGwsGBk2sszgeIvvg+OI89YqO8yQ4A+4TJzKWu4I9QcESACNUCAhugagCzVTYjMI/L29s7Pz2dYbNiwITU1lZGLiopevHjByLSXZwJqVXkfnDyDor5LKQH6hEvphSOziQARqDECtdgQDdG1CF8qmhaZR8T/2ix+WSookJE1Q0BFFO+DqxlTqRUi8BUE6BP+FdDoFCJABIhAzRCgIbpmOEtpKyLziD71n/4nAhURUFdWVFZk69ZTwR5yRUUpjwhIIQF8qvHZpk+4FF46MpkIEAHZJ0BDtOxf46/tocg8IlbpxjMDRzyZBCIgowSoW0SACBABIkAEiAARIAJST0BkHhGXy3V3dx9cuuXl5Xl4eJSKgydOnCj1kKgDRIAIEAF5J0D9JwJEgAgQASIgswRE5hGNHz9eX19fq3QbM2aMoaFhqagF5bhx4ySBH3w2mJFBGxEgAuIhwPyJ4a9MVhPTQfHAo1qJgLwTYP6+JGP0EIsVTAfl/TJT/4mA2Agwf2Jf/dcrMo/oYIXbV9snwhMzMzNRm5GREeOq0Z4IEAHREmD+xPBXJquJ6SCNIaL92FBtRIAhwPx9yerogX4xHaQBhLnctJcYArJjCPMnhr+1r0si84i+rvmaPAthq4SEhLS0NOzRLvbptPERABDCwsfjP5Gw/Afi8//KxaKhoYGPkAwnGkM+/xQIHpX7qRAsJGfHxKTcC14uFhpAymUlP8pyPxXy0/0v9ZSwlEumXCzVHEPkyCNis9lNmjSBL6ypqYlJG/bykoTuJ2EpFxVhERKLzD9PhcaQcj8J/Er6Y+GnwcjEhOEgsC+LhQYQAURyeFj2UyGHEMp2mbCUZQJNWSzVHEPkyCMCO0pEgAjIOAHqHhEgAkSACBABIkAEqkiAPKIqAqPiRIAIEAEiQAQkgQDZQASIABEgAiIiII8ekYqKyq+//oq9iBjKSDUAQljKXkvCUpYJNHKORc67jw9AuYmwlMVCTMoygUbOsch59/EBKDdVgqXcc+RASVjKvcjiwCKnHtHy5ctBs1zKcqsEEMJS9uoTlrJMoJFzLHLefXwAyk2EpSwWYlKWCTRyjkXOu48PQLmJsBCWcgmUqxTHp0WCPKJy+0xKIkAEiAARIAJEgAgQASJABIiA+AiQRyQ+tlQzEfgiAcogAkSACBABIkAEiAARkBAC5BFJyIUgM4gAESACskmAekUEiAARIAJEQMIJkEck4ReIzCMCRIAIEAEiQASkgwBZSQSIgJQSII9ISi8cmU0EiAARIAJEgAgQASJABGqHgIy1Sh6RjF1Q6g4RIAJEgAgQASJABIgAESACVSBAHlEVYMlfUeoxESACRIAIEAEiQASIABGQcQLkEcn4BabuEQEiIBwBKkUEiAARIAJEgAjIKQHyiOT0wlO3iQARIAJEQF4JUL+JABEgAkTgMwLkEX2Ggw6IABEgAkSACBABIkAEZIUA9YMICEWAPCKhMFEhIkAEiAARIAJEgAgQASJABGSSgEx4RDJ5ZahTRIAIEAEiQASIABEgAkSACIifAHlE4mdMLRABERKgqogAESACRIAIEAEiQARESoA8IpHipMqIABEgAkRAVASoHiJABIgAESACNUKAPKIawUyNEAEiQASIABEgAkTgSwRITwSIQK0SII+oVvFT40SACBABIkAEiAARIAJEQH4ISGRPySOSyMtCRhEBIkAEiAARIAJEgAgQASJQIwTII6oRzPLXiAz3OC4ujsViyXAHqWtEgAiIjwANIOJjSzUTAXkgQGOImK4yeURiAiuaat3d3VksloeHB39106dPhxJZjBICDpGUlJQaNmzYo0ePAwcOcDgcJldgn52d/fPPPzdr1kxVVbVBgwYuLi7//vsvU8bExMTT05ORJWf/4sWLbt26oV8wGGb/8ssvhYWFPPNu375tY2PDZO3atYunh3DmzBkLCwsVFRXsz507Bw0v7dixw9TUFGfh3Dt37vD0XC53+fLlhoaGampqIPPkyRNelvBCRkbGkiVLWrVqhfoNDAzc3NzOnj2LmlEDhF69eunp6eFihYWFQcNLe/bsQYuamprISktL4+lJkAoCEmskMzjQACLbA0hqauoPP/zQsmVLdXX1pk2bzpo1Kz09XWI/k2SYdBGgMUSWJiG8z960adMw2Sg75cNcpU+fPsg6f/48r7D8COQRSfq1NjIyOn78eG5uLmNoXl7esWPH8LXHHDL73r17v337Ni4u7sqVK/AfZs+e3a9fv6KiIiaXf4+5ET7o27dvf/78+dWrV4cMGZKSksJfQNJkuHnjxo27du0aRiX89e7du/fXX39ljIyNjf3mm286d+788OHDxYsXYx4AL4jJCggIGDFixNixY8PDw7EfPnx4UFAQk3XixIk5c+bAacFZOBd//PHx8UzWb7/9tnnzZsAJDg6GMwPfMjMzk8kScg9nxsnJ6fDhw4sWLXrw4IGfnx/M+Omnn5gJCtxRZ2fn9evXl60tJycHFxG9KJtFGiJQHQI0gMj8APKmdNu4cWNERISXlxcG9kmTJlXnM1PxuZQrbwRoDJGZMYT56GISiBkRFn+ZQ/49Zllwh/g1ciWTRyTpl9va2hr+D8ILjKEQMDxZWVkxh8wekRDM4Bs3bozCmFVfuHDhypUr+Gpkcvn3//zzDwrAkUBECBESrCyOHz8eBRCgePXq1dy5c/HH4HTOoAAAEABJREFUgAQNkr+/f5cuXRAwQYvwNzChhxIJ565ateq7776rV68e/qj++OMPKJmEGAushT3Q4xRGWZ094kITJkywtLQ0Njb+9ttvR48ezYvqICiEtvAH3Lp168mTJ0+cOBFzAqYtKOHPwC1BrAZ7V1dXaJgs+DyYLqA8zoISXdu5cyeysDSCQ3hKgwcPbtu27aFDh+ClHD16FFnCJ7CFX4qxBlQRmzI3N58yZQrCQQCFSuCbLVu2DFEjyAIJTtrChQsdHBwE9HRIBKpJAGMC/kwwbjD1QMBnngYQ0JCZAQTjFRaD+vfvb2Zm1r179zVr1mCcL3dFDL2mRASqSkCexxCwkqVJCLqTmJg4c+bMI0eOYLkZh/wJK8iYIB04cIBfKVcyeURScLnhEhw8eJAxFB9WTP0Z+Ut7fClaWlpi6lO2AByny5cvlw19oHCTJk1WrlyJWBMSTsRyY69eveAePHr0CHGVu3fv4q8Ieib9/vvv7du3RxgE/gb8qOvXr0N/+vTpLVu27N69OzIyEosQ7dq1g1IgwZ+Be1BuWrt2rUBhgcOoqCgsf3bt2pXRIxDUs2dPRsYe1oaEhDD31JXNgneHMgUFBaGhofxnQWayEHF69+4dDlEMCU4dGmKycChM4nA4x48fh88Gb5C/PDqrqKjIryGZCNQkARpAGNpyMoAgIq2pqUljDnPRaS8SAjSGMBilfQzBLAUrswsWLGjTpg3TI94eS8CjRo3avn07Zok8pbwJcu4RScflxicYDgmCDwjj3Lt3b8yYMZXajdgIypcttmfPHszydXV17ezs4MmgNqaMjo6OgoKChoYG/hiQoITPgygQYhctWrRwcnLatm3b4cOH8/LykIXk7OyMmAZiIIgyDR06FI4QlPHx8TgXMRCsSdvb2yM8AqVAsrW1Rcyk3OTx+c+l+E+EAaqqqrCkc+fOK1euZLLgwDRs2JCRsYeMZdHk5GTIZbOggR65xcXFKAmZSZCZLGaPQ0aPPWRGCVmYhMo/fvwI8sIUpjJEoMYI0AAiPwNISkoKAvjTpk2rsU8XNSQPBGgMkY0xZMOGDVgrKff+HUwI0ccBAwbIw+f5S30kj+hLZCRIr6en17dv30OHDiFSBAGHlRrH5XJ5N7/xF+7SpUtMTMyNGzeGDBny5MkTOBj4+uQvwJMRS/Hy8kJ8g0mIwGB1AYEUpoCjoyMjYA/52bNnEIYNG5abm4sQM3yhc+fOwT+BUiCpqak1/8IGr0ygMO8QQSrEo44ePXrp0iXerXHI5e8jusyvEcjiP+SXcRb/Ib8skIXKK04ojwL8NeBQkhLZIqcEMGJg3KABROYHkIyMDFxoCwsL3o8t5fQTT90WNQEaQ2RgEoJJ3datWzGvKztLuXjx4s2bNz09PUX9wZGy+sgjko4LNnHiRHyOMaeBIIzFcFFMTU3LLamkpARHCBGea9euId4Cj6igoKBsSfg/WGjkBXPCw8MjIyPNzMzKloSG+QMzMjJ68eLFn3/+Cbdn+vTp8L6Ye9hQgJe+7q451IyveYR0169fv3z5csR5UCHiUfwxnKSkJCx+IPxVbhYCPtBjWEcoTOAsJgu1oUC5WdALkxo0aFC/fn2QF6YwlSECNUkA44acDSCf0ZWHASQzM7N3795YwMJqFAb5z/pPB0Sg2gRoDJH2SQhmX5gmNW3aFDMlpFevXv34448mJib4aMAdio6O1tbWhh4JGiyau7i4QJCrRB6RdFxufNXBb0FCrKZSi/HhjoiIwAe60pL4C0ckh7kXTllZmfE0mLOsra0RRBII56AMkxsYGMgI2EPm3SoGX+jbb7/dtm2br69vQEAAzEAB/vR1d83xakAcBl4W9tAgNsX8fgkyEhw8VM5MBcpmIRyMMrDfxsaG/yzITBYcSDhFOEQxJKC+ffs2k4VDYRKbzR4xYsSRI0fevHnDXz47OxuQ+TUkE4EaJkADCAMcQ4dMDiCIDvXs2RPjG9Z6VVVVmc7SXm4I1ERHaQxhKEvvGDJ27NhHjx7xlrkNDQ0XLFjg7e2NfmGJnD8Lmi1bthz89PN1HMpJIo9IOi40IhsIPiBBKGtxfn4+ghuJiYkPHjxYu3btgAED+vXrN27cuLIl4fTv3r0bwdO4uLjLly8vXry4W7dumpqaKImlAj8/P1SSXPpTnJ9//hkuzYwZM/D3g+gQvmh/+OEHFGPSvXv3fvvtt5cvXyIidOrUqdmzZ0OPRej9+/c/fvw4Jibmr7/+gndkbGwMPX+CUsDL4h2We9ccHIyTJ0+i46gTDS1atAheB7OG4eHhgUWOefPmIffAgQNoev78+UxbsOfatWsbNmx4/vw59j4+PnPmzGGyUH7fvn0oj7Pmzp0bHx+PepCFMBfKgB5WWNEFd3d3dXX17777DlnCJ5yO1eiOHTsePnz46dOn4IaGOnTokJWVhUpSU1MBE3rICKZBfvfuHWQkCDiMioqCDDcSMgpDpkQEREIA4wY+8EgQylZIAwj+TqV3AEF0CO4QVl7QBbhGGEyQ+Je3yl5x0hCBqhLA0IEBBAlC2XNpDJH8MURXV7ct34blY6wCt2zZElcTAl9OW2gQSsIyMQTJS2K0iDwiMcIVbdXwW5DKrfPq1auNGjWCS4NVnFu3biFEc+HChXKHLYSYDh06hK/P1q1bw8PBIfwNps6VK1fCTTIzM2vQoAE07du3R5AEc/rOnTtbWVktXboUTUDPJARb4VZBv2rVqk2bNqEe6BFy3bt3r7OzM869cePGP//8g79A6KuT4PzApbG3t0edy5cvh4cGf4apEH+ucOoQjILLATPQa15YzMnJ6fjx41jhwFnw006cOAEvhTkLDpWnpyc6i7PgAaIGntv2008/wSmaPn06Yk3wDOFTaWhoMGcJua9fvz4iZmPGjFm9ejXgAN2xY8d+//13LS0t1ACvEsq+fftCHjlyJORdu3ZBRoKAwylTpkDu0qULZBSGTIkIiIoARg+kcmujAUSqBxAMxUFBQREREVhdwijNpISEhHKvNSmJwFcTwACCVO7pNIZIxRhS7rUjJY8AeUQ8FJIoYDZ//vz5spZBiSxGDwFhXKTCwsKkpKTr169PmDCBzS7/yiLG4u/vn5KSkpubGx0dvXXrVp7T4uDgEB4enpeXh6qYmu3s7OAVYAESIQ5kIaDE6LHHsAg3A6uSWIxEQAYapIEDB8IfSE9PR3nEl1xdXaGscvr8BDgw+L5nbHjy5Ans578npGvXrgiLYXUqNjaWCfXwzh46dOjz588LCgqwpjV48GCeHgJ8Hvh+OAs1w/2AhkkIE8Hpevv2LSDAG8SSCaOv0h7Oz7p1616+fIn6AQeXA1hQMypB3Als+ROagx4JAr8eMgpDT4kIVIcABgeMFWVrgBJZjB4CPm9INIAwQJi9FA0giPzj8gkkLJAxHaE9EagOAYwPGC7K1gAlshg9BObjR2MIA4TZS+AYwhjG7DELwhIwIwvscTUxbxFQysNh+fNmeeg59ZEIEAEiUMsEqHkiQASIABEgAkRAAgiQRyQBF4FMIAJEgAgQASIg2wSod0SACBABCSZAHpEEXxxJNa2CYKukmixKu7S1tel1H6IESnXJGQEaQGgAkbOPPHVXxASkYAwRcY8/q44mIZ/hEN0BeUSiY0k1yQcBDEbLly+Xj75SL4kAERAxARpARAyUqiMCckaAxhAxXXDyiL4SLJ1GBIgAESACRIAIEAEiQASIgAwQkCOPiMvlZmRkYC8Dl426QARqkgC1xRDA6EFjCIOC9kSACFSVAA0gVSVG5YlATRKQI48oMzNTS0sL+5rkS20RASIgMwQwetAYIjNX80sdIT0REBMBGkDEBJaqJQIiISBHHpFIeFElRIAIEAEiQASIABGQAQLUBSJABHgEyCPioSCBCBABIkAEiAARIAJEgAgQAVkjUGl/quYR5efnV1ojFSACRIAIEAEiQASIABEgAkSACEgLgco9Im9vb3d3dzMzMyUlJXV1dQ0Nja5du65Zs+bNmzfS0kmyUz4IUC+JABEgAkSACBABIkAEiECVCVTkEZ0/f75ly5bjx49ns9kLFiw4e/YsvKP9+/fDI/Lx8WnWrJmHh8eHDx+q3CadQASIgDQQyC0oKijipGTlY59TUCQNJte+jTUFrfZ7ShYQASIgcgI0gIgcKVVIBIQkUJFHtHbt2o0bNyIWdODAATg//fv3d3NzGz58+MqVK2/duhUdHa2pqXn48GEhW6JiRIAISBGB/MLiXbdjbNdct1ntg/3u2zHQSJH9tWIqEBG0WiFPjco0AXnpHA0g8nKlqZ8SSaAij+j+/fvwghAgKtfyxo0b//bbbz/++GO5uaQkAkRAeglgnXKHb/TWG5EZuSWhIewhQ0ORogquKUGrAA5lEQEiUDEBGkAq5iM3udTRWiNQkUdUa0ZRw0SACNQqAQU2+6B/rIAJ0CiyacQQoPL/QwWC9n8YJBEBIlA1AjSAVI0XlSYCoiYg7Pzm9evXO3bsWLhw4Ty+TdTGyEd91EsiIPEEMvMKERcSMBMa6AWUdMgjADhAxDtkBGigZ2TaEwEiQAS+RAADBYYLgVxooBdQ0iERIALiICCUR3Tjxo2WLVvCI9q0adOtW7cOHjx44MCBsLAwcRhEdRIBIlDrBDRUlTTVFAXMgAZ6AWUlh/KUDThAJNBjaKAXUNIhESACtU4gMTFxzJgxurq66urqHTp0CA0NZUx6//69u7u7oaEh9L17946MjGT0ZfdnzpyxsLBQUVHB/ty5c2ULVEmDgQLDhcAp0EAvoKRDIkAExEFAKI9o0aJFP/744+PHj1VVVTEEJCQkdO3addiwYeIwiOokAkSgdglk5xeFJXwc72giYMYEJ9MiDkdASYc8AsUcDhDxDhkBGoLGoJD9PfVQegh8/PjR2dlZSUnpypUrT58+xWqvtrY2zOdyuQMHDoyJiblw4cLDhw+NjY3d3Nyys7ORJZACAgJGjBgxduzY8PBw7IcPHx4UFCRQpkqHNIBUCRcVJgIiJyCUR/Ts2bPx48ejbUVFxdzc3Hr16q1cuXLDhg3QUCICRECWCGTkFY47cH/R2ccTnE1mu7bACiV6hz3k6S5m6sqCgSPkUmIIqCkrAhFAARc02EOGhqCBBiUiIFEEMIExMjI6ePCgvb29iYmJq6urmZkZLEREKDAwcOfOnXZ2dsytMVlZWceOHUOWQPL09OzRowfWi1u1aoU9aoBGoAwO8/PzM/g2aL6UpGwA+VI3SE8EpJaAUB5R3bp18VeNPiKOHB0dDQEpOTkZe0pEgAjIDIHU7ILv9gaGvvr4ITPvfUb+tK7NQpb0CP3FDXvIKkoKMtNTMXUEiAAqeLHb3Z+7BS1ygwyNmNqiaokAEfhqAhcvXrS1tR02bJi+vr6VldXevXuZqpipjqqqKnOooKCgrKx89+5d5pB/jxhRz549eZpevXr5+/vzDnnCunXrtD5t8MF4+nIFDBcYNDDe3oWxrHoAABAASURBVPu5e+Ai12G2TaAptyQpiQAREDmBL3pE/C05ODjcu3cPmr59+/74449r1qyZOHEilNBQIgJEQDYIJGXmjdwT8DgxQ7eu8vGpjq0baSK4oazI1q2ngj1k2eimuHsBUK9ScyZ5hfTY7KusINQAK26TqH4iQAQECMTExCAQ1KJFC29vbw8Pj1mzZjEvV0TAx9jYGDGfjx8/FhQUrF+//t27d2/fvhU4HYfQN2zYEAKTIEPDyPx7VJX+aUtISODPKlfGAILx9lRoQqcNt7zuxZVbhpREgAiIg4BQX9ibN2/u2LEjml++fDnCxCdOnMCQsX//fmgoEQEZIEBdeJOWO2J34Mv3WQ01VU5Mc7Aw1CQmX02geYN6b9NzX6flPX2b8dWV0IlEgAiIjwCHw7G2tl67di0CRNOmTZsyZQocJDSnpKR05syZly9f6ujoqKur+/r69unTB5EiZJVNLBaLp+RyuSzW/w95ehUVFU2+jaevWGjWoB4i9v7RKRUXo1wiQARESKByjygzMzM6Ovr169fJyckYIHbs2PHo0aOzZ8/CKRKhHVQVESACtUUgPiVn2K6A2OTsxtpqJ6c5NtfXqC1LZKNdNptla6KDvtyPTcVe0hLZQwSIQKNGjSwsLHgcWrduHR8fzxza2NiEhYWlpaUhNHT16tWUlBRTU1Mmi39vYGDAHxRKSkpCmIi/QHVkx2a6OB1LKh+zCyBQIgJEoAYIVOIRwflBELl37979+vVr3ry5j49PDdhETRABIlBjBKKSsobt9k9MyzXVq3vSw9FYt26NNS3DDdmRRyTDV5e6Jj0EvmSps7PzixcveLkICgks8mppaTVo0CAyMjIkJGTAgAG8kjzB0dHx+vXrvMNr1645OTnxDqspNNBQMW9YD5UExlCYCBgoEYGaIFCJR7Rw4cKmTZveuXMHg0LXrl1nzpxZE0ZRG0SACNQIgadvMkbsDnifkY9v3xPTHBAjqpFmZb8Re9P66GTIq49cLhcCJSJABCSKwNy5cwMDA9euXRsVFXX06NE9e/bMmDGDsfDUqVO+vr4xpQ/g7tGjx8CBA3lPUBg3btyiRYuYYrNnz4YXtGHDhufPn2OP9eI5c+YwWSLZO5npoR66cQ4QKAlJgIpVk0AlHhEcoT/++AMrH9bW1gcOHMB6SVZWVjWbpNOJABGQBAJhCWmj9gamZBe0bax5fKqjvsZ/j1eSBNuk3YZ2jbVVFNmp2QXRH2jAlPaLSfbLIAE7O7tz584dO3asbdu2q1at8vT0HD16NNPPt2/fjh07tlWrVrNmzYKAMowe+/j4eORCQMK86Pjx4wcPHmzfvr2Xl9eJEyeYn1sjSyTJ0azkxjn/aHqor0hwUiVEoHIClXhEycnJiBEx1eiWvtr5w4cPzCHta5wANUgEREbgfmzqmH1B6bmF1k21j0x20KmrLLKqqaI6dZQV2R2MSl74eD/2I/EgAkRAAgn069cvIiIiLy/v2bNnU6ZM4VkIRyghIaGgoODVq1dwlpSV/z82InYE54dXcujQoQgQoSRqGDx4ME8vEsHBVJfFqhP9ITspI08kFVIlRIAIVEygEo+IxWJlZmYyrxdLT0/nP4Sy4qoplwgQAckkcCfyw7gDQVn5RY7NdP+a1FFLTUny7JR6i+xNSx6uEBxHD1eQ+ktJHSACNU9AS12praEW2g2gnxKBAiUiIH4ClXhEXC7X3Ny8fummo6OTlZVlZWWFI21tbezFbx61QASIgIgJ+Dx9P8krJK+Q49KywcEJdnVVFEXcAFVXSoAerlCKgXbCEKAyRKAcAk7MjXNRKeXkkYoIEAFRE6jEI7p169ZNvu3Wrf8Ob90qEURtDNVHBIiAeAn8++iNx9+hBcWc3m0Mdo+1UVVSEG97cly7tXF9NqtOYlrum7RcOcZAXScCROArCfz3U6IYGfsp0VfSoNOIgLgJVOIRda1wE7dxVD8RIAIiJHA69PWsYw+LONyBHQy3f2elokjukAjpClZVT0WxTelNL3TjnCAaOiYCREAIAogzK7JZCam5Cak5QhSnIkSACFSLQCUeEX/dT548efRpg8yf9ZlMB0SACEgegb8CX80/Fc7h1hlpZ7RpeAdFhSr87Uteb6TDIkxoYOj9WPopETBQIgJEoGoE6qooMg9oCYimG+eqho5KE4GvIFDJrOjOnTt2dnZMvQ4ODlZWVh1Kt/bt2/sI8bZWPz+//v37Gxoaslis8+fPM/Vg7+7uDg0voWYoeSkgIKB79+5169bV1tZ2cXHJzS3/npMdO3aYmpqqqqra2NjATt7pJBCBmiMgJS3t9YtZev4xjJ3gbLJucDsFNgsyJXETYN5KRDEicXOm+omArBL476dE9AxuWb3A1C9JIlCJRwSvY+zYsTyDb926FRsbGxMTM3v27J07d/L0XxKys7MtLS23b99etkDv3r3fftouX77MKwB3CFk9e/a8f/9+cHDwzJkz2exyjDxx4sScOXOWLFny8OHDzp079+nTJz4+nlcJCUSACDAEuFzuVp/INZef4XBGN7Nl/SywEgFZWtKXVlXOnj3bq1cvPT09dCcsLIy/O1hGgZKXRo4cyZ/LL2N8E+uqiq1JyePmXr7P+phdwN+utMpkNxEgAjVLwNFMDw36R6dgJIdAiQgQAfERKMfZ4G8MPom9vT1P06RJE2NjYxMTE7hJcF14+i8JcFRWr15d7nP6VVRUDD5tOjol8wamkrlz586aNWvhwoVt2rRp0aLF0KFDUZLJ4t9v3rx50qRJkydPbt26taenp5GRkTAeGn8NJBMBmSeAL9H1V59v8XmJns7vab6gVyv4CZClKH1pVQV6Z2fn9evXl9uXKVOmfFpvebt79+5yy9TAqopePZVmDeqi9ZBX9FYiYKBEBKSHgGRYatVUW0WRnZSZH/0hWzIsIiuIgMwSqMQjSkxMbNSoEdP7Q4cOwYVhZPgwKSnVurHV19dXX1/f3Nwcc5ekpCSmWghBQUHQOzk5NWzYsGvXrnfv3mWy+PcFBQWhoaGII/GUkP39/XmHPCE/Pz+Db+PpSSACMk+Aw+Euv/hk9+0Y9HRpP4uZ3VtAkLr0pVUVLMosW7bMzc2t3B6pq6tjsGKSlpZWuWWEXFWp5hhiXxomohvnyr0EpCQCRKBiAqpKCrYm9VEmgG6cAwVKYiJA1ZYSqMQj0tDQiI2NLS1ZB6EezDMYGUpNTU1G/oo9ZjlHjhy5efPmpk2bEIbq3r07ph2oJyamZPa2fPlyuElXr161trZ2dXWNjIxEFn9KTk4uLi6Gy8RTQn737h3vkCesW7cO8yEmIY7E05NABGSbQDGH+/OZR4cCXrFYddYOajepk6ls91egdxhe9PT0EGeeP39+ZmamQC4OhV9VqeYYYlfqEdHDFcCcEhEgAl9BwOnTjXNfcS6dQgSIgPAEKvGIOnbsePjw4bLVeXl5IausXkjNiBEj+vbt27Zt2/79+1+5cuXly5eXLl3CuRwOB/tp06ZNmDDByspqy5YtLVu2PHDgAJRlE4v1/1+Hc7lcFuv/h7zCixYtSv+0JSQk8PTyJlB/5YpAYTFnzomwU6Gv2aw6m4dbftexqVx1f/To0ceOHUMUeunSpWfOnMFSTtnuC7+qUs0xxN605Jbgx4npOQVFZc0gDREgAkSgYgKOpe9pDYhJ4XC4FZekXCJABKpDoBKPaN68eYcOHVqwYEES341tP/74499//42s6jTMO7dRo0bGxsaRpYEgyNBbWFhgz6TWrVuXfWQCVn8VFBT4g0IwD2Ei5hT+vYqKCmJZvMSfRTIRkEkC+UXF0488+Cf8jSKbtf0760FWTWSymxV0ChFmNzc3LLiMHDny9OnTPj4+Dx48KLc8i/X/ZZQvrapUcwxpUl/NQFO1iMMNi08r1wZSEgEiQAQqINC+sVY9FcW0nMJn7zIqKEZZRIAIVJNAJR5Rt27d/vjjj23btsFXqV+/vo6ODoTt27d7enp27969mm0zp6ekpCB6g2pxaGJiYmho+OLFC8hMQvgI/hIj8/bKyso2NjbXr1/naSA7OTnxDkkgAvJJILegeMrh0OtP3ysrsveMs/mm3X8/ApRPGui1tbW1kpISs+CCQ14SflWFd8rXCSwWy640THQ/jt5K9HUI6ayKCFCezBNQVGAzoeYAeiuRzF9s6mCtEqjEI4Jt06dPj4qK2rhx46hRo7DmCgGHM2fORFalKSsrK6x0Q8nY2FiICPhAOX/+/ICAgLi4OF9f3/79+2N2MmjQIJTB7AHxKDhgWNlFK0uXLn3+/PmkSZOQheTq6gpnDAISIlT79u07cODAs2fP5s6di2o9PDygp0QE5JZAVn7R+IP3/V5+UFNSOOhu171VQ7lFwev4kydPCgsLmQUXnhJCTa6q2Jf+MJoergDslIgAEfgKAk6lN875y71H9BXo6BQiIDyByj0i1GVkZASvY0fpBgGHUAqTQkJCrEo3FIYPA3HZsmUKCgoREREDBgwwNzcfP3489vCONDQ0UAZpzpw5ixYtQiuWlpY3btxA8MfMzAx6pOjo6OTkZAhII0aMQJxq5cqVHTp08PPzu3z5ctlQEopRIgJyQiA9p3DMvqD7sakaKop/TbJ3bl7yFgsZ6DsWULCSgoS+8FZVIKempkL59OlTyIgqQ2Zuo8UogWEBIw8WXDAsDBs2DMOOs7MziiHVyqoKEyN68CqtsLjkd5IwgxIRIAJEQHgCDs10UTgoJoXGEHCgRATERKAijwiOSsWtZmdnYwm2gjIuLi7czzcvLy81NTVvb++kpKSCgoJXr15B88nF+q+mhQsXJiQkoHJ/f/9OnTr9p61TB1Oc5cuX8w4RvIImPz8/NDS0S5cuPD0JREDeCKRk5Y/aGxiWkKatrnRkSkfb0uebyQYE+DZwaZDQHd6qCuSLFy9C2bdvX8iIXUPetWsXZAR/sJLSq1evli1bzpo1q2fPnj4+PliFQRYS/KWaX1Ux19fQUlPKLSx+8oZ+BoCLQIkIEIGqEbBopIkxJLugOCIxvWpnUmkiQASEJlCRRzRu3LgePXqcPHkSy7QCFWJpdvHixc2bN//ST5YFytMhESACnxMQ2dH7jLwRewKfvs3Qq6dyfKpD+ybaIqtaAioqd1UFdrm7u3++2MJllkuwvHL79u2UlBSslURFRW3dulVHp+RpbzgFCWsoTDHISDWzqsJms2yNS94oEhxLPyUCdUpEgAhUjQDGEMfSMBH9lKhq4Kg0EagKgYo8Irg9AwYMWLZsWf369du0aQPvqH///gja6Onp2djYILxz/fr1sWPHVqU5KksEiIAoCbz+mDN8d0BUUpaBpuqJaQ6tDL7+LWGiNIvq+pwAc+OcHD9c4XMcdEQEiEAVCTg1L7lxzj/6vx8OVPFsKk4EiEDlBCryiJSUlGbOnPn8+fOgoKCpU6e2bdu2cePGWLLdvXt3YmLikSNHoKm8BSpBBIiAeAjEJmcP3xXwKiXpVP90AAAQAElEQVTHSEftlIejWYN64mmHaq0uAeZRUSFxqfRGkeqipPOJgKQTEIt9TmYlHlFI3Me8wmKxNECVEgG5J1CRR8SDY21tPXv27C1btuzatWv16tVDhgzhvxGFV4wEIkAEaozAy/eZiA69Sc9r1qDuqWlORjrqNdY0NVRVAm0NtVSV2B9zCqM/ZFX1XCpPBIgAEcCCVwMNlfwizkN6sxl9GiSIgEyZIpRHJFM9ps4QAekn8DgxfcTugA+Z+a0MNE5MdTTQUpX+PslyD5QV2VZGJT8lohvnZPkyU9+IgNgIsFgsJkwUQDfOiQ0yVSznBMgjkvMPQGXdp3zJIxD66uOovYEIOLRvonV8qgMWDiXPRrJIkADzUyJ6uIIgFzomAkRAOAKMR+RPbyUSDheVIgJVJUAeUVWJUXkiUJsEAqJTxu4PyswrsjOp//fkjtrqyrVpjYy1Lc7u2Jc+Ej047qM4G6G6iQARkFkCTmYlb5kLS0jLzi+S2U5Sx4hA7REgj6j22FPLRKCKBHxfJLkfvJ9TUNypud6hifaaqkpVrICK1xoBq6baCmxWYlouUq0ZQQ0TAR4BEqSNgJGOepP6akUcbnAcPcdf2i4e2SsNBKrmEeXl5UlDp8hGIiCDBK4+fjflcEh+Ece1lf6+8bbqyooy2EnZ7VJdFcW2hiXPRqcb52T3IlPPiIB4CTA3zgXQjXNVxUzliYAQBITyiDgczqpVqxo3blyvXr2YmBhUu3Tp0v3790OgRASIQA0QuBCWOOPog8Jibt92jXaOsVFVUqiBRqkJ0RKwK71xjh6uIFqqVBsRkB8CzI1z9FMi+bni1NOaJCCUR7R69WovL6/ffvtNWfm/Hy20a9du3759NWloxW1RLhGQYQInguPnnAgr5nAHWzfeOrKDsqJQf7YyDERKu0YPV5DSC0dmEwEJIeBY+laix2/S03MKJcQkMoMIyAwBoaZWhw8f3rNnz+jRoxUU/luZbt++/fPnz2WGAnWECEgsAa97sT+fieBy64zu2HTjUEtFBbbEmkqGVUyAiRFFJmV9zC6ouCTlEgEiQATKEmioqWrWoC6+DgJjU8rmkoYIEIHqEBDKI0pMTGzevDl/MxwOp7CQlij4kZBMBERPYKdv9PJ/nqLeyZ1MVw9sy2azIFOSUgI6dZWb69eD8fTDaEAQMlExIkAE+Ak4lT5xjn5KxM+EZCIgEgJCeURt2rS5c+cOf3unTp2ysrLi15BMBIiACAlwudzN115suFoSiZ3l2mJJ39YsFrlDIgRcO1UxYSLyiGqHPrVKBPgIYKl3zJgxurq66urqHTp0CA0NZTKzsrJmzpzZpEkTNTW11q1b79y5k9EL7L28vFifb9V/9JRAE+UeMg9X8I9OLjeXlESACHw1AaE8ol9//RUDxIYNGxAaOnv27JQpU9auXbts2bKvbpVOJAJEoAICcIfWXHq27WYUyvzcu9W8Hub45oVMSdoJ2JvWRxfu01uJQIESEag9Ah8/fnR2dlZSUrpy5crTp083bdqkra3NmDN37tyrV6/+/fffz549g/zDDz9cuHCByRLYa2pqvuXbVFVVBQqI49ChmS6qffk+60NmPgRKREBKCUig2UJ5RP379z9x4sTly5cxLYMjhGHin3/+6dGjhwT2h0wiAtJOgMPh/nL+8b67sejI8v4W37uYQaAkGwSYGNGTxPScAnrHomxcUuqFVBLACq+RkdHBgwft7e1NTExcXV3NzP4baQMCAsaPH+/i4gL91KlTLS0tQ0JCyu0kZkQGfFu5ZUSurF9X2aJRyXP8A2Lop0Qip0sVyjUBoTwiEOrVq9ft27cRTc7Jybl7927Pnj2hpEQEvkyAcr6GQFExZ/7p8CNB8SxWnd+GtHd3Nv2aWugcSSXQpL66oZZqEYf7MD5NUm0ku4iA7BO4ePGira3tsGHD9PX1rays9u7dy+tzp06dkJuYmIhY/a1bt16+fIn5Dy+XX8CMyNjYuEmTJv369Xv48CF/Fk/Oz8/P4Nt4+uoIzI1zAXTjXHUg0rlEoAwBYT2iMieSgggQARETKCjizD4edvZBogKb5Tmiw3A7IxE3QNWJi0AV6mWewX0/NrUK51BRIkAEREogJiZm586dLVq08Pb29vDwmDVr1uHDh5kWtm3bZmFhAT9HWVm5d+/eO3bsgI/EZPHvW7Vq5eXlBd/p2LFjqqqqzs7OkZGR/AUYed26dVqfNkSlGGU1907NS26c84+mGFE1QdLpROAzAkJ5RGw2W6G87bOa6IAIEIFqEMgrLP7+79BLEW+VFFh/fmc9oEPjalRGp0ouAebGOXq4guReIbKsEgKykM3hcKytrdeuXYsA0bRp06ZMmQIHiekYPKLAwEC4OqGhoZs2bZo+fbqPjw+Txb93cHAYM2aMpaVl586dT548aW5u/scff/AXYORFixalf9oSEhIYZTX3GEMU2KxXKTmvP+ZUsyo6nQgQAR4BoTyic+fOnf20nThxYuHChY0aNdqzZw+vFhKIABGoDoGcgqLJh0JuPE9SUWTvHWfbu61BdWqjcyWZgL2pDsx7GJ9WWMyBQIkIEIGaJ4A5DAJBvHZbt24dHx+Pw9zc3MWLF2/evLl///7t27efOXPmiBEjNm7ciKwKEpvNtrOzKzdGpKKiosm3VVCJ8Fkaqkrtm2ihfACFiUBBvIlqlyMCQnlEA/i2oUOHrlmz5rfffsMKihxxoq4SAbERyMwrHH/g/t2oZHVlBa8J9i4t9cXWFFVc+wSaN6inra6UW1j8ODG99q0hC4iAXBJwdnZ+8eIFr+svX740NjbGYWHpBg8HMpMUFBQ4nEoWL7hcblhYGLws5pQa2H/6KRHdOFcDsKkJeSEglEdUFkbHjh3LjSOXLSnpGrKPCNQqgbScgtH7goLjPmqoKv49uaOjWckN4rVqETUuXgJsNsvWuCRMFBxHPyUSL2qqnQh8icDcuXMDAwPXrl0bFRV19OjRPXv2zJgxA4URzunateuCBQt8fX1jY2O9vLwOHz48aNAgZCGNGzdu0aJFEJBWrFjh7e0dExMDX2jSpEnYe3h4QF8zyan0Pa3+0SlwxmqmRWqFCMg8ga/xiBBW/uOPP5o0aSLzdKiDRECsBD5k5o/cE/jodbpOXeVjUxysm5a8rEaMLVLVkkHgv7cSxX6UDHPICiIgdwTs7OzOnTt37Nixtm3brlq1ytPTc/To0QyF48ePIxeHFhYW69evX7NmDc/ViY+Pf/v2LVMsLS1t6tSprVu37tmzZ2Jiop+fn729PZNVA3sb4/rKCux3GXmxydk10Bw1QQTkgYBQHlH9+vV1Pm2QNTQ0Dhw48Pvvv8sDIOojERATgbfpuSP2BDx/l9lAQ+XEVIe2jUvuCxdTW1StRBGwMymJEYW8SuVwuBJlmEwZQ50hAhUS6NevX0RERF5e3rNnz6ZMmcIra2BgcPDgQTg5WPx9/vz5vHnzWCwWk4vAEaJGjLxly5ZXr17l5+cnJSUhWOTo6Mjoa2avqqRgbayNtgLorUSgQIkIiIKAUB4R/vJ5adu2bf/++y8Ggm+//VYUBlAdREAeCSSk5gzfHRDzIdtQS/XkNMcWDTXkkYK89hner5qSQlpOYdSHLHllQP2WfQK5BUUFRZyUrHzsc+iVxKK+4Lwb50oqpn9EgAhUm4BQHpG7u/v4T9vYsWN79+6NSFG1m6YKiICcEoj+kDVsV0BCaq6xrvpJD0dTvbpyCkJeu62kwLZqWrK+S28lktePgOz3O7+weNftGNs1121W+2C/+3YMNLLf7RrsIfNwhcDoFAo11yB1akoCCIjNhIo8okeVbWKziiomAjJL4Pm7jBG7A95l5DXXr4foUJP66jLbVerYlwkwN87RwxW+TIhypJgAokM7fKO33ojMyC1CN7CHDA1FikBDVKl9E211ZYWU7IKXSZmiqpPqIQLyTKAij6hDhw5WVlYdvrBZWVnJMzjqu/gIyHDNj16njdwTmJxVYNFI88RUh4aaqjLcWepaBQSYtxIFx9Lj5iqARFnSSkCBzT7oHytgPTSK7IqmHALl6bBiAsqKbGZhxT+KnsFdMSrKJQJCEahoeIqNjY2JiYn9whYTE1NpC35+fv379zc0NGSxWOfPn+eVd3d3h4aXHBwceFkuLi48PYSRI0fysviF5cuXI5eXDAzojZb8eEiWRAIhcamj9wal5RR2MNI+NsVBt56KJFpJNtUIAaum2ops1pv0vNcfc2qkQWqECNQcgcy8QsSFBNqDBnoBJR1WhwBz45x/NHlE1aFI5xKB/whU5BEZV7b9V8eX/8vOzra0tNy+fXvZIr179377abt8+TJ/gSlTpnzKebt7927+LH65TZs2vGIRERH8WSQTAUkjcC8qeez++5n5RR1Ndf6e3FFLXUnSLCR7apKAurJim9KnC9KNczWJndqqGQL1VBU11RQF2tJUU9RQpXFPgEq1DpmHKwTFpBQVc6pVEZ1MBIhAnToVeUQCfJ4+fXr16tWLfJtAgbKHffr0Wb169eDBg8tmqaioILDDJB2dkmfR8sqoq6szeuy1tL74SGJFRUUUYFKDBg14p/ML+fn5GXwbfxbJRKDGCNx8/n6CV3BuYXHnFnpeE+zrqSjWWNPUkMQSsDcpef0UPVxBYi8QGfZ1BLzuxfq9/DDe0UTg9AlOpkUcmrgLUKnWoYWhpqaqIhbanrzJqFZFdLIYCFCVUkdAKI8oJiYGoZ62bdv27dt3YOk2qHSrTm99fX319fXNzc0REUpKSuKv6siRI3p6eggBzZ8/PzPziz8ZjIyMNDQ0NDU1HTlyJCzkr4Enr1u3Dj4Vk4yMjHh6EohAjRG4HPF22l+hBUWcHhYN9423VVNWqLGmqSFJJsD8BoA8Ikm+RmRblQhwONw1l54u/+fp+isvpnRuNtu1BRMpwh7ydBczdWVaDKoS0UoKK7BZDs10UYhunAMESkSgmgSE8ohmz54Nx+P9+/eI3jx58sTPz8/W1hYuzVe3jdgR3J6bN29u2rQpODi4e/fu+fn5TG2jR48+duwYKl+6dOmZM2fKjS+hZMeOHQ8fPuzt7b1379537945OTmlpJRzK+2iRYvSP20JCQk4UXSJaiIClRM4++D1zKMPCou5/S0Nd4y2VlEkd6hyaHJSgvGIoj9kp2T9N/rJScepmzJJIK+w+IdjD/feKXmgwhCbxhqqitO6NgtZ0iP0FzfsIaso0egn+iv/6adEyaKvmmokAnJGQCiPKCAgYOXKlQ0aNGCXbp06dULsZdasWV/NasSIEQg3IejUv3//K1euvHz58tKlS0xtCBm5ubkhC5Gf06dP+/j4PHjwgMni38OnGjJkSLt27VCYOffQoUP8BRhZRUVFk29jlLQnAjVD4GhQ/I+nwjncOsNtm3iO6KCkINSfW83YVsVWqLjoCdSvq9xCvx7qDY77iD0lIiC9BD5mF4zZF3Qp4q2SAmvryA7TXZqzWCxEI7OwYAAAEABJREFUhJQV2br1VLCHLL29k2TLHc30YF5wXGpBEd2RCBKUiMDXExBqilZcXFyvXsk3t56e3ps3b9CasbHxixcvIFQ/NWrUCLVFRkaWrcra2lpJSancLP7CdevWhWtUaTH+U0gmAuImsO9OzOJzEVxunfGOxusHt1dgs8TdItUvdQTsTEt+QonZjNRZLtMGU+eqRiA+JWfILv+QVx8RFzo8seOADo2rdj6VrgYB84b1dOsq5xVywhLSqlENnUoEiIBwT1ZAxObRo0eg1bFjx99+++3evXsIGTVr1gya6qeUlJSEhAT4RWWrevLkSWFhYblZ/IXz8/OfPXtWaTH+U0gmAmIlsP1m5OpLz9DEtK7Nln/bhk3uEFhQKkPA3oQ8ojJQSCFVBMIT0gbvvBfzIbuxttqZ750czUp+1iJVPZBuYxGLY5j7R3/djXPS3X2yngiIkIBQMaJffvmFwykJyK5evfrVq1edO3e+fPnytm3bKrUjKysrrHRDydjYWIjx8fFQzp8/PyAgIC4uztfXt3///gg9DRo0CGWio6Pha4WEhCALTQwbNszKysrZ2RlZSK6urrwHeaOG27dvo86goKChQ4dmZGSMHz8eZSgRgdolwOVyf7v6fOO1lzBjXg/zhb1b4RsLMiUiUJYAEyN68iYjO7+obC5piICEE/B5+p555XQbQ82z053MG2pIuMEyaZ5T6Y1z/vRWIpm8utQpURKopK5KPKIOHTrACbG3t2eecIC40NOnT5OTk5OSkrp3715J3XXqwLeBS4OEkvPmzYOwbNkyBQWFiIiIAQMGmJubw43BHt6RhkbJSKqsrHzjxo1evXq1bNly1qxZPXv29PHxQXmcjgR/CU1DQHr9+vWoUaNQDIbhrMDAQGNjY+gpEYFaJAB3aMU/T3f4RsOGJd+0nuXagtwhoKD0JQKNtdWQijncB/H0U6IvQSK9hBL4K/DV1L9CcguLu5o3ODHNsaGmqoQaKutmOZXG5R7Gf8wtKJb1vlL/iIAYCVTiEXXs2BEBIkNDw++++w6+CmOIjo6OkPM8FxcXzBH5k5eXl5qamre3N3yqgoICRJyg4T0XGwIiPykpKfn5+VFRUVu3bkVbTKPYI3C0fPlyCEjHjx9/8+YNakhMTDxz5oyFhQWUlOSdQK32H/PaRWcjvPzjYMWqgW2ndBHNbaWojZIME7ArfStRcGyqDPeRuiZjBDgc7rorz5aef8zh1hlpZ7RvvC29Y60WL7GxrrqhlmphMTfkFQ0jtXgdqGmpJ1CJR7R79+53797t2bMHe0RsTExMVq5cGR8fL/X9pg4QAZESKCrmzDsZdjw4gc2qs3GY5VgHY5FWT5XJLAHmxrn7cVWfysgsEuqYRBPILyqefSJs9+0YWDm/p/m6we2UFCqZSKAkJfERwAq1I904Jz6+VLPcEKh8IFNVVR07duzNmzcRtIGwf//+Zs2a9erV6+TJk3JDiTpKBCoigCnCjKMPLoS9UWSzto2yGmrTpKLSlEcE+AjYlz5c4WF8WgE9PJcPC4mSSSA9p3Ds/vv/hJeMdZuHW87sXlM3BksmDomxyqn0xjn6KZHEXBAyRCoJVO4R8bplamq6atWquLi448ePh4SEjBo1ipdFAhGQWwJ5hcVTD4d6P3mvrMDeNcamX3tDuUVBHf8KAs3169VXV8ov4kQkpn/F6XQKEagxAgmpOUN2+d+PTdVQUTw00X6wNS391Bj7ShpyLPWIIl6nZeQVVlKUsiWfAFlYSwSq4BHBwlu3bo0fP97d3b24uHjKlCnQUCIC8kwgO79owsHg2y8/qCqx97vbulk0lGca1PevIMBisWxLw0TBdOPcV+CjU2qKQMTr9ME7/aOSshppqZ763tG5ecmLQWuqcWqnEgKG2mqmenU53Dr3Y+j+20pYUTYR+BIBoTyi+Pj4lStXNmvWzNXV9dWrVzt27Hj79u2uXbu+VCnpKyZAubJBID23cOz+oICYlHoqiocnduzcooFs9EuieuHn59e/f39DQ0N4DufPn+fZdvbs2V69eunp6UEfFhbG0/MELpfbp08f5PKfxcuFsHz5cuTykoGBAZS1kpgb5+jhCrUCnxoVhsCt50kj9gR8yMxvZaBxbrpzKwNNYc6iMjVJgAkT0Y1zNcmc2pIxApV4REePHu3Rowd8od27d48YMeLly5e3b98eN26cmpqajIGg7hCBKhFIzS4YvS/wQXyapqri35M72puWvGqzSjXISeFqdjM7O9vS0nL79u0C9UDv7Oy8fv16AT3v0NPTE94O77BcoU2bNljcYVJERES5ZWpAyTxcIeTVRw7WeGugPWqCCFSFwNGg+MmHQ3IKiju30Dvl4WigRU/Zrgq+mirrVHrjnH90ck01SO0QAVkjUIlH5O7uXq9ePSyyJiQkrFu3rnnz5rIGgPpDBKpOICkjb+SegMeJGbp1lY9PdexgpF31OugMoQggzrN69erBgwcLlB47duyyZcvc3NwE9MxheHj45s2bDxw4wBx+aa+oqIjQEJMaNCg/xJefn5/Bt32pquro2xhqqikpIOT4MimzOvXQubVOQMYMQKD1d+/ni89FFHO4w2yaHHC301BVkrE+ykx3HJrpoi/P32WmZOVDoEQEiEBVCVTiEb1+/frcuXP9+vVjsyspWdWGqTwRkFICb9JyR+wJfPk+q6GmyolpjhaGdAOJZF3JnJycUaNGIawEV6diyyIjIw0NDU1NTUeOHBkTU/I04bLlsRKk9WkzMjIqW6D6GiUFtrVxiVNNN85VHybVICoCBUWcuSfC/rxV8r7pOW4tfhvaHh9UUVVO9YicgF49lVYGJW+6D4ypoZ8SibwLVCERqF0Clfg5+vr6tWsftU4EJIrAq5TsYbsCYpOzG2urnZzm2Fy/nkSZR8aAwNy5c52cnAYMGAC5gtSxY8fDhw97e3vv3bv33bt3OCUlJaVs+UWLFqV/2hAqL1tAJBp7k5L13ftxH0VSG1VCBKpJABHL8Qfuny99o8DvQ9vPcTNnsVjVrJNOFzeBTz8lohvnxE2a6pdNAhV4RLLZYeoVEfhqAlFJmXCHEtNyTfXqnvJwNNat+9VV0YliInDx4sWbN296enpWWn+fPn2GDBnSrl07Nze3S5cuofyhQ4ewF0gqKiqafJtArqgO7UzroyrEiLhcLgRKRKAWCWCIG7bLP6D0mTEH3O2G2YolNFqLHZTVpp1K39MaEF3Oyo6sdpn6RQRESIA8IhHCpKqkl0Dllj99kzFid2BSZn7LhhonpjkYatPDRSqHVvMl4A5FR0dra2srlm4wAG6Pi4sLhApS3bp14RpFRkZWUEasWVZG9ZUUWO8y8l5/zBVrQ1Q5EaiYwJM36YP+vMfcFYwweBfz8n9fV3EllFsrBOxNddisOjHJ2W/TaRiplStAjUo3AfKIpPv6kfU1Q+Bh/MeRewJSsgvaNtY8PtVBX4OetlQz4KvcysKFCx89ehT2acP5W7ZsOXjwIIQKUn5+/rNnzxo1alRBGbFmqSkrtG2shSbux9bAbwDQDiUiUA6B2y8/DN8VwKz7nJvuTD+SLIeRBKu01JTalQ4jFCaS4KtEpkkuAaE8ombNmgncYZ+Wlgal5HaLLCMCoiMQFJMyZl9QRl6RjXH9o1Mc6tdVFl3dVFMlBLKyshjvBuViY2Mhx8fHQ05NTYX89OlTyC9evID87t07yAYGBm35NmiaNm1qamoKAcnV1XX7pwd5z58///bt26gzKCho6NChGRkZ48ePR5naSvYmOmia3tMKCJRqhcCJ4PiJXsHZBcXOzXVPfe8oK2HwWmFZa406lt445083ztXaFaCGpZiAUB5RXFxccXExfy+xpJqYmMivIZkIyCQBv5cfxh+8j1mCk5nu4Yn2mvTw2Zq9zCEhIValG5qdN28exGXLlkG+ePEi5L59+0IeOXIk5F27dkGuOEVHRycn//ez49evX48aNaply5aDBw9WVlYODAw0Njau+HSx5tqVekT34yhGJFbMVHk5BLhc7uZrL34+U/KU7cHWjQ+600BXDiWpUOF7CnYiRoRrCoGSnBGg7laLQCUeEaYdSGjB29sbApPOnTu3atUqExMT6CkRARkmcP3p+8mHQvIKOd1aNjjgbldXRVGGOyuZXXNxccFXO3/y8vKCqe7u7vxKyMuXL4deIEE/cOBAnhKLO7xix48ff/PmTUFBARZ3zpw5Y2FhwStWK4KtScnDFWI+ZCdn0etEauUKyGmjBUWcH0+Fb7sZhf7P6t580zBLZcVKJgYoKQMJf/hjxozR1dVVV1fv0KFDaGgo0ynEpWfOnNmkSRM1NbXWrVvv3LmT0ZfdM+OGiooKRg/Mi8oWqHkNhhElBVZiWm58ak7Nt04tEgGpJlDJwIfJBBKLxRo/fjwEJmFF9vr165s2bZLqnkul8WR0DRL4J/yNx9+hBcWcPm0Ndo+1VVVSqMHGqSm5I6CtrtyyYcnrREIoTCR3F7/WOpyRVzjRK/jsg0QFNmv94HbzerbE132tWVODDX/8+NHZ2VlJSenKlStPnz7FfEZbW5tpf+7cuVevXv3777+fPXsG+Ycffrhw4QKTxb8PCAgYMWLE2LFjw8PDsR8+fHhQUBB/gVqR1ZUVrYxK1lboxrla4U+NSjWBSjwiTunWtGnTpKSkUrFkl5+f/+LFi379+kl1z8l4IlABgVMhCbOPPyzmcAdZNf5jlJWcLJpWAKQWsuSvSTvTkqnM/Vh6K5H8Xfva6PHb9NzhuwLuRiXXVVbYP952pH3T2rCidtrcsGGDkZHRwYMH7e3tTUxMXF1dzczMGFPg6mAJGNFp6KdOnWppaRkSEsJk8e89PT179OixaNGiVq1aYY8aoOEvUFuyo1nJy8386adEtXUBqF2pJVCJR8T0KzY2Vk9Pj5FpTwRknsBfAXELTj/icOuMsjfaNMxSUUGoPxOZx0IdFDcBu9KfEtHDFcTNWRLrr3Gbnr3NGPSn//N3mQ00VE5Mc3RpqV/jJtRmgxcvXrS1tR02bJi+vr6VldXevXt51nTq1Am5iYmJXC731q1bL1++7NWrFy+XJ8Bx6tmzJ+8QZfz9/XmHPAEryBl8G08vPuHTT4mSYb/4WqGaiYDsERB2qnfjxo3FixdPnjx5It8mezioR0Rg9+3opReegMMEZ5O1g9qx2SzIlIhADRCwN9VBK0/epGflF0GgRATEROBO5IdhuwLeZeS10K93broT8+R3MbUlmdXGxMTs3LmzRYsW3t7eHh4es2bNOnz4MGPqtm3bLCwsmjRpoqys3Lt37x07dsBHYrL49+/evWvYsCFPAxka3iFPWLdundanDVEpnl58Qoem2qpK7OSsgsikLPG1Uq2a6WQiIJEEhPKIVqxYgbUQOEXJyckf+TaJ7BEZRQS+kgCXy/X0ebnuynOcP6Ob2bJ+FnJySz36S0kSCDTSUmtSXw3ByQev6MY5SbggsmnDqZCECQeD4XCXZV8AABAASURBVHU7NNM57eHUpL66bPazwl5xOBxra+u1a9ciQDRt2rQpU6bAQWLOgEcUGBiIMFFoaOimTZumT5/u4+PDZAns+b8g8PXBf8gruWjRovRPW0JCAk8vPkFFUYGJNvtH/fdcTfG1RTUTAVkiIJRHtGvXLi8vr6CgoPPnz5/j274EgvREQOoI4Pts/ZXnnj6RsHxBr5YLerVisSg6BBiUapSAPd04V6O85asxjHJbfSIXnH5UxOEO6GB4aKK9lrqSfCH41NtGjRohEPTpqE7r1q2ZF53l5uYuXrx48+bN/fv3b9++/cyZM0eMGLFx40ZeSZ5gYGDAHxRKSkpCmIiXyxNUVFQ0+TaeXqwC/ZRIrHipclklIJRHVFBQ4OTkJKsIqF9EgMPh/nrxyW6/GKBY2s9iRrfmEIRMVIwIiJCAXemNc/dj6a1EIoRKVZUQKCzm/Hzm0RaflziY7mK2ZXgHBBMgy2dydnZ+8eIFr+8vX75kXkdWWLqx2f+fGikoKHA4HF5JnuDo6Hj9+nXe4bVr1yRnmuRU+p7WwJiUYkSceSaSQASIQIUE/v9nX0GxyZMnHz16tIIClEUEpJcAvjN+OvPocMArxITWDmo3qZOp9PaFLJd2AsztLmEJaflFxRLYFzJJSglklj5l+2TIazarzppBbX/q3YoNSUo7Iwqz586dGxgYuHbt2qioKExv9uzZM2PGDFSMcE7Xrl0XLFjg6+sbGxvr5eV1+PDhQYMGIQtp3LhxixYtgoA0e/ZseEEbNmx4/vw59j4+PnPmzIFeElJbQ00NFcWMvKKnbzIkwR6ygQhIBQGhPKK8vDwEkTFM/PDDD/P4NqnoIRlJBCoggHXT2ccfng59rcBmbR5u+V1HOXr+bAVYKKu2CJg1qKtbVzm/iPM4Mb22bKB2ZYzA+4y84bsD70Qmqykp7BtvO7qjsYx18Cu6Y2dnd+7cuWPHjrVt23bVqlWenp6jR49m6jl+/DhyR48ebWFhsX79+jVr1nh4eDBZ8fHxb9++ZWREhFDy4MGD7du3h+N04sSJjh07Mlm1vldUYHdsVvKYloAY+ilRrV8NMkBqCAjlET169KhDhw5sNvvx48cPP21hYWFS00sylAiURyCvsPj7vx/8++itkgJr+yirQVZNyitFOiJQcwRYLJatCb2VqOaAy3xLL95lDvrz3rO3GXr1VE5Mc+je6v+PR5P5vlfcwX79+kVERGDB99mzZ1OmTOEVNjAwgJ+TmJiYm5uL+A8WgfFXyeQicATnh5GxHzp0KAoUFBSghsGDB0MjOcmx9MY5eiuR5FwRCbeEzAMBoTyiW+VtN2/exPmUiICUEsgtKJ5yOMTn2XtlRfaesbZ92jWS0o6Q2TJGwI4eriBjV7T2uuMflTx0l/+b9DzEHs9Nd2rfRLv2bKGWa5SAU+l7Wu/HphYWl/MjqBo1hRojAlJCQCiPSEr6QmZWQICyPiOQlV80/uD9O5HJ6soKXu523VrJ19sJP2NBBxJGgHkrUUhcKofDlTDTyBxpInDu4WuMcpl5RfYmOme+dzLSkcenbEvTBROprS0baujUVc4pKH70Ok2kFVNlREBmCQjrEQUHB//0008jR45EaJiXKqXi5+fXv39/Q0NDBJ3Pnz/PK+/u7g4NLzk4OPCyXFxceHoIaJGXJSDs2LHD1NRUVVXVxsbmzp07Arl0SAS+RCA9p3D0viAsnmmoKP41yd6pud6XSpJeOglIt9UWjTTrKitk5BW9eJ8p3T0h62uJAJfL3X4zcu6J8MJibr/2jQ5PstdWV64lW6jZ2iHAZrMcm+mibf+oFOwpEQEiUCkBoTyi48ePOzs7P3369Ny5c4WFhRBu3ryppaVVae3Z2dmWlpbbt28vW7J3795vP22XL1/mLzBlypRPOW93797Nn8WTT5w4MWfOnCVLljx8+LBz5859+vSJj4/n5ZJABL5EIDkrf+TewPCENG11paNTHGyMS35++qXCpCcCNU9AUYFtbVzyU6LgOHoGd83jl7oWBQ0uKuYsPhex8VrJU7andW22baSVqpKCYCE6lgMCjqU3ztFPieTgUlMXRUNAKI9o7dq1W7Zs+ffff5WVlbdu3frs2bPhw4c3bVr5U7ngqKxevRoxpbLGqqioGHzadHQ+m5Wqq6t/yjH4kt+1efPmSZMmTZ48uXXr1p6enkZGRjt37izbCmmIAD+B9xl5I3YH/Pcj46mO7ZpU7tXzn04yEagZAsxPiRDGrJnmqBWZIZCdXzT5cMix+wlsVp2VA9os6tOaDUlmukcdqQoB5qdEofEf8wpl5lH+Vek/lSUCVSQglEcUHR3dt29f1Aw3BmEfFos1d+7cPXv2QPPVydfXV19f39zcHBGhpKQk/nqOHDmip6fXpk2b+fPnZ2aWc99IQUFBaGhoz549eWdB9vf35x3yhPz8/Ay+jacnQQ4JJKTmDNsVEP0hu5GW6slpDi0NNOQQAnVZKggwHhFiRFwu/ZRIKq6YRBiZhBWfPQG+Lz6oKrF3j7Ud52giEWaREbVEwFSvbkNNlYIizoNXH2vJBGqWCEgTAaE8IsRwGM+kcePGjx8/Rv/S0tJycnIgfF3q06cP3J6bN29u2rQpODi4e/fucF1KqqpTZ/To0ceOHYO/tHTp0jNnzpQbX0pOTi4uLm7Y8P9PEYX87t07pgb+/bp16xBlYhLiSPxZJMsVgdjkbESH4lNzmuqon5zm2KxBPbnqPnVWughYNdVWUmC9z8hPSM2VLsvJ2toiEPk+c9AO/8eJGbp1lY9Pdexh8f/vx9oyidqtXQJYvHaiZ3DX7jWg1qWKgFAeUefOna9fv45+DR8+fPbs2YjqjBo1ytXVFZqvSyNGjEDQqW3btv37979y5crLly8vXbrEVIXK3dzckDVy5MjTp0/7+Pg8ePCAyRLY46+dp+FyufyHPP2iRYvSP20JCQk8PQlyReDl+8zhuwOYR9DCHZKUZy7J1TWgzlaFgKqSQrvGJbd03qefElWFm9yWDYxJGbLTPzEtt5le3XPTnTsY0VO25faz8FnHHf/7KRG9p/UzLHRABMolIJRHtH37dvgnOB8Oxvz589+/f4/Qzf79+6GpfmrUqJGxsXFkZGTZqqytrZWUlMpm6enpKSgo8AeFkpKSECYqW4OKioom31a2AGlknsDjxHREhz5k5rcy0DgxzdFAS1Xmu0wdlAECdqYlv64MjpWVhyvIwCWR1C5cCEsct/9+Rl6RjXH9M987NdWlp2xL6qWqcbuYnxKFv07Pyi+q8capQSIgZQSE8oh0dHQMDQ3RMzab/dNPP128eHHz5s3165c8DQnKaqaUlBREb+AXla3nyZMnhYWFZbOUlZVtbGyYsBVzFmQnJydGpj0R4BEIffVx1N7AjzmFlk20jk910KunwssigQhIMgF7ek+rJF8eybCNy+Xu9I2efTysoJjzTTuDI5M71q9LT9mWgGsjMSY0qa/eVEe9mMOltRWJuSZkiOQSEMojQkAGQRj+TsCNgZJfU66clZUVVrohNzY2FmJ8fDyUCDQFBATExcX5+vr2798fMZ9BgwahTHR09MqVK0NCQpB1+fLlYcOGWVlZOTs7IwvJ1dUV0SoISPPmzdu3b9+BAweePXs2d+5cVOvh4QE9JSLAI+AfnTx2f1BmXpGdSf2/J3fUpjdy8NCQIPEEbI11WKw6McnZCG9KvLFkYC0QKCrmLL3weMPV52h7cifT7aOsVZXoKduAQekzAkyYCN+Gn2npgAiIioAM1SOUR4SFKIEu5+fnI1AjoCx7CN8GLg0SsuDDQFi2bBlcqYiIiAEDBpibm48fPx57eEcaGiUP/kKdN27c6NWrV8uWLWfNmtWzZ08fHx+Ux+lI8JeSk/+7HXbEiBGenp5wnzp06ODn5wf3ydjYGGUoEQGGgO+LpAkHg3MKiju30Ds00V5DVYnR054ISAUBLXWllg1LRsUQ+imRVFywmjUyp6Bo2l+hfwfGw23+tb/FL/0s6CnbNXsFpKa1Tz8love0Ss0lI0Nri0AlHtG20o3FYiEgUyqW7LZs2TJjxoxWrVpVarSLiwu8Kf7k5eWlpqbm7e2NoFNBQcGrV6+g4T0FDsLt27cRgILHFRUVtXXrVh2+VxUhcLR8+XJeo9OnT4cGJUNDQ7t06cLTkyBaAtJY29XH76YcDskv4ri11t87zlZdWVEae0E2yzkB5hnc9HAFOf8YlO0+woYj9wTeeJ6kosjeOdpmgrNp2TKkIQIMAcYjevo242N2AaOhPREgAuUSqMQjgvODBJdm165dEJgEOScnB/tyayQlEahdAhfCEmccfVBYzO3bvtHOMTZ0J0ntXg7pal2irP3v4QoUI5Koq1LbxkQlZQ3ace/R6/T66kpHpzj0bmtQ2xZR+xJNQF9DtYV+PS63TlAshYkk+kqRcbVOoBKPKLZ069q1a3h4eKlYsnvx4gWCPB07dqx168kAIiBA4Pj9+Dknwoo53CHWTbaNtFJSqOQTLnA6HRIBySFgX/pwhadvMjLzCiXHKrKkFgkEx6UO2en/+mOusa762enONsbVer5RLXaEmq5JAp9+SkQeUU1Sp7akj4BQ88Vbt27V//RkueLi4rCwsI8fP0pfX8liWSdw8F7swrMRWAwb49D096HtFdgsWe8x9U+WCRhoqRrpqHG4dR7Ep8lyP6lvwhH499Gb0fuC0nMLOxhpn/3eyVSvrnDnUSl5J+BopgcE/tFy7RGBACUiUDEBoTyiOXPmMG8fgjvUpUsXa2trIyMjX1/fiqumXCJQkwT+vBW14p+naHFKZ9NVA9rS74yBgpK0E/jvp0R0u4u0X8jq2c/lcvf4Rc88+rCgiNPTouGxKQ669CKB6iGVq7MdmpU8uDIqKSspI0+uOk6dJQJVIiCUR3Tq1ClLS0vU+88//8TFxT1//hw+0pIlS6CRmESGyC8BTBc2XXvxu/cLIJjt2mLxN61ZLIoOAQYlqSfA3DgXHEsxeam/lF/dgWIOd/nFJ2svP0cN7k4mO8fYqCnTU7YBg5KwBLTVldsYaqJ0QAyFiYCBEhEon4BQHlFKSoqBQcnPNy+XviPI3Nx80qRJERER5VdJWiJQgwTgDq2+9OyPm1Foc2GfVnN7mLNYMu8Ooa+U5IIA83CFsNdp+UXFctFh6uTnBHILij3+Dj0U8ArqX/q2/rW/Bd0MDBSUqkrAiblxLoo8oqqSo/JyREAoj6hhw4ZPnz4tLi6+evWqm5sb8OTk5PBeE4RDSkSgVghwONwl5x/vvxuL1ld828ajqxkESkRAZgg006urV0+5oIjz6HW6zHSqih2R3+LJWfkj9wZef/peWZH953fWkzs3Y7FouUd+Pw/V6bmjmS5O94/5742OkCkRASIgQEAoj2jChAnDhw9v27Yti8Xq0aMHqggKChLmfUQoSYkIiIlAUTFn/qnwo0El7yj8bUj78U4mYmqIqiUCtUUAQ66tsQ5avx/wXCtzAAAQAElEQVSbij0l+SEQ8yFr8A7/8IQ0bXWlI5M79m3fSH76Lsc9FVfX7Ux0FNmshNTchNQccbVB9RIBKScglEe0fPnyffv2TZ069d69eyoqKugyAkQLFy6EQIkI1AoBrJrPOv7w7MNEBTbLc0SH4XZGtWIGNUoExE2AuXEumN5KJG7QklR/6KuSp2zHp+YY6aid+d4J01lJso5skT4C9VQULY20YXcAPXEOFChJBAGJM0IojwhWDx06dO7cuU2aNIGMNH78+AEDBkCgVB0CuQVFmNmnZOVjn1NQVJ2q5OrcvMKSe+svR7xTVmDvGG09oENjueo+dVauCDAPVwiN+1jM4cpVx+W2s1ci3n63N+hjTqFlE62z3zubNagntyio4yIk4MTcOBdNN86JECpVJVMEhPWIbty4sXjx4smTJ0/k22SKRI13Jr+weNftGNs1121W+2C/+3YMNDVuhTgbFE/dcB0nHQq++TxJRZG9d7xtrzYlz/wQT1NUKxGofQKtG2nUVVbIzC96/i6j9q0hC8RMYP/d2OlHH+QXcdxa6x+b6tBAo+SmDDG3SdXLBYH/fkoUncLl0tqKXFxx6mRVCQjlEa1YsaJnz55wipKTkz/ybVVtjMrzCCA6tMM3euuNyIzcktAQ9pChwXSfV4aEsgQy8grH7b9/LyoFc8RDE+27mjcoW4Y0RKAWCIitSUUFtrVxfVQfTD8lAgXZTYgBrvjnyap/n2K+OtbBePdYW3VlRdntLvWspglYN62vrMhOysyP/pBd021Te0RAGggI5RHt2rXLy8srKCjo/Pnz5/g2aeighNqowGYf9C95Qhq/fdAosoW6IvxnyY/8Mbtg9N6gkFcfNVUV/5rc0aFZycNz5Kf71FO5JcDcOBccR28lktmPQF5h8YwjDw7ei0MPF/VptXJAGwW2BD9WDlZSkjYCqkoKtqVrKwF045y0XTuyt2YICDX/LigocHJyqhmD5KSVzLxCxIUEOgtNUmbeT6fCPX1eBkSn4DtSoIA8H37IzB+5JzAiMV2nrvLRKQ5Y7pJnGtR3uSLAPFzhflwq3e4ik9c9Nbvgu72BV5+U/DBy2yiraV3NWCxyh2TyUtdypz79lIjeSlSVC0Fl5YaAUB7R5MmTjx49KjdMaqKjGqpKmmqCd0RAg+m+z/MkT5/IUXsD2y+/NmyX/+/ez/1efsjOL7m5riYsk8g23qbnjtgd8OJ9pr6GyompDm0ba0mkmWQUERALgQ5G2koKLCwKvEqhJ+eKhXAtVhqXnD14x70H8Wkloe9J9t9aGtaiMdS0bBNwLH1Pa0BMCoce0yLbV5p691UEhPKI8vLyNm/e3LVr1x9++GEe3/ZVLUrcSbViUFZ+4XhHwffnTHAyzSkontfDvL+lIab+BcWc4LiPf96KHnfgfvsV1wb8eW/d5Wc3nr1Pzy2sFZtrq9H4lJxhuwJikrMba6udnObYoqFGbVlC7RKBWiGgqqRg2aTkybkIE9WKAdSomAg8jP84eKd/XEoOBrez05060p3AYgJN1ZYSaN9Eq66yQlpO4TN6TEspENoRAX4CQnlEjx496tChA5vNfvz48cNPW1hYGH9FJFeJAKJA7k4ms7o3R1wIJ2I/27XFdBczvXoqYxyM/xhlFbTY1Xe+y4Yh7QZbN8aXZTGHG56QttsvZtKhkA4rr32z9c6Kf55cffwuNbsAp8twikrKGr474PXHXBNd9RPTHEz06spwZ2uga9SElBJgbpyjhytI6eUr12zvJ+9G7Q3EGN62sea5GU7N9TXKLUZKIiAqAkoKbHtTHdQWQG8lAgVKROBzAkJ5RLfK227evPl5VXQkLAH/qOTDAa/wXTjOySRkSY/QX9ywn9a1mYqSAq8KFouF2f8Iu6abh3e4t7D73Z+7bR5uOcLWyFSvLpdb5+nbjIP34jz+DrVedb3nltu/nI/4J/xNUkYe73TZEJ69zRi5J+BdRl4L/XqIDjWpry4b/aJeEIGqEvj0cIXUqp4oz+Ulue9e92IxgOcVcrq1bHBiqqO+hqokWyuTtiUmJo4ZM0ZXV1ddXR1rvqGhoUw38eUrkH7//Xcmi3/v5eUlUCwvTwq+gp1Kb5zzJ4+I/1qSTARKCQjlEZWWLNm9fv0ag0iJRP++lgCiPSv/fYqzHZvpIiKkrMjWraeCfcUPWoUzMNi6yYah7W/Nd0H4CEGkMQ5N4Segnpfvs/4OjP/h2EP7tTe6bfT9+fSjsw9eJ6blIkuqE2JiI/cEJmcVWDTSPD7VQV+TZgxSfT3J+GoRsDauz2LViUvJScqUgllXtboq6ydzONw1l54u/6fkKduj7JvuHWdbV0XwN6WyzqD2+/fx40dnZ2clJaUrV648ffp006ZN2trajFlv+bYDBw6wWKwhQ4YwWQJ7TU1NvrJvVVVr80tKwLYvHTqalTyjNSgmpbCY86UypCcC8klAKI+Iw+GsXLlSS0vL2Ni4adOmGDhWrVoFpXwiq2avjwfHP3+XqaWmNMfN/Ouqaqip2t/ScPXAdtfndUV8adcY6wnOJnAbWKw6scnZJ0IS5p0Md15/E2neybATwfFxydlS94iq4LjU0fuC0nMLrZpqH5vqAKfx61jRWdJOwM/Pr3///oaGhiwW6/z587zunD17tlevXnp6etCXewcvPvN9+vRBLv9ZvNMZYceOHaamppjH2NjY3Llzh1FK5h4jRisDTdgWHEvP4AYGaU15hcVYvdp7p+TVCwt6tVw7qK2iglDfwtLaYUm1e8OGDUZGRgcPHrS3tzcxMXF1dTUzM2OMNeDbLly40K1bt2bNmjFZAnsML3xlDQRymcP8/PwMvo1R1uIeUwUMJtkFxRGJ6bVoBjVNBKpDQEznCjUWL1myZPv27evXr3/48OGDBw/Wrl37xx9/LF26VEw2yXC1mOJvuvYSHZzj1qJ+XWUI1UxwFXq3bfRr/zaXZ3cOW9Zz/3jbaV2aWRppK7BZCBOdfZD485kIl42+Dutu4Gv478BXke8zMVOsZqPiPv1uZPK4/fez8oscmun8Nakjhm9xt0j1SyyB7OxsS0tLjD8CFkKPJV4MSgJ63qGnpyfmK7zDssKJEyfmzJmDwe3hw4edO3eG+xQfH1+2mORo7E1K39MaRzfOSc41qZolH7MLxuwLuhTxVkmB5Tmiw4xuzSv+iFatdipdFQIXL160tbUdNmyYvr6+lZXV3r17y579/v37S5cuTZo0qWwWo8nKyjI2Nm7SpEm/fv0wjDBKgf26deuwmswk+GACuTV/yGazHEsf4BFAN87VPH1qUbIJsIUx79ChQ/v27fv+++/bt2+P2cn06dMxfHh5eQlzLpXhJ/DHjcjU7ILm+vXGOBjz60Uiw3Nwbd1w0TetL8xwDv+15+GJ9jO6mdmZ1FdWYL/PyP8n/M0v5x/32OJns9rH46/Qg/din77J4EjeIzhvPHs/8VBwbmFxF/MGB93t69H9JCL5cEhtJXBUVq9ePXjwYIEejB07dtmyZW5ubgJ65jA8PHzz5s0HDhxgDsvdowDmOpMnT27dujXcJ0xWdu7cWbak5CzxMg9XuB9LHlHZqyQFmviUnCG7/ENefdRQVTw00X6gVWMpMFp2TYyJicHfe4sWLby9vT08PGbNmnX48GGB7mLmo6GhUXbwYYq1atUKsyB4VseOHUOcGQs0kZGRTBb/ftGiRemftoSEBP6s2pKdmpfcOOdP72mtrQtA7UoqAaE8otTUVPzx83cBh1Dya0iulEDMhywv/zgU+6VvayUFocij8NclOBLwKBb0anXKw+nR8p7HpjggKoWVIRVFdmp2wdUn71b88/SbbXc6rLw2+VDwHr/o8IS0Igm4q/jSo7fT/gotKOL0tGi4d5yNmvL/HzXxdRzoLDkkkJOTM2rUKISVDAzKv48FTAoKCkJDQ3v27AmZSZD9/f0ZmX8v/iVe/tYqkpmHKzx7l5GRJ1/P368IipTkYYAdvPNezIdsQy3VM987OZX+ul1KbJdNMzkcjrW19dq1axEgmjZt2pQpU+AgCXQVSyqjR4+GtyOgZw4dHBzGjBljaWmJCPPJkyfNzc3/+OMPJot/r6Kiosm38WfVluxkVuIRhcR9zCssri0bqF0iIIEEhJqX428e0wt+63EIJb+G5EoJrLn0rIjD7daygUtL/UoLi7CAqpKCo5nuHDfzY1MdIpb3Ou3huKBXS/hLdZUVMvKKfJ4lrb38fMCf9yxXXBt34P6ft6JC4lLhk4jQACGrOhP6+odjD4DoW0vDP0dbqyiSOyQkOSr2GYG5c+c6OTkNGDDgM+3nB8nJycXFxQ0bNuSpIb979453yBMkZ4lXX1PVWFedy60T+op+SsS7PlIg+Dx9z3tIzLkZzuZy/UY1SblejRo1srCw4FmDQLHATbN37tx58eIFYsi8MhUIbDbbzs6u3BhRBWfVVpZZg3oNNFTyizgP49NqywZqlwhIIAGhPKLffvsNiyUYPpibTCB4eXmV+zxKCeyhhJjk9/LDjedJimzWL/3+PwrXvG3KimxbE50Z3Zofnmgf/mvPCzOcl3zT2q015lqK2QXFMPJ37xdDdwW0W+49ak+gp89LBNZrZhnp78BXP54K53DrjLA12jKig5KCUJ/MmgdILUo4gYsXL968edPT01MYO1ksFq8Yl8tlsf5/yNNL1BKvnYkODAuOpRvngEE60l+Br6b+FcLcBnzSw7EhPTNTMq6bs7MzHB6eLS9fvjQ2/uxW9v3799vY2Ai58ovRIywsDF4Wr0JJFlgsFhMmCqAb58R7nah2KSMg1Lyza9euGC8GDRqUlpaWmpo6ePBgDCWIFEtZX2vP3KJizqp/S564Pc7RBMsztWfIZy0rKrAtjbSndGm2b7zdw2U9L8/q/Gt/iz5tDXTrKmP1KCAmxdMn8ru9QfCOhu70/937ud/LD9n5RZ9VIaKDfXdifjn/GJW5O5msG9xOgV3OxBS5lIhApQTgDkVHR2trayuWbig/ZMgQFxcXCPxJT09PQUGBPyiUlJSEMBF/GQmUmRvngunhChJ4bcqYxOFw1115tvT8Y2ahZ/9423oq9JTtMphqSYFIcmBg4Nq1a6Oioo4ePbpnz54ZM2bwbMnIyDh16lTZANG4ceMQNGaKrVixwtvbOyYmBr4QFoux9/DwYLIkf/+fRxSTIvmmkoXyTCC3oKigiJOSlY99ToFY5p/8eIXyiHCCoaHhmjVrzpw5c/bs2dWrV+MQSnlPQvf/6P34yKSs+upKs11bCH1SjRaEE2JhqDnB2XTnGJuQX9yuz+2yemDb/paG+hoqhcXckFcf/7wVPe7A/fYrrg34897ay89uPHufniuCHzNgae2PG5GrLz1Dbz26msElY5M7BBaUvpbAwoULHz16hNkJk1DNli1bDh48CIE/KSsr29jYXL9+naeE7OTkxDuUTMHOVAeGhSek10zkFm1R+joC+UXFs0+E7b4dg9N/7GG+fkg7insDtEsoMgAAEABJREFUheQkOzu7c+fOHTt2rG3btqtWrUJUefTo0Tzzjh8/ju+mUaNG8TSMEB8f//btW0bGAvHUqVNbt27ds2fPxMREPz8/e3t7Jkvy906lv2R7GJ9WA7NMyadBFkomgfzC4l23Y2zXXLdZ7YM9hlNoxGpqJR5RZGQkBgWsl/AbkZ6e/t1332FphF9J8pcIYMjZfL3kidvzephrqSt9qZjk6BFSb9FQY4yD8R+jrIIWu/rOd/ltSPvB1o0ba6sVc7jhCWl7/GImHQrpsPLaN1vvrPjnydXHb1OzC77Cfnzl/Ob9YlMpHEwafu7dEk1/RT10Sk0QqKU2srKyeL5NbGwsZExKYAuC1ZCfPi0JvSJkDZkJ+BgYGGCKw0so2bRpU1NTUwhIrq6u27dvh4A0b968ffv2HThw4NmzZ1gwRrWSv8RroquuV0+loJjz6HU6ukBJMgmk5xSO3X//n/A3imzWpmGWP7i2oJFNAq9Uv379IiIi8vLyMAJMmTKF30K4Ojk5OVpaWvxKyL6+vl5eXhCQsNTy6tWr/Px8hJcRLHJ0dIRSWpKRjjq+0Is43OA4+lGitFw0+bIzt6Boh2/01huRGbkloSHsIUMjVh++Eo/o999/NzIy0tQseTMg72pgmIASWTzNlwSsmpT7dkV3d3d8Q/CSg4ODQA2YK/fp0wcFzp8/L5DFHC5fvhy5vIRpEKOXwL2nT2RaTmHLhhqj7JtKoHkVmwTCJnp1h9sZbR7e4d7C7nd/7rZ5uOVIOyNTvbpcbp2nbzMO3ovz+PuB9arrPTbf/uV8xMXwN0kZeRXXyeRyONwV/zzd6RuNw1/6tqZJAzhQKksgJCTEqnRDFnwYiMuWLYN88eJFyH379oU8cuRIyLt27YJccYqOjk5OTmbKjBgxAgvDK1eu7NChA0aqy5cvC/yQgCkmUXv8Pdqb0luJxH9NqtFCQmrOkF3+92NTNVRKnrI9xKZJNSqjU4mAuAg4lT5xzp9+SiQuwFTv1xPA/JDNZh30jxWoAhpFdiVui8ApVTqspGpMFIYNG1a2xuHDh9+8ebOsXkCT/YW3K6JY7969EX1mEuYi0PAnzFTw3c+vKSu3adOGOR37iIiIsgUkQROVlPlX4CtYsrSfhaJCJbRRTMJTk/rqg62brB/S/tZ8l/uLXRFEGutgbN6wHsyOTMr6OzB+1rGH9mtvdNvo+/PpR2cfvH79MQdZ/Al+f0ERJzkrv6CY42Sma9ag3uqBbSd3bsZfhmQiwCPg4uKC9RH+xKzRYlWFXwkZqyS8s3gC9AMHDuQdxsXF8RebPn06NFjlDQ0N7dKlC6+YJAvMwxUw4ZZkI+XWtojX6YN3+kclZRloqp763tG5uZ7coqCOSzgB5q1EAdEpdSTcUDJPbgjAEcJX2/KLT8bsD0zKyEdcSKDr0GSK8+UTlczRERTW19cXsAmHenp6wrxrDHGe1eW9XRE1qKioILDDJB2dkpvjoWSSMG9XRElFRUXmdOwbNGgATdmEuU4G31a2gLg1q/59VszhurVu2KmFrH016muq9rc0XDWw7bW5XUN/cds1xmaCs0kbQ00Wq05scvaJkIR5J8M7bbjlvP7mvBNhJ4LjEz/m5H+6K9R2tY/9Wp+IxPQLM53HOBiL+ypQ/URAZggwHtGDVx8xsMhMp2SjI7eeJ43YE/AhM7+Vgca5GU6tDD67t0I2+ki9kBkCjs1K5iSPE9PTc0Twk2CZwUIdqXkC+C4Likn59cJjh3U3hu8O8PKPe/4uS7eesqaa4KNooNFQrd5vTyrsXiUekZaWVnR0yX1NApVERUVpfn4rnUCBSg99fX3ha5mbm0+ZMiUpKYlXPicnZ9SoUdu3b4efw1OWK0RGRhoaGpqamo4cOTImpuQHrGWLrVu3Dl1gkpGRUdkCYtXgC/L2yw9KCqwlfVuLtaFar1y3nkrvtga/9m9zaVbnsGU9D7jbTuvSzNJIW4HNSkzLPfsw8eczEU/fZmy/FbX1xv/vCv3jZtRevxix3hVa62TIACIgWgKtG2lqqChm5hc9e5sh2pqptuoQOBoUP/lwSE5BcecWeqc8HBtpqVWnNjqXCIibgIGWarMGdTncOkGx9MQ5ccOm+sshAEcoMCZl2YUSR2jEnsBDAa+SMvM1VBUHWzf+fWh7Dpc7wem/HwDzToamiMPhHYpcYFdcY5cuXcp9DfO2bduq8/RtxI6OHDly8+bNTZs2BQcHd+/eHcEcxpK5QrxdESU7dux4+PBhb2/vvXv3vnv3zsnJKSWlnL/qRYsWpX/ahAlqoWZRpcJizqpLJT/7nuBsaqpXV1TVSn49WmpK3Vs1XPRN6wsznB/92vPwRPuZ3Zq7tmrg3FzvUECcgP0ivytUoH46JAIyRgCrDNbG9dGp4Dh6KxEw1H7icrm/ez9ffC4CX/BDbZoccLfTEOcqZu13mCyQFQJOpT8lCktIk5UOUT+kgADGyYDolKXnSxyhkXsCDwe8QlxdU1VxiDUGT9uQX9w2D+/g2rphPRWl6S5ms11bIC6EXmEPGRp1ZcHAEXJFlSrxiOBRXLlyZejQoffv32c8i6CgoCFDhsAVQdZXGzFixIi+ffu2bdu2f//+qP/ly5eXLl1CbReFfrsifCqY0a5dOzc3N+bcQ4cOoQaBpKKiglgWLwnkivXwr4BXMR+ydesqz+zeXKwNSXLldVUUu5g3mN+r5X53e6yeZuSWPDOE32BoxHpXKH9bJBMB2SBgX/oM7uC4VNnojlT3oqCIM/dE2J+3Su6kwBc2ljbpKdtSfUHlyvgeFgZ7x9n80L1Fjb3vRa7wUmf5CRRzuP7Ryb+cj+i49saovYF/Bf7nCGEV6aC7XcgvPTYNt+zeqqGKogLvLBUlhWldm4Us6RH6ixv2kKHh5YpDqMQjsrKyOn36tJ+fn6Ojo07phmjMnTt3Tp48aW1tLRKDGjVqZGxsHBkZidoQNYoW4u2KKMmf6tatC9eIqYFfX4tyanaBp0/JE7fhDGjSemHplQAHePml4v930NB66v9xkEQEhCDA/JTofuxHRCeEKE5FxEUgPbdw/IH758NKnrL929D2c3uYs1j0dmlx0aZ6RU6go6nOo9fpHdf51Nj7XkTeBapQwgkUFXP8o5KXnIMj5PPd3qC/A+OTs/K11JSG2TQ5OKHEEdo4zLJbK31lxfKdEUSEkKVbTwV7yOLubPlG8Lfar1+/V69ewS9av379unXrzpw5ExcX9+233/KXqY6ckpKSkJAAvwiVCPl2RZTkT/n5+c+ePWNq4NfXorzl+suMvKLWjTSH29b0j5dqsdcVN13M4Uyo8btCKzaJcomANBJo30RLWYGN75W4FMFnOUpjd6TU5sS03GG7/ANiUuoqKxxwt6OhXkqvo9yanVtQtNM3+o+bURml925gv/VG5A7f6JwCwVs55BZRLXZc2puGI3QvKnlxiSN047t9QUeC4AgVaKsrDbdt4lXiCLn9DkeopT78HInqaeUeEcxVU1MbNGjQggULfvrpp4EDB6qrq0MpTCr37YpQzp8/PyAgAJ6Vr69v//799fT0UD8qNBD67Yqo4fbt27GxsUFBQUOHDs3IyBg/fjxqkIT04l3mkaCSJ24v62ehwKYlw/+uiZqy4vQavyv0v7bpPyIgQwRUlRQsjUreHRkcSz8lqp3r+uRN+qA/7718n9VQU+Wkh2MX8wa1Ywe1SgS+loACm32wxt/38rXG0nnSQQCO0N3I5EVnERG6MXpf0NGg+JTsEkdohK3RoYn2wUvcfhtq6dJSX0lBKNej5vssXrPKfbuigoJCRETEgAEDzM3N4cZgD+9IQ0Oj0s5HR///7YqvX78eNWpUy5YtBw8erKysHBgYaGwsEQ9x5nK5q/59yuHW6d3GwLH0Z4vl9UtOdSo1fleonIKmbss6ATuTkjcW3KeHK9TGhb798sPwXQFJmfktG2qcm+7cxrDEO60NQ6hNIvD1BDLzChEXEjgfmgxxvu9FoDk6lA0CcITuRH5YdPaR/dobY/YHHbtf4gjVV1caaWd0uNQR2jC0fVfzBhLrCPGugng9onLfroiIk7e3d1JSUkFBwatXr7y8vL70XGx4FwhJ8WxFTIn3dsXjx4+/efMGNSQmJp45c8bCwoJXrHYFn2dJd6OSlRXYi7+R8Sdufx1ndWVFxElr7K7QrzOSzhIpAapM9ATs6OEKoocqVI0nguMnegVnFxQ7mekiOmSoTU/ZFoobFZI0AhqqSprlve9FXVlh2YXHMR+yJM1gskfSCBQWc/xeflh45pHdGp+x++8fu5+Qml0AR2iUvdFfk+zvL3FbP6Q94ueS7wjxwIrXI+I1IydCQRFnTekTtyd1Nm2qK+y9hXICh7pJBIiAqAjYGNdnseq8SslJysgTVZ1UT8UEsEK3+dqLn8+UPGV7sFVjrwn2Wmpl3xVYcR2USwQkhUC5v+x1dzS5G5l8OOCV2+bbs48/jHyfKSnmkh0SQwCOEOLkP59+ZL/GZ9yB+8eDEz7mFOrUVR5l3/TvSR2Dl7itG9y+cwspiAiVJUoeUVkmX6855B8Xl5LTQENlRjf5feL21+OjM4kAERCOgKaqUmsDTZSlG+cAoQYSVrt+PBW+7WYU2vqhe/NNwy0R64ZMiQhIKQG18n7Zi6mLkY66ayt9DrfOhbA3PT39Zhx98Pzdl14GLaVdJ7O/hgAcId8XST+dDkdEaPyB+ydCShwh3brK33VsemRyx/uLXdcNbtephZ6ipP5GSJg+C+URXb582dvbm786HF65coVfQ3JyVv62G5HgsKBXy3oqYnyHFJqgRASIgJwT+O+tRPRwBfF/DjLyCid6BZ99kKjAZuFb/8eeLVksemSO+LlTC2ImUO4ve1s30tzvbvfvD516tWnI5da59Ohtb8870/4KeZyYLmZzqHpJJIDFoFsvkhacCrdd7eN+MPhkyOu0nEK9esqjOzY9Orlj0GLXtYPaOTeXbkeIx71Cj+hTqYULFxYXF386Kvmfy+VCWSLRv08ENl17mZlf1Lax5lDrJp909D8RIAJEQCwEPj1c4aNYaqdKPxF4m547fFfA3ahkdWWFfeNtR9k3/ZRD/xMBqSfwpV/2tm2stXus7ZXZnfu2bwT33/vJ+35/3J3kFRyWkCb1faYOCEGgxBF6njT/VElEaMLB4FOhr9NzSxyhMQ5Nj06BI+S2ZlA7J1lxhHg8hPKIIiMjLT5/dEGrVq2iokruH+BVJOfC0zcZJ4LjAWFZvzZseuI2QEhdIoOJgFQRsDOtD3uTMvMy6dlQACGe9OxtxqA//Z+/y2ygoXJymmO3lvriaYdqJQKSSKB1I80/v7O+NqfLgA6GmNfceJ408M974w7cD31Fz/2XxOtVfZvgCN18/v7Hk4gIXZ/gFXz6P0dIZayD8bEpDkGL3VYPbOdkpodoefXbksAahPKItLS0YmJi+K2HO1S3bl1+jTzLiJit/PcJh1sHqynMrSzyTObtKw8AABAASURBVIP6TgSIQA0Q0NdQ/WuS/Z2fuuUWFONrrGrvVawB+6S/iTuRH4btCniXkddcv9656U5YNZf+PlEPiECVCbRoqLF1pJXPvK5DrJtgKuz38sOQnQHf7Q0MjEmpcl10gkQSyC8qvvHs/byTYTarr0/0Cjnz4HVGXhGWgcY5Gh+fCkfIddXAto5murj6Emm+yIwSyiP69ttv58yZEx0dzTQLd+jHH3+EkjmkvfeTd4ExqSqK7EV9WhENIkAEiEANEMgvLA6OTXVYd8N+7Q3bNdd3346BpgbalZMmToUkTDgYnJVf1NFU54yHU5P69OxQqb3yZLgoCDRrUG/TcMtbP7qMtDNSZLP8o1NG7gkcvjvgbmQyFoVF0QLVUdME4Aj5PH0/70SY7WqfSYdCzj5IzMwr0tdQGe9ofGKqQ+Ai15UD2jo0k31HiMddKI/o999/R0SoVatWpqVb69atdXV1N27cyKtFngV8pNZcfgYCU7s0o29NcKBEBIiAuAnkFhTt8I3edjMqI7cIbWG/9UYkNBQpAo1qJkzvtvpELjj9qIjD/dbS8PAkey11esp2NaHS6TJCoKmu+voh7X0XuIxxaKqswL4fmzpmf9CQnf63XiThD0dGOinV3RDC+LzC4utP38+FI7TKZ/LhkLMP/3OE3J1MTk5zhCO0YkDbjvLkCPGYCeURaWlp+fv7X7p0afr06YgO3bhx4+bNm9ra2rxa5Fk4cDcuITW3oaaKR1czeeZAfScCRKDGCCiw2Qf9YwWag0aRLdSQLnAiHfIIFBZzfj7zaIvPS2i+dzHzHNFBRVEBMiUiQAR4BLD4u3pgO7+fumEOraLIfhCfhoDqgD/vYZ5NfhGPkqQJcISuPXk35/hDRISmHA45B0covwhzV1zEUx4ljtDyb9vYm+qw2fL7IE1hvz5ZLFbPnj0XLFgwc+bMLl26SNqVri17kjLztt8seeL2z71b1a2RJ27XVk+pXSJABCSHQGZeIeJCAvZA8zGn4F16roCeDoUkAKoTvUoeL4spweqBbTGqy/PkQEhoVExuCRhoqWIOfefnblM6m6opKTx6nY55dt9td69EvOVwuHKLRdI6DkfI+8m72aWO0NS/Qs+HvcnKLzLQVJ3gbHLawzFgoSsuop2JXDtCvEtWkUe0bdu2vLw8FIVQbkKWnKeN3i+yC4otjbQHdmgs5yio+0RA5ASowi8R0FBV0lRTFMiFRkNV8ZttdwfvuHfIP+5DZr5AATqsgMD7jLzhuwPvRCZjbrd3nO0YB+MKClMWESACDAF9DdUlfS3gF3l0NaurrPD0bcb3Rx703up3MfxNMflFDKPa2MMRuvr43axjD21WXZ/2V+iFUkeokZbqRGfTM987+i/s/mv/NrbkCH1+aSryiLZs2ZKdnY3yEMomT09PZMlzepyYfir0NQgs62dBS4ngQIkIEIGaIVDM4UxwMhVoy93JJOJ1OsJED+LTfr34pONan7H7g06FJGTQ47kFSJU5fPEuc9Cf9569zdCrp3ximoNr64ZliohdQQ0QAekloFdPZWGfVnd/7v5D9+YaKoov32dhLt5jy+1zD18XFXOkt19SZ3mpI/T2h1JHyOPvUPilWLU31FKd1AmOkNO9n7sv629hY0wRofIvbEUeUWxsrK6uLs6DUDYJPI8bxeQqcbncFf884XLrDOhgaGNc8mIQueo+dZYIEIFaJKCmrDjdxWy2awvEhWAG9pBnuDTv2Ew3cJHr0n4WlkbaWJ9FxGPB6Ue2q308/gq9HPEWX5YoTEmAgH9U8tBd/m/S85o1qHtuunP7JvQTWQFCdEgEhCJQv67yjz1b3l3Yfa6buZaaUsyH7Lknwl033z4ZklD4uV8kVHVUSGgCGNuvPn478+gD61XXPf5+8E/4G8YRmtzJ9Ox0J3iq+FLATJXW7ismWpFHxDtz5cqVOTk5vEMIubm5UEKQ23Qp4m1w3EdVJfbPvemJ23L7KaCOE4FaI6CipDCta7OQJT1Cf3HDHjI0sKahZsly4IUZzr7zXX7sYd5cv15BEefqk3fTjzyAazTvRJjviySanQAUk7CGPf7g/cy8IjuT+me/dzLSoadsM2BoTwS+kgB8odluLe7+3G1Br5b11ZVepeT8dPpRt42+R4PiMRZ9ZaV0WnkEcguKr0T83xH699HbnILixtpqUzqbnpvudG9h91/6WVg3rU+OUHnwytEJ5RGtWLEiKyuL/2w4SFDyaz6XZfwI7vi6y8/RSY+uZobaahAoEQEiQARqmIC6sqKyIlu3ngr2kAVaN9Gr+4Nri+tzu1ye1RkjFb4ms/KLzj5MdD8Y3HHtjV/ORwTHpXIQSBI4TW4OEefffjMSa9iFxdy+7Rv9Namjtrqy3PSeOkoExEtAQ1VpRrfmd3/uvvibVnr1lF9/zF18LsLl91uHA+LyCovF27as1w5HCDH/GUdLIkLfH3nAc4Smdml2foYzfNElfS2smtZnsViyTkLE/RPKI8I3B4v1Gdnw8HAdHR0R2yI91e27E5OYlmuopTqtCz1xW3oum7gspXqJgOQSYLFYFoaaC/u0uvNTtzPfO45zNNatq5yaXfB3YPywXQGdNtxcd/nZkzfpGOQltw9isKyomIP52cZrJU/Zntal2R8jrVSV6CnbYgBNVco3gboqilO7mN35qfuyfhb6Gipv0vOWXXjS5bdb++/GYlov32yq3PucgqJLj97OOFLiCCHmDzm3sLhJfTWMYBdKHaHF37TuYKSNMb/KVdMJpQQq8Yjq168Pzwd8zc3NITBJS0urR48ew4cPL61B7nbvM/J2+Eaj2z/3aaWmTF+iIEGJCBABSSfAZrNsjHVWDmgbtNj18ET7IdZN6qkoYoKy2y+m77a7bptvb/WJjE0ueZROhT2Rhczs/KLJh0OO3U9gs+qsHNBm0Tet2ZBkoWfUByIgiQQwU5rYydTvp26rBrRppKWalJm/6t+nnX+7uccvGn+MkmixJNkER+jfR2+mHwm1XnUdcaFLEW/hCBnpqE3r2uziTGcsdWEEsyRHSBSXrBKPyNPTc/PmzVg+XLFiBe9xc7t27bp79+6ff/4pCgOkr44NV5/nFBRbN9X+1tJQ+qwni4kAEZBvAooK7C7mDTYNtwz5xW3naOs+bQ2UFdnRH7K3+LzsttH32+13EQN/l54nq5CSMvJG7AnwffFBVYm9a4zNOEcTWe0p9avaBKgCURJQVVIY62jiu8Bl7aB2TeqrJWcVrL38vNOGm3/eisqk52GWIQ1f8Z/wN9//XeIIzTz68HLEu7xCTlMddY+uZv/M7OS3oNuiPq3bN6GIUBlw1VBU4hGNHz/e3d391q1b06dPh8ykUaNGOTo6VqNRKT41LCHt7INEdODX/m0QOoNAiQgQASIgjQQwQenTrtHOMTahv7htGmYJN0mBzXr0On31pWeO62+M3BNwNCg+LadAGrv2JZsj32cO2uH/ODFDt67ysSkOPdsYfKkk6WWeQGJi4pgxY3R1ddXV1Tt06BAaGsp0Gd/sAun3339nsgT2Z86csbCwUFFRwf7cuXMCuXRYLgEVRYXvOja9Nd/lt6HtTXTVP+YU/u79otOGW4hRp+cWlnuKXCnhCF0Mf+PxV4kj9MOxh1ce/98R+veHTrcXuCzs06pdEy18REWNheqrU4lHxBDS0NB49uwZI1+4cGHgwIGLFy8uKJCpb0qmdxXvEStb+c8TlBls3RgxSgiUiAARIALSTkBDVWmITZPDE+2DFruuHNDG1rg+l1snMCZ18bkIuzU+k7yCL4Ql4nta2rsZGJMyZKd/YlquqV7ds9OdrJrSWxOk/ZJ+vf0fP350dnZWUlK6cuXK06dPN23apK2tzVT3lm87cOAApp5Dhgxhsvj3AQEBI0aMGDt2bHh4OPbDhw8PCgriL0ByBQSUFNjDbY185nXdMsLSrEFd+EKIUXdaf3PTtRcfs+VubglQWflFGGan/RViver6rGMPrz55l1/EMdZV/97FjOcItW1MjhBQiTEJ5RFNmzbt5cuSX6DGxMRgCMCCyqlTp3766Scx2iWRVcNxfxCfpq6s8LM0PnFbIpGSUUSACEgOAb16KuMcTU5/73T3525YiWzdSLOwmHvjedLs42G2q31+OPbw+tP3Uvr8XMw2xu2/n5FXZGNc/8z3Tsa6dSUHO1lS8wQ2bNhgZGR08OBBe3t7ExMTV1dXM7P/npNkwLdhCbhbt27NmjUra6Gnp2ePHj0WLVrUqlUr7FEDNGWLkaYCAooK7EFWTa7N7frHKCvzhvUy84v+uBnVacPN9Veep2TlV3CizGQxjtDUwyWOEIZZ7yfv4QiZ6KpPdylxhHznu2C2SY5QjV1uoTwiuEOIKcMmOEJdu3Y9evSol5cX4sXQyE/KLSjGXyn6i09qQ01VCJSIABGQUAJkVvUINKlfcrf6ldmdfeZ1mdW9ubGuem5h8T/hb6YcDkHUaOGZR/5RycVS8uRuxPZ3+kZjtlFQzOnT1uDI5I46dZWrh4fOlnoCFy9etLW1HTZsmL6+vpWV1d69e8t26f3795cuXZo0aVLZLGgQI+rZsycEJvXq1cvf35+R+ff5+fkZfBt/FskMAQU2q7+l4dXZXXaNscYqTHZB8a7b0Z023Fpz6WlSpmz+oDEzr/D8w8Qpnxyha6UrTYhdz+hmdmlWp1vzXX7q3YocIebjUZN7oTwifKNwOByY5ePj880330DA4kpycjIE+Um7/aLfpuc11lab3Lmc5SL54UA9JQJEQH4INNfXmNezJZYqL8xwnuhsqq+hkp5beDw44bt9QY7rbqz852lYQhq+ICQWSFExZ+mFxxuuPoeFkzqZ/vmdtaqSzD0gFH2jVEUCMTExO3fubNGihbe3t4eHx6xZsw4fPixQx6FDhzQ0NAYPHiygZw7fvXvXsGFDRsYeMjQQBNK6deu0Pm2YOAnk0iGPAJvN6t220eVZnfaNs23fRAtLMHvvxHbecGv5xSfvZOVBLxl5hecevp58KMRmtc+cE2FMyL2ZXt2Z3ZpfntX55o9dF/Rq1caQbo3jfShqWhDKI8JSyurVq//666/bt2/37dsXNsbGxuLvH4KcpDdpuVi0QGcXf9OavlDBgRIRIALyQ4DFYlkaaS/rbxGwyPXolI4j7Yy01JSSMvMP3Isd+Oc9l42+m669iHyfKWlAcgqKpv0V+ndgPItVZ1k/i6X9LDDrkjQjyZ5aIYBFXmtr67Vr1yJANG3atClTpsBBErDkwIEDo0ePVlX94i0hLBaLdwqXy2Wx/n/I0y9atCj905aQkMDTk1AuARaL5WbREOsvXhPsrJtq5xdxvPzjuvx265fzEa8/5pScIoX/4AidfQBHKNh2lc/cE+E+z0ruPW7WoO4P3ZsjDn/jx67ze7W0MNRE36WwczJlslAekaen54MHD2bOnLlkyZLmzZsDwOnTp52cnCDIScISY14hx95E55t2BnLSZeomESAzv4vmAAAQAElEQVQCRECAgAKb5WSmt35I++AlbljK7W9pqKak8Col54+bUT22+PXZemenb7SETFw+ZOaP3BN443mSiiJ752jriZ1MBfpCh/JMoFGjRhYWFjwCrVu3jo+P5x1CuHPnzosXLyZPngy53GRgYMAfFEpKSip3mVhFRUWTbyu3KlIKEIBv4NJS/8z3Tkcmd8S8q6CYg3UNl999F555FJ8iNX4RwulnQl9P8ipxhOadhCOUhI6YNag7q3vzq3M635jX9ceeLVs3IkdI4OLX5qFQHlH79u0jIiKwzPHrr78yxv7+++8IKDOyaPcSWFvoq48Xwt6wsMrY34LFKmcRSAJtJpOIABEgAuIjoKzIxlLuH6OsQpe6bR3Zwa21vpIC69nbDCweddpwa8hO/8MBccm199voqKSsQTvuPXqdXl9d6egUh95tG4kPBdUsjQScnZ3h8PAsf/nypbGxMe8Qwv79+21sbCwtLSGXmxwdHa9fv87LunbtmlwtE/M6Lj6BxWI5N9c76eF4fKqDk5luEYd7PDih2ybfH0+Gx3zIEl+71awZjtDp0NcT4Qitvv7jqXAsysARaq5fb5ZrC+85XXzmdZ3Xs2UrA3KEqolZLKcL5RGVbRlxZCUlpbJ62dNwOFzmidvDbJq0bawlex2kHtUiAWqaCEg7AXVlxQEdGu8bb4eo0brB7Ryb6bJYdbCKtOzCk45rb4zdH4TJQWZejb5mJDguFS7Z64+5xrrqZ6c72xjTU7al/VMmevvnzp0bGBi4du3aqKioo0eP7tmzZ8aMGbxmMjIyTp06VTZANG7cuEWLFjHFZs+eDS9ow4YNz58/x97Hx2fOnDlMFu1FS8ChmS7WNU57OHYxb1DM4Z558Npt8+3Zxx9K1J266TmFp0ISJhy8b7v6+vxT4TefJxUWc1vo15vt2uLa3FJHqId5SwMNFotW1UX76RBlbUJ5RMXFxRs3brS3t0eYWIdvq9QQPz+//v37Gxoaslis8+fP88q7u7tDw0sODg68LEbgcrl9+vRBAf6zmCzefseOHaampvDNsJCDADdPL1rh3MPE8Nfp9VQU5/dqKdqaqTYiQASIgMwQ0FZXHmXf9NhUh4CFrr/0bW3ZRAtzlzuRyZgc2Kz2+f7v0CsRb/MKi8Xd338fvRm9LwjLtB2MtM9+72SqR0/ZFjdyqazfzs7u3Llzx44da9u27apVqzw9PUePHs3ryfHjxzEJGTVqFE/DCPHx8W/fvmVkRIRQ7ODBg+3bt/fy8jpx4kTHjh2ZLNqLg4Ctic7hifbnZzi7ttLncOtcCHvT09NvxpEHCE2Lozkh64QjdDIkwR2O0JrrC04/uvXiAxwh84b15ri1uD63y/V5Xef2MDdvqCFkbVSsdgkI5RGtWLFi8+bNw4cPT09Pnzdv3uDBg9ls9vLlyys1PTs7G0Hn7du3ly3Zu3dvjCxMunz5skABDE9whwSU/IcYfbAes2TJkocPH3bu3BnuE4Yq/gIikbPzi37zfo6qZnRrrq/xxZ9XogAlIkAEiAARAAEDLdXJnZtdmFnyDNl5PczNGtQtKOJcefzu+yMPbFf7zDsZdvvlh6LikoeXorAIE6awe/yiZx59iOZ6WjQ8NsVBt56KCOunqmSMQL9+/SIiIvLy8p49ezZlyhT+3k2dOjUnJ0dLS/CuEF9fXzg/vJJDhw5FgKigoAA1YF7E09epU4dkMRHASsd+d7t/f+jUq01DLrfOpYi3fbbemfZXyOPEdDG1WG61aTkFJ4MTxh+4b7P6+k+nH/m+KHGEWjbUmOtm7jOvy7W5Xee4mbcgR6hcdhKsFMojOnLkyN69e+fPn6+oqIhVk3379i1btgwR50r7BUdl9erV5Y4UKioqiDgxCWEn/qrCw8PhgB04cIBfKSCjwKRJkxDUbt26taenp5GRUdkHxQic8hWHu25Hv8/Ib6qjPrGTyVecTqcQASJABOSWAOIzs1xb+MzremlWp2ldmxlqqWblF519kIhpRMe1N5aefxwSl8rBYq8oACEetfzik7WXn6MydyeTnWNs1JQVIFMiAkRA9gi0bay1e6zt1Tmd+7ZvxGLV8X7yvt8fdyd5BYclpIm1sx+zC04Ex487cB+LOz+deVSyuMPhtjLQwNIPBjrvuV1mu7XA8rlYbZDAymXGJKE8onfv3rVr1w59rlevHsJEELC4cunSJQhfnbDWoq+vb25ujrWZpKQkXj05OTlwuhBWgrPEUwoIBQUFoaGh/C9Hg+zvL+KXo73+mLPHLwZNL/6mtYoifbmCBCUiQASIQNUIsFisNoZai/q0vvtz91MejmMdjHXqKqdkF/wV+GroroDOv91ad+XZ0zcZiPBUrV6+0rkFxR5/hx4KeAXdL31b/9rfQoFNN+sDBiUiIMsEWhlo/vmd9fW5XQZ2MMRf/I3nSQP/vAd3BUstou02HKHj9+PH7g+yW+Pz85kIv5cfikodoR97mN/4sevVOV2w9NNcv55oG6Xaap6AUB5RkyZN3pbeO9u8efNr167ByuDgYAR5IHxd6tOnD+JON2/e3LRpE6rq3r17fn4+U9XcuXOdnJwGDBjAHJa7T05OLi4u5n/SJWS4bWULV+flaOuuPM8v4jg000FwtmzN8qShvhIBIkAEqkuAzWbZmeisGtg2aLGr1wS7wdaN6yorJKbl7r4d8822Oz22+G27ERmXnF3VZpKz8kfuDbz+9L2yIhvTo8mdm8EHq2olVJ4IEAEpJdBcX8NzpNWNH12G2jTBUgjcFSy1fLc3MDAmpZo9Ss0uOFbqCNmu8Vl4NuJOZDIcodaNNOf3NL9Z6gj94NrCrAE5QtXELEGnC+URDRo06MaNG7B69uzZS5cubdGixbhx4yZOnAjN16URI0b07du3bdu2/fv3v3LlysuXL5mI08WLF+EmeXp6ClMt/9ce1hf5D3mnL/ral6M9ePXx0qO3WHVY1q9NuTXzmiCBCBABGSJAXRE7ASUFtktL/c3DO4Qu7bFjtHXvNgZwZqKSsjZff+my0XfA9rv77sS8z8gTxo6YD1mDd/iHJ6Rpqysdmdyxb3t6yrYw2KgMEZA1AqZ6dTcOs7z1o8soeyNFNss/OmXknsDhuwLuRiZjflil3qZk5R8Nih+zryQitKjUESrmcC0aaS7o1RKO0JXZnWd2b9GMHKEqMZWSwkJ5ROvXr1+8eDF6NHTo0Dt37nz//fenTp2CEprqp0aNGhkbG0dGRqIquEPR0dHa2tqKpRs0Q4YMcXFxgcCf9PT0FBQU+INCSSJ6OVpuQVFBEQeLjq0bae4Za4PPvYWhJn/TJBMBIlCTBPz8yn9e5dmzZ3v16oWhAAsWYWFh/CZNmzbNzMxMTU2tQYMGiDY/f/6cP5cnL1++HOfyUgW36fJOIUG0BFSVFL5p12jXWJuQX9x+H9q+cws9LEKFv05ffemZw7obo/YEYoE2LaeAv1FmiMaUBQP1u/Tc+afC41NzjHTUznzvhAAUf0mShSBARYiATBFoqqu+bnB73wUuYxyaKiuw78eljtkfNHin/60XSTy/iH8MySko4vUfo8qRoFej9wXar72x+FzE3ahkOEJtDEscoVvzXS7P7jyjW3NyhHi4ZFIQyiPi77mDg8O8efO+/fZbfmV15JSUlISEBPhFqGThwoWPHj3C/IZJ0GzZsuXgwYMQ+JOysrKNjQ3/y9EgOzk58Zf5Cjm/sHjX7RjbNddtV/t0XOcTkZg+3cXsK+qhU4gAERAVgS89rxJ6Z2fnctdlMDhg0Hj27Jm3tze+BXv27FlcXP5Dn9u0afP20xYRESEqm6meqhLQVFUaZmv016SOQYvdVnzbxsa4PpdbJyAmBQu0dmt8Jh8Kvhj+BvMY3hBts9oHA/WRoPi942z7tjM4+70z3btSVeZUngjIKoEm9dVXD2zn91M3dycTFUX2w/i0CQeDB/x5zz8qWWAM2X07Jq+w+GJY4nd7AzHULDn3+F5UChyhto01f+rd0ne+y6VZJY6QKT3EX1Y/K5/3qyKP6GJl2+dVlXOUlZXF821iY2Mhx8fHQzl//vyAgIC4uDhfX9/+/ftjoXfQoEE4H8u0bfk2aJo2bWpqagoBydXVdfunB3nDK9u3b9+BAwcw75k7dy6q9fDwQJmvTvi63eEbvfVGZEZuyZoB9n/cjNrpG82/hPDVldOJRIAIfB2BPn36lPu8yrFjxy5btszNza1stVOnTu3SpYuJiYm1tTXOxYILhpqyxaBRVFTEmMOkBg0aQFM25efnZ/BtZQuQRoQEGmiojHcyQcDnzk/dMCNpZaBRWMz1eZY069hD/+iUP29FCQzRh/zjNgxpj7NEaANVRQSIgAwQMNBSXf5tmzs/d5vS2VRNSeHR6/TsgqLtn48hGE8wqiBYjeGFw63TrrHWz71b3V7g8u8Pnae7NDchR0gGPgdV6UJFHtHACjfGh6m4rZCQEKvSDcXgw0DEJEZBQQHLsQMGDDA3Nx8/fjz28I40NCp/g1V0dHRycjKqQhoxYoSnp+fKlSs7dOjg5+d3+fJlY2Nj6L86KbDZB/1jBU6HRpFdESKB8nRIBIiA5BBAHAnBIiypGBkZlWtVZGSkoaEhCowcOTImpuTBkmWLVefpLGVrI42QBIx01Ke7NL86p8u1uV1mdmuOmYqjma5XQJzA6dAoK9KDQAWo0CERIAL/EdDXUF3S1+Luz93m9TB3bq53qMwYAk3nFg2Wf2vht6DbPz90+t7FzFiXXuv8Hz15+6+i6T6nwu1LN6LwE3RxceF+vnl5eampqXl7eyclJRUUFLx69QqaL81XcOrAgQN5FWKhd/ny5bzD6dOnQ4MV3NDQUCwJ8/RfJ2TmFSIuJHAuNNALKOmQCNQ+AbKgQgI7duyoV7pdvXr1+vXrysrKZYt37Njx8OHDGIv27t377t07JyenlJRynk301U9nKdsiab6CgHlDjfm9Wl6c6ZyVX4QBWaAGaGiIFmBCh0SACAgQ0K2nMsu1RU5BMUYMgSxocgqK3J1Mm+qqC2TRobwRqMgjkisWGqpKmmqKAl2GBnoBJR0SASIg4QRGjx798OHD27dvt2jRYvjw4Xl5eWUN7tOnz5AhQ9q1a+fm5nap9O1qhw4dKltMRUVFk28rW4A0YidQpw6LxdJWU8aAXOfzDRoaoj9HQkdEgAiUT0CTpnnlgyHtfwQq8Yi++eYb5pWsKL5mzZq0tDQISFhMtbCwgCAzqZjDmeD03w+WeJ2CpojD4R2SQASIgFQQ0NLSgi+E0PHp06efP39+7ty5is2uW7cuXKPI0ideVlyScmuLAA3RtUWe2q1RAtSY2AjQGCI2tDJScSUekbe3d35+PtPXDRs2pKamMnJRUdGLFy8YWTb2asqK013MZru2wKIjeoQ9ZGjUlQUDR8ilRASIgLQQ4HK5vEHsSzajwLNnz5gnXn6pDOlrlwAN0bXLn1onAtJOgMYQibuCEmZQJR4RJhM8g/lltK4TqgAAEABJREFUnlKWBBUlhWldm4Us6RH6ixv2kKGRpQ5SX4iA1BHIKu95legFVmfCwsKePn0KGaszkN+9ewc5JiZm3bp1oaGh8fHxAQEBw4cPV1NTQ6wbWUj8z6ucP3/+7du3Y2Njg4KChg4dmpGRMX78eJShJLEEMCBjWMbgTEO0xF4jMowISDIBGkMk+erUum2VeES1bl8NG4CIkLIiW7eeCvaQa7h12WuOekQEqkmg3OdVos6LFy9aWVn17dsX8siRIyHv2rULsqqq6p07d+ACNW/eHO5Q3bp1/f399fX1kYXE/7zK169fjxo1qmXLloMHD1ZWVg4MDDSu3vMqUT8lcRPAsIzBmYZocXOm+omArBKgMURWr2z1+1WJR8Qq3XjN4Ignk0AEiAAREDeBcp9XiUbd3d0RteZPzIMoDQ0NL1++/P79+4KCgoSEhCNHjsDnQXkmxcXFMcVwePz48Tdv3qBYYmLimTNnqv/DSNRJiQgQASJABIgAEZBGApV4RJhwYOaBNVSkvLw8Dw8PCEgTJ06Uxt6SzUSACBABIkAEiEA1CdDpRIAIEAEZI1CJRzR+/Hh9fX2t0m3MmDFYfy0VtaAcN26cdLGAdweDM2gjAkRAPASYPzH8lclqYjooHnhUKxGQdwLM35esjh7oF9NBeb/MUth/MllaCDB/Yvhb+7pUiUd0sMLt65qsrbMyMzPRtJGREePU0Z4IEAHREmD+xPBXJquJ6SCNIaL92FBtRIAhwPx9yerogX4xHaQBhLnctCcCIifA/Inhb+3rUiUe0ddVKplnIcCVkJCQlpaGPSzEPv2/jf4rIQAghKUExOf/CMvnPP47KheLhoYGPkIynGgM+e/yf+G/cj8VXygrL2piUu6VLhcLDSDlspIfZbmfCvnp/pd6SljKJVMulmqOIXLkEbHZ7CZNmsAl1dTUxKQNe0oCBAiLABDmULawMH0Swb4sFpl/8gqNIZV+bsp+Kio9ReYLEJNyL3FZLDSAlAtKrpRlPxVy1f0vdZawlEumLJZqjiFy5BGBHSUiQASIABGQGwLUUSJABIgAESACQhEgj0goTFSICBABIkAEiAARIAKSSoDsIgJEoFoE5NEjUlFR+fXXX7GvFjmZOxlACEvZq0pYyjKBRs6xyHn38QEoNxGWsliISVkm0Mg5FjnvPj4A5SbCQljKJVCeso44Pi1y6hEtX74cNMulLLdKACEsZa8+YSnLBBo5xyLn3ccHoNxEWMpiISZlmUAj51jkvPv4AJSbCAthKZdAuUpxfFrk0SMqFy4pJYsAWUMEiAARIAJEgAgQASJABGqEAHlENYKZGiECRIAIfIkA6YkAESACRIAIEIFaJUAeUa3ip8aJABEgAkSACMgPAeopESACREAiCZBHJJGXhYwiAkSACBABIkAEiAARkF4CZLlUESCPSKouFxlLBIgAESACRIAIEAEiQASIgEgJkEdULZx0MhEgAkSACBABIkAEiAARIAJSTYA8Iqm+fGQ8Eag5AtQSESACRIAIEAEiQARkkgB5RDJ5WalTRIAIEAEi8PUE6EwiQASIABGQKwLkEcnV5abOEgEiQASIABEgAkTg/wRIIgJEAATIIwIESkSACBABIkAEiAARIAJEgAjIMoEK+kYeUQVwKIsIEAEiQASIABEgAkSACBABGSdAHpGMX2D56x71mAgQASJABIgAESACRIAIVIEAeURVgEVFiQARIAKSRIBsIQJEgAgQASJABERAgDwiEUCkKogAESACRIAIEAFxEqC6iQARIAJiJEAekRjhUtVEgAgQASJABIgAESACRKAqBKhsLRAgj6gWoFOTRIAIEAEiQASIABEgAkSACEgIAfKIaulCULNEgAgQASJABIgAESACRIAISAAB8ogk4CKQCURAtglQ74gAESACRIAIEAEiIMEEyCOS4ItDpkkkgbi4OBaLJZGmkVFEgAjUNoHK2qcBpDJClE8EiEBFBGgMqYhONfLII6oGPPGf6u7uzmKxPDw8+JuaPn06lMhilBBwiKSkpNSwYcMePXocOHCAw+EwuQL77Ozsn3/+uVmzZqqqqg0aNHBxcfn333+ZMiYmJp6enowsgfuoqCgNDQ1tbW1+227fvm1jY4O+oEe7du3izzpz5oyFhYWKigr2586d48/asWOHqakpzsK5d+7c4WVxudzly5cbGhqqqamBzJMnT3hZwgsZGRlLlixp1aoV6jcwMHBzczt79ixqRg0QevXqpaenh4sVFhYGDS/t2bMHLWpqaiIrLS2NpyeBCFSHADM40AAChjI8gKSmpv7www8tW7ZUV1dv2rTprFmz0tPT0WVKRKD6BCoZQ0obYMrgy4smIaU8/ttJ4CTkP8vq1Jk2bRquV9kpH+Yqffr0Qdb58+d5heVHII9I0q+1kZHR8ePHc3NzGUPz8vKOHTuGrz3mkNn37t377du3cXFxV65c6dat2+zZs/v161dUVMTk8u8xN8IHffv27c+fP7969eqQIUNSUlL4C0imXFhYOGrUqM6dO/ObFxsb+80330D58OHDxYsXYx6AAYgpEBAQMGLEiLFjx4aHh2M/fPjwoKAgJuvEiRNz5syB04KzcC7++OPj45ms3377bfPmzYATHBwMZwa+ZWZmJpMl5B7OjJOT0+HDhxctWvTgwQM/Pz+Y8dNPPzETFLijzs7O69evL1tbTk4OLiJ6UTaLNESgOgRoAAE92R5A3pRuGzdujIiI8PLywsA+adIk9JoSERAJARpDgFE2xhB0BAmTQMyIsPgLWSDBR4I7JKCUn8NKPCL5ASGxPbW2tob/g/ACYyEEDE9WVlbMIbNHJAQz+MaNG6MwZtUXLly4cuUKvhqZXP79P//8gwJwJBARQoQEK4vjx49HAQQoXr16NXfuXPwxIEGD5O/v36VLFwRM0CL8DUzooUTCuatWrfruu+/q1auHP6o//vgDSiYhxgJrYQ/0OIVRVn//yy+/IOoCx4a/KgSF0Bb+gFu3bj158uSJEydiTsAUgBL+DNwSnIW9q6srNEwWfB5MF1AeZ0GJru3cuRNZWBrBITylwYMHt23b9tChQ/BSjh49iizhE9jCL8VYA6qITZmbm0+ZMgXhIIBCJfDNli1bhqgRZIEEJ23hwoUODg4CejokAtUkgDEBfyYYN5h6IOAzTwMIaMjMAILxCotB/fv3NzMz6969+5o1azDOl7sihl5TIgJVJUBjCIjJxiQEHUlMTJw5c+aRI0cQ0MMhf8IKMiZIBw4c4FfKlUwekRRc7gkTJhw8eJAxFB9WTP0Z+Ut7fClaWlpi6lO2AByny5cvlw19oHCTJk1WrlyJWBMSTsRyY69eveAePHr0CHGVu3fv4q8Ieib9/vvv7du3RxgE/gb8qOvXr0N/+vTpLVu27N69OzIyEosQ7dq1g1Ig3blzB+5BuWnt2rUChZnDmzdvnjp16s8//2QOeXsEgnr27Mk7hLUhISFYyIGmbBa8O+gLCgpCQ0P5z4LMZMXGxr579w6HKIYEp65r165MFg6FSRwO5/jx46NHj4Y3yF8enVVUVOTXkEwEapIADSByNYAgIq2pqUljTk3+icl8WzSGyMYYglkKVmYXLFjQpk0bgQ8tloBHjRq1fft2zBIFsuTnkDwiKbjW+ATDIUHwAWGce/fujRkzplKjERtB+bLF9uzZg1m+rq6unZ0dPBnUxpTR0dFRUFDQ0NDAHwMSlPB5EAVC7KJFixZOTk7btm07fPhwXl4espCcnZ0R00AMBFGmoUOHwhGCMj4+HuciBoI1aXt7e4RHoBRItra2iJmUmzw8PAQK4zAlJcXd3R3xLnzH45A/wYFp2LAhTwMZy6LJycnQlM2CBnrkFhcXoyRkJkFmspg9Dhk99pAZJWRhEir/+PEjyAtTmMoQgRojUO4AUnHr+BjTAMJDxBsK8Dcu4QMIBkwE8KdNm8YzngQiUH0CNIbIxiRkw4YNWCsp9/4dTAgx0xswYED1Py3SWwN5RFJw7fT09Pr27Xvo0CFEiiDgsFKjuVwu7+Y3/sJdunSJiYm5cePGkCFDnjx50rlzZ3x98hfgyYilYAhAfINJiMBgdSE2NpYp4OjoyAjYQ3727BmEYcOG5ebmNmvWDL7QuXPn4J9AKZDU1NSaf2GDVyZQGIeoCo4ZzIZcNvH3EV1GAZ6GJ0CJLP5Dfln4LNRTcUJVKMBfOQ4pEYFaJ4ARA+MGDSBlLwT/X6vA369AFv8hv4yz+A/5ZYGssq0LaFAeGv4acFillJGRgQttYWHx66+/VulEmS9MHawmARpDZGASgknd1q1bMa8rO8hcvHjx5s2bnp6e1fycSPvp5BFJxxWcOHEiPseY00AQxmK4KKampuWWVFJSgiOECM+1a9dWrlwJj6igoKBsSfg/WGjkBXPCw8MjIyPNzMzKloSG+QMzMjJ68eLFn3/+Cbdn+vTpGEGYe9hQgJeqetcc/ko3btyIVQ2kSZMmpaenQzhQep8r4lH8MZykpCRkIfyFtspmYZUXegzrCIUJnMVk4RQUKDcLemFSgwYN6tevD/LCFKYyRKAmCWDcoAFEtgeQzMzM3r17YwELq1EY5Gvy00VtyQMBGkMwwZCKMeRLkxDMvjBNatq0KTqC9OrVqx9//NHExASfXky0oqOjtbW1oUeCBovmLi4uEOQqkUckHZcbX3XwW5AQq6nUYny4IyIi8IGutCRWExHJYe6FU1ZWLi4u5p1ibW2NIJJAOAdlmAKBgYGMgD3kVq1aQUCCL/Ttt99u27bN19c3ICAAZkDJn6p61xwq4XllK1eu1NDQwOGgQYNQJ2JTzO+XICPBwUPlzFSgbBbCwSgD+21sbPjPgsxkwYGEU4RDFEMC6tu3bzNZOBQmsdnsESNGHDly5M2bN/zls7OzAZlfQzIRqGECNIBg3JDhAQTRoZ49e2J8w1qvqqpqDX+6qDl5IEBjiLSPIWPHjn306BF6wSRDQ8MFCxZ4e3vj04slcv4saLZs2XLw08/XcSgniTwi6bjQiGzA70dSUFAoa3F+fj6CG4mJiQ8ePFi7du2AAQP69es3bty4siXh9O/evRvB07i4uMuXLy9evLhbt27MT3SwVODn54dKkkt/ivPzzz/DG5kxYwb+eBAdwhftDz/8wKvw3r17v/3228uXLxEROnXq1OzZs5GFRej9+/c/fvw4Jibmr7/+gndkbGwMPX+CUsDL4h2We9dc69at237aGjduDK8DRwjFoE4PDw8scsybNw9YEDVC0/Pnz4ceCfZcu3Ztw4YNz58/x97Hx2fOnDnQI6H8vn37UB5nzZ07Nz4+HvVAjzAXyoAeVljRBXd3d3V19e+++w5ZwiecjkBZx44dDx8+/PTpU3BDQx06dMjKykIlqampgAk9ZATTIL979w4yEgQcRkVFQYYbCRmFIVMiAiIhQAMIxg1ZHUAQHYI7hJUXjIFwjTCYIPEvb4nkI0SVyDkBGkOkfQzR1dVFFyVxqGoAABAASURBVHgJy8dYBW7ZsiU+2BB4egjQIJSEZWIIcpXII5Kayw2/Balcc69evdqoUSO4NFjFuXXrFkI0Fy5cwPhVtjBCTIcOHcLXJzwNeDg4PHnyJFMMC6hwk8zMzBo0aABN+/btESTBnL5z585WVlZLly5FE9AzCcFWuFXQr1q1atOmTagHeoRc9+7d6+zsjHNv3Ljxzz//4C8QejEl/LnCqUMwCi4HzECveWExJyen48ePY4UDlsBPO3HiBLwUxgyEcTw9PdFZnAUPEDXw3LaffvoJTtH06dMRa4JnCJ8KISnmLCH3cNUQMRszZszq1asBB+iOHTv2+++/a2lpoQZ4lVD27dsX8siRIyHv2vXfW2Uh4HDKlCnI6tKlC2QUhiz3iQCIjABGD6Ryq6MBRKoHEAzFQUFBERERWF3CKM2khISEcq81KYnAVxPAAIJU7uk0hkjFGFLutSMljwB5RDwUkihgNn/+/PmylkGJLEYPgVu6FRYWJiUlXb9+fcKECYilMLkC+0WLFvn7+6ekpOTm5kZHR2/dupXntDg4OISHh+fl5aEy5iw7Ozt4BViARIgDWQgoMXrsMSzCzcCqJBYjEZCBBmngwIHwB9LT01Ee8SVXV1coRZgQt0lLS+OvsGvXrgiLIUQWGxvLhHp4uUOHDn3+/HlBQQFiQYMHD+bpIcDnge+HszCTgPsBDZMQJlq+fPnbt28BAd4gs1LCZAm/h/Ozbt26ly9fon7AweUAFtSMGmA/2PInNAc9EgR+PWQUhp4SEagOAS8vL4wVZWuAElmMHgI+b0g0gDBAmH1tDCAlLX/FAILIPy6fQMICWUl19I8IVI8AxgcMF2XrgBJZjB4C8/GjMYQBwuwlcAxhDGP2mAVhCZiRBfa4mpi3CCjl4ZA8Inm4ytRHIkAEiAARIAJEgAhICAEygwhIHAHyiCTukpBBRIAIEAEiQASIABEgAkSACNQYAbF5RDXWA2qoxglUEGytcVtqoUFtbW163UctcKcmZYUADSA0gMjKZ5n6UTsEaAyhMUQcnzzyiMRBleqUZQLwiJYvX/5ZD+mACBABIiAcARpAhONEpYgAESifAI0h5XOptpY8omojpAqIABEgAvJDgHpKBIgAESACREDmCMiRR8TlcjMyMrCXuYtIHSICRKAmCGD0oDGkJkBTG0RAQgiI1AwaQESKkyojAiImIEceUWZmppaWFvYiRkjVEQEiIB8EMHrQGCIfl5p6SQRET4AGENEzpRpFSEDuq5Ijj0jurzUBIAJEgAgQASJABIgAESACRECQAHlEgkRk+Ji6RgSIABEgAkSACBABIkAEiIAAgap5RPn5+QLn0yERIAJEQAIJkElEgAgQASJABIgAERCSQOUekbe3t7u7u5mZmZKSkrq6uoaGRteuXdesWfPmzRsh26BiRIAIEAEiQASIgJgIULVEgAgQASJQTQIVeUTnz59v2bLl+PHj2Wz2ggULzp49C+9o//798Ih8fHyaNWvm4eHx4cOHalpApxMBIiCZBHILigqKOClZ+djnFBRJppFkFREgApJJgAaQr7guBK1SaFSACIiJQEUe0dq1azdu3IhY0IEDB+D89O/f383Nbfjw4StXrrx161Z0dLSmpubhw4fFZBlVSwSIQC0SyC8s3nU7xnbNdZvVPtjvvh0DjZjs8fPzw/BiaGjIYrGwEMNrBaswvXr10tPTgz4sLIyn5wlcLrdPnz7I5T+LlwvBxMQEufxpxowZ0CMh9M2vd3BwgJISESACIiGA4aLGBhCRGCwJlRA0SbgKZIPcEqjII7p//z6mKQgQlUuncePGv/32248//lhubjWUdCoRIAK1TADrlDt8o7feiMzILQkNYQ8ZGjFFirKzsy0tLbdv3y7QbeidnZ3Xr18voOcdenp6wqvhHZYVgoOD337arl+/jgLDhg3Dnkm9e/f+lPn28uXLjJL2RIAIVJNADQ8g1bRWQk4naBJyIcgMuSVQkUckt1Co40SgpghIaDsKbPZB/1gB46BRZItlxECcZ/Xq1YMHDxZocezYscuWLUNoWkDPHIaHh2/evBkRbOaw3H2DBg0MPm3//vuvmZlZ165deSVVVFQ+ZRro6Ojw9PxCfn5+Bt/Gn0UyESAC5RJQqNkBpFwbpE5J0KTukpHBMkZA2PnN69evd+zYsXDhwnl8m4yxoO4QASLAEMjMK0RciJF5e2ig5x3WrpCTkzNq1CiEleDSCGNJQUHB33//PXHiRP6Ykq+vr76+vrm5+ZQpU5KSksqtZ926dVqfNiMjo3LLkFI4AlRKXghgoMBwIdBbaKAXUNIhjwDgABHvkBGggZ6RaU8EiIBYCQjlEd24caNly5bwiDZt2nTr1q2DBw9iXbbc2/rFaitVTgSIQM0Q0FBV0lRTFGgLGugFlLV1OHfuXCcnpwEDBghpwPnz59PS0tzd3XnlEZg6cuTIzZs3MawFBwd3794d4SBeLk9YtGhR+qctISGBpyeBCBCBLxHAQIHhQiAXGugFlLJ7WOWeAQ4QCZwGDfQCSjokAkRAHASE8ogwJ/jxxx8fP36sqqp65swZTAu6du3Kfzu+OCyjOokAEfgfe+cBF8XxxXGPXqQoiIACYkFRlCoiKKBYo8SuKLbYY9do/hoTY+xdosauYNfYTSxYQSygYAGlShcLAkqHA+7+P9h4uRztpF55+xnHt29mp3z3bpg3b2+2XghEf8x6GJ0yoWsLgdq/szcu5HAElPVyevnyZVgyHh4ewtd+8OBBmED6+vq8S0aNGjVgwAAzMzNXV9dr165FRkZeuXKFl8oTFBUV1fkOnp4EIkAEyiPALiwSnQEkKSlp7NixWlpaKioqFhYWQUFBTLOzsrJmz57dvHlzZWVlU1PT3bt3M3qBeP/+/d27d29UcvTq1evx48e8DCtWrGDxHUL6q3mXCwhFHA7GWAElNCIy6go0jE6JgOQREMoiCgsLmzBhAjovJyeXm5vbsGHDlStXbtiwAZqKQ3lbSGGllm8YYfHv8uTs7Myf5ObmVmYVNTsSlVkFKYmAFBKI+pA5aq//qr/DJnUznufSBiuUgIAY8kznVioKgo4jpNZ9gDkUHR2tqakpV3KgAcOGDcPQAaHMEB8ff+vWrSlTppSZCqWenp6RkVFUVBRkCvVFgOqVDAJcLtfjdtRE+xZzerbG0IFOIa6vAeTTp08ODg7y8vJY9QgNDYVDGOMGmoQAP/P169ePHTuGGQ7kOXPmXLp0CXqB4OPjM3r06Lt37z569MjQ0LBPnz4wsXh5OnTowNudJSQkhKevgqCsIIcxFqCAC5cjhgyNiIy6aBIFIiDZBISyiFRVVZnnSbDCiokIQyQlJYURKoizy9lCCpdUsMvT1KlTeUPM3r17kbnMUIMjUZnlk5IISBuBiPeZo/f7p2TlK8jJsBo0mO7UMnBZ76CfeyGGrCgvKyJAlixZEhwc/PzLgVZt27bN09MTQpkBSTo6OvAIlZkKZWpqamJiIuwiyBSIABGoDoGD92MP+MWO2e/v3sUQQ0f9DiBYujUwMMAIYGtr26JFCxcXl1atWjG9g4WDpV6spEA/bdo0c3PzwMBAJok/Pn78+MyZM+FcateuHfxFHA7n9u3bvAxYk4FriAlNmjTh6SsVysyAMRYjLaA9WtLTf6lLPzNdaMrMSUoiQARqnIBQFhF8OA8ePEDdmFL88MMPa9asmTRpEpTQVBz69+9f5hZSuEqx/F2e4NpmxhfEGhoayFxmqNmRqMwqSEkEpIdA6NuMEnOI3UFf/cSULpoqClibhGmk1VARMeTaQ5GVlcVYN6giNjYWckJCAuS0tDTIWNmFHBERAfn9+/eQMTKY8R3QYO3W2NgYAgImPTv5NvLGDAbzIUx9MGIglQmocdGiRZgSxcXFYQ3Y1dVVW1t7yJAhTCrFRIAIVI3Aw+iUddfCca2braGuBtweMnUwgKC68sLly5dtbGxGjBiBNRFLS0uYNLyc3bp1QyocPnBqwQUUGRnZt29fXmqZQk5OTkFBAf++lHAsY6UYg4+bm1tMTEzpq7CazLdXZUbpDAIajLQYb4OT0rttuPu/c8ECqXRKBMSRgLi0WSiLaOvWrV26dEGXVqxY0bt379OnTxsZGR08eBCaKgfMQjBClbnLE5ZktLW1O3TogClLZmZmeVVUOhLhwq8djHAJBSIghQReJqWPOeCfls3u1FzjxBS7RqoKdQkBS7OYrCCg0oULF0JYvnw5ZMxXIGMhBjImHJD37NkDueIAPza/B/vWrVuwr7CIw3+VrKxsSEjIoEGDMATBWEIM60hNTY0/D8lEgAh8FYG3n3PnnHhWxOEOttCfaC/4Q8SvKqqmMsNK2b17d5s2bby9vWfMmDF37twjR44whW/fvr19+/bNmzdXUFDo16/frl27YCMxSeXF8E43a9asV69eTAbMi1AaSoahhcUae3t7eJuZJF5ctc0qLQ00MRoHv0mHx55XFAlEgAjUKoHKLSLYJJhhvHnzBpMMeG8wagQHB58/fx5GUZVbBt8RzJ47Ze3y5O7ufvLkSdhLv/zyy7lz50q/ooSpVJiRCDmrNhjhQgpfQ4DyijeB4Defx+z3/5xTYGGgeXRyFw0V+Truj7OzM5Zp+YOXlxfaMHHiRH4lZCzKQC8QoB88eDBPCbcPf7Y+ffogA2weXgYIysrKmMckJyez2ez4+HhUZ0A7a4MLBSJQVQJ5BUUzjgWlZrPb66mvG9qJxWJVtaSavA4uYisrq7Vr12I9Zfr06VOnToWBxFQAi8jf3x/LLkFBQVu2bJk5cyZWT5ikMuONGzdicoLJj5KSEpMBM5lhw4Z17NgRNhKzL8vhw4eZJF68tEqbVeqoKwEjCvGL+oiYAhEgAnVAoBKLCMZPu3btsHwycODA1q1bVzxeCN/cCnZ5woCFwcXMzAxLwmfPnkWNT58+LV2yMCMRrqraYIQLKRABKSHwPPGz+4GAjLxCa6NGRyfbaijXtTkkbpypvUSACAgSwKLD8ksvg9+ka6rI7x1nrawgKr851NPTgyOI11xTU1N4jHGam5v7008/bd261dXVtVOnTrNnz8a0ZPPmzUgqMyAJZtWNGzeQucwMqqqqMI2iogR3Z1Gs6maVzm2Lf5XkE0EWUZm8SUkEap5AJRYRfMSGhoZ+fn6BgYFOTk4YNWq8CRiw4G4qPY6gIiztyMvLl5mEVF4obyRChioPRriWAhGQeAJB8Z/GHQjIzCvs3KLR4Um29OILib/j1EEi8DUEhM17PCDhz8A3MqwG290sDRqrCHtZ7edzcHCIiIjg1RMZGYn5Bk4LSg4ZmX+nQLKysnAoIal02LRp06pVq65fv25jY1M6ldHk5+eHhYVhPsOcVj92bquDQu5FfizicCFQIAJEoLYJ/DsclFkTDKEdO3bY29vDODl06BCMk6ysrDJzVlmZWv4uT69evcKoVekQU+MjUZX7QhcSATEi8CQubfzBgMx4CZW9AAAQAElEQVT8QruWjb2+s22oKBI7a4sRQGoqESACIICFld/+egVhUd+2jibFng3IIhIWLFjg7+8P987r169PnDixb9++WbNmoW3q6upY5F28eLGPj09sbKyXl9eRI0d4e6uMHz9+6dKlyIawcePGn3/+GfOfFi1avC85eLOgRYsW+fr64vKAgIDhw4dnZGRMKHlPCa6qfrAy1FRTkvuUUxD85nP1S6MShCBAWaSdQCUWUUpKiqGhIQOJecHZx49f4cPFwPG85EAJGDUgwmENJcaRR48excXFYTCCz1r7yy5P0dHRK1euhBmGpKtXr44YMcLS0hJrPLgcgX8LKZRQeyMR6qJABCSbgH9M6oRDj7PZRQ6ttTwn2qqSOSTZ95t6RwRqh0ByZt7M40EFRdx+HXS/d/pnY+vaqaoqpXbu3PnChQsnT540MzODn8fDw8Pd3Z0p6NSpU0jFafv27devX79mzZoZM2YwSZiovHv3jpF37drFZrNh8GBxlgmbvzxc9+bNm9GjR7dt23bo0KEKCgowvRgHFHNhNWM5WZnubbRRiA89OAcKFIhA7ROoxCJisViZmZlY+UBIT0/nP4Wm0ubBtoFJg4CcvC2k4Jsub5cnjCm3b9/u27cvhpi5c+f26dPn1q1byI/LEWAvwUKDgFCVkQiXUSACRKBBg4evUyZ6Ps5hF+Ev7sEJnUXnoX+6OUSACIgRAXYhZ9bxpx8y8lvrNNw80hwzBBFs/MCBAzHlyMvLCwsLmzp1Kq+Furq6np6eSUlJubm54eHhmKLw2o+1Wi8vLyYn1me5/z14G7fApnr79i3sJRRy7tw5WFbMJTUVO5U43Hwiv2IZuqaqpnKIgBQSqMQiwjhgYmLSqORo3Lgx3Dswb3CmqamJuFJeZW4hpays7O3tXeYuTwYGBvD8pKam5ufnw8f9+++/o1JeLRiY6mwk4lVKAhEQSwLlN/pe5MfvvJ7kFXCc2zbZP95GSV5UfgNdfpMphQgQAVEksOZK6JO4T2qKcnvHWTckP3NN3yInk+KfEgW/+ZyalV/TZVN5RIAICBKoxCK6e/fuHb7j7t1/Tu/eLRYEC6NzIkAERJuAT0TylCOB+YUcl3Y6mMSQOSTat4taJxwBylUfBM4FvTn8KB41bx1l0apJQwgUapaAroZSO101LreBX1RKzZZMpREBIlCaQCUWkVOFR+niSEMEiIDIErgd9mHakSB2Iad3+6a7x1orypF3SGTvFTWMCIg0gZdJ6T9dCEET5/ZsjfEEAoXaIMDsOOfL/+BcbVRDZRIBItCgQSUWET+iV69eBX85IPMnkUwEiICIE7jx6v2MY0HsIk5/M91d7lYKcl/x3RfxrlHziAARqEsCadns6UeD4Gru0bbJ/F4mdVm1tNXlXPJWonuRHzm0B7e03Xvqb4MGDeoWQiWzIj8/v86dOzNNsrOzs7S0tCg5OnXqdOvWLUZPMREgAiJO4PrLdzOPPy0o4g7opLd9tKW8bCVffBHvDjWPCBCB+iJQWMSZe/JZ0udcIy0Vj1GWMjKs+mqJNNRrbdRITVEuNZsdkpQuDf2lPhKBeiRQycRo165d48aN47Xv7t27sbGxMTEx8+bN2717N09PAhGoGgG6qg4I/B38dtaJZ4Uc7iAL/d9HWZA5VAfMqQoiIKkENt2IuP86RVledu84aw0VeUntpoj0C8O1Q2vag1tE7gY1Q8IJVGIRPXnyxNbWlsegefPmRkZGLVq0gJn06NEjnp4EIkAERJPApedJWNAt4nCHWjbbOtJCjrxD9XefqGYiIO4ErgS/2+sbg15sGN6pna46BAq1TcCp5ME5n8jk2q6IyicCUk6gEosoKSlJT0+PYXT48GFdXV1Gbty4cWpqKiNTTASIgGgSOP/0zYLTzzncBiOsm28aYS5Lz7eI5n2iVhEBcSAQ8T5z8dkXaOnU7sbfmutDqCBQUk0RYH5K9Dzx86dsdk2VSeUQASJQmkAlFpGamlpsbCxz2dChQ1VUVBgZSnV1Wh9iYFBMBESRwJnAxB/OvIA5NNrWYMOwTmQOieJNojYRATEhkJ5bMONYUA67yL6V1v/6tROTVktCM/U0lNs2Ld6D+14UvapVRG8oNUsyCFRiEXXp0uXIkSOlu+rl5YWk0nrSEAEiIAoETj1O+PFcMJfbYKyd4ZrBHenXz6JwU6gNREBMCXA43IWnn8emZOtrKO0YbUkP39bxfWTcRLQHdx1jp+qkjUAlFtHChQsPHz68ePHi5OR/nmGF8MMPPxw7dgxJUgOLOkoExInAMf/4JedDYA5NtG+xapAZmUPidPOorURA9AhsvxN1OzxZQU5mzzhrrYaKotdACW8R81Mi2oNbwm8zda++CVRiEfXo0WPHjh3bt2/X09Nr1KhR48aNIezcudPDw6Nnz5713XiqnwgQAUEChx/G/XzxJbSTuxn/6tqexfravXFxKQUiQASIwD8Ebod98LgVhZPVg806NdeEQKGOCdgYNVZVkE3JYr96m1HHVVN1REB6CFRiEQHEzJkzX79+vXnz5tGjR7u5uUHA6ezZs5FEgQgQAZEicPB+7K+XX6FJ0x1b/jzAlMUicwgwKBCB8giQvhICsSnZ808/R6axdoYjbQwgUKh7AvDOOfyzB/c/T+vUfRuoRiIg8QQqt4iAwMDAYMGCBbtKDgg4hZICESACIkVg373oVX+HokkznVst6d+OxSJzCDAoEAEiUEUC2fmF048GZuYVWhs1Wj6wQxVLoctqggDz4JxPZHU2V6iJdlAZREByCVRkEVX6xqHs7OxXr4oXpCWXD/WMCIgHgV0+r9deDUdb57q0Wdy3LYtF5hBgUCACRKCKBLhc7o/ngiM/ZDVRU9zlbgU3RRULostqgoBzWx0U8yzh0+cc2oMbJCgQgYoJVCW1Ioto/PjxvXv3/vPPP7OysgTKDg0N/emnn1q3bv306VOBJDolAkSgjglsvx218XoEKl3Qy2RhbxMWS8zMoXv37rm6uurr67NYrIsXL6IjTDh//nzfvn21tbWhf/78OaPkjzFp69+/P1L5r+LPsGLFCqTyAu+NasiDa5GKSpWVlZ2dnWlxB0woEAEegX33Yq4Ev5OTYcEcaqquxNOTUC8Emmkqt9FpyOE28ItKqZcGUKVEQOIJVGQRwewZNGjQ8uXLGzVq1KFDB1hHmLV069YNExRra+v4+PibN2+OGzdO4hlRB0WRALWphACm9VtvRiLgDK6heb3aQBC7AG+zubn5zp07BVoOvYODw/r16wX0vFMPDw9YO7zTMgWMXe++HCEhIbw8Gzdu3Lp1Kyp98uQJLCWMb5mZmbxUEoiANBO4H5Wy4Xo4CCx3bd+5RWMIFOqdAO3BXe+3gBog2QQqsojk5eVnz54dHh4eEBAwbdo0MzOzZs2aYTF17969SUlJx48fh0ay6VDviIAoE4A5tOVGJBxEaOTS/u1m9WgNQRxD//79V69ePXToUIHGY8EFKzK9evUS0DOnL168gElz6NAh5rS8WE5ODgYPE5o0acJkAzoPD49ly5ahUoxjhw8fzsnJOXHiBJMqcjE1iAjUIYHEtJw5J5/CHTHMqvk4O6M6rJmqqogA8+Ccb+RHDu5NRRkpjQgQgaoQqMgi4pVnZWU1b968bdu27dmzBxOXYcOGNW5Mi0Y8PCQQgXoggDn9+uvhO+++Rt0/DzCd7tQKgvQEGDCjR4+GhwemTsW9joqK0tfXNzY2dnNzi4mJYTLHxsa+f/++T58+zKmioqKTk9PDhw+ZU/44Pz8/g+/gTyKZCEgegbyCohnHgj7lFJg1U18zxKxSH2zNE6ASyyFg06KRioLsx8z80He0B3c5jEhNBKpBQCiLqBrl06VEgAjUPAGYQ2uuhO31LZ7fr3BtP6V7y5qvQ7RLXLBggb29/aBBgypuZpcuXY4cOeLt7b1//36YQLgkNTUVl0BG3LRpU8RMgMwomVNevG7dOo0vB22zycNCgkQS4HK5P10IefU2o7Gqwp6x1kryshLZTTHtlKKcrH0rbTQebiLEFCSBAPVBlAiQRSRKd4PaQgSEIIBZy29/hR64H4u8qwabTXQwhiBV4fLly3fu3PHw8Ki01/3794dPu2PHjr169bpy5QryHz58GDET+Ne/QZX/lMmAeOnSpelfjsTERGgoEAFJJXDUP/780yQZVoMdoy2bN1KRjG4mJSWNHTtWS0tLRUXFwsIiKCiI6VdWVtbs2bObN2+urKxsamq6e/duRl86PnfuXPv27eFJRnzhwgX+DLt27YL/WUlJydra2s/Pjz+pNmTmp0Q+EfRWotqgS2VKOwGyiGr3E0ClE4GaJcDhcJdfeuX1MA7FrhvaUTqf8oc5FB0drampKVdyAAXMHmdnZwgVBFVVVZhGUVFRyMM8a8fvFEpOToabCEkCAdMgdb5DIJVOiYDEEHgSl7byr+IXmv2vXzvmfaAS0LVPnz45ODjIy8tfu3YtNDR0y5YtGDeYfsHPfP369WPHjoWFhUGeM2fOpUuXmCT++NGjR6NGjRo3btyLFy8Qjxw5MiAggMlw+vTp+fPnL1u27NmzZ927d8f6S0JCApNUS7GTSfEvIZ8mfE7PLailKqhYIiC1BMgiktpbTx0XPwIwh5ZdfIl1XBarwcZhnUbbGopUH+qsMUuWLAkODn7+5UC927Zt8/T0hFBByM/Px9RHT08PebCsC6Po5s2bkBHYbLavr6+9vT1kCkRACgl8yMibefxpIYc7oJPeNEfJeQp3w4YNBgYGGBxsbW1btGjh4uLSqtU/P7mEqTNhwgSspEA/bdo0c3PzwMDA0rcevujevXvDV9yuXTvEKAEaJtvWrVsnT548ZcoUuJigREW7SzmaMOzw/Q6xur//MWis0qqJahGHe5/24GbuAcVEoOYIfJ1FlJeX91VVl/eakYkTJ7L4Djs7O16xzs7OfCksNzc3XpKAUMfeaoHa6ZQI1DEBmENLzgeffJwgw2qwebj5yM4GddyA2qsuKyuLsW5QRWxsLGRmqTUtLQ0yVnahj4iIgMx4dXR1dc34DqQaGhrCyIGAgCnLzi8beS9atAimDsrEsu7w4cMxNcEcCHkwyGBxd+3atRcuXHj58iVGJBUVlTFjxiCJAhEQhoAk5WEXcr4/FvQxM79tUzUsteDbITG9u3z5so2NzYgRI3R0dCwtLffv38/rWrdu3ZCalJTE5XLv3r0bGRnZt29fXipPgOHE24IFSuRhtmDBMkpQUBB/EmQmCdl4ocZ/iMjsOOdDD87xEJNABGqIgFAWEYfDWbVqVbNmzRo2bMhs1vTLL78cPHiw0jZkZ2dj3YU3O+HP369fvy/vCHl39epV/qSpU6fykvbu3cufxJPr3lvNq5oEIlD3BLAouPhs8J+Bb2AObRtlMcy6ed23ofZqxNIsJisIqGLhwoUQli9fDhnzFcgDBgyAjMURyHv27IFccYiOjk5J+eclhm/evBk9enTbtm2H7RjKSgAAEABJREFUDh2qoKDg7+9vZPTPbsI//vgjjKKZM2diwoRZ0Y0bN9TU1CoumVKJgEQSWPn3q6cJn9WU5PaOs1ZVlJOkPmLGAr9NmzZtvL29Z8yYMXfu3CNHjjAd3L59e/v27Zs3b46RARMSrLHCRmKS+GOswvA/TwsZGmTAIFNUVIRTyEyAzCQxp0wMt9KX3yGm18gPEZ3bFj845xv5EYYcU0UdxFQFEZAGAkJZRKtXr/by8tq4cSMGDgZKx44dDxw4wMgVxP3Lec0ILlFUVMRCLxME9vLGYi2jR6yhoYHMpYMw3urSV5GGCIgjgcIizg9/Pj/39I2sDOt3N8tBFs3EsRcVtBmeYfx15w8YcJAfrht+JeQVK1ZALxCgHzx4ME8ZFxfHy3bq1Km3b9+y2WzYPMzPo3nZsBCObFh8gesbfiT4nHhJJBAB6SHwZ2DiMf8EFqvB724WLbRVJazjWM+1srKCNxjrKdOnT8d6Kwwkpo+wiLBEgmWXoKCgLVu2YHHk1q1bTJJAzGKxeBqMNizWv6cs1r+yQBJzCaY6fL9DVGeU1YltjRsry8smZ+aHvaM3SlcHJF1LBAQJMBaRoFbgHGsq+/btc3d3l5X9Zy/OTp06hYeHC2T7qlMfHx94sU1MTDBCJSf/Z+OU48ePa2trd+jQYdGiRZmZZXznMb/BEAYPNa9GyKW91Uit2Ud4USAFIlDHBGAOzT/9/OLzt3IyrJ2jLV3N9eu4AVQdESACkkog+M3nny++RO/mu5j0bPfvZvTQSEbQ09ODI4jXF1NTU+aJ3Nzc3J9++glLq66urpjPzJ49e9SoUZs3b+bl5AlYmeX3/GC6Al8QUjFLwYyozCSk1l5QLN6DWwvl+0T+Z+IEDQUiQASqQ0AoiwjLq61bt+avBusuBQVV3+oEviOYPXfu3MHCzJMnT3r27AnThSkfdtfJkydhL/3yyy9Y0x06dCij54+F9Fbjkhp/hBdlUhBzAuLU/IIiztxTz/4Oficvy/rD3ap/x+JdAcSpA9RWIkAERJVASlb+jKNB7EJOL1OdOT3/8ydeVJv81e1ycHCIiIjgXRYZGck8N4sJDIKMzL9TIJg3mNjwcvKErl278rZggfLGjRv2JVuwKCgoWFtb8ydBZpKQrVYD8+CcT8THWq2FCicC0kbg3+Gggp7DXSOw0f6ZM2fgg67gkoqTsBgzYMAAMzMzLM9cu3YNgxTzqhBcBZdRr169kOTm5nb27Fl4sZ8+fQp96cBiVeKtxiU1/ggvyqRABOqGAGYqs088vRryXkFWZs9Y674ddOumXqpFgghQV4hA2QTgfMbw8jY9z1hbdesoCxmZf/+eln2BeGoXLFjg7++/du3a169fnzhxYt++fbNmzUJX1NXVnZycFi9ejOXX2NhYLy+vI0eODBkyBEkI48ePx+QBAsK8efNgBW3YsCE8PBwx5iTz58+HHmHhwoUHDhw4dOhQWMn+3fA+zZgxA/raDk4mOqgiKP5TRl7VF6ZRAgUiQAT4CQhlEf3666/wKWMswArK+fPnYbRgfGF++sxfVtVkOLWxZsO8JESgBCsrK3l5+dJJwnura/wRXoEW0ikRqCUC+YVFM48Heb/6oCAns3ectYupBD7QUkvoqFgiQAQqJbD+Wrh/TJqKgiyGF3Ul+Urzi0OGMtrYuXPnCxcunDx5Esusq1at8vDwcHd3Z/KdOnUKqTht3779+vXr16xZw7NnEhIS3r17x2SD2wc5PT09O3XqBMPp9OnTXbp0YZKwtosCV65caWFhce/evatXr2IywyTVamyopdJSu3gP7gdR/2whU6vVUeFEQEoICGURwZODUQDfdhaLBUMIyyF//fVX7969a4RRampqYmIi7KLSpb169Qp+7dJJ9eitLt1I0hCBGieQV1A042jQrbBkRTmZA+NterQrXhGs8VqoQCJABKSTwOUXbw/cj0XfN48wN2kq4VssDhw4MCQkJC8vD1MXrOei10zQ1dWFnZOUlJSbmwv/Dxw+mOEwSXAcwfhhZMTDhw9HBjabjRIEnuSfOXNmXFxcfn5+UFCQo6MjMtdNcCrZcY4enKsb2iJZCzWq5gkIZRGh2r59+/r6+mZlZeXk5Ny/f79Pnz5QVhqQ/3nJgZxwTEPE0guUixYtevToEcYRjDswt+DzYbzV0dHRWG4JDAxEEgywESNGWFpaOjg44HIE/teMYPCqF281mkGBCNQqAZhD044G3Y34qCQvc2hiZ0eTJrVaHRVOBIiAVBEIe5fxv7PB6PIMp1bfdKSfJoKE+AXmrUS0B7f43TlqsQgTENYiqloXYNvApEHA5bBhIMDFJCsriwWbQYMGmZiYTJgwAfGjR4+YN4HA+XP79m1YX23btp07dy7srlu3biE/LkeAvZTy5TUj9eWtRjPqKFA1Ukkgl1005XDgvciPyvKynhNtHVprSyUG6jQRIAK1QiA9p2D60aDcgqJurbUX9TGplTqo0Non0MW4MZbM3mfkRXwoYz/e2q+faiACEkhAKItIRkYGZknpUCmPMl8zoqys7O3tnZycDB90fHw8fNMGBgZMURDgiUpNTYUP+vXr17///jv/q4rgOFqxYgWTE3F9eatRNQUiUBsEctiF33k9vv86RVVB9vAk266tirdYrY2KRK5MahARIAK1T6CIw513+llCWk4zTeUdoy3lZIWaANR+u6iGryagJC/btWXxHwh6cO6r2dEFRKAcAkINiBcuXDj/5Th9+vSSJUv09PT27dtXTpmkJgJE4KsJZOUXTjz0xD8mraGi3JHJtrbGjb+6CLqACBAB0SdQfy30uBWJCbRiyWYtjVQV6q8hVHMNEGAenPOJoLcS1QBMKoIIgIBQFtEgvmP48OFr1qzZuHHj5cuXcT0FIkAEqk8gM69gwqHHj+PS1BTljk62tTYic6j6UKkEIkAE/iVw49X7HXde43zd0I5mzTQgUBBrAk4lPzENjPuEPx+i2xFqGREQHwJCWUSlu9OlS5dbt26V1pOGCBCBryWQkVcw7uDjoPhP6kpyx6Z0sTRs9LUlUH4iQASIQAUEoj9mLfzzBTJMtG8x1Ko5BAriTqCFtmoLLZVCDvfB61Rx7wu1nwiIAgGZKjQiNzd3x44dzZsXj6pVuJwuIQJEgEcgPadg3IGA54mfNVXkT0y1MzfQ5CWRQASIABGoPoGs/MLpR4MQ27ZovGyAafULpBJEhADz4JxvJD04JyI3hJoh3gSEsogaNWrU+MsBWU1N7dChQ5s2bRLvrlPricBXEqjx7J+y2e4H/V+8SW8Ec2iKHT3KUuOEqUAiIOUEuFzuoj9fvE7OaqquuNPdUp52U5CgDwTvrUS4yxLULeoKEagfAkJZRNv4ju3bt//999/x8fHffvtt/TSZaiUCEkEgLZs95kDAy6QMLVWFk9Ps2uurS0S3qBMSQoC6IRkEdvlEX3/1Xl6WtcvdWkdNSTI6Rb1gCHRtqaUoJ/MuPS8qOYvRUEwEiECVCQhlEU2cOHHCl2PcuHH9+vWDp6jKVdKFRIAIpGTlj9nvH/YuQ7uh4qlpdu10yRyiDwURIAI1TMA38uPmGxEodMW3HayN6AeKIFF2EFOtkrys3T97cNODc2J6D6nZIkSgIosouLJDhPpBTSEC4kMgOTNv9D7/8PeZOmqKMIfaNFUTn7ZTS4kAERAPAolpOXNPPuNyG4yyMRhjaygejaZWfiUB57ZNcIVPxEfEFIiAMAQoT3kEKrKILCwsLC0tLco5LC0tyyuU9ESACJRH4ENGnts+/6jkLF11pdPTu7bWaVheTtITASJABKpGIJddNO1oUHpugXlzjd8GdWCxWFUrh64ScQLM5gpP4tKy8gtFvKnUPCIg4gQqsohiY2NjYmJiyzliYmJEvG/S2jzqt+gSeJ9ebA7FfMzW14A5ZGesrSq6baWWEQEiIJ4EuFzu0vPBYe+Kf6O4e6y1krysePaDWl05gRZaKoaNVQqKuA9fp1Sem3IQASJQPoGKLCKjyo7yi6UUIkAEBAm8/Zw7at+j2JTsZprK8A4ZaZE5JIjo68/pCiJABAQJeD6Iu/j8rawMa+cYK31NZcFkOpcgAiwW658H5yLpwTkJuq/UlfogUJFFJNCe0NDQ69evX+Y7BDLQKREgAuURSEzLgTkUn5pj0BjmkJ1BY5XycpKeCBABIlAWAaF0/jGpa66GIevS/u26ttKCQEGyCTAWkW/ER/gGJbun1DsiUKsEhLKIYmJizM3NzczMBgwYMLjkGFJy1GrLqHAiIDEEElJz3Pb5J6blttBSOT2ta/NGZA5JzL2ljhABESLwLj139omnRRzuIAv9yd2MRahl1JRaI9C1pbaCnEzS59zoj5K0B3et8aKCiUA5BISyiObNm2dsbPzhwwcVFZVXr17du3fPxsbGx8ennDJJTQSIwL8E4lKy3fY9wp+rltqqp6Z1pYdY/kXzRcKQ4urqqq+vz2KxLl68+EXd4Pz583379tXW1ob++fPnPD1PwJpo//79kcp/FS8Vwrp16zp37qympqajo4PFnIiI4p2IoUeYOHEiLuQFOzs7KCkQAfElkF9Y9P2xpylZ7Ha6auuHdsJnW3z7Qi0XnoCygmwX48bI70M7zoECBSJQVQJCWUSPHj1auXJlkyZNZEqObt26YZ4xd+7cqlZach1FREAKCMR8zBq179Hb9LxWTVRPTbPT1aA3JJZx17Ozs+GF3rlzp0Aa9A4ODuvXrxfQ8049PDwqnvb5+vrOmjXL39//5s2bhYWFffr0QZm8y/v16/fuy3H16lWengQiII4EVlx+9Tzxs7qS3L5xNpgli2MXqM1VI8DsOEcWUdXo0VVEgCEglEVUVFTUsGHxHsFYrH379i2uNDIyiuBbbYWGAhEgAgIEXifDHPL/kJHfRqfhqWldddTJHBIg9M9p//79V69ePXTo0H/Ov/w3bty45cuX9+rV64viP/+/ePFi69athw4d+o/2vyfXr1+HL6hDhw6wuDw9PRMSEoKCgnhZFBUVdb8cjRsXL7LyknhCfn5+Bt/B05NABESKwMnHCScfJ7JYDbaPtjTUoudyRerm1HpjmJ8SPY5Ny6Y9uGsdNlUgsQSEsojMzMyCg4PBoEuXLhs3bnzw4AFcRi1btoSGAhEgAmUSiPyQ6bbP/2NmfjtdtVPT7JqoKZaZjZRVI5CTkzN69Gi4lWDRCFlCeno6cvJbPj4+Pjo6OiYmJlOnTk1OLvul7/CHa3w5DAwMUAKFSghQcp0TeJbw6ddLr1DtD71NGHcBZAoMgaSkpLFjx2ppaamoqFhYWPDWRFiljk2bNjGX8MfOzs4CGQcMGMBkWLFiBX+S8GMRc3kNxi21VZs3UmYXcR5Fp9ZgsVQUEZAqAkJZRD///DOHwwEXrOPGx8d379796tWr27dvh4YCESACpQmEvcsYvc8/JSu/vZ76ial2Wg3JHCoNqVqaBQsW2NvbDxo0SMhSuFzuwoULu4FcJWIAABAASURBVHXrhvUd5hI4po4fP37nzp0tW7Y8efKkZ8+ecAcxSfzx0qVLYUoxITExkT+JZCIgCgSw7PL9saeYDfdp33Smc2tRaJLotOHTp08ODg7y8vLXrl0LDQ3Fl11TU5Np3pcHZov/h6uZxWINGzaMSeKPz58/X5yj5N/Lly9lZWVHjBjBy9ChQ4eSlOIoJCSEp69jAY1n3EQ+kWWv7NRxe6g6IiCOBCqxiLCgglVYW1tb5oEW+IUwpqSkpGA9FRMIcewwtZkI1DaBV2/Tx+z3T81mmzWDOdSlsapCbdcobeVfvnwZloyHh4fwHZ89ezYc3SdPnuRdMmrUKKz1wkBydXXFbCkyMvLKlSu8VJ6gqKioznfw9CQQAVEgUFDEmXXi6fuM4l8qbhlpLiPDEoVWiU4bNmzYANeup6cnpjEtWrRwcXFp1aoV0zy4dHjh0qVLPXr0wAyHSeKP4VXmZbt58yYcTfwWkZycHC+1SZMm/BfWsexsooMafWgPblCgUEsEJL3YSiyiLl26wEGkr68/ZsyY27dvMzQwQGBBgpEpJgJEgJ/AyySYQwGfcgrMm2scn2ynqULmED+empFhDkVHR2OtF9MRBBSKxV1nZ2cIZYY5c+bAiLp7927z5s3LzKCnp2dkZBQVFVVmKimJgMgSWHs17HFsWkNFub3jbNSU5EW2nfXVMHzxbWxsYMPo6OhYWlru37+/dEs+fPiA1ZDJkyeXThLQHDx40M3NTVVVlafHoIEJkrGxMfQxMTE8PU+A55nvd4gZPH2NC/attRRkZd58yo1Jya7xwqlAIiANBCqxiPbu3fv+/ft9+/Yh7tOnD5ZYVq5cmZCQIA1opLCP1OVqEniR+BneofTcAktDzaNTumio0ASlmkTLvnzJkiVw+Dz/ciDTtm3bsAwMQSBwuVx4h86fPw8jCrMWgVTeaWpqamJiIuwinqbKQi67kF3ISc3KR5zDLqxyOXQhEaiUwIVnbzwfxCHb5hHmrXWKdz+CTIGfAKyU3bt3t2nTxtvbe8aMGXPnzj1y5Ah/BsiHDx9WU1NjHoTBaXnh8ePHL1++nDJlCi8DloxRGkqGoYU5kr29PUYSXioj1NkPEVUU5GxpD24GOsVEoEoEKrGIUKaSktK4ceMwn3j9+jUErJHAs9y3b98///wTqRSIABFgCDxN+DT2QEBGXqGNUaMjk2zVab2W4SJEnJWVxVg3yBsbGwuZWXZJS0uDHBoaCn1ERARkTDsg6+rqmvEd0BgaGvIMHhcXl51fNvKeNWvWsWPHTpw4gRkPrkXIzc1F/qysrEWLFj169CguLs7Hx8fV1VVbW3vIkCFIqk7ILyja4xtjs+am9epbiPf6xkBTnQLpWiJQHoFXb9OXni/+4cqsHq36memWl03K9RwOx8rKau3atXAQTZ8+ferUqTCQBJgcOnTI3d1dSamSvUAx+cGoY2try7u8f//+8E537NixV69eV0qeuYVxxUtlhLr8IeI/PyWKoJ8SMewpJgJfR6Byi4hXHiYcq1atwgTi1KlTgYGBo0eP5iWVJ5T34sWJEyt5NyJWdjHWsP77ukb+WkRnjxf+VpEstQQC49LGH3ycmV+IVbrDk2zp8ZWv+iRgPMF8BQFXLVy4EMLy5cshX758GfKAkp2d3NzcIO/Zswf6ikN0dHRKSgqTB7Of9PR0Z2dn+H+YcPr0aSTJysqGhIQMGjTIxMRkwoQJiGEdwWpCUpUDvEO7fKJ/vx2VkVvsGkIMGRryFFUZKV1YHoFP2ezpR4PyCjiOJk0W9m5bXjaeXmoFfOvbt2/P676pqSmz2sLT+Pn5YbWF3/PDS+IXcnJyMPOpIJuqqmrHjh2jSj15W5c/RGQsooDYtFx2EX/jSSYCREAYAl9hEaG4u3fvYvYAe6aoqAhrLdBUHLLLefEirupX4bsRPTwqefEiSuggGnu8oCUUpJxAQEzq+EOPs/ILu7bU8vqus6qinJQD+druw2LBIgh/8PLyQiEYaviVkLEUAr1AgH7w4ME8ZVxcHC8bkgTCxIkTkVNZWdnb2zs5OZnNZsfHx6M6A4Pq7qwtKyPj+TAWhfMHaORkvm6Y5b+cZCJQmkARhzv31LM3n3ING6tsd7OQpd0USjP6onFwcIDB8+WsQWRkpJGREe8UAjw/1tbW5ubmkCsIf/75Z35+/tixY8vLg9SwsDAYYOVlqAN9qyYNm2kqsws5j2L+WRKqg0pFsApqEhGoGgGh/lRjTWXlypUtW7Z0cXHB7GHXrl3v3r0TZrG2fzkvXkRbsXCi++Vo/N93Iwrz4kWUICfEHi8YpOrmR41oDwXpJPAwOmWi55McdlG31tqHJnZWUSBzSDo/CA0y8wrgFxLoPDTQCyjplAhUh8CWGxF+USlK8jJ7xlrT3i0Vk1ywYIG/v//atWtfv3594sSJffv2zZo1i3cJpgdnzpwp7fkZP3780qVLedkgwHDCsouWlhZkXli0aJGvr29sbGxAQMDw4cNRGpaMeal1L7BYLKe2xfvd+UR8rPvaqUYiIO4EKrGIMIL07t0bttDevXtHjRqF9RV8/zFYYIW1mj33KefdiPBNj67kxYv/1Az3dMV7vCBfnf2oEXVRkEIC96NSJnk9yS0ocjRpcmCCjbKCrBRCoC4zBNSU5NWVBe1haKBnMlBMBKpP4PrLd7t8olHOhmGd2uurQ6BQAYHOnTtfuHDh5MmTZmZmq1at8vDwcHd35+U/deoUfMiYcvA0jJCQkIBlX0ZGjJnP/fv3S29G9+bNG1zbtm3boUOHKigowPQScEDh2joOzib/WEToVx1XTdURAXEnUIlFNHHixIYNG168eDExMRHWRevWNfP2N/iOyns3IlZ07IV48aIwe7zg3mCZJ/3LgS5AQ4EI1BQB38iPkw8/ySvg9Gyns2+ctZJ8bZhDNdVYKqfWCRRxON/ZGwtUA00hhyOgpFMiUDUCUR8yf/jzBa6d3M14kEUzCBQqJTBw4MCQkJC8vLywsDCBp/2nTZuGRVgNDQ2BQrBi6+XlxVOamJjAwMDqME/DCDCo3r59y2azk5KSzp07x/+DJSZD3cf2rbXlZVkJaTmxtAd33dOnGsWcQCUWEZZAsL6CAUWmRh+Fh7tpwIABWLNx/e+7ES8L/eJF2FSV7vGCW6NIb1cEBQq1QOBuePLUw4H5hZxepk13j7Uic6gWGItZkcoKcjOdW81zaQO/EJqOeK5La2hU6EFK4BAqUKaKCGTkFUw/GpTNLupi3HhJ/3YVZaU0aSXQUFGuc4vG6D0W7BBTIAJEQHgClVhEOjo6wpdVtZx6fO9GvHPnTvTXvHiRqbG8PV6YVIqJQI0TuBX6YdrRQHYRp2+HprvcrRTlyDtU44zFskBFednpTi0Dl/UO+MnFf6mLbYvGCnKVjLFi2U9qdJ0T4HC48A7FpGTraSj94W4lL0ufqzq/BzVcYW0Vx+w4Rz8lqi2+VK7kEqj/UTWV792Iwr94kf+O5OfnwxsOy4pfSTIRqCUC11++//54UEERd0BHvZ1jrGjKW0ucxbRYeITwkVCRl3XZ4jv24OOg+E9i2hFqtkgR+OPu65uhHxRkZXaPtdZuqChSbaPGiBQB57bFC9n+Mal5BbQHt0jdGWlujHj0vXYtoqysrOclB2DExsZCTEhIgHJROe9G1NXVNeM7cJWhoaGx8T+P5ru4uOzcuRNKBJTgK0p7vKBJFKSBwNWQd7NPPIU55Gqu/7ubBa3USsNNr0If1ZTlu7XWxoXHAxIQUyAC1SFwNyJ5661IlLBqcAcLA00IFIhAeQTa6DTU11DKL96DO7W8PKQnAkSgNIHatYjKfPFild+NGM334sU3orfHS2m4UqSRjq5efvF2zslnhRzuEMtm20aay9GDK9Jx36vWy7F2RrjwSvC7tGw2BApEoGoE4lKy5518xuU2GNPFcFRnw6oVQldJDwHeHty+tAe39Nx16mlNEBDKImrZsmVq6n8WGz5//gxlpQ1wdnbm/vfw8vJSVlb2Fu7diLh08ODBvFr4X7wognu88NpJgkQSuPgsaf6pZ0Uc7nDr5ptHkDkkkTdZuE4Jl6tTcw2zZursIs7ZoEThrqBcRECQQA67cMaxoIy8QktDzV9d2wsm0zkRKIuAk0nxg3M+EcllJZKOCBCBsgkIZRHBFCkq+s8Dqfn5+UlJSWUXSVoiIHEEzga9WfDncw63gVtng43DOsnKsCSui9ShGiaAldqxXYrdRMcDEjj46NRw8VSc5BPAmuCPZ4PD32dqN1Tc7W5dPzu4SD5mCeyhQ2stORlWXGoOHIwS2D3qEhGoHQKVWESXSw5UDa9OiVgcXbhwYdWqVS1atICeAhGQeAKnnyQsPvuCeWpl7ZCOMmQOSfwtr6EOfmuhr6YoF5+a8yA6pYaKpGKkiMDB+7F/B7/D1HaXu5WuhpIU9Zy6Wj0CakryNi0aoQzagxsQviJQVukmUIlFNLjkwGLnhAkTSsTiyM3N7ebNm1u2bJFudNR7qSBwIiDhf+dCYA6N72q0ZrAZmUNScddrqJMqCnJDrYpfo3nMP76GiqRipIXAw+iUddfC0dufB5jaGhe/YQYyBSIgJAFmxzl6cE5IXJSNCIBAJRYRp+QwNDRMTk4uEYuj/Pz8iIiIgQMH4nrxCtRaIvBVBI4+ivvpQggu+c6hxW/fdsDSAGQKREB4Au4l+yvcCkt+n54n/FWUU8oJJH3OnX3iWRGHO9Sy2QR7ehxDyj8OVek+81aiR7QHd1Xg0TVSSqASi4ihEhsbq61dvJMsc0oxEZAGAp4PYn+59Ao9ndrdePnA9mJnDqHlFOqdgElTNdsWjTG1PfWEtuGu97shHg3IKyj6/lhQWja7vZ762qEdaeQRj9smYq1s21RNV10pr4ATEJsmYk2j5hABESUglEWEtt++ffunn36aMmXKJL4DegpEQCIJHPCL+e2vUHRthlOrn74xpUkJUFCoGgF3u+Idk089Tiws4lStBLqqUgISk4HL5f5y8WXwm3RNFfm946yV5GUlpmvUkbokgL9ZTiZNUKNPBO04BwwUiEDlBISyiH777bc+ffrAKEpJSfnEd1RePOUgAmJIYI9v9OorYWj4nJ6t/9evLf60QKZABKpGoJ+ZbmNVhfcZebfDaWpSNYRSdNXxgIQzQW9kWA12jLY0aKwiRT2nrgpNQMiMzINz9FYiIXFRNiIglEW0Z88eLy+vgICAixcvXuA7CB8RkDwCO+9ErS/5QfP8Xm1+6EPmkOTd4brukaKc7Aib5qgVk13EFIhAeQSC4j/99lfxk7qL+7br3qZ4gb+8nKQnApUScGijLSfDiknJTkjNqTQzZSACokmgLlsllEXEZrPt7e3rsllUFxGoFwIetyI334hE1T/0NpnfywQCBSJQfQLutsUvJroX+ZGmJtWHKaklJGfkfX8sqKCI+01H3RlOLSW1m9SvOiOgriRvZcTswU3e6TqjThWJMQGhLKKDzQNLAAAQAElEQVQpU6acOHFCjHtJTRddAqLSMi6Xu/VGhMetKDTof/3azXFpA4ECEagRAoZaKo4lz/Qff0zbcNcIUUkrhF3ImXn8aXJmfhudhhuHm9OTupJ2g+upP8yDcz4RH+upfqqWCIgTAaEsory8vK1btzo5Oc2ZM2ch3yFOHaW2EoHyCcAc2ugdsf3Oa2RZ9o3p986tIFAgAjVIwL2LYYMGDc4EvskvLKrBYqkoySCw+kpoYPwnNUW5veOsGyrKSUanqBf1TsDZRAdteBidmldAww5IUCACFREQyiIKDg62sLCQkZF5+fLlsy/H8+fPKyqY0oiAmBCAObTuWvhun2i0d/nA9lMd6XkVkKBQwwRc2unoqiulZbOvv3xfw0VTcWJO4GzQmyOPip2HW0dZtGzSUMx7w2s+CfVPwFRPTUdNMbeg6Ekc7cFd/7eDWiDiBISyiO6Wddy5c0fE+0bNIwKVEoA5tOrvsH33YpBz5aAOk7oZQ6BQxwTu3bvn6uqqr6/PYrEuXrzIq/38+fN9+/bV1taGvswlGNy+/v37I5X/Kt7ljLBr1y5jY2MlJSVra2s/Pz9GiRjXrlixApUqKys7Ozu/elX8i3boaynIycq42Rqg8OP+9GIiYKDwD4GXSenMa6DnurTp3b7pP1r6jwjUBAGMjV/24KYH52oCaLllUIIkEBDKIpKEjlIfiEApAsVz4suvDj2IRcqaIWbju7aAQKHuCWRnZ5ubm+/cuVOgaugdHBzWr18voOedenh44E8+77S0cPr06fnz5y9btgy+7e7du8N8Skj4xyDZuHHj1q1bUemTJ090dXV79+6dmZlZuoQa1Lh1NpSVYT2OS4t4X7sV1WCbqahaJQCf4fSjQexCTs92OvPpt4u1wzopKWns2LFaWloqKioWFhZBQUFMPRg6BMKmTZuYJP7Yy8tLIFteXh4vQ3kLLrwM9S44ty1+cM6H3kpU73eCGiDyBIS1iDBp+PHHH93c3IbyHSLfu5prIJUkcQQ4HO7PF18efhTPYjXYMKyje5fi3cAkrpfi0SEYKqtXr8bQItDccePGLV++vFevXgJ65vTFixcwaQ4dOsSclhkjw+TJk6dMmWJqagrzycDAYPfu3cgJYxinsJRQqZmZ2eHDh3NycsrcPyY/Pz+D78C1VQ66Gkq9THVw+YmA4kekIFCQZgKFRZw5J58mfc5toaWybZSFjAxLmmnUUt8/ffqEVRV5eflr166FhoZu2bJFU1OTqesd34FhhMViDRs2jEkSiNXV1fnyvoPDmclQwYILk0EU4m5ttLEQE/0xOzGN9uAWhRtCbRBdAkJZRKdOncKYgtHkwoULBQUFEO7cuaOhoSG63aKWEYEKCcAc+ulCyPGABBarwcZhnUZ1Nqwwu5QlikN3YcCMHj0aHh64d8prL5vNxnpwnz59eBkgP3z4EKexsbHv37/HKWQERUVFJycnJgmn/GHdunUY65gAg4o/qQryWLtiw/v806Ts/MIqXE6XSBKBTd4RD16nKsvL7h1no6EsL0ldE52+bNiwAV9bT09PW1vbFi1auLi4tGr1z8Y5GDp44dKlSz169GjZsuwfkbJYLF5OCLzelbfgwssgCgI+WlaGxUagTyQ9OCcKN4TaILoEhLKI1q5du23btr///ltBQeH3338PCwsbOXKkoaGh6HaLWkYEyidQxOH+eC741JNErMluHWk+wqb41x3lZ6cUUSSwYMECe3v7QYMGVdC4lJSUoqKipk3//W0GZBhCuISJcQqZCZAZJXPKi5cuXZr+5UhMTOTpqyY4tNI20lLJzC/868XbqpVAV9UwgXoq7u/gt3tLfr64aUSntrpq9dQKya/28uXLNjY2I0aM0NHRsbS03L9/f+k+f/jw4cqVK5MnTy6dxGiysrKMjIyaN28+cODAZ8+eMcoKFlyYDExcg05mpsAqxMyDc74RZBFVAR5dIkUEhLKIoqOjBwwYACpYSc3OzmaxWJiO7Nu3DxoKREC8CMAcWnzmxdmgN7IyLA83yyGWzcWr/dRaEMAsB25qDw8PyJUGjFe8PFwul/+UXxZI4l2CQU+d7+DpqybIyLDcS7bhPhYQjxqrVghdJe4EIt5n/ng2GL2Y5thyYCd9CBRqiUBMTMzu3bvbtGnj7e09Y8aMuXPnHjlyRKCuw4cPq6mpDR06VEDPnLZr187LywtjzsmTJ5WUlBwcHKKiil9bV8GCC3MhE9esk5kp82tjZnOFh9Ep+bT1/9eyo/zSREAoi6hx48bMb46bNWv28uVL8Pn8+XNODj2TChIUxIlAYRFnwenn558lwRza7mb5rTnNRcTp9vHaCnMIyzSamppyJQf0w4YNc3Z2hsAftLW1ZWVl+T0/ycnJ8AUhD/PoS5lJSK3VMNzaQEFO5mVSRvCb9FqtiAoXTQLpuQXTjwbmsIscWmv92LetaDZSYlrF4XCsrKzWrl1raWk5ffr0qVOnwkAS6N2hQ4fc3d1h7QjomVM7O7uxY8eam5t37979zz//NDEx2bFjB5OEuNJVlZp1MqPGKoQO+upN1BTxkQuM+1SFy+kSIiCWBL6+0UJZRBgIbt68icJHjhw5b948jCmjR492cXGBhgIREBcCBUWceaeeX37xVk6G9ccYywGd9MSl5dROAQJLliwJDg5+/uVA6rZt2zw9PSHwBwUFBWtra2bsYvSQ7e3tIRsbG8MowilkBDab7evryyThtFZDY1WFAR2LP3vH/Gl/hVolLYqFczjchaefx6XmNNNU3jHaSk5WqD/BotgTMWmTnp5e+/bteY01NTXl7TbJKP38/CIiIqZMmcKcVhzLyMh07tyZ8RFVsODCX0jNOpn5SxZehtnmZNIE+X1oxzlQoEAEyiEg1HC8c+dONzc3lIDVjkWLFn348AH+5YMHD0JDgQjUF4GvqpddyJlz4tmVkHfysqzdY637mRVPSb+qBMpcewSysrIY6wZVxMbGQmZmLWlpaZBDQ0Ohj4iIgMx4dWDMmPEdSDU0NISRAwEBizUYsiAgLFy48MCBA1gDDgsLW7BgAYqdMWMG9JgizJ8/HyvHFy5cgN974sSJKioqY8aMQVIdBPeSB+f+Cn6bnlNQB9VRFaJD4PfbUbfDk+Ek3DPWGrax6DRMUlvi4OCAoYPXu8jISCMjI94pBMxksG4CFxDkSgOXy8UoBCsLOStYcEGqqIUvFhH9lEjU7gy1pyICuexCTN5Ss/IR57BrfTsioSyixo0b6+sXP1+EBZIff/zx8uXLW7dubdSoUUX9KEkr78WLmH9gRsIL8EqXZP83wrjTv6ovXvy3FJKIQAmB/MKimcefXn/1XkFWZu84a3oNYgkVEYoCAwMtSw60CTYMxOXLl0PGUAN5QMmPGLEoA3nPnj3QVxyio6NTUlKYPKNGjfLw8Fi5cqWFhQWGo6tXr/LmQxjKYBTNnDnTxsYmKSnpxo0bamp19AN3a6NG7XTV8go455+9YdpZaUwZJIDArdAPsIjQkbVDOnZsTpu1gkStB6yD+Pv7Y+3j9evXJ06c2Ldv36xZs3i1ZmRknDlzprSDaPz48Vj/ZbL99ttv3t7eMTExsIUmT56MmFlVQSoGqzIXXJAkaqF7G20ZVoOo5Kykz7mi1jZqDxEok0B+QdEe3xibNTetV99CvNc3Bpoyc9aUUiiLSFZWNjk5mb/K1NRUKPk1ZcrZ5bx4EZn79evH2+Af0xRo+AMmMbCX+DUCsli8B0CgzXRaLwTyCoq+P/b0VtgHrMvuG2/ds92/O4/VS3uo0tIEnJ2dsQjCH7y8vJANSyf8SsgrVqyAXiBAP3jwYJ4yLi6OPxtsHmjy8/ODgoIcHR152TDCIBtGoby8PF9fX/iceEm1LaBqxk10PCABja/t6qh8USAQ8zFrwennaMk4O6Ph1rShC0iUG2owoXPnzvADnzx5El/wVatWYWrh7u7OK//UqVP4Ao4ePZqnYQQ4kzEyMPLnz5+nTZtmamrap08fLJ1gYcXW1pZJqmDBhckgOrGmioKlYfEqtg89OCc6d4VaUj4BeId2+URjCSkjt9g1hBgyNLXqKRLKIsKQIdBsTC/gMhZQlj6Fn6fMFy8ip6Kiou6XAz4oaHihOi9e5BVCAhEAAZhD048G3QlPVpSTOTShM7MJKfQUiED9Ehhs2UxFQfZ1clZAbFr9toRqrwMC2fmFGIgy8wttjBr9MvDfn7XUQdVUxcCBA0NCQrDwERYWNnXqVH4gMHVycnI0Sr1c0cfHh1mUQeZt27bFx8djzoN1YTiLunbtCiUvlLfgwssgOoKzSfFPiWgPbtG5I0xLKC6TgKyMjOfDWIEkaORkhDJbBC4U8rSSoreXHFjRhGu4RCyOMEDA79yuXTsh6ygzG0YcHR0dExMTjFAYaHh5MDxhwWbnzp0wl3hKAYFd/osXBXJiFINbnBcEUulUsgnksoumHgn0jfyoLC/rObFztzbakt1f6p0YEVBTkh9k0QwNPkb7K4CCRAcsKS4++yIqOUtHTXGXuxWc1RLdXeqciBJgFgQfvE5hF3JEtInULCLQoAEGzCexqcmZefALCfCAJjOvFn98W4lFBOMHAe3bs2cPBCZAht2CWKCtwp/Cd3T8+PE7d+5s2bLlyZMnPXv2hOnCXL6gei9eZArhxSLwKgBeW0ioUwJwrU4+/MQvKgUr8Z7fdbZvTeZQnfKnyiolwDw45/3q/cfM/EozUwbxJbD3XszVkPcle7pY6agriW9HqOViTaCDvrp2Q4VsdlFgPPmlxfpOSnLjXyR+HrM/YPqxp41VFdSV5QS6Cg0WEwWUNXhaiUUUW3I4OTm9ePGiRCyOIiIi4Dvu0qVLldsxatSoAQMGmJmZubq6Xrt2LTIy8sqVKyjt8uXLd+7c8fDwgFxpgOeKlwc2G/8pT7906dL0L0diYiJPT4JkE8jOL5zo+eRhdKqqguzhSbZ2LbUku78i0ztqyFcQMGumYWGgWVDE/TOQhqav4CZeWf2iPm68Ho42L3ftYG3UGAIFIlAvBGRkWI704Fy9oKdKhSAQl5I968TTQX88eBSTmpVXGJuS/Z29scB10BRyatHDWYlFxLTm7t27vJ3lioqKnj9//ulTjb3nS09Pz8jIKCoqCnXBHIqOjq7OixdRCH9QVFRU5zv4k0iWVAJZ+YUTDj1+HJumpih3ZHKXzi1oFiKpt1rs+8W4iU4+TijicMW+M1LXgco7nJiWM+fkM9zb4dbNx5ZsuV75NZSDCNQaAacSi8gngvbgrjXEVPDXE/iYmf/LxZe9tvpeCX7HYjUYatXsziKnDvoaM51bzXNpA78QikQMGRoVBUHHEVJrKghlEc2fP//gweK3D8EccnR0tLKyMjAw8PHxqZFGpKamwnsDuwilVf/FiyiEgjQTyMgrGH8wIDD+k5qS3NEpXayNinfXkWYg1HdRJuBqrq+uJPfmU+69SJqjiPKNqkrb8gqKZhwL+pxT0LGZxurB0xBPRgAAEABJREFUZiwWqyql0DVEoOYIOLZpIsNqEPEh8+1X78Fdc42gkojAFwJYv952M9Jp092j/vGFHG6Ptk2uzu2+daRF80YqyKIoLzvdqWXgst5BP/dCDBka6GsvCGURnTlzhnl/2V9//RUXFxceHg4badmyZZU2KyurjBcvQrlo0aJHjx6hKJhVrq6u2traQ4YMQWm6urpmfAc0X/viRVxCQWoJpOcWjDv4+GnCZw1l+RNT7CwMNKUWBXVcLAgoycsOtzZAU48HxCOmIDEEuFzuTxdCXr3NaKyqsGecNW60xHSNOiK+BBqpKpgbFP9Z9KUlGPG9ixLRcnYh58ijOOdNd3+/HZXDLjJvrnFyqp3nd7ameur8/YNHSEFORquhImLI/Em1IX+xiCosG24c2CrIcvXq1REjRpiYmEyePDkkJASaikNgYKBlyYFsCxcuhLh8+XJZWVlcO2jQIJQzYcIExLCO1NTUkKfiEB0dnZKSwuQZNWqUh4fHypUrLSws7t27h4YZGRkxSRRLJ4HPOeyxBwJeJH5upCJ/YmoXegGidH4MxK7X7naGaPOd8GR6cyI4SEw48ij+/NMkrMfvHG3ZTFNZYvpFHRF3As4mOugC7cENCBTqhQCHw/3rxdve23yXX3qVksU21lbd5W51cZZD11b1/3tvoSyipk2bhoaGFhUVXb9+vVevXoCYk5MDwwZCxcG5rBcvKisre3t7Jycns9ns+Ph4Ly8vAwODMsvBMlsVXrxYZlGklGwCn7LZY/YHhCSlY0X2xFS7DvoVvg9esllQ78SKQKsmDbu21OJwG5x6nCBWDafGlkvgcWzaqr9Dkby0vyntcgkOFESHgHPb4rcSPXidUlBUi79QF53+UktEisDD1ymDdz2Yc/JZfGqOdkPFVYPNbixw/KajHoslEg8VC2URfffddyNHjjQzK34Sunfv3uAbEBBQzfcRoRAKRKBGCKRm5Y/e7x/6LkO7oQIcrwJe1xqpggohArVHYKydEQo/9SSxVuYoKJpCHRJ4n5438/jTQg53YCe9Kd0F90qqw4ZQVUSgDAIdm2loqSpk5hcGxdfY/lhlVEMqIvBfAqFvM8YfejzmQEDwm3RVBdkFvUx8FzuPszOSlxXKDPlvYbV1JlRTVqxYceDAgWnTpj148EBRURFtgYNoyZIlECgQgfol8DGz2BwKf5/ZRE3x1DS7trqVP35Zvw2m2omAAIHe7ZtqN1TEJ/lm6AeBJDoVLwL5hUXfHw9Kycpv21Rt4/BOLJZILHyKF8NqtZYurowAbw9u2nGuMlSUXjMEEtNyFpx+PmCH373Ij3IyrAldjXx/7DGvVxtVxVrcNa5qTRfKIkLRw4cPX7BgQfPmzSEjTJgwYdCgQRAoEIF6JJCckee271Hkh6ym6sXmUGsdMofq8W5Q1VUkoCAn49a5+MnhY/60v0IVGYrIZSv/Cn2W8FldSW7vOOs6+B2wiPSamiFeBJz+2YM7WbyaTa0VJCDy52nZ7FV/h7ps8b3wLInLbeBqrn/7B6ffBplhBVA02y6sRXT79u2ffvppypQpk/gO0ewStUpKCLxPhznkH/0xW09D6fS0rq2aNJSSjlM3JY+Am60B3AkPo1OjP2ZJXu+kpEd/Pkk8HpCA+/i7m2ULbVUp6TV1U+wIOJo0wac0/H0m/oaKXeOpwWJBIJdd9Mfd104b7x68H8su4ti30ro822HHaEsjLZEeGIWyiH777bc+ffrAKEpJSfnEd4jFjRHfRlLLKyDw9nMuvEMxKdnNNJVhDtH8owJWlCT6BJo3UunRtngPqJMBtL+C6N+uMlr4IvHzzxdfImFBL5Me7XQgUCACokmgsapCp+bMHtzkJhLNWyTGrSos4px8nOC8+e4m74jM/ML2eupHJtken9KF+ciJeMeEsoj27Nnj5eUVEBBw8eLFC3yHiPeNmiepBN58yhm171Fcak7zRsqnptkZahW/zEtSOysl/aJuji3ZhvtM0Ju8giKiIV4EUrLyZxwLwlJoL9Oms3u0Fq/GU2ulkICzSfGOc/RTIim89bXXZS6X6/3qfV+Pe0vPh3zIyMf0zGOUxd9zupX4JMXjF5VCWURsNtve3r72OFLJREB4AolpOaP2+iem5Ro2Vjk9vatBYzKHhIdHOUWXgJOJDhye6bkFV4LfiW4rqWWlCGBNdPaJp+/S81pqq24dZS4jU/nf/lJlkIII1CkB55I9uO9H0R7cdYpdgisLjEsbvufR9KNB0R+zG6nILx/Y/vYPToMtm4nXeCiURTRlypQTJ05I8L2krokLgfjU7FF7HyV9zjXWVj093Q4zSHFpObWTCFRMQFaGNaZL8dtajwXQ/goVoxKt1PXXwv1j0lQVZPeOs1ZXkhetxlFriEBZBDo118S0NTO/8FnC57LSa1JHZUk2gagPmVMOB8IcCor/pCQvAye57489JnUzVpSTFbuOC2UR5eXlbd261cnJac6cOQv5DrHrLTVYrAnEpsAc8n+Ltdgmqqem2elpKIt1d6jxRECAwAib5nIyLMxRXr1NF0iiU9EkcOl50oH7sWjb5hHmbZqqQaBABESfANZfHP95cI5+SiT6t0tEW/guPfd/Z4P7ety7FfYBn6jRtoa+i3ss6ttWfBeGhLKIgoODLSwsZGRkXr58+ezL8fz585K7RBERqAsC0R+z4B16n5HXWqchzKGm6kp1USvVQQTqkICOmlJfM11UeJz2VwAFkQ9h7zL+dy4YzfzeuVX/jnoQKBABcSHAPDhHPyUSl/slUu1Mzy2Ab9x5k8/pwEQOt0HfDk295zuuG9pR3CdmQllEd8s67ty5I1J3iBojwQTglh211z85s/i9hzCHMHGsp85StUSgdgm4dyl+cO7Ss6Ss/MLarYlKrx6Bzzns6UeD8go43dtoL+rTtnqF0dVEoK4JdG9TvLlC6LuM5Iy8uq6b6hNbAnkFRfvvxThuvLvHNzq/kNO5RaNz39vvHWeDpWqx7dO/DRfKIuJlf/PmTVJSEu+UBCJQBwQi3me67fNPyco31VM/Oc1OZN/tVQcoJLWKe/fuubq66uvrs1isixcv8rp5/vz5vn37amtrQy/glJ4+fXqrVq2UlZWbNGkyaNCg8PBw3lX8QosWLXAtf5g1axaTYeLEifx6Ozs7Rl+/cdeWWi2bqGaziy48q/eRtn5JiHTtRRzuvFPPE9KKt7vc7mYpK0O7KYj0/aLGlSaAv6SdmmtA/ygmFTEFIlAxAQx654LeuGzxXXM1DD6iNjoND4y3+XN6V2ujRhVfKEapQllEHA5n5cqVGhoaRkZGhoaGmpqaq1atglKM+klNFVMCoW8zRu/3T81md9BXPzGlS2NVBTHtCDW7AgLZ2dnm5uY7d+4UyAO9g4PD+vXrBfQ4tba29vT0DAsL8/b25nK5ffr0KSoqY9PqJ0+evPty3Lx5ExeOGDECMRP69ev3JfHd1atXGWX9xjDS3LsYoQ3H/ePRLwgURJCAx61I38iPinIye8ZaN6JBSQTvEF+TsIw7duxYLS0tFRUVCwuLoKAgJhHfNb5QLG7atIlJ4o/379/fvXv3RiVHr169Hj9+zEtdsWJF8WVf/unq6vKSxEIYatls/3jrPh10U7Py2YWcHDb5pcXivtV1I/GX6G548oDtfj+ceZH0OVdPQ2nj8E7X5zv2at8Un/26bk1t1ieURbRs2TJMVjAvefbs2dOnT9euXbtjx45ffvmlNhtGZROBBi+T0scc8E/LZmMp68QUO5p5SOpnon///qtXrx46dKhAB8eNG7d8+XLMQgT0OJ02bZqjoyNcQFZWVrg2MTExLi4OeoEADxKmKUz4+++/4VZycnLi5VFUVGSSEDdu3Jinr19huFVzTLXD32c+TfhUvy2h2ssk4P3q/Y47r5G0flhHs2bFq+yQKYgmgU+fPmFVRV5e/tq1a6GhoVu2bNHU1GSaylsNgXDo0CHM7YYNG8Yk8cc+Pj6jR4++e/fuo0ePsCKMxReYWLwMHTp0wOVMCAkJ4enFQhjZ2SD4TXqXtbesV9+yWXNzr29MPr0MTSzuXHUb+RXXP0/8jFXp77ye4E+SmpLckv7t7i5yHmljIJGOcaEsosOHDx84cOD777/v1KkTlnJnzpyJVRMvL6+vgEpZicBXEgh+83nMfv/POQUWBppHJ3fRUKFtbb+SoHRkhx8JziJjY2MDA4MKesxms48dOzZp0iTMe3jZfHx8dHR0TExMpk6dmpxc9p5L+fn5GXwH79raE/BRdzXXR/nH/RMQUxApAq+Ts3748wWaNNG+xRDL5hAoiDKBDRs2YGTAEGFra4sFFBcXFyyLMA3GOggvXLp0qUePHi1btmSS+OPjx49jzgPnUrt27TDz4XA4t2/f5mWQk5PjFYL1F56eJ9T9AMKrumIhl10IEwi2fUZusWsI8e+3o3b5RJOnqGJu0pMam5I96/jTwX888I9JU5CTmebY0u/HHjOcWinJi9+22kLeNaEsorS0NIwF/CXiFEp+DckiRED8m/Is4ZP7gYCMvEJro0ZHJ9tqKJM5JP43taZ7sGvXroYlx/Xr12/evKmgUNETlRcvXvz8+fPEiRN5rYBjCnOdO3fuYNn4yZMnPXv2xNyFl8oT1q1bp/HlwNSKp69VYaxd8YNzf4e8+5TNrtWKqPCvIpCZVzD9aGBWfqGtceNlA0y/6lrKXC8ELl++bGNjM2LECB0dHUtLS5g0pZvx4cOHK1euTJ48uXSSgCYnJ6egoIDfnxwVFaWvr48VGTc3t5iYGIH8OK2XAQT1VhpkZWQ8H8YKZINGTkaoaaHAhXQqSQSSM/N+vhjSe6vvlZB3LFaD4dbN4Rf66RtTTZWK/shKAAGhPvrmpR7x37lzJ5QS0H/qgggSCIpPG3fwcWZeYecWjQ5PslWjlx6K4E0SgSa5u7s/e/bM19e3TZs2I0eOzMvLq6BRBw8ehAmEuQsvz6hRowYMGGBmZubq6nrt2rXIyEjMinipPGHp0qXpX47ExESevlYF8+YaHfTV2YWcs0FvarUiKlx4AhwOd9GZF9Efs3XVlf4YYyUvK9RfT+HLp5y1QQBWyu7duzFEeHt7z5gxY+7cuUeOHBGo6PDhw2pqaqWf2hXIhtMlS5Y0a9aM9xxvly5dUBpK3r9///v37+3t7VNTBXcpqJcBBE2tNMC8h19IIBs00Aso6VR6CGC5Z+vNSOdNPsf8Ewo53B5tm1yb133zCPNmmlLx+kehxvSNGzceOnSoffv2WESZMmUKBC8vrzJ/gyg9nxvqaS0ReBybNv7gY3wt7Vo29vrOtqGiXC1VRMWKOwF4bjDRcXR0PHv2bHh4+IULF8rrUXx8/K1btzB2lZdBT0/PyMgIy72lMygqKqrzHaUz1IaGxWIx+yuceJyAiXhtVEFlfi2B3b7R3q8+KMjK7B5r1URN8Wsvr5n8VMpXEuBwOFZWVmvXroWDaPr06VOnToWBJFAGpjdYXp9PBt8AABAASURBVFFSquQdd5gInTx58vz587ycWGQZNmxYx44dYSMx6ykwrgQKr5cBRKANZZ5iqVFdWfDPKzTQl5mflJJNAAtwhx/GOW28u/12VA67yNxA8+RUO8/vbNvpqkt2x/l7J5RF5OTkhAXUIUOGfP78OS0tDUspERER3bt35y+I5CoQyGUX4lNI27zw0D2KTp1w6HE2u8ihtZbnRFtVMod4aEiokACXyy3zmTfmIk9PTx0dHXiEmNPSMVZ24f+BXVQ6qb40gyz0sRwQm5L9MFpw1bm+miTN9fpGftx8IwIEVnzbwdJQcnabRY8kO+BLjTVcXh9NTU0TEv7z8zw/Pz/MZypYLmGu3bx5M8yqGzdudOrUidEIxKqqqjCNylxVEcgpIqdFHM539sYCjZnQtcW9qI9HH8VxOFyBpHo4pSrrhADu9eUXb3tt9f318qvUbLaxtupud6uLM+27ttKqk/pFqBKhLCK0V19ff82aNefOncMCyerVq3EKJYXqEMgvKNrjG2Oz5iZt88JgfPA65Tuvx7kFRd3baB+c0FlZQWJ/vcf0l2IegaysrOclBzSxsbEQmVkL1l8gh4aGQo9ZC+T3799DjomJWbduXVBQELI9evRo5MiRysrK33zzDZIQXFxcdvJt5M3hcGARTZgwQU5ODqlMQI2LFi3CtXFxcT4+Pq6urtra2lj0YVJFIcZywBDLZmjJ8YB4xBTqkUBCas7ck8+43AZunQ3GdCl+hW49Noaq/ioCDg4OGDp4l2BtF95g3imEgwcPWltbV/wrgE2bNq1ater69es2Nja4pMyAFZmwsDAYYGWmiqBSWUFupnOreS5t4BdC8xBDntzNeN3V8F8uvXLb74/lGOgpSDYBzLsG/fEA41tCWo52Q8XVg81uLHDs31GPxZLGd6xVYhFhwWP06NEZGRn8n4n09PQxY8bElPUjQv5slcrSnCGXXbjLJ/r321EZtM1LyefgXuTHSV5P8go4zm2b7B9voyS5m5mUdJei/xAIDAy0LDmgXbhwIcTly5dDvnz5MmTGt+Pm5gZ5z5490CspKWFlFyZQ69atYQ5hdfbhw4fwAiEJITo6OiUlBQITbt26BcNp0qRJzCkTy8rKhoSEDBo0yMTEBMYSYlhHampqTKqIxO52xZPvG6EfPmTkiUiTpLAZueyi6ceC0nMLzA00fxvUQQoJiHWXFyxY4O/vD/fO69evT5w4sW/fvlmzZvF6hLnNmTNnSjuIxo8fv3TpUibbxo0bf/7550OHDrVo0QIrMghYT2GSsKri6+sbGxsbEBAwfPhwlIbBhEkSi1hRXna6U8vAZb2Dfu6FGLK6kvz4rkYqCrKPY9P6edzbfy+miJxFYnEvv76Rr96mjz/02P1AQEhSuqqC7MLeJr6LncfaGUnzLyQrsYiwNGJgYKCu/p/nCDU0NKBE0tffArriHwKyMmVv8yLLYt0O+/AkLi3mY1Z6TgEXy5L/XCHJ/92NSJ5yJDC/kOPSTmfvOGuJNIck+f5Vu2/Ozs74qPMHLy8vlDpx4kR+JeQVK1ZADx/11atXP3z4wGazExMTjx8/3rZtW+iZALcPk4057dOnDy6EzcOcMjF8St7e3snJySghPj4e1WFMY5JEJ26nq25j1AgzktNP6mhHB9Hpu4i0BJ+cJeeDw95laDdU2DPWSlGOHNcicmeEbUbnzp0vXLhw8uRJMzMz+Hk8PDzc3d15F586dQq3GMu+PA0jYA3l3bt3jLxr1y6MEjB44P9hwubNm5mkN2/e4FoMPkOHDlVQUIDpJeCAYrKJcqyiIKcgJ6PVUBExZBkZ1gT7Ft7zHbu11sZf5DVXw4bufhj5IVOUu0Bt+1oCiWk58089G7D9Plai5WVZE+1b+P7YY65LG1XFfx+j+NoyJSN/JRbRvXv3RowYUbqrWJe9c+dOab2ABpe7urpi+sJisS5evMhLxUQHGl6ws7PjJU2fPr1Vq1aYrzRp0gQruOHh4bwkfgEzHt7lEHTF7V3RmXkFGSXeIf5OQfMxK3/j9YgRex713OJrvvKGyc/XbNfc6v+739gDAfNOPfvtr1d/3H198nHCjVfvg+LT4lKyUQ5XzK0mWIDTjwSxCzm92zfdPdaa5hz8HwmSpZwAVuxAAF/5wiIOBHEJEtPOQw/iLj1/KyvD2jnGSk9DKnZbkph7x+vIwIED4RDOy8sLCwubOnUqTw9h2rRpOTk5WOSFzB98fHywSsJo4uLi8EeWP2D6wSTBoHr79i3spaSkpHPnzvH/YInJIKaxQWOVo5NtNwzrqKYo9yLx88Dt93fcjiqgIUhMbydfs9Oy2Sv/CnXZ4nvx+VuovzXXv7XQacW3HbQbKuKUQiUWEVZPdXR0SmPS1tbG0mxpvYAmOzvbvNTO3Uyefv36YQ2GCVjuZZSIra2tPT09MXJhBRdjENZ3i4qKoC8dOnTowFyOGONd6QyirFFTkldXFjTHodFSVdTVUDTSUmlYYqwXFHGTM/OxQnn/dQr+MHs+iNvkHbH0fMi0o0HDdj9y3uzTccWNtj9f77ru9oDtfnCALjj9fPXfobt8Xv/5JPFW6IdnCZ8SUnOy8wtBUjRpwLSbcSyIXcTpb6a7y91KQa6SD6Ro9oJaRQRqiUA/M91GKvLv0vPuRnyspSqo2PII+Mekrr0ahtRl35jatZS6Hxmj4xSEISCRebDQPKqz4c2FTi7tdPAHesvNyEE7H7xMSpfIzkpDp3LYhTvvRDltvHvoQSxuqENrrb9md9s+2tJIS1Uaui9kHyuZgGLtJDo6unRZr1+/FniUrnQeaPr377969Wo4lCELBEVFRTh2mMD/vrNp06Y5Ojq2aNHCysoK18LuwgqNwLXMqZycHHM5YjiUGKVAnJ+fn8F3CKTW42lMStaEri0EGvCdvTG3AffwpC6+i3u8/K1v+Kp+D5f0/HtON6/vOm8daY6/yjOcWo2wbt6znY65gWbzRsoqJXsP4MONCdOrtxlwgF54lnTgfiy8TD+eC55yJHDIroeOm+52+NW73S/XHdbfcd1xf6Ln44V/Psef+b2+0WcCE++GJ2MF6M2nnFx22WanQAtr9vRayLuZx5/C6hvYSQ/fTHnZSj6NNVs7lUYERJ+AkrzsSBsDtPOYP+2vAAx1F96l584+8bSIwx1kof+dg+BYXXftoJqIQP0R0NVQOjDB5nc3C00V+dB3GYP+eLDZOyK/sB5mC/XHQOxrLizinAhIcN7ks/lGZGZ+YQd9dTgAj0+x69hcowp9k+xLKpmDwjjZsWNHaQTbt2/vXr3dt+GVhvfJxMQEXuzk5OTSVcC/BGeRsbFxec/3R0VF6evrI4Obm1t52zysW7cORh0TyiundNW1rfGJSJ594tlE+xZzXVrDL4TqEM9zaTPTuZWKwr+OI0yG9DWVzZppOLfVGWrVfKpjyyX9220aYX5oYudLsxzu/69n6Mp+YSv73f9fD5x6Tuy8aXinpf3bTXNsOcyquXPbJp2aazTTVFYs8brkF3KSPueGJKX7RHw8/zRp372YddfCF58N/s7rCca4bhvumi6/3n759W4b7uB0kteTxWderLsWtv9ezLmgNz4RySFv0t9+zs0rqIFxMJf9z4bj+YVFsjIsrE9gwuExyoLMIXwMKBCB0gRG2xpCeS/qI/y9ECjUAQGMTjOOPU3JYpvqqa8f2gnr5XVQKVVBBESQAD78gyya3VzgNKCjHhYIdt59PWD7/acJn0SwqdQkAQJcLvf6y/d9PO79dCEkOTO/eSNlGLdwDXVv00QgJ50yBCqxiJYuXXrt2rXhw4c/fvw4veQICAgYNmyYt7c3kpgiqhD379//+PHjd+7c2bJly5MnT3r27Jmfn88rZ9euXQ1LjuvXr9+8eVNBQYGXxBO6CPGuaGRGI0taXRzB3QRNvYfEtJx5p56/Ts466h8Pn08g3zYvivJf/bNdZQXZ5o1U4DLq0U5nhI3BdKdWP31jumWkudd3tpdnd3uwpGf4qn6vfuvr92OPCzPtD4y32Tis04/92k7pZjzEspmjSROsFuhpKCnIFn8McthFbz7lwmV0Jzz5TNCbvb4xa66G/XDmxUTPJ64779uvvwNHk9mv3k6b7g7Z9WDK4cD/nQ3eeD38gF/MxWdJcE+9epv+Pj2PXVjRrx3y+TYc77zmFiy08zPtt460kCtpQL3fGmoAERBBAi20Vbu30eZyG5x4/J/3qIhgUyWmSb9eeoWRUENZfu9Ya4yxEtMv6ggRqBqBJmqKf7hb7Xa30m6oiNnLsN0PV/8dmlsfj5ZUrf1SeNWTuDTcphnHgmI+ZjdSkV8+sP3tH5xg3MrISOO22kJ+AIqnwhVktbS0PHv27L1797p27dq45LC3t/fz8/vzzz+trKwquLDipFGjRg0YMMDMzMzV1RUWV2Rk5JUrV3iXuLu7P3v2zNfXt02bNiNHjszLy+Ml8QTYVDDMOlb4rmhkVlRUVOc7oKnfADfL98f/2cj1+xKPkALfNi+10TYs8Kgqyhk0VrE0bNSrfdORnQ1mOrf+eWD7baMsjkyyvTK3+6OlLhGr+4Ws6OOzyPnc9/b7xlmvH9pxcd+2kxyMB1nod2+jjVVSHTW4moq/RVn5hfGpOc8SPt8K+3A6MHGXT/TqK2HzTz8ff+gx1o3s1t02+flaxxXePTb74Ks47Ujg0vMhm70jPB/EXnqe9O5z7h8+r3/n23B8x53Xh+7HYjm2NjpOZRKBygiITbp7FyO09UxgIn1ZwKG2w4mAhFNPElmsBttHWxpqqdR2dVQ+ERAXAv076t1a6DjUqhkWaA7cj+33+z3/mFRxabz0tDPyQ+aUw09G7Hn0NOGzsrzsnJ6tfX/sMambsaLcV6+5Sw80pqeVWETINHDgwPj4eNhF69evX7du3blz5+Li4r799lsk1UjQ09MzMjKKiorilaahodGmTRtHR0dUGh4efuHCBV5SmYKqqipMI/4SyswmCkosPb5MymikIr/L3Up0Pp0sFktNSR5L0dZGjfp00HWzNZzVo/Vy1/a/u1kendzl2rzuj5f1ilrT/8XyPnd+cDozo+uesdZrhpj90Ntkon0LV3N9+1Za7XTVsHQkW7L2kJlXGJuSHRT/6Uboh5OPE+Bk/+2vUAQNFXmvh3ECd8HzYaycTOUfQoGr6JQISBWBXqY6TdUVU7PZ11++l6qO131nnyZ8+vXyS9S7qE9bJxNJerYEfaJABKpLQFNFYetIC8+JnfU0lLA86rbP/+eLIVn5hdUtl66vCQLv0nN/PPuin8e9W2HJmI+N6WLou9j5hz5t1ZXka6J4yS9DqMmosrLykCFDFi9e/OOPPw4ePFhFpSaXzVJTUxMTE2EXlQmby+Xm8z1QV2YeZAgLCyuvhDIvqRfl6ScJ8KuwSpYem2mK2UauLBYLJk3LJg07t2jcz0wXi9ZzXNqs+LbDjtGWJ6baXZ/vGPhzr6jV/Z/90vvWQqfT0+zgXl81XsspAAAQAElEQVQ12Gx+rzbjuxoN6Kjn0k4nLZudUdaG45l5BfVyO6hSIiAuBORkZdw6F/+a6HgAPThXizftY2b+98eCCoq4fTs0nencqhZroqKJgDgT6NFOx3uBI/MTx2P+CX233fONFKnNMMUZbpXanp5TsO5amPMmnz8D33C4Dfp10L2xwHHtkI466kpVKk9KL5Kp1X5nZWU9LzlQS2xsLMSEhAQoFy1a9OjRI/iafHx8XF1dtbW1YXEhT0xMDNxQQUFByIYMI0eOhDH2zTffIAnBxcVl586dEBBQgq+vL8oMCAgYPnx4RkbGhAkToBfZEPIm/ZdLr9A8uFa6S+jP2mRkWI1UFVrrNOzSUgvu9XF2RvN7mawcZPaHu9WmEeY6akrqynIgwB+ggXuKX0MyESACpQm42Rpgze9xbFrkB3pbYmk8NaApKOLMOv70Q0Z+qyaqm0eYYw2oBgqlIoiAhBKA22Hd0I4npnQxaKyc9Dl3wqHHi8+8wLxcQrsrut3KKyjady/acdPdvb4x+YUc2xaNz8+03zPOulWThqLbaFFtWe1aRIGBgZYlB7q/cOFCiMuXL5eVlQ0JCRk0aJCJiQnMGMQwftTU1JBHSUnJz88PJlDr1q1hDqmqqj58+FBH558XIkVHR6ekpCBbgwYN3rx5M3r06LZt2w4dOlRBQcHf39/IyIhJEsH4Uzb7++NB7EJOL1Odmc6tRbCFddCkIg7nO3tjgYqgKeRUtBmDQH46JQLSSUBPQxmOVvT9BLmJQKEWwporYY/j0hoqyu0bb0PLNLUAmIqUQAL2rbW95zt+59CCxWpwJuhN722+N17Rk711dKOLONyzQW96bvZZezU8PbfApGnDgxNsTk+3szJsVEctkLhqatcicnZ25v738PLygtvH29s7OTmZzWbHx8dDY2BQ/MINsNXX17969eqHDx+QlJiYePz4cdg80DMBPiVxfFc0PrXzTz9/8ynXSEtly0gLOFKY7khbrKwgN9O51TyXNvALoe+IIUOjoiDoOEIqhX8JkEQESgi42xUv+px7+iaHTU/tlxCpuejCszfMrxy3jjSntdWa40olST4B/AX/1bXDmeldWzZRTc7Mn3Y0aM7JZ6lZ/+4eLPkI6ryHmFbfDU8esN1v0ZkXb9Pz9DSUNg7vdG2eo4tpUxareBOsOm+RhFRYuxaRhECqXje2347yjfyoJC+z291aQ1mqf9+mKC873allNTccr97doKuJgLgS6N5a27CxSmZe4V8v3oprHyptd31keJmUvuRcCGqe07N1nw66ECgQASLwVQRsWjS+Orf7986tZFgNMED13nYPMSbuX1UIZRaGwLOET277/L/zehL+PlNdSW5p/3Z3FzmPtCl+rFqYyylPBQSEsojgt4FXh78UnF67do1fQ3KZBO5GJG+/E4WkNYM7ttdXhyDlAetJtb3huJQTpu5LKgG4l8d0of0Vavj2fspmzzgWlF/IcW7bZH4vkxounYojAhUQkKwkJXnZ//Vrd3GWQztdtbRsNjxF8BclZ+RJVi/rszcxH7NmHg8asuthQGwa5lHTHVve+7HHdKdWIF+fzZKguoWyiJYsWVJUVMTfa5j+UPJrSC5NIDEtZ/6p51xug7F2hsOsm5fOQBoiQASIgPAERlg3V5CVCX6THvzms/BXUc7yCBRxuHNPPXvzKRfOt99HWcpifbu8rKQnAkRACAKdmmtent1tfq82cjKsm6Efem31PROYiBmjEJdSlnIJwLBcdiEEnrerIe9ZrAbDrZv7LHJe+o2ppopCudeIWoI4tEcoiygqKqp9+/b83WnXrt3r16/5NSQLEMgrKPr+eFB6boG5geYvA/9DTyAnnRIBIkAEhCGg1VCxf8fix7qO+9M23MIAqyTP5hsRflEpyvKye8dZa6hI9SPNlZCiZCIgNAG4L+Bu/WtOt47NNDLyChefDZ7g+STpc67QBVDGfwlk5hVsvRHhtMnneEACVnBc2ulcm9d98whzfXF7g8u/XRJhSSiLSENDIyYmhr8XMIdUVVX5NSQLEFh+6eXLpIzGqgq7RellrAKNrMFTKooIEIE6IDC2ZH+FSy+SsNpSB9VJcBXXQt7t9olGBzcM72SqR480gwQFIlBjBPCdujDTfkn/djCQ7kV+7LPV95h/PIfDrbEKJL0gdiHH60Gs8yaf7Xde5xYUWRhonppmd3Bi53a6NFjV1r0XyiL69ttv58+fHx1d/McDDYE59MMPP0AJmUKZBE49Tvgz8I0Mq8F2N0t9MuXLZERKIiC2BOqx4TZGjUyaNswr4Fx4+qYemyHuVUd9yFx05gV6MaWb8bfm+hAoEAEiULME5GRlZji1gk/D2qhRNrvo54svR+/3j0vJrtlaJK802I2Xnif12uq74q/Q1Gx2S21VLKzDvLRrqSV5nRWpHgllEW3atAkeoXbt2hmXHKamplpaWps3bxapnohOY0LepC+/XPIy1j5tu7XRFp2GUUuIABEQdwIsFotxEx0LSKCn86t2NzPyCqYdDcIUrWtLLaxhV60Q6bmKekoEqkOgVZOGf07v+qtre2V52YDYtH6/3zvgF1NEzqJymN6PSvn2j/vzTj1PSMtpoqa4ZoiZ9wLH/h31MPKXcwWpa4yAUBaRhobGw4cPr1y5MnPmTHiHbt++fefOHU1NzRprhQQVxOxcBHdnL9Om3zu1kqCeUVeIABEQCQKDLZthbvE6OetxbJpINEisGoH114WnX8SmZOtrKO0cY4llbLFqPjWWCIgfAVkZ1ncOxt7zHe1bacG/vfpK2PA9D18nZ4pgT+qxSS+T0scdDBh7MOBlUkZDRbkfepv4LnZ272IkLyvURL0eWy4xVQsLGuZpnz59Fi9ePHv2bEdHR4npf812BMse804/T/qca6SlsmWkuYwMvSqrZgFTaUSACDRQV5IfbFn8oBfcRITjawnsvPv6VtgHBTmZ3WOttRoqfu3llJ8IEIGqETDUUjk+pcu6oR0x3X+W8Pmb3+//cfd1QRGnaqVJ0lWJaTnzTj0buOO+X1SKvCxron0L2EJzXNqoKMhJUjdFvy8VWUTbt2/PyyveSx5CmUH0u1eqhbWr+P121L3Ij0ryMnvGWmso085FtUubSicCUktgjK0R+n795buUrHwIFIQkcDc8edutSGRePcjM3IAecwAJyQ9JSUljx47V0tJSUVGxsLAICgpi+ox1XoGwadMmJkkgPnfuXPv27RUVFRFfuHCBP3XXrl3GxsZKSkrW1tZ+fn78SSSXJgDgo20Nbyxw7NG2CbuIs8k7YvAfD169TS+dU0o0qVn5v/31qucWn0vP36LLgyz0by90XvFtB1qsAY26DxVZRNu2bcvOLv4NHITSwcPDo+6bK8o14m/t9ttRaOHaIR1NaecigKBQzwTEpvp79+65urrq6+vj7+XFixd57T5//nzfvn21tbWhf/78OU8PYfr06a1atVJWVm7SpMmgQYPCw8OhLB1WrFiBa3lBV1eXl4fL5SIVlaIQZ2fnV69e8ZJEX+jYXMO8uUZBEffyiyTRb62ItDAuJXvuqWdcbgP3LoYjOxuISKuoGbVK4NOnTw4ODvLy8teuXQsNDd2yZYumpiZT4zu+49ChQxglhg0bxiTxx48ePRo1atS4ceNevHiBeOTIkQEBAUyG06dPz58/f9myZc+ePevevXv//v0TEmhbfIZNRbG+pvKhiZ23jjTXUJZ/9TZj0M4HW29E5Bf+56WXFV0vEWk57MKdd6KcNvl4PojDSN69jfbfc7r97mYJT5pE9E8sO1GRRRQbG4tlFXQLQukgsB83sklzSEzLmX+6eMY2zs5oqFVzaUZBfScCX0sAKy/m5uY7d+4UuBB6zGbWr18voMcpVmQ9PT3DwsK8vb1h2/Tp00fgLdLIw4QOHTrwZj4hISGMEvHGjRu3bt2KSp88eQJLqXfv3pmZ4vRc+wznVvvHW7t1NoSbiF3Iwd9XdEqKQyVdz84vnH40KDOv0MpQ81fXDpXkpmRJIbBhwwYDAwOMFba2ti1atHBxccFKCtM5fOt54dKlSz169GjZsiWTxB97eHhgcFi6dGm7du0QowRomAwYQCZPnjxlyhRTU1MoUdHu3buZJIorJgD7EzOlmwsd+3XQLeRwt995PXD7/WcJnyq+SjJSC4s4xwPiYQttvhGZlV/YQV/96GTbo5O7mDXTkIwOim8vKrKIeL1auXJlTk4O7xRCbm4ulBAogEBeQdGMY8UvY7Uw0Px5oCk0FIgAERCeQP/+/VevXj106FCBS7Aiu3z58l69egnocTpt2jRHR0dMcaysrHBtYmJiXFwc9KWDnJyc7pcDDiUmA4wozGCwuItKzczMDh8+jCHuxIkTTCp/nJ+fn8F38CfVr9yjrU7wm3S7dbdtVt+yWXNzr29MfoF0LbIKzx+3+3/ngiM+ZGo3VNw91lpBTqg/fMKXTzlFlsDly5dtbGxGjBiho6NjaWm5f//+0k398OHDlStXYNuUToIGPiIsuEBgArzWDx8+hMxms4OCgviTIDNJSOWF2hlAeMWLt6CjprRnnPUudyvthgpRyVnDdj9cezUMEyrx7lX5rcdAdP3luz7b7i278PJjZr5BY+Xf3Sz+mt2te5sm5V9EKXVHQKg/DL/99ltWVhZ/ozB7gJJfI7UyPuK/XHwJz29jVQV8sRXlZKUWBXWcCNQ9AfiRsABsbGyMBdoya4+KitLX10cGNzc3nmcbTu/3799jBsNcoqio6OTkVHo2g9R169ZpfDnKqwLZ6jjksgt3+0TvuPM6I7cQVSP+/XbULp9o8hSBRulwwC/27+B3cjKs3WOtmqorlc5AGkklgK88/DZt2rSBM3nGjBlz5849cuSIQGexIKKmpobFEQE9c4qBomnTpoyMGDI0EFJSUoqKinAKmQmQmSTmlIlFcwBh2iYi8Tcd9W4scBpsoc/hNth3L6b/734SuYsmOjV098MZx57GpGRjuvira/tbC50GWTSjLbgq+xzWXbpQFhGXy4WLk79RL168aNy4Mb9GauVTTxLPBL2RYTXYMdpSX1NZajlQx4lAHRPYtWtXw5Lj+vXrN2/eVFBQKN2ALl26YAKEydD+/fsxWbG3t09NTUU2yIgxg0HMBMiMkjnlxUuXLk3/csATxdPXryArI+P5MFagDdDIychguBbQS/npw9cp666FAcIvA9t3bkF/tkBCigKHw4Ebee3atXAQTZ8+ferUqTCQBPp/6NAhd3d3JaVyTWUWi8W7BN8vFuvfUxbrX1kgiblENAcQpm2iE8NC8HCzPDjBpqm6YmxK9si9j5ZfepmdX7zcIzqNrHJLIt5nTvZ6gk49S/isLC87t2dr38XO3zkY0wJ6lZHW0oWVWESNGjWC5cNisUxMTCAwAQumvXv3HjlyZC21SYyKDX7z+ddLxT/IXtS3rUNrehlrlW4dXUQEqkQAk5hnz575+vpiARjDEbMxpkBJ/fv3AGmQmAAAEABJREFUHzZsWMeOHXv16nXlyhWkYj0YMRMwsjEC4jJnM9DDfaTOd0AjCiEzrwB+IYGWQJOcmee2z3/uyWd/Pkl88+k/jzoLZJaS06TPubNPPsPa81CrZuO7Fm/QJyUdp24yBPT09Nq3b8/IiE1NTQU2P/Dz84uIiJgyZQpSywy6urr8ayXJyclYPUFObW1tWVnZMpOQyguiOYDwmidSgotpUziL3DoX73py5FF8n233/KI+ilQLv7Yxbz/nLj7zov/v926HJ8vKsNy7GMIWWtinrZoS7UX8tSzrIn8lFpGHh8fWrVsxV/jtt994283t2bPn/v37f/zxR100UITr+JTN/v7YU3YRp3d7ehmrCN8napqEEsDSDGwhR0fHs2fPhoeHC+yKW7rTqqqqMI2ioqKQhFkO4kpnM8hTw6GGisMfVHVlwVdVQIOl1qjkrMsv3v54LrjbhrtOm+4uPR9yJfhdWja7hmoWp2LyCopmHA1C382aqa8d0pHfABanblBbq0HAwcEBBg+vgMjISCOj/xjGBw8etLa2Njc35+URELp27QoXNE9548YNuJpxCqc0LuRPgswkIZVC1QhoKMuvH9bp2OQuzRspYzlj3MHH/zsbnJ5bULXS6vGq9JyCdVfDnDf7nAl6gxWZ/ma6NxY4rhnSUYee2q3Hu1JZ1ZVYRBMmTJg4ceLdu3dnzpwJmQmjR4/GGFFZyRKeXsThMi9jbVHyMlb6Wyvh95u6J9oEsGqTn59fcRuRISwsDGvGyGZsbAyjCDMYyAhsNhu+JjGazRRxON/ZG6Pl/AEaDpf7xxirOT1bWxlqYkkyPjXn5OOEWSeeWq26+c3vfmuuhN6NSJaYZ1H4+15axkfi54svQ5LSG6nI7xlrrSRPv/AsDamWNSJQ/IIFC/z9/deuXfv69esTJ07s27dv1qxZvHZlZGScOXOmtINo/PjxS5cuZbLNmzcPVtCGDRuw7IL41q1b8+fPZ5IWLlx44MCBQ4cOYWBBRfA+zZgxg0miuDoEurXR9p7vONG+BQo5HZjYZ5vvrdAPkMUiYCFmr29094139t6LYRdybI0bn59pv3usdasmDcWi/dLcyEosIgaNmpoavvCMfOnSpcGDB//000+YQzAa6Yx/vxV5r+RlrPigq5MDVDo/BNTrGiKQlZX1vORAebGxsRAxt4CclpYGOTQ0FDIWeiEzXp2YmJh169YFBQUh26NHj0aOHKmsrPzNN98gG4KLi8vOnf9s5L1o0SKYOigzICBg+PDhmABhWQd5sISBaQ3mSfAsvXz5Eus+KioqY8aMQZJYBGUFuZnOrea5tIFfCA1GDBmahoryXVtp/dCn7fmZDs+X9z4w3uY7hxZtm6ohT+i7jP1+sd95PrFYeWPknkcetyKfxKUVFHGQJJHhWEDC2X9+4WnVvJGKRPaROlUpgc6dO+M7fvLkSTMzs1WrVnl4eLi7u/OuOnXqFCxnLPLyNIyAgeXdu3eMbG9vj2yenp6dOnXy8vI6ffp0ly5dmKRRo0ahwJUrV1pYWNy7d+/q1asCDigmG8VVIKCqKLfi2w5/Tu9qrK36ISN/ypHAeaeewd9bhaLq6JIGDYo43DOBiT03+6y7Fp6RV4iB99BEm9PT7KwMG9VZG6ii6hAQyiKaPn16ZGQkqsFEBEMApg5YVvnxxx+hkc5wJ/zD9juv0fd1Qzua6qlDoEAEiECVCQQGBlqWHCgBy64Qly9fDvny5cuQBwwYANnNzQ3ynj17ICspKfn5+cEEat26NcwhVVXVhw8f6ujoIAkhOjo6JSUFAsKbN28w3Wnbtu3QoUMVFBSwWsybsmAEg1EE77eNjU1SUhKWgbH0g0vEJSjKy053ahm4rHfQz70QQ4aGv/FqSvK92jf91bWD9wLHJ8t6/e5mMdKmeTNN5YIi7uO4NI9bUSP2PLL47cZ3no8P+MWEvs3gcLj8l4u1HBSftvKv4l94/tivHdabxbov1PhqEhg4cGBISEheXh4WdqdOncpf2rRp03JycjQ0BN8D4+PjA+OHlxOLKXAQYRUYJWAk4ekhYACJi4uD/zkoKMjR0REaCjVIAA6Wa/O6T3dsKcNqcOn5295bfa8Ev4MRW4NV1EhRaBKmhfDDLz4b/DY9T09DadPwTlfnde/ZrilW32qkCiqkDggIZRHBHMISCFoDQ8jJyQmuZwwW586dg0Z6Aq+nCak58089x+n4rkZDLJtDoEAEiEB1CDg7O+MvCn/ACIMC4brhV0JesWIF9Pr6+liO/fDhA+YoiYmJx48fh80DPRMwQWGy4RSLu2/fvkW2pKQkDFn8v7HGHypkw0owpkrwI5mZmSG/eAUVBTkFORmthoqIIVfQ+CZqioMsmm0cbn7/fz18FzuvHdJxQEe9Riry2eyiuxEfV18J+2a7X+c1t2afeHrycQKGuAqKEv2k5Iy8GceewvBDHzGXEv0GUwuJABEoj4CSvOzSb0wvzHQwadowNZs968TTGceCkjPzystf9/qnCZ9G7fOf5BUY8SFTQ1n+p2/a3V3kPMLGQBZmXN23hmqsBgGhLCJMRDic4ocrbt26hXVZVGdgYMBbhcVpeQF+ZFdXV0xfMPm4ePEiLxsmOtDwgp2dHS8J/qhWrVopKys3adJk0KBBWJjhJQkIu3btMjY2xmqxtbU1FowFUmvpNK+gCN9G+EMtDTV/HvDvDja1VB0VSwTqhQBVKqkEMOoaaamO6WL4h7tV0M+9r8zttuwbUyeTJsryspht/B38bun5EMdNd7ttuPO/s8GXX7xNyark11miBopdyPn++NOPmfmYP20c3gn9FbUWUnuIABH4WgLmBpp/zek216WNnAzL+9WH3lvvnQt6g6np15ZTs/mjP2Z9fyxo6K6Hj2PTsCwFR/29xT2mObaCFVezFVFpdUNAKIvIxsZm9erVR48exUoq8wRLbGxsU753lpXX1uzsbHNzc94z/fzZ+vXrh9VZJmC5l5cE88bT0xO+aW9vb3zc+/TpU1RUxEvlCadPn54/f/6yZcuePXvWvXv3/v37JyQk8FJrSUB7fr74MvRdhlbJy1jxBailiqhYIkAEiEBtE5CRYXXQ15jq2PLwJNsXv/b5c3rXeS5tbIwaYc7x5lPu6cDEuSef2ay+1c/j3sq/Qu+Ef8gSh9eDrPo7NCj+k5qS3N5xNqqKcsIwpDxEgAiIPgFFOdmFvU0uz+7WQV89PbfghzMvvvN68vZzbr20HI7ony6E9Nl279rL93AFjbBu7rPIeWl/Uw0V2la7Xm5IzVQqlEXk4eHx9OnT2bNnwwJp3bo1aj579qy9vT2EikP//v1hSgk8d8tcoqioqPvlaMz3stdp06Y5Ojq2aNHCysoK1yYmJsbFxTGX8Mdbt26dPHnylClTTE1N0Tz4rEq/do0/f43IJx8nfvmprqWeBr2MtUagUiFEgAjUPwEFORlb48YLepuc/d7++a99PCd2ntLNmPmRZPj7zEMPYid5BVr8dmPY7odbb0T4x6TmF5axUFXv3TgTmHjUPx7N8BhlYaytCoECESAC/ATEXW6vr35xlsPivm0VZGV8Ij7CJjkRkIDV6jrrV2ZewZYbEU6bfFBvEYfby1Tn2jzHTSPM9TVpTlhnN6G2KhLKIurUqVNISEh6evqvv/7KNGTTpk38LzpklF8V+/j46OjomJiYTJ06NTk5ufS18C/BWWRsbAxrRyCVzWYHBQXBfcTTQ3748CHvlCfk5+dn8B08fRWEF4mfV1wu/qnu4r7t7FtrV6EEuoQIEAEiIPoEGirK9Win8/PA9tfmdQ/8udeO0ZajbQ0MG6sUcrhwv2y/89ptn7/FbzfHH3q81zf6ZVI6RzS2ZAh5k77s4kvgnd+rjYtpUwgUiAARkDwC8rIys3q0vjqvm5WhJhzX8NWM2R9QB79+xDKQ54NY2EI77rzOLSiyNNQ8Pc3uwITObXWLN/OUPM4S0KOv7YJQFlHpQpWUlOTl5UvrhdTAd3T8+PE7d+5s2bLlyZMnPXv2hOnCu3bXrl0NS47r16/fvHlTQUGBl8QIKSkpRUVF/I/tQX7//j2Tyh+vW7dO48tR2rLiz1mxnJbNnnn8KbuI06d90xlOLSvOTKlEgAgQAckgoN1Q0dVcf93QTvd+7OH3Y4/1QzviVLuhAiYE9yI/rrsWPnDHfavVN2ceDzrmHx+bks3l1s+GdalZ+TOOBbELOS7tdOb2bCMZ8KkXRIAIlEegtY7amRn2vwxsryQv8ygmta/HvUP3Y+G0KS9/dfRY9Ln0PKnXVt/f/gpNy2a31FbdM9bq/Pf2XVpqVadYulbUCAhlEcH82Lx5s62tra6ubmO+o8qdGTVq1IABA8zMzFxdXa9duxYZGXnlyhVeae7u7s+ePfP19W3Tps3IkSPz8sreVIT/J7P4M8x/yitq6dKlcG0xITExkaf/KgHfsXmnniV9zjXWVt080pzFYn3V5ZS51ghQwUSACNQdAYPGKm62hnAZPVnW6/r87j8PMO3ZTkdVQfZzTsHVkPc/X3zZY7OPw/o7i8+8uPgsqS43gyos4sw5+c8QvXWUhYwMDdF196mgmohAfRGQlWFN7mbsPd/RrmVjrNGs/Dt05N5Hr5OzarY9flEfXXfen3fqeWJabhM1xbVDOt5Y4NjPTI/FonGmZknXf2lCWUS//fbb1q1bYZzAtFi4cOHQoUNlZGRWrFhRI83X09MzMjKKiorilQanDmwhR0fHs2fPhoeHX7hwgZfECNra2rKysvxOoeTkZLiJmFT+WFFRUZ3v4E8SXv79VqRfVArWIXaPtVJXqrpnTPgaKScRIAJE4L8EROiMxWK101Wf0r3loYmdn//a59z3XRf0MrE1biwvy3qbnncm6M38089t19zuvdV3xeVXN0M/ZOQV1GrrN3pHPIxOVVGQ3TvOWkOZhuhahU2FEwHRImCkpXpiit2aIWYNFeWC4j99s91vl89rrJJUv5Uvk9LHHQwYd/Dxq7cZKHxRHxPfxc5juhjKyQo1c65+A6iEOiYg1H09fvz4/v37Fy1aJCcnN3r06AMHDixfvtzf379G2pqamgrvDeyiMkuD84f/gTomj4KCgrW19c2bN5lTxJDt7Svf6QE5vzbcDvuw/U7xy1jXD+2EScDXXk75iQARIAISTEBeVsbaqPG8Xm3+nN71xa99Dk+ynebYsoO+OovVICo5y+th3NQjgZYrbw7+48HmYrslJa+ghrdk+Dv47b57MSC8abi5SVN6oB8kJCBQF4jAVxCAW9i9i5H3AkcnkybsQs7G6xFDdj0Me5fxFUX8N2tCas7ck88G7riP1XB5WdZ3Di1gC83u2abi1779tww6Ez8CQllE8MZ07NgRnWvYsCHcRBAGDhx4he85N2jKDFlZWc9LDqTGxsZCTEhIgBLG1aNHj+Li4nx8fFxdXeHzGTJkCPLExMSsW7cuKCgI2ZABXillZeVvvvkGSQguLi68jbzhqv28jTsAABAASURBVIJhdujQobCwsAULFiD/jBkzkKdmA74VC04Xv4x1QlejwZbNarZwKo0IEAEiIEkEMF3AjOSnb0yvzO3+9Ofeu9yt3LsYttBSKeJwnyd+3nn39Zj9Aea/3Rh7IACLuMFvPkNfze5HvM/88WwwCpnu1HJAJz0IFIgAEZBOAs00lb2+67x5hLm6klxIUrrrjvvbbkbCQPoqGqlZ+fBsu2z1ufziLS4cbKF/5wfnX107aDVUxGntBCpVVAgIZRE1b9783bt3aHLr1q1v3LgB4cmTJ4qKlX8+AgMDLUsOXAIbBiKcS7KysiEhIYMGDTIxMZkwYQJiGD9qasVre0pKSn5+ft988w0qgjmkqqr68OFDHR0dXI4QHR2dkpICAWHUqFEeHh4rV660sLC4d+/e1atXjYyMoK/BgLXMGceCMvIKrQw1lw1oX4MlU1FEgAgQAckm0EhV4ZuOemuGdPRZ3OPBkp4bh3fC3KKJmmJ+Ief+6xQs4n6784HlyhvTjwYeeRQX/TGL+/VbMqTnFuDyHHaRQ2utxX3aSjZP6h0RIAKVEmCxWMOtm99a6NSnfdNCDvf321Gwi14kfq70QmTIYRfuuB3ltMkHnu2CIm73Ntp/z+nm4WZp0FgFqRSkgYBQFhEcOLdv3waOefPm/fLLL23atBk/fvykSZOgqTg4Ozvj7xx/8PLygtvH29s7OTmZzWbHx8dDw9sFTl9fH7bNhw8fkJSYmHj8+PG2bf/9OwefEv+Pl2bOnAlNfn5+UFCQo6NjxS352lS0edmFf17G+oe7lYKcUKDKroW0RIAIEAEpJtBMU3mkjQHmFo9/crmxwPFX1/a9TJuqKcphvcn71Yfll165bPHtuu7Owj+fnwt68z49TxhUHA53/qlncak5KHzHaCs5WRqihcFGeYiA5BPQUVfaO8565xjLxqoKER8yh+x6sO5aGNa4y+t5QRHnmH88bKEtNyOz8gvNmqkfm9zl6OQuZs00yruE9BJJQKi/IuvXr//pp5/Q/+HDh/v5+X3//fdnzpyBEhoJC7nsQvhY4TZF3LdD0zY6DXeMppexSthNpu7UJgEqmwiUTwAruCZN1b5zMD4wwebZ8t7nZ9ov6mPStaWWgqzM+4y880+Tfjjzwm7dbZctPssvvbz+8n16juCWDP8O0UWc0baGpnpqmPpg3lN+nZRCBIiA1BHAUDOwk/7NBY7fmutzuA32+sZ887vfk7g0gPh3DCnkwC90L/Jj3233fr748mNmvmFjle2jLS/P6tatDb1zEqikLghlEfFTsbOzW7hw4bfffsuvlAw5v6Boj2+MzZqb1qtvdV57KyQpHX+w6WWsknFzqRdEgAiIFAF4dawMG83u2ebkNLsXv/Y5Otl2hlOrTs01WKwG0R+zjzyKn3EsyHLVjW933t9wPfx+VArGZwTeEG1bMkSfmWFfn+u4IgWUGkMEiMB/CWg1VISFs3+8jY6aYkxK9tLzIRm5BbwxBJO93T7RHYq3gWFhVWWFa/tbC51gQcnQ9v3/xSg9ZxVZRJcrOyQJE5YNdvlE/347KiO3EP1CvOPO6wN+sVhCwCkFIkAEiAARqCUCygqy3ds0WdK/3eXZ3Z790nvPWKtxdkYtm6hicTf4TTpmLWMPBvi9Ttl597XAEL3/XgwN0bV0U6hYIvAfAmJ70rt905sLnUbaNP9fv7b7/WIExhCvh3E7x1j6Lnae6GBMv48Q25tcMw2vyCIaXOExpGR3uJpphQiUIisj4/kwVqAh0MjJVIRIID+dEgEiQASIQHUIaKoo9DPTWzXY7M4Pzo+W9twywnyoZbO2ug3tW2kdfhQnUDIN0QJA6JQIEIHSBDSU5TcON3c0aVJ6DIGmVZOGakr0HrPS2KRO8+90v3TXORUeRUU1/FqJ0g2oS01mXgH8QgI1QgO9gJJOiQARIAJEoA4I6GkoD7NuvnWUxfV5jtn5RRiQBSqFhoZoASZ0SgSIQJkEsvIKMWIIJEFDY4gAE6k9rcgikiooWCFQV5YT6DI00Aso6VQCCFAXiAARECMCLBYLq7wYkAXaDA0N0QJM6JQIEIEyCWCswIghkAQN9AJKOpVOApVYRN988w3zSlbQWbNmzefPnyEgpKamtm8vUa/oKeJwvrM3Rtf4AzSFHA6/hmQiQASIgHgRkIzW0hAtGfeRekEE6osAjSH1RV5c6q3EIvL29s7Pz2c6s2HDhrS04r0LcVpYWBgREQFBYoKygtxM51bzXNpgwQCdQgwZGhUFQccRUikQASJABIhAXRKgIbouaYtvXdRyIlAeARpDyiNDeoZAJRYRl8tl8iHml3EqeUFRXna6U8vAZb2Dfu6FGDI0ktdN6hERIAJEQBwJYEDGsIzBmYZocbx99dXmpKSksWPHamlpqaioWFhYBAUF8VoSFhb27bffamhoqKmp2dnZJSQk8JJ4grOzM+u/x4ABA5jUFStW8Kfo6uoyeopFloCEjSEiy1lMG1aJRSSmvapys+ERUpCT0WqoiBhylcuhC4kAERCewL1791xdXfX19TG9uHjxIu/C8+fP9+3bV1tbG/rnz5/z9BCmT5/eqlUrZWXlJk2aDBo0KDw8HMrSYd26dZ07d8Z0R0dHZ/Dgwfye7YkTJ6JYXsB8qPTlpBE1AhiWMTjTEC1q90Vk2/Pp0ycHBwd5eflr166FhoZu2bJFU1OTaW10dHS3bt3atWvn4+Pz4sWLX375RUlJiUnijzEKvftyvHz5UlZWdsSIEbwMHTp0+JL4LiQkhKcnQWQJ0Bgisrem3htWiUXETBd4rcQpTyah9glQDURAKghkZ2ebm5vv3LlToLfQYzazfv16AT1Ora2tPT09scTr7e0N93WfPn3K3P3S19d31qxZ/v7+N2/eLCwsRDaUicuZ0K9fP95s5urVq4ySYiJABCSGwIYNGwwMDDBW2NratmjRwsXFBSspTO+WLVv2zTffbNy40dLSsmXLlvD8YN2ESeKPGzduDOcPEzCMqKio8FtEcnJyTBJirM7wX8jI+fn5GXwHo6SYCBABESRQiUWEqQZWUoeWHHl5eTNmzCgRh06aNEkEO0NNIgJEQBwJ9O/ff/Xq1RhbBBo/bty45cuX9+rVS0CP02nTpjk6OmKKY2VltXr16sTExLi4OOgFwvXr1zGCYR0XFhdmRQkJCfzPzCgqKmIewwTMewSupVMiQATEncDly5dtbGxgw8DageWzf/9+pkccDufKlSsmJibwQiOpS5cu/N5pJk/p+ODBg25ubqqqqrykqKgoOLeNjY2hj4mJ4el5AtzUGl8O2GY8PQlEgAiIGoFKLKIJEyZgsGC+zmPHjsU3n5GhHD9+vKh1puL2wLpDBr7FGhKJABGoSQLMVwzfsroM8PnA1MGMpNLZBrNtJr/l4+Pjg6EMs6KpU6cmJyeX2Wz+JV6mhJpERmVJKQHqdhkEamMAgZWye/fuNm3awJmMJd25c+ceOXIE33R837OystavXw9H8Y0bN4YMGYIVGbiUkVReePz48cuXL6dMmcLLADsKpaHk/fv3v3//3t7ePjU1lZfKCEuXLsW4wQSsyEBZRs9JRQSIQE0QqOYYUolFhKlGBQHfbTEKmZmZaC2mTYxRRzERIAI1S4D5iuFbVjdh165dDUsOOIJu3rypoKBQQb0YKBcuXNitWzczMzMmGxxTx48fv3PnzpYtW548edKzZ08YP0wSf8y/xGtoaIgkGkNq9mNDpREBhkBtDCDwBcGNvHbtWjiIpk+fjrUPGEj4FkOPeNCgQQsWLLCwsFiyZMnAgQP37NkDZXkBDiKMHra2trwMGEOGDRvWsWNH+LHhcYL+8OHDiPkDHNHqXw4Wi4Uk6RtAmNtLMRGodQLVHEMqsYjw7ZWYAAdXYmLi58+fEaNTiJllG4oZAgBCWBgU/DFh4afBk8vEoqamho9QnQV3d/dnz575+vpiAXjkyJF5eXkVVD179uzg4OCTJ0/y8owaNWrAgAGY4ri6ul67di0yMpKZ0/AyMAL/Eu+nT5+io6NpDOF9DASEMj8VAnmk7ZSYlHnHy8RSGwOInp4e/7sTTU1NGUeNtra2nJxcmUnMF18gzsnJOXXqFL+DSCCDqqoqTKOoqCgBPf8pTULK/DDwlGV+KnipUisQljJvfZlYqjmG1IRFxP+NF2FZRkamefPmMFGxXoNmIqYgQICwCABhTgkLw0EgLo2FxSpeAYW+bgK+y7CFHB0dz549Gx4efuHChfLqnTNnzuXLl+/evYsRoMw8mDYZGRmVOZvhX+LV1NRs2bIl6gUKlIOYggABwiIABKfEBBBKh9JYWCwWlDUbHBwc+HeYxMIHvumoAi7lzp07l5mE1NLhzz//hA957NixpZMYDVLDwsIwkjCnZcY0CSn9MRDQgJuAhk5BgLAAQulQGguLVa0xRIosIrCjQASqS4CuF0kCXC4XM5LSTYMe3qHz58/fuXPH2Ni4dAZGk5qaigWnimczTE6KiQARECMCCxYs8Pf3X7t27evXr0+cOLFv375Zs2Yx7V+8ePHp06f379+PpJ07d/71118zZ85kksaPHw/nMCMz8cGDBwcPHqylpcWcMvGiRYvgo46NjQ0ICBg+fHhGRsaECROYJIqJABEQOwJkEYndLaMGEwFJI5CVlfW85EDHML2AyDzZkpaWBjk0NBR6rOZCfv/+PeSYmJh169YFBQUh26NHj0aOHKmsrPzNN98gCcHFxQXzGwgImP0cO3YMMyE403EtQm5uLvSoEbMZXBsXF+fj4+Pq6qqtrT1kyBAkUfiXAElEQMwJwBEE7/HJkyfNzMxWrVrl4eHh7u7O9Anf9z179mzcuLFjx44HDhw4d+5ct27dmCQMLO/evWNkxPAs3b9/f/LkyZD5w5s3b0aPHt22bduhQ4fC6QTTi3FA8echmQgQAXEhII0WkaKi4q+//opYXG5S3bQTQAhLadSEpTQTaGoWS2BgoGXJgZIXLlwIcfny5ZAvX74MecCAAZDd3NwgYwYDWUlJyc/PDyZQ69atYQ6pqqo+fPhQR0cHSQjR0dEpKSkQEHbv3p2enu7s7Az/DxOwKgy9rKxsSEjIoEGDTExMsKyLGNYRrCYkCRNqtvvC1CgWeQhL6dtETEozgaYusQwcOBBf9ry8vLCwsKlTp6J2Xpg0aVJUVBRWSbDaMmjQIJ4eqyReXl68U4wP8Db37t2bp2GEU6dOvX37ls1mJyUlwaDi/1USk6G8uC67X14bRFBPWMq8KYSlzrBIqUW0YsUKfMjKpCy1SgAhLKXvPmEpzQSamsUCiwUTDv7ATEcmTpzIr4SMjyhq19fXv3r16ocPHzAXSUxMPH78OJZpoWcC3D5MNpziEoGAMqGHT8nb2zs5ORklxMfHozoDAwPohQw1230hKxX9bISl9D0iJqWZQCPlWKS8+/gAlBkIS91hKbMmsVLWxqdFGi0isbrp1FgiQASIABEgAkSACBABIkAEapGHBwmxAAAQAElEQVQAWUS1CLcei6aqiQARIAJEgAgQASJABIgAERCGAFlEwlCiPESACIguAWoZESACRIAIEAEiQASqQ4AsourQo2uJABEgAkSACNQdAaqJCBABIkAEaoMAWUS1QZXKJAJEgAgQASJABIgAEag6AbqSCNQlAbKI6pI21UUEiAARIAJEgAgQASJABIiAaBGoX4tItFhQa4gAESACRIAIEAEiQASIABGQNgJkEUnbHaf+1hcBqpcIEAEiQASIABEgAkRAFAmQRSSKd4XaRASIABEQZwLUdiJABIgAESAC4kSALCJxulvUViJABIgAESACRECUCFBbiAARkAQCZBFJwl2kPhABIkAEiAARIAJEgAgQgdokIMllk0UkyXeX+kYEiAARIAJEgAgQASJABIhAxQTIIqqYj/SlUo+JABEgAkSACBABIkAEiIA0ESCLSJruNvWVCBABfgIkEwEiQASIABEgAkSgQQOyiOhTQASIABEgAkRA0glQ/4gAESACRKB8AmQRlc+GUogAESACRIAIEAEiQATEiwC1lgh8PQGyiL6eGV1BBIgAESACRIAIEAEiQASIgKQQEFeLSFL4Uz+IABEgAkSACBABIkAEiAARqE8CZBHVJ32qWxwJxMXFsVisumw51UUEiIDEEKABRGJuJXWECNQLARpDagk7WUS1BLZmip04cSKLxZoxYwZ/cTNnzoQSSYwSAk4R5OXlmzZt2rt370OHDnE4HCZVIM7Ozv7f//7XsmVLJSWlJk2aODs7//3330yeFi1aeHh4MLLoxHEl5gd6xwvXr1/nNc/X19fa2hp9QY/27NnD00M4d+5c+/btFRUVEV+4cAEaXti1a5exsTGuwrV+fn48PZfLXbFihb6+vrKyMsi8evWKlyS8kJGRsWzZsnbt2qF8XV3dXr16nT9/HiWjBAh9+/bV1tZGX54/fw4NL+zbtw81qqurI+nz5888PQlEoDoEmMFBvAaQ6vS39LXSMICkpaXNmTOnbdu2KioqhoaGc+fOTU9PL42CNESgCgRoDJGkMYT3AZg+fTomG6WnfJir9O/fH0kXL17kZZYegSwiUb/XBgYGp06dys3NZRqal5d38uRJ/NljTpm4X79+7969w/f22rVrPXr0mDdv3sCBAwsLC5lU/hhzI3zQd+7cGR4eDtNi2LBhqamp/BlEU7516xY6yISePXsyjYyNjf3mm2+6d+/+7Nmzn376CfMAWEFM0qNHj0aNGjVu3LgXL14gHjlyZEBAAJN0+vTp+fPnw2jBVbgWX/6EhAQmaePGjVu3bgWcJ0+ewJiBbZmZmckkCRnDmLG3tz9y5MjSpUufPn167949NOPHH39kJigwRx0cHNavX1+6tJycHNxE9KJ0EmmIQHUI0AACepI9gLwtOTZv3hwSEuLl5YWBffLkyeg1BdEnIBYtpDEEt0kyxhB0BAGTQMyIsPgLWSDARoI5JKCUnlOyiET9XltZWcH+gXuBaSgEDE+WlpbMKRPDE4IZfLNmzZAZs+pLly5du3YNfxqZVP74r7/+QgYYEvAIwUOClcUJEyYgAxwU8fHxCxYswJcBARqEhw8fOjo6wmGCGmFvYEIPJQKuXbVq1ZgxYxo2bIgv1Y4dO6BkAnwsaC3aAz0uYZTVj7W0tNBBJigoKDAFwimEuvAFNjU1nTJlyqRJkzAnYJKghD0DswS+GsQuLi7QMEmweTBdQH5cBSW6tnv3biRhaQSnsJSGDh1qZmZ2+PBhWCknTpxAkvABbGGXYqwBVfimTExMpk6dCncQQKEQ2GbLly+H1wiyQICRtmTJEjs7OwE9nRKBahLAmICvCcYNphwI+MzTAAIaEjOAYLzCYpCrq2urVq2wYLRmzRqM82WuiKHXFIjA1xKgMQTEJGMSgo4kJSXNnj37+PHj8vLyOOUPWEHGBOnQoUP8yhqURb8osohE/x41+O677zw9PZmG4sOKqT8jlxfjj6K5uTmmPqUzwKi4evVqadcHMjdv3nzlypWMHwYXYrmxb9++MA+Cg4PhV7l//z6+RdAzYdOmTZ06dYIbBPYG7KibN29Cf/bs2W3btu3duzcqKgqLEB07doRSIPj5+cE8KDOsXbtWIDPv9Ntvv9XR0YGDBVXwlHAE9enTh3eK1gYGBhYUFEBTOgnWHfRsNjsoKIj/KshMEjxO79+/xymyIcCoc3JyYpJwKkzgcDinTp1yd3eHNcifH52Vk5Pj15BMBOqSAA0gUjWAwCOtrq5OY05dfsUkvi4aQyRjDMEsBSuzixcv7tChg8CHFkvAo0eP3rlzJ2aJAknSc0oWkRjca3yCYZDA+QA3zoMHD8aOHVtpo+EbQf7S2fbt24dZPlY7OnfuDEsGpTF5GjduLCsrq6amhi8DApSweeAFgu+iTZs29vb227dvP3LkSF5eHpIQYJzApwEfCLxMw4cPhyHUoEGDhIQEXAsfCNakbW1t4R5BToFgY2MDn0mZYcZ/fy7FXAhzAosWMIRgyMHVM2rUqGPHjjFJMGCaNm3KyIghY1k0JSUFcukkaKBHalFREXJCZgJkJomJccroEUNmlJCFCSj806dPIC9MZspDBOqMAA0g0jOApKamwoE/ffr0Ovt0UUXSQIDGEMkYQzZs2IC1kjKf38GEEDO9QYMGScPnubw+kkVUHhkR0mtraw8YMODw4cPwFEHAaaWN43K5vIff+DM7OjrGxMTcvn172LBhr1696t69O/588mfgyfCleHl5wSBhAjwwWF2AI4XJ0LVrV0ZADDksLAzCiBEjcnNzW7ZsCVvowoULsE+gFAjKysqtyzlglQlkxik6iy8q7CuYUitXrpw5c+bGjRuhZwJ/H9FlKHkangAlkvhP+WXhk1BOxQFFIQN/4TilIKEExKlb+BJh3KABROIHkIyMDNzo9u3b//rrr+L0AaW2ijwBGkMkYBKCSd3vv/+OeV3pWcrly5fv3Lnj4eEh8p/E2m0gWUS1y7emSp80aRI+x5jTQBCmTJgoxsbGZeaUl5eHIQQPz40bNzBFgEXEZrNL54T9g4VGnjPnxYsXUVFRrVq1Kp0TGuYLZmBgEBER8ccff8DsgekC64t5hg0ZeKFqT83xLrezs0MzmFP4o/h9OMnJyVj8gPsLqaWT4PCBHsM6XGECVzFJuAQZykyCXpjQpEmTRo0agbwwmSkPEahLAhg3aAABcAkeQDIzM/v164cFLKxGYZBHZ2suUElEoAGNIcyHQHzHEMy+ME0yNDTETAkhPj7+hx9+aNGiBfoFcyg6OlpTUxN6BGiwaO7s7AxBqgJZROJxu/GnDnYLAnw1lbYYH+6QkBB8oCvNidVEeHKYZ+EUFBSKiop4l1hZWcGJJODOQR4mg7+/PyMghsx7VAy20Lfffrt9+3YfH59Hjx6hGcjAH+Dq4VlZAkKZT83xXwv52bNnenp6EBDgm2J+vwQZAQYeCmemAqWT4A5GHrTf2tqa/yrITBIMSBhFOEU2BKD29fVlknAqTJCRkRk1atTx48ffvn3Lnz87OxuQ+TUkE4E6JkADCANcUgcQeIf69OmD8Q1rvUpKSkxnKSYCNUhAasaQSpiJ7xgybty44OBg3rxLX19/8eLF3t7e6DCWyPmToNm2bZvnl5+v41RKAllE4nGj4dmA8wEBQukW5+fnw7mRlJT09OnTtWvXDho0aODAgePHjy+dE0b/3r174TyNi4u7evXqTz/91KNHD3V1deTEUsG9e/dQSErJT3H+97//waSZNWsWvj9wy+AP7Zw5c5CNCQ8ePNi4cWNkZCQ8QmfOnJk3bx70WIQ+ePDgy5cvY2Jijh49CuvIyMgIev4ApYCVxTst86k5uMVOnDiBjsP7tHnzZthavGbAgsIix8KFC5F66NAhVL1o0SKmLrTnxo0bGzZsCA8PR3zr1q358+czSch/4MAB5MdVCxYsSEhIQDlIgpsLeUAPK6zowsSJE1VUVMaMGYMk4QMuh6OsS5cuR44cCQ0NBTdUZGFhkZWVhULS0tIAE3rI6A7k9+/fQ0aAgNPXr19DhhkJGZkhUyACNUIA4wY+8AgQShdIAwi+p+I7gMA7BHMIKy/oAkwjDCYI/Mtbpe84aYjA1xLA0IEBBAFC6WtpDBH9MURLS8uM78DyMVaB27Zti7sJgS/FDBq4krBMDEGqgvRZRGJ7e2G3IJTZ/OvXr8NzApMGqzh3796F2XDp0qUyhy24mGBj4M+nqakpTAuc/vnnn0yZK1euhJnUqlWrJk2aQNOpUyc4STCn7969u6Wl5S+//IIqoGcCnK0wq6BftWrVli1bUA70cLnu37/fwcEB196+ffuvv/7CNxD6aobVq1fD+dO5c+dTp05h0IEZwxSIryuMOjijYHKgGeg1zy1mb2+PzFjhQEtgp50+fRpWCnMV3DgeHh7oLK6CBYgSeGbbjz/+CKNo5syZqA6WIWwqNTU15ioh40aNGsFjNnbsWLQZcIDu5MmTmzZt0tDQQAmwKqEcMGAAZDc3N8h79uyBjAABp1OnToXs6OgIGZkhUyACNUUAowdCmaXRACLWAwiG4oCAgJCQEKwuYZRmQmJiYpn3mpREoMoEMIAglHk5jSFiMYaUee9IySNAFhEPhSgKmM1fvHixdMugRBKjh8AtOQoKCpKTk2/evPndd9/JyJR9Z5cuXfrw4cPU1NTc3Nzo6Ojff/+dZ7TY2dm9ePEiLy8PhTElwwiBVYAFSLg4kASHEqNHjGERZgZWJbEYCYcMNAiDBw+GPZCeno788C+5uLhAWc0wYcIEOFVQEdY+AwMDYWzwF+jk5AS3GFanYmNjGVcPL3X48OHh4eFsNhtrWkOHDuXpIcDmge2HqzCTgPkBDRPgJlqxYsW7d+8AAdYglkwY/VfFMH7WrVsXGRmJ8gEHtwNYUDIKgd8JbPkDqoMeAQK/HjIyQ1/dQNdLNwEMDhgrSjOAEkmMHgI+bwg0gDBAmFiMBhB4/nH7BAIWyJiOUEwEqkMA4wOGi9IlQIkkRg+B+fjRGMIAYWIRHEOYhjExZkFYAmZkgRh3E/MWAaU0nJY9b5aGnlMfiQARIAJEQHIIUE+IABEgAkSACFSVAFlEVSVH1xEBIkAEiAARIAJEoO4JUI1EgAjUNAGyiGqaqBSUV4GzVQp630BTU5Ne9yENN5r6WEsEaAChAaSWPlpUrJQQoDFEusaQuvpYk0VUV6SpHkkhAItoxYoVktIb6gcRIAJ1SoAGkDrFTZURAYkjQGNILd1SsohqCSwV+xUEKCsRIAJEgAgQASJABIgAEagvAlJkEXG53IyMDMT1xZrqJQJEQKwJYPSo/hgi1gSo8USACFSZAA0gVUZHFxKBOiAgRRZRZmamhoYG4jrASlUQASIgeQQwetAYInm3lXpUewSoZH4CNIDw0yCZCIgaASmyiEQNPbWHCBABIkAEiAARIAJEQAIIUBfEnQBZROJ+B6n9RIAIEAEiQASIABEgAkSACFSdTZjAHwAAEABJREFUwNdZRPn5+VWvSuyvpA4QASJABIgAESACRIAIEAEiIGkEKreIvL29J06c2KpVK3l5eRUVFTU1NScnpzVr1rx9+1bSYFB/iAAR+IcA/UcEiAARIAJEgAgQAWkhUJFFdPHixbZt206YMEFGRmbx4sXnz5+HdXTw4EFYRLdu3WrZsuWMGTM+fvwoLaion0RAygjksgvZhZzUrHzEOezCeun9vXv3XF1d9fX1WSwWRiReGzAc9e3bV1tbG/rnz5/z9DyBy+X2798fqfxX8VIhFBYW/vzzz8bGxsrKyhjNVq5cyeFwoK9mEAVo1eyC9F1OPSYCokKABhBRuRPUDukjUJFFtHbt2s2bN8MXdOjQIRg/mJf06tVr5MiRmDrcvXs3OjpaXV39yJEj0geNekwEJJ9AfkHRHt8YmzU3rVffQrzXNwaauu92dna2ubn5zp07BaqG3sHBYf369QJ63qmHhwfMId5paWHDhg179uxByWFhYRs3bty0adOOHTtKZ/sqDRCJArSvajNlJgJEQEQI1MkAIiJ9pWYQAZEjUJFF9PjxY1hBcBCV2epmzZpt3Ljxhx9+KDOVlESACIgvAaxT7vKJ/v12VEZusWsIMWRo6t5TBD/P6tWrhw4dKgBz3Lhxy5cvxxqNgJ45ffHixdatW7GUw5yWGT969GjQoEEDBgxo0aLF8OHD+/TpExgYWDpnfn5+Bt9ROgNPIzrQeE0igQgQAXEhQAOIuNwpaqf4EPi6llZkEX1dSZSbCBABSSEgKyPj+TBWoDfQyMmIwYiRk5MzevRoOH90dXUFusB/2q1bt9u3b0dGRkIJC+r+/fvffPMNZIGwbt06jS+HgYGBQCr/qaw4Q+PvCMlEgAjUPQEaQOqeOdVIBPgJCDu/efPmza5du5YsWbKQ7+AviGQiUA8EqMraIZCRVwC/kEDZ0GTmFQgoRfB0wYIF9vb28P9U3Lb//e9/MJzatWsnLy9vaWk5f/58nJa+ZOnSpelfjsTExNIZeBrAASLeKSNAAz0jU0wEiAARKI8ABgoMFwKp0EAvoKRTIkAEaoOAUBYRVlLbtm0Li2jLli1379719PQ8dOhQmb9mro0mUplEgAjUJQH8AVZVkFNXlhOoFBo1JXkBpaidXr58+c6dOx4eHpU27PTp08eOHTtx4sTTp08PHz68efNmxKWvUlRUVOc7SmfgaQAHiHinjAAN9Ixc3ZiuJwJEQHIJYKDAcCHQP2igF1DSKREgArVBQCiLCKukP/zww8uXL5WUlM6dO4eFUicnpxEjRtRGg6hMIkAE6pFAYlrOsN0P77/+OKFrC4FmfGdvXFgTu7EJFFuzpzCHoqOjNTU15UoOFD5s2DBnZ2cIAmHx4sVweru5uXXs2HHcuHHwLK1bt04gz1edFnE4QCRwCTSiD02gzXRKBOqfgPS1gAYQ6bvn1GPRIiCURRQWFjZhwgQ0HHOM3Nzchg0brly5csOGDdBQIAJEQGIIPE34NGTXg8gPWQf8Yr53bjXPpQ1WKNE7xJBnOrdSURB0HCFVpAKMnODgYHiwmYC2bdu2zdPTE4JAyMnJ4d82RlZWtpq7bysryAERQAEX6kIMGRrRh4bWUiACRKB+CdAAUr/867N2qls0CAhlEamqqubn56PB+vr6WH+FgJCSkoKYAhEgApJB4O/gt6P3+adksdvrqXu4WWIeP92pZeCy3kE/90IMWVFetu57mpWVxbNtYmNjISckJKAZaWlpkENDQyFHRERAfv/+PWRdXV0zvgMaQ0NDY2NjCAguLi47v2zk7erqumbNmitXrsTFxV24cGHr1q1DhgxBnuoEIAIo4Lr/vx7+S13cuxhCU50C6VoiQASkhwCGC/4BZKydETTS033qKRGoXwJCWUR2dnYPHjxAQwcMGPDDDz9gGjFp0iQooaEgDAHKQwREmQCXy/3j7uvZJ57lF3J6meqcmdFVT0MZDYZRpCAno9VQETFkaOo+BAYGWpYcqHrhwoUQly9fDvny5cuQMSJBdnNzg7xnzx7IFQcs6PCWcnbs2DF8+PCZM2eampouWrRo+vTpq1atqvhyYVIBCrgO+sV223D3xONi402YqygPESACRAAEmAHk91tRGEDuhidDQ4EIEIG6ISCURYTV0y5duqBBK1as6N279+nTp42MjA4ePAgNBSJABMSaALuQs+hM8CbvCPRikoPx3nE2qorVejQO5dRgcHZ2hsHGH7y8vFD+xIkT+ZWQMTpBLxCgHzx4ME8JdxAvm5qamoeHR3x8fG5uLiyl1atXKygo8HJWUzDVU0/LZt+hCU01OdLlREAqCWiqyGMACUlKl8reU6eJQP0QqNwiyszMxHThzZs3WFtVUVHZtWtXcHDw+fPnYRTVT5OpViJABGqIwKds9riDAeeevpGVYa0abLbctT2EGipbqovp0U4H/Q9+k/4hIw8CBUklQP0iArVBoGNzTRQbTBYRKFAgAnVFoBKLCMZPu3bt+vXrN3DgwNatW9+6dauuGkb1EAEiULsEYlOyh+5+GBCb1lBR7uAEm3F2RrVbnzSV3kRN0dygeE5DbiJpuu3UVyJQMwQ6NtNAQWHvMgqKOBBEJFAziIBkE6jEIlqyZImhoaGfn19gYKCTk9Ps2bMlGwf1jghICQH/mNQhux7EpmQ301Q+9729c9tin4aU9L1uutmrxE10O4x+CVA3vKkWIiA5BIwaq6gpybELOZEfMiWnV9QTIiDaBPgtojJaCkNox44d9vb2VlZWhw4dioqKysrKKiMfqYgAERAfAmeD3ow7GPA5p8DCQPPiLIe2umri03axaamLaVO09f7rj3kFRRAoEAEiQASEJCAjwzLTL3YTvaQH54RERtmIQLUJVGIRpaSkwEfE1KKlpaWiovLx40fmlGIiIM4EpLTtHA53s3fEojMvCoq4AzrqnZpm10RNUUpZ1HK3TfXU9DWU8go4D6PpRQW1zJqKJwISR6BT82KLKPgNba4gcbeWOiSqBCqxiFgsVmZmZkbJkZ6ezn8KXaWdunfvnqurq76+Pi68ePEiL//EiROh4QX+jbydnZ15eghubm68qwSEXbt2GRsbKykpWVtb+/n5CaTSKREgAgIE4KyYc+rZzruvoZ/Vo9WO0ZZK9fGKIdQuDQHDV0/T4mcRReDBOWngTX0kAhJFwKzkp0TkI5Kom0qdEW0ClVhEXC7XxMSkUcnRuHHjrKwsS0tLnGlqaiKutGvZ2dnm5ua8VyLy5+/Xr9+7L8fVq1f5k6ZOnfol5d3evXv5k3jy6dOn58+fv2zZsmfPnnXv3r1///7Mext5GUggAkSAn8DHzHy3ff5Xgt/Jy7I2De+0uG87GRkWfwaSa5wA8+DcnfBkDKQ1XjgVSASIQFkEJETH+IjC3mWyC2lzBQm5p9QNESdQiUV09+7dO3zH3bv/nN69WyxU2jcYKqtXrx46dGjpnIqKirpfDtha/BlUVFS+pOhqaBQ7jvlTGXnr1q2TJ0+eMmWKqamph4eHgYHB7t27mST+OD8/H74sXuBPIpkISA+ByA+Zg/948Dzxs4ay/NHJXUbYGEhP3+uxp11bainLy75Lz3v1NqMem0FVEwEiIHYEDBurqCvJsYtocwWxu3V12WCqqyYJVGIROVV4VKchPj4+Ojo6cEDBI5Sc/J/tmI4fP66trd2hQ4dFixZlZpax0QqbzQ4KCurTpw+vAZAfPnzIO+UJ69atg03FBFhNPD0JREB6CPhGfhy262HS59wWWioXZtrbtdSSnr7Xb0+V5GW7tdFGG+AmQkyBCBABIiAkARaL1bF58YowvadVSGKUjQhUk0AlFhF/6a9evQr+ckDmT/paGb4jmD1wPm3ZsuXJkyc9e/aEM4cpxN3d/eTJk7CXfvnll3PnzpXpX0pJSSkqKmratHgrJ+YqyO/fv2dk/njp0qXpX47ExET+JPGQqZVEoHoEjvnHT/J6kplfaGvc+MJMh5ZNGlavPLr66wj0+uenRB++7jLKTQSIQC0TSEpKGjt2LLNllIWFBZZZmQqzsrJmz57dvHlzZWVlU1PTMh8/YXJiitK+fXtFRUXEFy5cYJQ1GJuV/JSILKIaREpFEYEKCFRiEfn5+XXu3Jm53s7OztLSEgMHQqdOnW5V422to0aNGjBggJmZmaur67Vr1yIjI69cucLUApdRr169kOTm5nb27FnU8vTpUyZJIGax/v0VBJfLZbH+PeXlxFClznfw9CQQAYknUMThrvo79OeLLyEMtWp2dLJtI1UFke61JDauR8mLnl68SU/OyJPE/lGfiIBYEvj06ZODg4O8vDxmIKGhoVic1dTUZHqyYMGC69evHzt2LCwsDPKcOXMuXbrEJPHHjx49wkxm3LhxL168QDxy5MiAgAD+DNWXOzUrblIIbTdXfZRUAhEQgkAlFtGuXbvwVeeVc/fu3djY2JiYmHnz5lWwcMLLL4ygp6dnZGQUFRVVOrOVlRUGrNJJ2trasrKy/E6h5ORkuIlKl0AaIiCdBLLzC6cfDTp4PxbdX9THZMsIc0U5WcgU6piAjrqSecmjL3cj/vNscB03g6oTOQLUoHolsGHDBgMDA09PT1tb2xYtWri4uLRq1YppEUydCRMmODs7Qz9t2jRzc/PAwEAmiT/28PDo3bv30qVL27VrhxglQMOfofpyxxIfUfj7jPxCeqdZ9XFSCUSgEgKVWERPnjzBeMErA35kWC8YJmAmYdTg6asjpKamJiYmwi4qXcirV68KCgpKJykoKFhbW9+8eZN3CWR7e3veKQlEQJoJvEvPHbHn0a2wDwpyMjtGW87u2YbFYkkzkPrtO7Pj3K0wsojq9z5Q7UTgXwKXL1+2sbEZMWKEjo6OpaXl/v37eWndunVDalJSEpfLxSpwZGRk3759eak8AVOgPnw/ZkaeMn/MnF+N7Z0MGitrKMsXFHEj34v5m/F51EggAiJMoBKLCIOCnp4e0/7Dhw/r6uoycuPGjWHJMHIFcVZW1vOSA3liY2MhJiQkQLlo0SKMJnFxcT4+Pq6urtra2kOGDEGe6OjolStXYj0GSVevXsVohaHKwcEBSQhYg+Ft5L1w4cIDBw4cOnSI8Wuj2BkzZiAPBSIg5QReJqUP/uNB6LsMLVWFk1PtXM31pRxIvXe/ZzsdtOF+VEpeAS30ggQFaSGQyy5kF3JSs/IR57ALRarbMTExu3fvbtOmjbe3NyYPc+fOPXLkCNPC7du3t2/fHuu/WHvt16/frl27YCMxSfzx+/fv+Z9MgQwNfwZGrs72TiwWi3ET0U+JGJgUE4FaJVCJRaSmpgZLhmnB0KFDVVRUGBlKdXV1Rm7QoEF5AmwbmDQIyAAbBsLy5ctlZWVDQkIGDRpkYmIC3zRiWEeoCHkwAN2+fRtrLW3btsUIhQWYW7duIT+SEGAvpaSkQEAYNWoUPNQwnywsLO7duwfzCc4r6CkQAWkmcOPVe3iHPmTkt9FpeHGWg7juhtsAABAASURBVLVRI2mmISJ976CvrqehlFtQ9CgmVUSaRM0gArVNIL+gaI9vjM2am9arbyHe6xsDTW1XKnz5HA7Hyspq7dq1mJZMnz596tSpMJCYy2ER+fv7w00UFBS0ZcuWmTNnYh7CJAnEsFh4GjiU+E95+qXV297py3Zzn3kFkkAEiEAtEajEIurSpQtv4YS/BV5eXkji15QpOzs7Y5jgD7hQWVkZqzLJyclsNjs+Ph4aA4N/3o4CwdfXF94nOJpfv379+++/wxnFKxmOoxUrVvBOMU5Bg5wYthwdHXl6EohArRIQzcLxLTvgFzP9WBBm3t3baJ+baW/Q+J/1C9FssPS0CvMkxk10O4x2nJOe2y7VPYV3aJdP9O+3ozJyi11DiCFDIzqeIj09PTiCeDfJ1NQ0ISEBp7m5uT/99NPWrVtdXV07deo0e/ZsLL9u3rwZSQJBV1eX3ymEKQ3cRAJ5cFrN7Z3IRwSGFIhA3RCoxCKCY+fw4cOLFy/Gt51pEIQffvjh2LFjSGI0FBMBIlC/BAqKOMsuvlx9JYzLbTCmi+GhiZ3VleTrt0lUOz8Bl5I9uO+EJcNw5deLvkwtJAJVICArI+P5sHhbF/5roZGTqWTKwZ+/VmUHB4eIiAheFZGRkcxjJgUlhwxfO2VlZeFQ4uXkCV27dr3J92PmGzdu1MaPmRmLKOJ9Zn4hPXPLY08CEagVApUMTz169NixYwecyFhQadSoETw2EHbu3Onh4dGzZ89aaREVSgSIwNcQyMgrmOT15ERAAovV4OcBpmsGm8nLVvK9/priKW8NELBvpa0kL/M2PS/sXRmvnK6BCqgIIiBKBDLzCjJKvEP8jYIGen5NPcoLFizw9/dfu3bt69evT5w4sW/fvlmzZqE96urqTk5OWAX28fGJjY318vI6cuQI8ztnpI4fP37p0qUQEObNmwcraMOGDeHh4Yhv3bo1f/586Gs2NG+krKlSvLkCjKKaLZlKIwJEQIBA5TOnmTNnYsiA13j06NFubm4QcApXskBBdEoEiEDdE0hMyxm266FfVIqyvOy+cTZTurdksWhbubq/D5XUqCQv2621NjLRg3OAQEHiCagpyasrywl0ExroBZT1ddq5c+cLFy6cPHnSzMxs1apVWOR1d3dnGnPq1Cmk4rR9+/br169fs2bNjC/7NiUkJLx7947JBo8Qcnp6enbq1AmG0+nTp4X5KQFzrfAx68vmCsH0ViLhqVFOIQhQltIEKreIcI2BgQEWVHaVHBBwCiUFIkAE6pfA04RPQ3Y9iErOaqqueGZG197tm9Zve2qj9nv37rm6uurr62NmcPHiRV4V58+f79u3r7a2NvTPnz/n6XkCl8vt378/Uvmv4qUyQlJS0tixY7W0tFRUVCwsLIKCghh9bcQupsV353Y47cFdG3SpTNEikFdQNKFrC4E2fWdvXMjhCCjr8XTgwIEhISF5eXlhYWFTp07ltURXVxd2DgaH3Nxc+H8WLlyIYYRJheMIxg8jIx4+fDgysNlslDB06FBoaiMwD869TEqvjcKpTCJABHgEKrKIHj16xMtXppCdnf3q1asyk0hZ3wSofgkn8NeLt277/FOy2B301S/N6mZW8i4/yeszBhlzc/OdO3cKdA16BwcHrOAK6HmnWPTlzWN4Sn7h06dPKEFeXv7atWuhoaFbtmzR1NTkz1CzMrO5wos3nz9m5tdsyVQaERApArnsol8uvpxo32JOz9bwC6FtiOe5tJnp3EpFQdBxhFQKFRPo1FwDGchHBAgUiECtEqjIIho/fnzv3r3//PPPrCzBt4NhAvHTTz+1bt366dOntdo+KpwIEAEBAvB+7LgdNefkM3Yhp5dp0z+nd9XVUBLIIzGn8POsXr269PrruHHjli9f3qtXr5KeCkYvXrzYunXroUOHBBP4zjds2AB3NxaDbW1tW7Ro4eLi0qpVK770f8T8/PwMvuMf7df/11RdCWu9XG6Du+Qm+np6dIW4ECgo4sw8HnTpxdtJXk8mdG0RuKx30M+9EE93aqkoLysuvRCpdjKrXZEfMuF5E6mGUWOIgIQRqMgigtkzaNAgTDsaNWrUoUMHWEeurq7dunXT1ta2traOj4+/efMm5iUSRoS6QwREmUB+YdEPZ15suRmJRk7pZrx3nLWqIi27Asa/IScnZ/To0XAr6erq/qstJV2+fNnGxmbEiBE6OjqWlpb79+8vlaVYUZ0XLBZfz/fPpWTHudvhtAc3HxQSv5qA6F7A4XB/PBt8N+KjkrzMLwPba6spKsjJaDUsjsk7VOXb1kxTubGqQiGHG/6e9mWpMkW6kAhUTqAii0heXn727Nnh4eEBAQHTpk0zMzNr1qyZs7Pz3r17k5KSjh8/Dk3lNVAOIkAEaojAp2z2uIOPzz9NkpVhrR5s9vPA9hBqqGzJKWbBggX29vZYzam4SzExMbt3727Tpo23t/eMGTPmzp175MiR0pcsrd4LFvkL7FXyUyK/qBRa6+XHQrJkEIDvevWVsAvPikenXe5WNi0aS0a/6r0XLBaLcROFSONPieodPzVAighUZBHxMFhZWc2bN2/btm179uxZvXr1sGHDGjemwY6HhwQiUBcEYj5mDdn14HFsmpqinOfEzmPtjOqiVnGrA56fO3fueHh4VNpwDoeDkW3t2rVwEE2fPn3q1KkwkEpfVc0XLPIX2EFfvam6Yg67yD8mlV9PMhGQAAK7fKIPPSh+B9HmEZ16tmsqAT0SnS50KvmZaMibz6LTJGoJEZA8AkJZRLXYbSqaCBABIQg8ik4dsuthXGpOM03lczPtHU2aCHGRNGaBORQdHa2pqSlXcgABVnDg2YYgEPT09Nq3b89TmpqaJiQk8E5rQ8BaLzNTvEM/JaoNvlRm/RE4EZCwybv4hae/DGw/xLJ5/TVEMmv+4iPKkMzuUa+IgGgQIItINO4DtUIaCFS1j2cCE8cfCkjPLbA01Lw4y8GkqVpVS5L865YsWRIcHPz8y4EOw7nt6ekJQSA4ODhERBTP4Rh9ZGSkkZERI9de3Iv5KVFYMpfLrb1aqGQiUJcEroW8+/liCGqc1aPV5G7GECjULIFOzYu3m6PNFWqWKpVGBAQIkEUkAIROiYAIEeBwuJu8wxefDS4o4g7opHdyql0TNUURal/tNyUrK4uxblBVbGwsZMaTk5aWBjk0NBR6GDaQ379/D1lXV9eM74DG0NDQ2PifWZqLi8vOLxt5L1iwwN/ff+3ata9fvz5x4sS+fftmzZqF/LUa7FtpK8rJJH3OlfwfSdcqRypcZAg8fJ0y79RzDrfBaFuDRX3aiky7JKohehpKWqoKRRxu2DtyE0nUnaXOiBQBsohE6nZQY4jAvwTyCormnHz2x91oqOb0bL3DzVJJ+ravDQwMtCw5AGHhwoUQly9fDvny5cuQBwwYANnNzQ3ynj17IFccoqOjU1JSmDydO3e+cOHCyZMnYUCtWrXKw8PD3d2dSaq9WFlBtltrbZRPD84BAgVxJxD85vPUI4HsIk6/DrqrB3dksVji3qMqtr+WL2OxWB1L3EQvaXOFWkZNxUszga+ziPLy8qQZFvWdCNQZgY+Z+W77/K+EvJOXZW0eYf5Dn7YyMtI423B2dub+9/Dy8sJdmDhx4n/V3BUrVkAvEJBn8ODBPGVcXBx/toEDB4aEhGBYCwsLmzp1Ki9brQouJTvO3QqjPbhrFTMVXusEoj9mTfR8ks0u6tpSy8PNQlYqB6hap/ylgo4lmysEv0n/oqD/iUA9EZDcaoWyiDgcDtZQmzVr1rBhw5iYGND45ZdfDh48CIECESACNU4g4n3m4D8ePE/8rKkif3Ryl+HW9EvlGmdcbwX2bKeDunFzU7LyIVAgAuJI4H163viDj9Oy2WbN1PeNt5ZC93Ud3zXGIqINuOsYO1UnVQSEsohWr16NddmNGzcqKCgwdDp27HjgwAFGpljCCFB36peAb+THYbsfJn3ONdZWvTDTwa6lVv22h2qvWQK6GkqYRHK5De7SjnM1S5ZKqysCn3PY4w4GYIxqqa3q9Z2tmpJ8XdUsvfUwT81FJWflFRRJLwXqORGoTQJCWURHjhzZt2+fu7u7rKws05hOnTqFh4czMsVEgAjUFIGj/vGTvJ5k5Rd2MW58YaY9jKKaKpnKKZNAvShdSt7WcjssuV5qp0qJQHUI5LALv/N6gql5U3XFI5NttRsqVqc0ulZIArrqSkBdxOGG0uYKQiKjbETgKwkIZRElJSW1bt2av2QOh1NQUMCvIZkIEIHqEMCfupV/hf5y8SWEYVbNj07uoqnyj0u2OsXStSJIwKVkD26/qI/5hbTcK4L3R2KbVP2OsQs53x97+izhs4Zy8QO9zRupVL9MKkEYAsWbKzRTR84Q+ikRKFAgArVAQCiLqEOHDn5+fvy1nzlzxtLSkl9DMhEgAlUmkJ1fOO1I4KEHsShhcd+2m0d0UpAT6ruJ/BTEjoCZvoaOmmI2uyggJk3sGk8NlloCHA530ZkXvpEfleVlD03sTC9Gq+NPQsfmmqiRfkoECMIEykMEvpaAULOuX3/9dfbs2Rs2bOBwOOfPn586deratWuZPXC/tj7KTwSIgACBd+m5I/Y8uh2erCgns3OM5awerbEcKJCHTiWJgIwMi3ET3aYd5yTpvkp0X7hc7sq/Qy+/eCsnw9o91sraqJFEd1cUO/fP5grkIxLFm0NtkgQCQllErq6up0+fvnr1KiZqMITCwsL++uuv3r171ysAqpwISAKBkDfpg/94EPouQ7uhwqlpdgM76UtCr6gPlRHoyfyUKDwZE83K8lI6Eah/AjvuvPZ6GId2bBlp7ty2eL9EyBTqkkCn5hqoLio5M5dNT9uCBAUiUMMEhLKIUGffvn19fX2zsrJycnLu37/fp08fKCkQASJQHQLer96P3PvoQ0a+SdOGF2Y6WBqWt+xanUroWlEk0K21NlyCbz7lRn7IEsX2UZuIAB+Bo/7xW29GQrHCtf0gi2YQKNQ9gabqSk3UFDncBqHv6K1EdY+fapR8AsJaRJJPgnpIBOqQADwD++/FzDgWlFtQ1L2N9tnv7Q0a02+U6/AG1HdVygqyDq210Ypb9OAcKPwn0IloEfg7+O3ySy/Rprk9W090MIZAob4IdGpW7CYKoQfn6usGUL0STUAoi0hGRka2rEOiyVDniEBtESgo4vx04eWaq2FcboOxdoaeEzurK9ELPWqLtsiW27PkVa13wmkPbpG9RdSwBn5RHxecfo6Ryr2L4YLeJkSkpgl8XXlmJRZRcBL5iL6OG+UmAsIQEMoiunDhwvkvx+nTp5csWaKnp7dv3z5hKqA8RIAI8BNIzy34zvPJyccJLFaDXwa2XzXITE5WqK8hfyEkSwABZnOFpwmfUrPyJaA71AXJI/A88fP0o0EFRdwBHfVWDjJjsViS1MekpKSxY8dqaWmpqKhYWFgEBQUxvWOVOjZt2sQkCcQeHh5t27aPcAiFAAAQAElEQVRVVlY2MDBYsGBBXl6eQIYaP2V+SvSSLKIaJ0sF1gUBUa9DqKnYIL5j+PDha9as2bhx4+XLl0W9c9Q+IiBiBBLTcobtfnj/dYqKguz+cTaTuxnjj6+ItZGaU0cE9DSUO+irY/X9bsTHOqqSqiECQhN4nZz5nefjHHZRt9baW0eZy8pIlDn06dMnBwcHeXn5a9euhYaGbtmyRVNTk2Hzju84dOgQhuhhw4YxSfzx8ePHsTr866+/hoWFHTx4EIvFS5cu5c9QGzKz3dzr5KwcdmFtlE9lEgFpJiCURVQaUJcuXW7dulVaTxqpJkCdr5BAUPynwX88wB8zXXWlP6d37dW+aYXZKVHyCbj88+DcB8nvKvVQrAi8/Zw7/uDjTzkF5s019oyzVpSTFavmV97YDRs2wLHj6elpa2vbokULFxeXVq1aMZfp8h2XLl3q0aNHy5YtmST++NGjR7CpxowZg8v79OkzevTowMBA/gyMnJ+fn8F3MMoqxzrqSk3VSzZXeJtR5ULoQiJABMokUBWLKDc3d8eOHc2bNy+zRFISASJQmsDlF29H7/dPzWbDLXBxlgPzOHjpbKQRGwI10VAX02Kr+F5kCruQUxPlURlEoAYIfMpmjz/0+G16Xssmqp7f2TZUlKuBQkWsiMuXL9vY2IwYMUJHR8fS0nL//v2lG/jhw4crV65Mnjy5dBI03bp1CwoKevz4MeSYmJirV68OGDAAskBYt26dxpcDNphAahVOGTdRMG2uUAV2dAkRqJCAUBZRo0aNGn85IKupqcGVXN6TtRVWR4lEQOoIcLnc7bej5p58hllvL9OmZ2Z01dVQkjoK1OGyCGBy00RNMSu/MCA2tax00hGBuiaQnV840esJXNl6GkpHJ3dprKpQ3AKJ+wcbZvfu3W3atPH29p4xY8bcuXOPHDki0MvDhw9jtjN06FABPXPq5ua2atUq2EXy8vLwL8GVtGTJEiaJP166dGn6lyMxMZE/qWpyx2bFT/fRT4mqRo+uIgIVEBDKItrGd2zfvv3vv/+Oj4//9ttvKyiXkogAEQCB/MKiH/58sbXkVR5TuxvvHWetoiCBC67oKYUqEJCRYfUsednl7TDaca4K/OiSGiaAVZsZx4JeJH7WVJE/Otm2maZyDVcgMsVxOBwrK6u1a9fCQTR9+vSpU6fCQBJoHVZ+3d3dlZTKXsDy8fFZs2bNrl27nj59ev78ecyLYCAJlIBTRUVFdb4DmmqGjs3VUQJtNwcItRWoXGklIJRFNHHixAlfjnHjxvXr1w+eImklRv0mAsISSMtmjzvw+PyzJFkZ1pohZssGtIcg7MWUTzoIuJjqoKO3wz/AlwiBAhGoLwJFHO7CP5/7RRXv++I5sXNrHbX6akkd1Kunp9e+fXteRaampgkJCbxTCH5+fhEREVOmTIFcZvjll18wHUKGjh07DhkyBMbVunXrYGiVmbkGlcwT19Efs+DNq8FiqSgiQAQqsoiCKzvEFB81mwjUAQH8xRqy68HjuDQ1RTmv7zq7dzGqg0qpCrEj0K2NtoKcTGJablRyltg1/v/snQdcE0kXwE1CL9KLCFIUFKSDDURRsIv9VKycinp2Pc/PcudhOeup2LBT9GxnwdOzHaAURRCwoTSlgxQpgtRAwveS1RgThIgQUt7+xvXtm9mZN//dDPNmdmfRYJEhAA651/VX/77Ik6SQjs6ws+miIjJVa7Qijo6O4PCwolJSUvT1v2iiT506ZWdnZ2VlxUrDIVRVVZHJn3tQFAoFGELgSNbqh5qKMtodZRoaOrzCxRVaHS5mKN4EPv+euTlYW1vDhLL1VzaI4j6FQxMeHu7m5qajo0Mika5du8aKhUkn0LBC3759WVGEAM3KiBEjIAH7WUQUsffy8oJYVtDW1ib0uEcCgkDgUWrxBJ/IzOIqXRXZq4scnIw1BMEqtEEACchJSTh0VQPD8ME5gIChvQh4B78+E5VJInXYO9l6gInot1crV66MioqCiZ03b96cO3fu+PHjixcvZsEvLy+/dOkSzP+wNB06dAB51qxZ69Z9XGIb+jZHjhy5cOFCenp6UFAQTBmNGTMG/CJI1tbBQlcJiojHrxIBBQxIoPUINOURwe88LS0N9o2GtLS0Zs2orKyEIZZDhw5xpxw+fDhr0f9bt25xJPD29iaRSBxKjsOePXuycoiPj+eIxUMk0F4E/o7Nnnkquqy6zqaL8rXFjsZaovzwSVtD/tqoytWrV4cNG6aurk4ikZ49e8ZtRrOjKqxTtm/fDpmsWLGCpeGz4MJccS4kEdfg5jN4LO4jgYDIjP0hr+Fg85ieblY6IIh86NWrV2Bg4Pnz583Nzbds2QJdjunTp7NqDX4ONCDu7u4sDSFkZWVBr4OQf/31159//hn2ZmZmc+fOhebo2LFjRFRb7y06Mz2inPdtXRDmL7YExLPiTXlEMIncdGgWGczzbN26tdGlWqSlpWFihwiqqqrsWT1//nzv3r2+vr7sSm5ZQkKCOB32GhpCOaZVTa2n1tOLK2phjx9c477EQqeh0xt23Ulac/lFPb1htGWn85591RWkha4WAmXw10ZVQO/o6Lhjx46vWQtdHPBzvhbL0sfExMDwsKWlJUvDf2Ew86tET7JKSyqp/C8dSxRzAv88y/W68QogrHA1ntnPAAQxCaNHj4ax1JqamsTERE9PT/Zaz58/v6qqSkmJ4Xiw60NDQ/39/QkN9EB+//13mGKqrq4GT+nw4cPKyspEVFvvcY6orQlj/uJJoCmPiINIQkLCnTt3rrNtHAm+6TA0NFRTU9PExARaosLCz+ssQTMEAzMwrQR+TtMZvn79WkdHx9DQcOrUqV+bsGrdj6M1bc+3xtbW0Y6Gpdn/EWS3NRj2x8LSQPOtmbQ0PZ7X+gSqqbQl55/4hKZC1ssGdzsw1UZGUtQ+awhV43P42qjKzJkzN27c6Orq2qg9PI6qVFRUwMDwiRMnmlgqhg9tSGdlWdNOHekNHUKTP7eEjdYLlUigdQmEpbz7+e/nDQ0dZvfTX+5i3LqZY25tRICYI0orqqyorW+jIjBbJCCGBHjyiMDfsLKygsnlUaNGjWNu45lbi3lBL+fs2bP37t3bs2cPjNEOHjwYuh1EbitXrnRwcBg7dixx+LV9nz59Tp8+fffuXejN5OfnwynFxY180GN7a38c7Wv2fKu+mloPXef9Ia/LqxktGuxBBg3OFH0rSQFJX/ihZuqJqFvx+ZIU0p4frFYN7U4mN/PYp4BYLnpmcI2qfLWKixcvhjbta24VcRp/2hBXYsW5RPSICOq45wcBmJZceCYOJrTdrHR+d+vJy5wqP8zCMpojoK4graPEXFwBXyVqjhXGIwHeCfDkES1fvhymYgoKCuTk5F69ehUeHm5vbw+TPLwXw5FyypQp0BEBF8vNze327dspKSk3b96ENDD/BG6St7c3yE0H8KkmTpxoYWEBvRni3ICAAO5T1rX2x9G4i2iZhkIm+0Wmc5wLGgkyT1eE40Q8bF8CSfnl4w9HEh/x+Gtun4l2uu1rj5iXzuOoyoULF548eQIOT9O4+NOGEA/OwYA9tZ7etD0YiwSaJMBr5OuCD3P8Y6rraE7G6jCIQ8YRHF7JCUQ6Yg1uXFxBIC4GGiEqBHjqfz969Gjz5s0aGhpk5ta/f3/oRixbtqxVIHTq1ElfX//1a8ZrneAOpaamKisrSzA3yB/cHmdnZxCaCPLy8uAaETlwJJNu7Y+jceTf4sMPNXUwL8RxOmhAz6HEQwEnEJpcOOnIo9z31Ubq8tcWOfYxYqwbJuA2i7B5PI6qZGdnw0DPX3/99bXPL7IQ8acNsdJVhnHfitr6mIwSVtEoIIE2IpBTWjXz1OP3VXXWespHZ9hJSfDUE2gjYzDbFhCw1GW84yT2HlELyOEpSOCrBHhqB2k0moKCAuShrq7+9u1bEMCHSU5OBuH7Q3FxMfROwC+CrNauXfvixYtnnzbQ7Nu3z8/PD4QmQm1tbWJiIpFDE8kEKkpRRrKjrASHSaABPYcSDwWZwJlHGTDOCh3ZvkaqVxc5GKjLC7K14mAbj6MqcXFxhYWFdnZ2zLEXibCwsAMHDoAMbV27UIIR+sE9GMvDBOOKc+1yAcSp0OKK2lmnHueX13TTVPDz6CUvzfmXSJxgCGtdP84R5ZQJawXQbiQgeAR48ojMzc3BUQHj+/Tps2vXrocPH8KUkZGREWiaDhUVFYR3A8nS09NBzsrKAuXq1ath3ikjIyM0NNTNzQ0crfHjx0MabW1tKIsVOnTo0KVLF0NDQ4iC4OLicujTQt6QA3RiIM/o6OhJkyaVl5fPnj0b0ghLoNHpPzp8rBfL5tn9DAo/1LAOURBkAjR6w6Ybr3775xW9ocMkO93Tc/ooy0kJssFiYhuPoyrQmMTHx0OLRAR7e/vp06eDzJ/PiTR6LQb30AJ9SGJhQ0MDCBiQQFsQgOGbH/1j0ooqdZRkTs/prSKPrVZbYG7zPFmLK+BzJW3OGgsQGwI8eUS//vornc54un3r1q2ZmZlOTk63bt2CIdVmKcXGxtowN0i5atUqEDdu3Ah9DuiLjB071sTEBNwY2IN3pKjY/DdbUlNTi4qKICsIOTk57u7u3bt3nzBhgpSUVFRUFExbgV5YgqyUxDwnw6WDu8G8ENgMe5A9HAxm+8Zsu5VYR2PQBj0GwSQAvQrP07F+DzPAvDXDu++eZCn1/Y+dQF4YuAjAAAo4KhAgBkZAQIBRFZBLSkpATkhIABnmq0HOz88HmcdRFWhwWCMvIMjLy6upqYEAObRXcDJWl6KQs0qqUt9VtJcNWK5oE6itpy04E/sip0xFTvL03D46yrKiXV8Rrp2agnRn5uV7mVsuwtXEqiEBfhJoxiOytraGaZnevXuD4wFmwbwQdEHALSksLBw8eDBomg7Ozs4w3ske/P39ZWVl7969CzlQqVTwr0Cjp6fXaD5w4rhx41hRMKfk5eVFHF64cOHt27eQQ25u7pUrV8zMzAi9EO1/DXwJwzwx613jfnWN3TBkwUCj84+zoDN0PDxt8rFHOaVVQlQXsTL17fvqH44+updUKC1B9pluu8i5G67R1HY3QKOjKlDc9evXYYRl1KhRIE+dOhXko0ePgtx0SGUbVWk6Jf9j5aUl+nVlvIQWLA4rzvGfr9iXCNPaKy8+e/imWE6K4v9j726ajCfhxZ6KEAOA/gNY/xKXmwMKGJBAaxBoxiPq06cPTBDp6OhMmzYtJCSEKFFVVRW7gASKFu+LK2qvv3g7/0xcaRUVBntghkFBWnLJYOOjM2wVZSSeZr0fdeDBf68YY94tLgJPbAsC8Tll4w4/TMwrV1eQvrig30iLTm1RCubJItDoqArEenh4wIgJe2ANl0AsK0CCcePGsQ7ZR1VYShBCQ0N5WeISUrZpcGGuwX0PPaI2pSyWmcMP4bd/Xt6Kz4d5yOMz7a30+PQtUbGEzVXptlFYMBdXINBGmAAAEABJREFUeIEeUdvgxVzFkEAzHtGxY8fy8/OPHz8O+6FDhxoYGGzevJl4akUMYbVilWGGoaGhQ0+djtpKXzy3MNy8061lTla6SmXVdeAvbb6RgKvxtiL278zq7qt8mL4r/FDbXUvx2mIHa+xVfCdQPP1LAoN7aIIiNrOktJIKAgYk0FoE9galnIvOIpE6eE+17m+s3lrZYj7tSADniNoRPhb9VQLCHNGMRwRVk5GRmTlz5r179968eQPCqVOnjIyMhg0b9vfff0MshpYRCE4sgBNdTRnvUoPAHvRU5S4tdJjbn7Hugu/D9B+ORmaX4BN07ITaQYYR1uPhqQv/iquuow000bj8Uz9dFbl2sAOLFGkCcFP10FakN3QITSkU6Ypi5fhKwO9h+sF7b6DIrePMcVobOIhGIDyi9KLK8po60agR1gIJtC+B5j0iln2GhoZbtmzJyMi4cOFCbGysu7s7KwqFbyJQU0cLT2EsETHErBGPCLKSkiD/NtrsxCx7JVnJ5zllIw9E3HmZB3pBCGJoQx2Nvj4wftutJJjWm9lX/9Rse0UZSTHkgFXmAwHiwbmQRPSI+ABbLIq49jR30w3GAiQ/DzGZ3kdfLOosHpVUkZfSVWE8Y4KvEonHBcdatjmBb/CIwJb79+/Pnj3bw8ODRqN5enqCBkMLCDxKLYaphk5KMj11OjZxOvhLN5f1t+mi/KGmfuFfT7yuv6qtpzWRHqPagkBZdZ2H3+Pzj7NJpA4bR5ttHttTgvJtv5q2sArz5A8B/pfiwpw3Dkt5B344/0vHEkWMwP3kwtWXnkOlPBwMlgzuBgIGUSJATBPF41eJROmiYl3ajwBPfbusrKzNmzcbGRm5uLhkZmb6+Pjk5eXxsrJT+9VLoEsO+vTIHIlEatpQXRW5vxf0mz+A8ekn/8iMSUceZRZXNn0KxrYigaziqgk+D4nVmU7MtJ/T35BEauaStWLpmJUYErDWVVaTl4JBkJj0EjGsPla5FQnEZZb89FdcPb1hnLUOjOaQSM20Xa1YNGbFHwLE4grxuLgCf3BjKaJOoBmP6Ny5c0OGDAFf6NixY1OmTElJSQkLC5s1a5asLGOuVtThtEn96PSGEMIj+sojcxylSlLI60ea+nrYK8tJQsM3+sCDmy/yONLgYVsQiMssGefzMPVdJczmXVrYz5W369UWlmCe4kOATCYNYq6vEJKED86Jz2Vv/Zom53/40S+mpo7u3F1j9w9WcF+1fhmYY3sT+DhHhB7Rt18IPAMJcBNoxiPy8PBQUFC4du1adnb29u3bu3XDaXduht+mefm2rKC8Vl6K0tdIlfczB/fQurXMyV5f5UNt/eJzT3679rKmDp+g453fN6f851mu+4nokkqqeeeO1xY79tRR+uYs8AQk0CICrsw1uGHcpKGhoUUZ4EniTiC7pGqWb3R5Tb1tF2Wf6bYwrCbuRES0/oRHlFlcVVaFiyuI6DXGavGRQDMeUU5OTmBg4OjRo8nkZlLy0WZeihLcNEEJjFXmBnbXkJagfJOVOsqy5+f3/cm5K5x1Jipzgk9kehE+QQcwWjlAN3R/8OvlF55R6+lDzbT+XtBPq6NMK5eB2SGBrxPob6whRSFnFFfB/OTXU2EMEmicQFFF7cxT0TDuZqKl4OvRS05KovF0qBV+AspyUnqqjAd2YKRV+GuDNUAC7UygGT9HU5PxfYx2tlG0iic8Ilfm+9PfWjNJCvl/w3v4/9hLVV4qIa989IGI68/ffmsmmL4JArX1tFV/P98XnAJp5g8wOjrDThj6E2AsBtEhoCAt0Yc5gXwviTF6IjoVw5q0PYEPNYyVYMCd7qwse3pOH+gxt32ZWEJ7ErDsrAzFx+ODc0ABAxL4PgLNeETflzmezUkgu6QqKf8DmdRhUPeWu5rO3TVvLXPqbahaSaUtO/903dV4fIKOE3SLjksqqTNORgc+zaWQSdvGW6wfaUqGS9WirPAkJPA9BIgRk2Bcg7sRiKj6KgH4QzD/dNzL3HI1eakzc3trK+Hk9ldZiUyEeWfGE93xuNycyFxRrEj7EUCPiK/sQ5hrKtgbqKrIS31PwfCn7ty8PksHdyOROpx/nDXu8MPUdxXfkyGe+6awYrzPw5iMUkUZiYAfe0/r0wWZIIH2IjCYubhCXGbp+ypqe9mA5QoXARq9YcWFZ4/SimGO0f/H3kYaCsJlP/+tzc3NnTFjhpqampycnLW1dVxcHGEDiWvbvXs3EcWxf//+/eLFizt16iQjI2Nqanrr1i2OBN992HwGlrpMjwjniJpHhSmQQDME0CNqBlDrRgczB32HtOiROQ5LJCjkn4d2Pz2nNwwHwryT28EH157mcqTBQx4JRL4pmuDzMLO4Sk9VNnCRQ39jdR5PxGRIoC0I6KnKdddShD5uWMq7tsgf8xQxAg0NDRsC4++8ypeikI/PsiMWZRaxOrZudUpLSx0dHSUlJW/fvp2QkLBnzx5lZWWiiDy2zdfXF/yjiRMnElHseyqVOmTIkIyMjMuXLycnJ584caJz587sCfgjmzNX/ckqqcLRE/4Ax1LajED7Z8yTR2RkZFRcXMxuLAyNgJJdg3KzBMpr6qLSGBhbcR1nJ2ON28ud+hqpVlFpKy4++9/lF9VUXIOu2UvxRYK/Y7Jn+T4m1mUKXOTYTVPxi2g8QALtQcDFlPFgLTGG0h7lY5nCRGD33eQLMdlkUocD7tYOXXFAp/lrt3PnTj09PT8/v969exsYGLi4uHTtyli1CM7UZtv++eefQYMGNdrbAWeppKTk2rVr4Fnp6+v379/fysoKTudzUJKT1FeTg0Jf5pbDHgMSQAItJsCTRwSjIDTaF/3s2tpamHFucanieWJY8rt6ekM3TQVDdflWJKDZUebsvL7LXYxJpA4XY7PHHX74pvBDK+bfalkJXkZ0esOO20lrrryA6+JmpXPOs6+6grTgmYkWiSMBwiMKTS6so9HFsf5YZ54JnIxI8wlNheR/jLcYbt4JBAzNErh+/bq9vf0PP/ygqalpY2MDMzzcpxQUFNy8eXPu3LncUaCBHPr167d48WItLS1zc/Nt27ZxdJMgDQToLJWzbaBp9UC8SvQi932r54wZIgGxItCMRwS/eQhA5O7duyAQITAwcMuWLTCsAnoMvBMIZr5ERLwzzftZvKSkkEkrh5icndsHOvTJBR/cDj68HJfDy4ninAYm0xafe3I0jNGTWOZifGCqtYzkt62HLs70sO7NEPjuaGs9FVV5qQ819bEZpd+dGWYgsgSuxOVsvZkI1ftlWHf33vj2I5DgKaSlpR05csTY2Bj6NgsXLly2bNnp06c5zgwICFBUVJwwYQKHnjiEHC5fvgxe0K1bt3799dc9e/b88ccfRBT7fvv27UqfNpiVYo9qLdmSubjCS3yVqLWAYj7iSqAZj2gccyORSLNnz2aKjN3UqVODgoLg9y+u0FpSbxjovZ9UCGcOMWM8DANCqweHbuq3lvd37KZWXUdbfen5z38/r6LWt3opopFhYXnN1OOPbr9kPHa/b4rVqiEmcJOLRtWwFqJBAIY5iBUpQ5gjKaJRKaxF6xKAewOmuCHPuf0NFzE/VQdyOwQhLJJOp9va2sLEDkwQLViwwNPTExwkjnr4+vpOnz5dRqbxJfsgB5hfOn78uJ2dHXSKNmzYwJ0DZLhu3bqyT1t2djZoWj1YMD2iF7jcXKuTxQzFjEAzHhH85iF06dKlsLAQBCLALHBycvLo0aPFjNV3VTcmo6S8pl5NXgqGfr8royZP1lSUOT2nD/TvyaQOV57kjDn0MKUAn6DjRJaUXz7u8MPnOWUqcpJ/zesz3kaXMwUeIwEBIEA8OHePOZIiAOagCYJFAP6mLDr7hEZvmGDTecNIUxKJJFj2CbY1nTp1MjMzY9loamqalZXFOgQhIiIC+jnz5s0DudEAOZiYmFAoH58sgBzy8/OpVM7FIaWlpTuybY1m9Z3KnkyPKKe0urSSs/TvzBlPb4QAqkSXQDMeEVHx9PR0dXV8WZOA0cJ9cAJjgmhwD00Y+m1hFrydBvkvczE+59lXU1H6TWHFmEMP/o7Jbmho4O1s0U91P7lw0pFHb8tqjNTlAxc59jZUFf06Yw2Fk4CTsbokhZRWVJmGa+sL5xVsO6sT88rn+MfU1tPhb8rOSZb45bRvRe3o6JicnMw6KyUlRV9fn3UIwqlTp2Dyp4nFEiCHN2/ewDAxJIYAOYCPJCX1Xd/VgHxaEJRkJQ3UGIsr4HdaW0APT0ECLAI8eUSQOiQkZP369TBeModtA73ohbaoETgkQYn5kHMrrjIHuTUR+hqp3VruBD2qmjr6misvVv39vLIWn6DrcPpRxlz/mIra+n5GauAOGbTqEhdNXA6MQgItIKAoIwk/ZDgxJJExngICBiQABLKKq2b5Pv5QU9/LQOXwNFtJCq9/x+FcDASBlStXRkVFbdu2Dbyac+fOHT9+fPHixUQU7MvLyy9dugQdHpDZw6xZs9atW0dofvrpp+Li4uXLl4MvdPPmTciKPQciDd/2FrqMpcPRI+IbcCxIJAnw1JJu2rRp6NCh4BQVFRWVsm0iSaQtKpVSUJFdUi0lQQYXpS3ybzRPdQXpgB97/zKsO5nUIfBprtuhBzCs2GhKcVDS6A1e119t/OcVvaHDZHvdgDm9leQkxaHiTddR8GPDw8Pd3Nx0dHRIJNK1a9dYBl+9enXYsGEwdw36Z8+esfQsAYYhRowYAbHsZ7FiQdi+fXuvXr0UFRU1NTXHjRvHPmAMsQISYAYALAlJKoA9BiQABAo/1Mz0jX73obaHtuLJ2b1kpT4+tQVRGHgnAL/9wMDA8+fPm5ubb9myxdvbe/r06azTL1y4AA2Iu7s7S0MIWVlZeXl5hKynp/fff//FxMRYWlouW7YMXKO1a9cSUfzfW3TuCIXG46tEQAEDEmgpAZ48oqNHj/r7+0dHR0PfAhoRVmhpoWJ3XjDz3ej+3dTlpCT4WXkymbR4ULcL8/tpd5RJe1c57vDDc9FZ0NDz0wZBKAsmhTxPx/pHZoAx/xveY+dES/BOQcYg+AQqKyutrKwOHTrEYSroHR0dd+zYwaFnHUIXB9wh1iG3EBYWBmO6ME4cFBRUX18/dOhQyJM7WftqiKUpYzJKy6rq2tcSEShdBKpQXlM32zcms7hKV0X29JzeSrI4rNPyqzp69Oj4+PiamprExERPT0/2jObPn19VVaWkpMSuBDk0NBT6QiAQoV+/ftCAQA6pqanr169nvVNExPJzb9EZ54j4yRvLEk0CPHlEVCrVwcFBNAHwpVZBCYwhXqJzw5cCvyikt6HqreVOzt01auvp6wPjl1149qFGjHpXb99XTzoSeS+pUFqC7DPd9ifnrk13lL9ghwftTQDmebZu3cq9AO7MmTM3btzo6uraqIHPnz/fu3evr69vo7GE8s6dOx4eHj179gSPy8/PD0Z/4+LiiCj2fW1tbTnbxh7FBz4BXTIAABAASURBVFlPVc5ESwFmOENT8ME5PvAW6CJq6mjzAmJhql9dQeqvuX00O8oItLloHB8J9GTOEeW+ry75tLgCHwvHopCAiBDgySOaN2/euXPnRKTGfK9G4YeaZ9nvoVhX07Zadxsybzqoykv5zu61dkQPCpl04/nbMYcevnpb1vQpohH7Iuf92MMPk/I/qCtIX1zQb6QFfr5QNC5sU7WAwV13d3eYVtLW1m4qHVtcWRnj56Cq2sgyG9vb/nMibIY0Ig7uoQVacOlhj0FsCdTT6EvPP32cXqIoLeH/Y298B1Js74RGK95RRtKI+VosvkrUKB9UijaB1qodTx4RTArDgOvAgQOXLl26im1rLSNEO597iYzBXSs95fYd0iOTSQsHdv17QV8dJZn0osrxPpFnojJF+wm6Oy/zJx97RDxw/88SR2s9xnMFon2zYe2AwMqVK2FOe+zYsSDzEuBXAK1a//79zc3NudOvW7cO/CUitNHnRLgLZdcQIymhye+gT8yuR1l8CMAtCtP7QQkFUhLkE7PtzZmrLYtP9bGmvBAg7or4HMbwKy/pMQ0SQAIcBHjyiF68eGFtbU0mk1++fPn009bo28wcueMhECBeIhrSfhNEYAMr2Omr3lzmBH0saj39t2svl5x/Wi4ET9CxzOdVgA7EsbDUn87G1dTRnbtrXFrYr7OyLK8nYzphJnD9+vV79+55e3vzXoklS5ZAE3f+/PlGT+HD50QaLZeltOmioiInWVZdF5tZylKiIFYEdtxJ+js2h0zqcNDdpq+RmljVHSvLIwFLXcZbTzhHxCMuTIYEuAnw5BHdb2yDbgd3dqjhIFBNpUW8LgIl39bdhrKaDiryUidm2f86ylSCTLr5Is/t4IN40Vqgpo5GX3c1fvvtpIaGDrP66Z+cZa8og+8fN31TiE4stEupqanKysoSzA0qNnHiRGdnZxAaDTDvDU4UtHC6urqNJuC7krNACpk0qLsmaPHBOYAghuF4eOqxsDSo+I4JlsN6aoOAAQlwE/g0R8R4AJg7FjVIAAk0S4Anj6jZXDDB1wg8eFNUW0/XVZHtrqX4tTT815NIpHlORn8zZ04yi6smHokMiMyAeRX+W9LqJZZV1Xn4Pb4Qkw3jqV5uZpvHmktQ8CZvdcyCm+HatWthwgdmsIkAhu7bt8/Pzw8EjgA3PMwOXb16FZwoQ0NDjliBOnQx1QJ7iNlmEDCID4FLsdnbbiVBfdeO6DG5lx4IohWwNq1GoKdORxKpw9uymqKK2lbLFDNCAuJEgNfOYkxMzJo1a6ZOnTqBbRMnUC2sa/CnVeZIJFILs2iz02y7qNxa5jTETItKo/9+/dVPfz0pqxbuNegyiysnHHn48E2xvBTl5Gx7D0eB7ua22YUVqYwrKipYvk16ejrIWVlZUMOSkhKQExISQE5OTgY5Pz8fZG1tbXO2DTRdunRhOTwuLi6HPi3kvXjx4r/++uvcuXOKiopwLoTq6mpIL4BhgIk6zOimvatML6oUQPPQpDYiEJRQsPZqPGQ+f4DRwoFdQcCABL5GQFFG0hAXV/gaHYHQoxGCToAnj+jChQuOjo7Q+QgMDKyrqwMBRlW5l+oX9Lry3T4avYH4tCJ4HXwvnKcCleQkj8+02zjaTJJCuvMqf/TBiOfMZfF4OlnAEsVmlIz3iUx9V9lJSebSQgdihS4BsxHN+WYCsbGxNswNzly1ahWIGzduBPn69esgjxo1CmQYqQH56NGjIDcdUlNTi4oYT7FCsiNHjpSVlTk7O3f6tF28eBH0Ahigr9PHSBUMC0lkrOMPAgaRJxCdVrz43BP4IzLJTnfdiB4iX1+s4PcTsGQuufFStB6D/34smAMS4JEATx7Rtm3b9u3b9++//0pJSe3fvz8xMXHy5MldunThsQxxScZVz2fZ74sqqIoyEr0NGb0ZrniBUJBIpDn9DS8vdNBTlc0uqZ50NNL3QXpDQ4NAGMezEf88y512IrqkkmrRWemfxY5mOh15PhUTCjQB8FjgbmQP/v7+YLGHhwe7EmQvLy/QcwTQjxs3jqXMyMhgJYMojuDh4cFKKWiCC3MN7hDmwpWCZhva0+oEXr0tmxcQS62nu5pq7ZhgAa10qxeBGYoeAeJVohe5+CqR6F1brBE/CPDkEcHAKjEWKy0tXVlZCa3zypUrjx8/zg8DhbmMYOaArnN3TUmBf5XFSk/536VOI8y162gNm/9NWHAmrqxKOJ6gg06td3DK8gvPqDT6sJ5aFxf0bd9VzoX5hv0W2zEtfwm4MBerjMkoKRPyR1v5i00oS8ssrpztG/Ohth6G0g5Ns5EQ+D8fQklZFI221GV8YeIlekSieHGxTnwgwJNHpKqq+uHDB7Cmc+fOL1++BOH9+/dVVVUgYGiCwKeXiBjrRDWRTECilGQlfabbbh7bU4pC/i+hYOSBiKdZgr7ab00dbeXFZ97Br4HhgoFGR6bbyUlJgIwBCYgYAX01+W6aCvX0hvCUdyJWNSGoDh9NLCyvmXEquqii1rRTx5Oz7WUkKXwsHIsSbgLE4gp5ZTXvPuDiCsJ9KdH6diHAk0fk5OQUFBQE9k2ePHn58uWenp7u7u4uLi6gaTqEh4e7ubnp6OjAtNK1a9dYiT08PEDDCn379mVFEQIM/I8YMQISsJ9FRLH2Pj4+hoaGMjIydnZ2ERERLL2ACBlFla8LKyTIJJgjEhCTmjUDgM/qZ3B1kYO+mlzu++ofjj46EZ4G16LZE9slQXFF7YyT0deevQXIOyZYrBthSiYL3PIV7UIGCxVJAi7MaSJ8lUgkLy5RKZgAnOX7OLukGlrggDm9OuJnAwguuOeNgLy0RFcNBUj7XdNEcD4GJCCWBHjyiA4dOjR16lTgs27dutWrVxcUFEyYMOHUqVOgaTpUVlZaWVnB6dzJhg8fnvdpu3XrFkcCb29v6J1zKNkPL168uGLFig0bNjx9+hQcthEjRhArULGnaV+ZeGSuj5EqzL20ryXfWrp5Z6UbS/uPsuwEA9J/3EqcFxBbWkn91kzaOv2bworxPpGxmaWKMhIBc3pP7Y1vtbU1csy/nQkQrxKFpryrp9Hb2RQsvg0IVFNp8wJikvI/aChKn5nTR1NRpg0KwSxFnIAFc3GFF7i4gohfZ6xeKxH4MhuePCJVVVWY54ETyWTymjVrrl+/vnfvXhUVFdA0HcBR2bp1K7hP3MmkpaW1P22QP3uC58+fQ/6+vr7sSg4ZEsydO3fevHmmpqbgPunp6R05coQjDRzW1taWs22g4VsgPCJX5odE+FZoaxUEY5OH3G22jjOXkiCHJBWOOhARl1nSWpl/fz4P3xRN8HmYVVLVRVUucJGDYzf1788Tc0ACAk7Atouyspzk+6q6J1nvBdxUNO9bCdTR6EvOPYnJYA7x/Ni7i5rct+aA6ZEAECA8onh8lQhYYEAC30iAJ4+IQqEUFhay51xcXAxKds23yqGhoZqamiYmJp6enuyZV1VVubu7w7QSuEtfy5NKpcbFxQ0dOpSVAOTIyEjWIUvYvn270qcNvCaWvq2F91VU+NsGpQipRwSWk0ikGX31wd8wVJd/W1Yz+VjU0bBUOr3916C7GJM12/dxeU29nb4KmNdNs6lP30JFMCAB0SAgQSEP6q4JdcEH5wCCKAVoV9deiYexJ2kJ8qnZvXCpTFG6uHyui4WuEpQYn4uDJoABAxL4NgI8eUQNXGsxw9yLlJTUtxXFlhrmjs6ePXvv3r09e/bExMQMHjwYMiTiV65c6eDgMHbsWOKw0X1RURGNRtPS0mLFgpzP/D4jS0MI69atK/u0ZWdnE0o+7EOT39HoDT20FfVUhXuor6cO4wm6MVY6UJ0dt5PmBMSUtN8TdNBv2H478X9X4uvpDWOtdc7O66OmIM2Hq4lFIAEBITC4B9MjSvpifIplGwrCSAD+vEKzduVJDoVMOjzNtrcAf6pBGPGKm81mnTqSSR0KymsLy2vEre5YXyTwnQSa8YgOMDcSiXTy5EmmyNjt27dv8eLFPXq0/JtxU6ZMGTVqlLm5uZub2+3bt1NSUm7evAk1uX79OrhJ3t7eIDcbwCpWGvijwn7I0ktLS3dk21j6thaCmOtuC+8EETsfBWmJ/VOtt0+wgPFL8PRG7o94nN4OT9BVU2mLzj45FpYGti13MfaeYo2rMAEKDGJFYGB3DQky6U1hRWZxpVhVXIQrezQs7UREOlRw50RLV7PPw3ygwdAEAYxqlABrcYV4fHCuUUCoRAJfJ9CMRwTODwTwN44ePQoCEUCuqqqC/dez/YaYTp066evrv37NWEAZ3KHU1FRlZWUJ5ga5TJw40dnZGQT2oK6uTqFQ2CeFCgsLYZqIPU07yrX1tLBkxgq5IvPnDbxN995dri12NNKQzy+vcT8Rdfj+G5ix4RtkGO6acvzRnVf5UhQy+EIrh5iASXwrHQtCAgJCoKOMJDGHEJyI00QCck2+y4yLMVk77yRBFhtGmk6y0wUBAxL4TgKfHpzD77R+J0gBOh1N4Q+BZjyidOY2cODA58+fM0XGLjk5+e7du3369GkVE4uLi7Ozs8EvgtzWrl374sWLZ5820IAP5ufnBwJ7kJKSsrOzIxYEJ/QgOzg4EHK776PTSipq6zUUpS2Zq760uz2tZYBpp443lvSfYNOZRm/YfTd5tt/jogp+fPQg4W35uMMPX+SUqcpLnfXsM86mc2vVCPNBAkJHgHhw7l5SgdBZjgZzELjzMn/d1XhQLhzY1XOAEQgYkMD3E/i4uAIuN/f9KDEHMSPQjEdE0Lh//z5rZTkajfbs2bPSUp6+3VlRUQGJIUA+4EuBkJWVBcrVq1c/evQoIyMjNDTUzc0N5nzGjx8PabS1tc3ZNtB06dLF0NAQBAguLi6HDh0CAcKqVatOnjzp6+ubmJi4cuVKyHbhwoWgF4TwaZU5TZ4/jyMIVvNkA8zI75lstWuSpYwkOeJ10cj9EY9Si3k6s6WJ7icV/nA08m1ZDUxPBS5y6GWg2tKc8DwkIAoEiGdxYdilvKZOFOojrnWAlnPZhaf0hg5T7PX+N7y7uGLAerc+AcuPiyvgHFHrs8UcRZsATx7RihUriK8PgTs0YMAAW1tbPT09cGaaRRMbG2vD3CAl+DAgbty4kUKhxMfHjx071sTEZPbs2bAH70hRsfkVw1JTU4uKiiArCFOmTPH29t68ebO1tXV4ePitW7f09fVB3+6hoaEhOIExfEt0XNrdnlY3gEQiTbbXu76kfzdNhcIPtdNPRh0IeQ2zRq1eEGTo/zB9bkBMJZXm0FUt8CdHfTV5UGIQcgJo/ncRMFCX76ohX09vCE9hPJr7XXnhye1E4GVumefpWGo9faiZ1h/jzaFRbSdDxLrY3NzcGTNmqKmpycnJQUciLi6OwAGXgyPs3r2biGp0f+HCBUg/bty4RmP5rzTrpEQmdYC/zgW4uAL/6WOJwkyAJ4/o0qVLVlZWUM0bN27AxE5SUhLPagBFAAAQAElEQVT4SBs2bABN08HZ2Rk8BPbg7+8vKyt79+7dwsJCKpWamZkJGvCvGs0HTmRvZaBoLy8vVspFixaBpra2Fhoy8NNY+vYVEvLKYUJDVpIi2h/JMdFSvL7EcZKdLoxx7g1KmeUb/e5Daz5BV0+j//7PS68bCZA/jKEGzOmtJCfZvlcWS0cCAkLAhfmVs3v4KpGAXI+mzGgkLr2ocrbv44ra+r5GqgfcbSQoPP0VbiQjVH0HgdLSUkdHR0lJydu3byckJOzZs0dZWZnIL49t8/X1BW9n4sSJRBT3Hvowq1evdnJy4o5qL42sFMVYkzHEHI8PzrXXNcByhZMAT21xcXGxtrY2VBCmYn744QeY1Zk7dy7M84AGAweB4ATGG89OxuoykhSOKBE7lJOS+PMHqz0/WMlKUh6+KR6xPyLyzccZvO+saUVtvefp2IBHmZDP2hE9dky0kKTwdKNCegxIQOQJuDDX4L6fXNhGc7MiD7AdKwjD9jNPRRdXUnvqdDwxy17k/0y0I+qmi965cycMxfr5+fXu3dvAwMDFxaVr167EKdDbYYV//vln0KBBRkaNv+VFo9GmT5++adOmryWADGHQlu0r8eWg4UMwZ77D/ILfy83xoWZYBBJoQwI8dTS1tLRgEAV+/Hfu3HF1dQVzqqqqKBQR7/FDNVsQPr5EJDaLqE60072x1LG7lmJRRe30U9EwX/SdvbTc99WTjkTeT34nI0k+OsN24cCuMETXgguBpyABUSVgp6+iJCtZWlX3JIun9zlFlYPQ1ausqm7Wqcc5pdUGanL+P/ZWlMF573a7htevX7e3t4cRXk1NTRsbmxMnTnCbUlBQcPPmzblz53JHEZrNmzdraGg0kQCSbd++XenTBj4YaPgQiFeJXqJHxAfWWIQIEeDJI/rxxx8nT55sbs543HnIkCFQ/ejo6O/5HhHkIJIhr6w6PreMROpArAclknXkrlQ3TcVrix2n9tJraOhwIOT19JNRhS19fPl59vtxhx8m5X/QUJS+OL/fcPNO3MWhBgmIOQEJCtm5uwZACMEH54CCkIRqKm1OQExywQdNRekzc/tAEyckhoummWlpaUeOHDE2Nr579+7ChQuXLVt2+vRpjqoGBAQoKipOmDCBQ08cPnz48NSpU426UkQCYr9u3bqyT1t2djahbOv9xzminLIG+Kvc1oVh/khAVAjw5BF5eXmdPHly/vz50ARIS0tD3WGCaO3atSBgYCdAdFBsu6ioKzAosUeJtiwrRdkx0XL/VGt5KUpUWsnIAxERr7/5te87L/OmHH/07kNtD22Gi2Wl9/Gp7vZBh6UiAQEmQLxKFJLIWMRFgM1E0z4SqKPRF52Ni8ss7SgjAe6Qnqrcxwj8r50I0Ol0W1vbbdu2wQTRggULPD09wUHisMXX13f69OkyMjIcejj88OHDjBkzwB1SV1eHwyYCdJk6sm1NpGzFKLNOHSlkUlFFbUF5a77f24oWYlZIQAAJ8OQRgd2TJk1auXKlru7HT8jNnj177NixoMfATiCY2UER1VXm2GvaqDzWuvP1pf3BnymqoM7yffzn3eR6Gr3RlBxKGMc6Gpa68K8nNXV0GPy+/JNDZ2VZjjR4iASQAIvAQBMN6PG8LqzIKq5iKVsu4JltSYBOb1hz+QXxJLCvR6/u2oy33tuyQMy7eQKdOnUyMzNjpTM1Nc3KymIdghAREZGcnDxv3jyQuUNqampGRoabm5sEczt9+vT169dBBD13Yv5rYIzSWFMByn2R8x72GJAAEuCFAK8eUUhIyPr166F1mMO28VKA+KSprK2PfFMM9R1ipgl78QxdNRSuLXac1qcLzNUfuv9m2ono/LKaplFQ6+lrr8TvuJ0EyTwcDE7OsleQlgAZAxJAAl8joCQr2ctABWJD8FOtQEGAAwz3bL2ZGPg0FzxYn+m29vhFtXa/WEwDHB0dweFhioxdSkoKxwc8Tp06ZWdnR6yyy0jx5b8ePXrEx8c/+7SNGTNm0KBBcMS3N4W+NKeRIwvm4gr4KlEjaFCFBL5CgCePaNOmTUOHDgWnqKioqJRt+0qeYqoOT3lHpdEN1OTAKxBTBMxqy0hSto23OOBuA47N4wzGE3ShyYz195iRnLuyqjoPv8cXY7PJpA6bxvT0GtNTgsLTPcmZER6LKIHw8HAYiNXR0SGRSNeuXWPV8urVq8OGDVNXVwc9dERYepYAPdERI0ZALPtZrFhC8PHxMTQ0lJGRga4PDAkTSmHZE3PRj9NLhMVg8bTTJzTV92E61P3PHywH99ACAYMgEFi5cmVUVNS2bdvevHlz7ty548ePL168mGVYeXn5pUuXYAiYpSGEWbNmrVu3DmRoNMzZNmVlZUVFRVBISUlBrCAEC+Z3WnG5OUG4Fu1pA5b9LQR46n0ePXrU398/Ojoa+haBbNu3FCT6aYM+PTIHnTDRr21zNRxjpXNjaf+eOh1LKqkefjE77yRxP0GXWVw5/sjDyNRieSnKqdm9ZjsYNJcrxosdgcrKShimPXToEEfNQQ+jvDt27ODQsw69vb2b/iVevHiR+K7a06dPnZycwH3ieGyGlZVgCsPNtU/Mstsz2aqoohYmWquo9YJppzhbdS46a/fdZCDw22iz8TYfnzmHQwztTqBXr17Qlzl//jy4MVu2bIHmYvr06SyrLly4AEMq7u7uLA0hQBORl5dHyAK+Z80RQUUE3FQ0DwkICAGePCIqlerg4CAgFgumGdDdv5/EmAlx5e+624JJg7DKUF3+yk8Os/rpw+GR0NSpxxlr0FVT66H3VlxRW1tPS31XQepA0lGSufyTwyDmJ1YgJQYkwE4AHJWtW7dyL/c0c+bMjRs3Eh8DYE9PyM+fP9+7d6+vry9x2OgeEsydOxeGgU1NTaE/pKenx/1qNZzYLp8TgXKbDRoK0i9yyvpuD7HfGmz/R9CxsLTaOlqzZ2ECvhG4HZ/367V4KG7xoK5z+xuCgEGgCIwePTo+Pr6mpiYxMdHT05Pdtvnz51dVVSkpKbErQQ4NDYXRYRA4AihhvJhD2b6Hph8XV6DmNffgevvaiaUjAcEhwJNHBJ0GmFYWHKMF0JInWe9Lq+qU5STt9RkP9wughe1ikowkZfNYc5/ptorSEsBHgkI+EpYKvTe7rcG9/gh+mvX+8k/9YCoJ2u52MQ8LFS4CPFoLXRkY3IVpJW1t7a+dAqM8cXFxQ4cOZSUAOTIyknXIEtrlcyKs0r8mwMiCT2jqwXtvyqsZU0Ow3x/yGjQ4U/Q1YnzWR74pWn7hGb2hg3vvLquHdudz6VgcEoA/viZajDU84nPLkAYSQAK8EODJI4JBFBhPHThw4NKlS1exbbwUICZpiFXmBnfXhE6/mFSZ92qOtOj077L+W8f19HuYfiDkcx8O+nP+DzNkpfBTv7yzxJTNE1i5ciXMaTe9GGZRURGNRtPS+vxeB8j5+fncua9rj8+JcJvBoaGQyX6RjLdT2PWgkSDz1KSzn4VyqxN4kfPe83QslUYfYa69dRzjO34tKAJPQQLfScCic0fIIT4HPSLAgEEoCcDYH/FUEez5MN7H05/PFy9eWFtbk8nkly9fPv20Nfo2s1Aibw2jgxMYHwbBR+a+xlJfTd5OXzXgUQZHAuzDcQDBw+8kcP369Xv37nl7e/OSD/uLRg0NDeyHrNPb5XMirNK/JnyoqYN5IY5Y0ICeQ4mHfCaQ+q7Cwy+mkkpz6KrmPdWaQibx2QAsDgkQBCyYy80JxRwRYTDukQA7gdo62tGwNOKpItjz4clwnjyi+41t0O1gN12cZfgTmFZUKUUhDzDREGcOTdcd+mrQY+NIAxrQcyjxEAm0mAC0S6mpqcrKyhLMDfKZOHGis7MzCOxBXV2dQqGwTwoVFhbCNBF7GkGWFWUkO8pyLlIPGtALstkib1teWfWsU49LKqnQGT0+y15aAifARf6aC24FLXSVwTjwiGC4BwQMSECICMDskE9o6v6Q19BLBLNhDzJo2nSmiCePCKwhQk5OTm5uLiF/y17E0xITRH27qingh3S+fqmhrwY9No540ICeQ4mHSKDFBNauXQtz2jCDTQTIZ9++fX5+fiCwBykpKTs7u6CgIJYSZAfhWT+GRqf/6MD5sv7sfgZPskqhU86qFAr8JFBaSQV3KPd9tZG6vP+PvfDPAT/hY1ncBHpoK0qQSeCfv8XFFbjpoEbwCIDrXlRR+zSr9HZ8HolE8uP7k+E8eUR0On3z5s1KSkr6+vpdunSB8dctW7aAUvB4to9FxEtEQ0w126d4ISm10T4c9Orq6XQhqQGPZmKy1iRQUVHB8m3S09NBzsrKggJKSkpATkhIADk5ORlkYsJHW1vbnG2DWGiyDA0/Og8uLi6HPi3kvWrVqpMnT/r6+iYmJq5cuRKyXbhwIaQXiiArJbHIuetyF2MYUwCDYb/MpduPjgYbAl+O2B9BjNGAHgPfCMDI5ZyAmNeFFdodZU7P7Q3DY3wrGgtCAo0S+Ly4Qs77RhOgEgm0F4EPNXUJb8vvvso/GZHmdf3VXP+YofvCzDbetd8aPN4n0jv49bsPtTAvxGEeaOBEDmUrHvLkEW3YsAG6ETt27Hj69OmTJ0+2bdt28ODB3377rRXtEN6siitq4zJLwX4X089vacMhBg4C3H046M9Br05OivPhH44T8VCcCcTGxtowN4AAPgyIGzduBPn69esgjxo1CuSpU6eCfPToUZCbDqmpqUVFRUSaKVOmeHt7w1iPtbV1eHj4rVu39PX1iSih2EtLUhYMNIrdMCTuV1fYLxzYtYpKk5Uiv6+qm3c6dtONV7X1fFiMWyhQtbmR1Hr6wr+ePM16ryQrCe6QropcmxeJBSABHghY4KtEPFDCJG1HoKaOlvquIjS58ExU5vZbiYvOxrkdfGC9+T8Lr/9GHohYcCZu681E/8iMkKTClIKK6joaidShk5KMroqshqI0jPRxGAaaNn2qiCePKCAgAAZTf/rpJ0tLSysrq0WLFp04ccLf35/DVvE8vJdUSG/o0FOno46yrHgS4L3WHH046M+BhvfTMaUYEnB2doaZdPZAtDweHh7sSpC9vLy4+YB+3LhxLH1GRgZ7MmjKQFNbWxsXFzdgwABWMmER5KQkpCTIMB0Be5ChI37lJwfi0zd+DzMm+ESmvasQlroIr510esPqS8/DU97JSlL8fuxFLHksvNVBy79OQPhiLHQZn1R6gcvNCd+lEzKLafSG3PfVUWnFl2Kz9walrLr47IejkX23hZhuvOOyJ8zDL+a3ay+Phafdis+Pzy2DYTuonoqcpKWu0iiLTtAV3DrOPGBO73s/D0zaMvzROpdTHr3gb/ePXE+Gg6a+LZ8q4skjKikp6dGjB1SAFeAQlKxDcRaIR+ZccYKIt5sA+m3Qe2P14Xg7CVMhASTAEwFpCcpvo818PexV5aVevS0fffDB1Sc5PJ2JiVpEAP5sb/434frztxJk0pEZtrZdyyFd4QAAEABJREFU8Ht0LeKIJ7UNAWKO6GVuGdyobVMC5iqqBBqvF9xIxKs+0Ogdvv9m3dUXM05GD9x9v8dvtx133Jt6POqXyy8OhLy++jQ3JqM0v7ymoaGDnBSlu5aiq6mmh4MB/Hk6PtPu9nKnl5uGPd049PqS/oen264bYTqjr/5AEw0jDQX4E0YULMv1ZDgfniriySOCeaFDnx6+J2yFQ1ASsjjvYUIwPKUICAwx04I9BiSABJBAuxMY3EPr1jKnvkaqVVTaqr+fw3BdRS3jQ67tbpjoGcD4qFok46MCeyZbOXfHV0lF7woLd416dFKUpJBKq+pySquFuyZoPd8JwF+NxLzy/17ln3qQ7nX91bwAxqs+PX//+KrPsvNPd99NPv84+8GbosziqjpaA4wK6avJ9e+m7t5b75dh3Q+421xb7Bj3q+urTcPurhxwcnYvrzE95/Y3HNpT27RTRwVpiWYrJP3lk+ELBhqBptmzvicBTx7Rrl27fH19zczM5s6dO2/ePBD8/f137979PQWLxrmPUour62idlGR66jA+hSZMlUJbkQASEF0C2koyZ+f1/XmICZnUAYbr3A4+gHFi0a1u+9TsTFTm3qAUKNvLzWysdWcQMCABgSIAI+4mWopgEv78AQKGRgnU1tPS3lWEpbz7Kypz++3ExWefjDn0wGbzf+a/3x2xP2L+mbgt/yb4R2YEJzJe9YFRNhKpg3ZHmV4GKhNsOi9zMd49yfLC/L4P1w5O3joi7JdBf83rs32C5eJB3cZY6VjrKaspSJNILf8mG5+fKuLJIxo4cGBKSsr48ePfv39fUlIyYcKE5ORkJyenRuGKlTIokflhVlMtEqnll1ysiGFlkUA7EBDLIilk0lIX4wvz+8GQTXpR5QSfSN8H6Q0NDWIJo/Ur/e+Ltxv/eQn5LhvczcPx42KGcIgBCQgUAUtd5qtEuWUCZRUaw38CNHrD2/fV0WnFl+Ny9rG96tPjtzuD94TN9n3867WXx8LSbsbnvcgpK62qAwuV5SQtOiuNtNBeMMCI/VWfqPUulxY67J1ivWqIyQ/2en2N1Dory8JfHDhFqANPHhHUUEdH548//rhy5crVq1e3bt0Kh6AU80CnN4QQHhE+MifmtwJWHwkIKoHehqq3lzsNMdOi0uib/03wPB1bUkkVVGOFxq6I1+9WXnwG3uX0Pl1WDjERLLvRGiTARsCcudwczhGxIRFxEYa9iitqn2W/v/H8rU/om3VX42eeinbezXjVx2HHvSnHo1Zfer7/y1d9ZCUpJloKLj0Yr/r8Osr02Ey7W8uc4r2GPts49MbS/j7T7daNbORVH9Hj2IxH9Pr1a3d39/Lycvaal5WVTZs2LS0tjV0phvLLt2UF5bXyUpS+RqpiWH2sMhJAAkJBQFlO6vhMu81je0pRyMGJhSP3R0SlFQuF5YJpJHQ1FpyJq6M1jLLstHmsOYmEDwgI5oVCqxgELDsrw38w6g8dZRBELYh3fSpr65Pyy4MSCnw/veozbF+4+e937bYGjzv8cOn5p7vuJJ9/nBXxuijj06s+XVTlHLupTe318VWfwEUOsb+6Jmwe9t/Kgac8enmN6TnPyWhYT20znY5tus61YF63Zjyi3bt36+npdez4xUsySkpKoIQowawS36wiPoM4sLuGtASFb4ViQUgACSCBbyVAIpFm9TMIXOxgpCGfX14z7UTUvqAUGh2foPtWkB3eFH740e9xFZXWv5v63slWFDK6Q9/MEE/gJwETbQVJCqmsui4HF1fgJ/dWLYtaT08vqgxPeXc2OnPH7aTF556MPfTAdktQz9/vDveO8Dwdu/nTqz7JBR8qqYwv0Wl1lLbXVxlv03nZ4G67Jlme9+z74H+DkrYMD18z6Oy8vjsmfnzVx6aLivr3verTqhVt58ya8YjCw8N/+OEHbhsnT5587949bn2rawQ5w6DEQjDP1RRXmQMMGJAAEhB0Aj11lG4s6T/JThdcof0hr91PROWV4QpU33DV3r6vnnnqcWlVnZWu0rGZdjgW9g3sMGk7EYC7tIc2Y1AbponayQQsllcCdHoDtMmfX/X5+9nko4/6bQ/p/tvtQX+GzvJ9vCHw5dGw1Jsv8p7nlBHPPyvJSpp37ki86rNlnLn/j71CmF/1iV7vevknh31TrFcN7T7ZXq9fVzVdFTkJSjN9fl4NFdF0zdDJzMzU1NTkrru6unp2dja3Xnw0OaVViXnlMD44qHsjfMSHA9a0FQlgVkigrQnIS0v8+YOV9xRreSnK4/SSEfsjiLnuti5XBPKH/sfMU9F5ZTVdNeT9fuwNJEWgUlgFcSBgznyVKB4XVxCYi93Q0ADtyfPs9/++eHskNHV9IONVH/B5evx2p992tld9nuQ+ziiBNqehoYOMJNlYU2FwD83Z/fR/HWV6dIbdzWX9X3gNff770H+XOhGv+szsq+/cXbOrhoKMJD641JKL3YxHpKSklJqayp3xmzdvOn75KB13GtHWEN0IewNVFXkp0a4p1g4JIAERIzDOpvO/y5zMO3d8X1U373TsphuvausZD1rws5rCVVZlbf2P/jGp7yo7KcmcnttHFZt94bp+4m0tsdxcfO578cbQPrWHpoP1qg+0tPMCYod7M171sd0SNPbwwyXnnu68k3QumvGqT3pRJZVGp5BJeqqyrFd99k+1vrrIIWaDa+Lm4UGrBvp69No01nyek9Fwc22Y8+8oI9k+tRLRUpvxiAYMGHDw4EHuuh84cEDMV98OZj4yNwQfmeO+OVCDBJCAwBMwVJe/8pPD3P6MZaP9HmZM8IlMe1ch8Fa3j4HgLi78Kw4GdFXkJM/M7d1ZWbZ97MBShZZA+xpuQcwR5ZTB1ET7WiLCpVPr6RlFlRGv34F7A07OknNPwOGx+/JVH2hpgxMLkvI/vuqjqShtp68yzlpn6eBuuyZanvPsE7FmUPKW4RFrBrNe9Rlr3dm2i4qG4nd91UeEsbdu1ZrxiNatW3f79u1JkyY9fvy4jLlFR0dPnDjx7t27ENW6pghRbuU1dVFpjMWaXHHdbSG6bGgqEkACbASkJSi/jTbz9bCHjv6rt+WjDz64+iSHLR5FBgEavWHV388jXhfJSVH8fuzdTVORocV/SEB4CJhoKUpRyOU19VklVcJjtYBaSme+6vM4veRKXI53cMrPfz+ffOyRw/aQHr/ddv4zdOapx+sD44+Epv77Ig/GUIqZnzroKCMBE/IjzLXnDzDaMran34+9glcNTNoy/PEGVxiW8p5q8/PQ7pN76Tl0VddTFYVXfQT0yvFgVjMekY2NzeXLl8PDw/v166fK3BwcHCIiIv7++29bW1se8hfNJGHJ7+rpDV015GGcVTRriLVCAkhAPAgM7qF1e/mAvkaqVVQadP1X/f2ssrZePKrefC1hTN3r+qubL/IkKaRjM+2s9RgLGTd/GqYQBgK5ubkzZsxQU1OTk5OztraOi4sjrCZxbbt37yai2PcnTpxwcnJSYW6urq4wasweK1CylAS5RyeGJx+PrxJ16FBNrYf5nOKKWthXUb/a1sFvv7SS+iLnPfz8j4albgiMn+X7ePCfocSrPuAF/XzpuXfw6ytPcsA7eltWQ2e+6tNNU2FQd41Z/fQ3jDQ9OsP236X9n/8+9IXXsH+XOh2ZYbd+pOnMfgaDumtCMnzVR6B+I4QxzXhEkGj06NGZmZmXL1/esWPH9u3br1y5kpGRMWbMGIgS2wDznlD3IWbasBe/gDVGAkhApAhoK8mcndd31RATMqnD1Se5MFn0EntOzCsMPZ4zUZkkUod9U6ydjDWYOtyJAoHS0lJHR0dJScnbt28nJCTs2bNHWVmZqFge2+br60sikSZOnEhEse9DQ0Pd3d3v37//6NGjLl26DB06FFws9gQCJbMenBMoq/hvTG0d7WhYmv0fQXZbg2F/LCwNNOAjJed/CE4o8HuYvvlGgudpxqs+Fl7/2WwJGnPo4eJzT3bcTjobnRWe8i6N7VUfh65qU+z1Vg812T/VGqZ6Hm9wSdw8PHjVQJhJ3jzW3HOA0XDzTuadlZRk8VUf/l/nFpbYvEcEGcvKyo4fP/6XX35Zs2bNuHHjYEAFlGIb6mj0+0mMdbeHmOEqc2J7F2DFxYSAuFSTQiYtczG+ML9fJyWZ9KLKCT6R0DmAUVJxqX9j9QyIzNgf8hpiNo/pOdpSBwQMIkNg586denp6fn5+vXv3NjAwcHFx6dq1K1E7bbbtn3/+GTRokJGRERHFvj979uyiRYtgcqlHjx4wX0Sn00NCQtgTEHJtbW0520Yo+b//6BGJ90gHeD4+oanwoy6vZkwNwR7kQ/ffRLwuGuYdzlxjJsH3YXpQQkFS/ocK5lS5hqK0bRflsdY6SwZ12znR4ty8z6/6nPPsu3OS5ZLBxmOtO9vpq2gqyoDzzP8riyW2IgGePKIWlxceHu7m5qajowM3yrVr11j5eHh4gIYV+vbty4pasGABNEyysrIaGhpjx45NSkpiRbELXl5erNNBgBaMPbZN5ZiMkvKaejV5KWs9lTYtCDNHAkgACfCTQG9D1VvLnIaYaVFp9E3MsdJS5nPw/LRBQMr651mu141XYMwKV+OZ/QxAEIMgRlW8fv26vb39Dz/8oKmpaWNjAy4Nd+ULCgpu3rw5d+5c7igOTVVVVV1dnaqqKoceDrdv3670aQMfDDTtEix0laDc+FyxXlyBQib7RaYDB/YQ8Cijv7G6vqpsT52Ow3tqezoZbh7b08+jV/CqAUlbhsdscL26yHH/VJvVw7pP6dXFoRu+6sMOT9TktvWIKisrraysDh06xI1t+PDhrKnpW7dusRLY2dnBsE1iYuLdu3cbGhpgJppGa3xZ2J49e7JyiI+PZ+XQ1kJwAmOCaHAPTRhVbeuyMH8kgASQAD8JqMhLHZ9pt2lMTykKOTixcMT+iGjmKjL8tKHdywpLeffz388bGjrM7qe/3MW43e1BA1qdQFpa2pEjR4yNjaGnsXDhwmXLlp0+fZqjlICAAEVFxQkTJnDouQ/Xrl3buXNnV1dX7qh169YxF6Vi7LLb7yuOJlqKUhLkDzX1mcXiuLhC2ruKfUEpBeU1MC/06Rp9/B801VRa2JrBN5c5HZ1pt2GU2ax+BoN6aHaDSR9J/KrPR0pi8l/bekQjRozYunVrow2KtLQ0TOwQQZVtZGX+/PkDBgyAWWxbW1s4F1qQjIyMRi+GhIQEcTrsYUKp0TStrgQnLSgxH7LFVeYAAgYkgAREjwCJRJrtYBC42MFIXT6/vMb9RJR3cAqN3iB6NW20Rk+ySheeiaunN7hZ6fzu1hNoNJoMlUJNgE6nQx9j27ZtMEG0YMECT09PcJA4auTr6zt9+nQZGRkOPcfhrl27zp8/f/Xq1UZTQlenI9vGcS7fDiUpZNNOHaG4F2L24Fx8Ttmis3Eue8PORGWqKUh1lJUACOwBNIoy+KoPOxLxldvWI2qCa2hoKMxWm+s/zA4AABAASURBVJiYQEtUWMiYdeFIDPNLMFlkaGj4tYnm169f6+joQIKpU6fCeA/H6R2Yx63+CO/rworskmoYa3EyVmeWgDskgASQgAgS6KmjdGNp/4m2uuAKeQe/nnYiKq+sWgTr+WWVXhd8mOMfU11HG2CisecHKzKZ9GU8HokIgU6dOpmZmbEqY2pqmpWVxToEISIiIjk5ed68eSA3Ef78809wq/777z9LS8smkglClEVnhkckJoumwOB15JuiGSej3Q49uBWfD/O9NnrK5dV1PzowvsDGfjlAU0+ns2tQFlsCPHlEt27dgplldkZwePv2bXbNN8kwd3T27Nl79+7t2bMnJiZm8ODB4LqwcvDx8VFgbnfu3AkKCpKSkmJFsYQ+ffrAHDeYceLEifz8fAcHh+JixgeCWAkIodUf4Q1KKICc+3dTl5PiHGkAPQYk0D4ERLfU8K+8iwgjssOGDVNXV4ch/GfPnrEDgBFfXt5FrK+v//XXX2FIRVZW1sjIaPPmzTBszJ4PyvLSEnsmW+2bYiUvRYlOLxm5PyIkkdEAiiqZnNKqmacev6+qs9ZTPjrDFka+RLWmWC9HR0dweFgcUlJS9PX1WYcgnDp1ys7OzsrKCuSvhd27d2/ZsgU6Kvb29l9LIzh6y86MxfRgzkRwTGoLS+j0hjsv88YdfjjtZPSDN0UUMmm8Tec7K5xOefTSVpJd5Nx1uYtxR+ZMEexBBg1259riQghjnjx5RGvXrqV9+TIP+N+gbHGFp0yZMmrUKHNzczc3N/CsoDG6efMmKzeYp3769GlYWJixsfHkyZNrampYUSwBfKqJEydaWFi4uroS5wYEBLBiWUKrP8JLeESuplqsIlBAAkig7QjAXDF0SrjfRQS9o6Pjjh07uIuGfgxMLzf7LuLOnTuPHj0KOUPKXbt2Qefm4MGD3LmhZryN7r/LnMw7dyytqpsbELvpxqva+sbf7eQTq7Yppriidtapx/nlNd00Ffw8emEnqW0wC0quK1eujIqKgumdN2/enDt37vjx44sXL2YZV15efunSJe4JolmzZkGngki2a9cuGFLx9fU1MDCAYVkIFRUVRJRg7s07MxZXgDki8BkE08LvtIpaT/87Ntt1X9jCv548zymTliDP7qcfutp53xTrHtqM+THIX1qSsmCgUeyGIXG/usIeZNCAHgMSAAI8eUSvX79mn1+G03r06AHtCAjfH2DyGsZmoAhWVkpKSuALDRgw4PLly0lJSYGBgayoRgV5eXkLCwv2HFjJWvcR3sIPNc+y30PmLqa47jZgwIAE2pwAjH1sbexdxJkzZ27cuBEGRLgt4PFdxEePHo0dOxaGZqBDM2nSpKFDh8bGxnLnBtPX0D1iBe4E4qAxVJe/8pPDHEfGAyd+DzMm+ESmF1WKUsUraut/9I9JK6rsrCx7Zm5vFflGHkwQpfpiXXr16gVdi/Pnz8PILMzzeHt7w1AsC8uFCxdg2Nfd3Z2lIYSsrKy8vDxC9vHxoVKp0HRAH4YIf/75JxHVmvvWy8tYSwGchA+19Zklora4QmVt/cmItAG77q+5/CLtXWVHGYklg7o9XDt401hzPVU5DoQw2AHTv2oK0rAHmSMWD8WZAE8eEbgoHC/qgDsEfkirgCsuLs7OzoYGpdHcoFWCHkmjUSwlJIBR3q/lwEr2/cK9RMb7Tla6Slodm3nV8vvLwhyQABL4TgIwjwSTRYZfeRexf//+ISEhMEENpTx//vzBgwcjR44EmSO0+pO3HPkLy6G0BGWjm9mp2fYqcpKv3paPPhAR+DRHWIxv2k6Y8pp/OvZFTpmqvNTpub07Kck2nR5jRYPA6NGj4+Pja2pqoP/g6enJXikYVamqqoKeD7sS5NDQUH9/fxAgZGRkQP+EPXh5eYFeYMPnxRVy3guskd9qWEkldW9QisOOe1tvJsIEr6ai9PqRPcAXWj2su7qC9LfmhunbmUB7F8+TRzRmzJgVK1akpqYS1oI79PPPP4OSOGxiD5PIz5gbpElPTwcRhlhAuXr1ahighQYlNDTUzc1NXV19/PjxkAb8Luh/xMXFQTJIMHnyZFlZWVY3xcXF5dCnhbwhh7CwMMgzOjoaBmlgBHf27NmQQ5uGYOYz9EPM8JG5NsWMmSOB7yUAw7cKzO3O199F/N///gdjwDDdLSkpaWNjA00cHHIXvE4wFs/lNqxdNC6mWreXD+hjqFpJpa28+HzV389gdLZdLGmtQmn0hhUXnkWmFstLUfx/7NVVQ6G1csZ8kICgEbDU/fjgnKAZ1gJ7ct9Xb7rxynHHvQMhr8uq6wzU5LZPsIj436D5A7ri2nEt4ImnAAGePKLdu3fDjBB0HQyZm6mpqZqaGi8TxLGxsdDVgAAlrVq1CoSNGzdSKBQYmBk7dqyJiQm4MbAH50dRURHSyMjIREREgAvUrVs3cIeg0MjISE3Nj4+ogUtWVFQEySDk5ORA96V79+4TJkyQkpKKiorS//K1SEjTuqGaSot4zSjdFT2ilpLF85AAfwhMnz796dNm3kW8ePHiX3/9de7cuSdPngQEBECDBntu81r3yVvu/IVOo60kc86z76ohJmRSh6tPct0OPngptOv5wgD/r9de3n6ZL0UhH59lb6nLePVc6K4IGowEeCRAvEoE06E8phfMZK8LPvz89/OBu+77PcyorqOZd+54eJptyM/O7r27wFS2YNqMVgkFAZ48Ipg7Bs/k5s2bixYtgtmhkJCQe/fuKSsrN1tDZ2dn+JPDHvz9/WHa5+7du4WFhVQqNTMzEzSs9bV1dHRu3bpVUFAAUdnZ2WfPngWfh1UKzCmxZqUvXLjw9u1bSJabm3vlyhWO15xYp7Si8OBNUW09XVdFtrsWw3lrxZwxKySABFqXADRZzb6L+Msvv6xdu3bq1KkWFhYzZ85cuXIlTFC3ohkinBWFTFrmYnxhfr9OSjJpRZUTfCL9H6ZDOy90Vd4blHL+cRaJ1MF7qrVjN/yggtBdQDT42wgQc0Sv3pYL6eIKT7NK55+OHbIv/MqTnHp6g0NXtTNze99Y0n+UZSdolL6NBaZGAlwEePKI4CwSiTR06FDoQyxZsmTAgAGgEbcQzFx329VUC1CIW92xvkhAeAlAT722tpbb/qqqKjL5cwMIc9d0/CoFN6ava3obqt5a5jTETItKo3vdSPA8HVdaSf16coGL8XuYfvDeGzDrj3EWIy06gYChxQTwRKEg0E1DQUaSXFFbn14sTCujQBselvJu6vFH430i/2P2xIb11Apc5ACT1U7GGtglE4p7TyiM/Nwh4Db3wIEDNcyVr0FoNHCfIqoaOr0hJInxIQ748y+qdcR6IQEBJFBRUfGMuYFt6ekf30UEuaSkBNQJCQkgJycng5yfnw8y7+8iurm5/fHHHzD1DZPPgYGBe/fuJd5mhEww8EhARV7q+Ey7TWN6SlHIwYkFIw9ERKc18l04HnPjZ7JrT3M33WDcPKuHmkzr04WfRWNZSKC9CEhQyGadGOtQC8uTrjR6w43nb0cdeDDb93FUWokEmfSDnW7wqgHHZtrbdFFpL4xYrqgSaMoj2rdvX2UlYyABBO7g7e0tqlC46/Us531RBVVRRgKGRbljUYMEkEAbEWj0XUQo6/r16zY2NqNGjQJ56tSpIB89ehRk3t9FPHjw4KRJkxYtWmRqarp69eoFCxZs2bIFcsDwTQRggHa2g0HgYgcjdfm8shr3E1H7g19DP+abMuFz4vvJhasvPYdCPRwMFg/qBgIGJCAmBCyYXyUS/FeJaupo56KzBu8JXXr+aUJeuawkZY6jYfiaQbt/sOqmiW8uiMndyu9qNuURwYismpoaWAQCd4CxWIgSxdBInYhH5py7a0pSmiLWyJmoQgJI4DsINPouIuTn4eHR8OVGvGTI+7uIioqKMKyTmZlZXV2dmpq6detWKSn8Cg2gbUnoqaN0Y2n/iba69IYO+4JTpp2IyiurbklGbX9OXGbJT3/F1dMbxlnrbBxtBh5d25eJJSABQSFgwVw+JF6AV0P5UFN3NCzVadf99YHxmcVVynKSK1yNI9cO3uhmpqMsKygc0Q5RJMBT/37z5s1VVV980gv6EKAURSCN1ymI+eiqK36YtXE8qBVeAmg5EmgdAvLSEnsmW+2bYiUvRYlOLxm5PyIkkfGkcevk3kq5JOd/+NEvpqaO7txdAwabyWRSK2WM2SAB4SBAzBG9yi2jw+iFgJlcVFG7+26Sw457O24nvftQ20lJBsYswBda4WqiIo/DVQJ2tUTRHJ48ok2bNlVUVLBXHxwkULJrRFjOKKp8XVghQSY5m2iKcDWxakgACSCB7yQw3kb332VO5p07llbVzQ2I3XTjVW097TvzbK3Ts0uqZvlGl9fU23ZR9pluixP+rQUW8xEiAl015GUlKZVUWloR450IAbE8u6Tqt2svHXfcO3w/9UNNPRi5e5Jl2C+D5vQ3lJOSEBAj0QyRJ8CTR9TQ0MDxaMHz589VVVVFng5RwWDmSGdvQ1UlOUlCg3skgASQABJolIChuvyVnxzmOBpCrN/DjAk+kekC0PeC4eeZp6ILymtNtBR8PXphNwuuDgaRJtB45RiLK+gwFleIz33feAr+apPyy5dfeOr8Z+iZqMzaerqVnvKxmXZBKwf+YK8nJcFTB5W/9mJpokygmRtORUUFPB9wh0xMTEAggpKS0pAhQyZPnizKYNjqRnhErqZabDoUkQASQAJIoHEC0hKUjW5mp2bbq8hJvnpbPvpARODTnMaT8kX7oaZutu/jjOKqzsqyp+f0UZbDJ3D4wh0LEUgCxINz8Tnl7WtdTEbJHP+Y4d4R/zx7S6M3OBmrn/fse22Rw7Ce2vg4a/teGiEsvXVMbsYj8vb23rt3L8wRbdq0ibXc3NGjRx88eHD48OHWMUGwc3lfRY3JKAUbcd1tgIABCSABJMAjARdTrdvLB/QxVK2k0lZefL7q72eVtfU8ntuKyWrqaJ6nY8ExU5OX+mteH20lmVbMHLNCAkJH4KNH1E5zRNCfvJdUMOlI5A9HH91LKiSROoyy7PTv0v5n5vbp11WNRMJX+4TuhhIdg5vxiGbPnu3h4XH//v1FixaBTAR3d/d+/fqJDoMmaxKa/A5GL3poK+qpyjWZECPbkgDmjQSQgBASAPfjnGffla4mZFKHq09y3Q4+eMnfRa7qafTlF55GpZUoSEsEzOltqC4vhBTRZCTQmgQsdZUgOxgjgL4NCHwL8GO89jR3xP6IOf6xsZmlUhSye2+9ez87H55ma85cE5xvlmBBSKBRAs14RMQ5ioqKiYmJhPzPP/+MGzdu/fr1VCqV0Ij2Poj5EhE+MifaVxlrhwQEiIBomUIhk5a7Gp/37NtJSSatqHKCT6T/w3QYJ+ZDLaGUDYEv774qgL7X8Vl22OviA3MsQvAJGGkoyElRqqi0tHdfrJjVdpbDPO3pRxnOf4auuPgsKf+DvBRlwQCjiP9QBQDKAAAQAElEQVQN2j7BEgcp2g475vytBHjyiBYsWJCSkgJZp6WlTZkyRU5O7tKlS2vWrAGNaAdqPT0s+R3U0dUMXyICDBiQABJAAi0h0MdI7dYyJxhaotLoXjcSPE/HlVa2+ZjarrvJF2OzYXrqgLuNQ1f1ltiN57Q1Acyf7wQoZFLPj4srlLV14WXVdYfvv3HccW/jP69ySqvV5KV+GdY9cq3LupGmWh3x+dW2xo/5fxsBnjwicIesra0hY3CEBg4ceO7cOX9//ytXroBGtEN0enFFbb2GorQlTumK9pXG2iEBJNDGBFTkpU7MsvNyM4MZm+DEgpEHIqLTituuzJMRaUdCUyH/beMthptrg4ABCSABggAxX/oipw09osLymu23EsEX2n03ubiS2llZdvPYng/XDl48qJv4LttL0Me9oBLgySNqaGig0+lQheDg4JEjR4Kgp6dXVFQEgmiH4ATGFwZdTTVx5RPRvtBYOySABPhAgEQieTgaXl3kYKQun1dW434ian/wa1obfCnySlzO1puMJ73XDO8+tXcXPlQNi0ACQkSAeJWojV7qyyiqXHc1vv/O+8fC02BMubuWovcU69BfnGf1M5CRpAgRJTRV3Ajw5BHZ29tv3br1zJkzYWFho0aNAkbp6elaWiL+IFlDQ0PQR4+I15oCGQxIAAkgASTQBAEYn76xtP9EW11whfYFp0w7EZVfVtNE+m+NCkksWHPlBZw1r7/hTwO7goABCSABdgLEcnOtvrgCuFiLzz0ZvCf0/OMsKo1ur6/i62F/Z4XTOJvO+EFkdv4oCyYBnjwib2/vJ0+eLFmyZMOGDd26dYOaXL582cHBAQQRDgl55W/LamQkyY7d8AF0Eb7OWLUWEsDTkECLCchLS+yZbLV3spWcFCU6vWTE/nBwY1qcG/uJMRkli84+gXmnCTad1480hVkp9liUkQASAAKG6gryUpTqOlpqayyuAMPHkalFM09Fjz744OaLPBjpGNxD89LCfpd/chjcQwt/gwAcg1AQ4MkjsrS0jI+PLysr+/3334la7d69OyAggJBFdR+cUAhVczLWkMF5XgCBAQkgASTQqgQm2Or+u7R/T52OpVV1cwNiN99IqK2nfU8JiXnlc/xjauvpg3to7pxk2YpPO3+PVXiuYBLIzc2dMWOGmpqanJyctbV1XFwcYSf04DkCdHiIKI79lStXzMzMpKWlYR8YGMgRK8iHzMUVGGtwf+erRHR6w91X+eN9IqediI54XQTZjrPWub3cydejVy8DVUEmgLYhAW4CPHlE3KfJyMhISkpy60VJE8xcd3uIKT4yJ0pXFeuCBJCAABEw0lC4ushhjqMh2OT7MH3ikcj0okqQWxCyiqtm+T7+UFPfy0Dl8DRbfEqnBQzF55TS0lJHR0foxty+fTshIWHPnj3KyspE9fPYNl9fX/COJk6cSESx7x89ejRlypSZM2c+f/4c9pMnT46OjmZPIOCyBfOrRC8b+z4YL5ZT6+mXYrOH7AtbcCbuWfZ7aQnyzL7693929p5qY9qpIy85YBokIGgEePKIaDTan3/+2bt3b21tbVW2TdAq04r25JVVx+eWkUgdBptqtmK2mBUSQAJIAAmwE5CWoGx0Mzs5y15FTvJlbvnoAxGBT3PYE/AiF36omekb/e5DbQ9txZOze8lK4QvcvGAT3zQ7d+7U09Pz8/ODjo2BgYGLi0vXrh9fOYN+Div8888/gwYNMjIy4ibl7e09ZMiQdevW9ejRA/aQA2i4kwmshniV6EXO+2+1sIpa7/sg3Xn3/V8uv0h9V6koI7F4UNcH/xu8ZZx5FzW5b80N0yOB9iXAXjpPHtGmTZv27t0LQyBlZWWrVq2aMGECmUz28vJiz0jE5JBExiNztl1U1BWkRaxqWB0kgASQgKARcDXTur18QB9D1UoqbeXF5z///byytp5HI8tr6mb7xmQWV+mpyp6e01tJVsSfX+ARCyZrgsD169ft7e1/+OEHTU1NGxubEydOcCcuKCi4efPm3LlzuaNAA3NEQ4cOBYEIw4YNi4yMJGT2fW1tbTnbxh7VvjIxR5SQV15PY6wkzIsxpZVU7+AUxx33Nv+b8LasRkNReu2IHpFrB/8yrAfIvOSAaZCAIBPgySM6e/YstBerV6+WkJBwd3c/efLkxo0bo6KiBLli32lbMPOROVd8ZO47Obb/6WgBEkACwkFAW0nmnGffla4mZFKHK09y3A4+ePW2+e+l1NTR5gXEJuaVqytIn5nTRxM/+ygcV7udrUxLSzty5IixsfHdu3cXLly4bNmy06dPc9gUEBCgqKgIQ8AceuIwPz+ffcVdkEFDRLHvt2/frvRpg1kp9qj2lQ3V5BWkJWrq6G94WFwhr6x6y78JjjvveQe/Lq2q01eT2zbeImLNoIUDuyrK4ABE+15JLL3VCPDkEcHv3MLCAspUUFCAaSIQRo8eDWMnIIhkgLHJyDeMTwcOMcNH5kTyCmOlkIBIEhD6SlHIpOWuxuc9+3ZSkkkrqhx/ODIgMqOhoeFrFYPh7SXnnj5OL1GUlgiY08tAXf5rKVGPBNgJ0Ol0W1vbbdu2wQTRggULPD09wUFiTwCyr6/v9OnTZWRkQG40kEgklh7uUhLp8yFLv27dOug1ESE7O5ulb3eBTCb11GG88BOf09S4w5vCil8uPR+w6/6pB+lVVJpZp44H3W3u/ew8rU8XGVx0qt2vIhrQqgR48oh0dXXz8vKg3G7duv33338gxMTESEuL7ONkEa/fUWl0AzW5rhoKUFkMSAAJIAEkwDcCfYzUbi1zgil6aId/v/5q/pm40koqd+nQB113NT44sUBKgnxitn1PHcbaWdzJUCOiBL6rWp06dTIzM2NlYWpqmpWVxToEISIiIjk5ed68eSA3GrS1tWGwmBVVWFgI00SsQ5YAPaWObBtLLwgC8SpRfG7jHtHz7PcLz8QN2Rd2KS6njtbQ10g1YE7vm8v6u1npwMiFINiPNiCB1iXAk0c0fvz4kJAQKHj58uW//fYbTDTPmjVrzpw5oBHJEJ9briovBX+PSaRGhnxEsspYKSQgmATCw8Pd3Nx0dHRIJNK1a9dYRl69enXYsGHq6uqgf/bsGUsPAoz4du3aVVZWVkNDY+zYsUlJSaBsNHxt+d1GE6OSnwRU5KVOzLLzcjOTopCDEgpGHoiAiSAOA3bcToK+GpnU4ZC7TV8jNY5YPEQCTRBwdHQEh4eVICUlRV9fn3UIwqlTp+zs7KysrEBuNPTr1y8oKIgVBYPFQveRRuJVosziL1Z3hIEGGBSediJq7OGHd17lwwTtUDOtq4scLszvN9BEA9pbVpVR4CMBLIofBHjyiHbs2LF+/XowZ9KkSTBw8tNPP126dAmUoBGxUE2tp9bTp/bSe/C/QXOdGAvCilgFsTpIQLgIVFZWQqfk0KFDHGaDHvo0jbZC0I/x8/NLTEy8e/cu/HUfOnQojdbIV26aWH6Xoyw8bBcC0PfycDSErpiRunxeWc3U44/OPMqoqmU00cUVtTV1NDt9FZjG3zHRcmhP7XaxEAsVXgIrV66Mioratm3bmzdvzp07d/z48cWLF7OqU15eDp0c7gkiGAtet24dkQwGiMEL2rlzJ4y5wD44OHjFihVElLDsbbsow7jDkRl2RRW10POpqq0PS3k35tDDmaceR6YWS5BJE211g1YOOD7L3raLirBUCu1EAi0mwJNHxJ573759V61aNWbMGHalaMi1dbSjYWn2fwQ57brfd3vIhcfZoOFT1bAYJIAEGiMwYsSIrVu3cr/cPHPmzI0bN7q6unKfNH/+/AEDBhgYGNja2sK52dnZGRkZ3MmgE6P3leV32RML7FJR7EaKsGzeWenG0v7QMzNUVxhp0elIWCo00XZbg3tvC47PLbu22GGyvZ4IVx+r1kYEevXqFRgYeP78eXNz8y1btnh7e0+fPp1V1oULF2Awxd3dnaUhhKysLOINAjiEGSFIBoMvlpaW/v7+Fy9e7NOnD+iFKGgqyrzIKYPejv3WYPhZwY/LXKdjFZUmK0n50dEgbM2gPZOtjLUUhahGaCoS+B4CTXlE15vbvqdgQTsXZod8QlP3h7wur2Ys+Qp7kEFTRWUcCpq1aA8SEGIC/DId5pGgv2JoaAieD3eZ0Lw1u/wunCWwS0WBbWIS5KUloGd2ara9f2TGwXtvoHGGisMe5JMR6dhEAw0MLSAwevTo+Pj4mpoamE/29PRkzwFGVaqqqpSUON9MCw0NBeeHlXLSpEkwQUSlUiEH7lEbVjLBFIg+D/yI4KcEFsIeZPiJHZ5m83Dt4N/denZWlgU9BiQgPgSa8ojGNbmNHz9elDBRyGS/yHSOGoFGgtwUIo70eIgEkIAgEPDx8VFgbnfu3AkKCpKSkuK2ipfld+GsdYK6VBTYJlZBR1k24BHnXJ8QNNFidZGwssJDgNJYnwd+YkYaCqryjTSYwlMztBQJtJBAU919epNbo4/mt9AKATjtQ00djJFwGAIa0HMo8RAJIAEBJzB9+vSnT5+GhYUZGxtPnjwZhoG5DYbmzba55XfhLEFeKgrME58ATTE0yBz1BQ3oOZR4iASQQLME4IcDPx+OZKABPYfyGw4xKRIQZgJNeUTCXK9vtl1RRrKjrATHaaABPYcSD5EAEhBwAkpKSuALDRgw4PLly0lJSYGBgdwGN7v8LvcpqGlHAtAUQ4PMYQBoQM+hxEMkgASaJQA/HPj5cCQDDeg5lHiIBMSEQDMe0ciRI8vKPq5V/8cff7x//57gUlxczL6WP6EU6j2NTv/RgXNxOdDU0+lCXS80HgmIOYGGhoba2lpuCI7NLb/LfQpq2pEANtHtCB+LFj0C+IMSvWuKNfpOAs14RHfv3mV1Jnbu3FlSUkKUV19fz76WP6EU6r2slMQi567LXYxhjAQqAnuQQSMnxTlxBLEYxIEA1lEQCFRUVDxjbmBMeno6iFnMDylCWwRyQkIC6KEtApn4WmJaWtr27dvj4uIg2aNHjyZPniwrKwsjO5AMgouLC2sh76aX34XEGASKADbRAnU50BhhJ4A/KGG/gmh/qxNoxiOC4VVWkewySylKgrQkZcFAo9gNQ+J+dYU9yKARpQpiXZCA0BGIjY21YW5g+apVq0DcuHEjyNevXwd51KhRIE+dOhXko0ePgiwjIxMREQEuULdu3cAdkpeXj4yM1NTUhCgIqampRUVFIEBoevldSCBWQSgqCw0yNMvQOGMTLRTXC40UcAL4gxLwC4Tm8ZlAMx7Rd1oTHh7u5uamo6NDIpGuXbvGys3DwwM0rNC3b19W1IIFC7p27QrDuhoaGmPHjk1KSmJFcQg+Pj6GhobQAbKzs4M+EEdsyw5hRkhKgqymIA17kFuWCZ6FBJBAaxFwdnaGsRj24O/vD5lDG8KuBNnLywv00NrcunWroKCASqVmZ2efPXu2e/fuoCdCRkYGkYw4bGL5XSIB7gWNADTLMeVqHAAAEABJREFU0DhjEy1o10W47EFrWQTwB8VCgQISaMYjIpwWFiY4ZMm8CJWVlVZWVqzHVNhPGT58eN6nDXowrChwb/z8/BITE+/evQu9nKFDhza6qN3FixdXrFixYcOGp0+fOjk5jRgxIov5LA0rHxSQABJAAkgACSABJIAEkIDYEsCK806gGY8IfBIYi53A3GpqahYuXMgUJ8yZM4eXMsBR2bp1K5zCnVhaWlr706aqqspKMH/+/AEDBhgYGNja2sK5MMoLw7qsWJawd+/euXPnzps3z9TU1NvbW09P78iRI6xYllBbW1vOtrH0KCABJIAEkAASQAJIAAkgASSABIBAMx7R7NmzNTU1lZjbjBkzdHR0mKISKGfNmgXntziEhoZCJiYmJp6enoWFhdz5wPwSTBYZNva9eSqVGhcXB9NHrLNAjoyMZB2yhO3btxMGwx68JtCz+UeiIWItkICgEGhoaICfmAgHooKCghvtQAKiRYD4fWEDIlpXFWuDBPhH4DvbkGY8IvBJmggtbrlg7ujs2bP37t3bs2dPTEzM4MGDYTKHlZuPj48Cc7tz505QUJCUFOfnk4uKimg0mpaWFusUkImVplgaQli3bl3Zp41Ylgr8IvCOMCABJNDqBD58+ED87tps384ZExXENqTV7xzMEAkAAeL31c4/8rYsnqggNiBwrTEggbYgQPzEWvwjbsYjanG+TZ84ZcqUUaNGmZubu7m53b59OyUl5ebNm6xTpk+f/vTp07CwMGNj48mTJ9fU1LCi2AUSicQ6BL+QRPp8yNJLS0t3/LR17949Ozv7/fv3sIcEsP/kK+H/DAIABLEwQHz5D7F8yePjUaNYFBUV4RYS4QCT5FBxbEM+3gRc/wEcuPqw54oRXwXQaCkTUYbWKBZsQET5kvNQt0bvCh7OE/EkiKXRC9wolu9sQ9rHI4K/EKzQqVMnfX39169fszTgOIIvNGDAgMuXLyclJQUGBrKiCEFdXZ1CobBPChUWFsI0ERH7tT2ZTNbV1YXMwUWCNLDHwEEAsXAAIQ4RC8GBY8+NhURqZFQCkolMwDaE4x7gPoRrza0Ucw0yafQG4MZCImED0igqcVB+rCP3XfExQrz/QyyNXn9uLCTSd7Uh7e8RFRcXg6sHfhHUjTvA5A/7A3VEAikpKTs7u6CgIOIQ9iA7ODiAgAEJIAEkgASQABJAAkgACSABJMA7gbb1iD5/b75Dh/T09GfPnmVlZYFy9erVjx49ysjICA0NdXNzgzmf8ePHg9FpaWnbt2+Pi4uDZJBg8uTJsrKyI0eOhCgILi4urIW8V61adfLkSV9f38TExJUrV0L6hQsXQhoMSAAJIAEkgASQABJAAkgACSAB3gm0rUcUGxtrw9zAIPBhQNy4cSOFQomPjx87dqyJicns2bNhD84P8fCfjIxMREQEuEDdunUDd0heXj4yMlJTUxNOh5CamlpUVAQChClTpnh7e2/evNna2jo8PPzWrVv6+vqg5yVIS0v//vvvsOclsfikASCIhftytwQLdy4ipxFzLGJe/a/dzoiFmwwy4WYCGjHHIubVhxug0YBYEEujBBpVtsXd0rYekbOzc8OXm7+/P0z73L17t7CwkEqlZmZmgkZPT4+osI6ODvg2BQUFEJWdnX327Nnu3bsTUbCHOSUvLy8QiLBo0SLQ1NbWxsXFDRgwgFDysgeOkA/seUksPmkACGLhvtyIhZsJaMQci5hXH26Az4FNQixsMD6KyOQjiC//E3MsYl79L++Fz0eI5TMLNgmxsMH4LLYFlrb1iD7bjhISQAJIAAkgASSABISXAFqOBJCA6BJAj0h0ry3WDAkgASSABJAAEkACSAAJfCsB8UuPHpH4XXOsMRJAAkgACSABJIAEkAASQAKfCKBH9ImE+P2PNUYCSAAJIAEkgASQABJAAkhAHD0iHx8fQ0NDGRkZOzu7iIgIEb4JwsPD3dzcdHR0SCTStWvXWDVtaGjw8vICvaysrLOz86tXr1hRtbW1S5cuVVdXl5eXHzNmTE5ODiuqtLR05syZSswNhPfv37OihEjYvn17r169FBUVNTU1x40bl5yczDJenLEcOXLE0tKS+Ahav379bt++TWARGSZEdVpljw2ImN8V2IY0+jvCNqRRLI0qsQ0R5zYEG5BGfxSC0ICInUd08eLFFStWbNiw4enTp05OTiNGjMjKymr08oiAsrKy0srKivURJ1aNdu3atXfvXtDHxMRoa2sPGTLkw4cPRCzACQwMvHDhwoMHDyoqKkaPHk2j0YioadOmPXv27A5zAwGcIkIvXPuwsLDFixdHRUUFBQXV19cPHToUKBFVEGcsurq6O3bsiGVugwcPHjt2LOEnizMT4q7g2GMDAkDE/K4Q/DYErhH/A7YhPDLHNgRAiXMbgg0I3ADcQRAaELHziMATmDt37rx580xNTb29vfX09MAx5b42oqEBf2/r1q0TJkxgrw6MzUDFwScEvbm5eUBAQFVV1blz5yBNWVnZqVOn9uzZ4+rqamNj89dff8XHxwcHB0NUYmIiuEInT56ECQQIJ06c+Pfff9knWCCNUASohYeHR8+ePcFX9PPzA384Li4OLBdzLDCXOHLkSBPm9scffygoKIDTKOZM4K7gDtiA4F2BbQj37wI02IYABF4CtiGt24bwwlyg0mAD0ujlEIQGRLw8IiqVCt1fmBZgXQ+QIyMjWYfiIKSnp+fn50PFicpKS0sPHDiQgABw6urqWFE6OjrgMhFRjx49UlJS6tOnD3FW37594ZCIIjTCuAcPEMxWVVWFPWIBCBBgShBmCGHeDPxeZAJA2AM2IEAD7wqAwArYhrBQsARsQ1gouAVsQ4AJtiEAgQjYgBAc2Pft2IAIvkfEDup75aKiImCtpaXFyghkcA9Yh+IgEPWFirMqCzKhhL2UlJSKikqjUZqamiw9CHAI6UEQ0gDDVKtWrerfvz94fVAFoi6AAmQigEwoYS8OWGA+EKaGwENeuHBhYGCgmZkZVBxQAAfYEwFkQgl7cWBC1Jq1xwYEUMClhz3cCbAnAsiEEvZidVdgG0LcAKw9tiEsFF8TsA0BMtBQwB7aDdgTAWRCCXvxaUOwASGuPmvf7g2IeHlEBHcSiUQIsIc7kkT6fAgaMQkk0udaNwGBPYpE+nwKUGKPgkOhC0uWLHnx4sX58+fZLSeRPtexiQqyR5FIn0+BrNij4PAbQ3sm7969+7Nnz6Kion766afZs2cnJCQQ1pBInyvYRO3Yo0ikz6dAJuxRcCjsgUT6XDsRqxrvl4ZE4gkCOx8S6fMpUBB7FBwKY8A2hOOqYRvCAeRrhyTS59+CCPwQvlbNpvUkEk8Q2PmQSJ9PgczZo+BQ6AI2IByXrN0bEPHyiNTV1SkUCgxCsC5DYWEhDE6wDsVB0NbWhmo2CgGiYE6/tLQUEhCBxQeiCgoKCCWxf/funfCiW7p06fXr1+/fv6+rq0tUByoIgjhjgZG5bt262dvbb9++3crKav/+/cgEbgn2gA0I0Gi9u0KIGxDggG0IQOAI2IZwAOE+xDYEmGAbAhCwAQEIHKHdGxDx8ogAt52dXVBQEOsygOzg4MA6FAfB0NAQ2iOoOFFZcIHCwsIICABHUlKSFZWXl/fy5Usiql+/fmVlZY8fPybOio6OhkMiitAIyx5GlWBg5urVq/fu3QMULLNBFmcsLA6EAJRqa2uRCUGDtccGBFDgXQG/DmxD4E5oOgAlbEPYEH0UsQ0BEGLehsBPAxsQuA2aDkCJ/w2IeHlEcAFWrVp18uRJX1/fxMTElStXZmVlLVy4EPQiGSoqKp4xN6hdeno6iFBfEom0YsWKbdu2BQYGgsPj4eEhJyc3bdo0SKOkpDR37tyff/45JCTk6dOnM2bMsLCwcHV1hShTU9Phw4d7enpGMTcQRo8eDVOcECVcYfHixX/99de5c+cUFRVhRghCdXU1VEHMsaxfvz4iIiIjIyM+Pn7Dhg2hoaHTp08XcyZwV3AHbEDwrsA2hPt3ARpsQwACLwHbEDFvQ8SgAeHld8CZRhAaELHziKZMmeLt7b1582Zra+vw8PBbt27p6+tzXhlROY6NjbVhblAhaIVB3LhxI8hr1qwBp2jRokX29va5ubn//fcfuAegh7Bv375x48ZNnjzZ0dERPKUbN25QKBTQQzh79iw4SEOZm6Wl5ZkzZ0ApdOHIkSMwu+Xs7Nzp03bx4kWiFuKMpaCgYObMmeDiuri4wATgnTt3hgwZAljEmQlUnztgAwJMxPyuwDYE7gHugG0IN5NGNdiGABZxbkOwAYEbgDsIQgMidh4RXAbwBGAsHObj4uLiBgwYABpRDdDvh5lH9uDv7w+VhREaLy+vvLy8mpqasLAwYrE10EOQkZE5ePBgcXFxVVUVuEN6enqgJIKqqirMrpSXl5eXl4OgrKxM6IVrz06DkGGWjKiCOGM5deoU8aMoLCwMDg4m3CHAIs5MoPqNBmxAxPyuINoN9j22IfBLwTYEIPAYsA0R5zaEvekgZGxA4IcjCA2IOHpEgB4DEkACSIAnApgICSABJIAEkAASEHUC6BGJ+hXG+iEBJIAEkAAS4IUApkECSAAJiCsB9IjE9cpjvZEAEkACSAAJIAEkIJ4EsNZI4EsC6BF9yQOPkAASQAJIAAkgASSABJAAEhAnAqLsEYnTdcS6IgEkgASQABJAAkgACSABJNASAugRtYQanoMEBI0A2oMEkAASQAJIAAkgASTQMgLoEbWMG56FBJAAEkAC7UMAS0UCSAAJIAEk0LoE0CNqXZ6YGxJAAkgACSABJIAEWocA5oIEkAB/CKBHxB/Ool9KRkYGiUR69uwZf6qalJTUt29fGRkZa2tr/pSIpSABJNB2BLABaTu2mDMSEAcC2IaIwFVu3yqgR9S+/PlXuoeHB3gsO3bsYBV57do10LAOhUv4/fff5eXlk5OTQ0JCeLScz80lj1ZhMiQgFASwAcEGRChuVDRSYAlgG4JtiMDenIRh6BERHMRiDzMqO3fuLC0tbb/aNlUylUptKvrLuNTU1P79++vr66upqX0Zg0dIAAm0CQFsQNoEK2aKBMSGALYhYnOphbKi6BEJ5WVrmdGurq7a2trbt2/nPt3Ly4v98TNvb28DAwMiGYzrjBs3btu2bVpaWsrKyps2baqvr//ll19UVVV1dXV9fX2JZMQ+KSnJwcEBWr2ePXuGhoYSStgnJCSMHDlSQUEBMpk5c2ZRUREoITg7Oy9ZsmTVqlXq6upDhgwBDXug0+mbN2+GUqSlpcG8O3fuELEwtRUXFwdRIHh5eRFK1h6SgbMEpoKzNHr0aPCdiChDQ0MQbGxs4CwoF+Sv5U8M5Pz9999OTk6ysrK9evVKSUmJiYmxt7eHKgwfPvzdu3dwOgSoY+/evWG2CopzdHTMzMwEJQYkwCQgajtsQOCKYgMCEDAggZYRwDYEuGEbAhAEM6BHJJjXpU2solAo4IMcjAEAAAe4SURBVNgcPHgwJyfnmwq4d+/e27dvw8PD9+7dCx4IuBkqKirR0dELmVt2djYrN/CUfv7556dPn4JfNGbMmOLiYojKy8sbOHAguDSxsbHgrhQUFEyePBn0RAgICJCQkHj48OGxY8cIDWu/f//+PXv2/Pnnny9evBg2bBhk+Pr1a4iFDMHjgoJAWL16NWjYQ2VlJbhY4MCEhISQyeTx48eD5wMJHj9+DPvg4GA46+rVqyB/LX+IgvD777//+uuvT548AfPc3d3XrFkD6SMiIsDF2rhxIyQAzxB8RagamPfo0aP58+eDrwV6DEhAJAlgAwKXFRsQgNBYQB0SaJ4AtiHACNsQgCCYAT0iwbwubWUVuAfgmUBf/5sKgOmgAwcOdO/efc6cObCvqqpav369sbHxunXrpKSkwJlh5QYTPhMnTjQ1NT1y5IiSktKpU6cgCmRbW1twxnr06AGjIzCtdP/+fZh1gSgI3bp127VrF2QLsXDIHsAX+t///jd16lSI3blzJ1gOk1eQAGa6wEuB6RoQYA8a9gAGTJgwAcyD9GBAfHw8zFBBAg0NDdjDxBGcBTUC+Wv5QxQE8LXADYO6LF++HPyi3377DWaBwP65c+eC/ZCgvLy8rKwM/MOuXbtCstmzZ3fp0gX0GJCAqBLABgQbEFG9t7Fe/CEgEm1IB+hFYCeEPzcMP0tBj4iftAWiLHAtYFqGcBJ4NAgmZGCyhUispaVlYWFByDDeA/2DwsJC4hD2/fr1gz0EaCzs7e0TExNBjouLAxcCXBciEJ4PzLRAFARIBnvuAP4GTEyBE8KKApnIkKVpVICcp02bZmRk1LFjR0Pmk3JZWVncKZvN39LSkjgLqgwCq9ZwSFQZ3CoPDw/wmtzc3GD6CKaeIBkGJCDaBLABIa4vNiAEB9wjgW8lgG0IQQzbEIKD4OzRI2rsWoi0bsCAAdCJh0ke9lqCw9PQ0MDS1NXVsWQQJCUlYU8EEonEcUg8k0bEcuwhMWggAfgMz9i2169fgxkQBUFeXh72XwtEDkQsWMh+SCi591BWcXHxiRMnopkbJGhizQb2DDnyZ1WTSMN+CDWCbCH4+fk9evTIwcHh4sWLJiYmUVFRoMSABESYAPxysQFhXV+icSAOsQEhOOAeCTRNANsQdj7YhrDTaF8ZPaL25d8+pe/YsePGjRuRkZGs4jU0NPLz8+EvOqEB54UQvnXPcgnq6+thaoiYDrK1tX316pWBgUE3tq1pRwjKhRkeHR2dBw8egEwEMNjU1JSQv7YHXwjmkX799VcXFxdIzL6wnpSUFJxFo9FgD6Fl+cOJHMHGxmbdunVgm7m5+blz5zhiheAQTUQC30gAGxAAhg0IQMCABFpGANsQ4IZtCEAQqIAekUBdDj4ZY2FhMX369IMHD7LKc3Z2fvfu3a5du1JTUw8fPnz79m1W1DcJcG5gYGBSUtLixYvBG5kzZw6cDnJJSYm7u/vjx4/T0tL+++8/0LM8E0jwtfDLL7/A9DpMvyQnJ69duxb8tOXLl38tMaFXUVFRU1M7fvz4mzdv7t27t2rVKkIPe01NTVlZWWJph7KyMtC0IH84ixXS09PBF4I5oszMTKhUSkoK+GCsWBSQgKgSEOIGBBsQUb0psV5CRQDbEOyECOANix6RAF4Ufpi0ZcsW1owQlAddeR8fH/BnrKyswG9ZzbWAG6ThJcDAD/gwkElERMQ///yjrq4OZ8FUz8OHD8EFGjZsGEykgFejpKREJjd/7y1btuxn5gatJ3gy169fNzY2hgybCJDthQsXYHoKClq5cuXu3btZiSUkJA4cOHDs2DGwZ+zYsaBvQf5wFivIycmB7zdx4kQTE5P58+cvWbJkwYIFrFgUkIAIE8AGBC4uNiAAAYPgEhBsy7ANgeuDbQhAEJzQfK9UcGxFS76HgL+//7Vr11g56Ovr19TUsDtFCxcuzMrKqqioCAgIWL9+fUZGBpGY48TQ0FBiwTciFpKtWLECZAMDA8gNJoKioqJqa2sTEhIGDx4MeiKAJ3P16lWYNaqqqkpMTNy3bx/x7CxHbkRi1h7cm40bN+bk5FCpVJggGj58OCsKDr28vFiH7IKrqyuUDrV7/vz5wIEDwapx48YRCebNmwd1BN8MygXN1/In6mJtbQ1pIMAEGmSirKwMMgQPD4/379+DoKWlBRNib9++hfoCh02bNkGGoMeABESPgL+/PzYg2ICI3o2NNeIbAWxDADW2IQChTUJrZIoeUWtQxDyQABJAAkgACSABJIAEkAASEE4C6BEJ53UTP6uxxkgACSABJIAEkAASQAJIoC0IoEfUFlQxTySABJBAywngmUgACSABJIAEkAA/CaBHxE/aWBYSQAJIAAkgASTwmQBKSAAJIAFBIIAekSBcBbQBCSABJIAEkAASQAJIQJQJYN0EmQB6RIJ8ddA2JIAEkAASQAJIAAkgASSABNqWAHpErcsXc0MCSAAJIAEkgASQABJAAkhAmAigRyRMVwttRQKCRABtQQJIAAkgASSABJCAKBBAj0gUriLWAQkgASSABNqSAOaNBJAAEkACokwAPSJRvrpYNySABJAAEkACSAAJfAsBTIsExJEAekTieNWxzkgACSABJIAEkAASQAJIQLwJfK79/wEAAP//U0fIiQAAAAZJREFUAwD3Uni7eb4mVAAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "id": "e5aa73a7", + "metadata": {}, + "source": [ + "![image.png](attachment:image.png)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "atomistics", + "language": "python", + "name": "dev-atomistics" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/hackathon/elastic_constants/MD/MD_15-01-26.ipynb b/hackathon/elastic_constants/MD/MD_15-01-26.ipynb new file mode 100644 index 0000000..041b006 --- /dev/null +++ b/hackathon/elastic_constants/MD/MD_15-01-26.ipynb @@ -0,0 +1,3175 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "4a26f12c-f1c4-4262-b978-8afec1537ae1", + "metadata": {}, + "source": [ + "# Temperature dependent elastic constants\n", + "\n", + "## Background\n", + "\n", + "$$C_{ijkl} = \\frac{1}{V} \\frac{\\partial^2 U}{\\partial \\varepsilon_{ij}\\partial \\varepsilon_{kl}}$$\n", + "\n", + "$$U(T) = \\frac{V}{2}C_{ijkl}(T)\\varepsilon_{ij}\\varepsilon_{kl}$$\n", + "\n", + "$$\\sigma_{ij} = C_{ijkl}{\\varepsilon_{kl}}$$\n", + "\n", + "### How to get $U$ or $\\sigma$\n", + "\n", + "- MD\n", + "- Quasi-Harmonic\n", + "\n", + "## Tasks\n", + "\n", + "- Get $a_0$ from potential\n", + "- Lattice parameter (as a function of T)\n", + " - MD\n", + " - NVT\n", + " - NPT\n", + " - QH\n", + "- Calculate $U$ or $\\sigma$ for various $\\varepsilon$\n", + " - MD: Equilibriate and average with LAMMPS\n", + " - QH: Get strains from Yuriy's tool and run phonopy\n", + "- Fit\n", + "\n", + "## Teams\n", + "\n", + "- MD: Erik, Han, (Raynol), Prabhath, Jan, Sriram\n", + "- QH: Raynol, (Sam), Bharathi, Ahmed, Haitham\n", + "- Fit & Yuriy: Sam\n", + "- Literature" + ] + }, + { + "cell_type": "markdown", + "id": "37118728", + "metadata": {}, + "source": [ + "# Implementation" + ] + }, + { + "cell_type": "markdown", + "id": "e0b4e2eb", + "metadata": {}, + "source": [ + "* https://atomistics.readthedocs.io/en/latest/bulk_modulus_with_gpaw.html#elastic-matrix\n", + "* https://github.com/pyiron/atomistics/blob/main/tests/test_elastic_lammpslib_functional.py\n", + "* https://github.com/pyiron/pyiron_workflow_atomistics/blob/interstitials/pyiron_workflow_atomistics/dataclass_storage.py\n", + "* https://github.com/ligerzero-ai/pyiron_workflow_lammps/blob/main/pyiron_workflow_lammps/engine.py#L21" + ] + }, + { + "cell_type": "markdown", + "id": "ad9d71eb", + "metadata": {}, + "source": [ + "## Reference" + ] + }, + { + "cell_type": "markdown", + "id": "fee4e526", + "metadata": {}, + "source": [ + "We compare our values with the paper - [M. Krief, et. al., Physical Review E, 103, 063307, 2021](https://journals.aps.org/pre/abstract/10.1103/PhysRevE.103.063307#s4)\n", + "\n", + "Potential used: Copper [Mishin potential](https://www.ctcms.nist.gov/potentials/entry/2001--Mishin-Y-Mehl-M-J-Papaconstantopoulos-D-A-et-al--Cu-1/)" + ] + }, + { + "cell_type": "markdown", + "id": "0f95f937", + "metadata": {}, + "source": [ + "## Imports" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "ab2a0224", + "metadata": {}, + "outputs": [], + "source": [ + "from ase.build import bulk\n", + "from ase.atoms import Atoms" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "314284cf", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/cmmc/ptmp/pyironhb/pyiron_latest_env/lib/python3.12/site-packages/atomistics/calculators/__init__.py:63: UserWarning: calc_static_with_qe(), evaluate_with_qe() and optimize_positions_and_volume_with_qe() are not available as the import of the module named 'pwtools' failed.\n", + " raise_warning(module_list=quantum_espresso_function, import_error=e)\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from __future__ import annotations\n", + "\n", + "from atomistics.workflows.elastic.workflow import (\n", + " get_tasks_for_elastic_matrix,\n", + " analyse_results_for_elastic_matrix\n", + ")\n", + "\n", + "from atomistics.calculators import (\n", + " evaluate_with_lammpslib, \n", + " get_potential_by_name, \n", + " calc_molecular_dynamics_npt_with_lammpslib, \n", + " calc_molecular_dynamics_nvt_with_lammpslib\n", + ")\n", + "\n", + "from atomistics.calculators.lammps.libcalculator import (\n", + " calc_static_with_lammpslib, \n", + " calc_molecular_dynamics_langevin_with_lammpslib\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "4c2e5072", + "metadata": {}, + "outputs": [], + "source": [ + "from pyiron_base import Project, job" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "d0c85625", + "metadata": {}, + "outputs": [], + "source": [ + "pr = Project(\"Convergence_Studies_MD_Elastic_Constants\")" + ] + }, + { + "cell_type": "markdown", + "id": "0640a5d2", + "metadata": {}, + "source": [ + "## Create bulk sample with a guessed lattice constant" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "4ce06b81", + "metadata": {}, + "outputs": [], + "source": [ + "unit_cell = bulk('Cu', 'fcc', a=3.6514, cubic=True) # 4 atoms" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "1007230a", + "metadata": {}, + "outputs": [], + "source": [ + "repeated_unit_cell = unit_cell.repeat(5) # 500 atoms" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "b07fbd51", + "metadata": {}, + "outputs": [], + "source": [ + "potential_name_str = \"2001--Mishin-Y--Cu-1--LAMMPS--ipr1\"\n", + "\n", + "potential_df = get_potential_by_name(\n", + " potential_name=potential_name_str\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "b02f41d3", + "metadata": {}, + "source": [ + "## 0K Relaxed Structure" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "92ee7631", + "metadata": {}, + "outputs": [], + "source": [ + "def get_relaxed_structure_at_0K(\n", + " structure: Atoms, \n", + " potential: str, \n", + " lmp_optimizer_kwargs : dict = None\n", + " ) -> Atoms:\n", + " \n", + " df_pot_selected = get_potential_by_name(\n", + " potential_name=potential\n", + " )\n", + " \n", + " result_dict = evaluate_with_lammpslib(\n", + " task_dict={\"optimize_positions_and_volume\": structure},\n", + " potential_dataframe=df_pot_selected,\n", + " lmp_optimizer_kwargs=lmp_optimizer_kwargs\n", + " )\n", + " \n", + " structure_relaxed = result_dict['structure_with_optimized_positions_and_volume']\n", + "\n", + " return structure_relaxed" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "2c46da55", + "metadata": {}, + "outputs": [], + "source": [ + "lmp_optimizer_kwargs={\n", + " 'min_style':'cg',\n", + " 'ionic_force_tolerance':1e-8,\n", + " 'pressure':np.zeros(6) # add anisotropy\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "f3dcce5a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Atoms(symbols='Cu4', pbc=True, cell=[3.61500008107858, 3.61500008107858, 3.6150000810785805])" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "relaxed_unit_cell = get_relaxed_structure_at_0K(\n", + " unit_cell, # 4 atoms\n", + " potential_name_str, \n", + " lmp_optimizer_kwargs\n", + ")\n", + "\n", + "relaxed_unit_cell # 4 atoms" + ] + }, + { + "cell_type": "markdown", + "id": "115a15d0", + "metadata": {}, + "source": [ + "## 0K Lattice Constant" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "6ce6b4ba-ed90-4d53-a502-549e2980a481", + "metadata": {}, + "outputs": [], + "source": [ + "def get_lattice_constant_at_0K(\n", + " structure: Atoms, \n", + " potential: str, \n", + " lmp_optimizer_kwargs : dict = None\n", + " ) -> float:\n", + "\n", + " structure_relaxed = get_relaxed_structure_at_0K(\n", + " structure=structure, \n", + " potential=potential,\n", + " lmp_optimizer_kwargs=lmp_optimizer_kwargs\n", + " )\n", + " \n", + " a_0 = structure_relaxed.get_volume()**(1/3)\n", + "\n", + " return a_0 # Angstrom" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "e49c9a2b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "np.float64(3.61500008107858)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a_0 = get_lattice_constant_at_0K(\n", + " structure=unit_cell, \n", + " potential=potential_name_str,\n", + " lmp_optimizer_kwargs=lmp_optimizer_kwargs)\n", + "\n", + "a_0 # Angstrom" + ] + }, + { + "cell_type": "markdown", + "id": "00afafda", + "metadata": {}, + "source": [ + "We get the same lattice constant at 0K as the reference paper!" + ] + }, + { + "cell_type": "markdown", + "id": "487ad8a1", + "metadata": {}, + "source": [ + "## 0K Elastic Constants" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "6da5fde2", + "metadata": {}, + "outputs": [], + "source": [ + "def get_strain_tensor_cubic(\n", + " structure : Atoms, \n", + " strain : float = 0.005\n", + " ) -> dict:\n", + "\n", + " deformation_gradient_dict = {\n", + " 'C11': np.eye(3,3) + np.array([[ strain, 0, 0], \n", + " [ 0, 0, 0],\n", + " [ 0, 0, 0]]),\n", + " 'C12': np.eye(3,3) + np.array([[ strain, 0, 0], \n", + " [ 0, strain, 0], \n", + " [ 0, 0, 0]]),\n", + " 'C44': np.eye(3,3) + np.array([[ 0, 0, 0], \n", + " [ 0, 0, strain], \n", + " [ 0, strain, 0]])\n", + " }\n", + "\n", + " return deformation_gradient_dict" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "66091ecb", + "metadata": {}, + "outputs": [], + "source": [ + "def get_elastic_constants_from_stress_tensor(\n", + " tensor_dict : dict, \n", + " strain : float\n", + " ) -> list[float]:\n", + "\n", + " elastic_constants_list = []\n", + "\n", + " for constant_str, diff in tensor_dict.items():\n", + " if constant_str == 'C11':\n", + " constant = diff[0, 0] / strain\n", + " elastic_constants_list.append(abs(constant))\n", + "\n", + " elif constant_str == 'C12':\n", + " sigma33 = diff[2, 2]\n", + " constant = (sigma33/ strain) / 2\n", + " elastic_constants_list.append(abs(constant))\n", + "\n", + " elif constant_str == 'C44':\n", + " sigma23 = diff[2, 1]\n", + " constant = sigma23 / (2 * strain)\n", + " elastic_constants_list.append(abs(constant))\n", + "\n", + " return elastic_constants_list" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "fdd3131b", + "metadata": {}, + "outputs": [], + "source": [ + "def get_stress_tensor_at_0K(\n", + " structure : Atoms, \n", + " potential_dataframe : pd.DataFrame, \n", + " deformation_gradient : np.array\n", + " ):\n", + " \n", + " structure_strained = structure.copy()\n", + " relaxed_cell = np.array(structure_strained.get_cell().tolist())\n", + "\n", + " strained_cell = deformation_gradient@relaxed_cell\n", + " structure_strained.set_cell(\n", + " strained_cell, \n", + " scale_atoms=True\n", + " )\n", + " \n", + " relaxed_dict = calc_static_with_lammpslib(\n", + " structure=structure, \n", + " potential_dataframe=potential_dataframe\n", + " )\n", + " strained_dict = calc_static_with_lammpslib(\n", + " structure=structure_strained,\n", + " potential_dataframe=potential_dataframe\n", + " )\n", + "\n", + " relaxed_dict['stress_GPa'] = relaxed_dict['stress'] / 10**4\n", + " strained_dict['stress_GPa'] = strained_dict['stress'] / 10**4\n", + "\n", + " stress_diff = strained_dict['stress_GPa'] - relaxed_dict['stress_GPa']\n", + " \n", + " return stress_diff, relaxed_dict, strained_dict" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "a1655241", + "metadata": {}, + "outputs": [], + "source": [ + "def calculate_elastic_constants_at_0K(\n", + " structure : Atoms, \n", + " potential_name : str,\n", + " strain : float = 0.005\n", + " ):\n", + "\n", + " df_pot_selected = get_potential_by_name(\n", + " potential_name=potential_name\n", + " )\n", + "\n", + " deformation_gradient_dict = get_strain_tensor_cubic(\n", + " structure=structure, \n", + " strain=strain\n", + " )\n", + " \n", + " tensor_dict = {}\n", + " for constant_str, deformation_gradient in deformation_gradient_dict.items():\n", + " diff, relaxed_dict, strained_dict = get_stress_tensor_at_0K(\n", + " structure=structure,\n", + " potential_dataframe=df_pot_selected,\n", + " deformation_gradient=deformation_gradient\n", + " )\n", + " \n", + " tensor_dict[constant_str] = diff\n", + " tensor_dict[f'relaxed_dict_{constant_str}'] = relaxed_dict\n", + " tensor_dict[f'strained_dict_{constant_str}'] = strained_dict\n", + " \n", + " elastic_constants_list = get_elastic_constants_from_stress_tensor(\n", + " tensor_dict=tensor_dict, \n", + " strain=strain\n", + " )\n", + "\n", + " return elastic_constants_list, tensor_dict" + ] + }, + { + "cell_type": "markdown", + "id": "1d4d9117", + "metadata": {}, + "source": [ + "## Reference function to fit elastic constants (Jan + Yury)'s" + ] + }, + { + "cell_type": "markdown", + "id": "921512df", + "metadata": {}, + "source": [ + "Requires only `relaxed_unit_cell` and `potential_name_str` from previous cells" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "abfe2e9f", + "metadata": {}, + "outputs": [], + "source": [ + "def fit_elastic_constants(\n", + " structure: Atoms, \n", + " potential: str, \n", + " strains, \n", + " stresses=None, \n", + " energies=None):\n", + "\n", + " task_dict, sym_dict = get_tasks_for_elastic_matrix(\n", + " structure=structure,\n", + " eps_range=0.005,\n", + " num_of_point=5,\n", + " zero_strain_job_name=\"s_e_0\",\n", + " sqrt_eta=True\n", + " )\n", + "\n", + " potential_df = get_potential_by_name(\n", + " potential_name=potential\n", + " )\n", + "\n", + " result_dict = evaluate_with_lammpslib(\n", + " task_dict=task_dict,\n", + " potential_dataframe=potential_df,\n", + " )\n", + " \n", + " elastic_dict, sym_dict = analyse_results_for_elastic_matrix(\n", + " output_dict=result_dict,\n", + " sym_dict=sym_dict,\n", + " fit_order=2,\n", + " zero_strain_job_name=\"s_e_0\",\n", + " )\n", + "\n", + " return elastic_dict" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "07218d2f", + "metadata": {}, + "outputs": [], + "source": [ + "elastic_dict = fit_elastic_constants(\n", + " structure=relaxed_unit_cell,\n", + " potential=potential_name_str,\n", + " strains=None\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "2b379a68", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[169.74837327, 123.55258251, 123.55258251, 0. ,\n", + " 0. , 0. ],\n", + " [123.55258251, 169.74837327, 123.55258251, 0. ,\n", + " 0. , 0. ],\n", + " [123.55258251, 123.55258251, 169.74837327, 0. ,\n", + " 0. , 0. ],\n", + " [ 0. , 0. , 0. , 76.24914297,\n", + " 0. , 0. ],\n", + " [ 0. , 0. , 0. , 0. ,\n", + " 76.24914297, 0. ],\n", + " [ 0. , 0. , 0. , 0. ,\n", + " 0. , 76.24914297]])" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "elastic_dict['elastic_matrix']" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "9d40a4ab", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([169.7, 123.6, 76.2])" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "elastic_constants_list_reference = [\n", + " elastic_dict['elastic_matrix'][0,0], \n", + " elastic_dict['elastic_matrix'][0,1], \n", + " elastic_dict['elastic_matrix'][3,3]\n", + " ]\n", + "\n", + "np.round(elastic_constants_list_reference, 1) # GPa" + ] + }, + { + "cell_type": "markdown", + "id": "21e47c80", + "metadata": {}, + "source": [ + "In comparison with the [reference paper](https://journals.aps.org/pre/abstract/10.1103/PhysRevE.103.063307#s4 \"M. Krief, et. al., Physical Review E, 103, 063307, 2021\"),\n", + "\n", + "$C_{11}$=169.9GPa, $C_{12}$=122.6GPa, and $C_{44}$=76.2GPa" + ] + }, + { + "cell_type": "markdown", + "id": "3bfb90c7", + "metadata": {}, + "source": [ + "## Finite Temperature equlibiration\n", + "* First run NPT to relax volume\n", + "* Then equilibriate the cell by running NVT" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "d35b8305", + "metadata": {}, + "outputs": [], + "source": [ + "def equilibriate_structure_at_finite_temperature(\n", + " structure : Atoms, \n", + " potential : str, \n", + " temperature : float = 500,\n", + " run : int = 100000,\n", + " thermo : int = 100,\n", + " seed : int = 4928459, \n", + " cell_scale_value : int = 5,\n", + " thermostat : str = 'langevin'\n", + " ) -> Atoms:\n", + "\n", + " df_pot_selected = get_potential_by_name(\n", + " potential_name=potential\n", + " )\n", + " \n", + " structure_repeated = structure.repeat(cell_scale_value)\n", + "\n", + " npt_dict = calc_molecular_dynamics_npt_with_lammpslib(\n", + " structure=structure_repeated,\n", + " potential_dataframe=df_pot_selected,\n", + " Tstart=temperature,\n", + " Tstop=temperature,\n", + " run=run,\n", + " thermo=thermo,\n", + " seed=seed\n", + " )\n", + " \n", + " npt_lattice_constant = (np.mean(npt_dict['volume'][20:]/len(structure_repeated))*len(structure))**(1/3)\n", + " \n", + " # FIXME: Make it for a generic element - something might be wrong here. Need to check error propagation\n", + " # structure_npt = bulk('Cu', a=npt_lattice_constant, cubic=True)\n", + " # structure_repeated_npt = structure_npt.repeat(cell_scale_value)\n", + " \n", + " structure_repeated_npt = structure.copy()\n", + " structure_repeated_npt.set_cell(\n", + " [[npt_lattice_constant,0,0], \n", + " [0,npt_lattice_constant,0], \n", + " [0,0,npt_lattice_constant]],\n", + " scale_atoms = True\n", + " )\n", + " structure_repeated_npt = structure_repeated_npt.repeat(cell_scale_value)\n", + "\n", + " if thermostat == 'nose-hoover':\n", + " nvt_dict = calc_molecular_dynamics_nvt_with_lammpslib(\n", + " structure=structure_repeated_npt,\n", + " potential_dataframe=df_pot_selected,\n", + " Tstart=temperature,\n", + " Tstop=temperature,\n", + " run=run,\n", + " thermo=thermo,\n", + " seed=seed\n", + " )\n", + " \n", + " elif thermostat == 'langevin':\n", + " nvt_dict = calc_molecular_dynamics_langevin_with_lammpslib(\n", + " structure=structure_repeated_npt,\n", + " potential_dataframe=df_pot_selected,\n", + " Tstart=temperature,\n", + " Tstop=temperature,\n", + " run=run,\n", + " thermo=thermo,\n", + " seed=seed\n", + " )\n", + " \n", + " structure_repeated_nvt = structure_repeated_npt.copy()\n", + " structure_repeated_nvt.set_cell(\n", + " nvt_dict['cell'][-1]\n", + " )\n", + " structure_repeated_nvt.set_positions(\n", + " nvt_dict['positions'][-1]\n", + " )\n", + " structure_repeated_nvt.set_velocities(\n", + " nvt_dict['velocities'][-1]\n", + " )\n", + "\n", + " return structure_repeated_nvt" + ] + }, + { + "cell_type": "markdown", + "id": "fa0d5d7d", + "metadata": {}, + "source": [ + "## Temperature-dependent Elastic Constants" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "61bd9d33", + "metadata": {}, + "outputs": [], + "source": [ + "def get_stress_tensor_at_finite_temperature(\n", + " structure : Atoms, \n", + " potential_dataframe : pd.DataFrame, \n", + " deformation_gradient : np.array, \n", + " temperature : float,\n", + " run : int, \n", + " thermo : int,\n", + " seed : int,\n", + " thermostat : str\n", + " ):\n", + " \n", + " structure_strained = structure.copy()\n", + " relaxed_cell = np.array(structure_strained.get_cell().tolist())\n", + "\n", + " strained_cell = deformation_gradient@relaxed_cell\n", + " structure_strained.set_cell(\n", + " strained_cell, \n", + " scale_atoms=True\n", + " )\n", + " \n", + " if thermostat == 'nose-hoover':\n", + " relaxed_dict = calc_molecular_dynamics_nvt_with_lammpslib(\n", + " structure=structure, \n", + " potential_dataframe=potential_dataframe,\n", + " Tstart=temperature,\n", + " Tstop=temperature,\n", + " run=run,\n", + " thermo=thermo,\n", + " seed=seed,\n", + " disable_initial_velocity=True\n", + " )\n", + " strained_dict = calc_molecular_dynamics_nvt_with_lammpslib(\n", + " structure=structure_strained, \n", + " potential_dataframe=potential_dataframe,\n", + " Tstart=temperature,\n", + " Tstop=temperature,\n", + " run=run,\n", + " thermo=thermo,\n", + " seed=seed,\n", + " disable_initial_velocity=True\n", + " )\n", + " \n", + " elif thermostat == 'langevin':\n", + " relaxed_dict = calc_molecular_dynamics_langevin_with_lammpslib(\n", + " structure=structure, \n", + " potential_dataframe=potential_dataframe,\n", + " Tstart=temperature,\n", + " Tstop=temperature,\n", + " run=run,\n", + " thermo=thermo,\n", + " seed=seed,\n", + " disable_initial_velocity=True\n", + " )\n", + " strained_dict = calc_molecular_dynamics_langevin_with_lammpslib(\n", + " structure=structure_strained, \n", + " potential_dataframe=potential_dataframe,\n", + " Tstart=temperature,\n", + " Tstop=temperature,\n", + " run=run,\n", + " thermo=thermo,\n", + " seed=seed,\n", + " disable_initial_velocity=True\n", + " )\n", + "\n", + " relaxed_dict['pressure_GPa'] = relaxed_dict['pressure'] / 10**4\n", + " strained_dict['pressure_GPa'] = strained_dict['pressure'] / 10**4\n", + "\n", + " stress_diff = -np.mean(strained_dict['pressure_GPa'][20:] - relaxed_dict['pressure_GPa'][20:], axis=0)\n", + "\n", + " return stress_diff, relaxed_dict, strained_dict" + ] + }, + { + "cell_type": "markdown", + "id": "20cfbe45", + "metadata": {}, + "source": [ + "Implement [Mean Measure value](https://github.com/pyiron/pyiron_atomistics/blob/c469a6ecbb787291dcc957f348cf74446fdc7ddc/pyiron_atomistics/lammps/control.py#L704) from pyiron_atomistics maybe?" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "9f46351a", + "metadata": {}, + "outputs": [], + "source": [ + "def calculate_elastic_constants_at_finite_temperature(\n", + " structure : Atoms, # change to unit cell\n", + " cell_scale_value : int,\n", + " potential_name : str, \n", + " temperature : float = 0, \n", + " strain : float = 0.005,\n", + " run : int = 10000,\n", + " thermo : int = 100, \n", + " seed : int = 42, \n", + " thermostat : str = 'langevin'\n", + " ):\n", + "\n", + " df_pot_selected = get_potential_by_name(\n", + " potential_name=potential_name\n", + " )\n", + "\n", + " equilibriated_structure = equilibriate_structure_at_finite_temperature(\n", + " structure=structure,\n", + " potential=potential_name_str, \n", + " temperature=temperature, \n", + " seed=seed,\n", + " cell_scale_value=cell_scale_value\n", + " )\n", + " \n", + " deformation_gradient_dict = get_strain_tensor_cubic(\n", + " structure=equilibriated_structure, \n", + " strain=strain\n", + " )\n", + " \n", + " tensor_dict = {}\n", + " for constant_str, deformation_gradient in deformation_gradient_dict.items():\n", + " diff, relaxed_dict, strained_dict = get_stress_tensor_at_finite_temperature(\n", + " structure=equilibriated_structure, \n", + " potential_dataframe=df_pot_selected,\n", + " deformation_gradient=deformation_gradient,\n", + " temperature=temperature,\n", + " run=run,\n", + " thermo=thermo,\n", + " seed=seed,\n", + " thermostat=thermostat\n", + " )\n", + " \n", + " tensor_dict[constant_str] = diff\n", + " tensor_dict[f'relaxed_dict_{constant_str}'] = relaxed_dict\n", + " tensor_dict[f'strained_dict_{constant_str}'] = strained_dict\n", + " \n", + " elastic_constants_list = get_elastic_constants_from_stress_tensor(\n", + " tensor_dict=tensor_dict, \n", + " strain=strain\n", + " )\n", + "\n", + " return {\"elastic_constants\": elastic_constants_list, \"tensor_dict\": tensor_dict}" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "f9d601df", + "metadata": {}, + "outputs": [], + "source": [ + "unit_cell = bulk('Cu', 'fcc', a=3.6514, cubic=True) # 4 atoms" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "251b6ee8", + "metadata": {}, + "outputs": [], + "source": [ + "repeated_unit_cell = unit_cell.repeat(5) # 500 atoms" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "4b378475", + "metadata": {}, + "outputs": [], + "source": [ + "potential_name_str = \"2001--Mishin-Y--Cu-1--LAMMPS--ipr1\"\n", + "\n", + "potential_df = get_potential_by_name(\n", + " potential_name=potential_name_str\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "9cb758b5", + "metadata": {}, + "outputs": [], + "source": [ + "equilibriated_structure = equilibriate_structure_at_finite_temperature(\n", + " structure=unit_cell,\n", + " potential=potential_name_str, \n", + " temperature=500, \n", + " seed=1234,\n", + " cell_scale_value=1\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "7054129b", + "metadata": {}, + "outputs": [], + "source": [ + "deformation_gradient_dict = get_strain_tensor_cubic(\n", + " structure=equilibriated_structure, \n", + " strain=0.0005\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "4decf7fd", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1.0005, 0. , 0. ],\n", + " [0. , 1. , 0. ],\n", + " [0. , 0. , 1. ]])" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "deformation_gradient_dict['C11']" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "0b1bb631", + "metadata": {}, + "outputs": [], + "source": [ + "structure_strained = equilibriated_structure.copy()\n", + "relaxed_cell = np.array(structure_strained.get_cell().tolist())\n", + "\n", + "strained_cell = deformation_gradient_dict['C11']@relaxed_cell\n", + "structure_strained.set_cell(\n", + " strained_cell, \n", + " scale_atoms=True\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "f9bb2696", + "metadata": {}, + "outputs": [], + "source": [ + "relaxed_dict = calc_molecular_dynamics_langevin_with_lammpslib(\n", + " structure=equilibriated_structure, \n", + " potential_dataframe=potential_df,\n", + " Tstart=500,\n", + " Tstop=500,\n", + " run=1000,\n", + " thermo=1,\n", + " seed=1234,\n", + " disable_initial_velocity=True\n", + ")\n", + "strained_dict = calc_molecular_dynamics_langevin_with_lammpslib(\n", + " structure=structure_strained, \n", + " potential_dataframe=potential_df,\n", + " Tstart=500,\n", + " Tstop=500,\n", + " run=1000,\n", + " thermo=1,\n", + " seed=1234,\n", + " disable_initial_velocity=True\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "c79bb76e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'positions': array([[[3.43798166, 2.54167633, 1.45397387],\n", + " [3.40329879, 0.59840346, 3.42034454],\n", + " [1.52104155, 2.40553981, 3.21954082],\n", + " [1.53907334, 0.52396544, 1.57551651]],\n", + " \n", + " [[3.4360715 , 2.53517228, 1.45290129],\n", + " [3.40669305, 0.59738564, 3.41856968],\n", + " [1.52149946, 2.40561281, 3.21637509],\n", + " [1.53641213, 0.51999881, 1.57551442]],\n", + " \n", + " [[3.43376239, 2.52873618, 1.45152951],\n", + " [3.41023189, 0.59672367, 3.41674394],\n", + " [1.52212652, 2.4055246 , 3.21323709],\n", + " [1.53388042, 0.5162087 , 1.57540503]],\n", + " \n", + " ...,\n", + " \n", + " [[3.30672084, 2.06022582, 1.29666596],\n", + " [3.39932231, 0.12037786, 3.06113156],\n", + " [1.53311717, 1.94238011, 3.1362749 ],\n", + " [1.53537819, 0.26954876, 1.30368632]],\n", + " \n", + " [[3.30600978, 2.05824574, 1.29531209],\n", + " [3.39998838, 0.12294652, 3.06247425],\n", + " [1.53373946, 1.94510649, 3.13527017],\n", + " [1.53533605, 0.2689504 , 1.30363958]],\n", + " \n", + " [[3.30555515, 2.05576666, 1.29404613],\n", + " [3.40081435, 0.12574002, 3.06346242],\n", + " [1.53453985, 1.94783991, 3.13438191],\n", + " [1.53480569, 0.26833561, 1.30398661]]], shape=(1000, 4, 3)),\n", + " 'cell': array([[[3.64060542, 0. , 0. ],\n", + " [0. , 3.64060542, 0. ],\n", + " [0. , 0. , 3.64060542]],\n", + " \n", + " [[3.64060542, 0. , 0. ],\n", + " [0. , 3.64060542, 0. ],\n", + " [0. , 0. , 3.64060542]],\n", + " \n", + " [[3.64060542, 0. , 0. ],\n", + " [0. , 3.64060542, 0. ],\n", + " [0. , 0. , 3.64060542]],\n", + " \n", + " ...,\n", + " \n", + " [[3.64060542, 0. , 0. ],\n", + " [0. , 3.64060542, 0. ],\n", + " [0. , 0. , 3.64060542]],\n", + " \n", + " [[3.64060542, 0. , 0. ],\n", + " [0. , 3.64060542, 0. ],\n", + " [0. , 0. , 3.64060542]],\n", + " \n", + " [[3.64060542, 0. , 0. ],\n", + " [0. , 3.64060542, 0. ],\n", + " [0. , 0. , 3.64060542]]], shape=(1000, 3, 3)),\n", + " 'forces': array([[[-1.18252549, 0.61937444, 3.99986808],\n", + " [-2.21701853, -2.59755173, 0.59058842],\n", + " [ 0.95453989, 2.24645123, 4.28539322],\n", + " [-1.89656593, 0.26248688, -1.55747417]],\n", + " \n", + " [[-3.5866073 , -0.63116662, -3.47804455],\n", + " [ 1.38506006, 4.50421983, -1.5172525 ],\n", + " [-0.45270431, -4.28091952, 0.59034388],\n", + " [ 0.53859648, 3.69041571, -3.40800086]],\n", + " \n", + " [[-0.90946894, -0.99360256, 4.30879216],\n", + " [-1.73636256, -0.4801091 , -2.77119003],\n", + " [ 2.45927925, -0.6657074 , 1.91804239],\n", + " [ 3.5166533 , 3.99380833, -4.20192041]],\n", + " \n", + " ...,\n", + " \n", + " [[ 4.00717442, -1.75270659, -2.83977795],\n", + " [ 2.31123194, 3.65483274, 3.6941485 ],\n", + " [-3.70570899, -1.68337888, 3.35834517],\n", + " [-1.88716233, -4.10007012, 3.09306596]],\n", + " \n", + " [[ 4.43651419, -4.19854197, -0.528183 ],\n", + " [-0.24718651, -1.08850529, -3.05452326],\n", + " [ 1.04124018, 1.67286904, 1.67654495],\n", + " [-2.78526704, -0.34553401, 3.38822657]],\n", + " \n", + " [[ 0.83626861, 3.63336754, 2.28052153],\n", + " [ 1.07156553, -0.78180473, -2.99380012],\n", + " [-4.18417371, 3.35769524, -3.67153295],\n", + " [-1.90169313, -2.63683289, 1.2364106 ]]], shape=(1000, 4, 3)),\n", + " 'temperature': array([815.82025579, 817.44180283, 785.47195432, 734.43403538,\n", + " 776.14145323, 793.55400075, 858.8460617 , 780.20707429,\n", + " 743.9819146 , 771.41031105, 822.3442892 , 793.22782436,\n", + " 754.42105779, 661.60815502, 654.85844633, 654.76625484,\n", + " 627.48009643, 635.60939369, 659.17592929, 671.92119616,\n", + " 654.06533474, 617.30148248, 575.15153861, 544.7060153 ,\n", + " 576.18190004, 619.28501071, 627.62237231, 662.71808177,\n", + " 716.35430772, 783.92637173, 785.80010026, 794.30154142,\n", + " 790.35854358, 720.16498839, 703.1719085 , 706.62101447,\n", + " 648.28925685, 625.55696968, 625.13403097, 665.80708686,\n", + " 666.3098761 , 576.18675753, 595.53434989, 664.50377313,\n", + " 629.94262076, 633.28010811, 590.28579692, 652.72161348,\n", + " 690.1684355 , 637.61883988, 550.11497275, 555.61163842,\n", + " 542.03434617, 534.60453252, 606.49701794, 645.82243477,\n", + " 622.08280859, 654.4569518 , 607.45198605, 579.45231953,\n", + " 633.95831669, 679.59236907, 678.31217417, 602.49708344,\n", + " 580.27639865, 566.83852514, 564.62028673, 520.96537322,\n", + " 495.34232326, 499.54950716, 475.31012551, 550.29894953,\n", + " 529.06981298, 535.67456577, 477.88074417, 432.13898098,\n", + " 390.00504314, 364.5027654 , 370.76431227, 361.95000912,\n", + " 339.70825445, 327.94723401, 306.48837487, 273.30804624,\n", + " 307.86393129, 323.91335302, 301.48472546, 306.88721387,\n", + " 314.88973259, 303.73603778, 301.26802303, 331.78740172,\n", + " 314.92198255, 389.19546566, 458.14453476, 419.44185761,\n", + " 361.755699 , 375.05854205, 359.49048121, 339.90646777,\n", + " 325.76223723, 298.79277834, 330.75735294, 355.44344131,\n", + " 366.29700606, 417.85589743, 446.82601278, 459.94947021,\n", + " 478.47073437, 425.01265081, 399.4380456 , 437.55029623,\n", + " 376.43620835, 367.22674602, 333.16157941, 305.99174916,\n", + " 314.49752348, 314.21143069, 347.62688997, 364.7893809 ,\n", + " 369.12673409, 426.08556629, 434.31210315, 423.97061852,\n", + " 410.65164584, 403.64689989, 406.99472731, 346.57701877,\n", + " 398.33174129, 384.83348692, 371.862261 , 349.69691188,\n", + " 368.65059923, 346.65428288, 303.41457868, 296.01393879,\n", + " 284.08317837, 299.52781746, 266.87338621, 255.95545453,\n", + " 304.79335068, 320.61644093, 341.57413321, 328.28046233,\n", + " 346.27790131, 369.29202787, 360.49361138, 366.63268673,\n", + " 354.0190108 , 320.46654444, 325.1934138 , 317.61881349,\n", + " 383.89409103, 392.80092234, 374.72334998, 343.67072136,\n", + " 335.38293297, 351.99545118, 325.16764982, 324.40705365,\n", + " 326.30942064, 297.62506154, 307.74895808, 298.47306802,\n", + " 296.20874281, 250.72578167, 266.55259104, 251.40759828,\n", + " 220.41500706, 190.3441214 , 174.15334937, 199.38572836,\n", + " 209.10940912, 232.42019026, 238.31752015, 248.21866801,\n", + " 226.15385141, 212.94770145, 246.04961593, 254.15152838,\n", + " 281.51784681, 315.90372819, 356.15671445, 344.4077585 ,\n", + " 370.50912854, 357.6613215 , 338.01266772, 324.17002245,\n", + " 302.8750075 , 267.15473154, 282.70887678, 292.20427207,\n", + " 302.07381156, 320.20198061, 290.0276013 , 313.08285455,\n", + " 282.68251598, 299.3689874 , 293.51020825, 250.54382341,\n", + " 253.20665294, 232.65336551, 204.49256421, 163.32823702,\n", + " 156.85221593, 133.55422058, 145.07666571, 126.54549439,\n", + " 149.8668426 , 155.46319443, 166.84832052, 170.40901053,\n", + " 185.22281562, 225.42919303, 259.62995706, 224.19528434,\n", + " 231.26016373, 239.1135248 , 289.55848396, 320.22236337,\n", + " 319.83102437, 391.71257584, 445.78394636, 453.53767336,\n", + " 448.24410055, 438.67253828, 469.95957528, 527.80360982,\n", + " 607.80340487, 641.55491113, 623.2307793 , 582.30209266,\n", + " 572.52138006, 592.32780983, 637.56201796, 578.53217365,\n", + " 604.73630011, 658.85508519, 699.64565865, 732.83781157,\n", + " 682.98773066, 724.86953058, 647.7727919 , 586.40108477,\n", + " 609.2597773 , 617.91906119, 536.54761408, 521.49587753,\n", + " 523.5720975 , 447.14772134, 425.78681481, 333.99475724,\n", + " 341.81389374, 364.50160338, 336.09284081, 331.08669313,\n", + " 282.4162224 , 262.4390644 , 264.44463574, 239.78041578,\n", + " 248.55730583, 251.46183434, 226.34000214, 228.56466482,\n", + " 199.90651172, 218.8412848 , 231.74071376, 202.94071436,\n", + " 198.66677534, 210.29500428, 219.72535992, 187.40636557,\n", + " 208.35218483, 178.76487241, 165.44442908, 151.07959479,\n", + " 168.2682261 , 194.15939965, 189.32710247, 218.13607063,\n", + " 233.64216669, 218.34842646, 203.70464325, 187.44647483,\n", + " 201.67168635, 219.62711682, 200.3450156 , 186.57561047,\n", + " 201.75175038, 186.62394678, 220.43867866, 249.77093185,\n", + " 263.47474429, 259.09926359, 257.03699266, 284.26257001,\n", + " 283.32163213, 333.11217422, 311.1498952 , 335.9552427 ,\n", + " 314.9955601 , 312.36543448, 355.29495769, 356.22483755,\n", + " 358.05644918, 363.38983915, 375.37407993, 333.88033949,\n", + " 300.89386522, 267.49107186, 261.1351606 , 247.45414804,\n", + " 244.41986763, 229.12327673, 223.0776059 , 224.75225461,\n", + " 231.68415917, 270.16499409, 250.68734476, 249.17278013,\n", + " 223.98541101, 222.4226398 , 235.74627422, 258.37542672,\n", + " 299.88959911, 280.08290056, 288.80177361, 303.94420606,\n", + " 289.27327229, 330.33003627, 306.9869054 , 321.43694834,\n", + " 305.10713674, 243.69927625, 247.57520046, 221.26577726,\n", + " 240.90105346, 220.32113437, 227.31096279, 238.91413044,\n", + " 229.76102226, 254.99351071, 263.96126968, 251.79808682,\n", + " 225.67467024, 237.1083663 , 262.53436038, 276.69330692,\n", + " 261.2175252 , 305.62219145, 279.27164336, 296.76357442,\n", + " 294.49860596, 276.81331998, 278.70829081, 266.50759669,\n", + " 266.43249936, 279.08312501, 311.35299775, 288.85906827,\n", + " 235.58014883, 238.80825231, 235.14012142, 240.08096203,\n", + " 256.29363163, 273.82898412, 255.0790378 , 286.65491675,\n", + " 295.53273939, 311.82326021, 295.65160635, 308.24093076,\n", + " 291.3034543 , 281.43686719, 338.53645453, 366.21578238,\n", + " 380.37766063, 404.08676826, 424.34037985, 420.5520657 ,\n", + " 419.2045947 , 409.38694781, 405.92851904, 436.0590992 ,\n", + " 458.52280781, 434.60154674, 451.14290406, 439.20568113,\n", + " 430.28307479, 417.54200835, 416.39587217, 413.34214727,\n", + " 376.2189966 , 365.78060258, 369.29860946, 362.62401871,\n", + " 326.65854973, 279.2506771 , 257.28840701, 266.12295282,\n", + " 261.5232899 , 218.48467445, 214.6625579 , 198.50108714,\n", + " 185.26778986, 151.56856195, 146.69733606, 173.83019925,\n", + " 178.57469667, 205.13690171, 177.10551475, 161.55133047,\n", + " 164.14859318, 163.05533978, 161.02330908, 166.95882749,\n", + " 189.97235355, 205.25465751, 166.10664285, 197.32358097,\n", + " 179.78508033, 172.2037915 , 185.44097902, 170.3758769 ,\n", + " 166.24775843, 151.36345145, 159.77758097, 169.7253272 ,\n", + " 206.32218165, 191.44923954, 218.35708683, 240.47841288,\n", + " 267.99166936, 310.42699664, 316.4372082 , 351.37061195,\n", + " 340.25486925, 338.8904153 , 386.49584305, 394.5859184 ,\n", + " 412.84539613, 381.69719246, 315.34709518, 327.16938881,\n", + " 362.93892232, 336.55518344, 328.89332619, 337.40354612,\n", + " 333.12047984, 292.97831327, 261.69290951, 318.44530887,\n", + " 305.39306652, 315.08873793, 293.17703715, 320.78483136,\n", + " 287.40585589, 313.87257256, 263.83289137, 232.05396287,\n", + " 254.90830994, 253.82290545, 253.55515477, 278.58971088,\n", + " 277.96913687, 246.55686853, 220.95774394, 224.4688449 ,\n", + " 250.33211048, 276.66540269, 304.65586395, 323.42942076,\n", + " 299.83738797, 270.75803836, 249.60879707, 253.41265474,\n", + " 245.03357349, 250.60895539, 265.50350478, 275.74924511,\n", + " 304.9338164 , 283.93204711, 338.44265343, 354.24691553,\n", + " 311.16856471, 291.9371645 , 311.92448546, 337.10747866,\n", + " 307.45774974, 298.83261894, 296.59580279, 336.39603566,\n", + " 372.51132459, 376.28673011, 333.38829923, 334.67050332,\n", + " 334.39076137, 358.34659319, 432.37599388, 428.30041293,\n", + " 466.40514757, 402.58202293, 398.6380899 , 397.96276958,\n", + " 372.26906105, 374.02214705, 353.39817904, 305.0396877 ,\n", + " 321.36064903, 326.47372046, 320.56077589, 291.09396727,\n", + " 278.29025338, 282.84931522, 273.07258684, 282.50896751,\n", + " 308.50508116, 297.72089228, 283.5816088 , 261.94019072,\n", + " 294.51232491, 249.39880229, 218.04551924, 209.38889649,\n", + " 207.22196906, 231.85957679, 222.02635273, 256.61395475,\n", + " 243.54500197, 267.95160048, 285.60595988, 311.50217398,\n", + " 331.31999707, 321.73812723, 326.25560909, 363.3860755 ,\n", + " 372.0485616 , 421.66975634, 392.68650107, 409.34141839,\n", + " 402.90879368, 386.09691093, 429.73242075, 441.72463338,\n", + " 485.70929826, 532.01512462, 519.85802877, 486.74582898,\n", + " 537.90783598, 553.12900272, 539.99766792, 527.00231774,\n", + " 531.56543491, 496.90416207, 465.85043571, 444.81767069,\n", + " 406.20178983, 352.22970251, 373.45845813, 361.48008156,\n", + " 338.86978854, 346.84231784, 315.87283924, 284.53074959,\n", + " 238.92240965, 210.47485973, 240.43339012, 221.63755251,\n", + " 208.91190714, 227.30171073, 221.10614117, 231.2579806 ,\n", + " 245.51603106, 249.31215575, 244.11399456, 241.96196836,\n", + " 227.71502811, 197.19669413, 199.03108561, 158.86255999,\n", + " 152.13682708, 141.07983939, 122.56768129, 138.15653908,\n", + " 163.1409259 , 163.25805507, 184.38488261, 182.86242531,\n", + " 187.53099395, 217.39990497, 253.12187456, 230.51020454,\n", + " 235.75755476, 237.60458068, 251.59384532, 256.8655702 ,\n", + " 222.36067879, 205.55652224, 228.14317195, 277.79850902,\n", + " 265.69901288, 274.92608431, 273.15095453, 300.86211714,\n", + " 304.78249824, 293.24477865, 280.89588817, 252.8191729 ,\n", + " 239.83527191, 238.65503521, 220.17484514, 232.84412761,\n", + " 205.06784114, 181.23130228, 211.74225669, 204.32689607,\n", + " 159.48108144, 184.51606923, 187.66116996, 209.67153173,\n", + " 237.84174645, 221.42283817, 225.43205509, 218.70671349,\n", + " 251.20376374, 261.43201681, 283.54665083, 327.00829866,\n", + " 353.70453505, 321.21009837, 313.54438648, 357.1889932 ,\n", + " 382.6031491 , 368.1486032 , 342.77278762, 373.16476906,\n", + " 367.63976202, 353.92116203, 373.49457097, 375.89812163,\n", + " 370.76484765, 296.32573091, 285.32129863, 267.58200011,\n", + " 248.51083925, 257.39899345, 277.11834217, 264.61083042,\n", + " 264.22125024, 274.05432222, 257.40101272, 257.91940303,\n", + " 283.08920853, 286.80671685, 229.33175169, 209.40598072,\n", + " 223.55588157, 259.03033824, 295.7296189 , 309.98843347,\n", + " 312.45102623, 321.66958873, 263.93237964, 240.19626793,\n", + " 216.49344026, 211.32355786, 248.56221689, 239.47760848,\n", + " 205.03359186, 184.86031182, 167.1211159 , 162.9395796 ,\n", + " 179.38822592, 176.64886503, 173.16184342, 156.37502205,\n", + " 154.8919268 , 139.42971738, 156.20527601, 176.43023413,\n", + " 182.45241321, 152.20223543, 175.38860631, 217.10885367,\n", + " 246.96246064, 203.95327447, 184.45117629, 184.83733641,\n", + " 191.98824642, 225.82211839, 240.83528502, 252.24769882,\n", + " 265.05124238, 310.26002908, 325.52637604, 317.22480796,\n", + " 335.59257193, 382.67919249, 427.13558077, 391.08807321,\n", + " 396.90071326, 400.77278104, 419.32544592, 405.00730733,\n", + " 414.13692117, 432.13986536, 432.7682589 , 462.90617186,\n", + " 494.18616687, 451.5188857 , 386.08075519, 350.78030151,\n", + " 378.37210258, 363.91826554, 375.4802091 , 364.49482222,\n", + " 342.23808342, 331.55509999, 342.84710557, 314.8817331 ,\n", + " 251.95041983, 278.78803312, 265.22009379, 243.85065097,\n", + " 238.88674155, 245.68551091, 252.33651922, 275.27688911,\n", + " 256.7603903 , 251.96955243, 273.79903817, 253.18371284,\n", + " 237.23122658, 252.68974761, 235.6532458 , 195.9423636 ,\n", + " 194.16806512, 179.70365693, 181.67746946, 190.35144234,\n", + " 186.44732333, 171.49414891, 128.02204945, 126.7563359 ,\n", + " 138.8883265 , 163.94401689, 156.75253246, 179.32803788,\n", + " 170.02031857, 199.65562561, 191.3081239 , 190.12296173,\n", + " 190.28285618, 173.580645 , 185.67270824, 167.21883049,\n", + " 149.77255902, 151.55160138, 160.86334486, 153.21057899,\n", + " 165.17899841, 166.69989308, 200.84631406, 188.33986145,\n", + " 203.75860225, 232.88239947, 242.12983959, 242.84188435,\n", + " 253.55883485, 250.7459854 , 254.92902443, 223.89480937,\n", + " 204.5481642 , 217.44381372, 192.08613061, 156.99368724,\n", + " 143.93058118, 175.34849021, 181.3331732 , 182.86759555,\n", + " 156.08931361, 197.78387729, 178.8131255 , 195.76611271,\n", + " 245.78507839, 278.62821111, 278.17163719, 308.44963112,\n", + " 373.45100746, 394.09211681, 397.90828979, 403.6200852 ,\n", + " 442.82930826, 443.74544837, 423.35279832, 387.25332965,\n", + " 378.09146132, 445.78726264, 404.35469277, 425.67368729,\n", + " 435.5221701 , 418.66142042, 378.00483998, 334.3405161 ,\n", + " 317.77303189, 376.4150277 , 370.0272849 , 377.08731746,\n", + " 355.31745093, 337.69840661, 343.43830568, 329.87239961,\n", + " 350.54243846, 322.33613112, 378.2191271 , 392.19313902,\n", + " 380.76453274, 349.45729122, 312.03359345, 288.66344756,\n", + " 299.73836835, 307.6346543 , 258.67916819, 221.15237258,\n", + " 229.71928731, 234.71001157, 233.34417177, 259.24717458,\n", + " 255.08265796, 210.40252731, 187.20538651, 207.55875373,\n", + " 188.78215246, 197.02206354, 158.74366423, 173.47650111,\n", + " 178.85058838, 151.54595987, 162.17504328, 141.95638708,\n", + " 129.64846889, 144.68638242, 142.82709893, 141.04654112,\n", + " 155.5073075 , 185.84445854, 185.43864201, 179.39259691,\n", + " 186.51191392, 190.70426456, 165.83020284, 208.89965464,\n", + " 227.51733628, 249.97094802, 243.46121505, 223.06720828,\n", + " 230.84995861, 233.07242152, 249.03112371, 271.37345313,\n", + " 226.08403872, 216.90249183, 225.52354337, 253.40268716,\n", + " 268.71981249, 253.61503246, 261.17894443, 248.30119034,\n", + " 263.32535536, 277.45166769, 281.35824663, 280.72115601,\n", + " 289.48977206, 270.77020989, 260.09105237, 258.22915692,\n", + " 277.41828173, 294.21930332, 285.4952582 , 265.84675349,\n", + " 275.32004772, 275.95929894, 254.78134384, 261.721972 ,\n", + " 275.85000569, 299.68809866, 276.96571676, 265.66293867,\n", + " 251.79075808, 251.87537547, 232.07045612, 247.72347844,\n", + " 221.2310106 , 228.51320921, 220.06724031, 240.21496803,\n", + " 248.99703425, 254.76084307, 311.09638892, 324.80018809,\n", + " 328.50775684, 325.67398912, 279.21276177, 314.06540344,\n", + " 308.78005041, 303.26151936, 284.42138078, 247.73269552,\n", + " 296.7971917 , 324.11366663, 404.94059271, 369.06139957,\n", + " 328.21417177, 312.31084094, 351.03687019, 341.04993494,\n", + " 324.12800715, 345.08269265, 317.92742205, 352.44690431,\n", + " 381.17756586, 372.35940874, 417.91897126, 399.58745665,\n", + " 432.29438347, 382.60792101, 444.34691341, 400.08906406,\n", + " 326.14061792, 312.25471577, 306.92273981, 330.6408458 ,\n", + " 314.65554485, 327.84954083, 296.6036253 , 284.65018484,\n", + " 260.24399656, 278.48368253, 266.13447454, 323.90512753,\n", + " 337.6077855 , 328.69718425, 325.2282086 , 313.02073315,\n", + " 307.88275128, 295.93784726, 260.66476747, 265.97052026,\n", + " 281.32202534, 263.21886137, 262.04686072, 258.14598986,\n", + " 223.28089524, 215.93805813, 217.83549744, 258.68303497,\n", + " 244.74295771, 259.07754566, 237.51994049, 238.16506292,\n", + " 226.79696955, 211.66116833, 215.39670875, 223.14370642,\n", + " 205.75232495, 210.9621163 , 219.32766934, 177.54230519,\n", + " 160.62375078, 149.23847636, 183.16736733, 162.21271445,\n", + " 161.12130493, 170.81995302, 176.22401771, 177.96644621,\n", + " 156.76905274, 182.67005864, 172.45456165, 163.77201178,\n", + " 129.65318668, 116.65994331, 111.51330274, 119.04397112,\n", + " 109.28933402, 103.99884707, 105.75976486, 125.11497491,\n", + " 125.40915542, 108.95874072, 126.0065744 , 149.48166905,\n", + " 172.37344743, 207.79847258, 197.72841025, 185.46505398,\n", + " 206.06828377, 205.58464643, 213.1775273 , 228.58988194]),\n", + " 'energy_pot': array([-13.911864 , -13.91210684, -13.91261028, -13.91397279,\n", + " -13.91402725, -13.91511188, -13.91607394, -13.91673471,\n", + " -13.91813917, -13.91933946, -13.92065956, -13.92280442,\n", + " -13.92434382, -13.92663498, -13.92989605, -13.93284945,\n", + " -13.93535655, -13.93773423, -13.94029787, -13.94311207,\n", + " -13.94695407, -13.95113741, -13.95581105, -13.96161899,\n", + " -13.96788901, -13.97472691, -13.9818304 , -13.98881881,\n", + " -13.99572191, -14.00272126, -14.00939754, -14.01587 ,\n", + " -14.02230675, -14.0286748 , -14.0351875 , -14.04136716,\n", + " -14.04737092, -14.053408 , -14.05865029, -14.06366939,\n", + " -14.06853012, -14.07272295, -14.07664671, -14.08067188,\n", + " -14.08437556, -14.08758618, -14.09027989, -14.09282527,\n", + " -14.09499977, -14.09699011, -14.09818583, -14.09885073,\n", + " -14.09927443, -14.09880865, -14.09827828, -14.09766839,\n", + " -14.09687073, -14.09513605, -14.09348451, -14.09167126,\n", + " -14.0898526 , -14.08773667, -14.08501166, -14.08219409,\n", + " -14.07905882, -14.07541282, -14.07140754, -14.06735747,\n", + " -14.06294324, -14.05850214, -14.05437123, -14.05022036,\n", + " -14.04570907, -14.04053047, -14.03521696, -14.03022918,\n", + " -14.02566286, -14.02163501, -14.01842253, -14.01521412,\n", + " -14.012129 , -14.00940365, -14.0075112 , -14.00638187,\n", + " -14.00525623, -14.00416994, -14.00325406, -14.00335373,\n", + " -14.00290986, -14.0031942 , -14.00347787, -14.00422037,\n", + " -14.00575201, -14.00734842, -14.00910816, -14.01086313,\n", + " -14.01274967, -14.01500394, -14.01695782, -14.01886552,\n", + " -14.020935 , -14.02297597, -14.02564752, -14.02884438,\n", + " -14.03192785, -14.03492335, -14.03789039, -14.04108762,\n", + " -14.0442523 , -14.0465337 , -14.04835883, -14.04978081,\n", + " -14.05131338, -14.05278275, -14.05458683, -14.05660907,\n", + " -14.05847016, -14.05991002, -14.06085306, -14.06179466,\n", + " -14.06220924, -14.06251427, -14.06258833, -14.06271589,\n", + " -14.06284957, -14.06275533, -14.0623266 , -14.06189248,\n", + " -14.06107012, -14.06058401, -14.06062127, -14.06052937,\n", + " -14.0602348 , -14.05954871, -14.05916983, -14.05901096,\n", + " -14.05870549, -14.05835256, -14.05857289, -14.05865615,\n", + " -14.05908754, -14.06003367, -14.06122418, -14.0631267 ,\n", + " -14.06469983, -14.06629781, -14.06745772, -14.0680365 ,\n", + " -14.06886262, -14.06941819, -14.06953483, -14.06981624,\n", + " -14.06972967, -14.0698446 , -14.0700586 , -14.07040346,\n", + " -14.06996465, -14.06903959, -14.06822816, -14.06788172,\n", + " -14.06707474, -14.06615967, -14.06523771, -14.06378117,\n", + " -14.06259523, -14.06153268, -14.06066147, -14.06012464,\n", + " -14.05944847, -14.05860627, -14.05821148, -14.05805977,\n", + " -14.0577449 , -14.05715715, -14.05678271, -14.05650011,\n", + " -14.05623873, -14.05554461, -14.05487372, -14.05411915,\n", + " -14.05351526, -14.0526109 , -14.0508752 , -14.0491105 ,\n", + " -14.04635109, -14.04323779, -14.04023982, -14.03652713,\n", + " -14.03272565, -14.0284103 , -14.02394734, -14.01879861,\n", + " -14.01366604, -14.00805245, -14.00198652, -13.99573307,\n", + " -13.98984691, -13.98462378, -13.97873533, -13.97355642,\n", + " -13.96837848, -13.96372693, -13.96002198, -13.95743617,\n", + " -13.95601327, -13.95596604, -13.95661711, -13.957734 ,\n", + " -13.95909661, -13.9617631 , -13.96403543, -13.96663773,\n", + " -13.97008862, -13.97473543, -13.98034374, -13.98606566,\n", + " -13.99057879, -13.99595559, -14.00164787, -14.00796152,\n", + " -14.01448532, -14.02195243, -14.02992132, -14.03757614,\n", + " -14.04517514, -14.05199072, -14.05885499, -14.06541632,\n", + " -14.07210348, -14.07859213, -14.08406475, -14.08917012,\n", + " -14.09361755, -14.09724771, -14.10061449, -14.10365484,\n", + " -14.10646413, -14.10897489, -14.11116962, -14.11303892,\n", + " -14.11451175, -14.11505073, -14.11510622, -14.11485696,\n", + " -14.11408758, -14.11309658, -14.11152883, -14.10989862,\n", + " -14.10810246, -14.10609802, -14.10437868, -14.10241899,\n", + " -14.10048048, -14.09799882, -14.09530853, -14.09267875,\n", + " -14.08987555, -14.08737071, -14.0848818 , -14.08221684,\n", + " -14.07989704, -14.077886 , -14.07609459, -14.07414889,\n", + " -14.07246191, -14.07064566, -14.06810888, -14.06582213,\n", + " -14.06375563, -14.06128407, -14.05898754, -14.0567047 ,\n", + " -14.05482996, -14.05362129, -14.0529225 , -14.05291698,\n", + " -14.05290685, -14.05334255, -14.05370674, -14.05419807,\n", + " -14.05483162, -14.05639307, -14.05816463, -14.05956941,\n", + " -14.06081712, -14.06243684, -14.064358 , -14.06604569,\n", + " -14.0682219 , -14.0701616 , -14.07190074, -14.07426781,\n", + " -14.07616653, -14.0779088 , -14.07913829, -14.079953 ,\n", + " -14.08076492, -14.08127916, -14.08233909, -14.08326184,\n", + " -14.08413028, -14.0848456 , -14.08526129, -14.08558628,\n", + " -14.08548589, -14.08525158, -14.08469953, -14.08400728,\n", + " -14.08338081, -14.08306051, -14.0828391 , -14.08264089,\n", + " -14.0827306 , -14.08260474, -14.08229148, -14.08202755,\n", + " -14.08217354, -14.08280123, -14.08348501, -14.08427751,\n", + " -14.08499864, -14.08647493, -14.08802353, -14.08976945,\n", + " -14.09175893, -14.09402666, -14.09604961, -14.09794807,\n", + " -14.09956841, -14.10131069, -14.10298236, -14.10454911,\n", + " -14.10610077, -14.10735608, -14.10829782, -14.10956363,\n", + " -14.11062498, -14.11175342, -14.11248731, -14.11334812,\n", + " -14.11401392, -14.11492045, -14.11586074, -14.11684367,\n", + " -14.1175528 , -14.11813396, -14.11858746, -14.11878152,\n", + " -14.11923591, -14.11973974, -14.12069357, -14.12144333,\n", + " -14.12191225, -14.12215706, -14.12192266, -14.12176475,\n", + " -14.12166511, -14.12097755, -14.12027827, -14.11921233,\n", + " -14.11802622, -14.11700771, -14.11630607, -14.11617615,\n", + " -14.11613985, -14.11598077, -14.11568028, -14.1149329 ,\n", + " -14.11397464, -14.11282402, -14.1118942 , -14.11068514,\n", + " -14.10948244, -14.10859047, -14.10785839, -14.10699743,\n", + " -14.10597834, -14.10437416, -14.10261388, -14.10079614,\n", + " -14.09855644, -14.0963589 , -14.09404353, -14.09129831,\n", + " -14.08793489, -14.08417618, -14.08054482, -14.07684792,\n", + " -14.07320484, -14.06893081, -14.0648077 , -14.06054926,\n", + " -14.05598294, -14.05134725, -14.04687024, -14.04170519,\n", + " -14.03713076, -14.03275906, -14.02832716, -14.02432676,\n", + " -14.0199434 , -14.01585247, -14.01155597, -14.00820875,\n", + " -14.00519535, -14.00331296, -14.00197941, -14.00178379,\n", + " -14.00136865, -14.00201845, -14.00288155, -14.00397482,\n", + " -14.00604147, -14.00835357, -14.01052004, -14.01281588,\n", + " -14.01517039, -14.0178533 , -14.02105584, -14.02398022,\n", + " -14.02694563, -14.03000649, -14.03324034, -14.03592896,\n", + " -14.03855328, -14.04122739, -14.04345408, -14.04576581,\n", + " -14.04824828, -14.05058232, -14.05264847, -14.05469654,\n", + " -14.05651398, -14.05856021, -14.06066191, -14.06261733,\n", + " -14.06435379, -14.06565374, -14.06685296, -14.06808616,\n", + " -14.06867352, -14.06895072, -14.06951016, -14.0700257 ,\n", + " -14.06990814, -14.07020451, -14.07004142, -14.06970469,\n", + " -14.0686533 , -14.06757822, -14.06708408, -14.06652261,\n", + " -14.06621568, -14.06559783, -14.06468504, -14.06417725,\n", + " -14.0639002 , -14.06386361, -14.06401101, -14.0645749 ,\n", + " -14.06550582, -14.0662244 , -14.06703575, -14.06811574,\n", + " -14.06853413, -14.0688745 , -14.06893522, -14.07000549,\n", + " -14.07090732, -14.07237783, -14.07424333, -14.07603893,\n", + " -14.07735046, -14.07856996, -14.08013887, -14.08166692,\n", + " -14.08278291, -14.08403306, -14.0857905 , -14.08768237,\n", + " -14.08961722, -14.09181986, -14.09399477, -14.09653344,\n", + " -14.09916073, -14.10166524, -14.10404432, -14.10670834,\n", + " -14.10906395, -14.11140912, -14.11337277, -14.11519385,\n", + " -14.11658746, -14.1178207 , -14.11906307, -14.12025615,\n", + " -14.12100765, -14.12156643, -14.1216754 , -14.12114871,\n", + " -14.11974689, -14.11797764, -14.11598249, -14.11332898,\n", + " -14.11055171, -14.10750739, -14.10425158, -14.10047123,\n", + " -14.09713133, -14.09348811, -14.0892997 , -14.08510962,\n", + " -14.08129094, -14.07730284, -14.07305571, -14.0692484 ,\n", + " -14.06525279, -14.06135226, -14.05812858, -14.05497043,\n", + " -14.05247713, -14.05022779, -14.04856964, -14.04742625,\n", + " -14.04706894, -14.04663538, -14.04603704, -14.04539386,\n", + " -14.04615001, -14.04726211, -14.04835051, -14.04967853,\n", + " -14.051047 , -14.05308059, -14.05505043, -14.05659329,\n", + " -14.05880488, -14.0617565 , -14.06446668, -14.06679696,\n", + " -14.06892826, -14.07079719, -14.07269775, -14.0746176 ,\n", + " -14.07697963, -14.07941637, -14.08165996, -14.08356767,\n", + " -14.0849873 , -14.08602759, -14.08653394, -14.0865062 ,\n", + " -14.08607806, -14.08580927, -14.08465137, -14.08341211,\n", + " -14.08184624, -14.07954308, -14.07716301, -14.07471933,\n", + " -14.07241086, -14.06950192, -14.06623531, -14.06249419,\n", + " -14.05842332, -14.05462556, -14.05076308, -14.04661408,\n", + " -14.04311987, -14.0390889 , -14.03520937, -14.03058518,\n", + " -14.02616057, -14.02199481, -14.01749298, -14.01307888,\n", + " -14.00814197, -14.00358051, -13.99917897, -13.99460012,\n", + " -13.9913979 , -13.98875947, -13.98689808, -13.9860476 ,\n", + " -13.98534754, -13.9853859 , -13.98594544, -13.98638571,\n", + " -13.9880859 , -13.99011981, -13.99334099, -13.99675091,\n", + " -13.99963222, -14.00280218, -14.00646836, -14.01002817,\n", + " -14.01406198, -14.01729415, -14.02122067, -14.02542549,\n", + " -14.029921 , -14.034516 , -14.03893536, -14.04296825,\n", + " -14.04717256, -14.05114596, -14.05484531, -14.05865849,\n", + " -14.06205001, -14.06512289, -14.06834203, -14.07164396,\n", + " -14.07486149, -14.07806679, -14.0809245 , -14.08406386,\n", + " -14.08681255, -14.08909428, -14.09118436, -14.09309493,\n", + " -14.09530654, -14.09742675, -14.09948372, -14.1017487 ,\n", + " -14.10395572, -14.10596083, -14.10790469, -14.10971339,\n", + " -14.11138867, -14.11287618, -14.11404979, -14.11508619,\n", + " -14.1159901 , -14.11642846, -14.1166192 , -14.1165699 ,\n", + " -14.11619488, -14.11557354, -14.11451797, -14.1132583 ,\n", + " -14.11175349, -14.11003561, -14.10849904, -14.10667509,\n", + " -14.10449432, -14.10238833, -14.09982096, -14.0970803 ,\n", + " -14.0941411 , -14.09072345, -14.0867092 , -14.08266882,\n", + " -14.07866915, -14.07469299, -14.07153624, -14.06815099,\n", + " -14.06532817, -14.06258827, -14.06021657, -14.05720243,\n", + " -14.05430902, -14.05193425, -14.05032248, -14.0485549 ,\n", + " -14.04725244, -14.04614449, -14.04460084, -14.04347452,\n", + " -14.04220805, -14.04108099, -14.04033146, -14.03940034,\n", + " -14.0384645 , -14.03788033, -14.03762792, -14.03735736,\n", + " -14.03768235, -14.03877161, -14.04019091, -14.04205279,\n", + " -14.04357934, -14.04514483, -14.04663278, -14.04824971,\n", + " -14.0500781 , -14.05251928, -14.05483658, -14.05714147,\n", + " -14.05902378, -14.06066408, -14.06204542, -14.06337485,\n", + " -14.06531217, -14.06748343, -14.06992659, -14.07202929,\n", + " -14.07409587, -14.07630982, -14.07863363, -14.08120333,\n", + " -14.08340466, -14.08580854, -14.08811702, -14.09058126,\n", + " -14.09321077, -14.09573622, -14.09778546, -14.09967917,\n", + " -14.10115169, -14.10225647, -14.1032527 , -14.10386426,\n", + " -14.10446738, -14.10492123, -14.10492601, -14.10511942,\n", + " -14.10519147, -14.10510564, -14.10492531, -14.10434394,\n", + " -14.10383592, -14.10338617, -14.10260094, -14.10159146,\n", + " -14.09992662, -14.09799038, -14.09598637, -14.0937924 ,\n", + " -14.09140223, -14.08894467, -14.08628715, -14.08330084,\n", + " -14.08041413, -14.07737109, -14.07450562, -14.07206322,\n", + " -14.06947381, -14.06689475, -14.06440118, -14.06211534,\n", + " -14.06011083, -14.05765667, -14.05564363, -14.05373246,\n", + " -14.05201971, -14.05001433, -14.04832539, -14.0464726 ,\n", + " -14.04446654, -14.04336055, -14.0417417 , -14.04014969,\n", + " -14.03867543, -14.03717706, -14.03624679, -14.03481527,\n", + " -14.03424878, -14.0340183 , -14.03350181, -14.03302189,\n", + " -14.03301918, -14.03279038, -14.03217627, -14.03160547,\n", + " -14.03229251, -14.03405408, -14.03646739, -14.03934966,\n", + " -14.04220463, -14.04451649, -14.04639533, -14.04814042,\n", + " -14.05019075, -14.05225119, -14.05489755, -14.05694632,\n", + " -14.05819976, -14.05984438, -14.06145861, -14.06293756,\n", + " -14.06417622, -14.06527878, -14.0668982 , -14.06888859,\n", + " -14.07142498, -14.07430366, -14.0774361 , -14.08077451,\n", + " -14.08448683, -14.08814016, -14.09145778, -14.09453786,\n", + " -14.09757666, -14.10035302, -14.10310146, -14.10549843,\n", + " -14.10782371, -14.10999054, -14.11175727, -14.113248 ,\n", + " -14.11445889, -14.11524638, -14.11560241, -14.11570717,\n", + " -14.11572601, -14.11561025, -14.1152399 , -14.11432993,\n", + " -14.11321627, -14.11208233, -14.11067953, -14.10910574,\n", + " -14.10710983, -14.10485398, -14.10246206, -14.09980627,\n", + " -14.09719349, -14.0947787 , -14.09273023, -14.09081848,\n", + " -14.08840457, -14.08572877, -14.0829808 , -14.08047442,\n", + " -14.07791126, -14.07496242, -14.07186945, -14.06876213,\n", + " -14.06565049, -14.06259331, -14.05979557, -14.05684374,\n", + " -14.05425768, -14.05182104, -14.04921926, -14.04660367,\n", + " -14.04463359, -14.0423556 , -14.04045956, -14.03916152,\n", + " -14.03861518, -14.03883033, -14.03884937, -14.03846133,\n", + " -14.03879557, -14.03975491, -14.04026261, -14.04120647,\n", + " -14.0424247 , -14.04379633, -14.04506806, -14.04679162,\n", + " -14.0481691 , -14.04944921, -14.05092877, -14.05231976,\n", + " -14.05358738, -14.05463765, -14.05560979, -14.05591033,\n", + " -14.05629958, -14.05657354, -14.05656 , -14.05669815,\n", + " -14.05654435, -14.05679032, -14.05624794, -14.05605218,\n", + " -14.05597738, -14.05566841, -14.05496607, -14.05431654,\n", + " -14.05392089, -14.05358137, -14.05347241, -14.05350101,\n", + " -14.05398456, -14.05492375, -14.05597443, -14.05747387,\n", + " -14.05927254, -14.0607708 , -14.0624509 , -14.06380339,\n", + " -14.06494066, -14.06597119, -14.06675853, -14.06811488,\n", + " -14.06894902, -14.07054839, -14.07210845, -14.07377256,\n", + " -14.07541675, -14.07748715, -14.07979903, -14.08197993,\n", + " -14.0846608 , -14.08697604, -14.08959301, -14.09248972,\n", + " -14.09575537, -14.09841145, -14.10107197, -14.10333437,\n", + " -14.10565437, -14.10755614, -14.10938776, -14.11074743,\n", + " -14.11185935, -14.11268156, -14.11321593, -14.11343395,\n", + " -14.11347359, -14.11311178, -14.11240879, -14.11161693,\n", + " -14.11058172, -14.10908384, -14.10764032, -14.10549205,\n", + " -14.10319726, -14.10071418, -14.09829142, -14.09557262,\n", + " -14.09260089, -14.08983487, -14.08694777, -14.08375342,\n", + " -14.08070488, -14.07753786, -14.07404478, -14.07062322,\n", + " -14.06739128, -14.06426128, -14.06146676, -14.05879272,\n", + " -14.05676307, -14.05526256, -14.05388975, -14.05168861,\n", + " -14.04933574, -14.04691054, -14.04423853, -14.04132895,\n", + " -14.03871213, -14.03647393, -14.0351256 , -14.03374696,\n", + " -14.03229733, -14.03071458, -14.02893536, -14.02658668,\n", + " -14.02439404, -14.02260427, -14.02147374, -14.02104187,\n", + " -14.02004188, -14.01886034, -14.01739657, -14.01635042,\n", + " -14.01492823, -14.01365217, -14.01332221, -14.01318967,\n", + " -14.01301479, -14.01224423, -14.01111495, -14.00998217,\n", + " -14.00917353, -14.00856043, -14.00852114, -14.00827044,\n", + " -14.00769619, -14.00703554, -14.00751324, -14.00791286,\n", + " -14.00844079, -14.00956438, -14.01093203, -14.01242918,\n", + " -14.01446557, -14.01641771, -14.01851386, -14.02099989,\n", + " -14.02356666, -14.026153 , -14.02866174, -14.03139521,\n", + " -14.0337511 , -14.03642062, -14.03930292, -14.04258811,\n", + " -14.04608836, -14.04987505, -14.05352912, -14.05713191,\n", + " -14.0603897 , -14.06372353, -14.06737259, -14.07088014]),\n", + " 'energy_tot': array([-13.59550487, -13.59511891, -13.60801963, -13.62917364,\n", + " -13.61305478, -13.60738716, -13.58303024, -13.61418568,\n", + " -13.62963754, -13.62020164, -13.60177054, -13.61520619,\n", + " -13.63179409, -13.67007628, -13.67595476, -13.67894391,\n", + " -13.69203205, -13.69125734, -13.68468234, -13.68255418,\n", + " -13.69332033, -13.71175998, -13.73277853, -13.75039265,\n", + " -13.74445694, -13.7345803 , -13.73845072, -13.73182971,\n", + " -13.71793372, -13.69872995, -13.70467964, -13.7078554 ,\n", + " -13.71582117, -13.7494089 , -13.76251119, -13.76735336,\n", + " -13.79597703, -13.81082925, -13.81623555, -13.80548243,\n", + " -13.81014818, -13.849289 , -13.84571014, -13.82299032,\n", + " -13.84009613, -13.84201254, -13.86137861, -13.8397126 ,\n", + " -13.82736595, -13.849734 , -13.88486201, -13.88339541,\n", + " -13.88908412, -13.89149947, -13.86309061, -13.84723109,\n", + " -13.85563919, -13.84135045, -13.85792652, -13.86697099,\n", + " -13.84401597, -13.82420404, -13.82197547, -13.84855751,\n", + " -13.85403899, -13.85560393, -13.85245884, -13.86533729,\n", + " -13.87085917, -13.86478662, -13.87005526, -13.83682519,\n", + " -13.84054614, -13.83280636, -13.84990415, -13.86265414,\n", + " -13.87442653, -13.88028797, -13.87464739, -13.87485698,\n", + " -13.88039678, -13.88223213, -13.888661 , -13.90039836,\n", + " -13.88587262, -13.87856268, -13.88634419, -13.88434888,\n", + " -13.88080178, -13.88541131, -13.88665202, -13.87555971,\n", + " -13.88363143, -13.85642604, -13.83144868, -13.84821178,\n", + " -13.87246789, -13.86956358, -13.87755444, -13.88705644,\n", + " -13.89461078, -13.90710998, -13.89738629, -13.89101037,\n", + " -13.88988504, -13.87288701, -13.86462 , -13.86272821,\n", + " -13.85871071, -13.88172211, -13.89346457, -13.88010737,\n", + " -13.90533878, -13.9103794 , -13.92539328, -13.93795146,\n", + " -13.93651417, -13.93806498, -13.92605016, -13.92033647,\n", + " -13.91906911, -13.89728662, -13.89417059, -13.89830838,\n", + " -13.90360689, -13.90622896, -13.90450201, -13.9274967 ,\n", + " -13.90660486, -13.91135312, -13.91642036, -13.92492375,\n", + " -13.91727931, -13.92512296, -13.94151159, -13.94422254,\n", + " -13.94854359, -13.94220153, -13.95508461, -13.95940163,\n", + " -13.94089464, -13.93570489, -13.92876841, -13.93582596,\n", + " -13.93042003, -13.92309359, -13.92766535, -13.92586352,\n", + " -13.93158097, -13.94514754, -13.94343119, -13.94664988,\n", + " -13.92086305, -13.91752408, -13.92474822, -13.93713468,\n", + " -13.93990971, -13.93254264, -13.94213451, -13.94208301,\n", + " -13.94053833, -13.9507465 , -13.94589869, -13.94803915,\n", + " -13.94773127, -13.96430613, -13.95729759, -13.96263369,\n", + " -13.97397584, -13.98479455, -13.99067822, -13.98074188,\n", + " -13.97665637, -13.96702915, -13.96436784, -13.96024576,\n", + " -13.96854069, -13.97296766, -13.95946049, -13.95556416,\n", + " -13.94434814, -13.93010962, -13.9127646 , -13.91555591,\n", + " -13.9026749 , -13.90454373, -13.90916512, -13.91082034,\n", + " -13.91527665, -13.92481292, -13.91431837, -13.90548751,\n", + " -13.89652773, -13.88388438, -13.88951949, -13.87432567,\n", + " -13.88022816, -13.86853435, -13.86491782, -13.87640043,\n", + " -13.87018989, -13.87350851, -13.88072377, -13.89410068,\n", + " -13.89518905, -13.90417632, -13.90035922, -13.90866213,\n", + " -13.90098118, -13.90147751, -13.89933491, -13.90055645,\n", + " -13.89826284, -13.8873184 , -13.87966432, -13.89912711,\n", + " -13.90090062, -13.90323204, -13.88936276, -13.88378556,\n", + " -13.8904611 , -13.87005396, -13.85705503, -13.86170311,\n", + " -13.87135485, -13.88188209, -13.87661387, -13.86074441,\n", + " -13.83640922, -13.82980969, -13.84238805, -13.86336476,\n", + " -13.87160496, -13.86755457, -13.85338042, -13.87931138,\n", + " -13.87195922, -13.85348378, -13.83986072, -13.82885875,\n", + " -13.84966247, -13.83396051, -13.8639126 , -13.88746209,\n", + " -13.87782856, -13.87347966, -13.90346617, -13.90767272,\n", + " -13.90507145, -13.93270289, -13.93926689, -13.97290235,\n", + " -13.96793174, -13.95665223, -13.9649783 , -13.96428981,\n", + " -13.98036007, -13.98560197, -13.98233534, -13.98923468,\n", + " -13.98351138, -13.98037402, -13.98832436, -13.98551599,\n", + " -13.99494208, -13.9857833 , -13.97824437, -13.98712569,\n", + " -13.98671654, -13.97973578, -13.97378234, -13.98403218,\n", + " -13.97403506, -13.98429977, -13.98876639, -13.99433126,\n", + " -13.98765572, -13.97805134, -13.98028939, -13.96960917,\n", + " -13.96422976, -13.97172182, -13.97917196, -13.98688134,\n", + " -13.98261279, -13.97726974, -13.98666813, -13.99369532,\n", + " -13.98998652, -13.99779249, -13.98641893, -13.97741152,\n", + " -13.97399618, -13.97743517, -13.97946437, -13.96972154,\n", + " -13.97089833, -13.95210478, -13.96168125, -13.95298497,\n", + " -13.96198117, -13.9637164 , -13.94748486, -13.94744926,\n", + " -13.9466386 , -13.94433611, -13.9391368 , -13.95453502,\n", + " -13.96670006, -13.97933271, -13.98157599, -13.98668302,\n", + " -13.98794936, -13.99375522, -13.99578635, -13.99487302,\n", + " -13.99233096, -13.97803653, -13.98627336, -13.98765318,\n", + " -13.99814148, -14.00022378, -13.99660574, -13.98957651,\n", + " -13.97546761, -13.98541599, -13.98405793, -13.98008446,\n", + " -13.9873939 , -13.97321517, -13.98393884, -13.97990215,\n", + " -13.98778619, -14.01285426, -14.012293 , -14.0237611 ,\n", + " -14.01720826, -14.0263172 , -14.02434057, -14.02070189,\n", + " -14.02491709, -14.01603896, -14.01350172, -14.0192013 ,\n", + " -14.03004058, -14.02618798, -14.01678177, -14.01148527,\n", + " -14.01794086, -14.00122544, -14.01239749, -14.00636422,\n", + " -14.00771145, -14.01481427, -14.01384503, -14.01841832,\n", + " -14.0183478 , -14.01275458, -13.99954167, -14.00719843,\n", + " -14.02667285, -14.02440254, -14.02512333, -14.02307745,\n", + " -14.0167542 , -14.00979525, -14.01676562, -14.00377374,\n", + " -13.99937283, -13.99190506, -13.99724629, -13.99115534,\n", + " -13.99652066, -13.99945476, -13.97658058, -13.96498611,\n", + " -13.95847533, -13.94767722, -13.93806299, -13.93771427,\n", + " -13.9359971 , -13.93760666, -13.93663239, -13.92220312,\n", + " -13.91012872, -13.91564621, -13.90560043, -13.90653255,\n", + " -13.90634949, -13.90701619, -13.90333753, -13.90026327,\n", + " -13.91009257, -13.90950469, -13.90366346, -13.90108669,\n", + " -13.91045896, -13.92447111, -13.92855575, -13.92112948,\n", + " -13.91852978, -13.93112839, -13.92831403, -13.93123391,\n", + " -13.93335212, -13.94453763, -13.94509306, -13.93437584,\n", + " -13.93212088, -13.92247037, -13.9342035 , -13.94132838,\n", + " -13.94238786, -13.9451239 , -13.94807835, -13.94807251,\n", + " -13.94150283, -13.93825956, -13.95664294, -13.947462 ,\n", + " -13.95722849, -13.96322923, -13.96132995, -13.96986053,\n", + " -13.97408566, -13.9825316 , -13.98149547, -13.97994965,\n", + " -13.96824057, -13.97634205, -13.96797386, -13.96144372,\n", + " -13.95259206, -13.93818269, -13.93795375, -13.92636268,\n", + " -13.93240961, -13.93423867, -13.91697743, -13.91507346,\n", + " -13.90858015, -13.92093602, -13.94722473, -13.94315581,\n", + " -13.92916753, -13.93969499, -13.94250302, -13.9388662 ,\n", + " -13.9394757 , -13.95396696, -13.96560469, -13.94303575,\n", + " -13.94779022, -13.94341258, -13.95099673, -13.93978317,\n", + " -13.95244983, -13.94214997, -13.96170177, -13.97458891,\n", + " -13.96665737, -13.96779684, -13.96871202, -13.9600841 ,\n", + " -13.96074314, -13.97326457, -13.98325213, -13.98296086,\n", + " -13.97383343, -13.9650924 , -13.95610375, -13.95061933,\n", + " -13.96107938, -13.97357529, -13.98334546, -13.98339845,\n", + " -13.98776369, -13.98685181, -13.98283344, -13.9807522 ,\n", + " -13.97136986, -13.98171656, -13.96275333, -13.95916342,\n", + " -13.97849565, -13.98845772, -13.98308611, -13.97598466,\n", + " -13.98983785, -13.99552768, -13.99835872, -13.98474605,\n", + " -13.97213486, -13.97190407, -13.98978161, -13.99047747,\n", + " -13.99133746, -13.98260663, -13.95400845, -13.95506219,\n", + " -13.9388841 , -13.96186421, -13.96139843, -13.9590068 ,\n", + " -13.96619305, -13.96246892, -13.96721068, -13.98218281,\n", + " -13.97251396, -13.96688799, -13.9649925 , -13.97222908,\n", + " -13.97337543, -13.96761941, -13.9671635 , -13.95969695,\n", + " -13.94562056, -13.94590193, -13.94816118, -13.95339515,\n", + " -13.93827101, -13.95351581, -13.96401585, -13.96622933,\n", + " -13.96671232, -13.95672477, -13.95993957, -13.94588399,\n", + " -13.95170803, -13.94335572, -13.9375981 , -13.92888408,\n", + " -13.92256759, -13.92831684, -13.92853489, -13.91567928,\n", + " -13.91453172, -13.89824121, -13.91219054, -13.90806237,\n", + " -13.91268811, -13.92107636, -13.90605593, -13.90332543,\n", + " -13.88863107, -13.87311131, -13.88006919, -13.89481716,\n", + " -13.87639716, -13.87153499, -13.87713341, -13.88214501,\n", + " -13.87994738, -13.89311955, -13.90400369, -13.91092052,\n", + " -13.92432914, -13.94295529, -13.93234312, -13.93454443,\n", + " -13.94100379, -13.93500325, -13.943746 , -13.95215873,\n", + " -13.96577388, -13.97300753, -13.95752772, -13.96066738,\n", + " -13.96210792, -13.95094574, -13.94946873, -13.94090786,\n", + " -13.93095426, -13.92531643, -13.92283035, -13.91925077,\n", + " -13.91983854, -13.92711149, -13.92199861, -13.93299632,\n", + " -13.93240221, -13.93405147, -13.93936873, -13.9324732 ,\n", + " -13.92208468, -13.92207762, -13.91444459, -13.91547524,\n", + " -13.91536505, -13.90581638, -13.89518528, -13.90736356,\n", + " -13.90821005, -13.91066377, -13.90890519, -13.91042073,\n", + " -13.92783486, -13.93758335, -13.93275122, -13.91770067,\n", + " -13.92688812, -13.92790505, -13.93301277, -13.9262998 ,\n", + " -13.92898387, -13.93743137, -13.94591938, -13.96062016,\n", + " -13.96904659, -13.97257714, -13.98296253, -13.98135156,\n", + " -13.99534019, -14.00778884, -13.99881499, -14.00482989,\n", + " -14.0249689 , -14.01754256, -14.01841303, -14.01178841,\n", + " -14.00307616, -14.0115633 , -14.01206557, -14.01693852,\n", + " -14.00654382, -14.00458261, -13.99795085, -13.98290597,\n", + " -13.97422897, -13.98831719, -13.99246341, -13.97657529,\n", + " -13.96762408, -13.97366763, -13.98369862, -13.97186391,\n", + " -13.97363138, -13.97832984, -13.96968408, -13.96749236,\n", + " -13.96797813, -13.99512629, -13.99785702, -14.00291202,\n", + " -14.00812668, -14.00257404, -13.99235989, -13.9944694 ,\n", + " -13.99168126, -13.98445055, -13.98689412, -13.98265272,\n", + " -13.96889269, -13.96347495, -13.98260587, -13.98694744,\n", + " -13.97863757, -13.96214137, -13.94553841, -13.93699498,\n", + " -13.93314662, -13.92719708, -13.94797467, -13.95541148,\n", + " -13.96330052, -13.96419734, -13.94821328, -13.95060979,\n", + " -13.96270003, -13.96939578, -13.97552516, -13.97621556,\n", + " -13.96890126, -13.96937935, -13.97047914, -13.97671819,\n", + " -13.97761829, -13.9847035 , -13.97961756, -13.97363659,\n", + " -13.97282786, -13.98612379, -13.97862051, -13.96405915,\n", + " -13.95431088, -13.97343019, -13.98331003, -13.98546517,\n", + " -13.9845745 , -13.97309468, -13.96865421, -13.96555813,\n", + " -13.96253048, -13.94717066, -13.94369383, -13.94901572,\n", + " -13.94395963, -13.92791431, -13.91299881, -13.92954702,\n", + " -13.92949433, -13.9303967 , -13.92551081, -13.93352735,\n", + " -13.93261657, -13.92816084, -13.9299664 , -13.92017322,\n", + " -13.90951596, -13.92716628, -13.95353813, -13.96783852,\n", + " -13.95774208, -13.96380084, -13.95932213, -13.96377546,\n", + " -13.97247824, -13.97653506, -13.97197591, -13.98223896,\n", + " -14.00613448, -13.99527763, -13.99975378, -14.00703095,\n", + " -14.00729102, -14.00271834, -13.9981352 , -13.98704541,\n", + " -13.99183557, -13.99123581, -13.98011324, -13.98512115,\n", + " -13.9884205 , -13.97938295, -13.9831239 , -13.9960806 ,\n", + " -13.99417923, -13.99720919, -13.99395021, -13.98830077,\n", + " -13.98781021, -13.9911546 , -14.00599918, -14.00457884,\n", + " -13.99816154, -13.98644005, -13.98753983, -13.9769327 ,\n", + " -13.97853598, -13.965938 , -13.96755615, -13.96642373,\n", + " -13.96488746, -13.96986589, -13.96424655, -13.96997108,\n", + " -13.97616992, -13.97524955, -13.97112216, -13.97360983,\n", + " -13.968966 , -13.96814742, -13.954292 , -13.95857096,\n", + " -13.95327891, -13.94374685, -13.94257417, -13.94518033,\n", + " -13.94387948, -13.9472821 , -13.94753884, -13.9613184 ,\n", + " -13.97087098, -13.96793073, -13.98041031, -13.99606724,\n", + " -14.0023863 , -13.99184766, -13.99114115, -13.99202508,\n", + " -14.00364784, -13.98858206, -13.99755797, -13.99297432,\n", + " -13.97611434, -13.96625709, -13.96956658, -13.96116377,\n", + " -13.93966984, -13.93531895, -13.93715673, -13.93802189,\n", + " -13.92585612, -13.92827722, -13.93893353, -13.95532917,\n", + " -13.96120723, -13.93712296, -13.95495643, -13.94818007,\n", + " -13.94557191, -13.95289767, -13.96901953, -13.98605645,\n", + " -13.99249984, -13.96964387, -13.97175055, -13.96810284,\n", + " -13.97543111, -13.9811295 , -13.97750087, -13.98118767,\n", + " -13.97117633, -13.97985834, -13.95579608, -13.94772144,\n", + " -13.94954046, -13.959266 , -13.97172971, -13.97888045,\n", + " -13.97217189, -13.96643407, -13.98267008, -13.99471586,\n", + " -13.98883062, -13.98394647, -13.98138314, -13.96823115,\n", + " -13.96673443, -13.98100332, -13.98720098, -13.97635652,\n", + " -13.98105166, -13.97541974, -13.98766158, -13.97933288,\n", + " -13.97527883, -13.98358904, -13.97757125, -13.98411362,\n", + " -13.98834004, -13.98272378, -13.98346382, -13.98376624,\n", + " -13.97849288, -13.96768807, -13.96835314, -13.97164153,\n", + " -13.97009903, -13.96984495, -13.98076235, -13.96578442,\n", + " -13.95994233, -13.95251536, -13.95651927, -13.96581866,\n", + " -13.96406828, -13.96425672, -13.95904039, -13.95067701,\n", + " -13.96862861, -13.972463 , -13.96910638, -13.95843355,\n", + " -13.95234006, -13.95844337, -13.95496785, -13.95976584,\n", + " -13.95386496, -13.94807808, -13.94586085, -13.94545837,\n", + " -13.94166242, -13.94858198, -13.95261419, -13.95336479,\n", + " -13.94640718, -13.94083126, -13.94526495, -13.9543837 ,\n", + " -13.95250881, -13.95375919, -13.96365168, -13.96231273,\n", + " -13.95797143, -13.94975801, -13.95935664, -13.96509599,\n", + " -13.97130949, -13.97287605, -13.98211607, -13.97771025,\n", + " -13.9896277 , -13.9888742 , -13.99446126, -13.98882927,\n", + " -13.98810462, -13.98818477, -13.96895592, -13.96653856,\n", + " -13.96836649, -13.97212145, -13.99279872, -13.98154596,\n", + " -13.98591551, -13.98995726, -13.99909471, -14.01468154,\n", + " -13.99676721, -13.98699663, -13.95618789, -13.97031916,\n", + " -13.98619856, -13.99200375, -13.97628356, -13.97936444,\n", + " -13.98489122, -13.97526752, -13.98435429, -13.96882003,\n", + " -13.95538406, -13.95632048, -13.93623062, -13.94062042,\n", + " -13.92496558, -13.941467 , -13.91463873, -13.92860671,\n", + " -13.95423393, -13.9564516 , -13.95502615, -13.94240717,\n", + " -13.94537401, -13.93712765, -13.94644968, -13.94841094,\n", + " -13.95584554, -13.94727203, -13.950688 , -13.92608454,\n", + " -13.91841805, -13.91944821, -13.91812139, -13.91994564,\n", + " -13.91932123, -13.92171502, -13.93404491, -13.93060879,\n", + " -13.92320615, -13.92864346, -13.92731871, -13.92648272,\n", + " -13.93781007, -13.93886772, -13.9370014 , -13.92072965,\n", + " -13.92513535, -13.91839514, -13.92529098, -13.92399466,\n", + " -13.92698081, -13.93157411, -13.92979558, -13.92665891,\n", + " -13.93322807, -13.93043725, -13.92606397, -13.94113473,\n", + " -13.94688678, -13.95068867, -13.93749242, -13.94536753,\n", + " -13.9452165 , -13.9407949 , -13.93917702, -13.93890096,\n", + " -13.94764882, -13.93872851, -13.94405752, -13.9489216 ,\n", + " -13.9641886 , -13.97117927, -13.97527118, -13.97483696,\n", + " -13.98118639, -13.98582428, -13.98765017, -13.98287807,\n", + " -13.98511988, -13.99416855, -13.99044004, -13.98462204,\n", + " -13.97924531, -13.96929487, -13.97685392, -13.98521219,\n", + " -13.98048045, -13.98400183, -13.98470652, -13.98223746]),\n", + " 'pressure': array([[[ -2698.26620722, 14833.7400929 , 3659.45799727],\n", + " [ 14833.7400929 , 22441.34261809, -19956.35677557],\n", + " [ 3659.45799727, -19956.35677557, 730.76485381]],\n", + " \n", + " [[ -3219.73930974, 15317.23444325, 4283.22337295],\n", + " [ 15317.23444325, 23153.3865105 , -18993.34588306],\n", + " [ 4283.22337295, -18993.34588306, 600.10450396]],\n", + " \n", + " [[ -3743.88310282, 15164.82478336, 3848.68419426],\n", + " [ 15164.82478336, 22933.42580704, -19318.4152163 ],\n", + " [ 3848.68419426, -19318.4152163 , 416.44928135]],\n", + " \n", + " ...,\n", + " \n", + " [[-26593.15232709, 4967.95678567, -125.72806316],\n", + " [ 4967.95678567, -14210.11882413, 3631.52773381],\n", + " [ -125.72806316, 3631.52773381, -10284.31033521]],\n", + " \n", + " [[-26524.90820011, 4925.75121218, -209.2090314 ],\n", + " [ 4925.75121218, -14154.71361722, 3351.06896438],\n", + " [ -209.2090314 , 3351.06896438, -11443.55376471]],\n", + " \n", + " [[-26186.17793777, 5121.50964428, -334.49289268],\n", + " [ 5121.50964428, -14294.15206741, 2531.85669539],\n", + " [ -334.49289268, 2531.85669539, -12420.02970114]]],\n", + " shape=(1000, 3, 3)),\n", + " 'velocities': array([[[-2.15044185, -6.21111048, -0.90838757],\n", + " [ 3.67510688, -1.10863243, -1.98813118],\n", + " [ 0.55054792, 0.12470761, -3.32924365],\n", + " [-2.6235622 , -3.88171614, 0.01119745]],\n", + " \n", + " [[-2.18244253, -6.55196283, -1.33663085],\n", + " [ 3.49941177, -0.67586969, -1.89005045],\n", + " [ 0.42354061, -0.25199961, -3.12091313],\n", + " [-2.62032898, -3.68646578, -0.26081582]],\n", + " \n", + " [[-2.37815584, -6.51153771, -1.04466201],\n", + " [ 3.40701808, -0.69842114, -2.0361169 ],\n", + " [ 0.81376174, -0.13874739, -2.9923912 ],\n", + " [-2.26473228, -3.48690477, -0.42838973]],\n", + " \n", + " ...,\n", + " \n", + " [[-0.53713769, -2.14042839, -1.64012189],\n", + " [ 0.78814848, 2.34214153, 1.18593099],\n", + " [ 0.78009306, 2.61593413, -1.13140322],\n", + " [ 0.14336263, -0.61617343, -0.06338173]],\n", + " \n", + " [[-0.37424331, -2.29881725, -1.39397552],\n", + " [ 0.64730372, 2.48602501, 1.11079224],\n", + " [ 0.70134535, 2.85337638, -0.87745685],\n", + " [-0.25358983, -0.62459654, 0.21049256]],\n", + " \n", + " [[-0.39115185, -2.20324827, -1.09282327],\n", + " [ 0.90731869, 2.73415048, 0.76089146],\n", + " [ 0.48273794, 2.9883334 , -1.16699231],\n", + " [-0.67473135, -0.81497136, 0.44089391]]], shape=(1000, 4, 3)),\n", + " 'volume': array([48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283,\n", + " 48.25261283, 48.25261283, 48.25261283, 48.25261283, 48.25261283]),\n", + " 'pressure_GPa': array([[[-0.26982662, 1.48337401, 0.3659458 ],\n", + " [ 1.48337401, 2.24413426, -1.99563568],\n", + " [ 0.3659458 , -1.99563568, 0.07307649]],\n", + " \n", + " [[-0.32197393, 1.53172344, 0.42832234],\n", + " [ 1.53172344, 2.31533865, -1.89933459],\n", + " [ 0.42832234, -1.89933459, 0.06001045]],\n", + " \n", + " [[-0.37438831, 1.51648248, 0.38486842],\n", + " [ 1.51648248, 2.29334258, -1.93184152],\n", + " [ 0.38486842, -1.93184152, 0.04164493]],\n", + " \n", + " ...,\n", + " \n", + " [[-2.65931523, 0.49679568, -0.01257281],\n", + " [ 0.49679568, -1.42101188, 0.36315277],\n", + " [-0.01257281, 0.36315277, -1.02843103]],\n", + " \n", + " [[-2.65249082, 0.49257512, -0.0209209 ],\n", + " [ 0.49257512, -1.41547136, 0.3351069 ],\n", + " [-0.0209209 , 0.3351069 , -1.14435538]],\n", + " \n", + " [[-2.61861779, 0.51215096, -0.03344929],\n", + " [ 0.51215096, -1.42941521, 0.25318567],\n", + " [-0.03344929, 0.25318567, -1.24200297]]], shape=(1000, 3, 3))}" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "relaxed_dict" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "465c769e", + "metadata": {}, + "outputs": [], + "source": [ + "relaxed_dict['pressure_GPa'] = relaxed_dict['pressure'] / 10**4\n", + "strained_dict['pressure_GPa'] = strained_dict['pressure'] / 10**4" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "d4c0b54b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1000" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(relaxed_dict['pressure_GPa'])" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "id": "f1f92e90", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 1.70070452, -0.05115801, 0.03561365],\n", + " [-0.05115801, 1.56995473, -0.06558542],\n", + " [ 0.03561365, -0.06558542, 1.42873046]])" + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "-np.mean(relaxed_dict['pressure_GPa'][20:], axis=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "id": "9db21658", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 1.78284141, -0.05231868, 0.035059 ],\n", + " [-0.05231868, 1.62942507, -0.0656267 ],\n", + " [ 0.035059 , -0.0656267 , 1.48829595]])" + ] + }, + "execution_count": 59, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "-np.mean(strained_dict['pressure_GPa'][20:], axis=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "id": "f9df1f38", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 8.21368926e-02, -1.16066722e-03, -5.54650819e-04],\n", + " [-1.16066722e-03, 5.94703412e-02, -4.12793107e-05],\n", + " [-5.54650819e-04, -4.12793107e-05, 5.95654859e-02]])" + ] + }, + "execution_count": 56, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mean_stress_diff_plain = -np.mean(strained_dict['pressure_GPa'][20:] - relaxed_dict['pressure_GPa'][20:], axis=0)\n", + "mean_stress_diff_plain" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "id": "90976a87", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[[-8.01660567e-02, -2.56916616e-04, 7.73299397e-04],\n", + " [-2.56916616e-04, -5.99911060e-02, -1.54686795e-03],\n", + " [ 7.73299397e-04, -1.54686795e-03, -5.87464913e-02]],\n", + "\n", + " [[-7.99066776e-02, 8.33699648e-08, 8.60595985e-04],\n", + " [ 8.33699648e-08, -5.97540253e-02, -1.66550149e-03],\n", + " [ 8.60595985e-04, -1.66550149e-03, -5.86365946e-02]],\n", + "\n", + " [[-7.97974110e-02, 3.86962870e-05, 8.72927459e-04],\n", + " [ 3.86962870e-05, -5.95340934e-02, -1.82271223e-03],\n", + " [ 8.72927459e-04, -1.82271223e-03, -5.84817205e-02]],\n", + "\n", + " ...,\n", + "\n", + " [[-8.02139694e-02, -6.05325257e-04, -1.43656499e-03],\n", + " [-6.05325257e-04, -6.48006573e-02, 8.75081979e-04],\n", + " [-1.43656499e-03, 8.75081979e-04, -5.96541577e-02]],\n", + "\n", + " [[-8.03902831e-02, -6.37027459e-04, -1.45189174e-03],\n", + " [-6.37027459e-04, -6.48099826e-02, 7.17871273e-04],\n", + " [-1.45189174e-03, 7.17871273e-04, -5.94764711e-02]],\n", + "\n", + " [[-8.04043618e-02, -5.58559323e-04, -1.53308863e-03],\n", + " [-5.58559323e-04, -6.47173559e-02, 6.02768662e-04],\n", + " [-1.53308863e-03, 6.02768662e-04, -5.92831946e-02]]],\n", + " shape=(980, 3, 3))" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "strained_dict['pressure_GPa'][20:] - relaxed_dict['pressure_GPa'][20:]" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "id": "935e66d4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-0.08016606, -0.07990668, -0.07979741, -0.07973501, -0.07958048,\n", + " -0.07959631, -0.07950006, -0.07931549, -0.0790707 , -0.07898908,\n", + " -0.07864806, -0.07855307, -0.07843881, -0.07849354, -0.07869729,\n", + " -0.07871522, -0.07881967, -0.07898742, -0.07898666, -0.0790519 ,\n", + " -0.07916798, -0.07920824, -0.07945033, -0.07971542, -0.07984406,\n", + " -0.08004103, -0.08020572, -0.0804656 , -0.08073269, -0.08086265,\n", + " -0.08100637, -0.08127569, -0.08142537, -0.08158794, -0.08183788,\n", + " -0.0820566 , -0.08233297, -0.08244386, -0.0826703 , -0.08273646,\n", + " -0.08291356, -0.08296665, -0.08311731, -0.08328705, -0.08336965,\n", + " -0.08338051, -0.08330595, -0.08319369, -0.08325062, -0.08301977,\n", + " -0.08310781, -0.08298597, -0.08285557, -0.08262674, -0.08246471,\n", + " -0.08256372, -0.08274971, -0.08260657, -0.08247396, -0.08229109,\n", + " -0.08198137, -0.08196246, -0.08180559, -0.08167497, -0.08113012,\n", + " -0.08094932, -0.08070248, -0.08022602, -0.07990905, -0.07976589,\n", + " -0.07945822, -0.07930129, -0.07885555, -0.07836508, -0.07811668,\n", + " -0.07768569, -0.07744171, -0.07693551, -0.07682093, -0.07672863,\n", + " -0.07668392, -0.07660008, -0.07653514, -0.07640178, -0.07628493,\n", + " -0.07650751, -0.07660486, -0.0765145 , -0.07658153, -0.07659917,\n", + " -0.07674701, -0.07692111, -0.07714723, -0.07732643, -0.07762788,\n", + " -0.07785771, -0.0780433 , -0.07830261, -0.07850564, -0.07874733,\n", + " -0.07893538, -0.07921174, -0.07954323, -0.07968823, -0.0800691 ,\n", + " -0.08029552, -0.08048435, -0.08099041, -0.08137807, -0.08187147,\n", + " -0.082292 , -0.0825109 , -0.08289388, -0.0831938 , -0.08334381,\n", + " -0.08365583, -0.08393272, -0.0839572 , -0.084156 , -0.08434079,\n", + " -0.08461985, -0.08489741, -0.08515151, -0.08523793, -0.08523473,\n", + " -0.0851736 , -0.08510044, -0.08494664, -0.08520296, -0.08543706,\n", + " -0.08522048, -0.08531507, -0.08566241, -0.08576566, -0.08579688,\n", + " -0.08555268, -0.08554087, -0.08546564, -0.08538954, -0.08539468,\n", + " -0.0850309 , -0.08499892, -0.08465671, -0.08423019, -0.08413986,\n", + " -0.0841768 , -0.08434653, -0.08415894, -0.08404821, -0.0838729 ,\n", + " -0.08397996, -0.08380697, -0.0837841 , -0.08362304, -0.08366166,\n", + " -0.08357164, -0.08332195, -0.08342265, -0.08322174, -0.08313124,\n", + " -0.08302349, -0.08297912, -0.0830134 , -0.08313387, -0.08314655,\n", + " -0.08327382, -0.0832075 , -0.083224 , -0.08321712, -0.08317548,\n", + " -0.08314377, -0.08303608, -0.08298246, -0.08249661, -0.08197719,\n", + " -0.08157676, -0.08117333, -0.08113277, -0.08039275, -0.08021642,\n", + " -0.07952235, -0.07904886, -0.07838891, -0.07813337, -0.07725674,\n", + " -0.07675456, -0.07573782, -0.07487551, -0.07421757, -0.07349279,\n", + " -0.07275024, -0.0722948 , -0.07162862, -0.0708681 , -0.07026171,\n", + " -0.06930977, -0.0686479 , -0.06827812, -0.06767336, -0.06712263,\n", + " -0.06715796, -0.06741381, -0.06727225, -0.0670533 , -0.06694441,\n", + " -0.06736543, -0.06767977, -0.06764195, -0.06824316, -0.06895391,\n", + " -0.0697287 , -0.0704178 , -0.07097353, -0.07156341, -0.07246228,\n", + " -0.07352501, -0.07466449, -0.07568868, -0.07689332, -0.07815519,\n", + " -0.07946922, -0.08059331, -0.08204509, -0.08303242, -0.08399243,\n", + " -0.08529453, -0.08648524, -0.08748031, -0.08852579, -0.08953143,\n", + " -0.090411 , -0.0913582 , -0.09207118, -0.09273616, -0.09343272,\n", + " -0.09394915, -0.09454975, -0.09496577, -0.09515194, -0.09550768,\n", + " -0.09555837, -0.09551504, -0.09536271, -0.09529551, -0.09505819,\n", + " -0.09471948, -0.09436852, -0.09411253, -0.09347279, -0.09301863,\n", + " -0.0922392 , -0.09153004, -0.09056286, -0.09026916, -0.08964115,\n", + " -0.0890797 , -0.08845862, -0.08764139, -0.08652354, -0.08515256,\n", + " -0.08417272, -0.08351 , -0.08243887, -0.0818528 , -0.08117842,\n", + " -0.08079941, -0.07999396, -0.07927442, -0.07855249, -0.07778281,\n", + " -0.07736441, -0.07675486, -0.07661775, -0.07554648, -0.07509093,\n", + " -0.07463083, -0.07398947, -0.0742035 , -0.07430786, -0.07418991,\n", + " -0.07454925, -0.07428464, -0.07438965, -0.07450716, -0.07461482,\n", + " -0.0750111 , -0.07518545, -0.07600523, -0.07619851, -0.07666377,\n", + " -0.07686472, -0.07746625, -0.07774434, -0.07806074, -0.07859274,\n", + " -0.07918286, -0.07968318, -0.08026978, -0.08095817, -0.08158815,\n", + " -0.08199993, -0.08244219, -0.08307812, -0.08340759, -0.08364723,\n", + " -0.08382253, -0.08398714, -0.08409101, -0.08379738, -0.08340792,\n", + " -0.08341069, -0.08343686, -0.08354702, -0.08370301, -0.0839188 ,\n", + " -0.08416857, -0.08399829, -0.08391222, -0.08377721, -0.08361211,\n", + " -0.08324354, -0.08311439, -0.08291335, -0.08281028, -0.08272054,\n", + " -0.0820748 , -0.08163351, -0.08120548, -0.08065902, -0.08050121,\n", + " -0.08049224, -0.08040422, -0.0800583 , -0.07897249, -0.0782769 ,\n", + " -0.07831797, -0.07824674, -0.07845204, -0.0777865 , -0.07731378,\n", + " -0.07706063, -0.07712327, -0.07748418, -0.07762734, -0.07801311,\n", + " -0.07814909, -0.0778012 , -0.07800401, -0.07815387, -0.07852948,\n", + " -0.07905094, -0.07933004, -0.07983037, -0.08068754, -0.08161138,\n", + " -0.08214867, -0.08294106, -0.08335689, -0.08412825, -0.08483489,\n", + " -0.08532583, -0.08582973, -0.08644381, -0.0872009 , -0.08777555,\n", + " -0.08807754, -0.08860153, -0.08902014, -0.08920024, -0.08949304,\n", + " -0.08969037, -0.08978919, -0.08996743, -0.09018573, -0.09012494,\n", + " -0.09009189, -0.09010039, -0.09001749, -0.0899313 , -0.08958084,\n", + " -0.08933729, -0.08956342, -0.0893889 , -0.08975058, -0.08974686,\n", + " -0.0896369 , -0.08986739, -0.08934397, -0.08886887, -0.08839581,\n", + " -0.08829819, -0.08806733, -0.08721029, -0.0867512 , -0.08595823,\n", + " -0.08645887, -0.0856515 , -0.08554412, -0.08458382, -0.08394244,\n", + " -0.08320712, -0.08300331, -0.08188142, -0.08178872, -0.08139794,\n", + " -0.0809741 , -0.0802987 , -0.08043503, -0.08042071, -0.07964736,\n", + " -0.08044462, -0.08045477, -0.080663 , -0.08113711, -0.08172445,\n", + " -0.08188806, -0.08226689, -0.08208641, -0.08258055, -0.08280157,\n", + " -0.08297606, -0.08287283, -0.08292407, -0.08277916, -0.08354557,\n", + " -0.08383856, -0.08402747, -0.08428632, -0.08437086, -0.08460646,\n", + " -0.08455197, -0.08531872, -0.08547994, -0.08551701, -0.08571565,\n", + " -0.08583897, -0.0859434 , -0.08598356, -0.08625146, -0.08629391,\n", + " -0.08593236, -0.08570216, -0.08552814, -0.08538945, -0.08550208,\n", + " -0.08568628, -0.08584739, -0.08563044, -0.08536463, -0.08497756,\n", + " -0.08426284, -0.08423653, -0.0844548 , -0.08427539, -0.08407058,\n", + " -0.08329567, -0.08344384, -0.08374622, -0.08302378, -0.08223721,\n", + " -0.08231345, -0.0821397 , -0.08204142, -0.08207472, -0.08190845,\n", + " -0.08160353, -0.08196938, -0.081547 , -0.08147969, -0.08132699,\n", + " -0.08088421, -0.0803915 , -0.0796558 , -0.08080512, -0.081562 ,\n", + " -0.08211362, -0.08177389, -0.08241506, -0.08268476, -0.08321311,\n", + " -0.08340952, -0.08384131, -0.08391983, -0.08464472, -0.08528326,\n", + " -0.08567461, -0.08593016, -0.08683123, -0.08772348, -0.08857724,\n", + " -0.08857592, -0.08883237, -0.08947972, -0.08972479, -0.09025233,\n", + " -0.0901971 , -0.09011805, -0.0900022 , -0.08987548, -0.08968403,\n", + " -0.08943827, -0.08950728, -0.0892263 , -0.0889848 , -0.08852237,\n", + " -0.08806055, -0.08770598, -0.08702336, -0.08681437, -0.08610024,\n", + " -0.08579122, -0.08514464, -0.08454514, -0.08402234, -0.08361609,\n", + " -0.08329274, -0.08299735, -0.08225061, -0.08186606, -0.08171751,\n", + " -0.08169082, -0.08179996, -0.08225291, -0.0828175 , -0.08354081,\n", + " -0.08382843, -0.08438595, -0.08500967, -0.0856188 , -0.08614906,\n", + " -0.08680297, -0.08646065, -0.08734019, -0.08808439, -0.08798577,\n", + " -0.08883238, -0.08871665, -0.08867126, -0.0894707 , -0.08976104,\n", + " -0.0905154 , -0.09090723, -0.09176319, -0.09207934, -0.0923907 ,\n", + " -0.09279195, -0.0935771 , -0.09385747, -0.09394495, -0.09403169,\n", + " -0.09418563, -0.09431321, -0.09463143, -0.09466434, -0.09484942,\n", + " -0.0949219 , -0.09490685, -0.09453012, -0.09435664, -0.094136 ,\n", + " -0.09379383, -0.09336143, -0.09252969, -0.09186042, -0.09087496,\n", + " -0.08998183, -0.08907782, -0.08799128, -0.08687268, -0.08583948,\n", + " -0.08458526, -0.08324412, -0.08232862, -0.08090993, -0.07959397,\n", + " -0.07848917, -0.07784299, -0.07698268, -0.07622953, -0.07527428,\n", + " -0.07395049, -0.07306635, -0.07263711, -0.07176309, -0.07116632,\n", + " -0.07095988, -0.07021386, -0.06994052, -0.06952339, -0.06999874,\n", + " -0.06973618, -0.0699273 , -0.06975894, -0.06977453, -0.07049587,\n", + " -0.07032166, -0.07045889, -0.07063353, -0.07052724, -0.0707333 ,\n", + " -0.07114263, -0.07146356, -0.07188248, -0.07249246, -0.07352312,\n", + " -0.07413644, -0.07438204, -0.07545481, -0.07618027, -0.07653339,\n", + " -0.07733085, -0.07835324, -0.07924251, -0.08015443, -0.08069418,\n", + " -0.08184734, -0.08256262, -0.08347823, -0.08477271, -0.08586044,\n", + " -0.08689268, -0.08778146, -0.08864293, -0.0894232 , -0.0901787 ,\n", + " -0.09083909, -0.09143458, -0.09201244, -0.09255336, -0.09303005,\n", + " -0.09347749, -0.09392289, -0.09440944, -0.09488269, -0.09494886,\n", + " -0.09528483, -0.09521303, -0.09520365, -0.09503099, -0.09453956,\n", + " -0.09441217, -0.09459098, -0.09424286, -0.09437982, -0.09367772,\n", + " -0.09304987, -0.09236178, -0.09207209, -0.09191898, -0.09156755,\n", + " -0.09073251, -0.09035635, -0.08947121, -0.08900063, -0.08790004,\n", + " -0.08743421, -0.08714876, -0.08620289, -0.08587395, -0.08536047,\n", + " -0.08350942, -0.0825037 , -0.08181507, -0.08179466, -0.08090139,\n", + " -0.08006479, -0.07905519, -0.0783609 , -0.07785433, -0.07746303,\n", + " -0.07722635, -0.07636963, -0.07620426, -0.07617349, -0.07583719,\n", + " -0.07556198, -0.07558785, -0.07532388, -0.07505467, -0.07479093,\n", + " -0.07446224, -0.07418639, -0.07417373, -0.0738919 , -0.07379067,\n", + " -0.07380369, -0.07395192, -0.07419158, -0.07437582, -0.07463169,\n", + " -0.07468867, -0.07495471, -0.07533842, -0.07560477, -0.07596014,\n", + " -0.07644579, -0.07688944, -0.07749144, -0.07812698, -0.07833465,\n", + " -0.07863477, -0.07895937, -0.07908339, -0.07928835, -0.07963066,\n", + " -0.07974916, -0.07994139, -0.08012365, -0.08055266, -0.0809495 ,\n", + " -0.08110027, -0.0807538 , -0.08054028, -0.08070015, -0.0804338 ,\n", + " -0.08073984, -0.08088664, -0.08069687, -0.08058804, -0.08076386,\n", + " -0.08070924, -0.08032294, -0.08089381, -0.08096636, -0.08098237,\n", + " -0.08067346, -0.08086734, -0.08074909, -0.08093595, -0.0809354 ,\n", + " -0.08047176, -0.08036608, -0.0801412 , -0.08013538, -0.07993235,\n", + " -0.07977107, -0.08012324, -0.08005663, -0.07996035, -0.07993587,\n", + " -0.0798675 , -0.07969911, -0.07991866, -0.07975634, -0.08003359,\n", + " -0.08059 , -0.08055954, -0.0804211 , -0.08029258, -0.08007384,\n", + " -0.07978971, -0.07941435, -0.0787685 , -0.07890206, -0.07844595,\n", + " -0.07803665, -0.07768844, -0.07739119, -0.0771458 , -0.07663923,\n", + " -0.07621205, -0.07617028, -0.07600734, -0.07593558, -0.07589434,\n", + " -0.07595489, -0.07588176, -0.07563123, -0.07578372, -0.0753952 ,\n", + " -0.07543598, -0.07549154, -0.07580206, -0.07576657, -0.07579773,\n", + " -0.07606477, -0.07576662, -0.07553758, -0.07518577, -0.07509589,\n", + " -0.07533645, -0.0753594 , -0.07584126, -0.07635459, -0.07662177,\n", + " -0.07691326, -0.07709022, -0.07715796, -0.07776558, -0.07804607,\n", + " -0.078288 , -0.078762 , -0.07908734, -0.07948564, -0.07999824,\n", + " -0.08045196, -0.08084191, -0.08131003, -0.08158007, -0.08191349,\n", + " -0.08205122, -0.0824438 , -0.0828571 , -0.0832395 , -0.08339223,\n", + " -0.08337882, -0.08363208, -0.08415444, -0.08421256, -0.08444747,\n", + " -0.0847475 , -0.08509753, -0.08551299, -0.08559167, -0.0859809 ,\n", + " -0.08576504, -0.08570989, -0.08573941, -0.08577559, -0.08632903,\n", + " -0.08656965, -0.08690039, -0.08712876, -0.08705922, -0.08731152,\n", + " -0.08730698, -0.08746321, -0.08766712, -0.08768346, -0.08806263,\n", + " -0.08856671, -0.08859914, -0.08847004, -0.08861491, -0.08862544,\n", + " -0.08824966, -0.08845568, -0.0879394 , -0.08788223, -0.08751091,\n", + " -0.08766342, -0.08737844, -0.08731323, -0.08728882, -0.08646189,\n", + " -0.08596984, -0.08587227, -0.08539948, -0.08496791, -0.08445647,\n", + " -0.08433296, -0.08405529, -0.08349567, -0.08313892, -0.08255359,\n", + " -0.0826839 , -0.08181012, -0.08119537, -0.08083083, -0.08079419,\n", + " -0.08079785, -0.08025087, -0.07935062, -0.07927313, -0.07869808,\n", + " -0.07863729, -0.07853711, -0.07818762, -0.07789942, -0.07795449,\n", + " -0.07819016, -0.07806348, -0.07783278, -0.0774387 , -0.07705382,\n", + " -0.07671689, -0.0768192 , -0.07698354, -0.07682656, -0.07717776,\n", + " -0.07722304, -0.07717866, -0.07741418, -0.07791835, -0.07806917,\n", + " -0.07867263, -0.07892643, -0.07921547, -0.07958096, -0.08003541,\n", + " -0.08037935, -0.08101433, -0.0814709 , -0.08188874, -0.08247352,\n", + " -0.08273933, -0.08311644, -0.0834541 , -0.0838696 , -0.08423671,\n", + " -0.08470552, -0.08497472, -0.08555363, -0.08580189, -0.08595131,\n", + " -0.0864628 , -0.08668685, -0.08732773, -0.08724899, -0.08748891,\n", + " -0.08754168, -0.08753819, -0.08736978, -0.08742136, -0.08769868,\n", + " -0.08746816, -0.08762013, -0.08762127, -0.08763453, -0.08712963,\n", + " -0.08703172, -0.08656068, -0.08592385, -0.08550587, -0.08468643,\n", + " -0.0842436 , -0.08375132, -0.08380276, -0.08345066, -0.08282884,\n", + " -0.08256302, -0.0822239 , -0.082033 , -0.08149986, -0.08059455,\n", + " -0.08063969, -0.08009841, -0.07957861, -0.07937757, -0.07916252,\n", + " -0.07870005, -0.07863025, -0.0784092 , -0.07791403, -0.07803254,\n", + " -0.07782205, -0.07723706, -0.07708082, -0.07693633, -0.07728138,\n", + " -0.0770782 , -0.07712283, -0.0769213 , -0.07712795, -0.0770327 ,\n", + " -0.07726179, -0.07738993, -0.07744477, -0.07780147, -0.07825521,\n", + " -0.07849325, -0.07873374, -0.07901249, -0.07894372, -0.07896757,\n", + " -0.07915666, -0.07917648, -0.07921046, -0.07933298, -0.0795621 ,\n", + " -0.07976489, -0.07992601, -0.08000816, -0.08007205, -0.08019004,\n", + " -0.08011324, -0.07998962, -0.08021397, -0.08039028, -0.08040436])" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "(strained_dict['pressure_GPa'][20:] - relaxed_dict['pressure_GPa'][20:])[:,0,0]" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "id": "5f0e0d9d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 54, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAGdCAYAAAD3zLwdAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAjQVJREFUeJztvQeYHOWVtv1qoiZrRqORZpQTkkABEZTAlrAByxiwYW2TjME2wcYywbvGsPB9BnYBw3pZfhZsMMY2a5DhI3mBxSwiiaCMJISEAsppNDlpZjRBM/913qpTXd3ToXJXdT/3dbW61dM9XdNdXfW85zznnEH9/f39AgAAAAAAiAy8BwAAAAAAChBGAAAAAAAqEEYAAAAAACoQRgAAAAAAKhBGAAAAAAAqEEYAAAAAACoQRgAAAAAAKhBGAAAAAAAqWXwDhNPX1ycOHz4sioqKxKBBg/D2AAAAAAGA+la3tbWJqqoqkZFhPv4DYRQDEkWjR4+2+/kAAAAAIAkcOHBAjBo1yvTzIIxiQJEifmOLi4vtfToAAAAA8ITW1lYZ2ODzuFkgjGLA6TMSRRBGAAAAQLCwaoOB+RoAAAAAQAXCCAAAAABABcIIAAAAAEAFwggAAAAAQAXCCAAAAABABcIIAAAAAEAFwggAAAAAQAXCCAAAAABABcIIAAAAAEAFwggAAAAAQAXCCAAAAABABcIIAAAAAEAFwgikBcf7+sVfVu4VO2rakr0pAAAAfAyEEUgL/r93vhD/57+3iKv/uCbZmwIAAMDHZCV7AwBwk4ajXeLdbbXikXe+kP8/3HIMbzgAAICYQBiBlOY/390p/rxib9h9/f39YtCgQUnbJgAAAP4FqTSQ0mzY3zTgvvbu40nZFgAAAP4HwgikNLlZmQPuq2vrSsq2AAAA8D8QRiClaensGXDfEfiMAAAAxADCCKSNMCovzJXXh5o7k7hFAAAA/AyEEUhpmju75fWHt54lzp5WIW///bPqJG8VAAAAvwJhBFKWrt7j4lhPn7xdnJctRg7Jk7ff2VYLnxEAAICoQBiBlE+jUWV+UW6WmDthqPaz6hak0wAAAAwEwgikLC0dijAqycsWGRmDxJzxZWJE8WB5X9ux3iRvHQAAAD8CYQRSPmJEwogZWaqk09qODaxWAwAAACCMQFoJo6LBSrP3VkSMAAAARAHCCKQszbpUGlM0WLndGqW/EQAAAABhBNIqYlSsRozgMQIAABANCCOQZqk05TaEEQAAgGhAGIGUpaFdmYlWVpATxWOEVBoAAICBQBiBlOVIiyKMRpQoJfrc6JFAVRoAAIBoQBiBlOVIq9LEkXsXEfAYAQAAiAeEEUj5iNFwnTBCKg0AAEA8IIxASnK8r1/zGIULI5ivAQAAxAbCCKQkR4/1iv5+EaVcH8IIAABAbCCMQErCVWe5WRkiJytjYCqts0f0s3ICAAAAVCCMQErCfYo4dRYpjHr7+sWxnr6kbBsAAAD/AmEEUhIuxy/OU4QQU5ibJQYNCn8MAAAAwEAYgZSkNUbEaNCgQaIwRxFLR7uUxwAAAAAMhBFI7YiRmjrTU6jeB2EEAAAgEggjkOIeoyjCKBfCCAAAQHQgjEBKwtEgFkF6ClgYqeIJAAAAYCCMQErS0a2InnzVT6SHo0hIpYEgQe0lPj/cKnqOo5oSADeBMAIpSWe3cvIYnJ054GccRWqH+RoEiGdW7RPnPfKhuPOVzcneFABSGggjkJJ09nDEKDNmKq0NwggEiN+8tUNeP7/uQLI3BYCUxlVh1NTUJK688kpRUlIiL3S7ubk5Ybj4rrvuElVVVSIvL08sWrRIbNmyRfv53r17Zcl1tMsLL7xg67VB6tDZfTymMNLM1/AYgQDR1xfq1H7Xq1vE/oaOpG4PAKmKq8Lo8ssvFxs3bhRvvvmmvNBtEijxePDBB8VDDz0kHn30UbF27VoxYsQIcc4554i2tjb589GjR4vq6uqwy9133y0KCgrE17/+dVuvDVKHDlUYRUulsccIqTQQJI7rRtj8ecVecfHvViR1ewBIVQY6Ux1i69atUpCsWrVKzJ07V9735JNPivnz54vt27eLKVOmRI0WPfzww+KOO+4QF198sbzv6aefFsOHDxdLly4V119/vcjMzJRiSc8rr7wiLrnkElFYWGj5tUFq0dmTOGKEVBoIEsd1ESOi/miXPGZStBwAEICI0cqVK2UKi4UJMW/ePHnfihXRVzp79uwRR44cEeeee652X25urli4cGHM53zyyScyGvSjH/3I1mt3dXWJ1tbWsAsIfiotL0rECOX6IBWEEdHViwo1AAIjjEjgVFRUDLif7qOfxXoOQREiPfT/WM956qmnxLRp08SCBQtsvfb999+v+ZHoQik7EPyIUV5OnFSaWtIPgN+h1hI0+Dja/QCAJAsjMkbHMj/zZd26dfKx0UK8RkK/kT+P9ZzOzk6ZYtNHi2L9jkSvffvtt4uWlhbtcuAAKj9SNWIE8zUIGnvr27Xbry05UxSogh8FBAD4wGO0ZMkScemll8Z9zLhx48SmTZtETU3NgJ/V1dUNiAgx7B2iqE5lZaV2f21tbdTnvPjii6Kjo0N8//vfH/B7zL42pezoAlLLfB2twSM8RiBo7FMr0GaPGSJmjCqR8/7au48jYgSAH4RReXm5vCSCjM4UeVmzZo2YM2eOvG/16tXyPn3aS8/48eOlqFm2bJmYPXu2vK+7u1ssX75cPPDAA1HTaBdeeKEYNmyY7dcGqdn5Oi8nI6bHCFVpICg0dnTL64oiZfGWoUa+f/33beKZa0JeSgCAjz1G5PtZvHixuPbaa2V1GF3o9vnnnx9WFTZ16lRZVUZQmuvmm28W9913n7xv8+bN4uqrrxb5+fmy/F7Pzp07xQcffCCuueYay68NUhNKmbL3onhwduyRIOhjBAICi/jCXGV/rm45Jq8/2lmvpY0BAAHoY/Tss8+KGTNmyCozusycOVP85S9/CXsMlc9TJIe59dZbpTi64YYbxGmnnSYOHTok3nrrLVFUVBT2vD/+8Y9i5MiRYRVsZl8bpCaUYmCfalEUYaSNBOk+LnoxdwoEABbxLOr13PN6qAEuAMA+g/ppeQ0GQOX6VJ1Goq24uBjvUICobukU8+9/V2RlDBJf3Pv1AYZ7EkOT7vi7vL3+/5wjygpykrSlABiDOl1TU8efnjVR/OJrU8U9r30u/vjxHu3nL/54vjhtXBneTgCE/fM3ZqWBlKO1M7S6jlaFmJWZoUWNWjp7PN8+AMxyNCKVdsc3ponL5oRaiqzb14Q3FQCHgDACKUfbsZ6YaTSmJE/5WbNqagUgGB4jpUw/M2OQuO3r07Sf76hRRiYBAOwDYQRSjjbVj1GcF7vocki+IowQMQKBihjpPEYk7v/zMqV692BTZ9K2DYBUA8IIpBytHDFS0w7xIkYQRiBIwqggoi/XiJLB8rqmValSAwDYB8IIpBytcSp4GESMQJBo6egZEDEihheFhBHqaABwBggjkOYeI5ivgb+hPkV7G5SRIBOHFYb9rKJYafh4rKdPWxAAAOwBYQTS0mNUkqeU6COVBvzO9po22ZervDBH63zNDM7O1ER+LdJpADgChBFIORAxAqnEIdVYPW5oQdT2E8PVqFFNa5fn2wZAKgJhBFI3YgSPEUihYgL2xUUyvFjxGR1BxAgAR4AwAilHq9q0MZ75OlSVhj5GwN9wurdY3WdjCSNUpgHgDBBGIIUjRrHN10NQrg8CJoxYzMdKpcFjBIAzQBiBlBVG8arSePWNqjQQmIjR4EQRI3iMAHACCCOQwubr2Kk0npVGpdAABDliVMG9jNrQ5BEAJ4AwAmnZ4DEvR5k51dkDYQSC4ZmLJYy4+3UtIkYAOAKEEUgpjvf1a+MT4qXSqP8L0dvXL7p7+zzbPgCcmJMWvVz/mOijhkcAAFtAGIGUgk8iCSNGqjAiEDUCfqajS4lqFkTMSWPKC3M1kd/UgSpLAOwCYQRS0l+Uk5WhRYWiQT/PylCa5R1DOg34mI4eRezn50bfn7MzM0SR6pnDWBAA7ANhBFKK1s7EzR0jo0YwYIMgRIzyVV9cvCpLjLgBwD4QRiDtxoEwg9UTTQcq04CPae9WxH5BjFSaXhixURsAYB0II5B240AGRIyQSgM+LiY41tMXVkkZDd7fETECwD4QRiClaOsyHjFiYQSPEfAretFeECdixKX8PFcNAGAdCCOQol2vDUSMuJcRUmnAp3SoabRBg6jFROzDNTxGADgHhBFIuwGykRGjDqTSgM+N17SvDiJ1FAMeF8LFBwAA60AYgbQbIBsZMTqGiBHwKVwYkB8njab8nKOfEEYA2AXCCKToOBDjHiOYr4HfqywLY/QwGiDyVaM2AMA6EEYg7QbIMpiXBvxO/dHusO7WseBmphD5ANgHwgik3QDZAR4jpNKAT6k/2iWvhxXFF0aIfgLgHBBGIG0bPIbSD6GSaAD8RF1bl8GIkXIox74MgH0gjEBqmq/zEkeMtPQDIkbA5xGjRMIIPbkAcA4II5CSESNDVWnwZQCf09CueIzKCnMMjbeBxwgA+0AYgbRt8BgqcUYqDfi7wWPCqjREPwFwDAgjkDL0HO/TjNQo1wfp1MeI08Io1wfAPhBGIGU4qkaLjEaMtPQDIkbAp/C+ydHNWMBjBIBzQBiBlEuj0UkiOzPxrg2PEfA77WoqLVHECPsyAM4BYQRSBp4sbiRaRMCXAVIlYjQ4J0MzX/f393uybQCkKhBGIG2FEfd+6eqF+Rr43WMUXxgV5SpVmKSJ2pEaBsAWEEYgBSvSEpfqEzCsAj/T19evld8nNl9niOzMQfJ2S6eyQPADtC3w8IGgAWEEUrC5ozFhlJuldgtGxAj4ENovOSuWKGI0aNAgUaLu960+EUa76o6Kefe9I+be97bYU9+e7M0BwDAQRiAtB8jqI0ZdmEgOfIh+hh/74eLBTU39Ioz+unq/jHjR/MK/b65O9uYAYBgII5AytHaqESODwkgfMfLCsHq8r1/8dOl68cg7X7j+WiD4cAqKRFFGhpImi0eRGjHySypt/f4m7fbKXQ1J3RYAzABhBNJygCyRq67CSRP1HHdfGG080Cz+Z1O1eGjZDtHd2+f664FgwwNhuUggEVoqTdfPK5nsb+zQbm+tbk3qtgBgBggjkHoeI5MRI698Rr3HQ2Lo/3tnB8qqQVy6VPGco9tP48H7vR8iRl/UtIn6o8qcN4Ju80BcAPwOhBFIGdq6TEaMsjLEIDVD4YXPiIUb8dh7u8Qj7+x0/TVB8IVRblZifxFRWTJYXh/QRWqSxRMf7JbXQ/Kzxdih+fL2jpq2JG8VAMaAMAJpOUCWK3k0n5GatvBCuDH/8fYOeC9ATLpNRowmDivUqsGSzf4GRZx9f95YccLwInl7+xEIIxAMIIxAysDVOEYjRvrVOK/OvTCH63l8+S7XXxcEE248qk/5xmNShSqMapMvjA40KcJo0dQKMXWEIowQMQJBAcIIpK3HSG9s9SJiFK2MesP+JhixQYJUmrHDdHlhri88RiTojrQek7fHlOUjYgQCB4QRSBm4GsevEaO2rt6o27x8R53rrw1SP5WmdXJPcsXjoaZOWelJbQaGFuSIKVrE6CgKDkAggDACadvgMWxemgcRo5YOZfuu/dJ4cdaUYaK8MEf+/91tNa6/Nkh98zU3gaR+WT26CkivOdDUKa9Hl+VJH9/48gI5ruRoV69YuzfU2wiAtBRGTU1N4sorrxQlJSXyQrebm5vjPoca7d11112iqqpK5OXliUWLFoktW7ZoP9+7d6/8skW7vPDCC9rjxo0bN+Dnt912m5t/Lkhy+J5PJNwB2G8Ro8YOpXx57NAC8acfzBG3fm2q/P/hZiXtAICdiFGurt8Rz1hLBlwVN7pUqUbLzswQ582olLefX3sgadsFgC+E0eWXXy42btwo3nzzTXmh2ySO4vHggw+Khx56SDz66KNi7dq1YsSIEeKcc84RbW1KRcPo0aNFdXV12OXuu+8WBQUF4utf/3rY77rnnnvCHnfnnXe6+eeCJKIvhS/0qceoQe3jwpGiYcWKJ6S2Df1dgH3ztb79hBf7c0JhVKYII2LxSSPk9e765BvDAUiE8TOISbZu3SrF0KpVq8TcuXPlfU8++aSYP3++2L59u5gyZUrUaNHDDz8s7rjjDnHxxRfL+55++mkxfPhwsXTpUnH99deLzMxMKZb0vPLKK+KSSy4RhYVKVQZTVFQ04LEgNTmqCqOCnEyRaWB8QjIiRg3tSsRoqGqSrShSruvaEDEC9lNpFBUfnJUpo0XJnP/HA2PHqf2L5O3ygrCfAZCWEaOVK1fK9BmLImLevHnyvhUrVkR9zp49e8SRI0fEueeeq92Xm5srFi5cGPM5n3zyiYxE/ehHPxrwswceeEAMHTpUnHzyyeLee+8V3d2hTqyRdHV1idbW1rALCA7t3Yowys81p/W9jRipwqhAiRgNLx6sCaZkekJAaqTS9PtzMlNpLH7Gq32ViHFDFWHU3NEjmtWUMgBpJ4xI4FRUVAy4n+6jn8V6DkERIj30/1jPeeqpp8S0adPEggULwu6/6aabxHPPPSfee+89sWTJEhmJuuGGG2Ju7/333695oehCKTsQvIGb+TnGVtdeR4xIeJH5VB8xKsvPkYZZquDBShrYTaXpDdjJSqWR8Xuf2txxgholktuVkylK8xXvX02rP1PH1Gfp8idXiTV7GpO9KSBowoiM0bHMz3xZt26dfCzdjpYui3a/nsifx3pOZ2enTLFFixbdcsstMtI0c+ZMcc0114jHH39ciqiGhuhTnm+//XbR0tKiXQ4cgEkwSPAKmU8MRmHDqtsnEk6jUXUO91miiemzRpfI2+v3oVoHRI8YmRFGXLLPCwWvOdzcKbqP94mczAxRNSQv7GccIa1Rexz5jQsf/Uis2NUgfvnSpmRvCgiax4iiL5deemncx1BF2KZNm0RNzcAy5Lq6ugERIYb9QBQdqqxUqhiI2traqM958cUXRUdHh/j+97+fcLspjUfs3LlTptcioZQdXUAw6VBPBLQytRIxOuayJ6NRS6Plhon8k6pKxKrdjb4Y4wCC3eBRPjbJvYw48knz0SK9fiSMth1p05o/+gmKdPExYG8DfFDpjmlhVF5eLi+JIJM1RV7WrFkj5syZI+9bvXq1vC8y7cWMHz9eiqNly5aJ2bNny/vIF7R8+XLpF4qEIkAXXnihGDZsWMLt2bBhg7zWCy6QOlhNpWl9jNS0hVvUtyvpg6FqRRrDrQWOdiXPEwL8CUcxWewYIc9Dz1xc47UujcYMV6swa1r8IYxoMUKic1RpvqhuUXovEZTa3lrdKqZVFid1+0AKVqWR72fx4sXi2muvFU888YS877rrrhPnn39+WEXa1KlTpb/noosukivpm2++Wdx3331i8uTJ8kK38/PzZem/Hor8fPDBB+KNN96IavymarizzjpL+oWo7J9SaySixowZ49afDHyRSsvyZcRIM16r/iKmIFd5/Q7VPA5AZBTUjNjXul8nWRjp/UUMp9YOqg0gkwn5/S78z49Ee/dx8befnjHg+/e3DYcgjNIY14QR8eyzz4obb7xRqzIjYUL9ifRQ6T5FkZhbb71VeofIKE0NIqmq7a233pKl93r++Mc/ipEjR4ZVsDGUEnv++edlfyOqNhs7dqwUaPS7QWpiNZXmVcSIexhxRRpToFbRtSNiBGLs0wU5xg/TeUn0GPX19YunV+6Vt6nbdSR8nx8KDQ42dUhRRPzzy5+JqxaMjeoJBOmJq8KorKxMPPPMM3EfQ8ZqPRQ1IoM3XeJBkSS6ROOUU06RESOQPnRyub5J83Vohe2yx0gtUS7NDxdGHA1AxAhE0q5WMearUUUjcHNTroD0krc+PyLTUAmFkQ88PC+uO6jd3nakVeyqU7aJTONkHm+CMEprMCsNpLn52puIEa/gOXXGFKjRAD4JAqDtMz3mU2mFuckTRlurlekExIxRSrWlnrFlijCqa+tKWtUcpxn/8NEe7f99/UKs2q1UK588ekjYQgakJxBGILU8Rjn+jBix54Nfj+FoAIf1ARgQMTKRStOEkW5EjlccaFL6F/3ia1OibnNxXpYm8pJZmbZbjQ7p2XRQsXNw+wxEjNIbCCOQWlVp2T6NGKnCK1IY8YmsAxEj4IDHKJkRo4ONiql6VGl4/yK9TWJEidLLSF8F5iX0PX/47R0xfz6LI0ZIpaU1EEYgzc3XaudrzyJG4V85XlkjYgSc2KeT6THiiJF+eGwkVSWKaDqSpJL9f3phk3jrc6W/3vSRxeKdf1wY9nNOpbUe68WYnjQGwgikdSrNq4jRsRidudlzRGkTquoBgGFDfqQvzY8RI+rSzemx0aWxhVGF2ssoGam0TQebxWufHtb+/8A/zBQThxWKc08MNQ+uLMkT3JeyCT6jtAXCCKR5g8fkeozKC3PlkNBemjHVqKy4ASCh0XO8PzAeIxoFQhVpFBEtj2hiqofbVdAwWa95f3udvD5lzBDx1i1fll3niVPHlmqPoW7dQ9TK0aZ277cRpEG5PgBer67NN3j0KmLUFzVilJ2ZIU6sLBYbDzTLFW20MmeQfujbN+RbSKW1eSyM/rbxkLymLtLxZmGWqsLIaw8PCc2X1ysl+hfNHilOGB7qi3f1GeNkxPYr05TIEQ27pe2Dzyh9QcQIaFDJ6kW//Vj29QgabG72a8SIU308tFbPFPUgvbceESMQ7i+ivjokno1SpgqPBnUEjVe8vF4RRt+YEX/kEvfx8rrq65N9TWJvQ4cc4vy16cpMTn33+5+fO0XzF/F7iFRa+gJhBDQu/f0qsWF/s+wEG9QGj373GEWm0ojyIl5Fe3syA/6PGJlp7qg3N9cf7XZ9n2ZqWo+J/Y0dggJF13xpvDFh5LF/p17tPD97TKmoKFIq4xJtI7pfpy8QRmDACm5HzdGkzVqyXcHj087XsVJpxNACxZBajxJhoMIjYgpM+IuIIfnZmtivafFGaO9VR3yMLcsXRepQ5FiEojHe+nd4JE88/xOjtRRoTv5MN5AcIIyAZJlawqoNWHz0o0B1Y7ZqvtZHjCLH03gVMRqqHqwb1UGzAFgZIEuQv6dSPbEf9qhXEG8r+5viQf4dwmv/Dr8eC7N4jB2q+Pz2+mB0CUgOEEZA9B7vE49/sCvsnaCo0T+/8lnql+urQoUq5bkKyGlIcMUq19dHjLz2hYAApNJM7s9c6eilj6dd21YDwkgVJq3HeuRxxys4GsvftXiMG6q0G4DnL32BMALi9x/ulm3yaTX3qwtO1N6RNzcf8cynYLfihMrdiXyLVWnEMZf+1i9qj8rto7J8SnXEihjVtHa5GrUCwYEbfpop1WcKPO5lFOrQnVjEDclT9n/azVs6vUuncTSWv2tGIkb7Gtp9/X2kxdaNf90gXvwkNBAXOAOEUZrTdqxHPPLOF/L2L742VfzgjPFiz/3nyVx8V2+fNkPIz+gHUlo1X7vZ/XrlLmVA5dzxZVFTaVSiT/1T6ESRzBlSwD/wiBgzzR0HjJnxaP4eb2u++rrxyMrMEMVqys1LA3ajiYjR6LI8aSQncUomdr/yv1uOiFc/PSz+6YVPIY4cBsIozXl9U7U0Bk8cViAumzNa8ynMGV8mb6/Z0yj8TnNnt5Z2oKiMGehvZXHkluGcK2ImxOhRRGJpckWhvL35UPBaJQA3x4GYjxhx+s2riJEW3TJY+JAMA3a9mqY24jGi8n2u7qOokV+hsSUMiaPNh5KziD3e1y8ONXfK6kReBAYdCKM0h1vkf/e00WGN2eaMU4TR2r3+F0a8GuQyW7No89J63YkYccqgWE0jRGOs6ms4kqThmsCn40AseIw4laZvEulFxJZfNxHJaPLIr2WkKo0YV658H3fWHhV+pTYiurxHrQ70mgfe3CbO+PW7Yu5974jLnlwlPtihdBgPMhBGaQ4PfjxNFULM9JFKu/ztR9qE3+GQvJHVYDR4sKtbEaNWVRiVxBFG/DM3fBe0ivvp0vXioPpZg9T2GHEqjUv+vTNfGxNxXjd57Dnep40gMXqMmDFSafb46cFm4VciB/FySwKv+f0Hu8P+//0/rgl813AIozSH5wFFHjAmq92Yq1uOeWqStEKj+jfwStQsFDr3JGI0ODnC6P/892bxP5uqxXcfX+n47wZuR2HMR4y4KaRX7TY6ukxGjLQmjz2eLpxoOCzPQUsEz097Z2ttmIfRT0T6EZeu2e95i5UDMeY7Bj2lBmGUxlDFGfsQyiIOGHSi5n4oX9T4O2rEK8+yKBVfZiJGXS5FjIyk0lgYtXY6f2DjdMDhiBUm8C98gjNbTBAWMfIolcavY7S5allBtqfm6+pmZb8fWpgrixyM8KXJ5TLtVtvWJVbv8edJnjw9xFlThmktVn77/k5Pt2FlDAG0u86/KUgjQBilMRxepoNFUZTmbDxokb5wQTBfG10Neh0xYpNkcV7sFXWxSxGjSJ+JX1e/IFYJvIVyffU5Rz1KpXFxQbRWFNHg76lX6RZeGFCBiRnf4dQRxb6emcaptGu/NEG7771t3vp7Nh8ON3z/4zknyOvPkmQEdwoIozSGv/DUWyQjykpqyggWRv6OGLGXglfKfvMYJTOVdqgp3MyNdgDBwKxvRw+n37iM3m2+UBdOkytCE+vjwWn7Zo8Ex041ejFJrfw0iptRXLvQAocXXDNGlYi/XjtP3q7z2GfUrEuH3rBoolioRq8+2lkvW8EEFQijNKZB7dERy5vDJeR+N2Bz2sHswE0vIkZ9ff1aqi9eczm3IkaRgzCrUfUWrIiRBbHPJf5e9DGiqA/vYxMrCkx5jLyKGHHJ/fhyc8KII7x+9FjyAoeqFmk+3fSRSnSrrq3LszYN+vfm3749U9y6eKqYXlUiK2xp33vqoz0iqEAYpTFc3jm6VOnZEdSIUUePuT4qXkaMmjt7tK7cPKohGsPUn9W2OesDijz5bK3292cJwlOgVjxGHGXyYhD0YXXQakVRruEKOp6Xpo82uMlBNWo6KsZxLhYc4eWqUj+m0YarPlASR9yPzatqP70w4ugaZR6umDsmEOeNeEAYpTGce+cKtEgo9EytjWhFyD4CP2Km867XESNawXH6IDsz9tdtdJnSN4U67TpZWRJZwvvxznrHfjfwoNLLgseITdBeRIz4uBBP9MeKjuobFLoJp5NHDjEpjFysFHXKeD2iWBFG4Y0zkyeMiDFlSuTwsGp6DyIQRmnMbjViFMuUSCvAMeoJ28/q3+okcibXxYgRCyOOCMWCDiw8KoFXuE6gpTnUz5iqRbwc3gm836c5yuRFg8d6EzPIBgqjHk+8OPwdMB0x8nA7rabS9MLI6xRlmDDSGe+5mjmyz1KQgDBKY7hzaqXa/j4aWmWaj31Gdip4XI8YHVXe4/KixCeOMWr36/0xeoNYgQ+S0yoVD8Lehg5xxgPv+nIVDJwxX4dSae4LYI5IJhL+ergCloY/u53uo1EV7MWJ12A13sBbPzYrjEylJSNi1N/frx1HhuTlDBBGZAsI6iIMwiiNMRIGn6IKo+0+Ltm348dw22PEFS36A0csODrnpDDiAxd/jkRNa5d447Nqx14DOH/CsWW+VlNp3cf7XD8xcTTGTMSoMCdLpui9iMawMBpZSoNhjfUwivw+0mLCL2w62CzO/Y/l4s8r9sr/V+mEUWjUijeLnkfe2SnnpEW2aqB+UVTkTD/yo6g0AoRRmkI7tDY/KE40Y/LwwsCk0gp8GDHiChEjHYzZZxSrm6wV2lQfR0VxuPgNcpg71aH9mU848Vo8xEK/QODCBLeoV1PFdDI0Chl0i1TBx/un3/xFxHg1/UzpcL+Unj+zal9YX7lJuhYJw4uUz2CvBzPT+vv7xX+8vWPAvEnui8fRK061Bg0IozSlob1LKnpaREV2vY5amXakTX4Z/D2J3H8RIxZGhbnZhleozgqjHq1qJXLlCfwJi4WsjEHavmmGnMwMuWInjrlswK7XhrMaF0Zh/h2XU7qHdREjs5Ao5b8rWQNaI4nsqXSCunDVz7tcscv9AosO3X4Vzbs1tCBXO88EEQijNKW2Va2Wys8RWXGqpSaUF8oDdFtXry+bAyppB+t+DH3EyA1PxlH1JFdoIGLERkonm7TxSZZ8HaPLQgew1Xsa5XBN4D84vUTiwWz6h6DncOm825Vp7DEyk0rTR8LcLtnn9hfDi0IpJzNMKC/wlTA6HNGHTB+pmzW6RNtWtxexjboU2Z+uPn3Az3l/4F55QQPCKE3ZqzY9o2Zc8cjJyhDj1YODHxs90iyjnuP9MnxrdtU6YFZar/MnES69L4wyciXWqAQnzJNUjXP7y5+JbepnRhGj311xalgpN6+mgb8IRfmspYbDK9OOe+NTVCMERuHo6C6XZ2ppVaFqmsksfOzbVecPYaTvZE/z3PRwVRplAtxu8tikHqPI4xSt3QsLNj+3eYkHhFGaEpoflLgb7Ak+bvTIB1ZqUkkizgqcH3cjYkSRNqOpNDYwOrGK/u+Nh8Rf1+zX/k8n2ekjS8Tn93xNjFPFMHxG/oTTJVb8RQwL4E4XPUYUleCIgJGqSz0nVilVkp8fbhVuwh4Xq4sm9hl54dtJBEXG2exO4zceu+KUsJ9Tg0dKoxJuV502tMefmkANP4N8jIEw8gmbD7WIx97b6dmQTw4NTzQwP+gE1eC3/Yj/KtN2qyu5CQYEXiy4Y6wbESNOpRkxX3N5MKW/7FYTRfZC4ugDpVmGqyk7P6ZGQSiVZidixGllN48n1KCRu7qz2dYoU9XF1hfqAs31iJbFiJGW3lYjT8mEI7y0X9D4jUjhTN/tkHfL5YhRe3fcz50jbdwrL2hY/+YBR1deNz+/UUZx9jd0iAe+PdP1d5cPGMMjqpWiMWWEfyvTONfNJ3s7EaMuFyJG3I/GyElO32eFTjpmTzZ6IiMF+oPoCO4zovrMgL/gjtC2IkYeNHnkNDFFKdinZxSuwDzY1OFJRMtqKo2/g34oOz9goMKO5rvRsd3tiNF+tUAk1nGXMxFup0rdAhEjH/DpwRYttfX6psOevCYfMLh6IB7c5PGL2jY5FNVPcFULd432a8TISCqNTPBcxmx38ji/LnkAfn3xjLByWj6Y8VgB4C9YcFjpYeRlKk3rzm1heDNXiTV19Ljmh6GoCfVyIoZaXGRoJmIfCKNt6pzDUaX5CRdXbveH2q56FznyFwkPFKYKWy9m9jkNhJEP+NuGQ9rt9u7jnlRA8BfdSFRi7NAC6d8hD84BF1d4dquurOKFx8hIKk3fWp9OGPZeV3n+9QsnikvnKEMdB4wO8HCmEjAOn0islOp7mUrTqkEtDG+maBifxPWGYifh6k46NugXBmbghSOZjZO5KKR9YumaffL2V6ZWxHwcv6duRoyO9RwXa/c2hbVziYQ6odP7Tm/ZPh81yDQKhJEP2HYk3IB492tbXH09+oJzjtiIKZEqviarXiS/VaaxAODcut8iRrz6LzIQMdKLlpbObkcEY2GUqIPX082BOVigWz2ZE3kelOu3q4NurQ5v5vYRbqXT/vjxHlvGa6K0QPmuUMPNZM5MW76jThxo7JQL2W+eXBXzcbzQddMTtXxHnUzXUXrydLV3UiTkd2LfJ81nDBoQRj6gWnXu/2TRRHn9wY46rf+GG9AXnE2T/MVPBI+U8JvPiE2GfowY0cGUT0xGyvWdrEzj9ES096U0CVO4gbcRozz1ue6m0tRoqMX+YaOGsM/InYjR0tVKVaadCDx5pzhNn0wDNr/2qWNL46ZYxw11v+9SjZqCP2XMkLjinQdXB9FnBGGUZCh6U92s7GiXzxkjTqoqluHHd7bWup5GIz+LUdPkZJ/OTNN6vhiMyHgZMWLjtalUWp4zwkiLGEUTRtwvyQe+CTAQ3g8HmzQ06+EGj+6m0ux1nOeOyU52emecTHvxkO1kVnGGhrXGP86NK3e/vUC9wRYIbMD+zVs7XDXZuwGEUZKpbj0mDYLU4JaqhTg0Sc35al36ImrGaxPdarky7QufRYz87DFiA7SZqp1QxMgZ83U0wVjqkI8J+DmV5n6Dx1DEyGoqTYkY7XChZF+/KPldRL8fs/AEe47sJ1MY6StXozFejRhxA183aFTHfCQytHPEiLj5uY0iSEAYJZkX1h2Q17NHDxHZmRni26eO0n72+PLdru7YZsrBuTKNwqJ+GiUR6vniTMTIyVb62pw0E6JtSJ7ymTTbNE/ySSvaap5TaXSw7XZhcC7wQyqNq9J6fesxWjBxqLxetavB8cq0Nt2iZPH0EbZ+VyX3/UqmMFIXMfop9tEYV56vRXXcGnzboC2s40eMZo8p1W6v29cUqOo0CKMk8+kBZZjnRbNHymvqTvyH758mb7+y4aAr/TM4FGpmIjb1ziAvAY3f8EMXWM1Erh4w7PT8yVVPIhR9p7/PKfhgbzSN5qTH6JgqeKKdXGk+Ht9/CGNBfAefQHi/9GtVGvuXrHqMJlUUyuMKRcypwa1bTTKtzJvTw32//JBKSxQxogUip7j21ne42gNvaIKMA7UFWXvH2dqx5s6/bfbtIPJIIIySzE7VmKafN/OlE8pFZclgedLXj3VwChZbZnp70MGFt9HtbrVmDn5kcLYtjHSjRJz0GZnpYRQ5L81OxIgEI0eCOHKgJyNjkBhb5n7IHSQvlcbPdbcqLXZU0ugxhTyVxBaHR4NwxMhOtSpDx+JkR4y4UKJEPT7EY7waNXLju93f369NG4jXT4mhyrWbzz5B3n7xk4MychQEIIySCK3muCKDVk8M+VG+N2+sa+Xx1eqEZrNlrOwJcKvviNXIF60Krc5JixRGTvqMtFSamYgR9yGx4THq0qXHYp1ceXjwPp9E/0CIY5r52oE+Rh40eCyw6DEiplUqwmiHw8c5bvxqx3voF48RLWQ3qpmFeF2vB5jFXdje2rYuWbyTMSh2c8dIfrxworhgltJi4M3NR0QQgDBKIpsPtwiKLNJYjkiRovf0OM2aPY3yesaoElPP4y+lX9IvViJfsVaublSmhYSRCY+RA8Zo/ckwljCqUj9LOtCB1IsYedrg0ULn68jF1mF1seaneXMDI0bJOe5tOdwiFzvU94lK5A1vrwupv8/VyB5VnJnZP8+epjSlZIHndyCMksiyz2vk9axRA3f2Caqjn8KWTpaekiFvlxoKnROjOVcsRg4Z7DNhZN5E7mVlmpZKM2EMd6IqjT0qZDyl5pzR0Er20cvIx+Zrn6fSeCSIje2kkTX6AalOUd9mfORRIiqLQ+NLkmEg5s+womiwIb+UNiTahYjRlsOKF+xENQVqNjJIGRC/jZWKBoRRknh/e634/QdK1dmXJpcP+PmYsnyRlTFIrv6dVP7UPZVLtrk6ySij1NUdz3VLNhxV4ZO8HThi5OSBr91CKq1ErUqjQaLsn7Ju3o399S5TG3t6MRxzX0O7WL27QXgJCUu/7KfJGQmS5X4qTd2/rValEZVq5PJw8zFHjbl8zDQyJDsRNJg1O3NQ0mamaZE5g14uNouzZcJJtqrz2k5UhY5RxpcXyIUaRdHdaujpJBBGSeLVT0PDYr+lVqTpodJ99oE4mU7jRlscwjYDdV2lCAR1VfVDwy6tV48D4XJeYev9OclMpel9EmbpNBBx0Lpft7vfy2jhv70vLvn9qgGjb9xkzn3viLMfWh7IcQS8D5qdWO91Ko0jRgU2PEaU9qFjCu2zPLHdCo8v3yXu/Z/PNXEVEkbRp7+bgaI0HJVORlNUrZGmwchcRVFumAfTja7Xo02eP+h8xj7arR4eB3wpjJqamsSVV14pSkpK5IVuNzfHzzHSjn3XXXeJqqoqkZeXJxYtWiS2bAmfHXbkyBH5u0aMGCEKCgrEKaecIl588UXbr+1lT4p3tymdrf/rh3Ni9uDhHWnTQedKWQ+oap27zpod/HiCj0aD8IBWOz2MGF6ddzm4wubtM1OVRgcQFlJWK9NCHpU4EaMkDJJ1cj9OBFflrVb9dEGCt11fFGA9leZeHyMWXXY8RrSd8yYoKf23tijWAqP88aM94qv//r4s9f/137eJJz/cI6bc+aZM1XBzXI6e2IWj0smIGGnvs8GIEbdhaVDL6p2kST1eJOqnFC+dtrU6zYXR5ZdfLjZu3CjefPNNeaHbJFDi8eCDD4qHHnpIPProo2Lt2rVS/JxzzjmirS10IqbfsX37dvHqq6+Kzz77TFx88cXikksuERs2bLD12l7x3Nr9sk8NdQadrzY5i8aZk4fJ6/dUEeUE69VySRY4Vj0BNa3JN+1yAzMzDRRjwatzJyNG7Rb6GOl7lVj1/7C4yzMUMXL3QK9Pj9jrJmPtNSkdHVRhlOPzqjTuLm3HY0QsPEE5zq3bZ07E3vP659Iv+ZNnP9Huo55IFC2i1JzeiGwX7tnDvkYvCY1eyTK1rRTRczpi2GzDvjBjpCKM1u/3R4AiKcJo69atUpD84Q9/EPPnz5eXJ598Urz++utS1MQ6oD388MPijjvukGJn+vTp4umnnxYdHR1i6dKl2uNWrlwpfvazn4k5c+aICRMmiDvvvFMMGTJErF+/3vJre8nf1ZLFH5wxXkYIYvGlSYr3aNOhFse6Ta9UvR7RfE1GqFBD0xxSTZ1UmvMeI6vbx6sx7nZrudw7zgmLo1Ic1XILN82/sdCL23jfLz8ie1Adtx8xYmFEDUvd6lTfoXa+jjfU1AhcfGImoqiPhrBvkqFoNle5jVH7ddmlTDVxc9dnL+kwGTGiGZgsqhscFHL9/f1aFNuKMJozXgkCfLK3URrDV3nsOzSDa0cNEi+Uwpo7d65237x58+R9K1asiPqcPXv2yDTZueeeq92Xm5srFi5cGPacM888Uzz//POisbFR9PX1ieeee050dXXJtJvV16bnt7a2hl3cgHYunjc2b0LsaBEbsOkERitIbqplt3sqm205rGkWNjP6QRhpc9JsHpjdihix6DB74tAq0zqtHYQ7u9VUWhyPCm8T7VtWTd5momaEV01v9a8ZqyrPr7Aoshsx0otit6JGZk3BsaBu//QxUZ8go8eVTw/Gjjp8vLNe7mu0XeUm5kHGoyzfu2KFSDpNvs/kiSpXI8JOCrlWXUGIlVQa9T2ili8UyZp3/zvi0t+vEst31Im0EkYkcCoqlN4Feug++lms5xDDhw8Pu5/+r38OiaLe3l4xdOhQKZyuv/568corr4iJEydafu37779f8yPRZfTo0cINqG8M7Rh0wCbhEw/qUMzufy6TtAM3ZqS+P1y1YhYOTR9SQ9XJ5KgLHiMnI0ZsniZvlhm07tcWI0ac4ojXkVh/kHXTh6KfgeXm68R6zaDNgnNKGFG0iTWhGwZsWuCFIhn2FiYk0jm1zyOSEvHA38Mj/49dfoq4Yu6YsKg4HV/tjgOJjBglo71Fu4X3ubzI+QVss/q3U4reSisJOp/94IxxYfe9vP6g8COmv3lkjKadLd5l3bp18rHRdkr6QiXaWSN/HvkcSp2Rufrtt9+Wr/Xzn/9cfOc735F+o1i/I9Fr33777aKlpUW7HDigDHd1Gq4wG12aZ+jAx/0iuLGWHbiSbKQF4zUzqUI5gG3zgYFO8xj5NWKkRrQSzTeK1f3aqjDi/iUj4lTk0ImTvwquVi6p6RZ526O0Gr/v+rRiUOjS9dGi8mar0HGOT6T6CJqTAq5XjR7YMV8zvAA0Mm6IKg2364o/aKwIDYrl9M7mQ622fJTRKFMjT8lIpZk1X+sXsE52627S/EXWF6LfPT084GB3JqRbmD6jLFmyRFx66aVxHzNu3DixadMmUVMzsMqgrq5uQESIIaM1QVGdyspK7f7a2lrtObt27ZLG7M2bN4uTTjpJ3jdr1izx4Ycfiscee0w8/vjj8veYfW2KPNHFbTIHDZJVGEbmzOiFkROzhLiJWpXaMt4KFA6lEypFvurauuQsnGRAIvew+qU3248pGrkuRIx48KPZeU12mzxy/5JKtSFnrBNnQU6WjK64JVjogP7jZ0LGWDdO0NHQv45eaAQpYkSLJrvRDhLk9PnyfugkejFt13yt9y7SMSWSt7YcEWOG5oupI7iqKSSKlt3yZXkspQh8ZHpnaqWDwoirOJPYx8jMTDrubO9kR/EmrSLN+vGWoue3fX2qrCIkqKLQSLDEa0wvScrLy8XUqVPjXgYPHiwNzxR5WbNmjfbc1atXy/sWLFgQ9XePHz9eipply5Zp93V3d4vly5drzyEjttzwjPBNz8zMlH4jwspre8XcCUPFc9fNF7/5zixTK6nPq1ttN0DjUtPyohxbYe/xQwu0bUoW1H2bDqJUdWS22ZgXEaPe431aSqfYpPmaU2+U07cCV+QkEsB8oHUrxfX3zdVhXdK9Ekb6VFrQIkZaqb4DpvGQV815YcRimgRclgPbyr136lRTNVVL0vFu/f4mcd1fPhGLH/5Qeyz3w7rktNFysDXvx5En7OlV5kYexYP7GCVDGLVYSMnzd7/aQctDsyqMStXmsFah2Wnb/mWxFLN0Tnph3UFHm3v62mM0bdo0sXjxYnHttdeKVatWyQvdPv/888WUKVO0x5GQIn8QQarx5ptvFvfdd5+8j6JCV199tcjPz5fl9/z4SZMmSV8RCR+KIP37v/+7FFPf+ta3TL12EKBwMHVdpS+H3VEcodli9qI8Tqb3rMJ9lPQHRj95jPQnZ7MRI348pwrNptE+2llvKGXqdhNATrUwT6/cJwWjp6m0gEWMeFZfvK7lXo6XSdT1usCB7x7BkWda7Hz0Rb2Y/S/LxH8s2yE2Rint1kYpjR4SNQXN3+c5482NPDJSAp+MPkahSjDjx5EKtUimts1JYdRjO2LEkEeJUqDE0yv3Bj9iZIZnn31WzJgxQ1aZ0WXmzJniL3/5S9hjqHyeIjnMrbfeKsXRDTfcIE477TRx6NAh8dZbb4miIiUsmp2dLd544w0xbNgwccEFF8jf+V//9V+yrP+8884z9dpBgFZkNLDPiaaKmjCyWanBFW1cXZcM+OTHoy38FjHiVR6JD7Ml41ze39ppPsLyy5c2ycoRGkp82rjSuI/lPkduldRHey+3OTxFPRr6k5eTDTs97WHkSMTIve7mVgzBRoTR1sOt4ntPrZa3H3l3p3hfV7VE7w2JPN6HzpuhWC8YfSrtzEnltmbNRcJDvul77eSgabcECfsa9YsEu2xX33c7HiM9j1w6W1w1f6y4an64IdsPOLNXx6CsrEw888wzcR8TGUIj5UgGb7rEYvLkyeKll16y/dpBgQbK0sFgT32HIycMu0NXuc0+h72TAX/hnTBeuxExYlFj1nitr7LjCeFGoRPH6j1KRc6vLjgx4UgJLtl3SxhxxOvbp46S89LW7m2SUUYqz3YTfY8bJ830QWnuOMDE70IqjdOvZpuXJhJGkX21PtAJo7c+PyIq1RQRLR4ihYLea3juSeGiyS4kBkiskgestrXL0kglq32tOOJnpkTe6jEkFp3dx8Vzaw84KobHlReIu785XfgRV4URcIZxqqdnT/1RRyJGdoUR9wZxYxaP2VSV3eZyDJ+InCrvtuILiIwYmV3tUUSRUkd0ED9/Zqh4IVEqzS2PkdZnanCWmDlqiBRG+moit9D7QJIxDT3Zc9IYrtJyJ5VmrhuzUY9RPJYs3TAggqNnQnmBuHrBOLkY+YdTRgknoQU7padoACqVwHsljEgockbazCKrJM961Dka9brFhhOeTr8DYRQAeGYal6FaXXlwuT6vuqzCByX9l8Vr2MjrRHNHfepC30fGDrxSsxIxYjFl1mPEFT1UkWIkZ+92Ko23n1avhWpkwY35TZHoBXvQhJGTESMelaNvmeAU3CvLKY8RRX4pamvUExZtcSezDRcqlcpuQO0vFGHk3XHv4bd3WOodpD+GOFH11aE7Rlwwq0qkOsHql5+m8Dw16vZqtSqCjNt00CEBQD2UnBBGtC0kuJIBRyOcihjluhUxUlduZuAqNoqKmXl/WajyEMlE8Hvnlvla35lc87t40LdEP8/KzVlhbsD+FSeEEe/TblTmhXrrOPP9oxO3mdYf1KTWa4arvYFoFpsX0PH1zyv2ytszTKafuYCDDh9OtOPoUIUwda4OWjd5K0AYBQCK8FD/ILJjffiFtRbqO9XGkuPK822X1/JqjUy+bvRIMRMxcmKArBupNKtdr/X+AOWg1muh6tDYSSNUru+OeNDPinMzrRPPfO1GtMSbVJr9QzNHGNwwoIfM184ZnPXR1Tu/MU27/vr0gX4hKyMp7DK8yNs5kQcaO7QxOs9cExpvZQTaf6iaWX8s8rrJZJCBMAoIC6cM0+YAWeEzdUAjN0mzKyL4IJasdBp7jJwyX2vCyOFUmtlSfYJSCjwV3ozPyKyHjBvzueUx4oZwtK9wJYsnESNdKk3fNiHdUmlcUOCGAV0r13fIfB35Xf7RmePFh7eeJX54xnhx/UJl1BNlg845cbg4dWypuGLuWOE1I0q8nRPJXatPHj3E9P5AEThelDmxeO1IM2EEj1FA4GZluywOk92oziCaPSa894dVqOSfvnDk55gcvZm4q/BoFceEUaY75fpWhJE8qOVlS6FjRhixt8ZoO4aQ+dqdqApXLZJptSSPU2ndrqei9JVNQRNGXQ6W67OB2w2fVUePs6k04kuTh4lVuxu17wAbnEkYvP9Pi+Rig0z8yYKrcXnkjtuwAIs32icetECi6KkTY0w61M/biZ5xQQDCKCCML1cq0/bWt1sOyzo5P4h8Rrvr2pMSMaLOtztqFGF0kkPdbZ1PpVkv1+f0kyKMekx7a4ym0vJdLNcnwyeVNRMVRYM1EUZCj5o8OtEtORqRHjyvum073vnagR48oRYULkaMHDxRXvulCbKAYIHqqYws7U42LFC8ihixl2mE6m2ycoym2XNOHKM71aiyk0LYz6THX5kC8IGBVgDULt/sfLDQAEBnTItcsu9FlVEk+xoUkUedU6eMcEbocT7e+XJ9a18xKyX7oVSaMROr1vm6x3nxQONMOPpBplpODfJ7Y9QgbpbI1XHQIkbarDQHhONgFyNG7DFyqlyfFyduVpU5FTGiqjQv5nuxH8+q0ZzN7E4Io47u9IoYwWMUEChlRI0eiXX7mkw9l77ELZ3mm4QZK9n3vpcRDbDVD0pMNY8RUZRrvkGb2QaeXK7vhkG5Th1FQAKPTMAUIWKR6KbPaG+DElEdro5EoIiR3+YwxYOH3jpSlcbmazc8Rg43eAwCHLmhSkercwy9Ssfrj9FONOLtYI+Rg93E/QyEUYCYN0EJMa/arXQ3NrO66zne72jEiOetJWN2UJ0aYjbSFC7Z5fp2UmmEmQMwR0s4mpfMcn0Wr/rPiKOcblamfbxT+W4sOqFCq+wL0ry07uPqrDQny/Xd8Bg5XK4fBEjg8/fZi3Sa3XQ8Dwvn/mZOCOF8RIxAqggjPhHRKpR9B44NVUxCKk0z9arls06ar532GFkp17cySJbEDffsMRwxYvO1C6k0Phjre9O43cvozc1HxF/X7Je3z5tZKauYgpZO63ahXN8VYaRGGdPlRBnpM/LCgG2nFxoxzMGofjt/3g4Vu/gdRIwCxDx1WvTn1a2mVvnaEMK8bMfy4prHKBkRoygnXb+m0kospi7Nlto2qMZr8qYYrdQrUFf7fJJzEr3xmgmV7Du/z9AK/sfPfCJvV5UMFl+eXK69D07Ni+JGqSt3mVuYJK+PkXvl+txfK92Ekdbk0QNhpKXjLS6uytlj5EDEqFn9zjo1QNbvQBgFiIriwXLHJMsEl6sbgdrYE04aXvl3JSNiZLYs3Yww6nHgJEIrdF75WzVfcxi8vq3bVBqN3hOj4pdXom406QxF9XQRIzUKRsUDTqP/PtCqlt4D9tO9v91aU9RI6GS4+D8+EJc9uUq8/XmN8H8fo5DHyGmfFafSnOo8HxRGDlGE0eEW5ZjqJlqTWIuptFDEyP4xuokX1w5ZMfwOhFFA56aZEUbcFHLOuFLHtoMrJZzokWEWsx2ejcAnoi4HIkZ8QKNCrAKLHgyz8+isDAjWulF3KvOUnGS/WjlIPYwY7kvjxiBZveeDOrLr+/j8y+ufO5JOounu3CPppfUHhd+FkT7q5GTUiI49e9S2IWzgTxeq1DmTh5vdFUb0fWR/oVWPEUfUGxwY3dSsHtOc8qj6HQijgDFxGAsj4/2Mlu9QVsxnTla6ZzsZMaIThdeDOjVh5GAETBsi68DqWl9NkmFxrhAf1IwaJ81WpOkPuCQk9E0R7UK+qHe31crbc8eHetKcPk5JBa/dqzTxc5IDjaETVW+fIgL06WYnomKr94S2m3p4uZtKc6KPUeh3OGmwX602YdQv1NIFroQ93OxuKo38gizwrUbl9KOb7Kavm5FKA4GIGNUaixj918q9Yn9jh+wjM2+CcmJyAkoRce8fq4NtrUAijM20ZkRAIvQrdK7gS5Y3wEoY3GxzRz5x8oq/ud25dBqJOfJqkcdn1uhQp+ITq4o1EdPjkJeLoNXw82sPaP8fonbZ1g+QNdMoMxaH1JQ04VZj0y4HI0bZmRla1MhJA/rRLuW9vGj2SFMT31MBmjXJPk8WLm6gb7pqtUSePn/2BNk1YDepx/h0SaWlV4LYCu3tQqgVS35gcsEgkdd9TBw8WKdsWwI+/nSffPxZUytE0fFuck06sh0kiUZm94mazi7RWNskqrK9KYluau6Ufw+JsuLjXY79Pbk9x+XvJbpb20SODe9EW0Oz/F0VGTmGPqNoDMvolb+jo6lL9LUdTRh5aq1XXnNE1nFTr1mZ1Suq27tES32TEIOdOdB3tbTJbRmSE/73l/X3a+/xE29sEku+MtmR1/vLir1yH+SuVg98fbZ8XXrf8lSh0dbQIkSBPbFB71FetyKIOnuOieNtR52fNN7RLt8j+T5Z3Hf0DMvoEQ3dPaK9qUWIXGc+387mVrl9ZYKOJ+5EzvzKzNJsUTGoV7Q1HRNbd1aL6San3huls7FD2Q+yM0VGp5KWtsLonD5xrPmYaKhpFKIow/KYnZ7Wo/L7VdofkM/c5jYO6g9S9zMPaW1tFSUlJYJGr9ofuwoAAAAAL2glqwAtZlpaRHGx+TM4PEYAAAAAACpIpSXi8GEhLChON/nmox/JIaq/vWK2OGvq8LiVOov+7X3Z6G7D/z3HEUOnntte3CT++9PD4pZzJovrvjxReMHfNhwSt7/8mThj0lDxh6tOd/R3L/j1O6KpvUe8uuQMMdnGsN3fvbdTPPLuTvHtU0eKf/nWDMu/58L//FB8UdsunrrqNLFgUnncx/7wz2vEyl2N4sFvzxQXzKoy/Bo/eeYTWc5+zzdPEt85bbRwguXba8WPn1kvTqwqEi/95Iywn3338RXis0O0nhNi7Z1nG+65FItp/+dN7fbWf1k84Oc/++t68fbnteL/XnCiuGzOGMuvs72mVXzr0RWitCBblOZli931HeJPPzhNzJsQ/3Mxy8W//VhsrW4TT1x5iviy2r3bDlf9cbVYs6dJ/Oa7s8Q3ZlQ6so1OvadB5dd/3yqeXrFP/OjMceKfvjbVlddYsbNe/OjpdWJyRaF49Wdn2t/WL40T/3SutW194O9bxZ9X7BM/OGOsuHXxNBEIWluFqDJ+HIwEwigRBQXKxUdMGj9CfNp0UCw/1CnOOnXgtlF2dNPBFrG9pkN05gyWw1ZzS5wXdyNHlYvOrY1iW2ufZ+9RXV+W/JsKykocf81BBYWis6dTdGQPtvW7Gwdly23MK7W3jUXlQ0Rn83FR05eZ8PfU9yuvmV9abOo1s4uLRGdOm2jNzHXs/aT3j7aF3s/I3/nYdV8Wp9/7trzdJLJFYYFiZrUKvQ5x/cIJUbd/cEmx6MxpFU2Dsm39fUczu+RrDSvKF4OLckVna59oHpTj+D7YkpEjXyeHvq8O/O7sYvr7O0WLg9vaYHFfSxVKh5WKzpwacbA7w7W/vy2rTb7HmcUDv0NmKClXtvVwT+JjSCz2dQ1S9v0RQ4PzeaujdayCVFoAOW/GCHn9zrboTeb+d8sR8c3HPha3vrhJ/n++OkrEaXiy/bYjzvelcbIs3SjaiAybpc1tav+RIpvREO5lZKRXlNVmcFwKTMNWna6silaxRG0IqDO1E9WM+t4s15w5IepjytQmoNyJ2ypH1e7gFOHiRpXcUd5JuKzeqY7SPHOPK8mcQNu/LTYvDTrcm4vnAboBd9a2ux/whAI7VWmH1NYElWoPp3QAwiiAzB5TqpU9RyvD/cOHe8L+v2CSO8LoBDXdRA3fvPLwc6dtFg1OwqXrdvsycZk4Cy2rcJ8hFj3x4GZwZlsEFKjb6KQw4vcv1lw+Fit2hVGH7nOKlZIbP1RZ4XJDQqscVd9feh0e88JN75yE/yanhBG/LyxmnB0Hkp7CaLg65sZNYfSrV7fI60abbTSGOTAW5LDazHKk2sMpHYAwCiAULeEdfmu14tfQE9ljhRvrOU2l2h6fIgRe9TKy0uHZrDDS97+xs+q32+OFV+QsemJBopT79JhdxWsRI/Vk56Qwyo3x9/PK0ymxQiXzsUTYuHJFGO1tsPdaLBwLB1PEKMe1iBFHK/McEh35uc5EQfUccziqFdSIkb7bupPoI6HRju9udtCPtt/XqaJqdBmEEfA5p41VokZ/Wbkv7P6O7l6xrzG870WRjUaD8SAzN3/xqj0YqkjUuzAOhBnsUCrtmJpKsjsugaM/iSJGJBa5KaXZVBpHFHh6thPw3z84htl/elWJNqrm/r9vFTsNNiuNhKOlFPWKNR9ujDqGhJoz2olqcmdwEpI8g83pGXPUMJBHglht6hdJfnaW48JIi4imWXNHZpgaMaIonBtd/4/qFilXLxhn63fZHQuyV11Q0EI0XZo7EogYBZQfnTleXn/4RV3YAZ9OMvrj/30XWa+KMjVU0eXZQQM6PDs4QJbJdyhidMyhiBGLnETT4V/ZcEhek8nebJUXRxSOephKmz5SKQR4Z1uteGL5bnHjXzfYi+LE+Zs5sthrc+yJ/rVYGPGYBKegRQ1jNw3LcFSn08GIIH8/0q3rtb7rP+/bdr1r0WjRRSJv+7q9qjdaQFIPUhLd9eqx0wx71KjuuKH2iiSCBoRRQJk5aohs909Tjz89SG0oFdbtbZLXZ04qF7vuO09cNseZEuxYcFrEDWFEvzMyRcdG5LICFzxG6kmEhY1VjvXGFwbmI0bxT2pL1+yX11fMHWv6NVhU6E/KdjnWE9t8TcyI6BZM4xXsprdiQdvAn4OdsSchYZSpMzQ7957pU7B0ItMPgPVDQQFDUQf+fJ0Sb0GDopMVatSops35SDlHIiuKcm2Lz6zMDC2qX9NiXhjVqWm0yjTyFxEQRgGFZimdNUXpc/K793fK6/e314p7Xv9c3qYRIOS9iJVicHqootOptDV7GsXCf3tPLHzwPfGFOo19d91R7QDvRsRosFMRI4dSDSGPUewTem3bMTnQlD7m82dVWn4NJ9NCiSJGFcXKSYU5YXih7fRWPHgiuJ1BmvxahbnZ8uK0oZngfZtMzU59b7WIkUMpH644TOdUGosW1yJG6neRI5N2GaFWgVrxRLWo28KFIOkChFGAkb1bhBArdzXIldzVf1qr/ezcE2M3fnSSKjWVdsjhiNFDy7ZL3wydkO57Y6tMF1LahdsP2BnQmugkYnd13ZnAfGw6lRZHtGw5rERbJpQXWHpPNHNmm3NpoYPqsNWhcaJ6j1w2WxtwaXVVbCSVRgxxQBjxCZAq6vj1nI4YhYzXmb7bpxm9wErXVBoxXBX3bhiwnRYjvK1HLGxrqxqtduN462fSs94yRaCUBBlPqWqJ0yl8MBytmk7dxo2IEUWGVu1u1P7/3vY6Mf/+d0WjemK78avODB91q1w/lErKcKwHCQnfaINk1+5pjJqeMl3Oe7Qr5muY5fPDLZrnKRYXzqoSw4tyxSW/X2VZYBgVRizA7FSRHWxSChpGl+aFUmkOR4w6e3odj8RwdZvTwogi1o4P0A0Q/L1xo2Sf91OnhNEIGyKuVY1WF+ell1RAxCjAUP74VLUU/86/bdbuf++fFnm2DVz1s6OmTRr8nODRd5XU4MIThompahNJWu1Qxc45Jw4Xc8e7036AV+rs9Uh2Ko1WenTu6T7eF7PclkQjsUhNq5qFozpkTnaiLw95lQ6rInlqZfxu65wCsyIwdta2id+8tSPs9yQyYFtd3VO0kqNgo0rzXY8YOVkG77T5mr8b6ZxGC4vCtDjvreT9NDLlbDeVxk0jzdDKjWPTLGIEYRRwFkwMb964aMow7UvrBdMqi+UKmvwWmw+FTOBWeXdbjXhZrbI6a8owOfuL+fk5J4jfXnGKI1GNaPDBXt840J7Hxt7JIzszQ1vtHWzulL2K6D3msls6YVN0jZg9Zoil16CVPwsHNlragUPvWRmDZPWOsVYB5k/aP/zzOi3lkChiNEVtRGrV5E2vwyJoVGleWO8nKyXQVk3rtvZphyJGTon+oMMLtr9tPCxqHU6nVatiq9Kh47itVNoxax31gw6EUcD5h1NGad2LvzGzUvz5B3M8fX0Kp588Wjkpb3dgNAgNK2ROGlkiq+8oArbl7q/JFBqJBbdwImLUe7xP6ynkxMljZGme1ofnH363Qpz/nx+Jq/60Rp6Q6YTNZlg7YpiFUYOFct5IuNEkVYolMhCHBMZx0wJjv65XVyJhNH2Ukma0KtypwzynT0i0cCqN2mLYFdF6uIcRiVXnI0bOptLStSKNOV0XtX7k3S8c/d1sS+BIT1JTaZ3sMUIqDQQIOli/fMMZ4p/PmyruszHJ3Q5j1R4X+pOVVfTBoJnqCW18eUHCdIlfPEbc3NCplf84daQFRTt21CjRoQ+/qBfr9jVpB1Dy0Nh5LSebPHL1lpEO3HpBY0dgJNo3eCyIVR8c+4soWkRQKT1FxJz2GXWpbR6cKtXXj+1wSsA51dU96NC++5WpSvr6C/V76RSc8nJqNtmIklzLqbQm1deZTs0dCUSMUgAa5nrdlydqM5y8hn1GdoXRm5uPiPdVz8xfr50nO2t7Sajni/WTXYcqDJzqRTNZLWVfsbN+wHvFoXG7qVMnB41yCTuXtMeDzOnZmYrAaDI5UkYfjUv0PperRllKJ1n5bA9oxmtlP6dIGBtjnRyFwxEjJ4URFwCQ/4+imXbpciGqFVRuPlspAtlVZ2/cTCwxUl7kjBjh4wMV6ZiJHPYe79PM5ZUORa+CAvZu4Bth9E8vfKrdtuqZcWZWmvUTCM81oxWlE16oyRWKl0HfxJNYtbtBm6PEETurFKhRBSeiH/w7jESMSGDwYEo2NxtFX/GXqDM4pZr58VbaEnCkiWcD6qNHTkRJI0WHkwsCfWRHH820CourHFXQpjM8h48KI5xqkEq+Qa5K45l8dqGRUGy3MOMzqm45JgU1RUfdGNrtZyCMgG3GlCkHiAM2ThKrdzdoBlcaY5KMUL3W+dpG2oFP0k7Np5uhphMZbs2/9UireHdrrbw9b0K4Ad8s3Dn6qBOpNP77DaY+xwy1tu+QL4lJtK+QAOPy6rqj5tMJ3G19mO7kwNu9v7Hd1x6jHJ0nr8uBdBpVSBJuev2CAu3j/P46FTmk/ZoqRJ1s8EgMt1CZdtUf18hr2p50a82AvRvYhqcu06BCKyXM6/Y2yn42PMrk8rljkvKphCp4em2nksxOuY8FrdTIY8VMH1kiPUVk/CWfEXHGpHJbrxEqP3culWb07x+j7js8rNIIPcf7NBFx+rhScYWB/YVXvGykNgOb0vXd1sc6FCV122NEUUsWWs5EjPq1ViHpDgnu0gL7PbL08Pw9+sycXBwO5xEmJiJGu9U5aZzuTiewdwPbUHSEK5v+Z9Nh08+/8illZUL809emJO0TcaIqrc2F8tZTx5aGpS0nq+XnfMKfXGFtpIa75mtjf/8JFkrp9eX9S6+dZ+i1Tlf7fb20/qAwS7T5fByBcsNj5LR/h4WWExGj3j41YpRmEQQ3x83oCaXRnPWLar2MTAijInVx89srThXpBoQRcIQvT1aiFv9vnbkTD+Ww9WMGZkWkjpLjMbIjjJwvb6WoiF4Y6WeLXTCr0vZcLU6lOTH7S1+ubwRqx0BsOtgi/RVG4KgkCQijKR2eK2jWy8SRUJ5UzrD52skZcyGPkbOHZY48cJ8kO3SrESOk0kRYusspgcwNFZ1Mo4U3pDxm2EvWph4PkuH3TDYQRsARlnxFqdDYcrjFcPXL3zYcEj/4c2i+2/PXzXN96K2REwj1IbLaxVvz2DjYKfYrU4eHHeDYkE186+SRtn9/gYOpNDPma26URx85nVjqYnT3jrWqNiM+Wcjw52MU6q/EFXP6VJqbwsi1iJGaqrMDf7ez0jC9Ei9i5FQqjb8D/HudYkRxrqlUWpP699B30+ltCQIQRsARaIgppWRoVbpT7cYcj8PNneIfX/hUfLBDKc//9qmjxFybJmK76FfqnNZItseI0za/XDxVLD5phPQTcSUXcWKceWRGKXIylcZ/v0HzNYlRrvDabaDsmYYV3/riJnl7kokUYpHFqBiZ6dkMy+lifarUqROiW1Vp4cLIfsSI/F2Rpu50hlOqH0W007DKvoaOsErfZKXSGlRfHYmidDNeE9i7gTM7UsYgMX1ksZYWScQ722rDojJfUlNxfhFGVlfX2iwphzsD/2TRRPH4lafKaMJZUyvE1QvGiQf/YaYjKQ2OGLE/yA5tXeYjZhPKFYGzs/ZowujN+Y98qPmRZqlpOCPwrCcSB2ZELw3wZWGlFyyc6nAyYuSWxyiUSrMvfLmrOyJGChefMkpev7O1xpH3l4sQuBWA06m0GoOptEbNV5d+0SICwgg4Bp+oPjMgjCK/oOw1SSZUacOrI6ur62OqoBrsYnNK2sa7LjxJfPf00Y78Pjszy2Kl0hKN6dDDvrJXN8Y37tNsMg7xR2tlEI+C3NDnYSad1hjFXxSemut1bHiyG1VpbkWM4DEK7buU0qVdwEjEMxE0jNuJ3mSxIkbUsNHI+J36GPt9ugBhBByDq6V21ydOpemnxX9//litP0+yCVXwWBRG6vNydQ0I/Y7W+doR87X5VOJ3TlME3rp9jXFX3ZGtIGaOHGJK9PLcMDMtJRrU/XRoRIM7FkZ6w2w6RIy4XB/CSIE8kVxZ+UWtvVmRZIzefKhV+nrmqFWUTkE9uGjNR2nhegMzERu1/R7CCABbjC9XxM0eAysnnuR+/8UzxD3fnJ5U07WTRlVelbsZMXIabZirI6k0NWJkQhixx4gWsr/++7aYj9MLN1qpc/8sN31G0SrSWBhwN2Gn0mmB8Bip5fo8Kw4IMWFYQZg/yCrbjigp4hMqikSFzTE/0RYG3MurpqXLxH6fK9KR4Cxrge/hgaeHW44lXJ1yxMhvreb5pGQ5ldYTvCGbWoPH7l7TU+5jVqUZmJXG6EXxn1fsjf27VdFFc5te+skC02Ka/85EI0SiNdyLVpnjdGWa2xEjJ/oY9fSqESPMStOoUoshDlloBREtbcuGbqcxY8BuULcFHiMXaGpqEldeeaUoKSmRF7rd3Nwc9znUy+Suu+4SVVVVIi8vTyxatEhs2bIl7DFHjhyRv2vEiBGioKBAnHLKKeLFF18Me8y4cePkgVN/ue2229z4M4EKfYl4VZ5o9cTDCd06CFiFU2BWI0YsjJz2ibgJCwZqI2RnCjuJKu4Bla/z9BhhyVmTEj6GhREJEiudl9kQbiZlyKIn2oBmrTLNIWEU8qf512OEBo8D4SpRqpi0g+Zncyl9pfUyMiCMGlXzNVJpLnD55ZeLjRs3ijfffFNe6DYJmng8+OCD4qGHHhKPPvqoWLt2rRQ/55xzjmhrC+Vv6Xds375dvPrqq+Kzzz4TF198sbjkkkvEhg0bwn7XPffcI6qrq7XLnXfe6cafCVRIfPL4ij1qO/lYvVC4n4bfpjbb9RhpqbQARYxowCqbzu2k0/jETrCfxyg8Bibe+AGzPZKcSKW1dsZu2Ol0ZVrIn+Z0Ks3JqjSYryMZqaaCqQWJHbgC0q0ozQgTlWltanWp3kuXTri2rN26dasUQ3/4wx/E/Pnz5eXJJ58Ur7/+uhQ1saJFDz/8sLjjjjuk2Jk+fbp4+umnRUdHh1i6dKn2uJUrV4qf/exnYs6cOWLChAlS8AwZMkSsX78+7PcVFRVJYcWXwkJ7oxOA8XQalZ3SQTSa0VVWRvQrJ0H9YM5USKVxukI//T0IgpajRmYbIOrRj1Ix67FinxOVg8eK1mn+JRMVb9FK9s38ja1xRrw4nUrT9h3HU2lOVqVhVloko4bkaxEjo93bo9HIM/ncEkYmUmntak+z/Bzn+rEFCdeO3iReKH02d+5c7b558+bJ+1asWBH1OXv27JFpsnPPPVe7Lzc3VyxcuDDsOWeeeaZ4/vnnRWNjo+jr6xPPPfec6Orqkmk3PQ888IAYOnSoOPnkk8W9994rurtjt22n57e2toZdgHm0iFFdu7jzlc3ilHuWiV0RDR+5rJVCu9T/yE/YNV/zqj9IESOCBtMS+nJ4s3SowojeQ7OfKxuZ4zWa1FoBWOwqHhJ/veaF0eDYwsipqjS3/GkcgXK2XN9f39tkQoKD7G70/nLUx04qTT+Tz5VeRgaEUYc6SFv/vUwnXBNGJHAqKpT5RHroPvpZrOcQw4eHRiDw//XPIVHU29srRQ8Jp+uvv1688sorYuLEidpjbrrpJimY3nvvPbFkyRIZibrhhhtibu/999+veaHoMnq0Mz1i0lUYUenq8+sOiO7jfeLZVfvDHrN0zb6wx/rTY2Q1lRY8jxFRqq5S7cx84hO72TQaQZ4hjmzESuexEdrqHDqtLUGXhVRaXrRUGo+DcGZO1jGX0rAcgUK5vjuQWb5C9Ura8Rk1uOwx4m3kiuB4tKuLE47kphumj95kjI40NUde1q1bJx8brWqEQo2Jqkkifx75HEqdkbH77bfflq/185//XHznO9+RfiPmlltukZGmmTNnimuuuUY8/vjj4qmnnhINDQ1RX/P2228XLS0t2uXAgQNm3xqg69i6fn/zgFUmw52xaQyI39BSaTb7GAUtYlTGU8JtCCOOGPEwXsvVcTGES01rV9jK16r5utXhiJFzHiN30rBaxMiRIbKYlRbXgG2jMq2BDc8updLMRDjbOWJksogiVTAtByn6cumll8Z9DFWEbdq0SdTU1Az4WV1d3YCIEEM+IIKiQ5WVldr9tbW12nN27doljdmbN28WJ510krxv1qxZ4sMPPxSPPfaYFEDRoDQesXPnThlpioQiT3QB9pg4rED2OOH5UsRfVu0TM0aWyE7NVLlUq57gTnO4iZkvUmm9wfMY6Q2fvGq1AlekWR2HQsKIUhGxIkY1bcfCTKSmf79mvjbhMeKqtCgeo2IHhREt/lxLpXHEyMEhsmjwGA6L9Tp1H7WXSnNXGBnZXzvS3GNk+q8uLy+Xl0SQ2ZoiL2vWrJEmaWL16tXyvgULFkR9zvjx46U4WrZsmZg9e7a8j3xBy5cvl34hgozYREZG+IknMzNT+o1iwRVresEFnIdW5RfNHile+ORg2P23vrRJfHN2lfR30KqTAoAc2vUTdkubeVXudJM+t+GDsZ2Ikd05cQUGI0YV6qRwt6vSSKxwdCme+dqJQbJkaua1hNPNQZ2MGPGCBx6jGGkqXUd/M9BCjPd7t5oqchVle/dxGcWPJW67aZ6gKoALIIycZdq0aWLx4sXi2muvFU888YS877rrrhPnn3++mDJliva4qVOnSn/PRRddJNNlN998s7jvvvvE5MmT5YVu5+fny9J/fvykSZOkr+g3v/mNjP787W9/k2KKKt7Y+L1q1Spx1llnSb8Qlf1Tau3CCy8UY8YoZcHAPaiT9XkzKsXosnxx9kPLtftpSOhTH+3RGjv6cdVppypNrvrZY5QdUI+RDb+M1sMo29oqk8duHGgM9cAiofa9p1aLMyeVa6bRiiJrEaNy1bvBk8MTQScQnoMWLZU2xMGIkT6a4/S+M9jBiBF/L7IiFqbpzjAT/p140SKKtkfzszmBfrAz7bOxmut2qGk0K/3IUgVX42TPPvusuPHGG7UqMxImlAbTQ6X7FEVibr31VtHZ2SmN0uQjoqq2t956S5beE9nZ2eKNN96QzRovuOACcfToUSmUqKz/vPPOk4+hlBgZtO+++25ZbTZ27Fgp0Oh3A/ehiAFNgI9k7Z5G8fqn1fL2SVXFvvwoNPO1hZ4vtMriat109BhxxGiwxYjRaWNLxQc76sQbnx0R35s3Vi6UXvzkoNhyuFVemDEW5+qxoOLIk9E0GkVHoqVGnaxK4zQaRVIdHyLrYMSI/9ZoEbR0xq4wYn8RRW7dGo9EvcooakoRU4pyxhJG7er3mEzlfly8Bl4YlZWViWeeeSbuYyL7PtBOQQZvusSCIkkvvfRSzJ9TJ2yKGIHk8+T3TxPX/pdixr/rtc+1arSnrjpd+BE7qTT9cwJblWYjLcTenTyLEY+vTqsQDy3bIVbubhDr9zeJU8eWyWs9VSWDLfcxYh8IjaMhr0yi7tl643W0k5WT5utQCjbD8ROjXd+cHk4bspAGCiNKFPP1Z4da5ftsNpXu1QgO2mdJGLV0dif8HhemaUUaEayjNwgc55w4XFw1f2zYfY9dforWaTmVUmn6VX9OwFZafEDmJnNWeG97nbyeOsJaNPCkqhKxaMoweXuDWtXIFYzMJHWSuRWo2of2O1qLGTGZh0r1sw15Nuzg5ow9/p1cMWkVWsRyqrW0ABEjPXPHl8lULYluioqbbfSoNXd0eZo9Fy4cao5tEq9v6w5LPacjwTp6g0CX8BOnjysVJ/o0jWZ3dc2rfjLPuhUOd998bT36wekuivxY5dQxpfL604Mtsj9QZF+YScOsd6+nppNm+s1oaaMYfZMiPRt20EbJuGDadypiRB4yHnQbbahuOkPic1qlclz7xxc+FZf+fpWpfSJUqu9uQcqkCuX7s6s2vOmunrqjx3w5x9JLIIyA65ARm5lo48TmrcfISiotmMZrfWqEKmOsnkDZtDkkz/pJc95EpZXG+9tqtTSa3t9jd7Yej6zh7uvx4BNbrIgRezb0j/VbDyMnI0ZsECbviZUmnqmOvihg9Z5G8Ue10MRPqTQ+/lIhTKKI0TCfjWvykuAdwUHgIG/Hb74zSxqu/djU0blUmnurfrehEzxnN1ss+IzIj8MNHu1UslDEiMQPzUX7z3d3yvu+OjXU9+zkMUOEHSYMY2EU+8TAVLd0JqyC43Sa3ZJ9NxuDOhUx4mgijY8JWkQ0GRxoClVXJoIbQ7rV3JE5aaQS1VqztzFmuq9ObTmQzhGj9HVXAU8hQeR3URQ+cPO4r1b9bkNpJkoNUeSDevdUmMx2nvvQB9rtAhu9T2g7zp9ZKZ78cI/mM5pWWSRuOWey2FvfIU632RSUI0YHDHQoPtCoPGZ0mWKsjWVmPSA6bVem8b7DFWROkudQxIiFotUGm6lOpM/M6AKDPvtln9eERUzd4pQxpVIoU/Xc3oaOqGOZ6lVhxO0z0pHgHcEB8GnEiJ8TtOaODKeFuBrLDPqJ3XaF4bVfnqBFr4hRpfliUkWROPvE6B3zrfyNsbpr6znY3KG9fiycqkzTOqa7UM3IaS9KddqZ/s6+rCp1/AUI56dnTRJFuVniRNVr1Gxwn6D+XOTfIgFLLSvchCKS/PnVxhgm26oWHUTr9p4uQBgBEC3tYGF1HeSIkb6JoZnp89Gwm2ah1JXeoE/Ty50iXy1B1jexi0V1i3LiqBoSJ5WW58wgWTdTadxXinpVckdjKxxWhRHPBQPhTBlRJDb+6lzxfy84Uf6/yeA+ofcXeZGipFQo0RQjotUaZz5guhDMIzgAbpuvLaXS1IhRwJo7DogYOTQU1YmUl9Opm3z1s+FmlPFggRhv5cxdis0MpvVaVOuH+hr5uxMJxUoIo5iQIZ99Z0ZTadxU1e1SfYYrCmMJt1b1+8/Hg3QEwggAx1Jp7vWi8QKuvjIbMbKTnokFDR12J2KUGdbdNx5HeU5anJUzl+ybGUzrdR8j6l7Ms814bIsVeJZXrPYFICKK2Nlj6LvBESOvWiBozVxj9PJqizMfMF3AHg6AQ52vtYhRwLpe2/UY2TnZxuKHZ46XJxYaW+CkWOBp4YkiJ9QZm/+ueB2AWSS8+ulhcdvXp1luXBryp7mz79B72HO8V6sctEKHzSHB6QKlxGg/oDl7tW1dWsf1RBEjt0v19dsXL/3bqqXS0lceBPMIDoDLESNewftl1e+tx6jHUiTB6SjHLxdPFT86c7xrRuR4tHeFPv+COMKII0Y0f+3FTw5Y3i639x3+u+2k0ngb0cMoPtTnaaw6z++LmsRtIbRu4l5FjNTXqVebSurp6+vXvs/6BqbpBoQRADrY42FFGIW6Fwfza8UrRK5KMUqHTkS89JP5ws/wST1RKq2tq0eL4NCJLhb6Sej/u0UpufajMAqV7DsQMcpO30iCUbhD+xe1bYZTtl55esapoi1ak0fqH9avZv/gMQIAhJ2YrKSHQr1ogimMrPpleIU5vDhXDn71M5xKo9EWlOqIRWjVHP9kVZQbWlXbKW8ONQd1Z9/JU/9uO6k0jjYhlZYY7g+0vzFxk0f+TApsNEY1Wz1H7KhpG/Ad4LRefk5mYCPfThDMIzgALsEHfTpRUVjZWi+aYB5QrFZYcU+gAhuNHb1CnwaKl07jVXyiCeOZqqnZvjByr8EjkaeKdTt+MH4uUmmJGVmaF9biwMj3h0W724wdWiCyMgbJCHdt27GoRvChaTxAloAwAkCH/qDPQsf0ENmArrSsRoy4uWFRAKpYKDXG/uh40RM2oBYmiBgV6E5mdlrQHOM0rFvCyAGPEQtJffk/iE5VCQujY76LGJExPFYFaoPa9brM5WG2fgfCCAAd+miP2ZOINkQ2sB6jbEseI15llntUVWMHaqDHK/N4wmhXrTJkdkxZ7K7XxOnjSqN6rfzWHJR9QVYjRhQ95XQfUmmJ4e7SBw3MS2tXBWeBhxHXkJ8wfBHUGKDvspsE8wgOgEvQrC4WNmZPIm52L/YC9tOYjRjxKjMo4XfNgB2nmu7z6lZ5zeMd4gmtu9ROx0cNdNNOKIxcSsOymLHqMdJHT5FKS8y48nytu/Tnh5V9KRYsqONVP7oVHY5szaHvwp3OQBgB4FBpc6jBY0ZaNXgM+RJyg/X5xhG+u+uViBHNaDM8ZsRG2wK307D5NqvS9IIqqB46L9H7hc575ENDESMvBSf7CSO/658eUAY3VzrYVDWIBPMIDoCLsIfCasQo6ENkqWQ3XsVWJA1qP5ShAVllGkmlNbYrUbBhRYn/JjZo63sfmUUz7ruVSrPpMeKoBm0fRVVBYmaNHqLdjjdiKOQx8jKVps5L03W/pu/8u9tq5e3zZlaKdAbCCIAYQzfNnkSCX66fZalpI89cCkr4XWvyGOdvbGrvMdx0L9QbyYFUmksRI/69VlNph9TqKifn1qU6j142W7v90Rf1UR9DbSPY15OMFOVdr32uVd9SJ+xe9fYktQ9TuhLMIzgAXpw4TUaMtAaPAfUYUaSL/VVmBsmyiEpU2u4XtNRXDJFAq3v+m4YaqM7hv9tOj6CQPy0jaenDeOxvVM3ouuG+ID6jy/K1mX+/enVL1Mf85q3tuuGz3i0seo6HIsLX/eUT8fL6g9oCpyQvW2Rlprc0SO+/HoB4XYItRoyCKoys+oySYR51wm8TS/hytIhOVka6/3Jqzs5olFBFo7udrzstRrX2NnSEdU0Gxrj2yxO0iBu3tWBowOxf1+yXt++7aLqnC4ubz56s3X57a434+f/7VNz8/MZARX7dBMIIAIe6X2uptICW61sdJNvR0xuo4aKJUmkNqr+I0mhG/DTcf8aO+drtisY8mxGjmpZjYWXowBgXzqqSXbBpzMb6/U1hP1vy1w3aAuRbs0d6+pZOH1kizo/wEW0+pFTPleb7vx+Z2wT3CA6AS/Dq2mxqJOiptPBBshYiRgHofE3k58b/fDliVFZg7ATBkTKKQJntlu5dHyN7HqN6rjxENME0nE7bdKAl7P7/2VSt3U5GwcYlp4+Oen+phyk9vwJhBECMiILZ0ma3T26eRoxMeIySUW5sB059xYqe8LRzoymFAvX3UVTASkSGUipui2qr+3RklV55QFoy+ImTqpReWP/x9g6tRxiZrpPNlyYPEy/8eL4YVhT+mY5BuhTCCACnSpt5xlhQTMjxPEZGU2lU4stpoMB4jBI0eGzUxiIYE0ayhF3NuFmpTGNR5GpVms1UmtaSISBNPP3EeTNCKSsa3EroZ5Q9/cM5IlmcPq5M/Onq07UU2r99e6b42VdC/qN0JRhHMgA8RCttNnESIfMsrwJZXAQRTpXUtSniIBH6E21wIkbxhW9jB6fSjIkA6n5dkJMl+z/JXkaJe0KGoY/iDHbJn6YZzrusRbTQEdleddppY0vFun1N4kiL8r2qVj1bo0rzxMITholkQn6jj2/7ihhWmCtyAuyPdBK8CwA40PmaPTk0SLQwIF6baIwuVaqODjQlngquNxxTxCQopvO8BA0eOW1UZsJrwb6l7Ufij3+IBkfcqArOrTJpjuZZiWjR+8SiHxVL1hiu9n+qaVUE0SsbDslrMmb7gZFD8iCKdATjSAZAMsr1TUSM2JNDoijInYFHlylVRwcaEw+/JNq5a29OloycBIGCBA0ZQ+Zr48KoplURUz9+Zr2NOWnuHY41YWQhYsQCkj5e/m4Ae8Jow35l9MZ3TotugAbJBcIIAAe6BHPEKMhpNGKUGjE6aDBixL1ZguIvMhIR1Mr1ParACo0DcU90cEsBEoOUGrPahiIo4tdvVBTnhgkj6jJNoC+UP4EwAsBk1VI8YWSkIaCfqVArVCidZKT0fGftUV+lBMx8vhztihUxMtL1mvnxwonyerh6AvRTDyOiwEblXGg4MqJFVuHoY1NHjxRF7DFCabw/gTACIIK8nAzTqTQuww26MOIoCWmiZgMl+1xlc8LwwgBGjGI1eFRW86UG+xgRkc3y/DZjj1JgHOwx26G7s1sRbkijWYf9ajR240dPr9Pu9yoqCcwBYQRAzPEJJjxGmjAKdiotOzNDzkrSm5BjQSmZd7bWaJUtQWvHEC1VSn+TlaG4WpNHCx6ekMfIvYgM+d6sVqZ5kepLdVgA0cDYT/Y1DfC7AX8BYQSAyaqluB6jgEeM9CX79WrvmlgcbjkmdtW1i6yMQWLx9BEiKBTE+XypFxX1ZjKb5tAbus17eNwdIBsp3sxGjFJh1E2yYZEd6d2DZ8ufYE8HwImqNM1jFOyIkf4gTqvbeDQcDXVDDtLfzak0EghsgmX4byahYyZCwlEo0lT6ho1+8vBw41GzY0G88EClOtFaP5w+rjQp2wISA2EEQKxUmoVy/aB7jPTdjdlrE4ugNv3Ti7g/r9gbVRiVmezwzIZu4p2ttRZHybgrPLjXUqyO36k86ibZRDsu/PXaeUnZFpAY7OkAxDBfW0mlBSlyEosytRqLI0KxaAqoMKLozvwJQ+XtL9SqugHCyOQgTWrOyPx06XrDncM9TaXl2EulIWJkz+P1lx+FRn98+YRhrjXzBPYJ/vIWAJc8RubK9ZWIUXFe6niMEqXSGgMqjIhrvjRerNzdIHbXtbsi9mgWVuRwzmSar8MM4ia7Xx/jAbdJmACfStDQ1r2//oZMneZAFPkaSFYAYqTSaAwCG3HTK2JkLJUWZGE0Tu27tL+hPUapvvm/Sd/w3Ey0kSNGuS6n0kLma5N9jJBKc5TcLGqdgEaZfgbCCIAI9P1ajEaNQuX6KeQxSpBKC7Iw4lQZNXnsOR4yS3OpPkfNzPDqkjO122bSVaFyeLdTaVyub7aP0fEwgzkAqQ6EEQAR6E9QRnsZhcr1gx8xoiozorbNmDAKYpM6vYDlz444onYk5vfADNTLac74MtO9gro8qvrSIkYmU2kd8BiBNAPCCIAIKMxttmRf8xilQMRostrFek99e9zIh53oSrIh4yuX7fNnx3+zPtVmFq2fkYmoTKdXHiMtYmQuldZk0ZAOQFCBMALAZHfkSKihXyr1MaooGixGDsmTc7U2HVSmgEdD8+ME9ITJUaPWzl7tc9xdp1SpTRxWYG+KvYmoDI8m4UGvbqFtm8lUWoPFFgYABBUIIwBs9jKix7BJOxU8RsTUEUVhERSC/sb/fOcLsXJXQ1gkgT1JQYPTnhwxohJ78hyRiXp0Wb6tJopmxAcPs9X3QvJT52v2mgUxMgiAFVLjKA6ASxEjIx4j9qhQLxtOzwQdFgb7Gzu0+17fdFj8+7Id8vbPzzlBGzIb+IiRKoz+57NqeT2qNF9WDlmBxQ2LHSNw+bzb+w5HpMx2vmYv2VALvisAggiEEQBxI0aJV9cccaATbaqU4Y5hYdQQEkbbjrRptx9SBRJRmh/M9GGxOiyXUmkUDbv7tc9N96+KpNBCd2kWKq4LI4sNHhuOBrf6EAArIJUGQNyIUeK5Vy2qRyVV0mjEeNVjs1PXGTpyrhhRkpcd2A6+w9QISHXLMXFAFxn79qmjLP9OjqrUtCrVbUZgMzSnuvzU4LGvr1+0qUKKPmsA0oFgHtEA8JHHSIsY5abOieOkqmJ5vavuqHYi1fuNovV8ChoTK5Tqu511R8ME4E8WTbQfaWsMn6Iej3bPUmnsfzIeEdPv/6mSJgYgqcKoqalJXHnllaKkpERe6HZzc+wqF64Mueuuu0RVVZXIy8sTixYtElu2bAl7zK5du8RFF10khg0bJoqLi8V3v/tdUVNTY/u1AbAmjHpTZhyIvjJteHGunBa/ek+jFlmJ5IiJyIjfmDRMFUa1R8WOWiVNeOGsKlu9qMYM5RRkuzyWmUuluRwx4lYCJiJGvG2UIcZIEJAuuCqMLr/8crFx40bx5ptvygvdJoESjwcffFA89NBD4tFHHxVr164VI0aMEOecc45oa1MOXO3t7eLcc8+VXo53331XfPzxx6K7u1tccMEFoq+vz9ZrAxC5OuZSamNdr1MnYkR8fXqlvP7vDYfkSZ6FkdEZYH5nVFmelvb67GCLvD19pBIpswq1OWDzNbcB8I/52nzFnNb1OjtTDkIFIB1wbYmydetWKUhWrVol5s6dK+978sknxfz588X27dvFlClTBjyHDr4PP/ywuOOOO8TFF18s73v66afF8OHDxdKlS8X1118vhdDevXvFhg0bZLSI+NOf/iTKysqkUDr77LMtvTYAegab8BiF5qSlTsSI+Oq0CvHnFXvFxgPNsjKJZsdR5OC1JWeKefe/Ix8zVo2QBBGupiPv1Pr9TfL2jJFDbP1O6l6dk5Uh36u2rh5RksCYTqZvnpXmlceo53i/HGRqpPLOqzQfAGkRMVq5cqVMYbEwIebNmyfvW7FiRdTn7NmzRxw5ckRGhJjc3FyxcOFC7TldXV0yWkT3M4MHDxYZGRnio48+svza9HtbW1vDLiB9seIxSoVxIHqmV5XI670NHWLZ50qqurJ4sBhRMlisuO0r4rI5Y8ST3z9NBJUhqmihdGFNa5c8+c8eY08YEUUmvDx6I7T7VWmh32+0+7VXaT4A0kIYkcCpqKgYcD/dRz+L9RyCIkR66P/8MxI4BQUF4pe//KXo6OiQqbVf/OIXMo1WXV1t+bXvv/9+zY9El9GjR1v4q0HKCSMjqTQ1ZZIK40D00Aw0Tg3d9vJn8vrbpynfi6oheeL+i2eIE4YrjSCDCEVM9GLkrCkVjswrM9NIkVNVlKXKzXK3FoaqB/k1jJbs8/YhYgTSCdPfRDJGU8Qm3mXdunXysdF6ulC6LFGvl8if659DhusXXnhBvPbaa6KwsFCKmJaWFnHKKaeIzMzQQc3sa99+++3y9/DlwIEDBt8RkNLl+maq0lIsYkRUDRms3aaT41Xzx4pUgjtVE4unj3Dkd5oRRtwIsiDHmx5YoZJ9YxEjTqXx9wGAdMD0EnfJkiXi0ksvjfuYcePGiU2bNg2oFCPq6uoGRIQYMloTFNWprFSMn0RtbW3YcyjVRpVp9fX1IisrSwwZMkQ+d/z48drvMfvalJrTp+dAehNKpaWvx4hYPL1SrN3bJKNhz14zL+W6H9e2KeMuiHNOjH5scLPJIz8m3+U5aXohSH4x/eBcIxGjAqTSQBph+kheXl4uL4kgozNFXtasWSPmzJkj71u9erW8b8GCBVGfQ8KGRM2yZcvE7Nmz5X1UcbZ8+XLxwAMPRN0WgkzXJJ4uvPBCy68NQPQGj4lPbo1q40P2rKQS35s3RpbtL5pSERZdSRXIJ/X/1h0QD313liNpNKLQRMTIaw8Pt5RgMZ8IRIxAOuLat3HatGli8eLF4tprrxVPPPGEvO+6664T559/flhV2NSpU6W/h/oSUSj55ptvFvfdd5+YPHmyvNDt/Px8WX7PUBUa/X5Kq5HR+qabbhK33HKL9nuNvjYACcv1DaTSuGsyzdhKNciHc/7MKpGq/Ou3potbzp4sKopDKUMvy+K9KtVnuECgRZ1zlwgWUKkoigGIhat7+7PPPituvPFGrcqMIjrUn0gPlc9TJIe59dZbRWdnp7jhhhtkk0aqLHvrrbdEUVFR2HPIE9TY2CjTdlTeT8LI7GsDEAuOHiQaIksnv3p1lhQ39wPBgQb/OimKwiJGx4xHjAo8ihjxWA/uvZUIHm1SUZxaKVQA4uHqt5F6Cz3zzDNxHxPZHZaiRmTwpkssfv3rX8uL3dcGIJHHKJFJ9WBTp3bCSbVyfWBvOK2RqIzXHiPeR1sNRoxqWxUP1vAiZ8UjAH4Gs9IAiAKnNo4lSKXxYNXyQkweBwoVamdwvbE7Fpyq9SqVxg0njabSeOQL9a4CIF2AMAIgXiotgTDSUiHwYAAVTs1xGioe3ATSM/O1WjlpdFwJ/w1kwAcgXYAwAiBOVVqiVBpXHqEBHrASMWLztb4rtV/SfPqU2xB1fAoA6QCEEQA2UmmhExuqdoDCcDViVGsiYpTnQ/M1+T+9NocD4AcgjACIY76mgZs9x/sSntiQSgPMEFV8UFfr3jj7DtHZ43HEyES5fvfxPtFLg+Q8NIcD4AcgjACIgr7ZX7yokRYxwokDqOhFREeCiKPmMfLIo1ZsImKkHzSb71DzSwCCAIQRAFGgYZs8uipeL6OjHptngf/JycyQ/ZGMTLH32mNUkmfcfM1dr+m7QANoAUgXsLcDEAXqp5VvoDLN6xMbCMi+o5n34wsQ9vB4NaRVHzHqU9NkibYNaWKQbkAYAZBoXlocYQSPEYhGgRpBTFTVSD4k/eO98hhRX92jCUSb1nwSoh+kGRBGAMSA02PxZl6FOhcjlQYG+owSzUvr8LjzNXnncrKUw35LR3yfESrSQLoCYQRAgplX8SaRsw8DqTSgJ5RKM9gg1EOPmtGSfa/HlQDgFyCMAIhBkdolmJs4xjuxwXwN9PD+kFgYeZ+uMtr9mvf7AhQWgDQDwgiABMIobsRIPXlwdAkAfQSRI4ox9x8W1rneR4wS9TKqUQfIcidvANIFCCMAYlCkGlWPGkilId0A9LDQiecxouaP3b19nqdijfYyqm7plNeVQzBAFqQXEEYAJPQYxT6BcJ+aAqQbgI7yAmW2WF2ceWn65o9eleuHeYwSRIwONysjTUaU5HmyXQD4BQgjABKl0uJVpSXBIwL8z6jSfHl9sEmJusQT1VkZg2RTSK/gkv1EwuhgU4e8ripBxAikFxBGAMSgMIHH6HhfvzjWo6RC4DECekaV5oWJi0SimppCekWx2v06nseIfrajpk3ePrGq2LNtA8APQBgBYNFjpDfWwmMErEaMvO4sXZqvpPma4wijjQeaBTXGHjc0X1QilQbSDAgjAGJQxB6jrh5fpUJAcCJGtW1dMYcQc6m+l/4ivTBqbO+O+Zi99e3y+oThRZ5tFwB+AUdzABL1MUoQMfI6FQL8z5D8bK3S7HBzp686S5cWKJHQpo7Ywmh/o5ICHFOmRL4ASCcgjACw2PmaI0bwF4FISCgnSqcly7jPEaOm9tiptH0NijAaOxTCCKQfEEYAJPAYxapK487AmJMGolGl9v9JFDHyWhiVqa0E4kWMGtrV5o7FqEgD6QeEEQAJO1/H8BhhThqIw3BVVJDPKOr+kyRhXaoKIxJmsfxPHCXl7wAA6QSEEQAx4JMCleT3HFfK8qOOc0BzRxAFHqVR26Y0Soy1/3g9gJiKCqhgIF7UiBcD3PMIgHQCwgiAGOjLqKMZsHncg9fl1iAYDOOIkTpzLPYA2SzP/U9DElSmIWIE0hkIIwBikJ2ZIfKyM8P8RNGFEbpeg9gRo5pYqbQkeYyIMrUyrbmjJ2rjUt429tkBkE5AGAFgoPt1tIGboRMbIkYgtsk51uiNZDV4TNTLSB8dRcUlSEcgjACw2MuIy6299oiAYMCRoGjRxmTP2dNK9qN4jHgRkJuVIXKycIoA6Qf2egCMdL+OIoxYLMFjBKLB0RZOuUbSmaQGj/rKtGgRo5C/CGk0kJ5AGAFgZF5alJMbr7Y5ZQKAHhbMlHLto8FjMSJGXo8EIYbGFUZckYYUMUhPIIwAMNT9eqBPpP6oclIZWghhBGLvO0RHlH5B2kiQJJj3eZ9tUPdhPahIA+kOhBEARpo8RokYNRxVqo2GFijVRwDoIY+O2i4oajqN70uGeZ+jnNzhWg8PTUYqDaQrEEYAGKhKi+YxalDTEOWIGIEY/YI4nRYtFZvMcv3yQkXMI2IEwEAgjACIA3f+jSy5pk7Y3ANmqHqSASBWOo1L85n+/n5NlHCFWFJSaXHN1/AYgfQEwgiAOAzJVxvhRQijFt3/S/JQvQPMley3HusV3eqYmWFqI8hkDZKlho7h24ZUGkhvIIwAMHICiVhZcwSJyvkz2UgCQAQcDYr08tSr/jTafwar3dW9pEzdrv7+gb2MEDEC6Q6EEQAWOgTj5AGMMGZovrze19ARdn+9OiakPAnRIiIrM0OUqtHQSJ8R9+eC+RqkKxBGABgQRpEzpTjdUIw0GojDuKEF8npfQ3vY/XVqxCiZxn32xnF1JcOtKeAxAukKhBEAcShVh202dnRLwyzT2tkbZs4GIBrjyxVhtG5vU1iTxyMtx+T18OLBSXvjQiX70aOhaPAI0hUIIwAMnDy6e/u08upwgyoqd0BsFk0ZJn1Eu+vbxfs7arX7DzcrwqhqSF7S3j6OVg2MGCnCqDAXoh+kJxBGAMQhLztTG6SpN6lqYxOQSgNxIJ/OZXPHyNtLVx/Q7q9u6ZTXlSXJixhxY9KBESOIfpDeQBgBkKBJH1fwNLWHfEZNqucI6QaQiAtnVcnrlbvqZeSRONzMwijPt6k0RENBugJhBIDBSeT6iNGhps6kp0JAMDixslimrdq7j4tP9ileoy9qj8qfTapQPEh+SaX975Yj2vgbVKWBdAXCCIAEcFlzmDBSV/yjSpVybABiHmQzBokvTR4mb3+0s04cbOqUfjVK0XLVWnKr0kL79fV/+US7jYgRSFcgjAAwGDHS9zI62KT0pRlViogRSMysUSXyeldtu/jsUIu8PbmiUPYTSnYqjffrj3fWh/08GY0nAfADEEYAGI4YKb6irt7joqZVST9AGAEjcGTxYHOHWL+/Sd4+ZUxpUt88TqVxF+4r/rBa+9l3TxuVtO0CINmg1hiABITM191hpdZUscarbgDiMaosT+uAXaSWwZ88ekhS3zSuSpNz21RTOHPT2SckaasASD6IGAFgNJWmeoz0aTSqWgPASMSIRupRxdfK3Q3a/pNMaPgxz/njfZojScOTNKoEgJQXRk1NTeLKK68UJSUl8kK3m5ub4z6HugvfddddoqqqSuTl5YlFixaJLVu2hD1m165d4qKLLhLDhg0TxcXF4rvf/a6oqakJe8y4cePkSUt/ue2221z5O0G6jAVhYcTGa/iLgDEKc7PERbPD01PJ7HrNpnDet3fUKFVyxIe3fiWp3icAko2re//ll18uNm7cKN588015odskjuLx4IMPioceekg8+uijYu3atWLEiBHinHPOEW1tbfLn7e3t4txzz5VC59133xUff/yx6O7uFhdccIHo6wsPB99zzz2iurpau9x5551u/rkg5c3XPWGl+qhIA2a48GSlnxEzIonNHSN9Rjtr27SGk3k5MF2D9MY1j9HWrVulGFq1apWYO3euvO/JJ58U8+fPF9u3bxdTpkyJGi16+OGHxR133CEuvvhied/TTz8thg8fLpYuXSquv/56KYT27t0rNmzYIKNFxJ/+9CdRVlYmhdLZZ5+t/b6ioiIprABw0mOEijRghdljhviu6mtYUa7YdqRNvPHZEfl/eOYAcDFitHLlSpk+Y1FEzJs3T963YsWKqM/Zs2ePOHLkiIwIMbm5uWLhwoXac7q6umS0iO5nBg8eLDIyMsRHH30U9vseeOABMXToUHHyySeLe++9V0aWYkG/t7W1NewCAFHGjfDau0TP8T4tlTYSqTRgAho4/M/nTZX9i5acNckX7923Th4prz+vVo53EEYAuBgxIoFTUVEx4H66j34W6zkERYj00P/37duniauCggLxy1/+Utx3330yykS3KY1G6TLmpptuEqeccoooLS0Va9asEbfffrsUXn/4wx+ivvb9998v7r77blt/M0hNqkoGy9EfVL2z/Uib2N/I5ms0dwTmuO7LE+XFL5w2rtRXvicAAhkxImN0pKk58rJu3Tr52GgVOyRkElXyRP5c/xwyXL/wwgvitddeE4WFhTIC1dLSIkVQZmYoNH3LLbfISNPMmTPFNddcIx5//HHx1FNPiYYGpSIkEhJO9Hv4cuBAaOAjSG9o35ulllZTE7zaNqXvy4RhyetaDIATRPqckt1CAIBARoyWLFkiLr300riPoYqwTZs2DagUI+rq6gZEhBj2A1HkqLKyUru/trY27DmUaqPKtPr6epGVlSWGDBkinzt+/PiY20SRJmLnzp0yvRYJpeb06TkA9IwvLxAfflEv3tteq+yrxRRFUvrRABBUcrPCfU7zJgw8NgKQbpgWRuXl5fKSCDJZU+SF0lhz5syR961evVret2DBgqjPIWFDAmfZsmVi9uzZ8j7yBS1fvlz6haJtC0GmaxJPF154YcztIbM2oRdcABiFp6Cv2t0or6dVFuHNAynB2dMqxNtba8VtX58qJlUUJntzAEhdj9G0adPE4sWLxbXXXiueeOIJed91110nzj///LCKtKlTp0p/D/UlopTFzTffLL1DkydPlhe6nZ+fL0v/GapCo99PaTUyeZOfiFJn/HvpPqqGO+uss2Sqjcr+6ecknMaMGePWnwxSGCpj1nP1GbGjkwAEiX//7smitvWYmDwcYh8A10eCPPvss+LGG2/UqsxImFB/Ij1Uuk9RJObWW28VnZ2d4oYbbpANIqmq7a233pKl9/rnkCeosbFRpu2ovJ+ED0Mpseeff16aqanabOzYsVKg0e8GwK4XY3B2hlgwESkHkBpQB2y6AAAUBvWTsxkMgMr12djN/ZJA+tLe1SsW/eZ9UdfWJS49fbT49T/MTPYmAQAAcOH8jSGyABigIDdLvPjj+WLV7gbxTbX3CwAAgNQDwggAg4wdWiAvAAAAUhdMCgQAAAAAUIEwAgAAAABQgTACAAAAAFCBMAIAAAAAUIEwAgAAAABQgTACAAAAAFCBMAIAAAAAUIEwAgAAAABQgTACAAAAAFCBMAIAAAAAUIEwAgAAAABQgTACAAAAAFCBMAIAAAAAUMniGyCc/v5+ed3a2oq3BgAAAAgIfN7m87hZIIxi0NbWJq9Hjx5t9bMBAAAAQBLP4yUlJaafN6jfqqRKcfr6+sThw4dFUVGRGDRokONqlgTXgQMHRHFxsaO/G+D9TjbYv/F+pzLYv/3/fpOsIVFUVVUlMjLMO4YQMYoBvZmjRo0SbkIfMoSRd+D99ha833i/Uxns3/5+v61EihiYrwEAAAAAVCCMAAAAAABUIIySQG5urvjVr34lrwHe71QD+zfe71QG+3fqv98wXwMAAAAAqCBiBAAAAACgAmEEAAAAAKACYQQAAAAAoAJhBAAAAACgAmHkMb/97W/F+PHjxeDBg8Wpp54qPvzwQ683ISW4//77xemnny47k1dUVIhvfetbYvv27QO6n951112y+2leXp5YtGiR2LJlS9hjurq6xM9+9jNRXl4uCgoKxIUXXigOHjzo8V8TvPeeusHffPPN2n14r53n0KFD4nvf+54YOnSoyM/PFyeffLL45JNP8J67QG9vr7jzzjvlsZmOFRMmTBD33HOPnIDAYB+3zgcffCAuuOACeSymY8ff/va3sJ879d42NTWJK6+8UjZ3pAvdbm5uNr/BNBIEeMNzzz3Xn52d3f/kk0/2f/755/033XRTf0FBQf++ffvwEZjka1/7Wv+f/vSn/s2bN/dv3Lix/xvf+Eb/mDFj+o8ePao95te//nV/UVFR/0svvdT/2Wef9V9yySX9lZWV/a2trdpjfvzjH/ePHDmyf9myZf3r16/vP+uss/pnzZrV39vbi88kCmvWrOkfN25c/8yZM+X+i/faHRobG/vHjh3bf/XVV/evXr26f8+ePf1vv/12/86dO/Geu8C//uu/9g8dOrT/9ddfl+/1Cy+80F9YWNj/8MMP4/12gDfeeKP/jjvukMdikh2vvPJK2M+dOlYvXry4f/r06f0rVqyQF7p9/vnnm95eCCMPmTNnjvxw9UydOrX/tttu83IzUpLa2lr5hVu+fLn8f19fX/+IESPkF445duxYf0lJSf/jjz8u/9/c3CyFKglW5tChQ/0ZGRn9b775ZhL+Cn/T1tbWP3nyZHlgWrhwoSaM8F47zy9/+cv+M888M+bP8Z47Cy2sfvjDH4bdd/HFF/d/73vfw/vtMJHCyKl9mYIN9LtXrVqlPWblypXyvm3btpnaRqTSPKK7u1uGwc8999yw++n/K1as8GozUpaWlhZ5XVZWJq/37Nkjjhw5EvZ+U4OwhQsXau83fR49PT1hj6FQ7vTp0/GZROGnP/2p+MY3viHOPvvssPvxXjvPq6++Kk477TTxne98R6aKZ8+eLZ588km85y5x5plninfeeUfs2LFD/v/TTz8VH330kTjvvPPk/7GPu4dT7+3KlStl+mzu3LnaY+bNmyfvM3uOxRBZj6ivrxfHjx8Xw4cPD7uf/k87BbAOLUJ+/vOfy4MbfVEIfk+jvd/79u3THpOTkyNKS0vxmSTgueeeE+vXrxdr164d8DO8186ze/du8bvf/U7u1//8z/8s1qxZI2688UZ5wvj+97+P99xhfvnLX8rF1dSpU0VmZqY8Vt97773isssukz/HPu4eTr23dE2LiEjoPrPnWAgjjyHjWeRJPfI+YI4lS5aITZs2yRWeE+83PpNwDhw4IG666Sbx1ltvyaKBWOC9dg4y/VLE6L777pP/p4gRmVFJLJEwwnvuLM8//7x45plnxNKlS8VJJ50kNm7cKIsLKCpx1VVX4f32ACeOH9Eeb+V4jlSaR5CTnlYikcq1trZ2gFIGxqEqBUo7vPfee2LUqFHa/SNGjJDX8d5vegylOKmSAZ9JbCiMTe8bVVFmZWXJy/Lly8Ujjzwib/P7iffaOSorK8WJJ54Ydt+0adPE/v37sX+7wC9+8Qtx2223iUsvvVTMmDFDVjPdcsstsgKTwPHEPZx6b+kxNTU1A35/XV2d6XMshJFHUBiQTizLli0Lu5/+v2DBAq82I2WgVQBFil5++WXx7rvvyjJbPfR/+qLo32/6YtEJnd9v+jyys7PDHlNdXS02b96Mz0THV7/6VfHZZ5/JVTRfKJpxxRVXyNtU2oz32lnOOOOMAe0nyP8yduxY7N8u0NHRITIywk+HtJDlcn0cT9zDqfd2/vz5Mh1KaWdm9erV8j7T51hb9nJgqVz/qaeekg76m2++WZbr7927F++kSX7yk5/IqoX333+/v7q6Wrt0dHRoj6EqB3rMyy+/LEtAL7vssqgloKNGjZKl0FQC+pWvfAXl+gbQV6XhvXanLUJWVlb/vffe2//FF1/0P/vss/35+fn9zzzzDN5zF7jqqqtkKTiX69Mxo7y8vP/WW2/F++1QReuGDRvkhWTHQw89JG9zqxqnjtVUrk+tRKgajS4zZsxAuX4QeOyxx2R/kpycnP5TTjlFKy8H5qAvV7QL9TbSl4H+6le/kqWgubm5/V/+8pfll05PZ2dn/5IlS/rLysr68/Ly5Jdo//79+DhMCiO8187z2muvyT4stO9SW4/f//73YT/He+4cdAKm/Zl6oQ0ePLh/woQJsu9OV1cX3m8HeO+996Ier0mQOrkvNzQ09F9xxRWyJxJd6HZTU5Pp7R1E/9gPhgEAAAAABB94jAAAAAAAVCCMAAAAAABUIIwAAAAAAFQgjAAAAAAAVCCMAAAAAABUIIwAAAAAAFQgjAAAAAAAIIwAAAAAAMJBxAgAAAAAQAXCCAAAAABABcIIAAAAAEAFwggAAAAAQCj8/wGfHG1aDLi6AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot((strained_dict['pressure_GPa'][20:] - relaxed_dict['pressure_GPa'][20:])[:,0,0])\n", + "plt.axhline(-mean_stress_diff_plain[0,0], color='red')" + ] + }, + { + "cell_type": "markdown", + "id": "24fbe5cf", + "metadata": {}, + "source": [ + "Smoothening" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "id": "8e3e930b", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "def moving_average(x, w):\n", + " # x: (nsteps, 3, 3)\n", + " kernel = np.ones(w) / w\n", + " return np.apply_along_axis(lambda m: np.convolve(m, kernel, mode=\"same\"), 0, x)\n", + "\n", + "skip = 20\n", + "w = 50\n", + "w2 = 100\n", + "\n", + "dP = (strained_dict[\"pressure_GPa\"][skip:] - relaxed_dict[\"pressure_GPa\"][skip:])[:,0,0]\n", + "dP_w = moving_average(dP, w)\n", + "dP_w2 = moving_average(dP, w2)\n", + "\n", + "# mean_stress_diff_moving_average = -np.mean(dP_s, axis=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "id": "381372d2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-0.0396087 , -0.04120952, -0.04281363, -0.04442295, -0.0460376 ,\n", + " -0.04765485, -0.04927498, -0.05090049, -0.052529 , -0.05416076,\n", + " -0.05579752, -0.05743865, -0.05908531, -0.06073419, -0.06238759,\n", + " -0.06404232, -0.06570059, -0.06735993, -0.06902227, -0.07068801,\n", + " -0.07235541, -0.07402302, -0.07568913, -0.07735301, -0.07901802,\n", + " -0.08067842, -0.08073725, -0.08079884, -0.08086 , -0.08091784,\n", + " -0.08097552, -0.08103487, -0.08109986, -0.08116568, -0.08123375,\n", + " -0.08129979, -0.08136645, -0.08143464, -0.08150198, -0.08156561,\n", + " -0.08161426, -0.08165894, -0.0816966 , -0.08172137, -0.08173982,\n", + " -0.0817541 , -0.0817599 , -0.08176177, -0.08174987, -0.08172286,\n", + " -0.08168832, -0.08164121, -0.08158593, -0.08151533, -0.08143709,\n", + " -0.08135441, -0.08126796, -0.08117445, -0.08107665, -0.08097292,\n", + " -0.08086186, -0.08075088, -0.08063632, -0.08051773, -0.08039596,\n", + " -0.08027321, -0.08014988, -0.08002897, -0.07990957, -0.07979036,\n", + " -0.07967552, -0.07956506, -0.07945981, -0.07936199, -0.07926709,\n", + " -0.07918164, -0.07909819, -0.07902271, -0.07895646, -0.07889769,\n", + " -0.07884978, -0.07880441, -0.07875911, -0.07872678, -0.07870487,\n", + " -0.07869647, -0.07870269, -0.07871366, -0.07873542, -0.0787658 ,\n", + " -0.07881007, -0.0788642 , -0.07892881, -0.07900343, -0.07908837,\n", + " -0.07917987, -0.0792831 , -0.07939502, -0.07952094, -0.0796584 ,\n", + " -0.07980076, -0.07995052, -0.08010369, -0.08026391, -0.08043156,\n", + " -0.08060572, -0.08077646, -0.08095075, -0.0811333 , -0.08132058,\n", + " -0.08151082, -0.08169172, -0.08187044, -0.08204946, -0.08222562,\n", + " -0.08240153, -0.08256721, -0.08272877, -0.08287896, -0.08301703,\n", + " -0.08314727, -0.08327365, -0.08339972, -0.08351685, -0.0836277 ,\n", + " -0.08373021, -0.0838311 , -0.083923 , -0.08400782, -0.08408652,\n", + " -0.08415837, -0.08422389, -0.08428064, -0.08432929, -0.08436616,\n", + " -0.08439136, -0.08440599, -0.08441535, -0.08441774, -0.08441654,\n", + " -0.0844126 , -0.08440496, -0.08439045, -0.08437579, -0.08435701,\n", + " -0.08433371, -0.08430418, -0.08426696, -0.08422358, -0.08416875,\n", + " -0.0841036 , -0.08403166, -0.08395312, -0.08387684, -0.08378064,\n", + " -0.08367623, -0.08356226, -0.08343694, -0.08329147, -0.08313882,\n", + " -0.08296802, -0.08279206, -0.082596 , -0.0823842 , -0.08216076,\n", + " -0.08192272, -0.0816771 , -0.08142302, -0.08116246, -0.08089522,\n", + " -0.08061766, -0.08032032, -0.08000634, -0.07968873, -0.07936123,\n", + " -0.07902622, -0.07868978, -0.07836192, -0.07803168, -0.07770029,\n", + " -0.07736594, -0.07704182, -0.07672898, -0.07641336, -0.07611379,\n", + " -0.07583024, -0.07556435, -0.07531312, -0.07507232, -0.07484092,\n", + " -0.07462723, -0.07443225, -0.07426139, -0.07411069, -0.07398421,\n", + " -0.07388381, -0.07381031, -0.07376146, -0.07374271, -0.07375343,\n", + " -0.07379373, -0.07386809, -0.07397433, -0.07410128, -0.07426394,\n", + " -0.07445024, -0.07466801, -0.0749142 , -0.07518784, -0.0754799 ,\n", + " -0.07580342, -0.07614731, -0.07652355, -0.07692535, -0.07734404,\n", + " -0.07778434, -0.0782405 , -0.07870491, -0.07917959, -0.07966814,\n", + " -0.08016407, -0.08067226, -0.08118667, -0.08170336, -0.08221935,\n", + " -0.08273727, -0.08323889, -0.08372122, -0.08418703, -0.08465135,\n", + " -0.08510528, -0.08553957, -0.08595514, -0.08635513, -0.08672074,\n", + " -0.08704471, -0.08733359, -0.08759544, -0.08782475, -0.08803053,\n", + " -0.08820486, -0.08835034, -0.08845693, -0.08852865, -0.08856183,\n", + " -0.08855438, -0.08851229, -0.08843552, -0.08832697, -0.08817725,\n", + " -0.08799922, -0.08778595, -0.08753603, -0.0872705 , -0.08698614,\n", + " -0.08667931, -0.08636207, -0.0860206 , -0.08566697, -0.08530239,\n", + " -0.08492603, -0.08454727, -0.08415999, -0.08378078, -0.08340171,\n", + " -0.08302483, -0.08265096, -0.08228998, -0.08193761, -0.08159292,\n", + " -0.08126361, -0.08095288, -0.08065917, -0.08038231, -0.08013202,\n", + " -0.07990341, -0.07969863, -0.07951687, -0.07936718, -0.07922994,\n", + " -0.07911007, -0.07900492, -0.07891549, -0.07884449, -0.07878996,\n", + " -0.07875507, -0.07873983, -0.07873837, -0.07876053, -0.07879753,\n", + " -0.07885234, -0.07891972, -0.07899981, -0.07909257, -0.07919706,\n", + " -0.07931365, -0.07943123, -0.07955842, -0.07968433, -0.07982961,\n", + " -0.0799822 , -0.08013108, -0.08028396, -0.080424 , -0.08055102,\n", + " -0.08067725, -0.08079611, -0.0809185 , -0.08103187, -0.08112118,\n", + " -0.08119442, -0.08126056, -0.08132178, -0.08137072, -0.08140248,\n", + " -0.08141548, -0.0814194 , -0.08141254, -0.08140734, -0.08139867,\n", + " -0.08138708, -0.0813664 , -0.08132876, -0.08128345, -0.08122736,\n", + " -0.08116619, -0.08110721, -0.08104496, -0.08098001, -0.08092561,\n", + " -0.08088489, -0.08085141, -0.08083049, -0.08081581, -0.08082243,\n", + " -0.08085097, -0.08088927, -0.08093713, -0.08099506, -0.08106502,\n", + " -0.08114215, -0.08122033, -0.0813124 , -0.08141456, -0.08152302,\n", + " -0.08164064, -0.08176957, -0.08190307, -0.08204415, -0.08219166,\n", + " -0.08233975, -0.08250009, -0.08266943, -0.08284567, -0.08303111,\n", + " -0.08321271, -0.08338961, -0.08357279, -0.0837594 , -0.08397496,\n", + " -0.08420436, -0.08443074, -0.08466316, -0.08488099, -0.08510264,\n", + " -0.08532428, -0.08554903, -0.08576791, -0.08596244, -0.08614491,\n", + " -0.08630382, -0.08647001, -0.08662702, -0.08677782, -0.08690642,\n", + " -0.08701468, -0.0870978 , -0.08717127, -0.08721229, -0.08723431,\n", + " -0.08723004, -0.08720655, -0.0871537 , -0.08709527, -0.08702112,\n", + " -0.08691737, -0.08681974, -0.08671224, -0.08659663, -0.08647535,\n", + " -0.08635433, -0.08623054, -0.08610385, -0.08596517, -0.08583278,\n", + " -0.08569895, -0.08556466, -0.08542633, -0.08528547, -0.08513734,\n", + " -0.08500575, -0.08488068, -0.08475922, -0.0846446 , -0.08453339,\n", + " -0.0844339 , -0.0843382 , -0.0842533 , -0.08417512, -0.08409045,\n", + " -0.08400983, -0.08393387, -0.08385539, -0.08378818, -0.08373583,\n", + " -0.0836938 , -0.08364648, -0.08359918, -0.08356553, -0.0835383 ,\n", + " -0.08352917, -0.08351372, -0.08351764, -0.08351937, -0.08353498,\n", + " -0.08355569, -0.0835768 , -0.08360146, -0.08365293, -0.08370267,\n", + " -0.08375612, -0.08380255, -0.08386545, -0.08393168, -0.08398374,\n", + " -0.08403554, -0.08407291, -0.08410661, -0.08413418, -0.08415293,\n", + " -0.08415661, -0.08415092, -0.08414497, -0.08413418, -0.08411217,\n", + " -0.08408267, -0.08404084, -0.08399121, -0.08392584, -0.08388636,\n", + " -0.08384669, -0.08381219, -0.08376712, -0.0837297 , -0.08369597,\n", + " -0.08366811, -0.08364526, -0.08361571, -0.08358451, -0.08356706,\n", + " -0.08355841, -0.08355513, -0.08355486, -0.08357182, -0.08360126,\n", + " -0.08364692, -0.08369979, -0.0837624 , -0.08384143, -0.08392814,\n", + " -0.08402314, -0.08411336, -0.08419877, -0.08428621, -0.08437642,\n", + " -0.08447055, -0.08457406, -0.08467948, -0.08477491, -0.08486909,\n", + " -0.08495813, -0.08505343, -0.08513867, -0.08520421, -0.08528002,\n", + " -0.08535729, -0.08542684, -0.08548694, -0.08553701, -0.08557597,\n", + " -0.08561012, -0.0856439 , -0.08566446, -0.08567853, -0.08568626,\n", + " -0.08569407, -0.0857102 , -0.08573837, -0.08579032, -0.08583056,\n", + " -0.08587014, -0.08590444, -0.08595668, -0.08600857, -0.08606725,\n", + " -0.08612597, -0.08619384, -0.08624623, -0.08631463, -0.08638343,\n", + " -0.08643748, -0.08650063, -0.08655636, -0.08659316, -0.08662811,\n", + " -0.08665178, -0.08669057, -0.08673207, -0.08677774, -0.08682483,\n", + " -0.0868676 , -0.08691949, -0.08698867, -0.08706578, -0.08714717,\n", + " -0.08723412, -0.08732907, -0.08742519, -0.08753329, -0.08764688,\n", + " -0.08777342, -0.08791065, -0.08805467, -0.0882048 , -0.08835565,\n", + " -0.08851636, -0.08867642, -0.08884075, -0.08900044, -0.0891572 ,\n", + " -0.08930238, -0.08943616, -0.08955777, -0.08967259, -0.08977272,\n", + " -0.08985516, -0.08991305, -0.08994193, -0.08994344, -0.08990529,\n", + " -0.08982636, -0.08971957, -0.08958871, -0.08942817, -0.08924039,\n", + " -0.08902289, -0.08876584, -0.08849795, -0.08820389, -0.08787747,\n", + " -0.08754108, -0.08718363, -0.08681357, -0.08643896, -0.08604001,\n", + " -0.08564477, -0.08522918, -0.08480958, -0.0843695 , -0.0839234 ,\n", + " -0.0834855 , -0.0830361 , -0.08257373, -0.08210926, -0.0816409 ,\n", + " -0.08117493, -0.08071407, -0.08025708, -0.0798021 , -0.07935866,\n", + " -0.07893214, -0.07851643, -0.07810593, -0.07772443, -0.0773609 ,\n", + " -0.07700885, -0.07667959, -0.07637942, -0.07611368, -0.07587956,\n", + " -0.07567594, -0.07551325, -0.07538295, -0.07529269, -0.07525069,\n", + " -0.07525111, -0.07529726, -0.075388 , -0.07551429, -0.07568456,\n", + " -0.07589625, -0.07614325, -0.07641508, -0.07671568, -0.07704215,\n", + " -0.07739727, -0.07778781, -0.07820494, -0.07864039, -0.07910278,\n", + " -0.07957843, -0.08006493, -0.08056491, -0.08107017, -0.08158033,\n", + " -0.08207114, -0.08256466, -0.08305794, -0.08354761, -0.08403972,\n", + " -0.08450336, -0.08495792, -0.08539598, -0.08582475, -0.08625258,\n", + " -0.08666927, -0.08706107, -0.08743892, -0.0877907 , -0.08812086,\n", + " -0.0884084 , -0.08867436, -0.08892969, -0.08914465, -0.08933852,\n", + " -0.08951507, -0.08963864, -0.08972165, -0.0897731 , -0.0898059 ,\n", + " -0.08981005, -0.0897744 , -0.08970425, -0.0896019 , -0.08946353,\n", + " -0.08929559, -0.08910226, -0.08887402, -0.08862525, -0.08836025,\n", + " -0.08807342, -0.08776788, -0.08745095, -0.08711718, -0.0867672 ,\n", + " -0.08640242, -0.08602211, -0.08562738, -0.08522267, -0.08480286,\n", + " -0.08437969, -0.08395007, -0.08352485, -0.0831046 , -0.0826915 ,\n", + " -0.08229334, -0.08189887, -0.08150615, -0.08112806, -0.08075256,\n", + " -0.08039821, -0.08006613, -0.07975668, -0.07946507, -0.07918923,\n", + " -0.07892457, -0.07868261, -0.07845467, -0.07824692, -0.07805267,\n", + " -0.07788728, -0.07773358, -0.07758943, -0.07746785, -0.07736142,\n", + " -0.0772732 , -0.07722502, -0.07719002, -0.07716453, -0.07714264,\n", + " -0.07713329, -0.07714679, -0.07718342, -0.07723014, -0.07728481,\n", + " -0.07735083, -0.07742048, -0.07749955, -0.07759334, -0.0776892 ,\n", + " -0.0777921 , -0.07789433, -0.07799992, -0.07810843, -0.07822605,\n", + " -0.07834894, -0.07846913, -0.07859273, -0.07871207, -0.07883694,\n", + " -0.07895978, -0.07907913, -0.07920255, -0.07931985, -0.07943154,\n", + " -0.07953763, -0.0796412 , -0.07973609, -0.0798277 , -0.07991073,\n", + " -0.0799922 , -0.08007508, -0.08014848, -0.08020708, -0.08025039,\n", + " -0.08028517, -0.08030827, -0.08031737, -0.08031107, -0.08030335,\n", + " -0.08027965, -0.0802454 , -0.08020034, -0.08014569, -0.08007756,\n", + " -0.07999135, -0.07989359, -0.07980192, -0.07971126, -0.07961597,\n", + " -0.07952518, -0.07942948, -0.07932938, -0.07922807, -0.07913198,\n", + " -0.07902461, -0.07891914, -0.07882252, -0.07872068, -0.07861668,\n", + " -0.07851299, -0.07842082, -0.0783188 , -0.07821457, -0.07809957,\n", + " -0.07798278, -0.07788007, -0.07777994, -0.07769394, -0.07761833,\n", + " -0.07755211, -0.07749496, -0.0774343 , -0.07737632, -0.07733243,\n", + " -0.07729463, -0.07726304, -0.0772443 , -0.07722767, -0.07722226,\n", + " -0.07722155, -0.07721879, -0.07722444, -0.07724222, -0.07726797,\n", + " -0.07730476, -0.07734999, -0.07741058, -0.07749235, -0.0775791 ,\n", + " -0.07767803, -0.07778487, -0.07790374, -0.07803901, -0.07818034,\n", + " -0.07833651, -0.07850722, -0.07868576, -0.07887587, -0.079069 ,\n", + " -0.07927073, -0.07946693, -0.07966349, -0.07986566, -0.08006549,\n", + " -0.08028417, -0.08050684, -0.08073502, -0.08096155, -0.08118741,\n", + " -0.08141768, -0.08164253, -0.08187646, -0.08211905, -0.082369 ,\n", + " -0.08262834, -0.08289294, -0.08315774, -0.08341031, -0.08365552,\n", + " -0.08389559, -0.08412232, -0.08434963, -0.08456526, -0.08476759,\n", + " -0.08495689, -0.0851444 , -0.08531673, -0.08548125, -0.08563731,\n", + " -0.08576658, -0.08587694, -0.08597755, -0.08605934, -0.08612709,\n", + " -0.08617795, -0.08622359, -0.08625582, -0.08626859, -0.08626658,\n", + " -0.0862498 , -0.08623591, -0.08619947, -0.08614028, -0.08607265,\n", + " -0.08599958, -0.08592059, -0.08582366, -0.08570041, -0.08557404,\n", + " -0.08542838, -0.08528583, -0.08514237, -0.08499134, -0.08483381,\n", + " -0.08466632, -0.08449873, -0.084322 , -0.08413608, -0.08394367,\n", + " -0.08373851, -0.08352671, -0.08331383, -0.08310016, -0.08288302,\n", + " -0.08266532, -0.08243845, -0.08221004, -0.08198892, -0.08177499,\n", + " -0.08156387, -0.08137232, -0.08118174, -0.08100726, -0.08084124,\n", + " -0.08069173, -0.08054604, -0.08041876, -0.08030192, -0.08019391,\n", + " -0.08011415, -0.08004954, -0.07999442, -0.07995551, -0.07993355,\n", + " -0.07992915, -0.0799366 , -0.07995499, -0.07999615, -0.08004941,\n", + " -0.08011736, -0.08019294, -0.08029048, -0.08041312, -0.08054149,\n", + " -0.08067538, -0.08081026, -0.080956 , -0.08111639, -0.08127935,\n", + " -0.08145936, -0.08163598, -0.08181764, -0.08200631, -0.08220102,\n", + " -0.08238452, -0.08256135, -0.0827313 , -0.08289312, -0.08305446,\n", + " -0.08320711, -0.08335765, -0.08349629, -0.08363267, -0.08376515,\n", + " -0.08387818, -0.08398498, -0.08408588, -0.08417826, -0.08424989,\n", + " -0.08430039, -0.08433974, -0.08436318, -0.08437044, -0.08436637,\n", + " -0.08434891, -0.08431533, -0.08426765, -0.08420641, -0.08412692,\n", + " -0.0840381 , -0.08393975, -0.08382216, -0.0836947 , -0.08355603,\n", + " -0.08341693, -0.08326438, -0.08310734, -0.0829347 , -0.08276122,\n", + " -0.08258284, -0.08239882, -0.08221289, -0.08201523, -0.08182628,\n", + " -0.0816416 , -0.08146063, -0.08128455, -0.0811174 , -0.08094785,\n", + " -0.08077322, -0.08060699, -0.08043812, -0.08026991, -0.08010387,\n", + " -0.07995252, -0.07980719, -0.07967449, -0.07955618, -0.0794475 ,\n", + " -0.07935758, -0.07927497, -0.07919973, -0.07912796, -0.07906675,\n", + " -0.07901826, -0.077367 , -0.07572252, -0.07408186, -0.07245187,\n", + " -0.07083998, -0.06922718, -0.06762521, -0.06603364, -0.06444609,\n", + " -0.06286284, -0.06128884, -0.05971623, -0.05814805, -0.05658977,\n", + " -0.05502912, -0.05347268, -0.05192794, -0.05038632, -0.04884759,\n", + " -0.04730196, -0.0457604 , -0.04421794, -0.04267952, -0.04113696])" + ] + }, + "execution_count": 69, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dP_w" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "id": "3cda591e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "dict_keys(['positions', 'cell', 'forces', 'temperature', 'energy_pot', 'energy_tot', 'pressure', 'velocities', 'volume', 'pressure_GPa'])" + ] + }, + "execution_count": 75, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "strained_dict.keys()" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "id": "783af29a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False])" + ] + }, + "execution_count": 80, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "strained_dict['temperature'][:] == relaxed_dict['temperature'][:]" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "id": "66f06f83", + "metadata": {}, + "outputs": [], + "source": [ + "w_T = 100\n", + "T = strained_dict['temperature']\n", + "T_w = moving_average(T, w_T)" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "id": "f0565c76", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 83, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAufdJREFUeJzsnQeYE+Xahp/0bO/s0nuTJoKiiII0C4j+2HvhePSgKDYsWLCB4hGxKzY4NqxYUBGwoIhIEZTe67KF7T3JbvJf33yZzEwyqZvsZrPvfV0hbRKyk8nMM8/bNA6HwwGCIAiCIIgoQtvcH4AgCIIgCMIdEigEQRAEQUQdJFAIgiAIgog6SKAQBEEQBBF1kEAhCIIgCCLqIIFCEARBEETUQQKFIAiCIIiogwQKQRAEQRBRhx4tELvdjmPHjiEpKQkajaa5Pw5BEARBEAHAesNWVlaiXbt20Gq1sSdQmDjp2LFjc38MgiAIgiBC4MiRI+jQoUPsCRTmnIh/YHJycnN/HIIgCIIgAqCiokIwGMTjeMwJFDGsw8QJCRSCIAiCaFkEkp5BSbIEQRAEQUQdJFAIgiAIgog6SKAQBEEQBBF1kEAhCIIgCCLqIIFCEARBEETUQQKFIAiCIIiogwQKQRAEQRBRBwkUgiAIgiCiDhIoBEEQBEFEHSRQCIIgCIKIOkigEARBEAQRdZBAIQiCIAgi6iCB4oVjx6pw4YUv448/jjbtN0IQBEEQBAkUb4wadRe++moaRow4lTYTgiAIgmhiyEHxwr593wnXdntuU34fBEEQBEGQQCEIgiAIIhohB8Urjqb8HgiCIAiCkEECxSskUAiCIAiiuSCBQhAEQRBE1EECxSvkoBAEQRBEc0ECxSskUAiCIAiiuSCBQhAEQRBE1EECxQsOBzkoBEEQBNFckEDxCgkUgiAIgmguSKB4hQQKQRAEQTQXJFAIgiAIgog6SKB4hRwUgiAIgmguSKB4hQQKQRAEQTQXJFAC4Isv9sNuj/yXQRAEQRAEhwRKAA7KRRd1x6WXvuV9UYIgCIIgwgoJFDdY+5OSkjqPEM+SJTPDu+YJgiAIgvAKCRQ3Bg26HRkZyXA4yhSPOxwN3tciQRAEQRBhRR/et2vZPPfcT9iy5SXV50igEARBEETTQQ6KjEmTBvlYVfWR/zYIgiAIghAggSKjZ88M9Ox5A9QhgUIQBEEQUSlQ6uvr8dBDD6Fr166Ii4tDt27d8Pjjj8Muq8FlQ/ZmzZqFdu3aCcuMGjUK27ZtU7yPxWLBtGnTkJmZiYSEBEyaNAlHjx5FNGA0mr08QwKFIAiCIKJSoDzzzDN4/fXX8fLLL2PHjh2YO3cunn32Wbz0kpS3wR6bN2+esMz69euRk5ODcePGobKy0rXM9OnTsWTJEixevBirV69GVVUVJk6ciIaG5k9ENZlIoBAEQRBEi0qS/eOPP3DBBRdgwoQJwv0uXbrgo48+woYNG1zuyfz58zFz5kxMnjxZeGzRokXIzs7Ghx9+iJtvvhnl5eV4++238d5772Hs2LHCMu+//z46duyIlStX4uyzz0Z0ChSCIAiCIKLSQRkxYgR+/PFH7N69W7j/999/Cw7IeeedJ9w/cOAA8vPzMX78eNdrTCYTRo4ciTVr1gj3N27cCJvNpliGhYP69+/vWqY5MZtJoBAEQRBEi3JQ7rvvPsEB6dOnD3Q6nRCSeeqpp3DFFVcIzzNxwmCOiRx2/9ChQ65ljEYj0tLSPJYRX+8Oy1lhF5GKigpEirg4EigEQRAE0aIclI8//lgIx7BwzV9//SWEb/773/8K13I0Go3iPgv9uD/mjq9l5syZg5SUFNeFhYMiBUvsJQiCIAiiBQmUe++9F/fffz8uv/xyDBgwANdccw3uvPNOQUAwWEIsw90JKSwsdLkqbBmr1YrS0lKvy7jzwAMPCM6NeDly5AgiRXx88A4KK2I6++zvcccdf0XkMxEEQRBEayMogVJTUwOtVvkSFuoRy4xZ+TETICtWrHA9z8TIqlWrMHz4cOH+kCFDYDAYFMvk5eVh69atrmXcYXksycnJiks0CZRPPtmD5cvPw4svDkFpKZUjEwRBEEST5qCcf/75Qs5Jp06d0K9fP2zatEkoKb7xxhuF51mIhpUQz549Gz179hQu7HZ8fDyuvPJKYRkWopkyZQruvvtuZGRkID09Hffcc4/gyIhVPc1JKAJlyxaeNMxYtGgTpk8/OcyfiiAIgiBaF0EJFNbv5OGHH8bUqVOFkAyrvmGlw4888ohrmRkzZqC2tlZYhoVxhg0bhuXLlyMpKcm1zPPPPw+9Xo9LL71UWHbMmDFYuHCh4MY0NwkJwQuU3bulJnN//70VAAkUgiAIgmgMGgfLTm1hsCoe5sSwfJRwh3uefnoFHnhAKoGW421VnXTSg9i0iefhXH31Arz33k1h/UwEQRAEEQsEc/ymWTxuJCSYvK4su91ToFitDvz999eu+zYb5aAQBEEQRGMhgeKGyWTwurJqamwej+XmlsNu36aYV0QQBEEQROMggeKG2exdoFRWWj0eq61Vipb6+uafJ0QQBEEQLR0SKEEJFKmbrYjFonRMyEEhCIIgiMZDAqWRAsVqVTomJFAIgiAIovGQQHEjLs67QKmuDsRBoRAPQRAEQTQWEihBCRTPHBQK8RAEQRBE+CGBEoRAqapSC/FQDgpBEARBhBsSKG7Exxu9rqyaGv8hnoYGCvEQBEEQRGMhgeJGfHxwIR53B6WhgfqgEARBEERjIYESRIgnEAeFqngIgiAIovGQQAnCQVETKDabMqRDIR6CIAiCaDwkUIIQKLW1FOIhCIIgiKaABIr7CtFqvK6s2lr/VTyUg0IQBEEQjYcEShBYrbYABApV8RAEQRBEYyGBEgRqXWJtNqVAsdupiocgCIIgGgsJlEYKFArxEARBEET4IYESBGrhGwrxEARBEET4IYESBA0Ndo/HKMRDEARBEOGHBIoPMjLGYuDAfyMuboBXB8WzDwrloBAEQRBEYyGB4oOcnJ74++83kJ7eW7hPSbIEQRAE0TSQQPGBRsN7omi1Oq8Ointre7udyowJgiAIorGQQPFBfHyCm0ChHJRowuEAnnxyHf78s7i5PwpBEAQRZkigqHDRRc8jIWEoPvrofuG+TufdQaEk2ebjscd+xsMPD8Opp/Zoxk9BEARBRAJ9RN61hfPZZ9MBsAtHo9EGIVAoxNNUfP31185bZU32fxIEQRBNAzkogawkHzkokkAxCv86HFTF01TY7Z4hN4IgCCI2IIESAL5CPNJjJuFfanXfPALlxhvfbsL/mSAIgog0JFACWUkBJMlqNGbhmkI8TYeDZck6effdfzXh/0wQBEFEGhIoQTgoauJDbMym1XIHhUI8TQeFeAiCIGIXEiiBrCSt/yRZnS5OuLbbreH9hgivOByUg0IQBBGrkEAJZCUF0KjNaExz3q8M7zdEeIUECkEQROxCAiVMAiUhIUO4ttup5LWpsNulHBSCIAgitiCBElQOilqSrE24Tk7Ocj5ShZoa6oXSFJCDQhAEEbuQQGlkkmx9PRcoKSncQWEcPVoRvm+I8AolyRIEQcQuQQmULl26CAP03C+33nqrq+xz1qxZaNeuHeLi4jBq1Chs27ZN8R4WiwXTpk1DZmYmEhISMGnSJBw9ehQtNUlWFChmc4KrWdtzz21q4k/YOiEHhSAIInYJSqCsX78eeXl5rsuKFSuExy+55BLheu7cuZg3bx5efvllYdmcnByMGzcOlZVS4uj06dOxZMkSLF68GKtXr0ZVVRUmTpyoevBvSQ6KwWAAwCt4FiwY08SfsHUi74NCEARBtGKBkpWVJYgO8bJ06VJ0794dI0eOFA4W8+fPx8yZMzF58mT0798fixYtQk1NDT788EPh9eXl5Xj77bfx3HPPYezYsRg8eDDef/99bNmyBStXrkRLzEER+6AYjUygEE0JOSgEQRCxS8g5KFarVRAXN954oxDmOXDgAPLz8zF+/HjXMiaTSRAva9asEe5v3LhRSCqVL8PCQUzMiMuowcJCFRUViku0tLoXHRS9Xg+TqY1zeTFhlogkojgkCIIgYo+QBcqXX36JsrIyXH/99cJ9Jk4Y2dnZiuXYffE5dm00GpGWluZ1GTXmzJmDlJQU16Vjx45oDoHicHgXKMxBuffeN4XbZnO3Jv18rRWbzdLcH4EgCIKINoHCQjXnnnuu4IDIYW6KHBb6cX/MHX/LPPDAA0J4SLwcOXIETYlO5z1JtqFBEihimMdu548RkaW+ngQKQRBErBKSQDl06JCQM/Kvf0kD2lhOCsPdCSksLHS5KmwZFhoqLS31uowaLFSUnJysuETPLB5JoJhMeuE2zeNpGkigEARBxC4hCZR3330Xbdq0wYQJE1yPde3aVRAgYmUPg4mRVatWYfjw4cL9IUOGCNUu8mVYNdDWrVtdy7S8JFmpikdyUJS5EcXFFkyf/h0OHqxqks/bWmhoIAeFIAgiVuGn/EHADtJMoFx33XVCYqgIC9GwEuLZs2ejZ8+ewoXdjo+Px5VXXiksw/JHpkyZgrvvvhsZGRlIT0/HPffcgwEDBghVPdGKLwdFFCNKB0UZ4jnjjPuwY8cLWLRoAkpLlzbJZ24NkEAhCIKIXYIWKCy0c/jwYaF6x50ZM2agtrYWU6dOFcI4w4YNw/Lly5GUlORa5vnnnxeEzaWXXiosO2bMGCxcuNAlAqIRvd57kqzooJhMTKAYVEM8O3a8IlyXlX3bBJ+29UAChSAIInYJWqCwEmFvDbKYi8I6ybKLN8xmM1566SXh0lLw7aCIOSh6rw4K4BkaIhqP3U4hHoIgiFiFZvEEUcXjS6Aw98RsVndQSKBEBhIoBEEQsQsJlEYmycoFCnNR1B0UdebN+xapqSfinXd+CuY7I5w4HOSgEARBxCokUBqZgyImyTKBEhfnzUFR5+mnn0d5+d+YMoVm94RDoNTXUyiNIAgiViCBEoRAUQvxiG4JT5IVU3oCc1DKywsC/6YIvwKlro5a3xMEQcQKJFCCdFBqahz4+ONcWK3KEA/LPxFzUIDADpRabfRWLrUMSKAQBEHEKiRQgkySHT78KVx+eQdMmPC6h4NiNksOipdCJzcoJBEqFgtzs5SOlsVCDgpBEESsQAIlqGGBdvz998PC7ZUr/+N8THRQ9DKB4oDN5l98eCvXJvxTUeGZIGu1eobgCIIgiJYJCZSQk2TFx9RCPECfPnNwzjkfQWW+oAxyUEKlstJToFAOCkEQRCtu1NYaUU+SNSoqdpg4iYuTVueBAw/hwAH2+Dte35cclHAJFKaz7RTiIQiCiCHIQQkAg0HNQTEqKna4QJEcFJH6+pVe35eFjKTlyE0JTaCYXDrbaqUcFIIgiFiBBEoAJCWZhWubTZpGrNGIAoWX8yQkGGU5KIEiiRJK8AyOqio1gUI5KARBELECCZQAOPXUbsK1zbbT9ZhGo4fVanc5KMnJJme1T+CrVO6g8KoUIlCqq7kw1GgkgUIijyAIInYggRIAp5zSSRbSgSvcI68kSU42B5zWs3//cZxyyi2or9/neowOrsFRV8cFilZrFMQirUOCIIjYgpJkA8xB0WiS4HAUux5zOGoViZrMQXEu7Qr7eGPMmFtw8OAXiscoPBEcdXXcueLihOcIUQ4KQRBE7EAOSoBMmHCH2yO1KC+vc97WuBJkxbN5Xxw9+rfHYyRQgkN0nDQag2ud0zokCIKIHUigBMigQYPcHqlHSUmt87YJGo3GeduzkscTz3wTCvEEh8ViUxEoVMVDEAQRK5BACZCkpDiPxwoKKoRrjUbMP+EHTF8cOlSC+vqDHo/T2X9oIR6tVhIoJPIIgiBiBxIoAZKSEu/xWEFBuayShKPTeS4n5+KLH1d9nM7+Q3NQuEDhOSg2GzkoBEEQsQIJlABJTvZ0UI4fr/AQKHp9gs/3KS6WEm3lkIPin4ULgfHjHSgvlwsUvctBsdmoVJsgCCJWoCqeAElL83RGiou5g6LTSSEegyERtWJqShCQg+KfG26YBeAtPPjgOhiN9R4hHlqHBEEQsQMJlABJSfF0UEpKuIOi1UoOisHg20HxNn+HHJRAeEz4d8GCKaivX+dc9yRQCIIgYhESKAGSnu7poJSVeTooJlOin3cSq32U0Nl/4NTXL3Pd1ukM0GopB4UgCCLWoByUAElP93RQKiq4g6LTSQ6K2ezbQdFq1QUK5U+EBhMolINCEAQRe5BACZC0NE+BUlnJBYpeLzkocXG+BYpGo77KKcQTGjqdXkiU5euQqngIgiBiBRIoQbS7d6e6mod49HrJQYmPDy3EQyWyocFDPGIVDwkUgiCIWIEESiOori4Tro1GyUGJj/ftoDQ08PJYd8hBCQ3KQSEIgohNSKAEwZw5S3Dttc8hKek04X55+X7hOjMzx7VMTk6qz/ewWtVrkOns3zcNXlqc6PWSg1JfT31QCIIgYgUSKEFw//0XYtGiu1xJsTbbLuG6c+fOrmWee+4KDBlysdf3sFprVB+nJFnfVFerh28oxEMQBBGbkEAJASnnhJ+x9+4tCZT27XOwYcOn0Grbqr7WZlMXKJTg6ZvycouX70JKkl28+BHk5hYE8A0SBEEQ0Q4JlBCQJ8Uyundvr7KUXfW19fXeQjwUnvBFRUWdl+9C6oNSXX0Eo0f/2+f7EARBEC0DEighYDBISbGM5GTfAwLl1Nd7C/FQBYovKiu9OSgGodRYZPfu3wL+LgiCIIjohQRKCBgMSgclPt4YcEv7hgZ1B4USPENzUAwGKUmWYTSquVkEQRBES4MEShgESkKCp0AB1AWK3U5JsqFQWVkXkIOSkNAupPcnCIIgogsSKCFgNPp3ULwLFG8OCoV4fFFV5c1B0cPhkPJ3UlKyfb4PQRAEEaMCJTc3F1dffTUyMjIQHx+PE088ERs3blSENmbNmoV27dohLi4Oo0aNwrZt2xTvYbFYMG3aNGRmZiIhIQGTJk3C0aNH0VIFirqD4g1yUEKhutriNcQj7y0TFxd4PhBBEAQRIwKltLQUp59+unBQ+P7777F9+3Y899xzSE2VmpPNnTsX8+bNw8svv4z169cjJycH48aNQ2VlpWuZ6dOnY8mSJVi8eDFWr16NqqoqTJw4EQ3eunFFGSZT6CEeQL2TLCXJ+sZisao+zrbF+npJvGg06qMECIIgiJaFFLwPgGeeeQYdO3bEu+++63qsS5cuCvdk/vz5mDlzJiZPniw8tmjRImRnZ+PDDz/EzTffjPLycrz99tt47733MHbsWGGZ999/X3jflStX4uyzz0ZsCxR1rFZ14UL4FnDx8WaFQGlooFAZQRBEq3NQvv76awwdOhSXXHIJ2rRpg8GDB+PNN990PX/gwAHk5+dj/PjxioP5yJEjsWbNGuE+CwfZbDbFMiwc1L9/f9cy7rCQUEVFheISTQIlMdEYcB8Ub1RWVjfyU8U23vrEJCbGo75eyk+x21uGC0cQBEGEUaDs378fr732Gnr27IkffvgBt9xyC26//Xb873//E55n4oTBHBM57L74HLs2Go1IS0vzuow7c+bMQUpKiuvC3JbmxGxW9kGJizM0+j2rqkig+IIECkEQROsiKIFit9tx0kknYfbs2YJ7wkI2N910kyBa5LjnAbDQj7/cAF/LPPDAA0JoSLwcOXIEzYnZLHdQ9NDptAH3QfEGy8MhvOOtTwxrkme3y0M85KAQBEG0OoHStm1bnHDCCYrH+vbti8OHDwu3WUIsw90JKSwsdLkqbBmr1Sok3HpbRi2kkpycrLg0J3FxcoHirYJHverEG9XVJFBCyUFhAqWhQVrXFOIhCIJohQKFVfDs2sUn+Irs3r3bNc23a9euggBZsWKF63kmRlatWoXhw4cL94cMGSJUXsiXycvLw9atW13LRDtygaLReBMo6n07vFFTQyGeUByUpKQ42O3yHBRKkiUIgmh1VTx33nmnICJYiOfSSy/FunXrsGDBAuHCYCEaVkLMnmd5KuzCbrN+KVdeeaWwDMshmTJlCu6++26hl0p6ejruueceDBgwwFXVE+3ExwciUIKjtpYclFAESmoqC/FQkixBEESrFignn3yy0L+E5YQ8/vjjgmPCyoqvuuoq1zIzZsxAbW0tpk6dKoRxhg0bhuXLlyMpKcm1zPPPPw+9Xi+IHLbsmDFjsHDhQuh0fCpty3JQlBU9ahw7VoBevS5AVdVar8tYLCRQQhEoaWnxSE4+BeXl3wr3KcRDEATRCgUKgzVUYxdvMBeFdZJlF19VMC+99JJwaYnIHRSt1r+D0rZtG2i1vsWXxUIhnlByUJhA+eGHt3HqqSw3qoQECkEQRIxAs3hCICEh+BCPRuNboFit5KCE4qCkp8dj2LBs/Otf84T75KAQBEHEBiRQIu6gxAUkUGy25m0+11IFSkYGn73DQoYMSpIlCIKIDUighEBiotSoTafzLVA0Gn4AHdixBnecAwziBU948MHvkZZ2Ea655j3hfn19cSgfpdXgrb9JSgr/LvR6LgDJQSEIgogNSKCEQGKi3EFR7yJrMrUVrgcP5vk6t405jPnXABcM4c9PmtQPJSWfYdq00cJ9u70YDQ3Btcdv7Tkob731uUuYiNcOBzVqIwiCiAVIoIRAUpIkUAwGHsJxZ/PmNbjllmewcuWLwv2Nh3hr/1N78OdNJh6S6N49w/kKO3Jzy0P5OK02xDNlCh9IySCBQhAEEVuQQGmkg6LXK+fyiPTp0wWvvTYDaWm86+1fh7kQGdadhX2YsOFn/Glp7L0Shdv791OYJ9AQT6dOAxX3xfVJIR6CIIjYgARKIx0UvT6wKp6d+WmosQDpiUCvHFZqzR0UJlZ0Oi5e9u8/HsrHaVUCpXPni/HWW29h7dpliucNBkqSJQiCiCVIoDRSoAC+hyCK2GHAhgP89qk9AaNRakETH99VuF6yZHkoH6dVUF/Pc1AMhgShEzGbCyWHQjwEQRCxBQmUEEhOlvdBCUygsEZta/fClYdiMkllx6NHXyJcr137eygfp1XloOh06r0FSaAQBEHEFiRQQiAuzhCaQNnDb5/WQwrxMLp2zRKubTZrKB+nVYV4vI1DEHNQqIqHIAgiNiCBEgJKURK8g9K/I2DS1rqeM5t5HovdTgLFGw0NPMTjbWQACRSCIIjYggRKIwnGQckrAw4VATotYKjY4CFQGhpIoITuoHBHyuFQn9lDEARBtCxIoDQSjSawVZibu0m4Xr3LueKLfnM9FxdHDkrgAkU9B4UcFMIfLM960SLg4EFaVwTREiCB0kQOSl3dP8L1LzucDxT8rCpQPvjgGyxb9mtjP1bMChQK8RCh8sordlx//VL0719AK5EgWgDqp6NEEAQmUIAEANX4ebvzbvFaoL4G0Me7BIrVehBXXz1JuG232wMWP60pB0Ws1vHmoADU6p5Q5513FrL+w6iuZgOxyEYhiGiHHJRGEqiIePLJz4XrfQXAEdYw1m4DitYIj4kCBbC4lq+poXyU0BwUykEh1MnP579B4BCtIoJoAZBAaSKBMnPm2SyDQrjtclGcYZ74eM9utAUFVY39aK0qSVZsfEdlxoQ3tFoyjAmiJUECpZGceaZyJowvNJpU4frHbc4H8n7wKlAKC0mgyBFn7Oj1vpNkKcRDeEPuvtXU0HoiiGiHBEqILF/+J268cRbeeOOOgF+j1/OJxsv+Zv9qgJKNQM0xJCSoCZTKUD9aTOegUKM2InQkgXL0KCkUgoh2SKCEyLhxp+Dttx+FyRTYsEBGQkJH4bqwAkDGKfzBY9+qOijFxeSgqIV4KEmWCBWLRcpP2rePJocTRLRDAqUJychg1QNO2p/Pr3O/UXVQ7rjjiib8ZC0nxOPNQTGZxNCPrQk/FdGSqKsrdd0+eLCoWT8LQRD+IYHShPTvP1i6034iv85fiQSzZ2lsZSWVQQaTg9KmTbLzlhXV1XVh+86I2MBmYy5cuev+kSMkUAgi2iGB0oQsWnQL2re/Bldc8Q6QOhCI7wg01CLVwsuNCe/Y7b77oHTsmOzanA8elM6UCaK6mg3kbEBdnVS6P2fOcTgctG4IIpohgdKEpKQYcfTo//Dhhzewkh6XixJXsqwpP0ZMlhmbTGxT5lVShw+TQCEkVqyoQW5uDwBifT/jKhw7RgqFIKIZEijNSTsuUHT53yoqDAhfIR7v60mvTxeujxwpoVVIuNi3j42O8AyZHjlyjNYSQUQxJFCak5zRgC4eqDmKQZ0Nbk8GXh3UGghMoLBxAsB77y1oss9FRD9JSUmqj1dVUbdmgohmSKA0JzozkDNWuDlRlj/LoWoUOXY2GkDoGOsu5CTq6oQGM1i9+r1wf1NEC8bhUE+srqigZGqCiGZIoDQ3znLj8we7z5BxoL6eBt+5N2ozGHy1Kx8Zka+IaNnU1qo7JZWVJFAIIpohgdLctDtPuBrWox6uSlknNTXkorhX8ZhM3h2UBx+c7bzVNhLfFBFjAqWqigQKQUQzJFCam/h2QPoQ4eZ5JyqfIoHiGeLx5aAMGcIVnkZDE40JCXl5Md8+EoVrEigEEd2QQImiMM+kk5QP19aSgxKMg0IDA4lABIpWy5Nmq6sttMIIIoohgRINdLhAuDpnEJBgkh4mByU4B8Vo5M85HOSgEBJ1dUqhr9eLAoVCPAQRzZBAiQZSB2F/YTzijMAEWTUPOSgSougwm707KEajWIJMycWEdwfFYOACpaaGBApBxIxAmTVrFjQajeKSk5Pjet7hcAjLtGvXDnFxcRg1ahS2bdumeA+LxYJp06YhMzMTCQkJmDRpEo4ePYpWjUaDb7d0EG5eMsz7mV9rRioz9u6gUIiHUMNqVQoUk4kECkHEpIPSr18/5OXluS5btmxxPTd37lzMmzcPL7/8MtavXy+Il3HjxqGystK1zPTp07FkyRIsXrwYq1evRlVVFSZOnOhqZd5aWbaju3B93iAg3hnmIQfF00HxlYMiTTSmEA/h3UERBUptLTkoBBFTAoVNk2XCQ7xkZWW53JP58+dj5syZmDx5Mvr3749FixahpqYGH374obBMeXk53n77bTz33HMYO3YsBg8ejPfff18QOStXrkRrZl9Je+wv5OKEiRQGCZTgHBQK8RBqWCxKgWI28yoeEigEEWMCZc+ePUIIp2vXrrj88suxf/9+4fEDBw4gPz8f48ePdy1rMpkwcuRIrFnDp/Vu3LgRNptNsQx7LyZmxGXUYGGhiooKxSXWMJsT8Omf/PbFzjAPhXiCzUERxYsDDQ32iH1XRMvCalWGSo3GOOGaBApBxJBAGTZsGP73v//hhx9+wJtvvikIkuHDh6O4uFi4zcjOzla8ht0Xn2PXRqMRaWlpXpdRY86cOUhJSXFdOnbsiFijqqoQn62Dq9y4UyYJFCU2tzCOJyaTNKfHam3dIUPCew6K0WgWruvqKMRDEDEjUM4991xcdNFFGDBggBCi+fZbNoUXQihHhCXOymGhH/fH3PG3zAMPPCCEh8TLkSNHEGsUFBzBhv3Aqh0QqnlevxGw0A40KAdFSpIlgUL4SpLlAsViIYEix25nDjn7rdHWQ8RAmTGrwmFihYV9xGoedyeksLDQ5aqwZdjOorS01OsyarBQUXJysuISa/z7348J1/95F2A5fecOAnppPm3ujxWFSbK+HBTpOYuFEmUJdYFiNpNAUeP663eiV6+peOSR2DsBJFqhQGG5ITt27EDbtm2FnBQmQFasWKHYMaxatUoIAzGGDBkCg8GgWIZVAm3dutW1TGvl2WdHC9c7coE73+ePDTW/B9TXNO8Hi7IQT1ycryoeyUGxWCjEQzi3HJsyB4UEijrvvXcagNfw5JOX0qZDtDyBcs899wiCgyXE/vnnn7j44ouFhNXrrrtOCNGwEuLZs2cLZcRMdFx//fWIj4/HlVdeKbye5Y9MmTIFd999N3788Uds2rQJV199tStk1JrRyr6JN3+GUNGToCsD9r3TnB8rigjOQbFayUEhODab0kGJi+MOitVKIR4lZc7rDbTpEFGBr9n1HrCGaldccQWKioqE8uJTTz0Va9euRefOnYXnZ8yYgdraWkydOlUI47Ck2uXLlyMpifcdYDz//PNCqfKll14qLDtmzBgsXLgQOp109tvaYQUo874DXr4ewP53gN63oTXDY+L+HRSDQVJ55KAQ3gSK2cwbDdlsJFDUoQbjRAsUKKy5mi+Yi8I6ybKLN5i9+tJLLwkXwjsfrwVevE4LbekmoOoAkNi11a4uq5WVDNv9Oig6nca5c7WTg0K4qK9XCpT4eO6gkEDxBgkUIjqgLTFKKaoE9lX24XeOLEFrprZWCtf4clA4XMBQmTGh5qCwPDhRoNTXk4OiDrnZRHRAAiWK2XTcOTkw74egXsdKBetjKAWjrk76Y8xmfUA7VxIohEhDAw8Pjht3H/744w8SKH6hwwIRHdCWGMX8U9ib3zj+G9CgtKm9MXfudvTq1R3Dhy9ErCBv+R8fbwhQoMSQQiPCEuLJzOwkVBEmJJCD4guNhhwUIjoggRLFHCzNAsxtgIZaoHhtQK959FEhsxbr19+AWHRQfM3i4VCIh1AXKOKgSVGgNDRQiEcdOiwQ0QFtiVHEpZd+B6ADgHTJBcjm/VGQ/1NA71FfX4xYQ3JQNNDrdQGd/ZGDQog0ON1Hk8koXCcmcoFit5NAUYcOC0R0QFtiFLF48bnYs+cIOnc+R2owJQqUgsAEit1ei1hD6gobSNEZX8Zmo0ZthFKgmM1coCQlkUDxhUZDhwUiOqAtMYpg44h69GDlsgZpCqsoUFiIp766VQoUKcTjL/9EclBIoBDuSbKig0ICxR90WCCiA9oSoxC93iA5KIndgITOgN0GFK4O4NWxJ1Cqq/kBRqPx76BQiKfls2mTDX37/oCvv64Kq4MSF6cUKA4HhXjUoCRZIloggRLtAoXZKkGFeSyINSor+YFEo4nzu6woYshBabmMHv0Qdu48BxdccElY3s9uVybJJidzgQLU0eReJ/X18hHGdFggogPaEqNdoDCCzEOJNSoquCuk1YoHFu+Qg9LyKSt7xXlrWVgFiuigZGSIQteCykrKVWJUVkql/OSgENECCZQohPVqUBUopX8B1lLhpt3OJkGjVVBVxR0Unc6/QBH7oLQmB2Xr1uN44411iB3s4X03N4GSnS3NBiss9J/X1RooL5eHu+iwQEQHtCVGsYNSX+8UKPHtgOQ+gMMOFKwSHho+/BO0azcKixfHvkoJRqBotWKIp/U0ahswoDtuuWUYXn11DWKD8IpLh8OmEChxcSaXkC0sDE+eS0untFSeu8ZmWhFE80MCpSU4KCphnj//vAzAKkyffqfb1N/YIz+f7zx1ukByUFqfgwJUCv8uXhyekEjsCRTRQTG4hppqNInC7aIiEiiMioo6j/VFEM0NCZQoFiguB8VHHorFUui6XVwsJchqNJKN3ZL55BPg9deLhNsGQyA5KK03Sfb48Z2IDSIjUOLjuYPC0Gq5QDl+nIu71o48xCOGxAiiuSGB0mIEyihuvZZvA2oLXA/b7dLOfO9eqYusRpOAWOC66z4H8C/htl4feJJsawrxiOzc+Sm2bz/U3B8j6pAcFEmg6PVcwBcXk4PCqKyUQjzkoBDRAgmUKBYoYoMpAVMGkHaih4vicEgC5cCBItnjsXGAtli4OGEYjf5DPFpt6wrx1NcrE0rffDOwmU2tCy5QEhIkgWIwcAeltJQEiryUX76+CKK5IYEShRiNKg6KlzCPXKAcPlzskRjY0tFopO6xDgdLbvSNVssPQlZr69jJFhcrG/PV1raOvztQeF6WzUOgGI1coJSVUYhHXsrPiU5xv3VrPnr2vApvvhlIw8qWTXU169ETo0mFQUACJYoFisJB8SJQ5CGeoqIy2cKx4aA4HPxAwqip8X+2K54ZV1S0jjNj9yqU6uqaZvss0UhdHft98N9IfLwkds1mHuIpK2sd20kgB8Ro3XccOmTBiSfOxYABfbB374f497/PQCxz6FAJEhOT0LbtWLR2Apm+RkSLQGlzBsByLKr2o3MmcKhI6aBUVsoPTrHhoDgckitUV1fid3mzmQuU8vLWceApKlL28SgsPN5snyWaxyS4J8kajTxHq7q6dWwn/qiqkjso9WhocECni45y49NPvw25uW+htfD4418L30FBK23MKYcclJYkUAxJQMYpws3R/fhDcoFSXS3fydhipOxYqkyyWiWx4k+gVFa2jgOPe5lsYaGUQE0AJSVSyCsxUXJQjEaecF1XF3ujIRrvoLAcrvA2y2sMBQU/ozWh1UaHMIwGSKC0JIHCyB4jXI3r7ylQamrkOxkHOnS4r0WLFNYtV+4E6fX+HZT4eC5Qqqpah0ApKVE6KMXFsd+4Lxj27+edlwEjEhKkKjC9nrspFgsJFM99h3yCePOj1XpOMV+zZj1iFRIoEiRQohBxqJmqQGl3jnA1fgCg17kLFGXC5LFjc3H4cIXr/uWXP4dbbnkTLQWLhSkU6Uzu2mtZczrfJCQktTKBovw7S0sPN9tniUb27eN9gvT6NkKDNhGjkSdcW60kUNT2HdElUKTQnMjpp58CiyU2wtjuaLV0WBahNRHFDordrvIDzBgGmHOQkQRMOkkpUGprlTsZDj/A//77AXz88T14441/o7q6ZVR61NRIf/+8eS/j+eef9vuaxMTEgBNqYy93gG0DR9CSKfYfxQuKgwe5QDGb2ygeN5lEgdIyfguRZudOpYNisUS3QGHk5pYjFnn77Yddt+32FmyBhwESKFGI2FCqoUFl58lmzXS/Ubj579FKgVJX5ylQxFjy33/nKsr1WppAuf7665GQ4L/5XFISFyh1da1NoMQL/zY05KO2tuW6AjNnbgzr++XmcoGSmKgUKOSgKNm1i8/4ikYHhYWrW4tA+fHHPbDZDkbp99D0kECJQsxmo3cHhdF9inA1tj+QlWT1KVDq6vh7bNsmdRjdtu0YWgLyH6e8RNQXKSmtS6CIyY0ZGWe4ivJ27Wq5lTwbN74T1vcrKOACJSVF3UGx2VqumGss69YB27czUct6Lv0YtQ6K6omaIFDkbRVig7w8KSTPqKpq3Q4fCZQodlC8zsRI7IZ1+wCdFrhgSJVPgVJby3c0e/dKAmXPnpaRSCmKK3nYK1CBYrHEfgOu0lKpcstkiodGkync3rev5QqUbt16h/X9qqv5WXZ8fKri8dYuUI4fB4YNm4d+/RahpIT9zmqiVqDY7erfUX5+7Dko7h2wq1tIOD5SkECJaoHifef52Tp+ffEpUhWHxeIpUMQdTXGxVAFz8GDLcFBqa0WBolMkOPpC7BaqmmAcQ8yduwfp6Tfi22//dg1SNBiyhNsHD0ojD1py52Cttm2j389msypCOu4uZWsVKGvW7ANwNwueIjdXLub1LUagFBSUxfzoimoSKES0IR5kfQ3t+vRPfn1WXytQw/NLrFbvAqWhQdrh5Ocfb2ECJTD3hKFnpU1uHXZjkYcfvh3Au6isfF24bzLFIS6OOyhHjrSM71eN+nrpe5PnVwXLjBk7kJPzOkpL+W/CaFQmWprNooPSOs9QRWeJsX9/iSyPKS7qBIq3/aCyc3ZsOii1rn1g64Q6ybbEEA87Sz4O/LYTOKMPu/MhcMK9sNnUBIrNY65PSUmYSyWiSKDodLpGH9xaAjrdAcV9JlASErJQXs7Ky1uyQJEfGEPfOT/77AmK+94ESkND63RQ5L02LrqIl6brdMmCW8F6J0WXQFH/joqLY0+gbN+ubBNQTQ4KEW0kJIh2tO+zu/fEmVkH/idMRVMTKGKiqVyglJcXtagcFI0mcB2t12tbhUDJzBykuG8ymZGWxkMiv/76OWLDQQnfQdJdoMTF8d9YfX3rFCgajTy6z5s/6vUpURni8SZQlKM9Wj6spPiVV65UPFZT0zodPhHKQWmhIR4xzCMYJOVbgbK/Vc8GrVbPEE9VVctwUMSdpDwvIdAQj8MRPa26I4F7/w6zOQ7//vfNwgGmoOA3rFmzLez/Z1N0JVY6KOE7SJpMJFD8tbI3GpNdJwPifiM6UN8PxloPG6vV86SqhgQKEW1IQ83Uf4BskBejrAb4ZpPTXTjwvmpZsniQlzsotbUtzUEJXKAYDK0jxGOxKMuo4+LMuP32vkhM5GfDb731a1j/v6++AlJTa7F0KZrMQYmsQBGTqVung6J24DObJYESLQ4KTxq1tQqBolZSXEMChYhWB4WNiXdPmnJX2h/+7jx4H/lcNWdFzEGROygWy/GYFSiSgxLbAsVmUwqU+Hie3JiRwSt5SkrUugqHzoUXLkRFRTzOP/8jRBL5dsoESrhcG28Oiq88r1imttbz705MTIs6B6WqynseUqwlOMsbU4rU1cXW3xgsFOKJQhITjT6TpOQCZdk/ekCfCFQfxNkDSnxU8Ugbf0PDUbzyyheIdkRxpTYszJ9AYeKuNQkUloPCMBgiNQTvBue1MkYeWQeF5VXZIyJQxDwvX6X8sYzaHJuEhPSoEyiVld6/n1hzUNT29bWtvIqnUQJlzpw5Qn+K6dOnux5zOByYNWsW2rVrh7i4OIwaNQrbtinj4WznOW3aNGRmZgrtyydNmoSjR4825qPErEBRs/3kHVaFE6GeU4XbD57Pu2b6y0Fh3HbbRYh2KMTjnYYGpUA5ePCgot9HXV3LPPC6b6fhavUt9j0RiY9v3QJFzUExm1mzP12LESgt2UGpqQH++99SHDzo8CNQrGjNhCxQ1q9fjwULFmDgwIGKx+fOnYt58+bh5ZdfFpbJycnBuHHjUFkpNQNigmbJkiVYvHgxVq9eLUyenThxIhpYz2VCFuJRFyjKZCoH0PduQBeHk7vVYdIQ92U9HZSWQmgOSuuo4rHbeYM+8YBy443nxMSMGWWSbPgECjko/kMHXbrEQ8tmfUWRQPFVZtuSm+xdc813uPfedPTuzfoZeXbOlh6zojUTkkBhguKqq67Cm2++ibS0NIV7Mn/+fMycOROTJ09G//79sWjRItTU1ODDDz8UlikvL8fbb7+N5557DmPHjsXgwYPx/vvvY8uWLVi5cmX4/rIWjF7PehQYvP5AlQlsDoBNanVu6C9eC7iiHMKPmC9rt4uv0SmGy0Uz4k5S3GkGkyQrTnGORVhehsPBHZQffvgLq1atw7//fZZCoIQ/xCMi27gigHuDvaKi8OygxaRYEZOJ/74cjpYn3CMV4pk6dZwrxCPuN5qbXbu8J/TX17fcg/d33z0gXFutL7seIwclTALl1ltvxYQJEwSBIefAgQPIz8/H+PHjFTMvRo4ciTVr1gj3N27cCJvNpliGhYOYmBGXcYftbCsqKhSX2MfoNYtbeVbptAj7P4qCci06ZwITB6slyfLrAQN4OIjN3njjjWWIZqzW0HNQYtlBqalhfxtPgu3WrS3OPPNk1yiAyDsoygN9pB2UF190znQIc4jHbBa3qdYpUNzPzEeMuAxnnTUq6hyUX37Z4vFYQsKpLV6gqPV2Ut/XW9GaCVqgsLDMX3/9JeSfuMPECSM7O1vxOLsvPseuWdMkufPivow77P9KSUlxXTp27IhYR6PhO9SqKs8DjbKyx7kj0cfhvdX8NdPO7+J6VtzRiA6K2cyTKRm33HIuYi3E0xrKjI8fl+YvtWnDhyO6D8GLlEARt8umclDefFOywMPpoJjN+lbtoLgf+G677XrhOtqSZDdu5LOm5BgM8S1eoGi1nk6kWojHFiVOVosQKEeOHMEdd9whhGTkBzp33Ae7sdCPv2FvvpZ54IEHhNCQeGGfI9YRDwRqqloZ4pFKMT9cw7/OkT3ykJHS3i3EY3M19AqWvXsPIze3AM0lUHQ6quJRFyhaJCaavcyYaZkCRXRQ2rUbJ1zb7btdfX8CRW15d4ESFyduU63zACC6kyLnnXe6cC06KNFyYNyx4yfhOjHxJNdjRqN3gcKOIy0BMXdMjtq+vl5R1db6CEqgsPBMYWEhhgwZAr1eL1xWrVqFF198UbgtOifuTgh7jfgcS5pl5WGlbFa8l2XcYWeFycnJikusIx4I1LK4lQLF7irF3HSwAbuOsSwBCy4elqoqUMR+GYHCJob27NkZHTrkNPmPX9yJBiNQDAZxk47dH/bx4zz/RKNJ9BD1kRAoZWXS9x5MT5rGOCidOp3ofMSBsrLg/pba2vogBIqtSTrkRhsWi3K/kpSU5CZQmv/3U15ugcXyl3B76NAJHgKloUH5N+zceQxxcR1x/vkPI9pRy6tT29fbokQotgiBMmbMGCGZdfPmza7L0KFDhYRZdrtbt26CAFmxYoXrNUyMMBEzfPhw4T4TNwaDQbFMXl4etm7d6lqGkARKdbW/EI88J6Uei9fyW5OHFioO8mKIh5V+B8Pnn0sx4PLyuib9aliuEoNCPEqKirhA0WoTPNZZJATKli3SUDa1/zMSZcaJifyAySgurml0wyvPEI8oUBpQX9/6FIq3HiLR5KAcOyZVfnbp0tl122RSFyg33vgcLJZcLF36JFqiQFFLXG5o5ZWtQU0zZiqbJbPKYX1MMjIyXI+zEuLZs2ejZ8+ewoXdjo+Px5VX8gZPLIdkypQpuPvuu4XXpaen45577sGAAQM8km5bMzpdHJjbrZaD4t6Gmu2Q4+PZDrcBi/8AHp0MnNWnCOmJUixZjLUnJCgFSllZDVJTvVf05OVJzd9ycyuQmhp8iChUxJ2kTkdVPHJKSrhA0emU+SdygRLOIXgbNhxy3XY4fIdqw+Wg8MZzbJu2oaSECZT0gN9DrbmVu6UuOSh8ebHBXWsM8dx6632u2+JvLRoESkGBKFDiFfst1q9FrQtwdXXLySciByUCAiUQZsyYgdraWkydOlUI4wwbNgzLly93WYiM559/XggJXXrppcKyzJlZuHAhdLrIljC2JPT6eLBK0YoKKSHSu4Nic5017jwGWBMGwFi9BZcMAyqdMX3RQXEXKHv3FmPoUO8CZd8+qYFeXl45+vVTD8NFMh8hNIESu2ceZWV8m9CzDsJuRGJK77ZtvAkcw26vaxIHhVVjaTTxcDjKUVraeAelpkb5uePi9Irlk5Nbm0DhB3eTKR3PP/+E6/FoquI5fpwLFK02EUlJngLF3UGRHz/YSZzJFPbDW0STZNVCPPWUg9I4fvnlF6H3iQiLibNOsixsU1dXJ4R33F0XlmD70ksvobi4WOiR8s0337SKypxgBQqjoqLGr4PCYu7ynbK1PXerrhkhnQl5c1AOHPA9OPDw4VzX7YKCpi3vFn+cofVBiV2BUlrKHRSj0VOgiB1SwzkEr6DgsOu2wxHeGT/eHBR2AsMECiN0gSJFsEeOzFEswx3H6Ggn/v331Zg9W/qdNaVA6dXrciHkLiKeDERDG3kxlKnTJaFXr7aux5kjr9YFWJ6OtXt3UYtLknVPXFYru29t0CyeKEVMBKus9Nw5u5/dMAdFvpPVdr0Cdjtwei8gSccHAzoc/DXyMxHG4cPFPj9HTU1tMwoU0UEJ3FlrDQKlvFwUKAleHZRwCpTaWsnFcziazkHR6eJdYchgkM5EDdiwYYPg4Hbp0tFLDoq649KUnHdeP8yc2QEffig5VU2V38VaPsgxGHhVWG1t83dpLSmpdDmFJ54ofX9irx/3EE9lpZQrtXNn01cdBoOaKzxv3h0ej9WTg0JEs0CpqqoJKElWvpM1p3XC5qOZwu2BWdsVDoq7QDl6tCjg2SjHj5ejKQklxCO2umfVHy2l5DBUgWIyNY2DojybbjoHRafjAqy8PFiBIv4WDEJSPhu14Y5Ox7YTbVjb6YcOz/H5+uvvm+x/FOfY6PXKqiyDgW8/X331HWprHVGRa2UwsNxHyQGrqOD7IYfDiv37D+KXX/4Q7ldWSvlyR496Dk6NJtRcYbtd7qJxoUgOChGViJnqagLF3UFh4kTaKeug1Wrw2z5+xjGkrShQxOoIZd+M/HzfDor8B1JSEv0hHqNRclsiWSq5cyewna/aJqe0lO+gExM9y+2lKb3hczrq6+UOQ33QfUkC4fffgQsvrEJVVb3LCZPCnJ55WL4Qfwv+e7YYoiLEI1JbW4fXX1+GwYOvQXFxRZMIFHcHxWgU9w/LcfLJi9GclJZWuoS45IwCnTu3E64bGnLRvXtXnHXWcGzcuAd1ddIJVGVl01YchiMHRU7v3lcL1yRQiKgWKCxHx59AueqqhbIuhHyn+8eh7sL14LZ7gAary0FJTlY6KIWFgTsoJSXlUR/iUQqUyMzjYcnLffsuRL9+b6OuGfaDpaVcVKalZXg8l5XF+9/U14fvDNI9Nm61hn+9jhgxG199lYKqqu9cDopWyw+WH34otSQITqD469nCn9+2rfkEinxd/vHHJvznP+di8+b3cd11zzeTQOECl7Ft25X48cfmy+WoqOAOitnMCyzeeutXXH31C7jxRs8O2F98sVMxELW6uuUIFLXfk/h8QysvM6YclCglLo7b2+vXf+TxnLszUFDwhMLWZpRpBqKgHEgwWoGi310zR1JSlAKlpKQo4Nbj1dXB2fuzZj2D1157G6Ei/jiDC/HIf/iR+XHv3cvObm8A8C/k5TX9XKiKCi4+WJm+OyecwM8uHY5SVfctFNw7doY7JMLnGs50Dni0u77HiopfhNuHD78SUht3/wKFHwBvueUaNBelpdKB9Pjx91y3t23bGdH/V3TF3AWKOCpB5PXXm89FYUNpGWYz3xdOmXIG3nvvdiQlKT8jIzHRKBuIGvy+qqmR79MqKiwevykm0BnkoBBRidhQrapqF9au3at4Tq0E0P2ssUvXTvh2k/PJw5+5Wnq7C5TNm1/G0aM8kVbkv//9Ep06jcGuXbkKB4WVhAfK9u0H8Nhj92Pq1H+FfBYg/t+hOiiREij79knrS61PTaSpquICpU0bz94gvXpxB4UxatQlYU2ojJRA2bfP0+0xGPRo394zdyQQSkr4QV+rDbR0mOcwNAdFReoisqhI+ZuPnIOiFHG8/4xEc+ZxiblPYl6MSHy8UTWhVuyW3RIcFLlAYVOMmUgRueCC58lBcUIOSpQiT/j6+ef9fjO7xRCPKFD69OmIj51dZe0HP4FOy3/smZmelR8jRijPIO+99/9w5MhP6NOnA6zWKtn/EfiPfvduSczk5irHGkS2D4rWwyIONwcPSnk7lZVNL1Bqa/m2kZ3tKVCMRqnWcuNGHi4Jt4NisYRX+KklwbKcg0WLxDCHIah29Dt38t49iYl8HlUgNNdx2FsJdaQH4Yk9RNwdFLHRn4haJ+vmbtSYkGBUzVeRCxR59WE0otFoFfsQeZfuTz6ZRg6KExIoUUpBgVRyePhwnuI5tS6P7g5K797t8NN24HiFBlpbEc46gf3QO6JPH17dI+fQoR+8fo6jR5e4btfVBf6jl8eD9+4NLY4tOi+i3Rmsg8J6J1RXB5dgGQgHD/IxAs3loFitXKC0b+8Z4uFIjfeqqqrDnCQb/iZeagdB9p336MHDVSw8WVkZ+AF73z5eFZOZKU319kdpafP0/eBdcj0Rk9ojhfidmkzuAkXpoBQWNl+5ruSg+hco5eWVinXm3pgv2rCzPhCqAsUg7MMoB4VDAiVKOf30y1239+074vcAcehQqaK7aEZGApjR8umf/Iz6itPYoMZTGvWZLJa6kM6K/TWDi1SIh7FkyTqEm9zc5g3xNDTwfg/Z2VI4R85dd2123V6zZk+j/z/3s/lJk46h2HfxV1CorUPmoGRnS92n8/OluSz+OHqUi/v27aX5Lf7YtUsZ5mwqSkvVBaTD0dAkDorJpAzxuDsqxcXKwa9Nieigup+gsHwTdyoqmECxhRSObg7koXO2/ZeXi5/XrPibG2TLtUZIoEQpCxdeBY3mLOF2Xl6u3xDPX3/tFq4TEnjHxeRkvqEvXsuV+uSTgSyVpMpgsFpDEyhHjjTOQQmtDwqnqEgbUQelOSxwu52vW28zlJ57rif0+t6yhN7wOii7dg3AlCmrES7U1iHLQTGb2fdudpvL4p/ycn7W366d6MD4Z88e6TttSrw1oYu8gyIKFKPPUFddXdMngfsTKAkJnsnPlZUsxFMfUji6OZAXHzCBUlHBP69GY1bs8xqoioeIRpKStDjvPD5ivLq60m+IZ9cunvWfmsobGqWl8WTY1buA/IoEpCYA4/s3rmTQag38rISNOhBxT8J1UV8D1NcG0FU0cIEib3ctNeQKL/v27Wg2gcIPIHyd+RrcqNPxXIKqqsbvqN1nnjD+/HMewgVLEvRWjaXRcEfw+PHA84nq6/nfHBenDFf4Qj4Usynx1oQu0g6KmK9hNisFSkODsuTVYolMHldjQjw8z0z5WFVVhcJBCSYc3dwCpabG6urbIpbWi9t/AzkoRLSSnMx3znV11aohnvT0MdBouM2fl7dLuM7I4AIlNdXsOqB9+Rcf8HfuCd4qA5QHcY0mRXUpmy2wgx3L/H/2WSnx9vhxlSTZw58Cn2cBn6UBqy4A9r0DyH60ofZB8ZULEw7+/JPZ3n83m0CprWXriB/QMzLi/QqUmprGfz61dRjOA6jaZxRDdWwOC6OoKHAHRRyUKLb9D2YAY1OjNsqiKRwUbyEeeW4Ew2ZrnvXiy0HhKIUVO4mTC5RgwtHNgbJ9g8V1IqHVxilEmd1tn9jaoBBPFJOUlKB6FiPafqzDqsHQRrhdWclzDbKzuRjhkzz5Rv7B73xHfWrHnUB9tc/NgIkLh0P9rKmiYhcsvGmFT6SmcVICm4KSv4A1VwMNNQAb+JX7NfDnFODn8UCdZLWLP05m94dKZWV4z6RuvvlPVpztuh8OARAMxcXS3yO6ZM0hUBqz42RVywMG/IRLLtniVeSJIUq9nguU4uLABYrY5j84gdL0TsHq1Q7Mn69MgG86B8Wq6qB4CpTmd1ACESi1tWz7qG9BAkWe0CsJFJ2OHBQ5JFCimNRU7qDIS33lIR42EZPNqZDPcUhNlSdO8o39j11V2JsPmPVW4OjXAdjt6jvHmprd6NVrlN/PLa/pZ1RVyQ4u7MC27haA7SDbTwLO2Qj0fxhgg+EKfgK+G+js2xJakmygZ6ihsmvXDMX9phYoZWWSQElKMvsVKI0d+rZ8uXqFi8MRejfZd9/dg61bx+CzzwZ6XYfp6VycGwyJignOwQgUcS5RIESqJN0XZ5wxDfX1tzaLg+ItxOMuUBoaml+gqJ2gaDTK77asbKfQnDCUcHRzIBf4L730PY4dq3ATKJSDwiCBEsWkpfGdc72b6yHvD2A0ivNY+EEkIUE6q9Zo+O2GhgJXTxQc+ULlf5IPBPRt6R4+LL6Rd9x7g7D4sIt9bwEl6wFDMnDKG0D6ScDAx4FzNgDJfYC6AmD1JcC6m3FK52O46BTg9E7bvTg//qmqcu6o2OsPvAccXMwvhb+G9H719cqE5aae+iqVpZqh1Xr/+YZrKu3ZZ68EsCqsDsr27VKIjFFX512g6HT8AGqx2MIuUFJSOrhuV1Y2RyjDs0PuiBHPOG81jYMSF6cM8aSlKbcpuz06HRT3LsG1tTzEHUpCf3Mg//3s3/8MXnjhXuG2Xk8OihwSKFFMWhrfSdfXV3kdoifOqRBJTJQEiphwxcTLF+udN/O+h1vYmfkurluFhY3fIbkLFG6/stNCO7DjWX57wGNAnDShFCl9gXM3A33v4ff3LsDim1biszuA+09fCCw9AShi4ZXgEFpeV+4Fvj8J+ONaYM0V/LJypCCC3PNeAt2xi7k/TS1QxHJEUXx6Q68Pj4MCjAt7CEI+/I/lSNXWejo0YkNBSaAE3qfEbg9MoOzevRGJiXyo5tKlbyIaGDq0SxM5KKJAUTooL744Bamp3XDiiZOdn6M6SgWK70OXzRbdDorn72e/m0ChHBQGCZQoJiMjUdVmFZPHWDOfuDilQElOlhInxYQrxl8HgRpkC07CmH5853/ZZR87n5XCIMXF1WHva+ESKAW/AFX7AJZX0OMmzxeysMTgZ4GzlgOdr0RZjUEITZXVJQE1h4Hlp3Jhkc/O6gNDYysCfhoLVO4GTFlA+lAgpR9/cu8CYP87Qf1tbMS7PHmzuQSK/Lv1JVDU3Ilw0BgHRT4jiHWlVVuHkkAxBO2giAJFnOzsjTZt2qBXr4uE2w7HDnz1lfIsvDmQyn4j66CICaXuAiU9PRUlJXvx2WcLnI/UoaamvlnzNNRz0NzK9bxUckUr3n4/BkOcoorHLstVaY2QQIliMjMTVc9iRAeFhXgSEsQQDycpSTpwifFMkeOmMcL1m49OxsyZm/HAAyOdz9hcMzcWLfq80Z+7qsq9NbozxLPPeZba5SpA79ly30XbccDpH6DPQxPQ825gxm9PAh35gUQIzfw0jlf9BMC1/T4Dqg8Bid2B8/4BzlkPTNjKhRBjy6NAEImAokARkzcjJQD89c3Qar1X8Mjnl9TWRmZH3ZgcFHl32+pqm+o6bIyD4nAEJlDc37e4mDfAa06ksF3TOChms2dPEY1GgzZt+L6HMXiw09WMqhwU34eueh/tC6IBb8JDDM2Sg8IhgRLFSHNzahQTjOUzahIS3B0USaDo9cqz7MqU84TrdvXf4slHu8s6MjqEwXoFBRX45JOHG/253asyrNZKwFYh5b+ouSc+fsT1mgTgjM+AC48A3W7kT26YBlTu8/n6rlnAyM7OfIfTP1KGlHpNAxK6ArV5wLangvjrxBkmfL0HUtUUTsSqJJ3Ot4NiNJoi+vkaI1Dk4weYmPUUKHqXk6DX8wOo1WoDjv8OrL0R+OdRYP//gIo9PgVKYqJ/gVJeLvUGasa5eC5OOUXsfhvp8lKr18F77t1ad+9+IahRA+FC/P2rV/FoW7SD4i1EajRSDoocEihRTE6OeqtveYgnKcm7QHF3UJB9FpDYA2CzXPYuUMy0YAeKgwfLA/pc/maxuAuU+voKIP9HXrnD/n+WGBuKxRvfARj2JtBmFC9R/vNGntfihXsmADqtA2h7DpBxsmc4aYhzGN3O54AK//Y+P4CJ/SOax0GpqKhRFZ/ednSREiiVlQ04frzxAmX1aivKy5WfUcMEqRMxxDM4axOwchSw/11g6+PA2uuApb2B9bcCDXUhCxSLRRIoYrOs5qBt29FYtuxPdO+e06QhHm8ChbkockpKaqPMQfEd4mloiHYHxbdAEf9mu5vTsnjxLkyb9l1UiOmmgARKFJORwQ5CCR4D9+QhnszMNMVrUlLiPOKZIskpCcAJ9/E7255CkkGytKsqLSjzMhfEndLS2gAFCt+JNDSUAse+5w+14y5OIKj2QWHW7qnv8BARC/fsfln1tTmpwI1iBOuE+9X/A1bmzD4PK7lkjowPmCacPJntFcTyzOZxUMQhaP4FSuMdFN87wT/Qr9+LIb1vdbVU1XX11U/g5583KJ6Xh68MBgOuOxOYMfx/AEsczRkPdLgAyGBzpRzAnleBz9KB7wcDWx6Dw8YEXOAC5b//lRzD6urmEyjt2w/G2WefIswg4jhQXx+6SxW4g+IZ4vFX3h4dOSi+D112e8t0UEwmpYNidxMyV1zRBy+/PAHz569Ba4AEShTDThJ0Ot6Ibe/eQtUOq9nZ6YrXyJt3ifFMkZQUE9DtOiB1kOCixG+5BVnJwOzLgHbr+2Fs8SD8/ijw7JVAe+XbsvQ5163i4pqABIpGw2ehOByVcBxbxp9sd24IFq9bH5TErlIOyeb7gZJNHq+deQHAWjys258AtDnT+woe8iKgNQD5K3xWCV1xRT2+/PJi130xObmpBYqYMyHmZnjDZOIHZ6s19M9ns0kKpWfPPtBq+ZwnkePH74Bb24wQhg8ykfOJ4nmdTnJQbj5jOxbeDBh0DUDny4FR3wJnfgmc/ScwahlgbgOws+XSzcCWWbD/cj60Gr5TT0ryL1CuvXYUTKZuEWnq54v6eqX6Mxq5UODzhzgs7BoJ+PcqtiXwvR1Fg0AxGn3noJx33rsqr412B6Xep0Dx5qCI/PBDaG0SWhokUKIcM9sBywbUsbPaVatmuRyUtm3dBYp09mk0Ks+yhR02OxgzB0JrgubYUhS+BjwwCTDY8qDTWDG8Fw+NrH4EkOXb4oknvgvYQREbbxmNrKutBl2yAE3tEUCj9y4WfJxlqJ5B9bgZyBnLD06ssmf7XMDKQ1QzrpyJ/4zl7s39H9Wh3tfAraTuQCfn5OgDi1QXOXYM+Owz5rBIPWTE3B9/AuDHH3/DmDEX4/DhowgHQi6GLPQRSYFSXS3tHH/66XfV3cWGDYWNHj7oTnZ2Jr9RvAF3nMXr4z/5exhw2v8ArWxbaHc2cMFh4LwtwLC3hWZ/uuM/4RFeIRuQQGHExXVucgelokK5DgwGLhQkB4WJ0cgkyhYVsW2CC6SsLN9OnL+hhs3loEgtFJhA6eHxvMPRMh0UMXQlnpSVlf2M2257xaP4oLq66b+P5oAESpSTkNBGMXBvzZqjisFeHTp4d1DEeCbHBK3WGbdlOSCnfyiIFMaWI8C29FfxysGXcc1rwNESCKLixweATs5jRd++8dBoMgLaWUkChX2WNJzBB+vyEl+97+oT9R2USidZdgY14jOgzUigvhLYfB/wZQfg+yF4ZsJTQu7J+6uBn7c3oKzMz86q69X8mnWwVTlj2bOHTcd9XfFYoAJl7Ngz8dNPn2P8+BsQDsQmfawHTmACJfQdtTw3JCWFbUueO9W8vOAHUPoagJaVlYNPP53PlfiGadBrHVj8BzBv1Sgurt1huUSp/YHuN6K6/ysu94wlSCcnByZQxFCo0DOnyRvuccSkYJNJLlAi46CIXUsZGRnKHDY5I0feGbUhHoMhwaOhpZLoEigbNrBeO/4Fiph8Lv+bX3nlNjz88DvYt69EvTt3DEMCJcpJSckSrvPy+JmqzSap6NraanTuzEWDiHzCrckkPztyS5jtOBm44ABOfywJJ80EDjvOwq78dOGgfuE8oLjKiJO7A3/PBi4/jdusYm7AzTff6CpLVkNMHGXt1nW6dJzRx/lEmzPCGINmCigFGP0jcOq7QMoJAGtoV/qX8JSl23RMeVMqZfUJSx42ZQCW40DhLx5PV1Z6ZoOazfFBORR79+5qUgfFbOYHZ5stdAdFnjTKmp6p7VTde940ZoDjGWfMQF7eUQwbNgzI+wEoXos6mx7T3+PTk3/99ZDP9z2im4hlfwPs5PPeiZ5dUr0hhkLF/J7mEChGoyhQ9BF3UI4c4U6jRpPksxvxDz887bpdURFdIR65QLn00kEqr7ZFLEQWLCwif/LJD+P88y/CqlV1PgWK3e5QDWs/+eQUbN0qnZwePbobrQESKFFOYiKfLLxr11bce+8Shc1XV1eFrl2VDopOp/WIZ7pboi7i2mLt3niwnFs28ru8nPcD2XgAKB66Fn/sAVITgI9uA/o0vOlqgJWb+yd+/dX7AVdsvMXyJIzGDIzq63wia0RQf7v4I1bbQUl/mA7odj1w3lZg7Cpg+EfApH3QDZ0HsdiI/W0+YWfmYp+VQ2LzOgm1fI9gBYB80mpjkI858IU4KE+Z7xEc0kwlvZDvpNbdVBxy5g2W0P3VV3+5Ert9CZSEhFRp7tKO/wpXX24bggLheGrD6NGjff5fRUXVmOMcNfWvUYCmOLDOw6LTGKmeMb4a7vlyUCJ1gP2//xPncSl7KLnDPpPZPKjJ83NExO1N7fdvMkkCRa/X4JJLPJPl/TqnTcSPP7JihCeFEPFTT73nx0FxqE6ZZvzFum06KSr6GSUl0fH3RRISKFFOQgK3Lw8fXoz//ncyZs9+3/Ucm3Kcne19J2M2m70O15IeN7oO4uLAtM6dr0KvkwbjjMeBJ7/ky/WoeREXjZ/iel1ubrVfgcK6mZ7Q0YCeOUC9XYcfNluwVO5zBriD8kiSVf9DeH5Ll8uBxG7CTkuc5lxbG4A46HQZv2a9WpyD1ESsVnujBYrdno/jx4MPh7hjY6OAZf1BvCEmXXoTA8E5KOK2I5WhG419XAnRbKcqb18v5+KL5+PCC4fguuvecD3m7TOJ6xTlO4GCH4Uw3lc7h8tex9uBe4N1Qf51J/DRGkAw3X6/ArD6b74m5mrV1jbdQdi9FF90UPR6bUAOyj33zEbHjv1QWBhKrTdvvOZwKOdKqSFWi4V76GZjHVS5QOHLeP4e/OXKNRVffikltB48uM7nKANRoOSwMkQ3Dh+WT76uxR9/SIIlViGBEuUkJSnjq5s3fy87WFUrHBN3zGa1uTzqAoXNQ6mo4HHNuDj+42+wAw9/CizdxFJdG7D4IWYxpvi1fMUQD+tmet4gHu/eUdQV55x/Kc4//3xUVfnv3Fpayt4nAAfFJ6L4CuAgzXJZzNm8R4xYEu1EbVZMKCGU6657DI1F3qTPF+IZeUND6A6KGL6RxK3dY1oyO9AOHHgDUlIS8eOPOz3eY88e3kxt5869rse8VSa4BIo4r6ndRJRaeYhT5OhR7716iov5dnXLO8D+Qh1QfZCLFLc+Ke6ITmNTOijurp74ffE8MS7I5c0Z3XnuuZk4enQ77r5bEn6BYLUG10DDYIhXDt2MEgdF3EeJ3HTTBOctlvDGxUpFRXQ4DEeOSEJC3F+IbrS3HJROnZShe0ZpqXLb378/xEZELQgSKC1MoIhj0hk2Py3a4+LM3pu2OdFq5Q4K/wEkJnL1npjIXYXHnMUruqMfIyu1fVACZXx//iP6aZdUopqb6/9s7IsvmBjaKtxOTQ1VoPAdVV1dAAKFhYpYC37GQcml8vZ6KYQSuEDZuvV42BwU/1U8jXdQxPCNmrgVt6dHHjkHW7fy6qfbbpvnsRzLk5Jf+/pMgkBhgx3Faqp+D7qqW0R27PBeNVTq7OPDNs2y/u8D7DPmLQO+PxGozff6OjFXq66u6Q7C7qJXmsHD0Pt0UOT5X0VFPkZGqODL+fSVQBztAmXUqPb45ZciHD78D3tWNYzWXBQVFbtuiyFXh6PW53fbrZunQHFPjD18mAQK0cywM1M5FssW1233KcfuxMf76CrrJlC4g8Lt8NRULlAKCz9iGaTYsD8L9fF9hE6w5w+u87vDEnt1pCZoMKwrq4ABvt4o/R2//74a/ti6lVuhjNNPV/bfCBRxJLvfHBSRjs4+J3krFNU8aiEiUaA0NAQuUPzNDwkmB0W9/beE2Rw+B0XrrPaS0LkcFDlqtrXFwsVoXV2Nqsj2WKdbHgNYfL7dBCBzmCtUJeLroFNayn8PCQkn46SxlwMjvwWMabxL8G+TAS/rQgyFWizN56DU1cmdDd8OSn5+qet2+/a8yi9QDh2SXhsIYvirKSuc3LcneeKwyA03OHPGkCmrOspAx45GaDT8+ywvjw4HpaxMEihikYPD4X6SxgXJzTfzk8LOnT1DPO4C5ejR4Ev8WxrkoEQ5qalqJXScpCSPbmoK4uPlDorJp0Cpq7OiqqrUNdGUERenwdq1h/DDD/uh73aJ8NhFJ5f7TZoTm5ed2asQBp0de/KBTXul0sYpU8Sdi3fEigqTKQe9evVEKEjhqwBdBNYO35AK2MqAYt5/Q1w34XBQfFVMBAKL7og9RPzloIgOijcxEAiHD9cpBg+KxMWlu6Yly9m1610cPiyVQjKsVr4jtlikM3dvn6lz2nHg4Af8zsDHXKX0cnw5d+Xl/P8wGJy/mZzRwPg/+Xda9Afw+2WAyhC55hAo7g6KMr/At4OyadMR1+2EhADys2QcPSoJlOnTnwhCoNRElYNy223D8fbbG7Fjh2eyvjjpuzkSe9WorJQESkHBErz3HjsRVG5r69f/g+++24Obbz7VI1lapLZWeUJaUEAOCtHMqNf4c7799n8+X5uQIDkobdp0Ul1GrFBhB+HaWu6gZGVJ7fOHDTNh/PhEoBMXKKNPKBUauPk6oxIFyqhefEf67Sa2/DEEg/j+aWlDESqigxJQiIfBeouwScoMFhpwovZ6VnYbvIPie36IyM8/16F//5X480/pIPbKK8WIj/8fdu0qbzIH5Z9/eOw8PZ07WHffzdvCv/vu6x5dikUeeuhTxX2rtVrhpHjLQWGpVBd1ZtuzA+hwIZA+xGPysX+BUuWZQJncU+r5c/RL7qS4lciLTqPV2nQHNHfRO2KEZOlrNL4dlMWLl3qUnQfKsWNcoLDy/3nzZvpdXq83KnKfokWgMG688ST06eN5kia6xc05W0lOdbUkUBjXXuvsJCijS5cUnHuuZ8M5ObW1SgclL89/knNLhxyUKCc9XV2gZGdPxGmniQ1G1JFntn/yyTN+BUpdHd95tWnjaS8ipT+Q3Btmgx2TTmKdRVn4Rx3WG4Qdi0d04wc4lmRrtSoFir8dnuigKJvNhSpQgjhItz2bX7M+HE4sFu8CxVuymxqBipnRo2/Gtm3jcOaZUqOs2267CDbbdSgpeSUoB6Ux5c179mwTrnv0GCBcP/vsYygqKsJll01WdVDUGsjV19e4ErrVHJSRfYEnLwG+vhvokfg3wKY0D5KmS9fUKAVKcXEpBgyYjPvue8vj/66s5MuaTG6/GTZeYfRyKSdFdGnccrVstuZxUG655X489NC1ATsoK1eu8gj5BYoYHkpI6BWQYBaTsYP9fyId4vGF6KAsX76iWYSVOxaLUqAAP7tudekyHr16XYCMDP8NLC0W9xwUzxEfrVqgvPbaaxg4cCCSk5OFy2mnnYbvv/9ekeAza9YstGvXDnFxcRg1ahS2beM7OfnZ9bRp05CZmYmEhARMmjQJR4+Gpw14LJKRoS5QvJ3ByikslOzcAQPa+hUoNhbaEMSPikBhO7NOlwo3Lx0G7Nu3HHl5pV4FyjkDgcyEatTY4vCb4MIqD87+zm7Ekk/3dv3BIOXX2IIXKCXrAeeOxV2gfP311yEJlNpa9QoUZjitW8feS3yEO2NW66uypaSDUiAOSlwc/9vtbIJ0iFRU8GZQXbvyRjbsgJaRkaEa9hFxzxmpr+eiwSYM8eN0Sq/GF9OBkgXALw8BMy8EzjuR7T80wOkf8aZ7TmprlaGFt99+A1u3LsHcuTd5/N+i22I2qySOshL0/o9I85ucwknuoDSlQBFFc0rKmXjttTmuMuNAHJTKSimMFqxwqKzkBzmj0XcPFPftrHkcFFtIAkWv5/vGpUufxKWXzkFz08Amr6tiwIEDP2DXri9VxaJe30NVoCQm8jBQTc3fUdOMLioESocOHfD0009jw4YNwoU1TrrgggtcImTu3LmYN28eXn75Zaxfvx45OTkYN26c60fBmD59OpYsWYLFixdj9erVQsnpxIkT0eBrXkorJj1dPUvf37A4Rna2JG7k/RXULFy2w2xo4AKlfXsVgSLrFXLOICAtgTUOyvUqUNg8H8aawjGuhmnB9CiQBEroDorW2RpdzQHxSnwHIKUfwMr98ld6ODBWq1UolU5I8C9Qli1TTumtq3MTKCz8snE6it5pi/WvZWHWfZ5dbL2h1vdBjtnc+BwU0fVITual5XK8fS/uAkXcOTc0VAuJx+s+eALrH9+P/zuZb0Ps+Pr1Rt5vZ2nti3xSsQz3Vv3l5dLB2b2bcXU1D/HEx3sJi/a5E0joDNTmAjuliqOEBNFBaXyI5+efgV69mMvhezlxmxJ/f3I0bGaV8LeriwKLpTTkEE+gwybdHRR/85MiA//uk5KC2wfIJ31/+eULaG68uZgajW/X5Pnn2RDNRI+iiKwsUbhYsGePuzvTigUK2zGfd9556NWrl3B56qmnkJiYiLVr1wo7i/nz52PmzJmYPHky+vfvj0WLFqGmpgYffvih8Pry8nK8/fbbeO655zB27FgMHjwY77//PrZs2YKV/n7RrZTkZPUfZ1kZr47xxZw5l2DYsP/g8cc/C2AOSbUrszwjw0vpYmo//H04Diwk/K+zgO3b1QVKt/QCjO7H+qho8VeVekJsUZGUNKtGXV2dRy+XUAVKUCEeRo4zD6XwN8VBIC3tLJcwSEz0L1AmTlR2PlWU1zIBtPY6YNcLaJ+Sj1vHFWFG39HAUbHLZ+MESnw8PwA5HKE7KKL7IroxcoxGbw6K8mzXbucip11qBfDTWJyieQQp8cCa3cApDwOJU4AL5vF+OxVxwzze74037oNGIwkkeXl1QYFyGxLDQfHxXrZfFuIZ4OxF888jrnUtJpPX1zfeQRk9eiX27OmKK66QQoTBCwXfDkp9fegOivj/qgmjaHJQeMv3Oo/xHYEgd5eNRj5RPToFiu+/67bbBgt9f3JyLhTu17OZY86TA42G597s2RPbibIh56Awx4O5IOzAxkI9Bw4cQH5+PsaPH68YWDZy5EisWbNGuL9x40ahj4N8GRYOYmJGXEYNFhaqqKhQXFoLfEibJ3q9/50py0NYu/ZVPPyw96qZrKyOwvXnn093jWCPj/d+8HtpOVf908YD+/aodzK8Yihv2LUubxAazB1Ulxk37jSfn13sSSFv1x8sUoVSkGd/mc7PVrxW4cDID46ig+JwqAuU886biYYGZcxYkRzKDpCHFgsTnp/7DvhzL5BodgBrrhIG3fnDf5Js43NQxARbMeE2EIHi3vU33lgtjErY+1weULgKrLDizveAM58A1u+Hwl0T16mcESO6wmIpQvv2vAS8QdZ0bds2ZW+Tmhp+hslOmrzS9VqgOwsPOYDfLgK2PY3kJDERNBxJskzcHkRJidR1OVih4MtBYSMDHI4yj744kRMoYj+dphUonoMqgw/xMBITed+mpmDdOgduvrkYZW7Ni711jdXp/OedtG+vdYW57fZK13diMGS1imZtQQsU5nawHQATH7fccosQrjnhhBMEccLIzs5WLM/ui8+xaxZrTUtL87qMGnPmzEFKSorr0rEjP6i2Btx/nNdd9xyys4fjjTeeC8v7d+/e3eOxhATvO68PftcKs1E6ZgDtbJ97LmCrwEUn8aFuv+SOdtnn7lRUHPd5ViaWfLJcpsY6KMHa4MjkMV6U/i3kKoivl+/UJdtZXaB8//1sj8dcOyqW27HdmbR86ju45wPg9MeAVTu0wsDD130f21RDKU3toHgTjvJ1XV9xBD/PrBOGTQoNj9uMwskPGzB/Ge9S7I6aQBFbnYs7aSvr9Otk5055aS4TotxBSUry0byMxfpPfgXofAXAvo+/H8C1HR5GZpJS/ISClEPE/puGRggU7w5KXp4yTBisg6K2LUejgyKfnpyeHtw+QJ6Mnpqag6Zi2LBbsWBBJq65RhkN8HaSoGMJ4QFgdIZTHY5KV9jNbOYC5dCh2O6FErRA6d27NzZv3iyEdf7zn//guuuuw/bt213Puyf7sNCPv2xxf8s88MADQnhIvBw5IvUBiHXkI+MTEoZh4cK7kJ//Oy66SLLD77uPV3Y88cTCoN+/f/9uHo/5mgJ7+ZXv4QVnBe6MkSuAnS/wcIXInjeQaG7AjlzgQM1ArwcdxubN3idyiiWf8m64wSI6HkGHeOI7CoMUhQNYyV8yO96g8r1YFAcmX7jyQbbM4u/d7jyg6zXCQ+yAfeMCOxocBowfACFEJqKWnuU/SVb8rLYICRT179WV78Nm4Px8tjARu6QKOO1RwHrmSuzK875tpaSY/HZ7ra+XYu4PPHA91q/fpphNpdZ92QMmXId/AAx7B9AnoKNxE9Y+BvTMbpwzW1UlfVHysFSwAsVXaPLgQWWfmWAdFJZDxXDv0OsNcTtragdFGvSnCXgqtVqul2v4ZIQ4dIitU/Hea8K/v/zCy/HD4aAop9I3uMK7SUm8Qd+xY+SgKGAOSI8ePTB06FDB2Rg0aBBeeOEFISGW4e6EFBYWulwVtgz7gZSyQStellGD7QzFyiHx0lowm/1nsD/99FRBuD300HVBv/+AAZ4hGF8hnrfeOhs5Z+0UEhsF5/+v6cKBCKWbgaNfAdv5iPZnlnJxIeZqqPHLL9J8FnfE5MjGOChifD+oJFkGE8sZTheleK3rrFMpUETh1IDq6sB23sKOqjYPOOzsFTKQTTiV2F8IvLKcu4sP87CzwJEjtSE7KGLYrkkFCjuD/fVC6Kt3gLXdGPoQsHYvUFLC/g7vB4zevZXOqhwpF0kKm1VWHsKwYSd69FxJTk4I7DvufgNw9npUoT26ZwO/PXwMyP3W+2uYEC/4Bdj3Lh9o6EZpqeTANDRUhSxQ2ARwxrFjnsMljx9XVoQE62yIAsVfmXpzCxSpY3Cccz5R4FitkkBpzDRvf6xZY0WXLk/g1FP9Tc12ViMZgCznoattKpASH5h4Sk1Vtr1nDkpCAv+tlJb6H4bZqvugMPeD5Yh07dpVECArVqxQ/BhWrVqF4cP5RNIhQ4YI6k++TF5eHrZu3epahvC5tr0+E6po69XLs1V2QoL3nRc7IRk9Nk1IbJz6LuBgNiWrdvl+sHBQYsP2tuXG4b3feK8QXw5KQYHVr4Mi74YbLKKgCDrEIw/zFK1VnSAsD725t9R2ry6RHq8H9r7J3ZPM4UD6YI9l5i4tFCpbRp0AXHU6f2zzZmUoI5ABitJZp13IWwi3QJFPypZjs1qAP64T8k3qNYk4dy5wwHmSV1RU7cqvkLNp0yahoo+Fb/2fRcLr2akoUHw1N/QgpS/+TPlESNpNS3AAqyYCB95TLlN3HNjyBPB1d+DHs4A/bwS+7Qt8NxA4/LlqWILZ8dKZdXBORnIyP9k7fDjf7xRkhYMiVJ79BBz6BCjf4dGQji8fmoPS1CEecdCf2LY+GGy2Co+/N9xUVwP33/82m0aFTZtO9feJcPEpQN4rQOFrQOXbwLFXgNz5a4El7YGfxgNHliidaBnZ2cp9NDuGiiFWsSlmrBJUgfmDDz6Ic889V8gBYaXDLEn2l19+wbJly4QQDSshnj17Nnr27Clc2O34+HhceeWVwuvZDmjKlCm4++67hX4K6enpuOeeezBgwAChqodoenr0cO/EyJKyfCt70WF5bSUw74N1MG+/j08AjmsnDNybcNd3sDu2Cu3gfZUIimeRaog9KeTzhEIXKNZGCRSrdajH2a7cGWICpUMH6aDorTeBTmsD9jqnz/a6VXWZ3BLgya+Axy4C3v03gO1zsXXryUFX8cjziFgfGCEto+h37t4wkZDQibfzZ6EY1sis+xTeJI2JYOfMIDF/RU1kiq3+3bmw+5fA4R+E/2Od6Xn8c1jqV1JSws7+PbetE0+UXBBvJCX5F+BiGWZqanAD9OLSOmD0bOCFa7S4eYwdWHczwFwMtl4KfgL+/BefjMxgbfMTu3DHsGwL8PulQNxqIOs0598nUoFjx9gZtroQ8CUU0tJykJvLTt4kgcL2t2x/ard3cfubncLh0MfAPw8DlXx6tKsa7bT/AXE5HoJG3nclMAfF1iwOith0LRgaGiLroDz00EY89dQjMJulExN5mFd+guKwO/DAJCtm8w4NAonyXWLtMX7JXwGknwyMWgqYlYKkvdu8JfadiEnqrKVDLBOUQCkoKMA111wjuB5MbLCmbUycsF4njBkzZgj9K6ZOnSqEcYYNG4bly5cjKSnJ9R7PP/+8sIIvvfRSYdkxY8Zg4cKFEY8VxgbBjUoPBLPZfb37t36l8AFQpe0K86hv+XA9ZxfR/LKlrgNbUpL8QMaSm6X8IV+5IQ0NooPi3YHxhygoQnJQWKt1lqxYm4sUQ5GHg8KrVdh9m8dY98pK5d9lMNwBm+0FnD+4GmDtqk1ZQEfvlVVPfQn0bgtcyUzFzfdhQuKJeCMdKKhsC5stz5U46k9EDuwEzLsKiFvRF2C5G84yRQ/yvgc23cPP4EyZwGmLgLbjXQJF/n2LyHODTKZBsFj+xtkDgYt6O8trh72NPb/xBm8ixcXVCtP2+effxHnnnYlAyM6WhsJ5Q+i14qP7sjeYG8YiU/95145/X30ONKzb7KoJvCxZTJyN78Q73LLvjfXZqCsC1t8CHPkcWHcTcO7fHoMMd+8uQpcu6mWuomhWEwpt2nBBcfy4JFAuvPAa/PTTVx7LCv1JitYCv1/B9w/6JCC5D1D2Nz/ofdMTOOML1wiHYB0UcTtr6hCP2MgxFIFy9tkP4ocf7mv0qAdvPPUUq/KzwdkJQeDQIZUEa4cD9nW3YPZlfL897zve76dbG4B1aOjQ9mzs3jCLl7vveYU3h/z5HGDMz4BRchM7dcpScVBMTT4/KupDPKyHycGDBwVbieWNsN4lojhhMBeFdZJlAob1sWDhHVZC7G4Nv/TSSyguLhZ6pHzzzTetqion+vG/40pMlJaprnYe/GUtzsXeIExcyAWKydQmYAdFKnFtjEBpRIhHnwCkDhRuaooPKJIXJcSZHxbVKcAiS5b8R7i+d4LzDLvHvwEvwxvFhNmrXgFuegtwaE0Y3GYzdv0XmHNVqhDHZlRU+P6bksu/xYYngDH9AX3dQS5O2N/EugG3PRfIHgP0fxQ48RkgoaswqVoIPdXlA6smASWsjbbFh0CRPv/06Y+jXRrwHv8zgZ7/Abpdi9JSZZv60tIahcj+v/+7WOinFAht2/oXKHZ7lc/mht4Qw3XsxLd8wPtAr9slccISGdnfc84GoOvVXJwwzJnAKQv4tOTybUILfXmIx18JqC+h0L59tkevIzVxIvzN7Heyfipfr2wC9IWHgHPWAedu4uMpmKu0+hKgYo/i//WXwyQiLtf0AkV0UIIP8XzzzT0YNGh6BHNQPH97f/2l0g390GLo9i8Q3JVbFwJ3fwCwn8TGAwCbdFBTn8Cd2hNnC7lQwolL6Sbgt//jeVxOujFFI4Od4Ishnlh3UGgWDwGNZqjH/BpfxMVJYqS62nMHIAoU5qDIG82ZzSyxi4f7/AkUseJFnCkTCuK8mJDPMrJGCFdn9P5C0VVTRKMxqbbtr6qyeiQ6s5kzw3o08ANfr2kB/fdv/QzUj16LzbkdwIyku8ftwI653FnJz/dSXsiOsnteg3HjNWAnv9/8BRzqvFA4w8fF5cCIj4GzvgPGrAQGzgJOmAGcvweYuBu44BAXL3YLHGuugtlg8RCkInJnq3v3LLxyUw8hAXBPcVvgJN6ltbxcmdBZVlYNLRva5yQhIXADt2PHTL+NvRwObu3n5ASXj6XIJ6rWAUNfAP7vGF9nk/OBk18FnGWdCkzpQLcb+O09r6GiQvn3HjzovQTUl4OSlcU7OdfV+a8qmjzwb35QM6QIJeuCYBL+qBOAczYCWacDtnLgl3MAW6WrI2ywIR61AY+RpLq6zqMrbKAYDFqcddbwiDgopaXq62H/fvmsMQefmr2ZuziPfg68KqVdupAn3SO5F3DWMkCfCBT8DPxxrUukdOyY6iEaxRO3HTvy8c8/sduFnQQKgT//XBZUGEmnY1n1/MdVU6MmUOpcAkVeOsqmzC5YwObMDA9YoIgNx0IhLi5R0QI9aNqcIVyN6M3vDhqkDIeJZ3dVVUqB4r5O2CyR+8933ul2IxDnvWLNnWpjX1z/wcW44mWgsCoJXdsAH9wKTD1tifoL2CC89VOhaajDlxu0+L/ngQLDWUDaQEDrJYzKHmdTf1leCstZMOdAU7EDT15a77Uvjjx5Odt4AJMG8oqs//46AW+89QO++upXVFQoHRQmWMSkx5NOugKZmYGHYrp08S1QeIUQ31F36OC7xNfzb5G2sZoa59kxO9CzdWaQwtOq9LiFXx/7Dtqa/Yqnjh71LlAsFu8hzMxMLrCs1gqfSZBMEN4+ch2/w8JPbrkLYFVsIz7j7f2r9gNbn5A5KMGFePLyfkVDQ/hDzN7Iz69VTCYOlnBM81bj2mudOWRuHD0qL/928FEKNUdQb+yA/3opDPOopEo/CTjjc54jdvgTHu5psHoMEmSiUXKWv8KgQeLOJfYggdKC8FYd0lh69pQOFA4vmeSeeBcoDgffuaSlxcNkkjYx1mzrppt06N69j1+BIg0KC12gJCTwg0t1tZfciwAdlEGdgOQ44OGHb1UVKL4clMsu+whp2CXMLxKKafreo1i2stL3d8oOmOwgtfgP4IbPp2HJXt7l9v/6rAUOu40wqM0HNt7Ob/e5GxfNTxLCRRUVQXRIFUMXAO4+D7h1nDeBIh1YhxpeA6sE/WQt8NPmWtxyy4W48MKRWL78O8VrmGCx2/lnYcnxwdCtm2+BwlqCc7Ro0ya4EA8X3Hqv27NPmLDLYQn+DlRu/lLxVHGxd4FSW+u9Z0uWsxa1rm4L4uOT8M476mJ07hVAstkKpA2WhJI7LEF2qHPo5M7n0SWd51OZTMEJFKAEN9/8Pux2e5PMTXvzzVtDDvH4HJbJqpx+/T/gu0HA5gdZjCyo9/39d55f587+/VK+UJskG7CdDyksbPcQvDWyVm2W13Y8wHL6DMlA4S/AhluR6SZQmIOi7A8lDeyNNUigEEhytvrmBPqDNSrPOBUiqsYlUOT998RuoGLc3Vd1TTgclOTkRgqUuLaoM3SDVsvLfrt1U1ZQiGd37g6KVAqagcWLL0f7cn6A+Hgt4EhQvseZZ/qetsoqcMR4vMaQjP97ZA3sfZwH97U38nJSBlvv6/8DWEv5AevEOYCG//3FxUE6SB3OR0VH/n+8fD2QXsAbUMkRK3vO7AO0w2rU2zWY+QkrJZbmM+3fv0XxGhYCEcVrSkpw1n2/fizE4r0r6LFjXKBoNMlB983ghDD5WqQnywEBpoz8XJhT5T4bSA2pZ4unQGnTJlnxO5gyZbLHMqyZ3/VifjELQXlzxxjtzwPaTxJyjB47f0OIAgX49NMF6Nz5DKSkdMLChZ+EVh0XIDpdcqOS5EUHxSVQ2O9j033AT2OAo18CZf9wEbHVOZspQMrKlANARZYuZYP9OI9PZjlf1UDGMBSYJ7keHzx4LJKSJPfUay8aJlJOXyw0qcO+t5CYx08Y5N9JY3LzWhIkUFoUkXFQ+BmkSGAOikYjChTlTornpDhUW1SLvSzEEllfOzjRQQmHQKlllTMhclzPXZRzBuqgZUpFRaDU1KiHeIRZQJV7kVL+jXD/mW8825dv3jzTddto9MydWLq0Crm5vEOweNakZeIj6wye+Mr6ctQcA/55iO94mT3MchG0Buh03EkoKfF+oPRGbsb9mO3MyzTtfAgoXK14PjGRDSwDnnWmFH297UTsLWCumNQ4ympVNhorL6+Cw8HzKnJy/IRO3GD/1/33ewolkfx8LlC02uDCOxIGrzlVfml/PpjD3yYFuFBK50JtrTInRY7VKpZEewqUtm1959AYdMCb/+K331vbXSqJ98WQ5wGtCWf2Oo6LTgkmSVYSKBZLMY4eXYPq6mO44YbLcOONnuMcwgf/HubOndV4B4W5wiyRmCVwMbr/Cxj4BL+99Uk+0kIF5hStXPkzqqr4d2W12uFweJse/LPw733nA1ef7vwNnDQPFlfLAQM2blyOH39c73qFz2Z5rMR9MP+82k13CidIImw/5N4fig9XjD1IoLQATjiBD2d58MHg1H5oBOagiMm0tSwd3SMXgJOWphQoZnN8wA6KJFACO9NTIzWVHwQtltAFymEbD6mcM9Dh0fhK56zEERP65sz5DS+88KdLoAhJtDv+Cw3s+HYTsOUIs+29JxvOnOnWIEwo3X/Uddu1U2IVU2d8xhMh6wqAL9sD25wHi1NeB9J4XxE9S7gTvpPgc3Cqa2yCI7LwV0DDdvB/XANYihV9YK44DTilO1CvScD//holPG6zSQKlvl4pUA4eZCXm/O8/4YTA83BEpkxh06FZqEccNy9RwAZECdtWaAJFFNzu23NAaPV4dxW/ecOZngMv1bDZqr32bPEnUK4eAXTKBPJKgce+VlZJeiWxG3ACT9pkpefJ8fagBYrVqqxK+vhjz+01XIh5bL46UftCrDwTBApLVt37OnckTnkTGPYm0P8hXtHGTqaEEnvPA/xttz2LceNGY8iQC4T7hw+zbcy7EJh8MvD05c7PP3g+kDVc5sgZhCpXeVWje9K9B33uBrpcAzga8L9bWOdZ/nBZWaWHs1RSEpvVPCRQWgBbtryJXbvyMXPmhKgRKN4mBUvNqnRITFSeIYht68UEPV9dHsUeHMHO4ZCTltZ4gbK3sr/QI6NrG7uyCZZsampNjQUHD5bjwQfPxPTpp7oci3ZpWmD/u8Ltp7mJgtpa7wLlhBM8e2ZYrVKeiaJpHUuIHPkNkOg8WLPmaifO5Q3XXJ+PC5Q9e6RZWYEiiqzb/2fiZcisUdmvF7j6giTF210742OpU1FZn+7RJAtQOje5uTyRVqvNCskZ69EjGTt3HsLGjZ6txYuK+P9rlPWPCE2ghNaQjAk5MfTSId2/QBGbyqn1bMnJYaJFPUzFoldiwjWbgl1tCeLM+YT7cajILIibC7qqly27I3daHA731vteRE7NUWDHPOD3q4Dlp/PRAEHmzzkczu3MR6NHfw4KW1cPTioSThIETn0X6OG0nhgnPg2w/RjrhJ3n7N8j4803+Yyz3bt/Qvv212LCBOlkwZ0hXaUy+xd/AI7E36TYP4ondHKB4neVaJigeh1I6ikMZ53Px3YJPcbcBcqxY42bIxWtkEBpAbCYeq9ewZ9xRlKgiD0nbr/dWWbpROoFIZ+hwasLTj75AoWD4lug2BotUNLTuUCpqtogNAUMhaIyB34XZxrmLVc8ZzBIOSjyKbPHjnGnYdrZFUJ/kYa007B6F1QFnZw+fdSaeknryGMyNDsrZv05WFIr66Nwwr1un4+foS1adG/QLbHFXi5VdSYuhJgzcfx3YPVlQN4K9K9/QdhpHioCSrNvcR3IHA7vs0FKS/cJ1yZTW4RK797x6NvXU4SUlPAdtMkUXOjIXXAHnSQrm6P083b2PsCcf/PeUBaL9xCPOKtHrWeLXs9+N+ouyqWnAr3aAsWVwOs/BtnhVR+HGR/zHKhROUuB/Yv8vsRXQ0CHQ2Vfsed14JvewKa7gUMfAkVr+GiA1RcrHDj/cIEib1MQEKzNfdFa9DV+LQyAfOwi58nJoNlAN7dZZYldgV638dtbHvNQDPIpxMeOvYfdu18Sbmu1yoRtJki/uRtCKwDmlN71Pjsp4G6TxSKekOg9hr8GVJCgjwdOXSj0UmE5R8N6sFBpmce+QMzBijVIoBBuBHamY7fzH2BNzU6VZlxM/EuZ5489thNDhvyDp54aErCDIjZDaoxAycyUDlYvvPBR0K9nx/RFi2rxvRiiPqR8j7Q0fqp88GC+Igacn18MdmJ881m89NDhtNYZYojnscd+Rt++SkGh3qLd5l2gMJhj0OMmXqLoRh3rdurkxx/V4+zeqKiwSM5Caj8eUmKddXO/Bn4ej3aVPC/mvo8AU3yS7Exbbfvhz1ks3EFJTAxdoDDi4jwTQisr+XZnMgXXRVZEPMMNevK1DDHMM67bJuHkV5wnpYbDwd0lb6XWWq2nQGHOx0vOY+yLyxPBcrFdE7IDZOnmJKnsde31wLanfZ7K+575ZPeskGG5Hg013NljIQpWtcYaHB75Alg2hFea+cFiYcLHFpxAqckFNt8PfN4GWH4aBltnCZO0y9hqZmGdE+5Xfx37DbLePMVr+bat4uK6YzK1dwlI1qBw+f1A2zTgn8PA5S/zRov79xepOijysRGsIiogsobjXadD99K1wP9NOsPDQSkoIAeFIPwilrTKW1Q/8kgaNmwYgATn8VesIAhEoDQmSbZ7906u2z/+KHXlDJQ33qjDli2z8P7vzhJhdjYoVs0IgxZ5K/f9+7crusceP16MByax0mQ7kDoIuo7nu84FxDOqWbNGY+dOp/XshJXzLlr0Ec45h8XGReyKxNRgsFql3gxffikl5wWC2GRNq3V+aayUdtR3QLvzBMvZronD/O+dlUkO3301WEiHww/KSUkqTc8aSVUVf2+zObgSY3cHJaQcFCefrwfYastOKMLEwWz7VhcoNhsTBNxBycpSFyh6vdIlYtX2n90OMM29fh8wbxl32+rrg2tCaLPVYMZHwKbaS/gDfz/Aq7+8CB1fAkXhADB3hOUpMYHa7Xrg/N3ASf8FBj8LjF/L3b7qQ8Cyk4ANdzgrasYBP58HLD0B+HEssHYKsPUpVOVvV22i5xU2h+ibHsD2Z4Qmg2wmWJnpdCHJ+4QZZh7WkZcTupdh976D32Yzl2QCyrtASYNWmyjM1Fn1ENC3PXC4CJjwLHMc+TKHDysdFHFIprzCLJi2EQ9/yrvQMtH1yAV/eJysfPppcCcgLQVyUAgnoc9Cks+iKSvjBzYdaxHuBfFgptaGet06YORIe1gclNNOY1Ysr3AwGoMvPf3iC5Y/8gfyy4AV25y27j42wZRz8sk8tb64eLui+uP0tr/grnOddwY9CY1Q/cN3UL6SZNkU6WuvvRzff/8xdLoOHs8nJgZXmtvQUOq6vX9/MPa69D3qmcXs3qPh/N2oPK8Yd77PH27TJt7n1GmjUSlIkpOd3U4bgUYj5dow2NgMRlyc9+0ulJyqwD9POmoswBEzT8x58AIuBtQoKmLbCg+PeOvZ4l7R9eK1/ODEQjsXvwg4NJmKZNtAqa8/LgjK3OyHgCEv8lwXNsCSTdS1eoYJfB9EZSGeDbfxoXfJvYGhLysFAXP3Rn3PW7nX5gG7X+QVNULux/dAxQ6g4Edg/ztCNVraH6di5oVAUpwfgcIEEssvWXMlz43KOJU3prvwKA50+1RI8s4rs+Guuz7CKadM96igczHwMT7WwlLEJ3G7uuaqC5SEhHTodHFCxU6PHKDcloaznoJQySWSm3tc1UGRE7CDAvZ3ANc7e8Rpds1DX8e7kM/wXLnyTaxYUYFzz/0RH310CLECCRTCtYMNlYMHpQOh2LOD/YC9ITooagLltNM+x6+/SmeVak3CAoXpoBNO4HWf1Ww+epDIw1evr3SGJfYu4GeCzB3uyx0aqzXP1fvk3onAo2evEHIR3lzVkc9HEdC7zqjy8z2ras49d5ribFU84/LaGjsAHI4Brtu+muKpIbZtVwgUGayPyccf/4aPPlqFjIwEnwIlPl4pUFJTGy9QNm6U+sdYLDb89hsvG42LC9VBCS3Ec/Agq75ibfb5Qa20zTTY7Eac2gMY3l09nLFjhxh60yEjQ91BMRik9X79mV3w79F8Yu4Vr/Cz9bg4/nutZ/02AqS2ViqT7dEjC+g9DThzCW+vzpqCscGCB5SVOb4EmysHJf9HYe6MkKg9/AM+88kd1sqdjVQY/hGfdcSSuU96HhgwCzhjCXDqImDA40Jrfq29Bk9eAuz+L2Decgdw9Cvu8NiqgPLtwLFl3DVZORLYdC8XKuz9xv8OdLpIEEfSfqMBzz9/JdavfwFTpryl/oewdgGnf8Sv85c7RYoUZnInKSkdPdonuE5C9qY8KuQgycnLEx0U/h5a2awyaf0FLlBuu+0L/LD1NOw185yZU4yvovRNDRbd3gWp8ez/WYvx41OwbNlYXHmlstdSS4YECiGQns7LREPh8GFPgeLtwCYXKLm5nh0y7faL2a7Udb8xDgp/fbziDDsYHA7JZl++9SCQeRrvPcJi6fveRZfO6chOATpnFiG+ZiO+uot39xQrLB75erDsTFI8ANqwYYM00Vnkyy/5/BoRtTMuKeEuMO6912lx+A2nBS9QGJdeOgKXX87rahMSvAtS95BORkboYlgkPV0Srv/5j3TgiY8PzUHRsbbwIQiUQYM+wuzZzM3gOQC6xLbYVjteuP3Y5EO8cZ4bO3bwidR6fbbXKe4NLI+DmVapwMs3cEHzyOfACmfvu8TEDOdygQuUffvYZ2lQdubtcAGfnhvfEbAc5zNgDn/qeo14gFWDiZ0GS4XQ7dTVsI5NAfcGy5fqcjmfdTTsLXyz5woMvSETf5eMFoZLYsDDwJhV2J46Xzjg57ARNHteBX69EPgkEfg0Cfi2H/DLucDvlwPHV3MxdPLrPM+ECSQfJzYrV/rouMpK9pl4YicGLLn3+xNx7RleFk1Jx1dPZApJsesOxKGhrdSMLSmpn3BdVMQFitVa7/X3HEyI56WX/g91dWvQ4/9e5LOu4jvAoHPg2mEHsfs5jRBSjEVIoBACy5a9huzsW/Hss8HlKjByc6WdcGkp31Ebjd7PZHU66Ye5YcM2n+/Nwh6NIT6ef4716+fhl19+C+q1ZWVSWOTOu+4BTnuPzzVh8fY/b8SJueNw7GXgwPx6XJR0MyYN4Qlyd3/YFvd8wPIhkjwcESYy9rKOZgqMHrF+z8nJLKcmuJ/r0093Q7duDwq3g+36WVlZ7fd7lKOawOskLU0pULKyGu+gyA9Af/0l5QUliIlOIQoUXwdkOXfddRS9erF5Q6xTXYmi/8YOzbVCLsIp3WqALzsBqy/nLsCx74UKqP17+eTbuDjvycJWZ7jlxeuABGMVCuoHuRrniQdJht0euEDZu5cfNDWaVGWjtoyhwKR9QE+n0Fh7A1B1ULE+dFqgf0fgslOBRycD708FPrsDKHgnB6jYBZizpeZnATB//mZMmpSDjRtvwyWXyF6n1WFfw3j0vw+4cF4S/0ymTD5tm2FIBVIH8AtruDZhG9DzZo8cE7UBlxUV8oF+KnS8EBjxCRcp5Vux6BYeWrv4FOCq0yGcjDCGdzuGntqfhNs5576DnLaSC9arF++btGsXF5Xl5Tav7qc9yDb7Auzv7HMncOER4KzlQHJfZCQ6hBCQnAhNRWlyAh8nSsQ0Q4dmID//5ZBem8c6RjnZv5+HP9LTpQRVd2prpc3up5+OYehQftahRmOSZBkJCdIZ9bhxZ3vNC1CjspLvZMaOvQ2PPfYA89351F82COyfh6Gr3iNIfHaSpNXq8MnaBqEHwp97K1USNiWBwqb6ypFXPHkTKN269cM55wTQMVTxHmxwnhH79wfvoFRViVUxgTkSvhJ409OVZZnZ2Y13UOTCVSxb558jVAdFrDTi62nbtu245ZY7MX/+0xgyxPP09PnnO3odPGhI7YqR9wIf3qZH77ZVwOGP+cXJ3X3aYGNfYG+Fd4Fi1pXhvTv4wZFVTx3OeQoOx0TX86mp6a6y7meeeQY33HAD2rRxGxboxsGDXKAYDCpJymx7G/ICUPY3dyb+nAKc9QM6dEgTSptfvo4PJ/SkFjBlAGd+BRiVU3d98dBDd7pu5+f/oniOzbZiucpLNycDJ78MnPQc78PDBB2bURPkAEhfYVN3HB0uxG3f/weXDDmIUVnfYNrZrF2A9PyuY0DPtk5nsut16HTS5YITcuKJI4QO2f37D8HGjW+hquot7N37Kv75h4vRlJSMRoV4VGk7Djjvb0wc0h0bDyhd2cpKK5KTQw+PRwskUIiQGDHiVaxePdVV8cHOtPr0uQgHD/KOZB07eo+D3nHH5Vi8+Hrhdk2Nr/4kGuj1oSfvMhITJZFQz0agB0FNDXdQBg061dWeX5gQ2+9+oONFQMkG9B0xHTtzCzF8+EysWfO485U8xyQ+Xj6EkR8cvvnme2RkdFP8P65KGcVjyh0sa7nt3mo/EAIr6fakujp0gZKWNhalpStVn2N07ep78F8gmExsu2BnzQ7puxGEhjYsIZ4RI8ajrCwX48btQEnJ4YDfh4Uk27dPxF8HgT73xMOW9wP0h94WthUhV6L6ENolFeKXh4D31+/nM1tYmKLkL14myw7EAI68mCdUiTDxazx9AWwFAxX/T2amJPLuv/9+vPfel9i69Q/Vz5SXx5q/AUeOcMFtZgMh1WDzfIa9A3w/ECj4SehQfFvbBkybxp9mBXrbjgKHi9tjb36ucJ+lqLzw+SYgQV2wecNkckBMC+vYkXc+FhFnW7kGBbKOzSz5NggMBjExvd6nK+nO999vw6vvvYRX3wOmjgPmXAbY6gE2SaFfB6C32KqIdXhlycCC8NHgr79+Fa5/+ulPvMt7M2LmzE3Yto1X1/TsOcjj/wpLe3qtAb/sYtuCUqAUFlbHhEChEA8REqtW/QeJiWe7ZtE8+eRSlzhh9OjhXaCceqoJBsMY4XZpqa827I1zTxpzRs2w2bgzlJWVrj7FtssVOFTCG+jl5vIzJbXwEoefLS1adL8rv0NEq/XvoLRrF1qHVF8JyYEIFHE8gT/kHT/dc05uuuk8xf3zzvPumAUKL9c0e8Ty3eciBYo4WdZq5ZY8EyeM0lLPfCF/Z+7S5OUK5NcP4a3Vz90knO3iwsP4Ygs/WF198nY+VXfN1cDyU4H8FbxbceUeJJrtOHjchKfWvQR0v9EjF8t9m9y2ba3q53njjaNo1+4CTJr0s9Cfh5GQ4EMgsu2aJayyUEpdITTWYqFPyONLkpBxMzB8FrApfgEe+hSYu5R3TQ1WnDDsduncWMv6kMgQp4OHOslYQnmAZi6nP44fl05iXl0BpN4EZN4CIeTU5Q7gqleAzyrmA8P/BxikExAmThijRw9zdSX+5JNhOHyYC5TBg6WEdZGOHQNzg/whzgSTU1gY/HiLaIQEChHahqOVyl6rq2uxf78yr6JrV992c1paomuuhHcafwZgNss38eAO8g0NfGeVnOz9IN25M5+FcuiQ5xj2pKREn/kdImqJqEqBYg54+my4HBRxEm+gVTHJyVKSbEqK8gDYrl0aJkyYKzu4htbt1R2Nhv+flZVSeaxvR8474uA2FuIRRYrIrl3KEQf+cmMyM1mODT9g7dvnVt5tSMZj343C2U8DBVVJQNU+4OAHvEqlw4U8YXXsb8B5/8B8aQ1mvcSrNkwmpdmdmckObv4PuHfdxVq7f42lS0ejoIA7KElJnuEGBZ0vBS44AIz+kfcwufAInvwqh/cCAmsD0EexeANLvAqS6mqpwsliUX5n4mwrd+ESPMrfjN1VPuwd9/CrPJdj2Oj/4sxrv8PFtzj7pnjBbJbmI9lsvHvfoEHdXY898cQ76NHjTHz00cMIBzrnTDA5RUUkUIhWjtEY5zprLSur8HrAUkNMIK2o8P5DUst8D5bSUimBURjeFwR2e63feSATJjgHo6DQZ3hJPuBu27Z1iuX0KmWZ8rJEnS7w2H64HJS6upqgqmLk6ygjQylQWBny22//B126XI777pNmCzUWjUYcNSBlCJ599smNclB++eVdD7E9Z84XAb+PycSmSOug03ERIHYUlWOx1GH5FuDfS24DBj0FDHiMi4EzvgCyRwFtRghJoDltta7cT/ecCj5Ez794tFr5eAFGSQn/LGlpAYTYWD5JzmggcxhgzlK0tT/zzM6KRY8fD27W1fLlubDZpOR4q1XperkSc4Msq3dHdDJEhMGBfvDl6Pbp0xs33yw2OEJQIwCGDJFy8h566Abs2bMKOTmND3XKZ4LJIYFCtHqMRv7DYHNuysqUTZ78dT0V8zMqKiojKlBSUni3V4bDURPSRFVfYqtLF7X5OZzkZMlBuecePniMsXXrIq89L0TkO2f3rqLBIE6DbmiIrECRN9TKylLueLOy4pGdnYgDBz7C009fhHAhhgBqarhA0elycOedPHQYqkApK/sHl1yiHEGwe7dyiq/V6s0x0LmsfqORr4NNm5SvrayUDsh2fSrQ70FgwCNcDHjrdip8j0oHhbU6V8td8qTBoyotM9OPg6KCXi+FIxISlM7N0aPBzYGZP3+x4r77SAAxD0hsnhcq7q8P5DdQUuJ9f+TLSfUtUDTo04e1x48MBoPnidfRo6EPSI0mKMRDhIzJxA/ctbV1OH5cWcLnbwppQoI4yC+yDspjj7HBbc8479UE1XsgkImq7dt7L5lNSZEOIJ06+eqs6/lcUZHkCsTHpzW5gyIOugs0h0cpUOSfV69aURFOgVJXx9fVgAGXuQRCsMgrgbZuVR5Ay8pkLUKFpHBvgxel9xBdiqVLnVMiAWzf7kBy8mocOCCWGQeeY+Geg8JmurgLFBvL5vRxsBSr0tq0Cf7M/V//4n160tKcpciNGFR39ChPOtZqef6WzaZ0UMQQW3M4KGVl3vdH/lxhbwJFp8tWlnWHGb3eU6A8+qhz9HELhwQKETImk3iAqEVenrKfib8hXwkJ3F2orvau9M3m0EMbIjk5GuzcebPznt3rrBU27HjXLvfYc63fv6Vjx8AECuu86i9UpuRP2Wu9l2xHykGxWKpVwlSBCRRxijQncjtmsVux1Vqm2B5DwWz2/v1UVroLlDq/gnrMmDNdU3BF7rzzOwCs+9ePIQgUvYdDqdMpv5vKSovPg2VtLRco7dsHL1BefPEsvPzyIWzY8Jxwf+jQL0IeVHf8OE88TkrqpTpPSOq+agirgxKIQPHl6KakBOqgKIViYxzQYJxsJX56vrQQSKAQjd6p19ZWo6pKKVCSknzneyQl8YNYTY33HUJmppRY1hhycqQdy4ABwzB+vHwYH2fo0FXo0+cuLF/Od5YWC1MofIefmur9QNKli3eB0q6dVGmRyvpReyEuzjOZ9pxzpES8c84JrsQyHAJF7BeTlBS8gyImQHNCczSCib1bLHwkgdFoiohAqa4OTKDIxdi4cTxXwWLJxyJnRO8oa9Ymw9d4APWyWa0iB8VgSFCdQK1ECkdZWINB1jy2Q/AhHmZM3XprJ3TrxtfxH3/8H7RaXo0lH5QZCBUVXKBkZ/dULf8XBYqYuBwugeJw2BopUOJCFCjhSQoPJMQjTcFu/MldNEAChQgZs5nvYIuKWElmTVAOihg6cM/gl9OxY3gESnKywXWg3L//b6xY8SnqxZIEJ9u3s1b/z+P+++d72Pipqd53TCwB1Fs7IXm/j/T0eL/hLjmffvok7r//QVx55TV49tkZaC6BEmjcnR9AOaee2r1JBYpIMI6EO/Hxat8xr0SrqyvxOhzTm4PSlvWoF9iP66//RlVA+eq+6/neUGxn7ATAU6DU+XRQ6uu5g9KlS+OTM/V6KXxYUxOsO8fzcjp06KzqoIhdjxsb4nEfAxCIg+Ir5JyWFphASUpSCiOTKanJHJTERLGcuQxlZaFP5i4trcSKFb9j506ZrdwMUKM2otE79epqz0m5/sakiyXK3kbSM3r3VjY0CxW+c1fmnpSX16oOaisv523Ty8qknaavHBSW86DVpsFuVyZDMrp1k85U09J8CRTPz5GYmIg5c55CY4mLMwa8c5ZTXx+cQGG88sofQlfh4cM7NotACbVJm7dk4Pj4fqipKYSV9QJR6dPh64y9bVu5rc9mtTgaJVA4bHmry0FxH0Og7qDIhTjv69O9e/AOihpiGXBtrSWk6jhxJpNYzu+Zg9K4JFmbTapgYjgc/n8DvkLOvn7Dcj7/fCFGj+Yt7xkmk3q7gXBhlG1XSUnZqKjgDeq2b2cNJD2nogfCF19sxb/+NQJ6fVfYbPvRXJCDQoSMeMZaV1cUtEARh8tZrd4ra048MTwOihqlpb77ZTABw9HCYPCt4+Pi1HcCnTpJB6n0dOXZl04nDVVLTo7cGVaoAkU8+0xLC3y2zdSpp+KJJ85tsl2Me+5OWZnnYL7GOChiCMJur/EqUO666yVVB6Vdu2SfibihCBSxrFp0UEymhACEk2fJa+fOjR81IBcQ3vK6vOFw1CpGHojVcu4CpbEhHs//1//n9BVyDtRBOeusUxEXN8J1X6sN7HWNdbIZBgPLTeKNEnfvdp/5FTjHjvHfksHQ+LlZjYEEChEyosiw2Yr9JvV5c1B8tZ8/7bTwOCic67wKFKvV4XHGL9nlZr+VIamp6p9Tp9N4FSj//rdUynr++Sch2gSKeFD2lTsTGJFzUNjOWE5pqed2GChq05g7duysOKC6CwF2dnnyyaepNsySl5h7y4nwV4rvjlwAMYGinPWkngviPu9Fo0nxK7gDRfx76+qCc1DE5PPs7DSFoyJis0VGoIjuky/q6ryHeHzlonn8T1YpSbW2NrIlvyaTSZGPYjDwEN6MGW9hy5bgEphFCgq4QDGZmjeXhQQKETJikp/d7umg+Kv2TEqK87B37W7tJfr3994uP1imTj1Hcf+dd97Azp07VXsGsAoeUaDIz1q9MWiQ1GslJ+cy5622KrNjJIYO7YEvv/wdDzywADffPBaRgk3XDfTsUU2gBGpreyMuTmpQF+nqBZ0u9GoJcXtUPiaKDJsiZ0mcFcOqiOThP4NBcsJYszZ33DvU+ivF96RBIXjj4uKDdlAC650SXO+YYByUujqWQMqTSDt2zFDtTxR+B0UUZP4/p8Ui3xco15VeH/jhsqFB6pTrnsMUbuJlydbMpTObufA7fvx1nHHGlJDe8/jx0ka3OAgHJFCIkBFdEHmlQKCIJXtygVJdLWW/33ffI4ozg8biXo3y+uuz0bcvFxaHDkmhgYMH65CSsgdffFETsD27YMEdGDbsOnz99R/YsOFdnHDCg5gx438qS/KySsbw4d1xwQXDMXv2TYgkkoMS+FkuF4qNEygGA3cWpk4VByiGH/ey4kWLHgjDtixx442XeogS+W02AyUtTfoM7jkh7rCGht6s+UCQi0yDQeM264n9fvzloAQmuIPtv2GxBL5tlZRI66Bnz2zXcE2bTdqHiGMZGitQsrJ4U8BRo550PmKH1eoZ8pJjtXKB0qfPY1i5MvTci+RkKRHZ4YisQOnZs4NCoMhFRXn5Zzj33A+Cfs+SEl66n5jYvAKFkmSJkAk+yc+z6ZFcoMiT/GbMCL1yJdAzZJHcXEmg2O0fo7LyY3zwwciAB5axvhJr1y503d+2TT259dChrbjqqi/RrVsi+vRpGuu0Uyfu5DgcRcjNLUD79uJBwTvV1WwnbvFbfeSL3377CitW7MHMmcMRKeSDDDt1ugJDhoSe/Gk2Kw+GOTn3Y9w46SDDkqZTUxMUs2JYkm779lKuib9tRezOK5KY6H82jK8y2YSE4AWK2tyWxpa3BpMkKw+t9u4tDZU8/fQ3sG7dfxQhHvecnWDZuvUDfPbZg5gwoQe6dLlfeKymxgaj0fsMI5uNh3huvnkkxozxPU/MF8uWfYbhw08Rbt95p2dzu3AydGgPRcKsu6hYtuxqAFcF9Z5iPldyMjkoRAvF10HfH2JPAXl8X95oyl8flXB+1qIitTjtKq+TQkOlUycDfvvtEixa5H+eR7g46aR06HR8nP3Chb8F9JriYulAmpkZWkhg2LAsPPTQcL+hvsbQtq00ZiDQqcvecM8z6tTJjsREvescrqys1mNiMhMoOTkpXvM97r77EYUrJW/pnpHRDqNGSaHBwFCGKHJylMnZ6pOclZ8pnNuzGOJhAxYDRVqPzH2SfpPr108New5KmzYmTJ16ElJTpX1JVZXvz9rQwB2U9HQe3jv//BeF67FjpWGXgXDaaSejuroav/32Gx5/nA98jBRnnikJlKFDe4ZFVFRUcIGSmkoChWihBJvkJ0fsLSKPP0sCxX/lTLD4arJUWek9UTecO/Tmmjrdpg1v9Pb336xfjX+KimrC4pJFmh49pHLmQKcuBypQrFaLU1zFeTRnkwsU+ZRp92m5t90mHZgWL2bhBb6dXXbZCzh6dB/i4oIV+EoHZfRoqRLMu4MSue1ZdFCCCfGI1XFsErVWq65e6+tFByU8OSjyUQv+eraIAkWcuL1kyW344YcDWLbsnhD+33iMGDFCNR8pnHTokI7hw69Hnz4TMG/edarJ0g0NgY/4kHdPzsigEA/RQnGfTdG27aUoKSnBiBEX+n2t1PzMKiQg6vU62Q/LFPHPKlJTU4OqKu8CRa+PbIlgU8DOqPLymDMSWBluaakoUOJDnm3TFJxwQvgEip51HnMTKGLOhsNRKSs757On1KqIGhqUAiUjQ3J1rrrqKyQl1brGBwSbf6Lmhkya1DsABwURC/EYjUZFY7VgBYo3xByUcAkU3kSQiYQGn11v7XZ2EOchnjZtklyVeOPHhy9ZP1L8/vu7rtspKrni1dU2JCcHHjIrLz8kXHfvLu9p1PRQkiwRMu7dYjMzs1FbuwIrV/qPucpzG8SKGXHnodGEX6B4c1AGDjzHp0BxPwi1RFJT04PqEyKGeLTaxpYYR5Zhw7q6bpeUNG72CGtKpdOd7rrftetQxYFUXiHjTaC4D4lTli5PRmXlAa8JuYFw4omsVb4Rbdvy3vkZGTo8+ijrdXFSwLkg4dyeRQdFFHOBILqVvpLPRQdFFEDhgf/dV1013esSfD/ERWCbNuGrdmpq3n57BuLichSP+QttiUya9Cz6978ZNTWbhftDh4az1UOEBcqcOXNw8sknC3NU2rRpgwsvvBC75BPWhB+pA7NmzUK7du0EC3PUqFHYtk05p4VZgtOmTUNmZqaQ6DVp0iQcPconfBItB/eDfps2OQHnHMj7goiZ/aJFHQmB4q1d/b59v/lxUFq+QElL4zZteXkJ9u6twuWXf4Z9+/iZ4pIlwHN8/puLK67YLVxrNNG9k+7fnyWx8jO8wYPZqILQSUnRo6pqNWbP3oJ+/V7C//53vSIkUlHh6aC4lznb7e4lve67121BDZ1zZ9mySZg5swJr117remzWrDZo37674nM1lUAJzUGpUQx6lGOxcHHQ0BDeEA+HNx7cufMzr6MK5OMt3PsWtST69euMdes2KR4LdF7SN9/MwLZtC1z3R4yQTgKiXqCsWrUKt956K9auXYsVK1agvr4e48ePF5KBRObOnYt58+bh5Zdfxvr165GTk4Nx48ahslKqL58+fTqWLFmCxYsXY/Xq1cL8g4kTJ6KhwXcJGBHdDkqnTlLSoj9MJrbpGRWZ/aJAEVtohxNfXSBramqDnBTashDjyNXVpRg2bAo+/vgSDBvGy5snT74J99xzMv78U36QmayIx0czO3ZsxZVXfoxXX72y0e/Foi4PPNAfW7fehvR0neJMX15mXFdXp1rm3L59YAdU5TDFwMnOBp580oROndQ76lZX16jkHTSolgaHs8V6KA6KmkARnTvJQYnMJOy8PPXturraGnCjyWina9c0r3+bN5i54E5WlrnlCJRly5bh+uuvR79+/TBo0CC8++67OHz4MDZu3Oj6A+fPn4+ZM2di8uTJ6N+/PxYtWiTE+T/88ENhmfLycrz99tt47rnnMHbsWAwePBjvv/8+tmzZgpUrV0bmryQigvtBv0eP9gG/ljstRsWPJzoFSss9kxIRW4rX1JSipOQT4XZx8WLUCykTbwHYIJx8MOrr5TupyPZvCAd9+iTjgw8uRXp6OMMBEuLAuk2bVnsIFFG8zp//KjIycvDJJ1Lbe1+ozYBqDPHxvNRZfhIoltRGUnCLCcJizoice+65H08+OUfxWFlZBZ54YpLzc/Acjwcf5McFRklJUwkU9e6q0kHc6DWBt6WQkGDCsmVrghIovImexDnnvIrmplE5KExsMNLT+Q7wwIEDyM/PF1wVEdZsa+TIkVizhq8sJmZYGZl8GRYOYmJGXMYdFhKqqKhQXIjmx7318wknBC5QGBqNchpqJAVKUpKh1TooOTn8bMpiUQqOvLxaj4Zu8mZ5BNs2Ngir4aOPnnCtDouFCxQx0fWOO/6D48ePYeBAcZKsHM8DXXp6eENniYn8YF9ZWeE37yC8AoX/Tm02pYNy6NAxPPfcM3j44QdRVSW56w8/zMUxQ2wm9tRTV7gqpZiDUlfnwPHjRyIqUI4c8RzsqazwiYzYbWrOPps1S0wJeOK0PMTF6NQpskMOIypQmFty1113CWVUTFwwmDhhZDMvUga7Lz7HrlnsUoyLqy2jlvuSkpLiunTs2LyZxYS8fE+rOr03EMRcE/HHU1NjCXulgQjLxr/llj3o25eJYN4XRKSuzleZcfg/S1PDyhAZNpsySVbeQff22/8Bi7C676QIz1b9VqtSoDC8Vzt5Pp6VFd4df3Iyd1Cqq/0LFPewVGMwm8UQjyRCGEeOSP/v338fdt22WKT/OyFBKjXRaOJd1WODBs2AzbbO+VkjIxSuvVaanyRH3A+JJ06xgMb5twTioMj7UDFSUyM3xDTiAoXV+P/zzz/46KOPPJ5z/7EyMeOvXNHXMg888IDg1oiXI0e4wiaaF/51aVTLKoP78VgUVQiREgWvvdYD27efhtWrlQlkLKfKG8qQR8ukY0dxKJvSQTl6VC5YbseuXVUeO6nWzogRYtimi0+BEswuNtwCJSUlWXUSr9pBKZzjI9q25SeKeXk/oqJCGrJXXS0J/o0bebkqQ+zEy9DptB7zgUpLq7F7939dj0fKQfFGLAoUrXNApXjy5wv35GGxWV2LEyisAufrr7/Gzz//jA4dpG6GLCGW4e6EFBYWulwVtgzL+i4tLfW6jNqPip0lyC9EtGAPOfNd+vFYm0SgiJwuVZM6+dnrshaLd3elpdC5s+hWKnMScnPdQz7HA872by3cfDPfJ+l0Vg+BEhcXiEDxPOlq0ya8O/60NL4/rK11d1AsEXVQZs6cyPwb2O2VuOKKKa7Qu/xA99prT7qqfLRaSezLCyJ0unhFhY9IRkbTnsFv3vxXzAkUjVsY3Rfu20tmZgtzUJjLwZyTL774Aj/99BO6dlWWILH7TICwCh8RtnGyBLzhw/lMjiFDhgjlY/Jl8vLysHXrVtcyREvCEXLmuyhQxGmoUofO6AmryNuTt1TatWNnqJ5no3l5ypOE4uJaLxNxWy/x8SaPYYs2W53HFNnABQob8hfevKb0dC5QrFalQFE7KIWzM3B2thZ6PZ/19N13n2Ds2Is9SrJ37vwd77zzjUefFnlTO71eXaBkZYU+nTpYWLPIJ5+8QbhttxcjVtC67WN94e6ehjuZOxSCOqKwEmNWjfPVV6wrYpLLKWF5IaznCQvRsBLi2bNno2fPnsKF3WYtf6+88krXslOmTMHdd9+NjIwMIcH2nnvuwYABA4SqHqKloQ1pmrE8GVb88dTVWaJQoCh3mi0Rln+j0aTB4ShUPF5UpBQoBQUVMBqlA+qUKd6bWrUWEhKMHpOE6+uDESjKc0CNJjHs3XlFpyEQgRJMpV0gmEzpzmowNk9nhYdAEVtP3HzzZNeQRUZaGu/dIu81494Jt127yA3UtFrrYTTywx+rMn3llY9dzzkcypyalozWbR/rC3kpvbybbotxUF577TUhB4Q1X2vbtq3r8vHHHyum0DKRMnXqVAwdOhS5ublYvny5IGhEnn/+eaHJ26WXXorTTz9dEDDffPNNxGcWEJHAELb4qChQxA6VkYVN+FQSHy9NrxUxGlu+g8LQ63mirJyKCmXOwu2378f+/dJZ1OuvP4vWDivX5PAdfFFRHYqLeUl2WlpC0LtYnS78Z6Vt2nAHpb7ePQfFM8Rzyik9w/p/x8Vl+J1tdeDAOnz88VKFg/LBB9JsGzGk654n0bZt+ByUXr2U09ErK6UD9vDhN2HGjBsRi2iDcFDct5dQB4U2a4hH7cJ6o4iwswPWSZaFbVi/ABbeEat8RFhy2UsvvYTi4mJBvTJxQpU5LZXQ47U6HX9tXZ0yB0VsABVJdu58W3E/Lu5ErF79I7KylBVi11/fuA6l0YLB4Hk2JC8B5VyFhx7idrxe38VjPk1rJDFR3L4twr5u1Ch2oOPb6aRJymqwQHax2dldIiZQ7Halg/LOO7xEWs4ZZ3hWJTWGhAT3hmC1CqdE+ix/uTrddup0BXr3lg5+4gnJjh3KbuIdOoTPQfnjj6dw992/qYYztmz5AbGKzrmPfeyxZzF//jZhGx43bgbuu+89vzkoHTs2XYjNGzSLh2gUjUkocxco5eWVir4OkaRnT2WJtMEQj8GDB6Kw8DD27duHa6+9VghPPvTQXYgF1Fr2ewoUJhIfiVgvmpYc4hHDAtu2vas6C8g7ynDO0KHnItzk5HCB4nBUYMWKX4TbL7ywET/9dLMiEXXYsMno2NHTJWwMdXXKGUhHjpRi0aIHVJY0uRrcubfbF7fNH3+8V/F4u3bh2w+kp+sxd+7pru/j2DEp3KnRxG7Rhc65jwV+wZ139sdbb63GypXPYu5caVyCiCgstdqO2LmzOCq66Tb/JyBavEBR6ZAcEHq9UqCUlfGqkrQ0z3BEuOGdIlnVUbVLoIh069ZN6IAcS6gJlJoaqTQ0Fvu/hIOkJJPirDs1dSjKyn7BiBH3BpRLkphoQJVsNWdnhzcHhNGunXSAHT/+LLz22pd4662fXI+ZzQNQU/N3RCZTd+9+OQoKfnTdP3iwGAUFez2WYz1NqqsrVSuJvIV09XptBH7z7P+qw+mn98HmzfsxaFBX4SAeq1NWdC6BwnnnnWWu28XF1cjIkJwsMcQWF9cOvXtHfh8cCOSgEI1Cowk9B0VMhrVYuECpquICJSOjaX4c8mF4coESi6glHtfWek8GJIHiHuLhjc/EpmRnnXVmQOt96dIvFPeTksK/nWVmsgO+lL93331PIz9/v+s+c8MiIU4YCxZcj1NP/Z3JeuH+7t25qsvV19e6OvC6h3CbdmK4tL967LHPheuGhtjIM/N1Eiiydu1s1+1Nm5TfVSQbZYYKCRSiGQWK6KDwH0Z1NRcobdo0jUAxGKT/x2SKbYGidhCorCzzunw07aSak/h4vWs3yQRKfX1VUE2s2JiPRx/9ynU/OTk+IlVarB+JSEXFWlRVHfF6Fh1O+vXT448/hiMuLku4v3OnehPN8vIKr0MW1XLO5s/33puocUiJxNnZfLipwxG7pfUmk/dE1y1blDk/0djmgQQK0Siuv57PKOnUifcQCEWgiA5KXV2JYrhdpGElkq1HoHjudCoq1M92o20n1ZxohT2k1PFYnPAcTI8IsZeKezfVcKLVKg/6dXXbXLcNhsgPvDSbebLs/v3qAqWystw19dhdoKg1j8vJiVyJsYjDweuj7fbYdVASE72vR3e3SyxSiKbfPgkUolEsWHAFli7dj5072VTc4DAY+I5f7DRptXKB0r590wiU+HipRDIurvlL6iKJ2pC42loSKAGuPVfreLudOyiZmYELFLNZcjBSUiIlhN0Tweqb1A0TBX5hobzJ2Wikps5zzQkSO/C6t9tXc1Ck8u7IUVUl9jiKXQclOdl7Jc7Bg0oHpbqarw+jMXpO1kigEI2ChbYnTOiKuDhtyGf1zEHZvr0aDQ38B3PSSXxkQqRJSpKEUFxc9Pwom0qg2O1HfSwfPWdRzY041JKVYTocXKBkZQVeYSJOio7EJGMRh8N7s0StNvL9pcSTjfJyaXzCiy9+gIkTU1xt+OvqKlRHBKg5KPHxkW83z0qibbYGjxEQsURKineBcuxYrmpVn9kcPSdrJFCIZkNyUCx45x1WHmmBydQFJ57IE+4iTUqK5KAkJkbPjzISqAsO6SybIyVSNkUlVUsrpS8srHCts2Dm6cgPtmlpkRHCWq33UlmNJvICRQzX7t+/WLjW6bph2rQcZGTwA2R1dR6OHOH9Rtq16+x3gKE8OTlSsB5c5eVy9yS8JdjRQFqa9xDP8eNHVQVKXFzzt7gXIYFCNBtGoyRQ9uzZJ9zOzh4asYoDd9iYhUB+yLGAv8m7vXufjMTEga77HTooG9a1ZkSB8sYbUsfsNm0CF7R6vZRInp4eGYGSleW9qkjLE2matFqkoYFXEWVkcOFUWfmX031KxqOPXqBYVm3oYlM4KMuXPySU2oosWPAjjMYxeOqp1YgVMpwCUQ33HDSx7UB8fPScrJFAIZqNzMxsl5IvKCgQbqenN014h5GVJTko6enN3zUxkviaYrtgwQL89tu3SEqSenR07SpNKW/tiE3rtm6V9xYJvIWUOKuGkZUVmZ3/q68+zVrHNXuIx52sLKWzo9OlICdHedgxm00++89EkgULljpvGXDTTQNhsazEgw96jDtvsWRmet+v2WxVqm0HEhJIoBAEBg/uLayF48d3oaiIC5TsbC5amgJ5tZCvH3IsID8ImEySCMzKOgU33XQTsrKykJgotS3v04cEiohOx6tgrFbeffSss3jlWqBoNPURT5L9v//LwpYta9G7923N4qB4Eyg5OcrflZhk7E+gyDv4RpL9+8Wy46bsxdJ0tG3r3RmWT+iWC5RoCneTg0I0G2ecwQVKbe0elJfzydjt2jWdQGnfXnJQsrNbT4jnyiufwP79+7Fw4Uf47TdpJkdioiTYBg6kEI9IQgJvaW+3c4GSmhpca/TBg6WYvtEYet8gf7CRZ2qWvkbTHAJlnKINv4jD4TkdXG0qdKRyUEaPflNx32bjOSgaTeRLsZuDHj3auG6PH/+w4jm7XVm9ZLFwgZKURAKFIDBwoHgmX4vy8oPCrU6dmk6gdOggHZCzs2PbQZHH+VNSktG1a1dcd93l6N27l+txh0M6KAwcSA6KSPv20joKZQfet28fPPHEE3jrreBL8YPlpJNOapYQj5hPJvLUU594tOHneE5YTkvzTMo0mSLzmVeu/Bc6dLjSdb+wkDu3Wm1sVvH16SMJlISETNx226eu+w6H8rsQuyQnJ1OSLEEgM1PaKdhsvLHUiBHdm2zNdO2aEZHR7tFIXJxkoyclqZ8tylvfB+sSxDJyERdqu/qHHnoIU6ZMQaR59lllAipDp2tqgaLHffdxRzInRynmTjjhNY/XygcYnnnmfVi5cnvEEuXZ29rtUllxfv4h4dpojM2qtXbtpP0aG8b60ksX46ef9ql20LVaefgtJYUcFIKAwcCsZ/nB0oSRI3nYpyno2lXaKeXkRM9ZQyTIzs70e4Bt08bTfieAXr3aKlZDNO3A3TGbPcXI7Nk3NbFAiYeoiYxGudC4HitWSBOWRbp2lbbNkSNPx5gxfSP5UXHnnY+5bpeWcoFiNsemQNHIhF55eblwnZwsuqlKB6W+vjrqtm/KQSGaFfnAPrO5FwyGphuwnZWViOuuexaXX/4kevbks0RilYkTB7lNdfXk1VfvE8pFr776lib8ZNFPt27KsGMk5ulEBi327TuISy45vUkFivw3zejXbyHi4+/Brl0L0K6d57bXrZvkZOr1kf/933VXXyQl/Uu4XVPDBUp8fGwKFDlDhvAqvZQUUaA0oK6u3kOgRKqZYCg03dGAIFRgsV9x1LnR2PRhhYUL70FrYNgwqYS4QwepWkdO//4noLS0OKrKDKOB3r2VAiVS83TCjw7duimbokUKk0kSKO75HP/8cx3YnMD4eP9OZmVl5OfisKKm7t2TsHkzC/cUeXSVjjU+++xHfPTRUsyfz92r5GQp3Msa1ZnN3D2227lASUuLnu2bBArRrDQ0HHbdNhpjO8zSnDDXZMGC1Vi/fhcuu2yw1+USE+k7cKdvX6W7lpraUhwUp/JvYoGi08V7CAJv4oRhNEqHIZ2uadrOJyYqRxUkJLSU7zR4LrpotHARkQuUigoLsrNFgVIV9CDMSEMhHqJFjAYnGs9NN52OBQtupFUZJGlprDRYOsOOJgvcN97n80RSoOj1wR/sx469HRkZg/DQQ+ejKUhOVrq1RmNstxmQw5sM8iShigqeKNvQwLYVnoOWmRk92zc5KETU0BT9GggiWFieIeuA2tBQEtF29eGDHXwaYDQqq48iiXxis8EQ/Bn4ihUvoLmSxhmPPfZvtC7MbEISKit5omxpqRRaiyaBQkcEImqw25vOkiaIYNBqDYrk6mjmgw/+QLt2E/Dll0ua7P80maT1Ex8f/Qnn7dtLn/H++7/CuHFN138pmiZ0V1ZyB+X4canFQFZW9AhwclCIqMFubzpLmiCCweGQxHP79sr8hWjjyitPxpVXijNmmt5BSU2NfoHSpYv0Gdu2VU8aj2U0GjMcDjbBmDsoRUWiQIlztn+IDqLnkxCtkuzsc1y3HQ4SKET0CxSdrmmmbbck4uIkgZKeHv0CpVs36TO2b9/6BIpWy0uNq6q4g1JUxBNkNZrocgdJoBDNyl9/LXbdphAPEb1Q+DFQByU7W2qvHq306iUJlJSU2JzDE8iEblGglJRwB0WrjZ78EwaFeIioacVMDgrREhwUwpPOnbu5brdtG/0OSrt2CcjM/Bfq6spw5pnSZ28tGAzJsFqZc1IBh8OBLVv+ER7X60mgEIQqJ544hNYMEaWQQPHFxIldoNEshMOxFBdddDZaQmVWfv6bYGlvhsgNmI5a4uMzUV0NHDtWhIsvfgpffMEnHZNAIQg3vv9+M15/fQkWLZpB64aIUlrhUSwIWPPh/PzrsGXLdTjrLLQI2LygJpijGJUkJ2fi+HGgoKAIK1cudD1uMkXX0FTKQSGanXPOGYQvv5yFlJToKW8jCDl33vkhy1bAmWe+TSvGC23aAGPG0OppCaSm8j4wq1e/D7tdGhIaFxddAoVyUAiCIPzw7LNnYMqUEvTqRed0RMsnM5PnCVVWblU8rtNFl1NIAoUgCCKAnIW+fUmcELFBtlsnXQkHogn6xREEQRBEK2LwYPUxCKyiJ5oggUIQBEEQrYjJk09ES4AECkEQBEG0Ijp1SoLJpNbWoYU7KL/++ivOP/98tGvXDhqNBl9++aWHRTRr1izh+bi4OIwaNQrbtm1TLGOxWDBt2jRkZmYiISEBkyZNwtGjRxv/1xAEQRAE4ZfS0nUej9199/1o0QKluroagwYNwssvv6z6/Ny5czFv3jzh+fXr1yMnJwfjxo1DZWWla5np06djyZIlWLx4MVavXo2qqipMnDgRDQ3UDIkgCIIgIk1cHDv8S1U7v/xShttvH4xoQuNoRFYMc1CY0LjwwguF++ytmHPCBMh9993nckuys7PxzDPP4Oabb0Z5eTmysrLw3nvv4bLLLhOWOXbsGDp27IjvvvsOZ5/tvwthRUUFUlJShPdKTk4O9eMTBEEQRKvllFMewPr1TyMl5VyUlX3XJP9nMMfvsOagHDhwAPn5+Rg/frzrMZPJhJEjR2LNmjXC/Y0bN8JmsymWYaKmf//+rmXcYSKH/VHyC0EQBEEQofPJJw/g2mvfw65dnyMaCatAYeKEwRwTOey++By7NhqNSEtL87qMO3PmzBEUl3hhbgtBEARBEKHTpUsyFi26GtnZca2nioeFfuSw0I/7Y+74WuaBBx4Q7CDxcuTIkbB+XoIgCIIgYligsIRYhrsTUlhY6HJV2DJWqxWlpaVel3GHhYlYrEp+IQiCIAgidgmrQOnatasgQFasWOF6jImRVatWYfjw4cL9IUOGwGAwKJbJy8vD1q1bXcsQBEEQBNG6CXoWDysJ3rt3ryIxdvPmzUhPT0enTp2ECp7Zs2ejZ8+ewoXdjo+Px5VXXiksz3JIpkyZgrvvvhsZGRnC6+655x4MGDAAY8eODe9fRxAEQRBE6xAoGzZswFlnneW6f9dddwnX1113HRYuXIgZM2agtrYWU6dOFcI4w4YNw/Lly5GUlOR6zfPPPw+9Xo9LL71UWHbMmDHCa3U6Xbj+LoIgCIIgWjCN6oPSXFAfFIIgCIJoeTRbHxSCIAiCIIhwQAKFIAiCIIiogwQKQRAEQRBRBwkUgiAIgiCiDhIoBEEQBEFEHSRQCIIgCIKIOkigEARBEATR8hu1RQNi6xZWT00QBEEQRMtAPG4H0oKtRQqUyspK4bpjx47N/VEIgiAIggjhOM4atsVcJ1m73Y5jx44J7fM1Gk3Y1R0TPkeOHKGpyRGE1nPTQOu56aB1Tes5lqiI0LGQSQ4mTtq1awetVht7Dgr7ozp06BDR/4N9IeH8Ughaz80Jbc+0rmMN2qZb7nr255yIUJIsQRAEQRBRBwkUgiAIgiCiDhIobphMJjz66KPCNRE5aD03DbSemw5a17SeYwlTFBwLW2SSLEEQBEEQsQ05KARBEARBRB0kUAiCIAiCiDpIoBAEQRAEEXWQQCEIgiAIIuoggSLj1VdfRdeuXWE2mzFkyBD89ttvzffNtEDmzJmDk08+Wejw26ZNG1x44YXYtWuXYhmWkz1r1iyhi2BcXBxGjRqFbdu2KZaxWCyYNm0aMjMzkZCQgEmTJuHo0aNN/Ne0rPXOOipPnz7d9Rit5/CQm5uLq6++GhkZGYiPj8eJJ56IjRs30noOM/X19XjooYeE/S/bL3Tr1g2PP/640DVchLbp4Pn1119x/vnnC/tbto/48ssvFc+Ha52WlpbimmuuERqwsQu7XVZWhkbDqngIh2Px4sUOg8HgePPNNx3bt2933HHHHY6EhATHoUOHaPUEyNlnn+149913HVu3bnVs3rzZMWHCBEenTp0cVVVVrmWefvppR1JSkuPzzz93bNmyxXHZZZc52rZt66ioqHAtc8sttzjat2/vWLFiheOvv/5ynHXWWY5BgwY56uvr6btwY926dY4uXbo4Bg4cKGyztJ7DR0lJiaNz586O66+/3vHnn386Dhw44Fi5cqVj7969tJ7DzJNPPunIyMhwLF26VFjPn376qSMxMdExf/58WteN4LvvvnPMnDlT2N+yw/2SJUsUz4drf3zOOec4+vfv71izZo1wYbcnTpzoaCwkUJyccsopwhchp0+fPo7777+/0Su5tVJYWCj8KFatWiXct9vtjpycHOFHIVJXV+dISUlxvP7668L9srIyQSgywSiSm5vr0Gq1jmXLljXDXxG9VFZWOnr27CnsOEaOHOkSKLSew8N9993nGDFihNfnaT2HD3Yyc+ONNyoemzx5suPqq6+mdR0m3AVKuLZfdkLP3nvt2rWuZf744w/hsZ07dzbqM1OIB4DVahVs2/HjxyvcJXZ/zZo1jbepWinl5eXCdXp6unB94MAB5OfnK9YzawI0cuRI13pm34PNZlMsw+zH/v3703fhxq233ooJEyZg7NixisdpPYeHr7/+GkOHDsUll1wihCwHDx6MN998k9ZzBBgxYgR+/PFH7N69W7j/999/Y/Xq1TjvvPOE+7RNh59wrdM//vhDCOsMGzbMtcypp54qPNbY42eLHBYYboqKitDQ0IDs7GzF4+w++wKJ4GGC/a677hJ2PGxjZojrUm09Hzp0yLWM0WhEWloafRc+WLx4Mf766y+sX7/e4zlaz+Fh//79eO2114Tt+MEHH8S6detw++23Czvxa6+9ltZzGLnvvvuEE5o+ffpAp9MJ++OnnnoKV1xxhfA8bdPhJ1zrlF0zAe8Oe6yxx08SKDJYEpH7Qdb9MSIwbrvtNvzzzz/CWVA41jN9FxJs/Pkdd9yB5cuXCwnd3qD13DhYgiZzUGbPni3cZw4KSyBkooUJFFrP4ePjjz/G+++/jw8//BD9+vXD5s2bhaRvdrZ+3XXX0bqOIOHYT6gtH459NoV4ACE7mal2d7VXWFjooS4J/7CMb2aP//zzz+jQoYPr8ZycHOHa13pmy7CQG8sKp+9CHWa7snXGKs30er1wWbVqFV588UXhtrguaT03jrZt2+KEE05QPNa3b18cPnyYtucwc++99+L+++/H5ZdfjgEDBghVIHfeeadQocagfUf4Cdc6ZcsUFBR4vP/x48cbffwkgQIIFhbb2a9YsUKxctj94cOHN2oFtyaYYmbOyRdffIGffvpJKBmUw+6zjVm+ntnGzw6u4npm34PBYFAsk5eXh61bt9J34WTMmDHYsmWLcJYpXtiZ/lVXXSXcZiWatJ4bz+mnn+5RJs9yJDp37kzbc5ipqamBVqs8HLGTRrHMmPYd4Sdc6/S0004TwnMsBCry559/Co81+vjZqBTbGCwzfvvtt4Ws5OnTpwtlxgcPHmzuj9Zi+M9//iNkgP/yyy+OvLw816Wmpsa1DMsYZ8t88cUXQlnbFVdcoVrW1qFDB6Gkk5W1jR49msqM/SCv4qH1HL4Sbr1e73jqqacce/bscXzwwQeO+Ph4x/+3c4c2CgRRGIDvDCx2QwV4DAXQCIIGVmPpAIdB08EWQAn0gCdIgprLmwTCJYi77IgR35cM2WTdY3b2D+G94/GozoWt1+vcyvpsM47zYTqdps1mo9YDO/3O53Ne8brf7Xb5+jk+o9R5HG3GMeogundizedzbcal7ff7PPdgNBqlxWLxao/lb+IB+LRiNsp7a9t2u83tbePxOC2Xy/xgvLvf76nrutS2bZpMJnmjXy4XX8M/Aoo6l9H3fZ7pEHs1xg4cDodf99W5jHghxv6NuUlN06TZbJbndzweD7Ue4HQ6fTyTIxCW3L/X6zWtVqs8UyVWXN9utzTUd3wM+w0GAKAs/0EBAKojoAAA1RFQAIDqCCgAQHUEFACgOgIKAFAdAQUAqI6AAgBUR0ABAKojoAAA1RFQAIDqCCgAwFdtfgAOJiYkilbTyAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot((relaxed_dict['temperature'][:]), color='blue')\n", + "plt.plot((strained_dict['temperature'][:]), color='black')\n", + "plt.plot(range((w_T//2), len(T_w[(w_T//2):-(w_T//2)]) + (w_T//2)), T_w[(w_T//2):-(w_T//2)], color='orange')" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "id": "722ebacd", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Stress difference (GPa)')" + ] + }, + "execution_count": 73, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAAGwCAYAAABvpfsgAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnQd0m+X1xh9by/Le23ESZ08yyCAhCYRN2IWwSwsUCi1QKFAKLaNltoxS4F922RvKDpvsvffy3nvb2v9z36tPw5q25RHn/Z2jI1mypE/SN57vjueG2Ww2GyQSiUQikUgkPSa850+VSCQSiUQikUhBJZFIJBKJRBICZIRKIpFIJBKJpJdIQSWRSCQSiUTSS6SgkkgkEolEIuklUlBJJBKJRCKR9BIpqCQSiUQikUh6ibq3LyAJDqvVivLycsTExCAsLEx+bRKJRCKRHAGQXWdLSwsyMzMRHu47DiUFVT9BYionJ6e/3k4ikUgkEkkIKSkpQXZ2ts/HpaDqJygypfwgsbGx/fW2EolEIpFIekFzc7MIiCjHcV9IQdVPKGk+ElNSUEkkEolEcmQRqFxHFqVLJBKJRCKR9BIpqCQSiUQikUh6iRRUEolEIpFIJL1ECiqJRCKRSCSSXiIFlUQikUgkEkkvkYJKIpFIJBKJpJdIQSWRSCQSiUTSS6SgkkgkEolEIuklUlBJJBKJRCKR9BIpqCQSiUQikUh6iRRUEolEIpFIJL1ECiqJRCKRSCSSXiIFlUTSB7S3m+T3KpFIJEcRUlBJJCHmwguXIypKhcce2yK/W4lEIjlKkIJKIgkhZrMVH364UGxaDz8cJr9biUQiOUqQgkoiCRETJqyARuPcpOLi2uV3K5FIJEcJUlBJJCFi794Fbn+3t2vldyuRSCRHCVJQSSQhwGq1edzX2hotv1uJRCI5SpCCSiIJAbW1nuk9gyFefrcSiURylCAFlUQSAoqKmj3us1pTpX2CRCKRHCVIQSWRhIDi4hbH7ccf3wqgE4AKW7ZUye9XIpFIjgKkoJJIQkB5eYe41mgKcOut0wBYxN/nnVchv1+JRCI5CpCCSiIJARUVFJECtNo2ca1SNYnr2tpj5fcrkUgkRwFSUEkkIaC6mkfN6PUcqbr22gL7Iwb5/UokEslRgBRUEkkIqK01i+uoKKO4vuyyXPsjVvn9SiQSyVGAFFQSSQior+frmBgWVllZigeVHq2tLLIkEolEMnSRgkoiCQGNjTy3Ly6ODT6zsmIcj5WUeFoqSCQSiWRoIQWVRBICWlrU4johgf/WalV0r7hdXs6F6hKJRCIZukhBJZGEgLY2ntuXnKxyblzhreK6okIOSZZIJJKhjhRUEkkI6OiIENepqRrHfRoNR6aqqthSQSKRSCRDFymoJJIQ0NHBub7Ro50DkTUatlCorpbWCRKJRDLUkYJKIuklZrMVFkuquD15cqLj/ogIjkzV1XHnn0QikUiGLlJQSSS9ZP/+OipDF55TkyenOO7X69nss76ex9BIJBKJZOgiBZVE0kt27KizF6HXIjLSWUMVFcWRqcZGtlKQSCQSydBFCiqJpJeUlHAXn0bD8/sUYmLYJb1Z2lBJJBLJkEcKKomkl9TUcNG5VstF6ApxcXzd0uK0UpBIJBLJ0EQKKomklyhF5xER7t188fHsnt7WxqafEolEIhm6SEElkfSShgarWxG6QlISR6Y6Otj0UyKRSCRDFymoJJJeohSdK0XoComJXKBuMOjkdyyRSCRDHCmoJJJeohSdK0XoCklJHJkym9lFXSKRSCRDFymoJJJeohSdK0XoCsnJHJkymyPldyyRSCRDHCmoJJJe0t7ORedxcVyErpCaypEpiyVKfscSiUQyxJGCSiLpJUajIqjc7RHS0pTIVDSsVmnuKZFIJEMZKagkkl5iNHLxeUyM++aUmakMSlahtpbNPyWSwUhxcRNSUjbimmtWDfSiSCRHLFJQSSS9xGTi4vO4OOfYGSI1lVJ9XKheWdkmv2fJoOXyy7eitvZYvPzy/IFeFInkiEUKKomkl1gsLKhiY90NPMPDqaaqRdyuqJCCSjJ4qapypqsrK1sHdFkkkiOVI0ZQNTQ04IorrkBcXJy40O3Gxka/z7HZbLjvvvuQmZkJvV6PRYsWYffu3Y7HCwsLERYW5vXywQcf9Oq9JUcPii1CQoKngWd4OKf6amo6+325JJJgsbo4fmRkRCMzc52s+5NIhqqguvTSS7Ft2zYsW7ZMXOg2CRt/PPbYY3jiiSfwzDPPYOPGjUhPT8fJJ5+MlhaOGuTk5KCiosLtcv/99yMqKgqnn356r95bcvRgtbI9Qny8p6BSq1lQVVdLQSUZvFit7h2qFRVzUFTkPuxbIpH454gYMrZ3714hZNatW4fZs2eL+1588UXMnTsX+/fvx9ixY71Gp5566incfffdOP/888V9r732GtLS0vD222/juuuug0qlEiLLlU8++QRLly5FdHR0j99bcnRhs+nFdUKCpyO6RtMBo5Hm/RkHYMkkkuBob3ev/yPKy1sxYkS8/AolkqEUoVq7dq1ItSmChpgzZ464b82aNV6fU1BQgMrKSpxyyimO+3Q6HRYuXOjzOZs3bxbRp6uvvrpX700YDAY0Nze7XSRDD7ZDYHuE5GQWVq5otSyk6uvdx9JIJIOJpqYurrSilkp2pkokQ05QkTBKTU31uJ/uo8d8PYegiJQr9Lev57z88ssYP348jjvuuF69N/Hwww87aq7oQulFydCjsbHTsRklJnqOmImIYEHV2Gjp92WTSII9KejoyBa3tdp8hIfzfq221iC/QInkSBFUVDDuqyhcuWzatEn8L932ltbzdr8rXR/39ZyOjg6RCnSNTvl6jWDe+6677kJTU5PjUlJS4nc5JUcmdXUdjtvJyZ4jZvR6jkw1NrrP+ZNIBgu7dtUI81nAgpqaLOh0DeL+mhopqCSSI6aG6ne/+x0uvvhiv/8zfPhw7NixA1VVVR6P1dTUeESgFJTaKIoiZWRkOO6vrq72+pwPP/wQ7e3tuPLKKz1ep7vvraQX6SIZ2tTXK8XmBmi1nr93VBRHpux9EBLJoGPr1lqKuSM8vBqxsRnQag3o6AC+/roV99wz0EsnkRw5DKigSk5OFpdAUAE4RXk2bNiAWbNmifvWr18v7nNNz7kyYsQIIYa+++47TJs2TdxnNBqxfPlyPProo17TfWeffTZSUlJ6/d6SowelziQsjBSTp6CKjuaRM62t/iOpEslAoXSgajTsldbZyQ05a9YsQmurEdHRnt2rEonkCK2horqm0047Dddee63otqML3V6yZIlbl924ceNElx5B6bhbbrkFDz30kLhv165duOqqqxAZGSlsEFw5dOgQVqxYgWuuuabH7y05Oqms5JSfSuXduDM2lq9bW93n/Ekkg4X6epOjI5UwGEY5HnvppT0DtlwSyZHGESGoiLfeeguTJ08WXXt0mTJlCt544w23/yEbA4ocKdxxxx1CVN1www2YOXMmysrK8O233yImJsbtea+88gqysrLcOgK7+96So5OqKuXs3ntHVGIib2JtbZ5t6RLJYKChweTWkRoZ6RRRf/jDMVi9unTAlk0iOZI4InyoiMTERLz55pt+/4cKxV2hKBUVvtPFHxTFoktv3ltydFJbywcjnc67cWdKCm9iHR2ynk4yOFE6UCMieF3++GM9TjvN+fjddx/Czz9zF6BEIhkCESqJZDBSV2d2s0foSno6CymDwbMDUCIZDDQ12dw6Uk89dQSWLStwPF5ZKQ8TEkkwyC1FIukFDQ1shxAZyWf3XcnMZLNPk4kLfSWSwYbiORwZ6fRKI1F1yik/i9vl5dItXSIJBimoJJJeoJTsRUd7N+7Mzo4S1xaLvTpdIhlkKB2oMTHuJRPnn58krjs6pKCSSIJBCiqJpBe0tPDBKDbW/WCkMHy4IqSiRQu6RDLYaG/nw0CXXh1MnJggrs3mVPuIJYlE4g8pqCSSXqDYIcR5jkIT5OQ4I1OFhc4OVIlksFBby+no7Gz3HqUpUxRPvggUFDQOwJJJJEcWUlBJJL2go0PjZo/QFa2WBBcLqeJiaZcuGVxQ5Kmpabi4vXixu8lybKwOYWH14vaOHeSmLpFI/CEFlUTSCxQ7hKQk3w4kajVX/ZaWejf/lEgGco6fzUapPQvOPHOEx+NabZ243r/fXrkukUh8IgWVRNILjMYIcZ2c7Hs8h0bTKq4rKrx7VUkkA0VhIQulsLBGEZHqSnQ0R1cPH3YOAZdIJN6Rgkoi6QUmE/tLpaWxsPJGRAQfjKqqZFG6ZHBRVsYO/yoVi/6uJCTwultczB5VEonEN1JQSSS9wGLhgt7UVN+CKjLSIK5rauRBSTK4UKKmWq33dHRKCtuBVFTI4d4SSSCkoJJIelHQa7NxF19mJvtNeSMmhk0/6+pk67lkcFFTY3KLonYlK4uFVH2975S2RCJhpKCSSHpIbS2lS7gYPTu7i4mPC9HRVjdHaolksKBETfV67+noESO4rqqpSTr9SySBkIJKIukhpaWKDYIZqam+I1SR9jF+BoNMm0gGFw0NNrcoaldGjeL1uqODTT4lEolvpKCSSHpIeTnXnYSFtSA8PCygoOroYBNQiWTwjU7iKGpXFLd0iyVFuqVLJAGQgkoi6SGVlR1+O6QUoqJYbBkMUlBJBhdtbd7HzihMnqy4petw8CCbfEokEu9IQSWR9JCqKu6QUqu59dwX0dG8mRmNUlBJBhednbxORvnIWLM3VZObZ5VEIvGOFFQSSQ+preVCXp3Ov+lhbCwftIxGHlMjkQwWlKhpTIzvQ4FKxbWC0ulfIvGPFFQSSQ+pq+MOqYgI9pnyRUwMH7RMJimoJIMLg4HXybg439FTjYZrBSsrpdO/ROIPKagkkh5SX8+FvJGR3jukFOLi+KBlsUgvH8ngwmjUukVRvaFEYKurpdO/ROIPKagkkl53SLGbdCBBZTZ7zkqTSAYSs5kFVXy87+ipXs8R2Npa6fQvkfhDCiqJpIe0tHD3XkyMfwf0+Hg+aFmtUlBJBhdmc0RAQRUVZXKLyEokEu9IQSWR9JDWVk6TxPL0mSAElV5+15JBhdXKgiopybfYj4nhCGxjY78tlkRyRCIFlUTSQ9rbeexMQoL/zSgxURmcLAWVZHChiPykJN/DvZUIbGurdPqXSPwhBZVE0kM6OvisPimJhVVgQaVFe7v/AnaJpD+HewNRAQWVc3SSPFxIJP6QW4hE0kMMBj4IJSf7t0NISnJGpurr/XtWSST9RUEB5fA4bT1yZLzP/4uMlE7/EkkwSEElkfQQk4lP3VNT/Rebs9s0F/TW10svH8ngYO9eHiUTFtZoX0e9Ex3Ngko6/Usk/pGCSiLpIRYLp0vS0/3XRvHgZB5PIwWVZLBw6BA7oGs0/mf0RUUpTv/+U9sSydGOFFQSSQ/rT2w2bu/LzPQxCM2FsDBO9TU0+HdVl0j6i4ICFvl6vf8ZfdLpXyIJDimoJJIe0NhIqTu2Q8jKig68oYWzkGpslG7TksFBaSk3SMTE+K/ri47mCJXZLEcnSST+kIJKIukBpaWcLqHaqPT0wIJKpWJB1dQku/wkg4OmJrZDiI6Wo5MkklAgBZVE0gPKylrtt1qgVgfejNRqKagkg4tW+yqs1wfn9G+xSKd/icQfUlBJJD2gspLTJCqVEqnyj1rNUYDmZjkPTTI4aG/n7r3ISP+CKjaWU31ydJJE4h8pqCSSHlBVxfYHanVwvlIaDQuqlhb/g5Qlkv6is5N3/1EBeioSEjgyZbP5Nv+USCRSUEkkPaKmhovLtdrgBJVWy5Gp1lY5YFYyOOjsVLn5TPkiPl5J9UXa3dUlEok3ZIRKIukBdXUskCIigrNB0Go5MtXWJgWVZHBgMLCvVGys/8NAaqp99gxU0ulfIvGDFFQSSQCsNis2l29GZWul477GRhZIkZHB2SDodCykOuTkGckgwWjk2qjYWI5U+YK7WC1dulslEklXpKCSSAKIqQvevwAzX5yJvKfzsKJohbi/kcagifoTS7cEVaecPCMZJJhM3L0XF6cO6PQfFtYkbpeWKt2tA8tFFy3H2LErsXZt2UAvikTiQAoqicQPb+14C//b9z9xu93Ujuu/uF6IrOZmrjuJiQkuhafTce2JjFBJBgsmExeZx8cHNuxUulnLy9ldfSAhEfXBBwtx4MDx+OUv8wd6cSQSB1JQSSQ+sNlseHzt4+L2n+b9CbG6WOyt3Yu1JWvR2sqbTlxccF9fhL1BymDwXwAcKl5+eRe++koebCS+UXylEhI4UuUPjYaFVGXlwIdY//WvQ47b+fkjZKG8ZNAgBZVE4oM9NXuwvWo7tCotbp93O84Ze464/4M9H6Ctjc/qExLCuiWojMa+F1R799bimmsm4cwzR8JslkXwEu8ovlKKcac/IiK4+K+mZuCd/vfvd962WLKxZ0/tQC6OROJACiqJxAfLDi0T1yeOOBGJ+kRcOOFC8fdHez9CewcLqsRE//UnCpH2RimDwX8BcCjYsaPOcXvFipI+fz/JkYnNxoIqNjYYQcXNF7W1A29MW1zsPurpm29KB2xZJBJXpKCSSHzwzeFvxPWpeaeK65PzThbRqtLmUnRG8FlxcnJwA2P1eo5MmUx9v8nV1zutHBYvzpWFuxIfsKCKjg68DsfGsqAqLx/YiOcXXxxGff0M+1+chlyzpnlAl0kiUZCCSiLxQqe509HRpwiqCHUEpqVPE7dNaXvFdWpqcPPN9Hre1Eymvo9QVVW5e2Mdd1wWioq4S0siITgVHLygystjIVVYGDia1Ze8/76zq2/atI3ies+e/qlLlEgCIQWVROKFbZXbYLAYkBqVinHJ4xz3z82eK64tmbvEdXq6PqjvLzqahZTJFFyKMBQu7q5ceOHWPn9fyZFDa6tzHYmLC3xSMH0656xrahIxkBw+zMJu0qTlmDePhWBZWfyALpNEoiAFlUTihQ1lG8T1rKxZCAtzngHPyZ7DN7JZoKSnKy7S/omM5E3NbFb3m4u7K7t2pff5+0qOHJqbnVHM2NhgBFWCuO7sTMVAUlbGIio314ZFi5LF7ZaWXNnpJxkUSEElkfgTVJmz3O6fmTmTb6TuBsIsyMpyL5D1RVQUR6jM5uBqrnpDQ4PnvLWOjnFYtUoW70qY5mZnhCo6OnAaLyVFPygGJNfVxYrrsWN1OPnkXNqiKMaGLVucUwwkkoFCCiqJJECEypURCSMQodIDagOQkI+srJigvr/YWBZSFkvf16A02culoqN3ut3/0ENO/x7J0U1LiyKoOoUTeiAGy4Dk9naOkE2bFi8ia1ptkfj7s89kN6tk4JGCSiLpQquxFQfrD4rb0zOmu28wYeHIjsjjP1I3QasNrsg8OppTfVZr30eompp4sz722Dph7rlgwc/i7/37+z7dKDnSIlTBDfd2Cir3dGF/Ul/fAas1TdyeO5dT2Lm55eL6uefkoUwy8PRoLSwpKcHKlSvxzTffYMuWLTAY+n4Da2howBVXXIG4uDhxoduNykA1P07X9913HzIzM6HX67Fo0SLs3r3b8XhhYaGoj/F2+eCDDxz/N3z4cI/H//SnP/Xp55UMHHtr7B18UalIiUrxeDwVI8R1WOqOoF8zJoaFlNXa9xGqxkY++KWnh+P000di7FgWUo2NwRXQS4Y+ra1s0BkWFtxw78RE57rT0DAwbunr1lXYbzVjxAguRL/nniRxXV8/StZRSY4cQVVUVIS77rpLiAu6LFy4EKeffjpmzpwpBM7JJ58sRIjV2jc+JZdeeim2bduGZcuWiQvdJlHlj8ceewxPPPEEnnnmGWzcuBHp6eliOVtaeC5VTk4OKioq3C73338/oqKixGdz5YEHHnD7v3vuuadPPqdk4Nldw6J7YspEr4/Hm4aL67A0pzgPNuXXHzUobW188MvK4vccOZL/bmvj+hOJpK2NGxfCw4MTVJGRtC7xc+rq2DW9v1m3jr3fIiIqHGnKM87gbdFmi8fBg/UDslwSSbcE1c0334zJkyfj4MGDQlhQlKepqQlGoxGVlZX46quvMH/+fPzlL3/BlClThHgJJXv37hUi6qWXXsLcuXPF5cUXX8QXX3yB/a5zCLpEp5566incfffdOP/88zFp0iS89tpraG9vx9tvvy3+R6VSCZHlevnkk0+wdOlSREe7FxvHxMS4/V/XxyVDh93V/gVVZFsO30gOviZJcaNW3Kn7ks5OFk65udyBOHYs/200DmzLu2Tw0NraPUHFsJBqaurOc0LHjh1s5JmU5BROycmRUKk47bd8OV9LJINaUGm1Whw+fBgffvghrrzySowbN04IDLVajdTUVJx44om49957sW/fPhEVomhWKFm7dq2Igs2ePdtx35w5c8R9a9as8fqcgoICIfZOOeUUx306nU5E1nw9Z/PmzSLydfXVV3s89uijjyIpKQnHHHMMHnzwQSEm/UFp0ObmZreL5AiLUKV6F1Ta1kxxbY0vFsI9GJxeP/o+T02YTNziPnIkF8xPmcLt5TZbEqqr2/r0vSVHWoQq+FEyYWGc6mtsHJgaqkOH+HA1bJj7+0dF1YjrvXs58zDYeO+9/fjsM9kQcjQQVJXqP/7xj6Bf8IwzzkCoIWFEwq0rdB895us5RFoaFzEq0N++BN/LL7+M8ePH47jjjvOI0E2fPh0JCQnYsGGDSH2SYKOImS8efvhhkT6UDL2UHxrTANIsujbUddQhOZIFS3eKeuPj+yb1xwXDceL22LEsrPLyEhAeXgGrNQPvvXcIv//91D55b8mRQ1ubRVyrVMEPOw4PN8BioXVsYAYkV1REietx49wbQeLi2kDnq4WFAz+4uSs//liEiy8eS3E9tLWZ7KlTyVBlQFsjqGDcV1G4ctm0aZP4X1dzRQWKDni735Wuj/t6TkdHh0gFeotO/eEPfxCRLUpnXnPNNfjPf/4jxFddnXMIbVdIdFFaVLlQIb9k8NNiaEFxU7HfCFVniwZozhK38xvyg3pdVwHV1NR3Z/gHDijpEDNyc1lYEenpfBLx7bcNffbeksHP4frDuOO7O7Cnc634W6UKPkKlUvF6O1CCqqmJT45nznSu10RyMi9PWdnA2Tn44m9/K7DfisPy5fIYMNTpUR81pf7ef/99FBcXe6S+qOsvWH73u9/h4osv9vs/VAC/Y8cOVFVVeTxWU1PjEYFSoDonJVKVkZHhuL+6utrrc+gzUX0VpTQDQelG4tChQyIN6A1KL9JFcmSxp2aPuE6PTkei3nvNUWurDajPA2LLxAGqq1eVN/jMlKICKtEl5Sp2Qsnhw5RazkB4eD3UamdUNyXFgPJy6obqk7eVHAF0mDqw6LVFYrh3WEQ4kD0L6rbgu05VKt7XNzX1v6BqbOyExcKp9gULnPtzIiPDhq1bgdrawWcLUlDgjEi9806p6LqVDF26HaF6+umn8atf/Uqk27Zu3YpZs2YJUZGfn+/RGReI5ORkUY/l7xIRESGK0CnKQ+k2hfXr14v7uqbnFEaMGCFE1Xfffee4j8Tf8uXLvT6HIk5nn302UlI82+S7Qp+bcBVqkqHBvtp94npCygSf/9NOtbENvGM83HA4qNflrqROD5fqUJOf3yqutVp3S5GoKD57b2uTg2SPVt7d9a4QU4QtzAoc909otcGLI7Wa/7e1ldOF/cmKFaX2w1UzJkxwT7Hn5rJoqa8f+Eahf/xjC6Kjd+HhhzeLv2trnSdO775rb2aRDFm6Laiee+45vPDCC8KKgIrV77jjDiFabrrpJiFw+gKqazrttNNw7bXXYt26deJCt5csWYKxYyk/zZAAoy49gtJ6t9xyCx566CFx365du3DVVVchMjJSWDC4QpGmFStWiHSet4L4J598UhSrU90UReauu+46Ib6GDRvWJ59XMnAohp6jE0cHEFR53RJURFiYoc8FVUkJiza9noWVgtKU2t4uDRCPVj478Jm4vmD8BXzH6C+hiXJfT/yhVpsHTFCtW8flFXp9mYez+/TpLFpaWrxnK/qTJ54woa1tEv785xlYv74c7e3OZTKZ0qVX1hCn23tXSvMpER4yy1Q8ncgT6p133kFf8dZbbwnrBuraowvVM73xxhtu/0MWCq6ijsQeiaobbrhB+GWVlZXh22+/FR2KrrzyyivIyspy6whUoLTde++9J0xBJ0yYgL/+9a9CzPXlZ5UMbkHV0REONLC5Z2FjYbcFVV+2nZeXcxQhOtrdfDEmhg9CnZ3BObtLhhYWqwU/F7Jj/u3H3Y6IznRA0wnbMI6kBINOx+tWU1P/Cirqin34Ye7wTk72rAFcuNDedWvNQG0tWysMFIoHHHHvvQdgs7lmPPQDvnySvqXbSWdKo1Exdm5urrhQtGjq1KkiehNsC3lPSExMxJtvvun3f7q+P0WpqPCdLv6gKBZdvEHdffQZJUcHB+vsgirJt6Dq7AwHrBy+L2suC/q1yfOHfG8VD6C+nePn/h6xsXzu1Nkpu4yORrZUbEFjZyNidbGYkTkD0fWT0ZlZCUuadx8/b0RGsqBqbOwb82Zf7N9P0SlO840Z43kyMnp0IsLCGmCzJWD58lJccMEYDAT3378RLS3HOv7etInDwrxs5Amnw8GDDUhN5W5FydCj2xEq8pz6/PPPxW3qiKMOOHIfJzPM8847ry+WUSLpF0iQBxOhMhjUQHO2uF3SXBL0iYRS1NuXgqrDbmIdEeG+TPHxfO5kNEpBdTSyqniVuF6YuxDqcDU0NSw6jEnBC6qoKI5M2ZMS/caGDdWO26+/PsPr/+h0/D+7d/dN2UkwPPCAewlIXd1Mca3Xk7M7d4MUFAxOryzJAEWoqH5KGS9z/fXXi8jRqlWrcNZZZ4m/JZIjlaq2KjEYmQYgj0wYGUBQsW1Cp7kT9R31SIr03u3piuL509LSd4KqszMsgKCSnadHIzuqd7gN+1ZVjRfXbXHdEVS8TrW09G9jw7Zt3GARE7MDmZlTvP5PbGwTOjupHnZgxuIw3k+sEhObUFurQmdnBkpKZMpvKNMtQUWddZ999hlMJhNOOukkUXN00UUXiYtEMlTSfcPihkGn9i08TCYNYNEh0pqA9vAG0TkVjKBSuqQUl+q+wGDgg52+yxzkxERujzeb+36WoGTwsbNqp7ienDpZXNsqxlKrHwy6WlS2VgqbkEDE2kdBtrX1b2PD/v0c2U1K8h3dSUrqRHU11fj2bzqSaG01YsyYLbBa2U4nKWmTIzpFZGYa0NbWJgRfaenADJaW9A9BbxnUKTdv3jz861//ElEqskigWXkSyVAhmHQfYTKxOIkL5w4epRU92C6ptra+2+krReeRPMbPQVISC0SLRQqqo7EgXfFXm5zGgsrYGgfU8XquPBaI2FgW6+3t/ev3VFzMh6msLN8WD5mZvE1VVPR/08Vll61BRcUch6Fufv5krFrl3Cfk5oY5mkQqK/vuZEpyBAkqKtom24HGxkZxobEqf//73/t26SSSgShIDyCoLBYWVEnqNEcdVTBoNH0vqIxGPqBERbmnZYYN4wJZqzUR7e2Db0SHpO8gN/8Ocwf0aj3yEvKctXR1XEd1oO5AUK+TkKAakMaG6moOt+bl+RZL6el8KGtuDt6oNFR88w2n/4m//30bYmN1mD2bOw+J6OhwxMbytl9TM/jc3CUDIKjIkoBsCGggMnH77bcLYVVbWxvCxZFIBg7FU2pU4ii//6dEedL0md2KUGk0LKTa2/tOUJlMSoTKfdOeO5d2+lSwq8Pnnwc3LkcytGZTjk8ZD1W4yhll7bag4n2/wdB/dXhmsxW1tcPF7UmTfHfHZWRoPGwL+oNNmypgMPAJ2K5dNbj7bk71qdXhyM1dLWZo/uUvk5GYyNt8Q4M01h3KBC2oWltbER8f7+bPRD5UzTSVUiLpARs3VohW48GC4ik1IoE9pnxhtbKgyozO6pag0mq5S6qjo+/OUk0mPuhFR7ufzZMZYnw8C6kffqjps/eXDD4O1R8S12OSnHYCZrOu24IqLY2FlNHYf23/t9++zu7lZMSpp3JnrTeys1lIGQz965Z+7bX83UVE7MfEie5TNgoL56GjIxUjRsQjJYWFVFOT7LIdynQrGf7NN98gLs5ppU/dfj/88INwIVcgB3GJJBhmz1bDZjsWKtUm3HOPs4hzoChq4gHCuXG5fv+PPWWA4Yk5QEV3BJXVzdqgLxAF86IjyjM9kpjYhsZGKoyVdRxHEzRvklDSfYTFou+2oJo4kU+ojUb30S99yddf87o6btw6TJmywOf/DRvGIs9kslfO9xPFxSzgzjmnEoBzaoeCVsvbYXo6H2pbW2UN41CmW4Lql7/8pcd9NIbF1UjTYun/sQSSIzM6ZbPxLMQPP2zDPfcM/ODY6rZqR5efvxQEOR4TeSm53aqh0uk4MkXdPn2FUt8VE+O5aSckKHUcfff+ksGbynYVVFarU1BRjZXJYoJG5T96Mm2aMmw7FqWlzcjO7nvxUlzM73nuuf7TjCNG8LKQuSdto5Ry6w86OljITZjQpQukC7m5vM9oa+uboeiSwUHQax1FowJdpJiSBMsTT3ABOLF9+0L8+9/bB/TLU0RRlCYKifpEn/9XX+8ML03I5gMURaiCMfdUBJWBJ9D0qaCKjfU8OCbbAwv19f3bpSUZHILK1VvNZosCWjKhC4+AxWZBcVNxwNchh29y/Sa2bHGabfYlRiNHgEaN8p9mHDUqwX5LhaKi/jP3NBhYIA0f7n/55s1jYWg05qCzU0aIhypyUqqk36HZXJ995p42uOmmqfjmm4IB+zWKGu3pvvhcEWn1RU2N05hvfBYfoNpN7WKsRyAUbygxuqaPsFh0PgVVRganH1papLnn0QJFnpR1Oy8xz+GbBJDwDkN2zDC3dHcgtFpuQtq3r39qZ5V6xeRk/6my6Gj6PLxM+flN/bYfo65ZIi/Pf7SOu/5o36HFypXBlQhIjjyCPlWl6NOePXvEgGLiP//5D4xG51wllUqF3/72twgPlxpN4p8771yH9va5FDCn3jfHanj99eUoKPBfED7Q9VMNDUp4qQ3REVGI08WhydAkXNYT9MpZsnci7McEo7FvOn3IDsFq5TPmlBTPA1B2NguptjY5S+xogSJPFIHSqXTIjMl0OSngSOaIhFwcbjoQ9JBvrbZDRFhra/tuwLcrIpImfNQC1x6p1U0wm2NRVNTaD0tGg8jJaJSF1NixiQGWLRx6fTE6OsZhxYpqnHwydy4ONg4erMdPP5XhN7/h47ykjwTVe++9h+effx7Lly932CZQ159io0D2CREREWK+n0Tii+rqNjz+OBdvHnfcejz8cB7uuOMw1q9fhJIS/2KmL1FSHoEEVV0dF0CFhZEYjBIO00JQtVZhXPI4v8/V61lIGY19c9Lxyitk0DgVYWG1WLzY83NMnsxiq709S5xdU+efZGijCKXh8cPFSCWitpbWXSowN2Jk4gig0BmhDYRWy0KqsbHv01ZGI9Xjclg3JSWwHYJW2wKzmequ+me8y4EDDXZB1Yrk5MDdhSkp9SgupnTp4B0/c8IJ+1FWNhcbN67Ciy/OH+jFOeIIes/+6quveszqI3FVUFAgLv/4xz/w5ptv9sUySoYQf/3rVthsiVCrS/Dll3OwYEEO/vc/6vAzw2LJxurVpQMaofJXkE5UVXENlUrFO8W0aDb3pPEdgYiMVARV37g5r13LqY6UlHyvRblLllCKkiJscVixIrhCesmRjdKBmhOX47ivpobX4bCwdiG0upPyi4hgU9jmZku/nHwppKT4L/om9HreJisq+id6lp/Po3DUaq4rC8TIkbxcBw/2v5t7sJCYIl56aT7OO4+DJ5I+EFR79+7FhAkTfD6+cOFCbN8+sIXFksHPBx/wmebxxx9GfDyH8dPToxEVxUNa33wzuB17X9ZQ+aOkhA9GOh3vTJUZaJTyC4RitqmYb4aa+nq2ZYiJ8X5AiYzUICKCIxbLlwdeXskQElSxTkFVX89p6/Dwdsf6HmzKLyKChVRTU987fnMkjbA49hX+iI7mz1Vd3T9F3wUFLPh0uuDqyaZM4TRrZeWR0en3v/8tHJD3vfXWtcjLW4WcnLVIS9twRBXxBy2oKKUXHe0Ma+bn52P4cGceWKPRiAGQEok/6ut5yv0tt7ib9I0axcWuGzeaBnUNVVmZwe1sOC0q+AgVjaAgzOa+6bIjjykiJsZ39CAykutLKitDfxb//vv7sX9/XchfV9J7QZUd69ze6up4HVapOh3re7ARqshIXrda+6FMSYmkUb1iMOnpuDg+8PbX8I6yMt6GIiODS+HNm8cD1Ftbc0TKfbDBNWEDi9Vqw5NPzkV+/nyUls5FdfUsHH/8Kgw5QZWWlibGzyikpKS4FaBTBCs9PfDEcsnRS20t7Xg4dD99uuJpw0yaxDvMwsL+dTpWhscqB55AEarqaj6gxMQY3AQV1VAFIjJSGfvRN27Jzc28PcbF+d5Z6/V8EKitDe1Z39df52Pp0lGYMMFk/50lgwHFDsRVUDU28kmLWt3pWN9LmkrEdhCIqChet9ra+r7+7lBVMTDz/xA24vug/j8xkZetvr5/GqMqK/n7io0NzgflpJOonMAqvLI2bw58AtbfbNvmaVDX38Jv2TLPTu9Nmxa52dUMZoJe8xYvXowHH3zQ62PkwfPwww+L/5FIfHH4sGItYERmZozbY/PmsQtzY6NzqGh/UdFaAbPVDHW4GhnRbDbqC+XsNy7O0u2UX3Q0R6Yslr4RVK2t/PoJCb4PdjExfDBtaAjtjvLjj8uFB5DVmo4nn9wZ0teWhDblpwgqjcYo1l8qVqdOwJr2wI6vSpKira1vRcuHez7EH/JPB5bcANsvL8DT658O+BxlvEtLS+i3LzrGrSxaiec2Pocn1z6JfbX7HAa5imFuIBIT9YiK2itu//GPzuDEYGHvXq7BVKud0cro6H39Kqpef917bec33wxMKUh3CXqruPvuu8WImdmzZ+ODDz4Q9VI7duzA+++/L+7bvXs3/vznP/ft0kqOaPLzudYgPLzBI4R/xhl8pmyxZKK4uP+M+Vzrp+gsXhke64uGBn48KcnW7aJ0xb1cMd8MNe3tfCBJSvL9GWJirG7pwVCxd6/zoLJ/fx9awUt6nfJrauKTAa3WJE4ilChrWXNZwNeLjeXttqOj7wqrlxcuxyUfXQKDrR1o4/l4tyy7BauLV/t9Xnq6MiA5tONd6jvqsfj1xVjw3wW48asbceu3t2LSc5OwP+UD8fioUcGLy0WLWIUVFvbNPqA3HDzIJTsxMXWIjNxj/53HY/16OlnqH9au9S6Gly/vpzxuLwl6TcjLy8N3332HlpYWLF26FNOnT8e0adNw8cUXi8HJ3377LUaNGtW3Sys5oikp4VSQRuNZxJmbGycmsxPLlgV2bR6I+imirc09CuRI+QURoYqJ4Z2F1do3EarOTj6QpKb6fn1lvnlzc2gPiMXFzgNEaengqw85GqFxSnUddR6CqrmZRbVOxyI4K5aHfJe3BD5wxsbyIaOzs++G/N7z0z0iYpzVeALwzwro958OG2y49vNrhVGpLzIz2WetszN0Pmud5k6c/MbJ+KnwJ0SoI3DWmLOweMRiEdFrm/scMP1FHHuse7TdHxkZareTn8FEURGvDwkJ7fjmG6dR6Q8/8H65P2hsdP52UVG7MG0adxr++OORsU/pVtx21qxZwtxzy5YteOedd8Rl8+bN4j6KUkkk/igt5chFRIT35oX4eN6hr14d4vBJsB5UAeqnCKORd4gxMeHuKb/WqoDjZ5SUn9XaN07lBgPnYzIyfJ+hJyXxcre1hXaH3tzsbGuvrpajbQYDZS0ccYrURCI+It4lNczrqV7PB1DF8DM4QcVC3GjU9Nkg51XFq0QaUr/iRsCmwuTy65EcmYy9tXvx+vbXfT43J4fXQaMxdDMG//jtH7GlYgtSIlOw6dpN+OySz/D9ld/j7uP+wv9w6q2YdlzwEbGUFP7eOjoC+2r1N+XlfJKYmmrG/PnZyMpaK/7euLF/jFIJg4F/wwULfsbOndm45BIWqwcPTsOmTf0n7HpKjxLhxxxzDC666CJxoSiVRBIM+flcEB0b671oOTeXN9ydO/kMut8tE4KIUCkHkrg4PrCkRnFxvclqQkOnfz+a+HgWUjZb3wgqk4ndmkeN8n3GnJqq7pO0SGens5mgtrbvh+ZKAkOF5kr9lOs4JaVDLyKCt7PM6Ew3AeaPuDhef8zmvhFUH+zhNNqJI05EnX1qwrRxibhr/l3i9t9W/M1n8fzIkbzeWa0JIan7oRTjsxufFbffPP9NTEyd6HjsJO3VQOUUQNeKjebPg37NtDTe9k2mwL5a/U1dHUeZs7J4XUlP52L78v7L+MFk4v3I1VenYsSIeNx881TodIfodBTPPkvXQ0BQPfLII2hvD65zZ/369fjyyy97u1ySIYhiaKcY3HVl8mReHYuKogelqSdhNPIOMT6eDyg6tQ4JEQlBdfrFxippsdCKGYI769jfZuJEbs/2xsSJLLZaW91nKfYWo9HprdPSMlZ2+g3S+imivT3MrWOvOym/uDhe781mbZ8KqqUTl6K9ndfVvLxI/Hbmb8XQctpWvz38rdfn5uQoJxI6NDb2ro6PUovXfXGduH31tKtxSt4pbo9v39YArL9Z3H5207MiRRkMGRkcmTKb+7+bORBNTbxMI0fyPi7Jvhtpauo/I1KrlX/D7GxO/Wm1KuTmcmSquLjvzWT7RVBRSm/YsGFiVt/XX3+NGqW9QawYZlGc/txzz+G4444TNVWxsfIMVeJJRUWcm8FdVwaq0687NVTK8GFFUHWnMN0pqLT2sRqhY88exf+pA9nZvre/OXN4WS2WDDH7LxSYzdQKrswyo8+lw8cfHw7Ja0v6UlCh2yk/Zb23WEJ/UlDXXifSa8TZY8+G0cj7g5Ejo6HX6HHFlCvE3y9vfdnr88kgmNc/Ovj2bnjzu7vexe6a3SLV+NjJj3k8vnt3K7DzEoR1xImSgS8OfBHU6+bksGixWgffMbKjg08Mx4zhZUxJYXnQ3Nw/BfTtYn/E752b6/x+MjL4N62oGPxzgoNawtdffx0//vgjrFYrLrvsMuE3pdVqERMTA51OJ9J+r7zyCq666irs27cPxx9/fN8vueSIo72doyLTpnl3Cj7tNI4QWa0ZKCrqn04/qnvqTg2VciBJSHDuZIItTE9IcB6EensG3ZUDB/j7Uqnq/JogTppEXVMUzVJh3brQxPIPH6ZUJ5/FRkXtE9c33hiHVasGZoyQBG4pvKwYjkApdHbybxUTE+b2eHCCSttngmpF0QpxPSFlAuI1SbDZOEQydmyCI1JEfLr/U1S3VXs8n8YthYWxOWV5eVuv9gmPrH5E3L5t7m0iMtaVw4fNgFmPuILTxd9v7XwrqNd2RtEiBpW3Ep0UWSy8H5s8mT9vZib/1u3t/VPvVVDgrJ3NyXEKqmHDWKbU1YV+nQs1QUu+KVOmiOHIdXV1oiidrBNefPFFfPPNN6iqqsKmTZvwm9/8RggsiaQrVNNgsfAOcswY74Jq2LA4qFS8U//qq/7xHaG6p1Zja9ApP6uVdy7JyREeEarAKT/nttHUFJwZYLAoA2EDjcEgsaXVcgh9w4bQtCLn5yvitwnx8fz+ZvMwLF4c2s8o6R6KwFcaJxQ6O9VugiojJiNoQZWUxOu9zRb6g+zPhT+L60W5i3DwYL3j8DRqFAuqyWmTMStrlkiv+SpOV6kUQdVzc9m1pWuxp2YPojRRItXojbIyXra89hPE9ZcHvkSLIbDTOPvvsdjbuHFwmHu+995+XH01WVJQ9NGKyZPZqiInh3/jzs7guxh7w2efKd3dTSLVp5CXx8vR0tI/y9Ebuh1Do+LGqVOn4pxzzhHpvZNOOgnJyaGtx5AMPTjixIJi4kTf60t/d/opBekUZaK26EDYbFFuBxaCOoCI2nb/AiUigg5kpj4RVA0NXMOh0wWOfMXF0cEK2LUrNKOiKiuVgdEtSEpy1scZjXkheX1Jz1CiOErjhEJnJ2+HCQlqtwgrrb+B3NITE5X1PjLkho8/F9kF1fBFOHCAt/+wsDr7dsNcM+0acf3fbf/1+hpqNQupqqqeR4Df3vm2uD5v/HmIi/B+8ldTw/uBqWnjMSpxFDrMHfj60NcBX5tOaCIiOHK7enVgI9X+4PLLI/H665xVUqvLxMxPIjc3ytHs0tfmns3NBvz5zzPEba3WfT+alxftUac5WBn8SUnJkGDv3nqXKIZv4TJ8OEeLdu2yDbqCdM7xcxg8OVnvIaiCcZqmGieiqSm0s/Tq6xVBFbguKj2dDzqHD4emm1I5eKnVHcjIcP/dQlWnJem5oFIiqApGI29/KSm8LidFJiEMYcLrSfGtCiyowkOatqb6qR1VO8TtBbkLkJ/P+wGNxv3E6sKJF0Kr0or6pp1Vno78Oh1vX9XVxh4Xo7+3+z1x+7LJl/n8v9ZWjppNGB+NJaOXiNvf5wc3Iic5mfeFO3YM/IgmamYxm50u+omJTmuCBQuo9o5+4zh89VV+ny7Hjh3OfafN5i5L8vI4/UcZjsE4A9EVKagk/cLBg5wK0mgUYeWdyZM51Ftc3D/hXaV+KhhBVVPj3AGmpDjbnqlwNVhBFRbGkanm5tAKqqYmFkd6fWABM2wY75QqKkLT+l5Xx59Fq+3AnDnupopvvME1VZLBE6FSWvZTUzlSRW7pyjocKG2dnOxc7+vqQlcDtK50nbgemzRWCMCiIn5tvd49jUZ+WmeMPkPcfmfXOx6vo9fT9mVDsnUzsP/fwK6/83XxB0D9Fjpa+10OEkUUqaOTpJNGnuTz/4xG/k4nTYrHyXknO54bDLm5vA84eHDgD78bNrinHYcPd+7j6MQ3Pn6vy2ipvqOw0Pk733mn+3507Filhk2H0tLeNRv0NQP/i0qOCkRXjCha9p/Kmz+fz/yamtwLafsKR0F6EB1+hw4py96B6GhnUXpKVHApPyI8nMVHS0toIzct9v1RVFTg7sH0dMWLKjTdO99/z58pIsKAG26Y4PbYZ5/5j3hI+gaKtNDIFG+CymLhFEp6ujPKqvyPt2JvVzj9xoKgtjZ0gmp71XZxPT1jurguL+ftIybG8z0umXSJQ1B1NdOdN247NjwwC3+ZexOw+SZgx1/4etVFwLIZwJcTgNr1PpdDKS4n2wYSmt6orqZUebTDooQiavS/BY0Fwpg0EBMm8OtWVAy8dcL27e7eeWef7b5MiYlcFlBV1beWBUVF/D4qVSn+9rdZXZaB1lMWUgcP9q/pc3eRgkrSL+zebXdlzvRfuHn66SxsrNY0e/fY4IlQrV7NBxudrtStk86R8murCVpQNTeHWlC5ewv5Iy0tdG7N0dG7sG3bQnE7PNyK1NQo/Pvf26HTHRT3lZX57jiU9B1KtJQcx1271ChlYrNxCiU7O9qzsSKIEUphYRzFaGgIXR2gku6bmjaVl6OK1+OEBM9I7pIxS0TBeGFjITaWb3Q+UPwh3rn6RhybtwltBj2QfS6QdzWQ8wsgZT6gjgaa9wHfzQf2P+Pxuk2dTfh478fi9mVTfKf79u1Touwdosg8WhuNudlzg45SzZzJtUDNze6p2IFg715nHWVc3DbcfPMUt8ejoy19MvuzK2VlvC7FxnoX9Go1Hwv27+/fOa/9JqgOHTokOvw6OvgMItDYDcngg8KnofZD8kVhIddejBnjfz2hHRSdpRDffON98vhACaqtW/lAkpzsHonqTspPpeIDRGtrcEaAwdLWxptyTBCZ0qwsFlJGY+/PkNvaJjluNzVxdPF3v5uKJUs4RVBbO/iGwB4NKJEmEvskqtyjKxwhyc6O6XaEiggL6wy5oFIiVFPTWVDV1oa7DSF3hUbpKGm/T/Z+wnc27ADWXAZNuBmfbDwXo29bDSz4BJj9EnD8B8DJK4FzS4BhSwGbGdj8e2DzLYBLET55T1FxOdk2zM6a3S2LEiU9+EPBDwE/q6sXXH/tf32Rn8+lApMmLUdj4zFukXciPp6//+bmvj0xqqzk/WF0tPe6PBrYTGzdOsRSfmSbQJ19Y8aMwRlnnIGKCi5iu+aaa3Dbbbf1xTJK+oDPPjuEnBwNMjO39stGrbjwjh8fuJNOKYzsj06/kuaSoAVVkd3JITPT/UCipPwoxRKoS0ql4shUW1tov/OODq49i4sLvOPLzuY6GLM5ttedOd7GRhAjRmjdfnfJ4ChILy1VIsRmt3ooh5dagBoqQqVSBJUxZEOcD9QdcItQKUPIExO9r8/njz9fXH+872PYzJ3A2isAqxFNUSfjF//6EBUNUzwbIrTxwLx3gGPYYwr7/wWsvgiw8Od4aetLDr8r11E9XSko4KhORIQzWnL8MO6SW1/mO52ooNhA0OG3P6Lw/igvV8S19xPdBPuitrT07XzOigp+//h475H7rCxeb3ftCu2J6IALqj/84Q9Qq9UoLi5GZKRzg1y6dCmWLVsW6uWT9BH33EOmf3rU1c3Ev//N4fa+xGDgg3dubuAZVrm5bf3S6We0GFHRUhG0oGppCXfbySgk6dlfy2qzBpznp1ab+yRC1dHBabz4+MBjIoYN48iEzRYnDP16SkWF69BUC+66y2nkOXp0tJv7smRwFKRXVnKUNSys2S1t3Z0IlVrNQrqpKTRp613Vu8S2Q5FexTOrs5PX59hY74coilBRtx8JseotdwGNOwBdCqIWvwYrRaCgwpYtXsQhCaUJdwLz3wfCdUDJx0JU7SjfhE3lm6AJ1zgc2X1RUsKfPyrKmS6bmTlTdEpSxDvQxASyJQgLaxgUNUF1dbwvGD3aeyQ5MZH3J+3tfRtpLijgqPnYsd4fHzOGr4uKIoaWoPr222/x6KOPIjvbfZzB6NGjUaScwksGNXTmtmuXc9DnDz/0TV6aWqGVGVdmMx9YR40KHBWZOpXPhkpK+rbTr6y5TLSKk/+UkrbzR3s77+QTEtzPXjUqjWOeX6A6KkVQtbWFdgC0waB4CwUWVMOHK34uKpSVBTYj9EVFhXJAaUVLi8WtmFQxb7VYPF2mJX2PEmnqKqgUu47wcPfUivJ/wdRQqdX8Gk1N5tCm+9KmOiJDyhDy2Fjv63OsLlak2ZJVQPzh/+M7pz8OdXQGNBo+Sdq0yU+TyLALgQWfsqgq/RRhqy8StpbnjjvXEXH2RXk5b7vx8c4IbYwuRqQKiQ1lGwJ+ZrW60a0YeyDYsaMazc28zKed5m7+qpCSotRb9p2QsVptqK1lPTFvnnevqenTuXu4vj55aAmqtrY2t8iUQm1trXRJP0L4+ONDsNmcK+ayZVNDOsyWut1OeO0EJP8jGQmPJuC2r+4EVHzAHz2a53P54/jj+SDc1OQu2vuqfionNsdviF+ho4PP0hITPcPfiiAL1Omn1fJBqL09dILqq4NfoX3x34EZLyDBy7J1hX3AeEdeUNBzMV1VxfWT4eGtHrUXI0YoO8bIQTVi46iLUEW6CyqlGSI83D1dq6T8golQaTT8GiSi+6IgnTCZeH1KSPBt7XH+uPNxfRygsxmAhGnA8Mvc6m2UzmKfZJ4KLPwMtvAITDYV4MMM4Jqp/qNTxM6dfPxLSnL//Erd1frSwGm/iIgWtwkHA8EVV5AlggbR0Ttxxhkjvf5PRgYLKYOh71L3jz22BRYLdXV34PzzR3j9n4ULWfAZDDkDXncWUkG1YMECMdtPgQ5ENOPvH//4B044gW34JYObnTuVgyjvcGy2BNxzDw8l7S3UKXPqm6c6xkjQWJcnNj4GnE0Oxwa/g3sVTj1VmemXah9BMfAF6YTBwDuX5GTPnbxyVhuoMF2jYSHV3h6adCaN4Djz7TNhOeYD4Kzr8L3myaCep1LxOlBcHOCgE4RDuuJO7QrP4mLxePjw4G51HopUt3tP+bW0mN1q+XoSoVLMY5ubQ3Ng21+3X1wrER7CbPYcQt6Vs0efLgQVUTPsSsBefJ+czOvjoUNBRNAyTsFPw25BhxUgx4CTy58HLL6L7b/7rhDV1RyJTU93PwmjsTjB1lFFRfG2U1o6cMa3hYV8cnvxxb5PqqZP53IGkymjV+UB/li+nMVlTs5WMX7MG3Pm0ABv+s50g3pGaLcFFQknmul3+umnw2g04o477sCkSZOwYsUKkQqUDH4OHeIdRlbWTixYwMLniy8Cp4oCQZ2eV3xyhZgYT91FO3+7E2+d/xbCaXDu1DcQNvVFv4N7XafGq9VcLL5sWd91+pU2FmCUBhgRG5znlcmkdzNEdCVY6wStlg9CHR29F1T0Xrcsu4X/KJgvrn5qe8chZv2h0fBOrKys59Gj2lpO/Wg0nq9Bv7NSJ1JU1PO0oiS0RelOQeVeUK78Hz0vUMe2sg6HKm2tFKSPSbIXyohUMW9riYm+a3dS6lciSw1Qg9g7zU7xlJPDy1dWFtw+7cFDG3BWOQ2FUiOs/Etg5QU+RdUrryjz5ug7dH9sdjZHqMjKgWrC/JGYyK9fWto3IiUYDAaOtI0e7buuddYsmvNI60oENm50uqiHkhr7LjM11XeTAw2+jojgY8FHHw0hQTVhwgTs2LEDs2bNwsknnyxSgOeffz62bt2KvDw5u+tIoKTE5liBf/ELrv0pK5vb6/ECr2x9BZ8f+FwUi3592deYlDoJl06+FCeEXSsety1+UHT0BIPS6bdmTR/5jpR9id+WP4qDw4EnOz8CygM3VJjNnoaI3U356XT83dvdRnrFU+ueEkXwIlXyxjfApuvE/Xd8d0fAg6IyoqOysuet73V1fHat1Xp/DY2GW5yLiweuTuRoxVdRutIModTyKSj/12nudAwL94Vez4KltefBTQf0fso8TVdBpQwhT0z0PHlxcODf4ur5JuDDfZ857h41itPeNTWB01RkxPljwY/4sSMM9bNfA1R6QIiq8wGLZwt/VJTzkPmLX7jXHdH+juoxmw3NAQ0+MzNZSFVV9f5EtqcoXbmZmXq/Rq4aTZl9Xxw4HdwdlGNBQwP/Xqnuq6oHERG8H3nuuXl44QXPsUNHrA9Veno67r//fnzxxRf46quv8Pe//x0ZGTyxXDK4oQLAXbv4bHTUKOCyy2gnxnvGpUt7fuBrM7bhnp/uEbcfPPFBzMjkQZfE8PJfAI3DgNhKvLSFW5MDoYxA2L27Dzr9yr8BVpyNeBu/R7S1DVh+Jt/vB5uNi+QzMjzP6IKd56fT8Y60s5dj0KjY/9Vtr4rbt868E7BGAj/+DdpwnThDXl1C0+N9ExnJC1Bd3fPC4qYmi9/5gTodr09lZaGb+SbpXVF6a6vVrQ7K1duJDCqDSftFRPA22R6C8p/8hnzRGBKjjXFbVmUIeUqKj4N9/VagZjVsYWohqFYVr3J85hNP5G2xsXFswNpQOgkkTsk7BWl5lwILv7CLqq+AFZ6iqr6e13m1uhhLl7q3pJFb+pQ0NsakKL0/cnNZRNTX995ct6dYrZxey852HxfVlYQE3qdt2dISUif/4145Dr/5/Ddo7OTIVHq6f3E5cqTz5PqJJwbWbiJkgurVV1/FBx984HE/3ffaa6+FarkkfcTatWXo6BgvwrgPPjhZ2Po/9hiH3FtbJ+OTT9jhurv8Z9N/RLvwyISRuGn2TW6P1VSogNV3ittPb3g6YDjcvdOvd15JHhjqgDWXAjYrPjfGIe4wUJl0gvgbqy8GOrwfTHjHzDVUubmxPa6h0tlPuA2G3hnlfXPoG1S0VoiD0LTIRXxnewoun3y5uPncxuf8Pj8mhg+otbU9TzkoKR+dzrsoi41VCt9DO7dQ4h+KTvqKUCm/mUbjWf/kqKMK4EWl1ytR1rCQpvuUxpDWVqPXIeRuHPqPuAob9gtkpc0Uouyz/Ryl+sUvxkCloqhKJF56iWfRBTopuWY61XjSUf1EYNGXLKoqvgZWnOcmqhoa+LOPHl3o9TWnp08PSlCNGsWfq7XVe81QX8MecpFdGki8k5nJkaQDB0KXnnxmwzPYVrkNH+39CB0G/q2zs/1EIwG89tpEhIdz5mL//ql2k9ojXFA98sgjSE72bF1MTU3FQw89FKrlkvQRP/3EHik6XRFGj+Zuuttvn47UVG71ve667hcQ046JhBJx1/y7RMrPlWrat2+/EipjNA7VHwpqPMOCBUl90+m3837AWA9b3CRcVWFGsxVomf40kDAdMDUC2//k9WkHDypnRAbh5t4Vh1t6gBoqvf340NnZu4PRp/s/FdcXTbgIddVKtKENv5nJ6VU6uLSbfJ+dx8XxAbWhFyd6SoRCq/W+o83K4lTgoUM9fw9J92kxtsBgrwHqKqiU7lKlDspblLWuw//8xSh7QCPUgsrbEPK0NC/RE3M7UGgfjDzqNzhv3HkOk0+lfi8jg2udVq70HVVZdmiZOCmhbffssWc7H0g7AVj0FaCKBCqWuYmqZrtRd0yM93VemUW4tXKr3889YQKLGKPRv0VDX1FYqER7rMjK8m9PQ5kMorQ0NNG0NmMbHl71sLj9yOJHYGjg337UKP8p2kmTUrB5M0kWWj/iMHXqLhzxgoq8pkaM8GxtzM3NFWafksHN5s1tXsen3HcfR19qaiZ2u5vjf/v+JzrmaMd02WTPGVj19SrAGI302sVuA0j9ceKJLKRsthRUVoagWIPorAYOPS9utk76G+qN/F1kx+cBx9ojOvn/9To89fBh3pOGh9d7LaxXDkaBaqgi7HYuRmPPx2hShO+LA1+I22eNPQvV1Yp9QZvoNBoePxxtpjZhp+CLRLs9VFNTz2s4lDqwiAjv68vYsfwZKysDm7lKQocSnaIUHqXyvIlgJfXckzpARVB1dqr6RFA5hy6bPOw4BGTGaW4BokYAqQsdruk/5P8guoyJ8eNZUO7e7btLUCk/+OXUX3qcBCJtkbuoWk1RbRtaWvgzx/twf5mWMc0RofJXx3jMMby/sNniByTSsnw5R3rCwhpFwbc/xo9nIdXUFJpswbMbnxWR/LyEPByrWSK6uUnYnXZa4AH1xxyThvvv3y1uV1Yei127Ao/76k+6vVenSBQVpXdl+/btSEriqIJk8LJrF//kI0e6FxL/6lfUskyh9kisX89z2IJFSS9dP+N66DWeZzGlpbxezIo4TVzTAFJ/0ROCo0C8c9y0KXArd1Ac/I8YT4GkOcjXjXAcRMQyJ88GRvzSGcXqQmEh7/S0Wu+zpIJN+en1LMZMpp4Lqu2V28WZNR0wF+YuRG0t/5YqVbtIm1DUinhv93s+XyMpid+/tVXba0GlFNp3ZdIkPuNsbpZu6f2Jr3Sf+2/Wc0EVHc3rjsHQ+3EkB+u5xGB04mgPQRUW5kNo5HOaDiOvElYJ45LHYXzyeJisJnx58Evx0NSpnD6qq/MuAmhCgnJSQqNmvJK2EDjhayBcC5R+Aux7Eu3taq/mvq6F6VRLRVG+0mbf3WhsH8PRs61bQ1vsHQwvvMCZiGHDfKdEFcaO5QiWwZAYkukUj699XNy+Z8E9+PpLPtZoNEVisHow/PWvx0Kvp+UOxwsv9KxEpa/o9l794osvxk033YSffvoJFotFXH788UfcfPPN4jHJ4KakhDtTFi6M9Ojm0Gq5LXXFiuAFDNVNKW36jjoE18crW9HezsWbf7rsbOH5RF1EPxX8FPC1IyJ4ObZvD0EBItVIHX6Rb4+9ybsH1aR72MuGaicatrk9vbSUQ/6Rkd6jZa4pP39npkqXkNHY87P7FUUrxPWC3AXQqXWoqWFBpVbzgWjppKXi+ssDX/rsqkxL4zP39vaeOyArdWBKGrMrw4fzDtJkCnEdnKRHBemBRLAyQimQoIqJ4XXXaFT3SYSqro7X57AwL+tuRwVQZd93jLjScbeS9lNOIiZM4HWuoyPJp3+bxWbBcTnHYXwK1ZT6IHUBMN3u7bbtToxP4eVNSvL+2anLb2LKxIB1VBTl1mr55Gv37v73aWtq4u1/xozATSkTJ7KQslqTe22q+cWBL4TgpxFDlM1QUrJpaf7H9XQlN5e/u82bjUe2oKKOvtmzZ2Px4sXQ6/Xicsopp+DEE0+UNVSDnJNO+hkGA58JLl3qmbZNSlK6OYJPsVG0iQpCKdWUG+8Zsl2+nIpDVQgLq8WsWZk4YxRPif/60NcBXzs2lnc0e/aEoJ2oeiXQXgpo4oCc87wLqphRQM6FfPugfZyFxzR07xYBSsqPalco3eaLyEje5Eymnh+MVpWsEtfzc9h7qr7e3b5gWvo04f7eYe7A8qLlXl8jI0Pn5kXTEwyGcL+CauRIPqhZrYmiu1Qy8BEqfyI42AiVMg7GZPKdTgsGilIrc+/yEp2WO8rQZWUIsxvFH9HZkYgyI3q44+7LpnCpAaW56fNPncpCymJJQ2enu2igEx5lEPI10zxPAj0Y/Vtg2FLAZsbLv74LidF1GD3adzTFNe3nj8hIjsAfPtz/bulKdDEmJrAEmDCB1gsSUirs2eN/3QiE0lVJaVYa2bVnj8YtRRsskyfz/uTQocgjW1BptVq899572LdvH9566y18/PHHOHz4MF555RXxmGTwzu/74Qd28o2N3S4K/LqSk8M7sP1sXBwUH+zhjs8LJ9iFSBe2bWNRFBnJZ82njz7dIagCeSXl5fGOZt26nqfHHBS9zdc5FwCqCKegiu3ikj76er4ufBswOQtaG+0nkTEx3s/oorRR0Kv1AQvTFUFlNvdMUNF3trqYLRHmDZtnXzbFvoAPRJT2O33U6Y4olTeys3lHZDL1fF6iwcAH1shI7+mPUaOUVJ8aJSXeU6WhgGr+kpM3Yfhw/1YRoeSBBzYiPn4bfvihaPCaetrHyQQrgoMXVLzums29298r2yBZJiizMIn6el6P1Wpvgup9vs7ltLYCuazTSR01yLy54037/o1ONFTYtKnSI8JLzTGUMr9wovf9lsKHHx7Art21wOwXgJjRGJZUgaevvAnjx/vujFM6/QIVpkdH8+erqgrtoPRgCDQr0RWtVoXwcN6n7drV88kVzYZmfHv4W4egImpruRhtxozuFbwffzw/r66OHNQHDz0+Uo0ZMwYXXnghlixZIgrSJYObV17Z42iT/f577w5qEybwxlVaGhN0akFJP/1iwi+8/s++fbzTSEjgA+qJI04UBaDkP0M7NX+cdx5HOIqLe7l+WYxAsd3qwz7vq6S5xPvYmdSFQMwYwNwKFL3j4jDN19HRvgv2HWk/P3VUMTHKwUjT44MQ1U9pwjU4NvNYN0Gl1zu9hc4YzZHArw595S5czW2AoR7DhnF9k9Ua3+PokZK29CWoeGYgRzsPHeq7tAYZ0tbVzURR0Txx4tAf3HvvsWhqOgYXXNBwREWolGYIpTmiJ4IqIUHrNh6mpxQ2svUANVG4ztJUhi5rNF3SOe1lQA1HZ5Hjub/51TG/EtdkhaDRhCMqitNz//d/7obFL299WVxfMukSh/eWK88/vxO3374Wb765FxdeOAaTJ6fghVeLUDP6BVis4bhs3tuYmbnZ5+dSOv0CRaji4nhdra7u/+itMisxLi64EzudjtfzAwd67kW17NAyUedG6V0lzarMCBw2rHuCaskSPiZYLNkoLu4j8+f+EFRUM/Xyyy/j0ksvxUknnSRSfa6XvqKhoQFXXHEF4uLixIVuNyphAx/QgeS+++5DZmamSE0uWrQIu3dzh4BCZWWleC0yK42KisL06dPx4Ycf9vq9BxsPPMA7pxEjVuHYY72bsJ59NtdXNTSMD2pYMqX7qOOMDuy0U/TGvn28o8zM5JAu7cCOH3Z8UGm/BQt4eczmtN7Nkar+GTA2ABHpLJj8zfGjHfuo3/Dtg9wRSLS2sniI9VMOpBSm+zsgRUXx61gsPRNU26u2O87IlQYApZU7MtJZ37B45GIhuki4KrPSUPAm8FEK8FESprX9DhFiZExEj4cXm0wqD/forqhUvJ0UFvbd+Bmj0bluVFX1b8dUR0fsETPHjzCblQhVWI8FVVwcr7sWS8/r7wjFIb1rqUBjo9kt4uqgmPbLNiBlHhCV4/F6F0+6WHQ17qrehZ8Kf8LcuXxis3y5c1tr7Gx0RNW91XxSjdD110/GP/85F7fd5lxnr7tuMjbmD8NT9lFPSfl/BMzet5up6VMRhjCUtZT5HTadlMTrbX19CCLw3SSYWYmuxMTwd5Gf33OT3s/sPmHnjD3HcZ/FwpG+3NzuDV8eMSLe7jVGUcTeTfgIJd3+Jan4nC4krGiG39SpU90ufQUJuG3btmHZsmXiQrdJ2PjjsccewxNPPIFnnnkGGzduFKKJxuW0KOEGMXH7Cuzfvx+fffYZdu7cKcboLF26VIzS6c17DyZ27KhGTQ2fNT3/vG9fp3POGWVfSfX4+PXvgU2/B76eBvxvGPDdfGD7PUBnbdDpPuLQId5ZnnqqM9d98siTxXWgmXN0ZshoezckudQ+liLrLCBcFXgwMnX7UWdPwxZ2ZBYpUz6Ti4vz7b0TzDy/6Gh+Hau1Z4JqZxWPXFAcmQlldY6KcgoLEq5UtE58d/g7toJY/2vAwgeByNpP8eI11N1kQ0FBz87wlBqa6GjfaQOttrXXMwMD0dbmTJlUV/dvPUpYWGgGBPdXUboigiMiwnssqJRxMDZbRGgiVHHuJ2MtLYpXltl7um+Ye7pPIT4iHldNvUrcpk6y007jg3VVlXOf9/bOt8W4m8mpkx0RXle+/rrAcVsZgqywaVMd/vrhAyipywDaioA93mfX0ranFNlvrfCd9ktJCXMrEO9LSEje+9O9wpmcTIHN5ohuCarERBZSZWU9O7G12Wz4oeAHt+g51baRbQSRm9v90oPMTBbkX355BEeo3n33Xbz//vuijuqpp57Ck08+6XbpC/bu3SuEzEsvvYS5c+eKy4svvihG35AY8vUD0vLdfffdQiSR+CMn9/b2drz99tsuzuFr8fvf/17MJhw5ciTuuecexMfHY8uWLT1+b8JgMKC5udntMlC8+y7tJFSIiNiPk0/2HklSOk/S0jgVtn1LA3DgGe52ay8RYx6w+0HgywlA7Tpx5qUUPPtK95WXt8BsZkF19dXOMQ3KgZ7Shf7qqCIjNQgLY3Gyc6d/s0Gf0OuXfe4UVHYjUjp79CmoIpKBbPtZVAG7/3d08I4nIcG3eAjGOiE2Vjm771m6ZEc1W5bQAUGhrS3ca/Rs8Qj2/fqRdmSbfgdYTVxDdsK3QJgKl89/B6dNXYbi4p5Fj5S0pVJT4w212uiWxukLFNsIoqqqfwVVeHj/17/0JuVnNvP6q9f7FlQ0H5K2EV8kJvLB2GbrXUFwYZMz5edKSwvvE/R6l2VoKwFq15CE9ZruU/jD3D+I6BAVp089idcLszkHe/fWcjG63XuKrBJc04wKn37qewDwqlVtaDdE4f4vfs937HkEaM3vcdovM5O3n9bW3gnTQFCn7ylvnIIHVjyAF7e8iNPeOg2WCV8FnpXoQmqqMnswvMf2GJWtldCpdJiTPUfcV1TkFEJ5ed23Vpk/n9ePlSuHIylpM2bODDwUflAWpY9SrFP7CRI9lGqj7kKFOXPmiPvWrKGNzJOCggKRzqMORAWdToeFCxe6PWf+/PlCHNbX18NqtQrBSGKI0oM9fW/i4YcfdqQI6ZKT4xmi7i+2b+foQFpa4A6NceP4TGTZ2pHA+NuB+R8Ap6wH5rwKxE0EDDXAj6dg+TYeITMzcyZGJHh2DBLr13MxaFhYA3JznUWcNOePQvPk1bKnhmq7fBMRwUJq794eCtLGnUB7sShERzoLDPKHoWWnlFhatGfhrmAEn+mi8C1Rg2Uw8I4nOdn3GV2yPvAZfkwMP99m04YsQtXWxoImNtb9AEFpPyKi6nugfhOgjmID04yTgbGcunjskjtQWtoz41QlbanUhXlDq2VB1dzcd5GcujqjR8t9fxEebjmiitItFt+CKkGfIMQI0dDhuzbMOQ5G59FBF4qUX5s9a6vXu0RDlBrI1OOBSN+FyKMSR+G88Wyh8N/Dz0Cj4YjTBx8UiIJoKhSn5pHLp/CIpq58+637unzGGc6D9MaNvA/bVjcHSFsMWA3Allu9vg512hJbKn0LquxsFlIdHd1Ld3WXe368R8z3TNQnOuwlcPYtQFwxkpKCE3PZ2by+1Nf37ETwZ3s2gsQUWUsQ+fmKoGoStj3d5cEHaR/YBpNpOOrrZ2Dz5kU9Ll8YMEF122234V//+lfADq1QQsKIDEW7QvfRY76eQ6Slue9U6G/X55CYMpvNwpSUBNd1112HTz75BHl5eT1+b+Kuu+5CU1OT41JSwpGfgeDQId5JDh8euGB3zhzeWZaXpwLTHgOG/QJInsUmeqes4xokcwtOKPwHMlT+033btze6+UkpUFH63Oy54rZS1O6L+Hh+jW3behh5UKJTaScBaj6jLmgocJwZh5PvlDcyTuGaK0OtGJRqMvH3kpysDRyh8pPyi49X0iXd3zEZzAaHb8/kNGeEqr1dmXum8jhLjtXF4spI+xFq9I1AhH1dnnQ3mjqiMTlnF6Ka7YW+3cRo5HB9To7vSIUy56+lpe+ER0OD2aNDrL8IDw/dfLNQQJElZXSM9wiV2qegIkNKElWBTgqSkpwFxMHUWgZTlO5KWxvvryIjXY4x5fZuVYqwBuDu4+8W1+/segfJk/lAvmJ1A+764S5x+7czf4ukSE9/qk8/PYSysrld7lsAnY7NIxsb2V9qzBgVMPNpIEwNlH4KlC/zeK1j0o9xOwHyRm5u3/u0kWh9ZuMz4vbr576ODy78AMcPWwBQ/eSie4MWVMOH8/6qpSWmV4Jq0fBFLp6IvF9Sq3uWsqM6qkmTNrnd9/nnzpTtESGoVq1aJewSSHCcddZZIp3meukOVDBOYVd/l02b+AvzFp4lUeftfle6Pt71OZTio6Lz77//XrzXrbfeKroXqZ7K12sE894kzmJjY90uA0VlJb/35MmBD+JLlnC9QWfnSPsATRc00cCC/8EcMxbJYUZ8kAFcOM5ZYNiVfft4ZxsX57nBKGk/Xz5JCmPGdLo5vPdYUGVzuo8oaOSNzldkTRCuBkbY6+QKXoPJxGeRycm6wDVUflN+iiDTd7u77nDDYWFGSCIpI9rZWNDZyTvFlBSNxwHyvGGzcIqid0bxnD+BNgHvb+RahukxnsPOA9HY2CnGAhHTpvmeRxYRoQiqvjkBo+/whx+sXqNVfYXr76ZSDa4IlSKE6ESBIhK+ooqRkd5T18GYe8bG0jbA33NFRc+aAOjkgLpVvQkqZUagMuIGplagZiXfzuBpC/6gEwkqQ6AodMNJ9wDDf8bGnEdEdIrsGe6Yd4f4v67b31tvcRkAkZ29Vlgm0FiWiAjlM2qdLftxE4RBsGDbnWwc3MUxXUl1Uc2WN/Ly+t6njca8kDs5dVefOeZMqMJV+PPMB/jBqa/DFhVcul9xS+/s7H5qzmazeRVUpaUdbnWWPeGxx9wzP9991zufrN7S7aMU1Redd955InVGQ5Jd01p06Q6/+93vRI2SvwvVPlExeVWVp3t3TU2NRwRKgZ5DdI0iVVdXO55D/llUsE4eWmRUSkX19957L2bOnIlnn33W8Trdfe/BhkpF4e1FOOecwKHl2bMzxXwnQIOvv/YyUV0bjw+SLgN16s/TAyMK7DPwvFBezjuJpCTPNAyNTAmmjmr2bBYLZWWeA7kD0lEJ1Nnn8mUucdytRKhGxPsRVOIf2CvFVvoFEkV3nhWLFmX5/HflrNfrcNmmfcDqSzC2bCmuWkCjM8K7nS45WOcc0+Eq5k0mVkxpaZ5i71eJUVCFAbuo+JOMS114fyuLzCnJa4WVQnfYtk3pXmr3W/+gzPlT0jih5uab1+LgQe4ade0Q60tITA7WCJVSkE71UHTw7IrVqnZrjuhJYTrVWoaHc+S4qKhn9XdKUwil/hURp9DRwcsdE+PSpUv1fzS7L8Y5osYfzy95HrlxueiMLAeuOgHNOT8Jkfnm+W+KNP/u3TXQaCrd6m527+Ztau7cn1FSMhcXXMCF5Xq9+/7rzDPtKcqJfwY0sUDjDqDIXjBvh5zASdCSqNtfuz+AT5umT3zaaL/64R7uWL9h5g3OZbOMA0pnAeFWfF/B43cCMWECL6vVmtJtt/T8hnwhnikzMTvLWTpTUcGiXK/veZTz9NNH4qGHNiMqigclb9jQ+4Hd/SqoXn31Vb+X7kCCbNy4cX4vERERohCc0mYbNmxwPHf9+vXivuOOO87ra9MAZxJD3333neM+o9GI5cuXO55DBeriSwh3/xpUKpWopyJ68t6Dibq6OjQ0UJ3ScsydOzLg/9POMi6OBcd333mPtLx8aDmuVDTmgaeBUnsUqAtKO3BioudBh0z4aAOjDc2fH9WZZ7KA6egY2X2PISVNkDjTre7CEaEKJKjiJ4rnhsGMS497GzpdPoYN833S4PNgRKMyvjkWKHoX+qblePW6X+O5X92AxoaOXo/pIMxmFsoZGZ5eLjOsfNb9an2bOFN1W6yOHGwvmgI11QGV/q9by7JxI39GjabK67BoBaUOpq8E1RtvuKcbf/qp7yNGFRWtg1ZQ+StId+0ujYrquaAi1GoWUsXFbSH1oHJ18VZmBqLiG77OOJVtTYKAxMyaq9dghHkuYNIjvGo8Xpz/IW46PRYvvLAT1167G1Zrhqi7UcjP5xPkadPcI70xMc7tRq/f59wH6JK4zpTY+VfA6lz36DMpI2jIxsG3Txt/jwcOhN7PjCJytK8j0aoYKjtE8K5LxO3397wb1GuxUSqt62ocONC9k681JVxrPCNjhtus15oa/9MnguWuu2bg179mQUonVzfe2H8Gv13pUR6Fao4oRfb88887LAjKy8vR2trz0J0/xo8fj9NOOw3XXnst1q1bJy50m0xFx451do+RAKP6J2WFvuWWW8Q4HLpv165duOqqqxAZGSlsEJT/pwJ7qpsiwUQRq8cff1yIsHPPPbdb7z1YUToRs7Ozhc9WMAwfzivnli2eByeqDyKPl8/bgMYR9qGi668GOjyjeI2NvGNKTfXcCdKGRaKKWF3iewOYP59SkJQy1Lm1NAdFl+4+1zOmgCk/BaodI2ff419DXJz/HYlyMKprd4lQNe8HVpzPRqGpC2Abfyes1jD89qT/wHaYxzD0ZpAsYbVy6iAnp0sE0lCHqCZu2/6o2YTlhe7p1ZgYG95ff5F70W8QUPfmHXdwjWFmpv9B2soq19HRN147ubnu6eR9+7h2pS85fNj5nj11vB+IgvRQCiqdjoVURUXPfImULtvsWE8bF4OBlzEuzh5hU2qUMgOn+1zJjMnE7Zn/AR5sR/iLy3D14rNw+PB84SnV2uq+TyLH+85O2p8bccst7rP9YmOd+8FjjulSNzv2ZkCbCLQcBEpoLI5n2s+XoCLUahZS+fmh92lTolNkU0Ciyq12aTfXvq4tXevXK0uBisbDwvi40N2u4DV2QUVzE12pta9isbG9jyrfdttEREWxx+SSJd59FvuDbu/lioqKMHnyZJxzzjm48cYbRepL8Xz64x//iL6C6rbofalrjy5TpkzBG2+84SEeKHKkcMcddwhRdcMNN4g0XllZGb799lvE2GPJGo0GX331FVJSUkQ9GL3m66+/LuwVzjjjjG6992AXVIr4Iz8SCkP7Y8IE3tmUlnoWG3+y7xPxfKpTiJ/1LBA/hTv/yOOoS+qutVXv1h7cFSX8u6HMGf3rCkU/9Ho+aO/a1Y3iRUsnUPGdV0GlRKhGJgSO2CH3YpgsGkwfsRXTR/jvSFQORvUd9bDQ2SqlKVaeD5gageTjgBO+Qdi0R3Dnu38X/5dW9hc3X6+gBVWSU1BxVwunRXNyuhSMVv6AMJsFpeEJKDLzb+cKZeg/WG9vKqj8Pui031NP0Y6Lz9Iff9x3/VR/CCqjkddVtZpTSEAsdu3yXcMWCgoKWge9oPIVoVKaIXorqCIjObpaVdUzZ/qyZhZUWTGeKXSj0cXFu+Uw0HqIC8DTTuj2+4wdy+up2Uz2KM7PvHMnlxzwY1Zs3swnQTpdEUaPdq89S3DJaF9+eZe6NE2Ms5Zq90Nu+0BFUO2ucTeTdkWv59TpoUOhD0b8bx9HnS8Y717IX17eCbRkIbyajwnKOJhAhIfzMlZUdC9Ft6bUU1BRzdjq1RwdjIvrff0YdZG3tk4UUxMoDXhEGXuSOKFCbnIfV6C6qh9+YOOuviAxMRFvvvmmw9OJblM9V9ecMUWhFChKRYXvFRUV6OzsFOk+qslyZfTo0fjoo49EnVRbWxu2b9/uYdoZzHsfCYLqoz0fYdwz4/Di5hf9PueYYzjS0djoWbfkZuap0gHHvQWE60QnnPCtcqGzM8qtPdiXoFpfZq9z8kGkvUutpKQboeHKHwFLOxCZDSQc4+bJogxkDZjyI3RJWFPMnT9LZ7F3iy+UImAaFk1ePjjwHNC0B9ClAAs+YesGAE98dT22Fh4Dta0V2P9kr1J+xcVK7YUF6eldIlTCtwcwJ89z7GBdxXR8fDgOVo7BnvI8MfgVFZ7dSt747jv+HcaMWemoM/FFdHSY29y/UKNYRpx1VgG0Wo48fvpp387XKy52pmp7O8+u/wUVL290tMa/oOrwL6iio5WxKT1LeZa3lDuiSH5dvCvtJ0Upx3G9UjeZMMGzm68ren0ZnnmGI216vaewOf543o/Fx2/FNddwGs+NMb9nS5LG7UC5c/pDoJQfERvL+7aCgtA2U9A+bm/tXmGDcUreKe6PVfJ76UrmOEbCBINGw8taWdnZrfl9O+2djkpnN7FihbPrPSnwTxQ0AymmetzlR51xXQch0zw/igBJBq+gIv+lqrYq3Pn9naho8W1gN38+pwtMpmy3Tj/aSH8s+FHcvmiiPVUUPwmY9g++vfWPbARqx2jkLWXkSO/F8LOzWVDtqNohhI4v4uJ4Ay4vN3c/3UfF6C51F0rtBg1k9dYF5Y3/bedUw1mTv+eokw+oq47cmonGxkPAzvv4gakPOu0KhOCy4P6P7+U/SIT6GGHhCnUKKQch18ia4iFF4XjqSHKjhgVV1sgLxeelejXXaGBSEouRb3fZi7pd2r/p5GR39W6vfkQVFSwMZ84MfGapDF9V6mJCjWK4mpioQnw8i4ADB/rWi6a83LkO9NTxvq+g7dufoKLUuXu3aU8HJHMarKcTuMpby31GqJSRNomJWqDqR6ftSQ/gkwz/KSoy/iwp4ehJTIznuvPXvx6LzZsrUVMzVQwK9kCXCIz+Ld8m82N7lGpi6kRHRLzV6D0ClZLC4qa0NLRdfkp6n8bgdN3PffONPaVazU7x3xz+JmDWgtDp+LuprQ1e/K0vXS9OMOnkNSPGmYqrrXWKsvvuc0+xHsl0W1BRsTaNnelKaWmpI5UmGZyC6nezfieMOJsMTbh52c1+O/3Cw+lMV4MXX3Smud7f/b7Y8Ciy5JYuG/M7IOtswGoEVl0k5ubt318Hm4035AULvHfG5cTmiFoP8s7xN5k9IYGFVHXgVL9Pd3RvlgmBLDcUvt89G5WNaUiKavDqOePtgBS1/x+c6oufCoz8tdv/hIcb8dmWs9FqywRMzUCZfTROEF1RUZoot66o8nIOv6tUXQ4a5naggb9TTdpCx7iHT/Y6036KSenX2+2FuZXfiPZv6iac/sJ0TPq/Sch9KleMqnClrY1TwdnZ2qAFlZLGCTWK4WpiohrR0byjr67u28L0qirnwcdiOXIiVDwPUzFj7Z2giohgAdDZGRbyCJUiqBLi1dzQQaT3fE6sWh18EXV8vPcTpunT0z1PWFwZdyuPq6KosN3igb5L6vYj9tbs9fq0jAz+HmtqQnvC4bApyHUW3SuDn8vLOTKVaRkrLFjot95U7u7n5I2ICD65rqszd7t+am6Ou79Xfb3Bkao/5pgjo1u+TwQVzcKjkS4KdFCiYnSyG3CtO5IMPNQ8cOjQIYegojbqF896EaowlUjdfXnA3gXnpW5p+HBOL733nrNuiYzylCntbpAwmfMKEJnDxZkrzsXyHzn9olKVIjXVezE8rTtKlIrOZHyh+Ko2NAS506EZfB1lgCrSY0fsKEgPJt1np6VNhzdX252Vu6Q1u0JiZ4IWSKuwd83NeNIxP1AhLIxmWIVjn+FMvqPg9aBdpbt2RSnhdyUc74Cc0SmNp88EIoc5HJKpjkqxqUhNZTGycu9xgDoa6KxGTel3WPjfhdhWyZHGFmMLznn3HBFFVOjsVIrgA0+IV6bZK9PtQ43RyMuQkqJFfDzv6Ot7MfYxGGprnd+/1dq78Sv9WZTuGm32JaiC8aEilGoPgyGsVzVU3gSVzcb7i9yEEjbWpXRaoufcvWDR611rL/l2eHiF2Dd1JSmph5EifYbzxIlqqYJM++XmssBtaAjtevRzkafvE/H++0rDTBOefmocThp5UtBpv6goFpt1dcGnedeWrhXXx2W7F6Q3NvJrqVT9O9lg0AkqGjZMtUgTJkwQdUnUMTd8+HCR7nv0Ue/DIiUDA9WFmUwmYQuhjL4hB99b5/K4hBu+usFnKPrMM3nV2Lkz0yFE1pWuE14ujnSfK9RCvOhLrnOoXoGpbbcjPMyC+HjfbvLErEzu9NtQ7rswPTOTD8pNTUHOvCr5xNlmba9b8ubl1J200rPf3QizVQVUfstzDX2QHJmEJ5Npw7IC2ed5LaRVqXhnsrPF3rVEdSIUqeqBq3RNDb+WTtfpNd0niuHDwkTbNNlUUGE71VYQ6el8VOw0JjrG8ny76laRGqQDQdEtRTht1GkwWAy4/OPLudBeCHVOa44cGTgiLdI2vZhdGAizmQ++aWkRjuLhxsa+qdfq2r1K2Gx9OzYklBGqpiZDF3POIDtVvRBh36yMxu43G9B6pNQxdhVU7HHE4iJLZd8npMwHVD0X5Epkhfj++0ZMnrwcy5dbMHPmIZ+TInrEhNvFjExh81C/OahOv1Gj+LO2tXXPw9Ef9N3uq90n6qeOz3V6tBEVFfx7LViwFfPmZeO0PN4HfZfvtBfyRVQUb/8ufV9+sdqsTkGV411QqdVHuaDKysrCtm3bcPvttwu7gWnTpuGRRx7B1q1bvY5okQwcruN3yFtL4d6F94oDM6WR/vrTX70+96qrOKXX2ZmH1lajmNJOnDD8BLdcuBvxk4WTOoW+Z2cux5NX/AHjxvmvXwgmQpWTwzv/9vbgbB9Q+onPMRUH6r17Ofmjs1OHwpoR2Fhrjyjt+KtHR6PC6do2nBIFmKFy1pZ1ITycdyZlLcOAmDFcl6V47QQQVGRW6Eptrdmr+aBSkC6KeekAqot1FKc+v+l5cZ2Zyd+nzRYLaxo/ltG2R9SCvX3B22JwNI2roLqwndU78d7u98S6oHT4jR4duDEjIUERVKEfAEudQhYLC4DRo+OQksK7s5aWvq1rch9mq/WcKDBAUOTRn6BqaTG6DR73J6ioLMBk8V0vGBnJkSmjsfvilSYJkOM/nZx1naXpOsom0cQHY6T1PN1HpKY666IWL87Fjh0LhR3LZ58diwkTVojLmjVleO+9/XjwQT7B6xHRI4Fce/R+98NBdfqNH8/bktHYA+NiHyjpu/Ep4z3qp+rqlI7gcLeJFfScrj51XcnLqsWjl9yB+xb/BVh5AbDjPqDed6nGnpo9oiidyhRcR2W5DktXZn0elYKKoh0jR44Ug4d/9atfCZfx5557Dtdcc41bx59kcAmqjAx3ARSljcL/nfl/4va/1v8LWys8NwrOa1P0SoWfVxThhc0viPuvnHql/zeliMxcTmHddOq/8chFL3iMZXDl2MxjHbVNvmbgjRjBB36DIYjOSnIkp866cA2QZRdALiiuxWOTg/MQ27GjGs3NU8XtXfgN10lQoWyxuzOywNiEK0y8M/spchYQw15NXVGpeGfS3m4Bss/mO0v911EVNTlTfq7U11vduq4EJPZq1zojVHZuns11czRxng68WVlKdEWD4jBOTRwXAdxz3G2O4cs0n/CPc9kO5b6f78OefUohm1nM0gqEMs3eag39/qGggCqiWbBNnJiM9HSOZLa3h168udJ1mK2r0edAQtHmDnuDg39B1eHTjJXEszLf0qvjv53IyPAeCyqlforSkiTeXamt5eUPDzNB27gqJILquecovd+MjIx1bvdTKcLu3QvEZe7cLFx00Vi/JrVBMeFPfF3yMdC0N2DKb8oURUjFobo6NO632yu3u80TdEWZxTdqlN5xYkmii5pelDS/V8q+wJsX/xJ3LPkHThq7ij/frvuBZdOBb+eJrISv+ik6ae76OyuzPbXantluDAlBRb5NBoMh6GJeycBCdhHeBBVBqZylE5eKsOwt39ziMf6FdiwREVzn8NaGz1DSXCI2PK/pvq7kLsXvXmOvpfnJ7/LZjA+Po7iIOIxLHufXj2rsWD5wW61JgWdeKdEpmgavjfeYH6ZEeoKNUL33XoGj5uKK60/lcRPE5puEcaYD+v42/AaxtjbsNwIfwH3MiyvK/LeODguQeaYz7ednBI8jQhXvHqFSuqxiYlwKsVsOce0J2Vkk8NR7YvGIxULA0kH3zz/82d4BRYLMht+t/DfKzEBEOHDXOPe6i5tm3yQiF5QufGcbmwWGhTX4L9K1owxftdlCX2u0e3edY1kohZWREeFm19FXGI3u6ZmezrMLNUp0ikwc6aSpK62tysHLd1SA6iyVqIa/OqqoKP7tzWZVSOunFEE1bfgahJmaAE2c2zrcExYsyEFRkQ0HDkxHn0PTFbLJFNoG7HnU0elHRqbeOmYzM0ngsCDfvj00/mnbq1hQTU3jE0FXlJPSUaP4pICO5Uo6ThFAHlAjzopzEKVpw4bDx+K2d+4Cpj8J5PyC/cEoGv79QmDn/W77MEdBuotdgkJrK/+fVju4ZmH2e8rv97//vaiVooJnyeCGOi9d5xp25bGTH4NerRfz9BRXXVdSU/mA9W0Djye4etrViFAHd/b/7Lc34Yr/ex1W6iqisSZfjAV2PQjUbwGs5m75UY0dq4SttYFnXtGZE5FzvtfhwtTCSxYCvpyku1JYyOmclJRi4RYszkBpMGpnNbBqKRuIWgzA5ptF1MqKcFxVBVR2NAYhqKxA8lyu8+qsApr3dbuGqrmZN2G3MZpKui9pplvtCe08nzqNG0pe3voyXt72IjD6Q+Ccq/Fl6Uf40Z5t0dbaIwN2YnQxuG7GdeL2FxW8Lmi1wfXLJycrkSldt2cXBuLgQU4nazQs1nNyWLSZTH3XbUyfgYbZulJd3bc2DaFySVcEVViY/zRLMJ1+iqAymTQh7fBT2ukXT7J7GqYu9Gjq6Ak0LiY6up86MifcxdeFbyLWVCdS577SfnTiqtGwkNqzp4ceFN0QVMpUhWHDnFFWpWDcq6BqLwXWXi6yDPsNZ2De/avx729+A4y7BTj+A+DcYiDPPnR9533A2it5f+jHId1VUEVEHOWCiubYffzxxxg2bBhOPfVUnH/++W4XyeBBmT9Izu7eoA39znl3itt//O6PHl5Qc+eagMyNqE/cJNIA18+8Pqj35TqbGLy56gqUTfoWiB3HEZMd9wDLZgAfxgM/LOZapPJvcHz6FL+CimdesZDas8dPsWxbMXe3IQzIPsdvui/YKGt5OafUEhLsdTLCzPQd7jyq+gH4dDjwaS5w4N/i4e0512Fdp/90iVrNO5HOThu/nt1409Ei3gWqbVAOQl0FlWJsmZgY5imoXNJ9CrRzu/HYG8Xt67+8HrhsKTCNZ3BmjrrM53KQmCYOWdcD8YVeDRC9kZLijEyFKqWhkJ/PCjAystntIGG1xgeOZPaQd96hdUhjj9BxGra21nBEmHq2tpodth29FVTKcGWLpfvt/sq67M2DqqGBl+3ECctDku4bEJJnAeknAzYLsP0eR9qPfN28ERWluKX3fEiwQpuxzdF4Qx5UnvvlKI+pCoqlgVJA7sb6azkSnzAdRRmPw2zRwGRKdO9unP0CMOsFLsgvfBP46TTUtlU5JjvMyZ7juZxt7rM+j1pBRQ7hF1xwgRBTmZmZiIuLc7tIBg8kfgl/Q5xvn3e78IOiAvV/rvmn22OXXJIFLHxA3F46/tLgRrWIqI7SBmJFxoQFwBk7gTmvARmncQjf3MZ1SLv+Bvx8Gn6d/0dsHwac2/YzbGVfuQ0Z7TrzynXshwfKLK3U492MNAMNF/ZHVRVvIqmpLht+whRgwadARDpHluhCt+d/gNZhlwQ8GGk0iqCyv6bSCaiYGHb9WE0lIrJG0cSUSPdRL+3tfNadnKzy3uHnhSdPfRJ/mvcnjEochbC6EcD2y/FL9b+weA6naVG3ATC5NxOQbxc1JAgmvofo6ODckjkqYHZL54SK4mKOuMTF8YEoL09J8Ua4FTeHkqef5t81Le0ANJqOI0pQtbUpgsoUQkGlDWmEqr7eCI3KiPljN/baf2pAOeYRvi56G+fGR/uto1LW38LC3hdoUxSM9hW0DigeWAqu0f2sLKegojIAstIh42fa1zgg13eankD1qPPewbgJSulIrH3klQujrgUWfc1d3plnYH0Z15JSOYc3A+X2dj4BjIzsmxOfgaLbpxevvspns5LBTWNjI+rthjw04NkXVG9Bqb9LProEf1/5d9H1sXA4z7nSTywAxn4BWMMxvmZp0O9dWEgbbgrCwhqhVtPGFA6MvJIvVKBOReNkPUCX2tUIa83HFB0wRWcElp8JRI8CZj3vtjONiGgGzd4uLPRxoKTcff5/+fYw78vqEFSJwQuqhgYuqs7M7HLuQTYD5xQB1T9zoXryHJG6S6rZE/BgpFZbnREq17Nwei36fuxFwd7qp7pG1jo7nT5MAmMT0GQ/E6Z0ohc0Kg0ePulhcYmL2y6K7hOHrwWihwNRI4C2AqBmFZDpnFBPUM0dDcbGpPcQ1+j9tbvCRb50OhqHurqeDdL1hb3nAsnJLBDY74wOSloUFDT59D/rKQsW/Ixt27i+7Ne/Bp59thMdHdQ5ZToiXNKDFlT6wIIqJkYRVJoeD0b2Jqionf7YvI2IIlduXTIQ52XUy5FA4nRg1PXAof/gitZluE8F7KrxLqhSUkwoKqJoeOgK0r2l+3iqAv22TdBqncEPqrejAvbNFZtFmm5p3FIuy9hyG//DmJuA2DHIjqb9FW3DESJTwIPrXcg4GThzN6DPwsbl94u7ZmV575psaeETwKEWg+nRxFKqn/r+++/x/PPPo6WFz2TLy8uFwadkcFBYyAfh5ORkRCkTan1AB0oaoEmppbPfPRsvbXlJuGNf/ok9BbT5N9i/Jvg5WoWFrd7duwkSCzSuZvR1wHGvA2cfBs4rx1+MY/BCE2BQRfEw1B8pJXifo8gxOpqFVFmZj7M4cgVv3MGF2MO7GI/2wjKhtZVTVjk5Xs7EqT4p4xQgbZHD70o5u6cCVMW3qStarSKo4Kx1ohQihdYbee6VK9QQIJYhlr3EXDEaefnS0uy+QnUUlbQB0XmAPnCdWFQUn2lWVNgPsoqI9RItu2DCBQB5cWVsRVRW8Ht/laqtR0NVA1FXxwf1tDSneAsP50hmYaF/u46esHKls1j/yitHOawqFOuK3nL4cAOSkzchJWWjPT0T2giV6Cp18UHzRVJkYHPPmBgWUlarLqQRKmqnP3GCMm7mBI+TiyOK6U+ISQl6SwvezQAO+ohQ5eTwSVJ1ta5P66d8TlVwqXNy1FEdegFo3sv+gpPucWxfKhWXMuzf76PeKzJb+N4p1g0zM2Z6/bfWVl5/UlOP4N/XC93+NEVFRZg8eTLOOecc3Hjjjaip4YK6xx57DH/8I7dXSwYe+p0IMl0NBEU93jjvDczLmSd8Q679/Fqc9tZpwi9G3zgK+PZx7NsXfK7766/5oJaYyGfMAdFnoC3jTFxXDdwVdQkwigugRVvuphtFCjA2lg8wlZU+luPwK3ydcx6gdRkP3wvLBMJg4ND4sGHBtf17DEj2glrNItGgZIoopJ6ywKeQUbqismOzvZzccDohI0MfVLqvK/Hx/L1WVCjpxxOdw6W7QGJRW8W+Oqbhvo1Yu6LR8A68rCy0Kb+mJv7MOTnOQLtWy+nm3buDdB8MkvZ2dxGSl5eAmBj+7t5+e4HdwqF3XHPNdtTVzURt7bF46CHf/j49LUp3Cipzr1N+cXF8gmGz9VxQZcV61lCtXm3BSZO+P3Lrp1xR64H578OmjsECPfDP2FrUebGGGT2av8OGhpjQCaou9VNERUWH96kKLnVOoo6VrDeUOaST73frltbpeLvKz/ddD2mz2ZyCKtO7oGpv5203LW1wzcLsd0F18803Y+bMmWhoaHDznjrvvPPwww/2zgzJoIlQBSOoCL1Gj++v/B6PnvSo8CAiP5rLp1yOM2r+BZgiUVwcfPpk/Xo+yM+bF/wBVNmgfy7bDMz6D3Dsc1xcfvD/gA3XIjnJ5DH2wwFZMhS8xre7zM1ToIgRCcTuuqSbTAlBu4IT5LeSEJHg94Ck1bKgMroGIZQ6Ki9+LlTb4E1QUeG1zcYx8+zs6C6GnsGl5FJSWEjV1IS7LwdF/IyegjDsMDsvNyYHL6giIvjMuKIidLVGlZWtqK/n33H6dGfeICeHRfz334c2GrZpk7vjP1lGKAOCidtv5wNZb9iyxXkisGxZZ8gjVKKr1KXLtNuCitLRVT8L08o81ZeI0TfDZuue5xdFwZXt0FuEqjg/A3NH24ujqbD7SCd2DMIWfAyjDbg4BjBsvNHDHmXiRI7+d3Q4Z3T2BBIyyogobxGqmhre4Wi1nuuW0mlNM1VNh18GDDVAVC4w6jdu/xcdzdmH0lKj35RuVVuVqMvy5oVFGAx8PMnK0h/dgmrVqlW45557oNW6p0Byc3PF+BnJ4IpQ0e8SLGSJcMe8O7D9+u1ouLNBRK3mz+SdXkNDcC74331XKM6yiV/+0vtQZG8oXiW0Q6BOFTG9/bi3uXMk/1X89fQnRdynocHLGc3+pwBzKw8iTj/Jb/1URnSGsAEIhu66ggebMlEElSNCpRTSEzRYtcsOV6k56doVxYWhWmfXDqUYa9d1K0KVkcECtaFB6+zaiaWaOxtQZe+0csGy71RxXardLMwAgyEykj9odXXoao3ee4/GhsRCpSrHNddw1IyYM4e/uwMHQjsSZs0az8nc0S5vodH03puvpcW5rfZkfE7glB8LKrU6uAiVW6dqWxHw/QLghxOA7X/G2LqbUPyvYbj2hDdgNASf8lRGzmjCNW5DvhXmjd4BrdqEVmSx8/hQIP0kPG7jdTSz/ANgr3vzz4wZ3Ghitab1qhOWai0pw0DfrbcofFMTC2kd1ap2gRqO6Hc3WYww77Ev39hbOHruQlwcb8vl5b5F+cayjQ6XeDpR94bJxCIyO3twzcLs96J0q9UKi8Xi1fMoJqbv/F+GDNQv6jIGpq+oOHRITMQaRaaeSo9qD1g8Jw6RVFRsTkBzRb3PGWAKd9y4H5FIgSq8AmedmB70e+eoE5EVnYmy1nJsPLwCi4YtAFLOAqa/CGy+BqfmfYH/++X1+PunV7i/ZutBYM9jfHv07XTU8Pr6e0o5hTIhcWzQy3RoexUiQekTM0akaoJ+XrIuEXS4r60vBZI8nxOn7hDfqYqKqJTX1I0FVHquo6rcbBc1TJm98yZbm+y2DKX7leWzID0mHKjcBJhbAFU0oBkR1PKOTLOIZbFSVk75/8T5XD9R+g2Q6B4l0JZOgqU5A6bYCqzc/x1OHh44LZMW3YRGtKGlsr1X66IrbdXNYrkjteUI73BGqKbkhYv7O+rGB7W+BkNjYyf+dtc43g7op9IeBtryYGvl35GIDnP5LXsAiWO9jQ4+/BqWZmu3X6/KLlZSw6O9Ptfa0iaWN1bV6ve1k8M4elDbWsP/R12sK08C2gsAqnFMOwWWhh2Ix2G8cM11aF65Bdo5/+Qh6QGorGGj3PSoNIR12VZpjt/pk1jEm2KP97ktH4lUxM7HbQW78Dhpp213AOGJQM7F4rHxw/SICT8AizULLz61GXffPaNH77G9iLu6JySNg7aTTl7cT2AM9a3i949Tt3j8/vTLzU6fCVQtg76jCFDHAukXe/xfdkIrysS27Ht931TEUfKZqcd4Xw+tNuhtdALXhpFpqpDtE/qUYJfR1k0uuugi27XXXituR0dH2/Lz820tLS22E0880XbVVVd19+WOGpqamujU2dbE8Qd58fId/OJC2HAfbA/N7/LY8bDZ3oDN9hZstmths2ns90fBZnvEfv8d/r/TW0/h1775tL7/7pdcwu/10rRuPvcu+2c50f3+1D/y621ND/D8xfbn/6mXn+FY++s84v3xX53Dy3PHSXI9HizbsikctrB7+Xepiurdax1M5NeJ+rP9vpvt68MTsNmS7feFwWZbYr+fLicH99qfjuXXPvZaH//zsP31Zg/8dxrKy7PH8uf+5AH753sNNtvk0L7HfQv5Pa48t2fPf2ABbD++aF++S3q+HKdczsvxnxkD/72H6kLHbXH8bmrye5zvdsrvySefxPLlyzFhwgR0dnbi0ksvFXU6lO4jB3WJpKfM5VIhrO3azLYSwEv2KSnUaEUR6asA0PxR+t96++N+2GXPgkz0zNyEnGT7iXVtd6PZXDMP8CQeAY1Kq7anlrIDmMRDKQ1jP72es9d+Td+tl+bORVyeh+XBledJ+oE6PWALA8JsQFJ7aNbfNi1gpJm21PlOSQnKuitZbDq8fEEV+fa/L6dK/cCvXWlfl9O9NYRToHGYfTv37oF5xDLO/r39ifY/a+y5IRqtGcJtaIe9F2FqkL1AXTnZApwQCZjo+/c/q90nNopQ2UvjZobABmLIp/zIzHPbtm149913sXnzZpECvPrqq3HZZZfJAcnBQGYjscFbEPQEsrJIt8/vqygvR2wv32/SpDUoKDwOi09cgc8+s3ej+RjLkSTKL9RYsbwSM2Z4H3nji7nl64G3F2PtMUmwvVDo5rm0bVsV7v3tTjx77Y3ITi4DlExU1EjghHeAX/n3q9n1n9FAawUmvfsDkMkFmIG47bZ1+M/zcxAftx1lZZ5Fnr5I+vnPwKanUXvXzcCiBz0e//WvV+G99+cjPW0DDh928Wmp+QlYcxZwUjbwGI+hKaehyC9OhE6lQ1JVrVta5aGHNuPBh2YgUr8XNTXjge+nAm2HgX/8D3jNey1ZV8rKmjFmLK8fRYXtSE62q8CfjwOadgAbXgWyLxR3rV9fjhMXZ8JaSAnNY7ApR4XW+jJEa/3XK/3ylyvx4UfHIyN9Aw4d8u5L012uvXY13n5nHtJSNyI/nwdsK+mEmFjnd9TWSyeXU09dgVWreZ1//J87cf31pDCcHH/8CmzZugCTJ63EunX2OrgecNdd6/H0v2cjDLWw2b2C2lqDN+mpJo+j1+aIOhhVi13xdmHJkhX46ecFGDtmFbZsme/zteJsNqifTIDZaobt4RlA02YuTt77hPv/xRXD/GUOdl1wNkbofgL+kQ0sWg1ofRdXV655GFjzINIvvAp48Rm3x7Z++gSm4a/YVjQRx1R6n5pwpDKutQL4z2gcSlHBeFMZtBsuBmp/Bh6NBaa/gKvvice7781HasomFBR474wLxPaXpgCN+Zj60udArr25xIX581dg67YFmDljBZYv99yPT99wBVDxCd5vBU7ZV+BhIkz861/b8ee7p0KryUdDg2eNW35jPupfmgKtSotJeysAtc7nNjV61Gps22afEjHYaW4m8RMaQTV9+nTRwZeQkIAHHnhA2CP86le/EhdJNyFPqAC+UL2lqKAAdJJJv1esl8HI3SVrjAa7C6OwZX+832X/5LN9aBfhlRZMnjMc0HavVmz6iHliQ6ztqMNhY6Vw8lYYMy0Hn+3Mxnd/PIBtn72IMUmHgfgpQO7FgMb/Ab2+ox7ltEOjCNWwmYAuuO+/sEaNdkQhMSasW79Zchx/57XmJq/P0yZEiddtMse4P64j3x010EGhulrRZVNW1+BoMQ9zrYImMdSoEq+jo4nG5PVEYoqqIbIWAl6G43ojY1Qk2oVZnx57iuqxINe+E804iQVV01pgLIUDgdIGm3i/sOZM5MbloqipCGvqt+OUvFP8voc+OVo8r8EYG7J1v8GoE69p1mndXlOE3CP3oL19AjSaQiCqdyGATXtTxfsQv/jlFCDKPewYk64Xj9e0R/fqs1U0a8TrREfno62VitOj0B5mQmRkcG3l1VWsHFOj03wuR6OJl9Wsi/C7rCRHSZjlmSuhIzFFxrVT/wpEuj/HpA1DR0c0Pqz4K26fXAq0HAR2/1FYBfiiyt45mhaX7bEM8aafaKoPPt++GMf08T6yv8mIzBMzRFuMLThsqsf4Ez4Flp/FXb0bLsav512Ktz9egOq2lB6tRy2GFhxuzBe3pw6f4/FbEfUG3u+oYvWe79FeCm3l5+LmE41AXMMuLElZ4vEawyfy9tBhzvK6nOvz2UdvWvo06OI8HdKJgmreHyTnum+7gxovdePeCCrlt3fvXrTZi7Luv/9+aeA5xCwTAnHZZZwvoyiNt5Ee+/fXITFxC371K9bnKSn7oO2mmCJ0ah2mZ/BE+LUl7nOl6MCi0xWhwxiJN1fPBWY+DYy6JqCYcp2hRbMLY3XBR+uqq21uXk3B4uiSavc+zy8mRuV9sCyZeybOcLNPUCwTvM09q6vj7iq93gjU2r8vcpZ28Y0JhKtZ34EDLt5NXvyoqqq4q0+tbnO46S8v9OwE7EpcHK8XRmPohtN2dPBvo9F4+pK98gp/vxZL7zuIEhLY+iMnZ40zeudCYiLvQltbe/fZmpqUmZHUHcC3Dx3y7mPmgDo6V10M/HAS1BVf+u3wI8jVPdhxHxSduFYJkI24Aoj0XP+U9vuKWh0w7z3uyC3+AKDxUT6obOPC+a5jUWBqRbaKi5m/sLvRDyUo2k5jWIh9tft4RMuJ3wNjKe8HzEt6G9sfnooZw7gbubvsrN7psKJQ9j9d6ejg7cKrhtn/NGAzY194GrYYgHWl9m7hLowbx9YeNluihzcbsaFsg1+HdKKujrejESO6PwdysBOUoDrmmGNENIrEFHld/POf/xSRKm8XydATVJdfPh5hYeQdE4mvvvJMJ/zmNzvR0DAdBgNHlGbO7HnXhmKf4G2DTk/nAqgNG7pXJKLM0KI23u5QV8ebR1JS9+ZNKe3gvmwTlLEdJpOXg7Bin1C90s0ywZupZ3OzMrHd7GLoGZz/lCtarRfjTVoOOkCSaz0NnRbeT3wA1WjasTDXLqiKAguqpCT+nGZz7zvuuooDnc5TUI0cyaLZak3s9ZDkjg7+rebM8W75MHEiH52amryfjQeL8ltGRZnFyCaioMBP0RxZWpCNQfF7Ykj3wqIncX40dVT6dsdvb+f1OZigwLDIeFyonKvkXeP1f5T2+/p6M5A4DRj3B35g0w08r9OPbYKHoKpYBk24AYerRmJ/9dAsznMTVARZEsx4Clj4BYyqdIzJOIgVfzkP1p/PBko/BSyGkIycIUj8FBZyei2GOoJdoXFVB/8jbhakX+B3UD0Z2iqzOffs8dy/rbc/T/G18kZrK4uyceOOkOhUqAXVf//7XyQlJeGLL74QSvvrr7/GJ5984nH53//+1/dLLOkTD6pAUYz4eG7dX7GC5wO6cviw+4Fy6dLgPKv8CSpvk89zcvigVlIS3qOzN2Xqe7A0NbEQSE3tnsdQIKfpuDiN78GyimN6TeAIlSIqIiKsYiYiPz84/ylXIiL4haqrXSJxdAadaK/lqPqJP08tf/86XadDUNEZabvJv8BNTFQEVehM/Jyf3VMwjR6tGGSqsXevb7fvYOjs5N8qMdF7xHXuXE6RGgzZMJuDnybQFfsEL0RFWaFWN7mNcPKADoCrfgFYTTxwnNLeAF5LA8ZG+P6OOzv5M0QGEbg7K6IdkeFAvSYNSPJ+cBRCXthK2NMhk+8DIoexZ5XitB2soCr5WFx9vPF8aLWhGeUzWAXV3lql68NO1pkwn7oDL/30a1itYQgv/xxYcS7wcTqw8QagWelW6dnIGeLBB7f49kw79B+2W4mbiIyxVzu2aysZuXaBDG3Dw2u9jp8xWozYWrHVb4SKthGjkX/7Y47p3UnIYCSoI9PYsWNFEfrGjRtFhIrqqbZu3epx2bLF+aNJhk6EisjN5T3+1197hmmrqtyL9ZYuDX5WXlfm5nQx+HRh2DBeXWtru+fOrIxBoLx+d2ht5YNTVpYmpIIqPp4FhsXiJWKTYi/SpJ1oZ7XfCJVi0xMXTRN67c7lKd0vjI6IUCINXeoElLSffRyOiETYU4xkBEgiz2Q1OcL8vkhJ4d/LYgmdoOrsDPMpqOLjI7h+CsBHHxWKlHRPUdKUCQne14E5c2jdJ6EZgc2b3d3Uu0NrK6/bZOWn07GQKivzYZxKRraGWiB2HHD8x8DcN3AwPA3R4cBSo+/fwmBQeY9QeOFksJDfEDHJp79URITF3aKHUtbHPmtfxn+xsOpCVWuVp6CiSEzZF0NeUI1NYrPN/XWeAikyPgW/efkRTLxzN/aH/QrQZwKmRp4U8cU44OcljhOb7o6cIYxGpzgym23u3/2+p/j2+NsxKW0KIjWRwiDUEUnrgjLe6fBhd8G/o2oHDBaDmBThWv/qytat9PuTojdh3rzgjZ+HlKCionQaNUPce++9iO5SHCsZ+oLqT3/iHWB5+SwUFztrbaimymx2+hyo1SWIiOh5bpyEA9U6WWwWrCpe5fbYmDF8QG5uDr77ic6alJ3NsVnObrBg6Ozk9TwnR98jQdXY2Sg6pbqSkMAHaavVizDUJQJx9tRkzSpnhMrL3DNFVEwftpejFbQT7oG7dHQ0R54aGrqckboOSrbZsGYNi4qMjE4RqVbEbyBBlZzMn9NmC91+Q/nsLtOv3EhL4yaEe+89FuPGxeHDD3tWm2Iy8bInJnoXVLSuK2fsBw/2fH5gezuLHWrIjYzk8FtlpZfaPZqzRmJFmbNG8+LC1fi3dRzoODm+YzdQ7r3n3Wjk7TI2NsBuv2kvRlqqxOv9ZPN90NPrrZ6eh1lLeHwRrY873UtAWo2taDPxP7ulJss+FxGSuvZkrD88GzpdcAXARxqKeznNFKXARFd0unrsKx+PD/NvAM4pBk78Dsg6m9sEyr8EfjgR+PlM8fu4QpGknVUchaexYd5wHeD96KMu42AK3wQ6K3moce4lYnSWMn/PVx1VVBSfXBcWugv+9aXrHdEp1w5tV1autDvla8p6dZwYrHS7KJ3qpFpbe9mLLDmiUn7E0qVjoVZTLU043n6b2uaZzz8vsK9GzTj33OVYsaL308NPGsEt/98e/tbt/kmTWEgZDJ7tvL6gHQ2JKjpryksIwijHBZOJi7tHjOieEEjQ2ws3aVROh2dhcWKiIjB8qIFUe9qveoVjMLK3lJ/BwDutGcN2OJ8XhFt1V6Kj+cDY2HW+L42voQ6v9lIc3LoBJSW8o73jDu5inJU5y2+9hUJ6ulIrEeG1kLUnGI28nkX4CFZOnOhaf6LGM8/0zBRHSVMmJ+sC1qCVlvbcAKqzkw8ucXHhiI5mIVVd7SWFWPo/nrFIqbVhv3Dcvb69A/9Wfr/NN7Gg8RFti40NcCDLf1VcfdkG5Bt8fyaluL2jo8s6N8VuFVLwX7d0lZLui9JEuVtt0Ow4ml944BSQNaK3urihAO1/whCGJkOTY56hN6FSUNAJhKt4jNbCT4El+4DRN3AHcPlXwFeTgU2/56kK9HM15AuhStYqY5K8Zwdqa1mkDh++GtnZ9sYcSunt/QffHvsHQMXrx5ysOW4CqSuJiSz4S0os3a6f2rWLtUNsbO9S8YMVWZQ+xCDhW1NTE/IIFZGTw8XJTz2l1E504tZbeeefkbEHn3yyEHPn9j6Me+oonhf3zWH3M+2ZM9McHSbeug29sbGc50rRWZevsyY6yE+cuAJjxqxEeXmLY46fzcbF5Xl5wUfEghmQnJCgHJyjvNfdpHJ9kq3iO78pPyWFMy3LRVD1gLg4PjC2tHTZHagjHUXuqz76UMwNjIzcg4suGutWJxEoQpWW5iw+raoKzZgJIzmeioO69990/nx3EZyZ2TOhb7VGuaUtvaHT8bpYXt7z4c8Gg5JaVCM62uJWV+VN7GDkr4CwcLc5fvfVA0ZNAtBywFFk7IrZHISgIiFW8Lq4+UozUNPmeeBXUIrbPQQVDebOOosP2Dvu9V8/1VYCVPB2/sn2M9wiX0MNmmuXG5/riFL56igtKekS1Y4dw6nUM3dzxMpmAQ48w6nAgjewvWKbo+mG9j3esCeYEBPj8tqln7Hg1cQDo6513D07mwXRujLvEarUVF4/KyvDvAqqWX47/Pi5MTGhG5Q+mJBF6UOM4mIWPWTmGR8ffPt8MDzyCEeGqqpmoLKyFeefvw6NjVyXdMYZoat7WDxisTiT212z2xGhIXJy6MyKjzIbNwZXr6KkDf2dNV1yyWrs2bMABw8ej4su2izuu+YaLoqnjqsxY7pfPOl1wKydpCRnZIpEqQcZJ4sOu7DmPcgON4vvwqOI1y6o1CoTxiXvdi9o7ybx8bxjbG31sjOm9A0dBMP4e5kwwWk1PyNzBsLDwkVasrzFdwQoOpoO5NyxduBAACuAIGlvZ3EQF+e9WPyKK0Y7uuWIlpbuH6SpQ1BJU6al+a7kjori37CysufRt85Ofv2UFC2io1ngtrZ2ESrGRkc9m7AycIEEFY3/axpzK9+x637+fxeULsv4eD81geVfi9l9Rk08vmrzXQdIREeHuRW7uzHl73xNXYgN23wLqsM04sAmTgYOVmb7TeMO9TqqlBTvQsVNWFHE6sQfuCyA6ujWXolpe2/HaI3vgnSiqYlfMz7enmqkQepK48CYGwCNcw7vnOw5ju5oStN2JSeHZUNdnc6tNu6AfQC9UgrgT9hFRw/NOjlZlD7E6Iv6KQWKTKhUVNOjxquv7sdPPzn9Ym67zWVeSi9Jikxy1Du5pv2o21Cr5QP6zp1d81OeUJ2C0tav+CZ5O2h+/bUzNbp69SI8/vhW/O9/XGh/9tnbepTr91eYnpjoPGLU1blYFShoE4AUdrI+i2bRRqdBo/I8CJpMKkwfvgUR6k5AS7VXzoHK3SElhQ+Ira1e0lr2wvSZ2VSHZsOxxzqXg9I2SuekMmHeFxoNd4cePBhofk5wNDZy3d7cud5PGnJz43D4MKc4fEZ7AtDcTGfRmoCCKjaWo7R1dT23aDAYOPo6ZUq8Y5BCW1sXoUKRHIpOxE0AYpzpa2reUDot9WN/x49TOmi3u0u/xRLhVsPnlfxXxFVj+tmiOd5bakohKooP0gaDl+0jwW66S1CnmtXiKEh31E+ZWoAD/+bbo290pLCD6UI84gWVlwhVZiZ//vr6AJ5mVNt4+hbgmEfEQPWRxkLsGAZcGdHIk+e80NLCv1Gicm6Y/zLQuJ2jU5Tuc12OGDbupdqsrnWsxIgRvJ9obnaKMOX/JqVOQqI+MaCwi43tnZ3JYKXbcXAaNZOa2vO2eMmRK6iI3Fx+/bvvdu7QyfRw/HjvZnI95bS808T15wfYvVchJqbBLRfvj4LGAhE9oTC4YsfQleef3wmTaYTbfX/84zQYDDQYrxmPPuo+aqQ7otCXoGLTU45q1Nf76OSilAmNC4niHZw3yBh04fjlLr5RPUtrjR3LuZvWVi/iJGk2rOF6pMTWY2L2blxxhft6FWzaT6/ngu38/F4OmhO/fQ2sVtoHWXDOOb6L8EeMiEdKCkeNelL2uXevM7qYnu67ji4ujqNfdXXdr18jioqaYLPxdz9nTgbi4sLcPLAc2DvhkLnEIzpF6NV6ROnigGP+4TRrbGX3bNeavcREH/VgHZXO98i7ymFO6619noiNVbkVu3twzGOAOoZNZ/c/6YxQRaU7l4/qwWJGAzkXdMvW4YgvTPcSoRo2jIVUc3MQXwB5WE24EzhzF5YbIkDDEhbWfQysOIe/0y40N/Nvn56uBjprgO138wNT7gciPPfdJ43kOtbv87/3/AxjWUh1dDiF08pi9s07fpj/LuPWVv6NQ5w8GTQEtQf+7LPPYDKZHLf9XSRDryDdlXnzeOeqHACINWu6Z5gZDOeNP09cLzu0zM0+YfRoPjKuWRN41VVcvI/NPBZRXkax1Nd34IYbpjhE4Q032L2cBE147rlCjB3rey5Zb6wTwsI4MtXQ4KOWgLqlaBBxJJAX7b0I32xW4/SpX7tbHPQAxQ+G/GE8jDBVWhS0cirh7BlveNTIOQRVuX9BFRPDQqqkpHuu897Ys4ejXdRd58293P19+bqtrXti84svDuO445TP2ubX+T8vj1+7tLRnRoXr17PQCAurRWpqlKijcvXAElC3KBUku6wbClVtVQ6XdFEnmHk6kH4yYDUC2/7kRVBF+I5OUQQsaRbiUtnPjLptqVu1Rw74UTnAdPv8v21/QlLjRmfKr70U2EPTzSmsca8owlbq4qKiet/YMtgjVEp6zJXJkzk02dw8OmhPs0Z1IhYVd+J31YCNGkioY3LZTEeaVaGtjetAx46JADZcy+lCShuO/q3X1/UnqCZP5v2F1ZoCo9HiJqgW5PovO2hv53U6KWlo/sZBfapzzz3XYZtAt31dzjuPD4KSoRuhuvVW3iEo3HffRmfXSAiheoAR8SPQYe5wK05fsoQjBcXFnkXaXXGk++wmlF259Vb2pyJGjzbi8cdnY8aMn3HxxSvQ1BSB3/7WewtyMCTr/Y+fCQvr9C+oYseiTpUIbRiw2O7305UYXQeOH7vS60G2O8yYobSwR4noD6XJMjLW45tvqIMTWFHA3lhL53qeMCmCilJ+viIZREICC6mKit6H+l1H4AQi1j4oub29e2nbRx9lI1siLMx/VO2UU/i3rq/P7ZEz+/btLFj0eo40JSbyshoMLpGk+k2AsZ5TNF3c8JUIlSOVRqJq2j+53Z5GwdSssR+g+fWio73UUJEf0X57+m3M78UYKGVMk2+DWrVbsbtX8q4Ghl8uhNp1nd/j9EhgLP07GVeSmzqZhg6/xC3SFYxP1pGK0oV3uOEwTBb3mrsLL6SoOK1rkRg1ytPY2Bvk/UR8jmEIO2Udz66kqCSJqvW/AVoOi3XSaExDeJgFF+Y+yi7sFOGa+zpfe+HEEXyCRpYzyvqlMGECre+0T1ILt3TyrNpWyQIuUISqo4PXweTk7nn7HSmEdzfNR7d9XSxBDhCU9H2Eqq8E1THHpGHp0uUID68QNgnk89MX0Jn2eeNYoH+8l12UiRNP5JZ9kynTcXbkq37qx4If/dZPFRU5n3/BBYmiVmrTpkV4550FiI3t3ZgUR4Sqw/vBSKViUdDU5LuQeUs4R0jmh7GnUlcWT1gLtcqCesvIHvlPuRphhodzlOSuu/agqGgeKitn44ILWLB8uuV4mC0qTM3ZBzS7n1lTDRWlmqgV3NtZt2cnYc/SYq5U1rQCo7+Cbd4zeGbDM16tKRQUzyXFlsDbetLUSSk3dyGUkeFcTpvNv03HWWeNcPxfQUHg2r6u7NvH60JCQpPbqB6TyaU62z6KCGmLhO+UK8oBz22OH9Uw5f2ab2+5Da0tTuEeF+dl3S58m/2I9FlA7lK3ddhXp59Si+XVoFaBxN3sl0XETA8LvsoCLir4K1C/GdAlAfPecaSqldmWyqzLoQj5yZFxJvnTUUlC1+aNiAgW8hUVnk0o/gSVKEin8T+nbQZyzudI4+EXgS/GoOP7C3HzaS/hp3tOQLbhQx4pddzb/P8+oHVJKXJX9qPu3mu8zu3aVY8VRSvEydRIMvv14pfnisHgbL4YigzdU4GjPELVVyk/4t13F8JiyRA2CX3J+ePPF9dfHPhCeEkRM2bQjoZua/06U2+u2IyS5hLheeMtQkW2COvWcW1STMwOR+ovVPiroSJUKmNAQfWl3QdrbOd+j44t4pI5XF9WoTq518sbG8uibcMGZ9qqrW0SfvihCPsLE/D9Lk4BoOg9t+dRsbwy0NpfHZUz9da7g2V9Rz1etF4DXHYmTAufxO+//j1G/GsEnt/0vNf/j49XudkSKNAB7eGVDyPpsSTEPxqPUf8ehTUl9nmIIqIVfKSJmgyUjsK9ez1HMwWisJDfKz2dRU9qKqfkzGaXdGaNXVDZmxVcUYq9UyO71LZO+Ru7l9etgzn/XcfdHicLlE7c8wjfHnuTI2pBA5J77PjvCvkbHf8R3myPQoeVWhvCOSW5+Gcg2lm/aDbz+0ZFDT3DRwXqilWiVN4K07//nrc/ozEHnZ3moGf4OQw9yRj4+I+Ak1YCGacL64qo2o/w1BV/wIJxK3l9mPeum4eZL/yl/SIi+CRm795mfH2Qyw5OzWO7G38YDJwuHDPGWdA+lAhqzX366aeDfsGbbrqpN8sj6QWdnZ2orKzs0whVf0Ltt1RvQcWs3x3+DmeOOVPUsmg0JTCZhmP9+hqfvldKVOuM0WcI/5euLFq0Bp2d3KV4112hMZvsTg2VRmNAZyfVS/jeaa5oacEuLTBJZwaKPwRGuQyp7ajCqVN4FEVL8oW9Xt6srBZh7Flb6+KiTF5ErxShujoK7667GKdN/YbNGifd7VYAT2m/1SWrhaC6cuqVfCf521BLfMMOwNKGv59sRUzDLVhd4nTV7y6d5k4seXsJajT7gM446EtnYeTccmGvcf2X1wsR+4sJNOPODBx4Fqj8Dr89Jgylx16Fz7bOcLwOjdS48pMrHR5lijnimW+fic2/2SzOtLvbFUhdjEZjPA4d6n47YWUlC6jhwzkqNmmSUqOSKoR/NAmMmtW+BZW9hspjMLI+Axh/B7DzXsTm3wed5hIYTBF2GwsXCt5g7yqKGI2+3nG3I0Llo9MvJoYFkM0WOJprU0fj1xVGXGEFim46iGEJnhFVq5UPR5GRQzdCpdRRUYqMCtPPAjefKMyenelI+61cWYiTT/a/H99audX7WK3U+UDqV6KWauen/8DhHW3YW56Du176Q9DRbBJUj699XHRaUwTX1ccvNrZFjL7KL+jE+lQWVKePOt3v65FFjM3G69T06alHr6B68skn3f4m48j29naHz1FjYyMiIyNFWlAKqoH3oIqKikKioz/2yD6bu2jCRXh6w9N4ddurQlApLrt1dcOxY4f3gxeFn9/d9a5blKsrW7Y4hcNtt7mLiFDg8KHyUUOl0bCI8yeoylsq8LoWeExnLxh2EVSm/S9Ao7Jg/aFZSJjR++WfMgXYLeys3GsbVq5Uo75+DD5YPw4vXHcztFSfUb4MyGITRo9OP+og2nYnUPAaGzvaocDi+zetxYebTgWsn/us3fAF7dCv/+J6MTRbY46B6ZVVyIptwPbXjsMfvvkD/r3h37j282txbMYM5O79K4/UoIG0OuCjW77A/33/G3R2PIN9Tbux+PXFItIVHxGPx095HGePPRtnvXOWGLXx609/jZ9++VO3uwIjIlpgNFIauftdjC0tHInKzWWhM2UKHWyoaUGP9etLsXhGK9dPqfRAIkcDA6b8FMbfBhx6HtqOYtx86r/w2Bc3IzzcpSjd3M6eVcSEP/FQbDspUf4jVLGx2qAFVUNng5j7SKR5cf0nrFYWUjrd0E6c+CtMp+HDGk21OGHcv78JJ/sJPlMNFnlFEcek+9gHJByDj4tuwX1PHgu9fi/u6kZpABWYUzqfIv2UWnSdE5iUZACdux+sLxKpS61K66i78sX115Px50KHrclQJKg1t6CgwHF58MEHccwxx4hxNPX19eJCt2ne39/+9re+X2JJUAXpvlzBjzSuns7Tzz/d/6nzwJHKB62DBy0+u/toI6eiWjpYukIFmlOmLHd0KX77baHfDq6ekqT3n/JTBsC2tFh87izp877ZbO/eodZzZTiqpRNhB58RN5/+5iZkZfU+fH7++e41G3FxXGRaUkLdXjHoMBqhHsO/BXb/3c3vRhFUMU1bYftqKrt5k5ii9v7ZLwHzP8DPNb+E0azBL2Z+A6y5jKNI3YAijq9tfw2qMBVGb7sXqJ6EqCgrVOEqIYrIjJC60VZ/Pp/FFNWJTPkbrGP+AIs1HL896QXs/voah5iiZd7121349bRfC/H77gXvitEd1Mjw1cGv3LoCyUE/EM4uxu5HOzs7+fcbNkzv8FvT6djQdsOGWjHTUZA8x6sQdUSoorpEqAhK8Ux9SNy8/4J7MW24yzgR+g0338JDjKl2isabeGmsCCSoaKRQoGJ8xTKBJghQwbs3lAhVRMTQjlA5Un5erBMIrTbAcGyXSCsNI47RxmBEgrv1iyvKTMiICC+ed36gWi9lasX/9v3P7bH0dD5ZKtJsdIivKC+d1K68956z9ILW8aFIt08F/vKXv+Df//43xo51dnvRbYpi3XPPPaFePskgKkgfCKg2gA5+VPPy2rbXxH25ubwx79njXUg8t+k5cX3JpEvETsGVG29cg507ecMeOXJVwJB6byNUdGbubUCyVstCqrXV+4GIDpI0C7DGpgby7JGpLbdxZ9SOe6E2VaO4Ngfvrz/LM4XTA84+m3zFnKabc+a412xlZOxH+IQ/AqpIFnclNIqGGR4/HJfF6fBVuhlhnRVA7Hjg5DXAos+5y2vYL7DZfDPOeeJTIapE55ni0hwEFHG8fzlHUe6cdydURTxTMCbG5qjjevv8t3FeXCQuVdsd2+e8Bky6B+Ezn8Af3vyruGtG5+s4VV0vXPO/vfxbtwJaGgly02wuV3h41cMOD6jx41dg+3bfzs/O74frn1at8j2ixhdmM48pysuL8fBbO3iwnb9vH+k+wsMwsysjrkR5+AmI0Brw9R2/AGrXsVfRxuu5cJmY+xqPGnIhUMovPl4RRqqAMxqVZfTm+K9go3VddDsObUHlOiTZG36HY7ugdNZRdIqi+b6oqeH9T1RU98e9nDv2XHH94d4P3Ro3hg3j36gxa4W4PnM0Zw/8o9QI+rdYOaoEVUVFhcOTyhXq8Kuq4o1GMnQL0geCa6fznClK61Bx+rx5bJ1QXz8D333Hn1mBQtMf7uGD/Y3H3ujxWi+/7DTJvPPOvgs704BkGhkjlrPDs1BZp2NB1dbmXVApo1wyojMQNukv7J7esBX4dASw9zHx2E2vPw2rzf9ZbLBQlC4x8aDj76VLKd3jfO0TTjACkZnAhDv4jq23c6G8zYbwA8/i9RQDKFNTGjcbOG0jz3NzgYYLL9t+On79ot2XaPdDQG1wO1Y6O95ZvVOcid923G2OwvY4l59vRGQs3sxkYflcUzg265zO/Z8dXIB/lrDYeDUtDN+d+x/ERXj+9rfMuUWYwFI9WEv0YXHfrFlhQTnl33ILv35VVfeMYEmIKNHS0aOd3m5RUYr7uoUtE4gk7zPS/EaoiLAwrDA+iC0F05AWVwt8Oxf4KBU49AI/PuPfQPpij6cFSvlRd6jfEUpeIlQ+RZ+LoBrqEapxyeMcv5u3koDoaBYe1dWWoOqnfKb77CgO/jEx3Y+eUoSfIreUWtxSscVxf16eHogvgDljh9jPLZ3InaH+CAvjyNt//sMnEEORbguqxYsX49prr8WmTZscipVuX3fddTjpJHsnkGRIelANFJdPuVwIC8rlU5Tqz3+eAY2GW47fftvpF0Tc+zMPY71o4kWYnDbZ7cC1fn05rFZnyuTSS909tUKJGJCs5x2Ht51mRARH2aiw05+gEi7p+nRg4ZdARCpg4GjB5o5f4dPN50KlCs2wYWLiRGdN2qJF7nUu//ynvXZn/B+BqFxOE301hf1uNt8EiuA/1wi8pD+Z00xdUDrX3lp1BTCc5tDZgK1/9DkqwzU69cDyB8RtiiDRWAvFHDA+3mX3tfUORJobUYoo/LHGKgrMVxatxMG6gzCefS/u6KzC963h0IXZELPjTq/vS9+1KGqnyOGEj8R1QkJwB/c5c5TIS2TAaI0rBw4oYtuCvDzngSY2lqMKHc0dQPNevjPRWVjvmhpWBLs/sdLQFoUTH/oRb6yy1xTazED8FOCEbwAaV+OFQLYJrpHRpib/0Q+vc/yOUkFFI5vIY4+gE4WuxMWxkKrzXn7pEaHyKEjvQkNDmJujf3egfZhSh/rKVh5LREyYEAdM40HdVDuVEcN2Nr4gixubLcHjxAFHu6B65ZVXkJWVhVmzZiEiIgI6nQ6zZ89GRkYGXnqJBl1KBoqhmPIjItQRItVDPLTqIRitBkyZwp910ybnToK6USiaQWdM9y50TrknZsxYizlzMmGxkCFoG6qq2kKSKutpHZVWywd0gyEIQUVQxGfJfmDRMuDMPfhfIXdjabW9H+Wi8Pe/8zghEqs0toVqYzxGr5BYWvApEJkDtJcADVuAcB2WJ56NG2uAnbV7vL62cxZeNKxTHgRUEWwFUOGc1eiNz/d/LswF6SD0hzk8c6yzU+tmgInGnVy3RSJr4ScYkzpVnP0v+O8CjHlmDCriV8JmVeH3//27WFZUfguUsGDqyk2zOO1nGrcMiKzB6NG+R8644lrHVlYWfKffoUPsPRUWVi8Kkrv6dmXoD3E9mp6EtedBS0nHUW2Zvxlq7e0WNLXH49pXHgHOq+B16fRtQMYpPp8TyDaB62A4PdXYGKSgUsbO+BFUUVFD0/TRFeVkT/GRciUxkX/78nLf+ycKZrim/PxRVcXbcU5Oz+qWrp7GtZNv7XwLHSb+vUdN0APHPituXzHB7nfmh4MHSfTz+j1qlIxQOUhJScFXX32F/fv344MPPsD7778vitLpPjnjb2AZqik/4toZ1wpxUdhYiAdXPIjjjuOdTUEBixa6nzq0iN/N+h0mpExwPPfw4Qbs2+cciZCRsVOM+Ohr/FknRNi1ijIQNqCgIrTxQOapYghyYyNHMDSa3o9yUViwIAfLl5dg0yb+bq6/nlv1L7jAPi9QIWEqcMYOYM6rnC46+zCMoznKoXQddSU9Xfm+VajvTAJG2UdeUIeZjygVHTQeWMHRqd/P+r3D28to7OK2vO0ujnjl/ALRWSdjxa9WiPo5qivRhGswKXYm8MpK7Fv7B1jG3u58jr3rzJWKjUlA+QxAbQCmv4jzzw+uK4rTghwtrKgIPmqYn89pEK2WhZWC0qQ7Mv6Q/Q6uG/NVm0TpOX91NK2tvL6oVCaOeMaOYdNNPwSqoXJ1/G9u9r8eVrYFjlCRt9zREKEiJqeyoNpZ5RmhOukkFuclJceKOY/eOFh/UNRn0snmxFQeUO6LhgZemaZM6dk+74QRJ4iIGpn3ko0C8U7Jc0BkPVA/EsPaeExRsCcOPRk2f6TQ4/7U0aNH4+yzz8Y555yDMWO4a0EysB5U5eXlQzJCRVBx+b9O+5e4/eDKB6GetRIIs6DNnIKn1zyLWS/OQllLGcYnj8eDJz7o9tyff+aOKYWe1BL0laAyGrshqFxobeW0gFYb2s9Coorb9oFnnz0O69aV4/33vcznInE38ipOF0VmiSnzxKH6Q8IvqissYDmaWF7eCky4naNUonvR3YnZdYI91W1Q6/atc2913G8yKW7LOo5OlX/JXX32bjbq7nz7grfReXcnOu/pxOYb1wGllBaJwNvbzuLUaesh9snqwp/+VAWst3vpHfssku2pymAID+fIVEVF8FHDkhL+rvR696hWUhKLiglpB/0LqkD1Uy4RKkKlCr67UqmhajW2ev1NibAwjky1tPS+KF2x7NDrh+4BV0Ex4vSW8rvrrhlQqWj71+DLLzkS35W1JdyoMCNjhrAs8AWNHDIYeB8yd65/x39fkFC/fxE3hfz1p7/i8o8vxyOr7Uaw3z2GfXuczSy+KCjgEweNpvuTBI4khrbhx1HEgQMHxBk9eYNRFHEocsH4C3DdjOtE99uTh/8E3BMB3JWOm7/7nTiLpp3Ud1d8hxide/ffoUPuEYM//7lnA4977EXV4a2Giq+NxvAeCaq2NhYnGk3fjXuilA4ZDQbT4kwHSko5Uc0TtXN3hdNZvFOtqmrn9FXeb/jBXRyF6sr/bfo/cX3Z5Msc3yVhNkc567IOsH0Ess8DYmkWmhPq/qODARXcDx++Wdz3z6c6eBgvsfN+wORuOCV+j11LgbYUIK7co13cH2o1C6nq6uAbBcrLWYhER7s/Jy3N7kmVbf8uk/xHqPzVTxEdZFEuBFXw60ucLk7UAvpP+xmDElSBitJ51uBRlPKzR6goouttBmZiIp8ErlnjXYCQZxpBdiH+eOstWn9oe2nB3Lne9yXB1rH+duZvxb6XUn90rdl2IbD3Ahw4ENi0rbi4w+HXNpSRgmqIQGlXYvz48UPGg6or9LmePeNZUR9FHV+wn20n2obhyVOfxIZrNnidJVVQoMxK24LPPz+MX/7SmQ4cqBoqvZ5/I5OpZ4Kqo8PmZr8wGH4bJUrlK+0XHs7CtqrK7odDHYPkq1S9wqPjjzy4lG7N3x5rTw/asdm4rik7xcAu38TY3/tdvpNO4u9rx46FaM+8CogeBXRWAfvsXYd2Ojo0AI1S2XSd+PvZjVwnEgwaDX+u6urg29Orq3m54uPdU2ZpaTrE6JsxOq3QZ0F69yJUfNBWq83d+k0DOf6Hh7OQamkx96oo3bWQ/2iIUI1OGi2659pMbaJcoSs5Obyt7N3rvZB8XVlwgurtt9m7LytrFyIjey5UaV145oxn8MZ5b+Dm2TfjnQveQdrmm8VjhYWBo+Tl5bx+R0d3zwvrSEMKqiEoqIYyZOR436L7UH9nPdLf+Rh4uAnHb3tNtLz7MgwsK+ODVnZ2C5Ys4cLr/sDfwSgyUhkIq/IrqLJ8uEp32PdLWm33O3f6ikkp/gWVEsGprbULjkgaxHsp3+4ibN7f/b5w1iYPMmVWIEGjWMhBnBij/hSwdADxU4EU/1Pu5893Fmzf+PvNwFR7WnjvP4B2Z0q4s5PXIf3ehaK54efCn3G4ni0UAqHTsXCvqws+DVtXx+tBUpJ7HVlmph7TcrciPNwGRA7jNKUX/Lqke4lQdTeiGUhQKTMplRotb1isFkcdVjCCqjcH/iMFivyNTxnvs45qxAg+4aqq8tynUQpWKWafm+3fI62ykl9n2LDue1B1haK9FKl66rSncPGki5GaYnLbv/qjqor/Jy4udDWfgxEpqIYIR4ugct0hjUhMAAyxOHzYf0SuqopFS1pa8ANvQ4G/g5EzQuUpqAxmgyNN6CtCRXMACZ2ufz+TPwJFqDQaRXC47FTHceeeMAolKwY7NBCboNFDrlB3JhEeZkFc9cvO6FSAqOzppzsbNTZssPFw2KQ5gLkV2OSMbplMfAC7+3fxDpdo13Zxf0RE8AGmvj74KFBrK0djEhPdlz8nJxozR7L/lM1H/VR3IlRKRFOt7p4AVzr9fFknqNX8mdvafAs1ElOU1qIDsvJ6nsvn/M76uvt2sKX9vHX6jRnDNQGNjc5RQAqbyjeJ7zM7NttrRN6Vxkb7oOs+qALJtO+aqqsDC+C6Ol6/k5IGzwngoBBUy5Ytw6pV9lEIonD1WTGK5tJLL0VDA7v79gX02ldccQXi4uLEhW7TDEF/UE3Rfffdh8zMTOj1eixatAi7eWCZAxomTK+Vnp4uZuDRCJ0PP3S6QLuOcnG9/OlPf8Jg4mgTVMS4cSxGKir8d680NChtw/3bPaQU9SpRBFeUAbBms9pndIo6eGje3FARVFqtwTOCQx2DaYsBmwXY/7TjDPynQh6zo8xvVKiv5w++ZPonCG8vBLSJziiXH6goPjOT0yRqtY2HO89+AQhTA6WfAPnswm8y6R1GpEq7+H+3/9er231XoqL4czU2Bv+btLdr3YrQFXJzYzFzBAuqNh0XMPemhqq93eZmKBuqCJWSQlSaJPyl+0hMUYTZ+/I514m+GAU1qDv9vBSmT57MxrPt7ak+66cCRaeIlhbe92VkhD6NOnw4r7tNTe4O+95obub3T04emuUoPRZUt99+O5qbuap/586duO2223DGGWcgPz8ft97q7MQJNSTYtm3bJgQdXeg2CSF/PPbYY3jiiSfwzDPPYOPGjUI0nXzyyWhxGSVPr0EWEJ999pn4POeffz6WLl2KrVvZhVbhgQceEC7xymUwjdkhl3oqSj/aBNX06Xz21tTkP93R2sr/N3IkHyz7CyVqoEQRXImKCiyoKDrlqx5OsVvQ9+9H8ovSvl3UVIRmg2fnT0QER6YaGy2eA3yJg/8BOqvxff73whE/LyHPMUi2q6D6w+lP8R2jrgXUwX0Jkyfzc9vb7bu9+MnAxD/z7fXXiJE+J4zfiNvO+CfOibsJ51c8h8+ztbhJW47VO+0jWvxAswWJJu+d7l4xGDgilpLifpZPvl9KhKqsY2yvI1Q9FeCOCJUP6wS1WnH8Dyyo/HX4tbcrgtU4ZOe8dUUZNuzqQK4wcybv02y2FNTXu9cd0YDwYOqniI4OPtnMzu7+SKRAjBrFQqqtLbBRZ2cn7+fi4oZ2Uqzbn44GJE+YwEW9H330EZYsWYKHHnoIzz33HL7++us+i76QiCLj0Llz54rLiy++iC+++EKIIV/Rqaeeegp33323EEmTJk3Ca6+9hvb2drz99tuO/1u7di1+//vfC6PSkSNHCqFEnXJbtriv5DExMUKQKZfo6OAM//oD+k0MBoMwWh2KHlS+WLCAjQ7N5izhNTVhwgo895xn+Nxg4PqZceM8w+d9iRI1oCiC6xwsV0FlsWi6XZBOGAzhbt2CgwHq8lOWeU/Nnv9v7zzA2yqv/3+0JduyvFfs2BnOInuQwXDCCAESGsqfGShQQkuBslp2fw0FAoECpbQFWspqCSRQoIwyEhIyIIkTMgjB2fHee9uypPt/zvvq1bCmLdmS7PN5HkXy1fD1zdW933vG93iM4NTX9wr7py8BSJgDYO4AKHga/nfsf7b5YL0FZVOTEeaO3QULJ37LC9pzXccLeSI2ln+WmNPHmLIKIGcFdw4/9ChseOByeGbFvZBm2QLy6q9hqc4I9ycAnHXoVoAtywBa+IWLO8RswbY2/wWB0RhlK0J3RG5qgtw07kF1tM6zF5b/XX7ODv3BilCJId8ipdhfQWVP+Q3tGhtH5mTMYfcnG0+6bF/ums+75/burXaqR9tWzOfnnZF1hs/fYTTySFdOTvB99yZP5gadPT3JPodjd3fzaFZs7NCOPvZZUKnVaiZKkK+++goWL+ZOuwkJCbbIVbBB0YNpPnRkF8ybN48t27Fjh0eRgek8sX4Iurrn5eU5vefMM8+E9evXQ0NDA1gsFli3bh0TJ5gedOSpp56CxMRElt5cvXo1GI3ev/j4Gbg9HG8Dne7DIdUKxdDeYR2ZPDnZetBRwMyZJXD48Nlw223O6RGc9YdXeciUKYNjlyAQUQOcCN87YhMTw0/qZrO6X4JK2C1ERYXX1by3tF9cnIeRGiiapnKfG+n4i7D75Mfs8dJxS10+o6GhG+5f+hT/IedagOgsv9ctLo5/N7q6HEQspv7m/xtgwVowJZ0DBeUT4dP9F0NDzmqA+W9B3aRV8HEb1mzhf8ynAF/MBDj5mlszUjFbUMwa9AeTiV+YpaX1irI18Au6UzWjoLjSfbMF1tGIyJGvovSuLlm/BLi3tDWiUokRSpagCCqZzP/6s0gHx7qMS+QejrvLnbtcMUqnVnMhtX+/fRYouqM3dTUxr7VZGe47PwUociwWfjE5ZkzwLyanTROFWTFQUeHdDqGnhx/n4uKGdgdnnwUVChBM7T322GOwe/duuPhiXuOAKafMTBzrEXxQGLlzYcdl+Jyn9yCpqc5Xbviz43tQTJlMJiaWUHDhTMIPP/wQxoyxd4PdeeedTGh9/fXXcPvtt7PI16233up1nZ988klbvRfesrL8P/D3leFYPyUOOlot79BqaeHh896sWsVbkjWa45Cb63k0x0CgU+m4vYPDSUWg1/OTuuNsQRdBFeNNUCmcitvDrdPPXedSktVKqqnJzUEVo1SJc0Fm7oQb1DVs1MzZ2a6GorrO7+HSOVZvqIlW13M/EQdzo1HtKuhyroH86DfhtPsKYNkz70PcvAcBRq2ApOmPwNqEK2B8EUCBPBXA1A6QfxPAjmsAzM4XVfHx/HAqZg36g8XCT3QjRkS7FVR7C2dBZaV7XyucESk8jDwVe/dOEfdVUHlLWzt2mYoIWOApv8Ex3Q0XRNouvyzf5Tm9ntckFxTYffQ2F3IT3LzsPJtHmCfKyvAiju/r48cH/9iXlITRVf4fX1TkPWDQ08N3vISEod1w0GdBhfVISqWSFW6/9NJLbK4fgum+JUuW9OmzsGC8d7F37xsOXkbc1ZJgGsWX51Lv53u/B1N8WPCO0Tb8XSgWL7/8clZPJbj77rtZZGvq1KmwcuVKePnll+HVV1+Fei/TKx988EFobm623UpLnYf4BpPhKqiQxET71ZvgzjvtEciqKn7QWbSoPCS1Gba0X68TkohQWSyu0YeKNt8RKtEdGB0tD88IVa1rhCo1la9za6ubgyp+J6fwKNUtBoArRp3laoMhSZCn/xN7+M6upWwET19ISFA5Hdx7c/gwb3JRKGqd9pV7F9wLx3oAZhyvg6bx9/NC9uJ1ADt/5hSpSkxUOlkv+KKlBYv0eWQqK8vZjBYa9toEVU2Ne5Eh9in0O0MTU2+IiGZfa+4c09bu0GgsTjVa/RVUXV3mYRehQuaO4FmX/HJXQZWUxDNBpaX2+rTNRZttA4l9cfy4aNpqg4SEgSm2lMt5wWBpqXdzT7N5eAiqPsffRo4cyWqXevOnP/EDXV/AaM9VV13l9TXYYXfw4EGornb9QtfW1rpEoARY54RgNAoHNwtqamps7zl58iQTiIcOHYLTTuMFtdOmTYPt27ez7kUUTu7AdCNy4sQJFtlyB0a78DYYFBQUDFtBtXixCV7nc3FtvPDCArjgglNw0UWjobGRX/mPGhUabxs8ieA4lt4npNhYfmCRpP6l/Hp6VE5+VuE2UuP7qu9dLl7S0/nf2t7uoSsofTF8b46BaYo2eCjGVShDybswKno/dBq18MSnv4KreVOg32DnHmIyuT+5HD/OTwo6HUYG7NH22RmzYVHOItZ5eF9FA/wj71OAbcsAStYDZCzhI3iYoOJ/n9HoXxiotBSv6jGyZHEarszAodNYsFw0E6LkpoDqp/g6CQHet4sKIYI8RahEkXuwBJXcw9861AUVpvx6f1+SkiyAJcI1NXwZNmpsL97ut6A6eZJHjZRK3J8HpuZXpWpjA94rKrwbdlos/DuflBRGRZ8DQJ+Pxlis7Ri9+eijj2D58uXw0EMP+awr6k1SUhJMmDDB6w0LrbEIHaM8mGIU5Ofns2ULFrgfzDhq1CgmqjZu3Ghbhuu3detW23tELZhc7rwZsA4J66k8IToAHYVaqMB0pfj/wAjacOOFF+ZCbu52W0u84NlnS1h3TFPTDKuvy8APQ+5LykQIKgBNvwSV6A6MiQmvmjkcSo1+Q+ij1TvNmZXFhUx3dy/xYKW6vQZWlreBWQIY05IPULze/mRbEcAenmZ/+tP7oLaj7/VwbFQN23axTkW0mzYVw7XXboOTJ7mtg17vOtz48XMeZ/ev7n8VClRZAFMf40/suwfAyCMB6en8841G/05eZWXiqr7VOprHirEZoJXP8NtXOBMa3GhLx33KV/0UXydlvwS42H+xBrCzx/WkKVKIokar/zVUwzNChRcgaI+Cg45x4LEj6el8mzY28mPFnvI9zFkd07siEuyN4mJ+ftNoBq5+V63mv6Oiwvu4JUnix9/k5DBqSw4HQYU1RqJFH60SMMIUFRUF7733Htx3330DsY4s8oLpxJtvvhl27drFbvgYOwyxEFuAAgzrnxBU+nfddRfrQMRlGIW64YYb2LqiBYN4/dixY9nfhGINI1bPPvssE2EoEkVBPEbf0KYBC93fffdd9nocDI3RulCD6b7Ozk7WhYgDq4cbaAJ47NhZUF4+D+Ryu2gpKVHA0qX2MPrs2fZZcCERVB4iVDiwt3eHjD+CSnQHitRhuIB1Y6LQtre/Tk4OFxpms7V6uxefHf8MvusGeLPHeuLddSPAqX8B1H4LsOkcAGMDnGgcB6v/+3C/Ru4sXIh1jHjgN8Bnn52yLV+yRAZr154N779/Jvs5JcXVVXpB1gJYPmE5q1l6cNODABN+A2CYBGBsBCjgRfITJvD2cbPZd9cTUlHBT0YKRa+C3sYD7K6qNRXq25Kgqcm9WBGF4r4sE5Cenv4JcCx+xhEpnqJUvoZ8+yuompt7nJzXhwuYqhWTAHrXUWVl8WNESwsXI5sKN7H7RaMWsYsWX5SX820ZFeX/sO6+otNxIVVb67n2jU834H9LSopvz6phJahQTGGnG4Ii6uyzz2Y2BG+88QazURgo1q5dC1OmTGFde3jDaMy//22d42UFLRQwaiVAgYeiCgvIZ8+eDeXl5bBhwwYmPhCVSgWfffYZGya8bNky9pn/+te/mL0CemshmLbDwnXs+kO7iN///vdMzL3zzjsQDogaMzQk7R1pG278/vcltscnTsyDnTt5p+bo0d/AmWcOTMNEf2uo9Hp1r1oasJlaio5A74KKv1+vDy9B5c0BeswYLqQkKc7JyFHw6XFeSlCafTNAxkV8rMyu6wE2ngnQXggQMxpWffU49JjVoNX2XVDFxmrAYODDhn/9a36SLyxsApNJXBhxsTFxontx8OS5T4JCpoCPj34Mr3//b4Bpa/gTR58H6CiDKVNEYbiG2Xj4orqan4xUqna39VOnmrgwbW1Vek/5+SGoRERT2HX4C16Y2tJ+buqooqK8D/nGqFZzd7NPQVVRwb8DWu3AnfzDlXkjeAnJt6XfOi0fPZpv3I6ORCbQPz/BbYnOG3WeX59bXc2/I3p94GNnPBETw0VbXZ3njI6YboAkJ5OgcgLzvCIdhoXcQnhgF1tdnXuvkmCAtgxvvfWWzYIAH6NfVO91wyiU48EAC9/RiLOrq4ul+9CPyhGM6qAQxBqt9vZ2+P77750MQ1GoYEQMXdkxEnTkyBH2mRjpCgf27uUH31mzvLfQDgdWrZoDq1btsf7EIzhq9Uk4fty3X8tgp/zi4uy1BM3N9gNeZWslu8cuN73GfWoMsViEoAq/uWeijqq3oBo1Cr+v/Nhx6pTzlAOsD9lwcgN7fPH4SwDO/i/ApAcBorO531TWZQCLd8Gug+lOFgx95bbb+LYuKpoMJpMF1q7lXk+OzJnjfrtPSJoAD5/1MHu88pOV8EzxETAnLQAwdwEceowJNpmMN6ocOuS5YUVQU8NPRhpNp9v6qcqucV67Bm2mnn7UUNkjmn1PEYvP753CdewyFTVantYRo1wGjfvIJFJZyQV2TIz31NFQZGEOv/BDQ1tHLr4YPQU7wGweAWv+ssUWwbool59zfVFr9WKNjx+4NGpcHP/sGveuGowTJ8R3vWXIz2nsc0gDIz2PP/44iw6hQBG2CZgO81QgTgy8oML/FwLgjDOc28eff749pM7Lnrqk+IHF4iKoylvLfUanHAVVbGzkCCocKSKT8cjNyZPOduJoVojROYxisBQIiqjpTwD8pAjgym6As/4DoE2GwkJuKnzDDf1rA3/44Zm2tN+2baXwzTeu3Unnned5PhoO5l45YyVL/d371X1wwUHrvD0cXdNVA2o1L3g6csR33UpdHRcROl23W8uEJjlvlOns1AZcQyUimv3ZX7xZJ+h03od8O6b7vHVk19XxFGls7PCyTRCCCi0Q0OCzsLHQ6QIkNZWnzR9+rRwkkGBa6jSf8/sEjY3KAZvjJ8jN5f+nZWWea6OOHePfBZXK90XGsBNU6MGEhenYoYcu5FiDhKCNgqcCcWLg+Mtf/sI6EjH1SqA9AqZv7FdkK1Z4HtsxGHg6GXGRx6/GW1rsdSNlLWXsHgefekOS+EnWYFCHraBCt/Qes/MJUqXiQqqoyFnICHf0i8Ze5FofYj0RY0RJkriQysvrX0MICtnoaB6VeuONYigoUHswjHUPioJ/LPsH/O2iv0FOXA5sajdCfheAzNINnQXPgcHABeMPP7gWtvdGOMZHRTlso542gBaeluzR89Rpd7f7hgoRzfQlvgMVVCJV5y5CJYrcRY1Wb8SFhLd0H9LQwP+P4+OH9vBcd2AkWvhRfXnyS6fnkpKsYjuXfz9Uhe799tzR2spr39LSBq5xZdYsHs1taPAs6gsLeRpXpxu44viIFVRYZ4RdZVirtGrVKtvyP/7xj6z2iBhcMDKFNWLCD2y4g91Sl17KaxF0usMsDRNKHNMlvcfPyGTdLoKqpJnXgWXF+jKC1fYqbg8fsg3ZzNC0x9IDx+qdR7VoNFxIlZfbUzu4XT459olHd3RBXZ29viY1tf9dm2ecwUsT/ve/aKiqchVmviKaKKpunXMrnLrjFOz9xV74VzfvOOw6/BzkjOYC4sgRye+UjMHgkL5s+h63CIBuBMSnZzm5qffGn+YFgfA7608Tg6fGCv55nmdSOoowX2lJ+/BcGJYszeX7/bpD65yWp6RYAJSdALm8fqp8i31aiC/a28Ucv4E7Bp5/Pj/v9PSMhJIS90MsS0r48U2vH/r1cf2qYsZ6Ipyrh+aVOLJFeCGhxxNBhJoPPsiDN94ogB07BtcZ3dvJqMvUBa3GVreCqrXVHqEobS71Kai6ujACxyMN8fHh5+uCgmNKqvvCdK2226UrCEUXpjtUchWcN9pzwe2ll/L0GhKIUeH9949i9w0Ns6Cnhz/G/SUqqgB+9SvnwmBffyemJ3+5fANUmGQQL+uBaRc/wARRWZnvGstK60iZnBzXgnRImAmZmfyEaLG41h6ZLCZbl196jO9onSTx3xUX1/eTqzcvKtEUYTKpvKf8or1HqJqb+fZKTw+/FPZgcM2Ua0AGMthavBWKm4pty9HjCaa8DaBtBmjKhp5C/2pljx9vgI4OPu1j9uyBOw5On54KKhVOo1DAK6+4n6tbWckvLhIShn4HZ58FFZpsYiE3zrZ75plnmLhC0JoABRZBhAPXXz+JfdlDTbQ6GqJV0W6v8OVyfoBpa3MQVC1WQWXwLKiamuzRHYMhtBE4T0xP5Z3A31XYRRASFcX/5oYGe1Tm02Of2mpJvBXi79pln68ZSF3cOedkg8HArQkQmayJ7S/t7ZPgxRf73sAwNX0mmLK5QfHSlAKAGa9BR4dvwdfYyMfOjB+vdamfgoRZkJ0t5q9pmaeaI2zgNkis61DM2/OOrt8pYm9F6QYDF0Bms/v9sLKt0q+UX3s7H7Q7aVL4DJ0fTPD7jnYIyJ/z/2xbPu8MJcDZq/kP+XdAV6d/zVCvv46eVhrWlPOTn/CynIEiI4PXfe7f7z4C1dzMZUZ8vO+o7bATVDia5cYbb4Tjx48z003BhRdeCNu28SnYBEH4tk6Qy7mQamszuQiqkQbPHmeNjV1uuwXDiflZ89n9jjLn4eUxMVxIWa/DGB8f48OQl41bNmjrd9NNdoGiVltzbwEwcvr/sfuLogFSLr4DeqJ8F+B2dPC6k6lTDa4RqviZkJGB4pLvG0VFzW7TfShUfHkSBRrR9FaU7ktQifVM13uOomFtXI/Ve2zGjMEdYB5O3LeA+zi+uOdFW3F6+k92A8QXgtaUAPDdLWA0+pfqFh5UcXEDXwguugjrPfyqtjaeFu7VlD8k6bOg2rNnDzO27A3W8HgaVEwQwxlPNSjCxNBJUPmR8rPXXHU7O2yHEWiEieyt2MvSnQK9nhcdt7TwCFNDZwN8W8LTbMvGD56gOvNMe7FOTIz72o8+YZgIUuLpoJQBrEjqgJ5zuNmnJ9BXSBTYjx9vPdPg4OWWw7YIFUbhZDL3s9JE5Mef+inH6FZ/BJU3H6q4OB7xsljcf67oWh2h91zjeeQInonx/RaYOTP0UeVQsXjMYjYQvNvcDZe9exm8eeBN+MM2Xqd8Y/Y9AD1R0NPjOYLr3oNq4NNsCQk88tTY6P5Y1NHB95GEhPCa6jAQ9PlojFEp9IHqDZpqokEmQRD+RagUCi6k2tv5wa/d2M5GUPhO+Yk2+/D17BkVN4oJSSxMR1ElMFiDMW1t/NDz+fHPwSyZ2SgN7Jrz7rYcPPLy7F2UanVwfHpk1pl+N8QCSBM/h40n7WOv3IscfoLJyIixR6ckMytIhygulBQKLqSqqjr7HPkRONpy9KdJQ+y/WAPY0eOc1klM5EJKktynospbrILKS6u/sNBAS42h7lPkqybv35f+G5KikmB/1X644aMbmJUIiqyfz7iRvUaS4v1y4ReWkMInaiBJTuYXRy0t7tPJYlh4UlL4mRCHXFD95Cc/gUcffRR6enpsO0FJSQk88MADcNlllw3EOhJERCMKcnvXoCiVzoJKpPtw3AfePCGK2OXygXNADhQ8Logo1Y5Se9ovPp4fctrb+YlTdPf5Svc5ui0HAyxqnzNnC3t8wQVB8j7KvgosoIapGoDpGoDbP7/d7fw7pKJCRJwskJJiTePUWUePJNk7uVSqDidXdZcOvxjfESpHAd6fiCZ2bOqUOrdRqoQEEZnSsdSdI2iZIQrnvUWoGhr4+snl3gfsDgcw1b/5Z5vZ8GM0kr3/jPvhk6s/gbFjRGG5krn7+6KpafC6JlNT+Xe5o8N9lNJo5PtOcnJ41nsGkz5/u7AQvba2FlJSUphzeF5eHvOiwnEuq1dbi+cIgrAh0jLiJNhbUHV0WPpkmdDcbAx7QYUIQeU4UkOE/bu61OyEK8Zp+BJUNTXBb7nevXshSze9/vpZwflAdTy0Gi5gD6/WRLPuxd9s+I3bl1ZWCoHYai+wr7cKqkS7oNJoumxTABwjE8KDyp8IlRBUMllXv8Wxp8L0xER78X3vwnlMS2LhPHZveiuct8/xC+/9ebDADtlNP9sEh287DGvOW8MurrBWUi7n/+ebNnGvOm+0tvJoUWrqwKfZMjO5kOrqct9QYDLxC4a0tPCs9wypoIqNjYVvvvmGjWtZs2YNM/jEeXjomh4d3X9vGIIYqgiTThGBEqhU1lRfu8W5fspLug9pbTU5dQmGK2eO5MOGt5dsZ87iSEoKP9B3d2th46mNbG4hOn2fPuJ0r59VW2s/WZ9/Po8sBYPx44NbBG3JuoLdX6HmJ5eXvnsJPjj8gcvrqqv536NQOETe3Agqs9l+QjxwwB4dqmjz34OqpUVkE/qfIvZUmO5oX1Ff7zkt6a1wXggqpZIElTcMBi6odu70HaES7vqDkWabOJHn8bu7U12ilIjZzL8L6enhMa5tIOnT1jaZTKyG6sCBA3DOOeewG0EQ3hECSbigC9Rqs1OEytbhF+u5w8+xiF0UtYcrszNms3QRFp4fqDrAPJtSUnjYH7uV3v7hbfb4iklXgELu/Uq6tpaLAbm8BjZssNsnhBv6ccuhdU8M5MRXw+qEy+HhY+/BdR9ex6IMjh5btbVcPCiV1shbRwUbsAwoPBLsXkM9PfY0iaO9Rl9c0u0p4v7vL54K03kKEf+GKKiv73JfP+Ul3Yc0N/P9WaUK7/051GRmtkJjI8Dhw77nWIr9JiFh4GvSzjkHj1f4f6eHXbvKnAbR8yHovHwhM3PoW2L0KUKlVCohOzsbzOb+DSYliGEdobJGoARarYhQQb8iVKKoPVzB+WS9B7+mpfGIhkkO8N8j/2WPV0xd4fOzGhqMTqNrwhWlNgY+3seH116ri4YLx17ICrmXvr3UNl4Hqa8Xf481qlO/i98bTgNQ2U88JpPObZTOFv3xw9RTRKgCEeAiQuXOi0om4+vV0NDlvsPPx+y51lb+PVCpht8cv74wciRP+VZV+RZJJhOPUCUkDPwkBWwk0GrR3BPTkVzoC06caLTVCo4Zw73GhjJ9Tvn97ne/c3JIJwjCP0GFXVKY4hLodPwA2WENUpxqOmXrkPOGiGhFwglIRGU2FW5i9xkZ1rKAcduhvaed/a1zR/gep1FXJwRI+HY2Ct7N5/VgyR2fwYdXvA/LJyxnrfCXrr+UDYFGGhr4/51abRU51V/z+2TnmZxms72Mor6+28Ul3b8IVeARTW9u6XI5/z9pajL2K0IlBJWI2BLuyc3l4qix0XekR9hYJCYOTiF4dDQ/rpWVOadtjx/n6UmZrIENRx/q9FlQvfDCC7B9+3bIyMiA8ePHw8yZM51uBEE4E6OOgThtnEuUyi6oeFHyyYaT7H50/Givm7CtjZ94lMrwPwGdO+pcdr+9eDvzoxoxwnoymPKufeSGdfixP0aF0dHhPw/sqx/nQVO7AXRQA5rGPfDu/3sXfjrxp8xC4v+9+//YPlBUxEWOXm8ViNWb+X2acxnFgw/yQc6OUa2+uqSLFLFS2RN06w/HYnJRC9UXDyq+fvx7oNWGd8Q11EycyD2o2tt91/1ZLLxeKSlpcArBxQSE+nrnY1JRUXtERJaDhbI/tgn+HAAJgrCDnXtNXU2sjuq0lNPYsihrjWZXlwy6Td22GqsxCXwGlyc6Oy1B9U8aSCYlT2InVDy5fnb8M7gkdzmArhZg7Oc2QeUP1dX8b46NDf86G7MkwYffXQo35r0BULweVClnw7+W/wtONZ5itWT3bLgHDh++m712woQegM4qgOYCvI4HSHGuD1u9ei48++xx6O7OhcbGnj67pDs2PYiu0mCn/ISgamw09ivlJ1LeGo1rQTNh5/TTubO+2ZzOxk95mpLAC8N5ZDMlZXAKwaOj+b7V1OTskVVSwtPBOp3zHNOhSp8F1SOPPDIwa0IQQxisi/qh5genTj/RFNvVpYCipiIWdcC5f8lR3qMO7e38oKVShf8JCC++fjbtZ/DkN0/C3/f+nUVqYPo/ABQmGB01iQkuf6it5RdxiYnhH5XDbrX1u67kgqr0PwCz/sxmOqJp49SXpsJ/Cv4DKhkXkgsWRNujU/EzADSug2zRyR2H5DY1mZxc0v2xTHAUVCpV/wWVN7d0LCbv7LSnFvua8hMpb50u/PfnUDJ1KhdUaAg7efJuKCvj4516w+0rBldQ2ScggBOnTnGRHRMzPDzG+pzyGz16NNS7GdqDQ5LxOYIgXMk2ZLN7MaMLiY7mX7/ubgWLXrDvV/xonxHgLmuWSKMJf3GB3DzzZpCBDDac3MAHIZ/9R7b8TA23GPAHYVSYIs4pYQzWtm368Vxo6zEAdNUA1Gxly9ENXkTkemb/m91PmxYPULXJbbpPoNXyyFRLi9nZ1NOP+ilHQRVIjZIQVPi7Jck5CiFq+UQtFIKv8TdC1dkpc4rYEu5xHAheXj7fo2O63bPN4mRrMZCIOX2trc51Ulu28PTk7NnDwxKjz4KqqKjIbZdfd3c3lJX5NhwjiOHI2AQ+8f1Eo70mJiaGf/2MRiWcbDzpV7oPwWgAolZHxvT2UfGj4IrTuHha9s4yAF0zQNnpkNu2xO/PaGnhJ4b09PAfX6FW94DJrILvqqwF5sXrbc/9dsFv+YPTPgaILYMxo6MByvlwaEh3vz1EN2hLi9TnDj+ko4O/T63ufwRIiKJOUydLXTsiUs+trfbPR6sMMaZGNGV4oqlJNWyG5wbKlVdycY4cPmydL+NRULUP2qzPuDgu9o4dO8vJi6qtjVvArFzpvXN5qOD30enjj61fegD48ssvwSCGcrGcrhk2bdoEo0Z5704iiOEuqEThOaLX86u5nh6VPUIV5zvKKyJUWm1kCCrkz0v+DD/W/giHag6BrDUFpA/egobr3Z8Q3GE0apyMQcMZjYYLjM0nF8HCrE8ASt4DmPU8gDIKpqdNh7kpZ0J+zTcAp/8VxsaeA9BdB6BJBEjJc/t5UVFcULVZp9WItLEvoeIa0ey/oNIqtWzGXF1HHav1i9fZW+BF5Kutzf75xc3FttorfK83Ghr4uWTSpKHvpB0o69blwX/+UwZmcyacf/5JqKhwLQ947DGMgmeDXI7Cyr9hyoGixKngVn71qx1w2225MG4cpq/5/+348UPfMqFPgmr58uXsHtMR119/vdNzKpUKcnJy4Nlnnw3+GhLEEGBMPI88nWg4wdIh+D2KjeVfP5PJLqj8iVB1d/ODlzaCzj/YJbbvF/vgaP1ROGd6I9Q25EJ9vWuBsyd6evgfGxcX/sNzRUQpv2gqQMxogLZTAEVrAcbezJafH7uCC6rpr4GqyurTk3kpgNz94TgqSnLvV+ZjRFHviKZGE5gARwEnBBWORxHodM5+akhxExdU2XE81e2Njg6eTpwzx7V+jHAlMbECamoyoapqDEv7OaYCa2raYcsWbgw7ffph/OYNyia8+OJkeOcd/vif/zwT/vnPZvjLX7DRYhpLPWZn2wMwQxm/44EWi4XdRo4cCTU1Nbaf8YbpvqNHj8LSpUsHdm0JIkIRVgjN3c1Q38lrEA0GLg5MJo0t5efLMgHp7uZfW93glEcEDZVCxeqIojV8/Rsa/K/pMZs1g+qrEwhRUTxS09qmAMi9lS889lcsLGIPU5rmALSlgiKmFkwiHTjyco+fp7cGGTo65E4RKl8GsALsIg1GRFNExHo7/ovPFcXljhEqUTvoiYqKVpAkXmezYIF/KczhzvHjKFJwd0qGL7+012Qil1++h0Wl0PcpP9/Z02wgWbFiIiQn4+8WGODXv+brKZM1DgsPKqTPCdbCwkJIGowR1gQxhNCpdLYTEkapnASV2SHl54egMhojU1AJ9HqeEmvugzWN8NWJjw//lJ+IKDF/sTE/B1DoAJoOAlRuYMsrykwAB6+Fy2IANKZmAE0yQOoij5+n13NB1NmpYNFNIWj8jVAJQRXo/pKpdy+ohJ+aKC53jFCNNHgfo3TkiDCIboeMjMFJT0U6sbEa0OsPsseffmp3Jm9rM8K2bcJ2QzZo9VOCX/7SvWBXKnu1/g1h/N7i+fn58Pnn3DtG8K9//YvVTaWkpMAvfvELFqkiCMJ7HdXRuqPsPiGBR1ss+jpWwKuSq3y6pCNGI7/ai4oa3ANmsNDr+YG3udl/PztJ4oIqOTn8VaSww+jslAOo4wHG3sIX7P8NgKUHKiqMIDt0FdxrLSvpGXMzgNxzKjM2lv8/d3aqoLGr0e9i72ALcFGY3ltQie48R0FV0lLiV4Tq1CnuT6RQiBElhD/k5PDt9e9/20Xo999z93xEkga/ZukPf5gDs2a5Di7XaKzFf8MAeV/8pw4e5KoY+eGHH+Cmm26C8847Dx544AH45JNP4Mknnxyo9SSIiGdy8mR2j4XZSHy8NX2VzOdgjUscx9JivujuVjmdaCMN0c/ShikxP+jqwogWr6FKSgp/QRUTI7P5izGm/B+AOgGg+UeAfb+F6moT3DIpH2ZrAbCO+ytFrtfPMxj45xiNKlv9FBaIY9TTH4QA1+kCM2QWAk7YIQhirOb3tr+3DzVUxcVcHGo0wyeKEQzy8vgxoLV1KuTn867PH3+0i9IVK/iIo8FELpfBd98thNde+9G2TKM5DlddNTxc0hG/j8gHDhyAc8/lYySQdevWwdy5c+GVV16Be+65h42kefddPk6CIAhXRCHvwRp+YZKQYK0qT+bpPuGg7ovubjGnK/wLtN2RlMQPO21t/qXvsNBWkJpqn20XrogUHfqLMTBKNfdV/vjYC7D6nLvgz9fdxX58qA7gvVPeT37x8Spbp6OtfsrPdB9/n8LJ9yzYNVR2PzVln2uoSkt5ViM62qGinfDJn/+Mpp7cNPPAAV6TefQojwTJZLXwxhtnhmwrXn/9JFi0aAvceuu30NWVC6+8Erp1Cdsuv8bGRkhNtXcMbN26FZYssfumzJkzB0pL7S7QBEE4MzV1Krv/ofqHXoKKX9GdluyfoDIaeY4lJSX8C7TdMW4cX/+WFv86f7ivDr7WBDEx4V9DJewwMKJkI2s5wKwXAPbeCbMyuaD+omw6/K3zAIw49ZWt89OboMLmBVuHn58F6UhPj3JABZU9gsZ/T7uxnXUD+hOhqqrijQl6PZWL9DUapNcfYRGqY8e4kNq+nW/DESNOgFLpe8bjQK7b5s3OI5SGC35/w1BMYUE6YjQaYd++fTB/vt36vrW1ldknEAThHiGYcHRIfUe93cU4hQsqf8ewmM08SpOWFv7pL3fMnMnb47u60j26PTtSX281UoJ2pxbxcCUujgsLo7GX+Bv/a4BzN8H6PRfBHf/6M6w9/CQoFWoWdRKNCu5ISuLC2WgcAxt3f9/nCJXJxNcnJiawTisxQgY7VVu7W13+3u5uvp4lzbx+KlYTaxsK7gkxqkSvjwzX/3DCYOBRvaIiHqnau3c8u7/gAtqWYS+oMBqFtVLbt2+HBx98EKKiouCss86yPY/1VWPG+PbQIYjhil6jt3Xx7avcB1qtEkDRApDyg1MEyxcWCy9ETU+PzFkd8+aJ9vhYOHnSdzFyXR0XVNyoMPwRXlkYUXIhdRHc9MpT8Jcv74Cs9HhYkLWALf7q1FceP080LyCbvjvVD0HF10evVwa8/xo0Bpc6KscImmO6z1eHXzAtHYYjSUlcSJWVSezCxGLhUalf/pLOw2EvqB5//HFQKBSQl5fH6qbwplbbr8Bee+01WLx48UCtJ0EMCeZn8qjuNyXf8AUZuwBUXWBQJkBugvfiZNEaDcAjUyNGWKuBIwyMzMlkPCV08KBvt/SDB3lRq0bjPPIkXBHWDmaze+fV7m4uiLOydHDeqPPY468KPQuqOXO48SUiM9T0OeVnNvP1iYkJfGyPSPuJKJRjBM1k4vulsADxp2M1WJYOw5GUFC5CGxsVUFqKoT7+/5ubOzxcySNaUCUnJ7PoFNZS4e3SSy91ev69996DVatWDcQ6EsSQ4exsbra3vWQ7u5dl84LkcdqZPociI/zAyRkxInJ9e1QqLpKKinwXI+/dyyNU6emuQ9kjUVCZTDwNlpMTA+eO5o0+Xxd+DWaL+1RNUlIUTJjA95MuTU2fI1QWizooESpERFgdRygJs1WLhaui4/XH2b0/FwiRalIbDqSm8m3X0qKGxYvtHfhxcRE0QmGI0ecqRZzhh5Gq3iQkJDhFrAiCcOWskTxNvrNsJxjNRoDsneznkWxEg28qKoQAaeMpwwhFp+M1OCUl1rkoXvjxR362HTeOG4KGO4mJWifvLEc6Onps883Gjo2D2RmzWa0R+kvtr9rv8TOTky0A8h7o1lb7bQArsFi44DEY1MEb8u1Q8yW8wSSJR0yPN1gFVWJuHzzVwr82LtxIS+P/nx0dOjaUmAg9kWlkQxARyoSkCWxgbJepCz44/AFIo3jqL6N7pl/vr6zkdURyub0oOBKJieFCqqICBYZnSkqaoaqKb5uVKzMgErB7ZUWDyeQ8kPjYMeEMbmbzzZRyJSzM4R1Rmws3ezcLNZQAyC1s2HC6Pj0kgkpEnYRoQtLShJWFhqWkbYLKjwhVsCwdhiMjRnDhjp1+RHhAezFBDCKY1rvitCvY46vfvxpAaQSomQRRrf5FHGpqePpLqYyMAm1PGAxcSNXWei9G3rsXU1wqkMnq4bLLxkEk4Gg+2tDgHIE7ebLZZb5ZXnYeu99WvM27t1WCfd6jXNaXQzc/8cbGDlSEyh6Jq6xusdVQ+ROhCpalw3AEU8au8EJ1IjTQXkwQg8ydc+9kY2ZsbH8YWlv8a3WureUHTLU6sgVVYiKP3NTXe0/1FBfzFKdKFRkF6aLmSfCLX+zx8PfY3aOFoMJGBU91VMzrKZ4LqjHx/ndxGY34eTxCFRcXuG+ZEEk4zFusK/cG4x5IB4qOgsliYlE0f0bjBMvSYTgyZoyrj9tHH9mbBYjBhwQVQQwyYxLGwH+u+A8sHrMYYnb8GuCHq6ENZ5D4QV0dj+xoNJFthJiSwoVUU5P3qElpKY/waLWRMw+MD6Xl67tvn/PfV1bW5fL3TEubBnq1nvk7Hay2Fxc7EhursEWoDm7xXxg1NXU5FMsHXqyMxfBqhZrV/zkafMpk/O/5sfKoTfT5E0UTlg4kqPrOpElJkJxsF+w63WG45BIeQSRCAwkqgggBl4y/BL689kuIP3wVmwzvr6BqaOBRgaioyA7tp6fzE2lbm/eTfGUlF5DR0b6L18OJhx7iZq11dfE+/x6sozpz5Jle037M68kaoSo+MM/v9Whutgtvm5FsACjkCltBvGMdlVzO/57j1lSgP+k+R0uH2Fgyhe4raHJbVjYTnn56HyxZsgVeeaXPH0EEGRJUBBFCtFoukNrb/TM2bGrir4uOjoyON09kZXEh1dnp3UurpoYLzdjYyBKQZ5zBTRY7O7Oc3OA9/T3CTmNbiXtBxRw1Eo/xH+p9+zsJmpqEoOq2Rs5gQOqolEouqIpbT/ldkI6YzZqgWToMR7AO7957Z8Lnny+EFSsmhnp1hj0kqAgihGi1/ATb4WdJVLO19CYmxr+IVriSk8M7w4xG76NJRI1VfHxk/b0zZ6ZYH8VAXV2Hz7/HJqiKt7G5fr35+cpcm6CS1Wf1Q1DZU39B6/Sz+k0hKhX//ApjkdNrBrMDkSBCDQkqggghYuSGv4KqrY1/ZQ3+zRUOW8aO5X+AJCW4WAs40tTEIxdJSRBRpKSgYORRxJISuxlrY6PK7d+DflQ6pY4NFT5cd9jl85oVlQAKE4AxGqQm/8QKe18zj4TJ5cGruRufyGfG/VjL05qIWs1/T7XEo1ZTUqf49VmSRIKKGDqQoCKIEBJlbQjr6vLvq9jezk/IcXGRbYQ4YUKitTNMAdu2lXp8XWsrP+GmpSkjrr5FJmvtZcaKEapYdj9hgnNhORZ6z8+a77GOqqC2gD+oxbSO3q+h0khra0/QBdX0tOns/kDVAdsyjaYHILoGOhT1IAMZTEnxLai6ulBw8u2RkSG8rAgiciFBRRARJKg6O7mgSkiI7DbzqCgVREfzlNH779u7xXrT0cFPtCNGBN7yP9goFFxQVVXx+iIUQR0d3Epg3jwUlM4I+4StxVs9C6o6FFQKp+49bzQ28siRQhG8lB9Gn7CDr7q9Gqraqtgync4EkHrQVmMVrfYtkE6cEIOxLZCbmxC09SOIUEGCiiBCSHQ0jzR1d/snkLq6eDF3UlLkd0WNHs1n8+3d6+yWXlzcbB0CjTVW9kHCkYZKxfO4NTU8OnT8eANIEq8ZW7TItQ7KWx2VLb3GIlQA1dW+ZyAijY182yqVwYtQRamibGm//ZV8XI5OZwFI/d5mA+EPx483uZicEkQkQ4KKIEKIXs+/gt3d/qW0enq4sEhJibyITW9Gj+aioaLCXpB89Gg95OQoQK9Xw5tvFoDZzG0HRo2KvEHQanWXkxnrli0V7F6hKHdrYTB3xFyW+qtorXCpo9pdvps/qJzE7qqr/Su6a27mdVwqlfcRP/1N+4n5g1FRFoAR3BNpWqp/gqqwsC3iTFsJwhskqAgihOj1CqcRHL4wmXgqJTU18ifKT5rERUV9vb3T79lnUUhwK4UbbkDxEG0bJBxp6HQ8KlRXZ2Lpvltu4XVFUVH17l+v0sG5o85ljz868pFteU17jW2ci6yCC6q6Ov9SeM3N3JZDowmu7cSs9Fnsfk8FF1ExegkgZ4tTpM0XkWjaShDeIEFFECEkNpYLqZ4e/1J4FguP1KSn28ebRCqzZvHoU2dnhq3Iurranb+WETIzefFyJBEdLeYVWuDgQZxJCD5d7pdPWM7uPzpqF1T5ZfnsflLyJFBaR7WUlfkXoWpt5R2UGo1/o438ZV4mNxfdWbqTpSdlSaUAMdUgM6nh9BGn+/UZ4v860kxbCcITJKgIIgwElcnkO4XX0YEnaFGk7d0QMxI4//xslJKsrig/n6fDjh1zPSTJ5Q2say7SyM7mgqGwUAGbN/O/D3nySc/1YMvGLWP3+eX5LPWHfFv6LbufN2Ie6PUN7PGhQ/5FdVpbJXvReBCZlTGL1VJhYTqm/dqSeepPVT2FzfHzh5YWy4CsG0GEChJUBBFCDAaV0wgOb5SX864xZMSIyKsp6k1srAZ0Oj5O5YMP+FDX2lrXyJvFkgaRyPTpXCRXVcXBnj38/y4lZTesXDnZ43vS9em26M/7Be+z6M9/j/yX/Xzu6HMhJYUXox8/7p8IabfWrut0/tks+AuKpgvHXsgev7rvVSiN28QeKwrP8PszxLoJc1uCiHQiRlA1NjbCddddBwaDgd3wcVOT92JGPBg98sgjkJGRATqdDhYuXAg//mg3o0NOnjwJl156KSQnJ0NsbCxcccUVUF1dHfDvJgh/iIvjQspi8X1VX14uohLtzHZgKDBuHP+urV/PT/htbRHuWOrA3LncCqC9PR0OWC2bRo3ynaq7ZvI17P7lvS+z7r6j9UdZsfrScUshO5uLj9JS/2ruOjp4ZC86OriCCrltzm3s/sXvXoRK1Q8AZhXAQZ6y9Ic26+7MOgQJYggQMYLqmmuugQMHDsAXX3zBbvgYhY03nn76aXjuuefgr3/9K+zZswfS0tLg/PPPh9ZWfrXY3t4OixcvBplMBps3b4Zvv/0WjEYjLFu2DCwWS0C/myD8IT5e47egqqzkJ2O53B6pinRuv537MZWVTWB1VN3dfGRLXh4vcI5kxo3jhfSSFA/FxXy23xln+E7t/mzazyBaFc28p5av4wLl/NHnQ6wmFtLTeRNDW5t/XZ4dHfwQHz0AvpkLcxbCTTNusi/Y8RswN430+/2dnQO3bgQREqQIoKCgAC+vpF27dtmW7dy5ky07cuSI2/dYLBYpLS1NWrNmjW1ZV1eXZDAYpJdffpn9/OWXX0pyuVxqbm62vaahoYF97saNG/v9u92BvwPf4/i7CGLPngoJv4UARp8b409/2s9eq1afGDIbrrm5i/3t+Hf9+98F1m0hSeXlLdJDD+2SAMzSpZdukSKR1tZu298jbrt2lfv13nu+uEeCR8B2+/jIx3z5PTvY58TGHvDrc7KyvmWvv+yygdmGZotZevfQu9KdL70ggcwsKRRlfr939OjtbN0uvPDrAVk3gggW/p6/IyJCtXPnTpZqmzt3rm3ZvHnz2LIdO3a4fU9hYSFUVVWxCJRAo9FAXl6e7T3d3d0sOoXLBVqtFuRyOXzzzTf9/t3is1taWpxuBNGbxERRoKyyFp17RhhEqlRDpyvKsY7quuvGsXud7jBkZOhh9eq5UF7eDh98wB3EI42YGEzn2qOJ+HfNnZvh13sfXfQoXJx7MSjlSpZaw3QfkpDAU71Go3+F38LfTPidBRt0TL/8tMvhguyLASQ5WCz+h5uEmW1MTOQ1HBCEOyJCUKEwSkkR09vt4DJ8ztN7kNTUVKfl+LN4DoVRdHQ03H///dDR0cFSgPfeey9L91VWVvb7dyNPPvmkreYKb1lZ/k+IJ4ajoEJvIe/1NXV1XHBptcEbIxIOZGbWWh/xE+wNN/BONgSFVSSjUDTbHs+f71yb6Q0c3fLpNZ9C18Nd8NeL/sou/JCkJH7xZzL5J6iMRjH7cWCdyJOT+X4sSdF+zxkUYi82llzSiaFBSAUVFozjgcLb7bvvvmOvFQcUR5j/iZvljvR+3vE9WIj+3nvvwSeffAIxMTFM+DQ3N8PMmTNBobB/yfvzux988EH2WeJWWup5ACwxfOFRDN6xVVfnPfLU0MC9hHS64Lpeh5rx4+0eSWlp+fDMM/75GEUCZjOf3Yf89rf+1xcJFHJnsSEEldnsnw+Z0ahx6iYdKNLSRGRKBS0t/o25MRp5QwYJKmKoENIR7rfffjtcddVVXl+Tk5MDBw8edOm8Q2pra10iUAIsQEcwipSenm5bXlNT4/QeTAlip19dXR0olUqIi4tj7x01apTtc/r6uxFMIzqmEgnCHdxfCSNTsdDY6P1E1NQkORlGDhXWrDkNtm37HpYta4a33vLPZTtSiI39HlpapoFWexQuvJDPvwuE1FQupCTJPx8y4W8WHz/QggrXBxt55FBW1gpxcb4jaD09XFAZDCE9DRFE0AjpnpyUlMRuvpg/fz6L8uzevRtOP51fvebn57NlCxYscPseFEQohjZu3AgzZsxgy7CDb+vWrfDUU0+5XRcEu/1QdF1yySX9/t0E0Rfk8i6wWHwLqvJyHlBOTR1abeannZYMzc28C26o8cILKnjppS2wfj0/BgVLUAHooKvLBFqt90O42cyFTXy8b5+zQFAq5SCTNTGT1tLSVpg82ff/p9nMxV5c3NCwACGIiKihmjhxIixZsgRuvvlm2LVrF7vh46VLl8L48farvgkTJsCHH37IHmM67q677oInnniCLTt06BDccMMNEBUVxWwQBK+//jr7PIxSvfXWW3D55ZfD3Xffbftcf383QQQiqJCmJu/z1mpqeFolN5eu6COF66+fBLt2LYTs7OD4a6Wn2yNTlZW+3dItFl7blJQ08LMfFQpegF9R4d9YnJ4eMfg68l3/CQKJmCPz2rVr4Y477rB17WEECf2lHDl69CiLHAnuu+8+6OzshFtvvZWZc2Kn3oYNG0Cv1zu9B+udGhoaWHrx4YcfZoKqr7+bIPqLQtENJhMOsvWeymtp4VHUadMiu1CbCLTmDgW4Fioq2mDUKO9Do7FIHElMHHhBpVK1s/24qsp300RDQyfz50KmTRua0Uli+BExgiohIYFFkLyBheKOYJQKC9/x5ok1a9awW6C/myD6i1JphO5u34LKZOInnilT+ImIGJ4oFA1gNmfAsWPNcMYZ9qL33nAbDp5WS0kZ+GHaGk0ndHZiJNV7pBU5cACHReMsxw7Iyoq8wdcEEbEpP4IYyiiVXEi1tnqez2Y0YiccPymmp5O19HBGq21k98ePe0/51dbaU2/JyQMvqHQ6XgNYV+d7zmBBAR/dpVLVROTga4JwBwkqgggxarUQVJ6Lzauq7CfP1FQSVMMZvZ7vC0VF3X4KKqM1VTiwiO7ThgbfTRMlJdwiRKslw2Ni6ECCiiBCjFrNr+jb2ux+TL2pqREnRxNzFyeGL/HxXEiVl3sXLrW1XLTIZP4ViQeKXs/Xx5+58U1NfJ9Xq32nBwkiUiBBRRAhRqPhQqq1VfJ5cgRopxTJMCc5mQuX+nrvh++GBi685PLBEVQGA99/m5t9n1ZaWvg+r9UOLU81YnhDgoogQoxWy0+QHV7Oe/X1g3tyJMKXGKvLQGenL0HFoz8KxeCMKoqP57VQbW2+e51aWrj40mo9R2UJItIgQUUQIUan819QKZVDZzAy0T9iY/lhu6vLu3BpbOSCSqkcHEGVmMjH5HR0+K7Xam/n9zodCSpi6ECCiiBCjM46H7mz03O3U2Njz6CeHInwRa+XOw0X9lWnpFINTp1ScjJ3PO/q0votqKKi/BukTBCRAAkqgggxUdaO9q4uuU9BpVb7N3iWGLrExSmdhgv7qlMSXaQDTWoqb5bo6fFt0dDeLndKXxLEUIAEFUGEmOhoHpnq6uIpE3c0Nw/uyZEIX8Qw4Z4e792eYp/RaHz7QgWD9HQeajWZfKukzk6+r5OgIoYSJKgIIsQYDKImxvOQ2JYWXmel1Q7OyZEIXxIS1E7DhT3R1sbTaTrd4OwzI0ZwfzQc9O0Lka4U6UuCGArQ3kwQISYpiZ9curs9p3CEpcJgnRyJ8CUhgQsps9lafOeBtjbnLtKBJitLzJjUQlOT91q/7m5+8WAweI7KEkSkQYKKIEJMYiIXUkajzufJkYp4iaQkXvRtsXgXVKJrNDp6cAq/MzJQUPE0Y1GRfUi9Ozo7eTQrNXXgHdwJYrAgQUUQISY52Xcxb3u7bFBPjkT4kpgouuhiwGLxvD90dPDDe/QgTSpSKuUgk/FRMmVl3ucMdncnsfspU+IGZd0IYjAgQUUQISY1lUcaLBbPZz5h4khFvERmpkityaGsrMVn4bdeP3jDhxWKVnZfUeHZVK2hoRMkKZE9njkzZdDWjSAGGhJUBBFiMjK4kJIkvceIQ2enctBPjkR4kpQUBTJZA3u8Z0+1H4Xfg7fPqFTcYKqqynMN1f79NdZHbZCV5buAnSAiBRJUBBFiMjJEm7mSXb17OzlSES+BaLVcSB040ORH4bfvUTDBQqPhQqq21rO9xxdfVLB7rbaC5lISQwoSVAQRYlJSMELFO7HKynjKpDfCxDEujrqiCNwPeNH3kSOeRxGJfSY2dvD2GZ2OG89WV3sWVBs2cOf23NzKQVsvghgMSFARRIiRyzElw4VUZaV1JkcvhIljXJxnrypi+JCWxoVLUZHnonSTafD3mdhYLpbq6jyvV0kJT/PNm0cXB8TQggQVQYQBopi3psZ97YnJpHUydSSGNzk5/L6y0rO5p9k8+PtMfDyPtDY0eK7bam1NZvczZlD9FDG0IEFFEGGAUtnpVVAJE8fERO/u2MTwYPx4LpaammL9EFSDt88k8uY9aG52X7fV1mYEszmdPZ4/P3XQ1osgBgMSVAQRBqjVXFDV1fGUSW8slignU0dieDN1qoHdd3R4th2QJN49mpzs3QA0mKSlcSHV1uY+Kvb999jhh6m+bpg6lSwTiKEFCSqCCAM0Gl4TU1/vOlrGZMI0Cj85pqR4Nv8khg9Tp/JQkCQlQ0eHawG40YiO5VG9jEAHnvR0LqQ6Otx7qpWX8xpBNADltYMEMXQgQUUQYYBOx0+KjY18dIcj3EqBf1VJUBHI+PEoqLj4Liioc9kodXV2Y83U1EGySgeAzEweDTMahRWIMyKlrVR6d1IniEiEBBVBhAHR0fzk2Nzs2h1VUyNOjhZISBi89A0RvuCYF7m8lj0uKGh0eb6uTtgpWCAubvAiVDk5XEiZTDwl2ZuaGh6JVak82z0QRKRCgoogwoDoaN4d1eJmkohdULWzEylBIFotF1LHj7tGe2prhWBpG9TU2ujRQkgZWAF6b+rre5wMQAliKEFHZ4IIA2KtzVqtra5fybo6fvKRyz3PRyOGH9HRvB6ptJRHfRyprxf7zOBGgrKzUVDxtPWpU64u7g0N/Dmt1n3zBUFEMiSoCCIMMBh4FKGjw7XdvL6enzAVCkqTEK51d83NlrDZZ9RqBchkXEgVFrqGWxsb+bpGRbk2XxBEpEOCiiDCgPh4/lXs7HR1tW5o4FfzSiWlSQg7Oh0XJa2trnV3TU1cbCkUrtGrgUap5EKqpMTV9V+ktGNiXJsvCCLSIUFFEGFAYiKPTHV3u/r3VFdzQaVWk6AiXOvuWt2Mf2xs5IJKpRp8QaXV8hUqKXFNUbe28khsbKzn0TQEEamQoCKIMCAxkQspo9G1I6uigp8c9XpK+RF2oq1uCB0drkXnLS08eqVWD36tUnQ030/Ly139sdrbFU41gwQxlCBBRRBhQHIyHw/S0+PqGVRdza/m4+KokJewo9fz+44O1yHDoq5Koxn8WiWDgUfFqqtda7s6OnhKOyGBTj3E0IP2aoIIA9LTuau1xeIqqOrq+Nc0KYnSJISd2FhRd+fayNDaysWMVjv4gioxkf/uujrXyFlXl8YpxU0QQwkSVAQRBqSlcUElSXqwWJyFU3MzTwempdHXlbATF8cjU93dro0MjVavz+jowS/+TknhQqqpyXW9REpbpLgJYihBR2iCCANGjhRFJUqoqHCuMm5v5+7o6emuJyhi+BIXx6M8RqOrOKmr42IrJWXwo5rp6Xy9Wltd6wF7eviFQ0oKj1QRxFCCBBVBhAFJSXii4cW8p041Oz1nNHJBlZJCV/WE4z4jGhlcB2Y3NWlCFtXMyuJCqrPTdZ6f2cyXpaXRCCVi6EGCiiDCBIWC52mKipwjVKJQPT2dTkKEncmT49i90ZjmkiZub+cia+TIwY8EjR7NRZPR6DzPD9cRU9pIevrgDWwmiMGCBBVBhAkqFRdSpaXO/j10VU+444wzRljHvETDwYM1Ts91dXGxNXr04AuXMWN4+tpiSQSTyd7p19CAEVieth4xwjV6RRCRDgkqgggTdDruLF1ebjdjNBrxhMmv9DMz6SRE2ImJUYNCUckeb95c4RQJMpuT2OMJE7iwGkzGjUuwPlJCcbE9fV1RIYY4WyAtjfZlYuhBgoogwoToaOHfY291r6xsc6hNITdEwpmsrGJ2/+KL9jEvhw/XoWECEy7Tp6cM+iaLjcU0IxdSx45Z2w3ZhYLYl1tBLne1VCCISIcEFUGECQYDd5auq7PXw5SWinqqLuuJiiDs/P73PAJ18uTp8OOPtezx/v0oqADk8loWxQoFKhUXUoWF9guCqiredKFQuJmVQxBDABJUBBEmxMfzepPGRvvVe0UFjzzI5dapsgThwI03ngY63WEcMgN/+ctRtqyggO8rOh0XVqFAo+GiqajIXg9YW8sjsCqV64w/ghgKkKAiiDAhKYkLqeZmu9/UkSP85KhWN4VsvYjwZvr0ana/YQP/+YcfeCQoPj50Ijwmhoum8nL7uKR33uEiS6WiId/E0IQEFUGECWlp3BCxrc2e2jtyhJ8cDQZ7LQpBOHLFFTztV1w8jnXVHTnCTT1zc+3NDYNNbKzRZZ7fgQN57L61dWzI1osgBhISVAQRJqSn83qXzk67UeOpU/yElJJCV/WEe37+84k4gAYslhTYtasCyst5h9/s2a5O5YNFYiIfeVNby6Ouf/7zAYdnXY1ICWIoQIKKIMKErCx+ojEaufkhUlnJRdbIkTQYmXAPNisolVXs8ZYtVdDZySNAl1ySGbJNlmJtLsR5fmjjcNdd023PXXbZ1pCtF0EMJCSoCCJMyM7m3jxms907qKGBi6tx46jDj/CMXl/P7t95B2uXVCCXV8OCBWj8GRrE3Emc5/fhh8ednvvPf3jqjyCGGiSoCCJMGDtWCKkYaGriKb6ODp6+mTKFPKgIzyQl8W7QgoIF7D42tiKkXk+ZmfwCoLMzGvLzGxyeoW5VYuhCgoogwoTMTBRN3IvqxIlGaGnBuphU9vPppw++QSMROVxwgcLmTo7Ex9uNPkNBTg4feWM0xkFFhb3Tb/167uxOEEORiBFUjY2NcN1114HBYGA3fNzU5L2VXJIkeOSRRyAjIwN0Oh0sXLgQfvzxR6fXnDx5Ei699FJITk6G2NhYuOKKK6C6mrchC3JyckAmkzndHnjggQH5O4nhC0YUZLIm24DkPXuqrF/RDpg4kUeqCMIdf/nLApbmEyQn2932Q8G4cTzaarEk2Dr9cnO3wxVXjA/pehHEQBIxguqaa66BAwcOwBdffMFu+BhFlTeefvppeO655+Cvf/0r7NmzB9LS0uD888+H1lbuh9Le3g6LFy9mAmnz5s3w7bffgtFohGXLloHFYm/3RR599FGorKy03X73u98N6N9LDE9UKp4SKSlph337eF2MWl1FozoIn6SmFtoejxgR2tEu48eLeX4qOHqUN1bEx/POP4IYqvD4cJhz+PBhJqJ27doFc+fOZcteeeUVmD9/Phw9ehTGjx/vNjr1/PPPw8MPPww//elP2bI333wTUlNT4e2334Zf/vKXTEAVFRXB/v37WXQKef311yEhIYEJrPPOO8/2eXq9ngkyf+nu7mY3QUsL1Q4QvtFq28BoxJEzndDUxE9Aej3WoIymzUd4ZeVKOTz2GH98+ukxIe881GqPQlfXeCgt5XVdSRRkJYY4ERGh2rlzJ0vzCTGFzJs3jy3bsWOH2/cUFhZCVVUVi0AJNBoN5OXl2d6DggejU7hcoNVqQS6XwzfffOP0eU899RQkJibC9OnTYfXq1SyS5Y0nn3zSlp7EW1ZWVr//fmL4kJTEo6cHDhjh1CkuqJKTaVQH4ZtHHz0d7r13FzzyyB544IFZId9keXnO9VKpqaLOiyCGJhEhqFAYpQhjEwdwGT7n6T0IRqQcwZ/FcyjKoqOj4f7774eOjg6WArz33ntZug/TeoI777wT1q1bB19//TXcfvvtLPJ16623el3nBx98EJqbm2230tLSfv3txPBi+nQuogoKoqCoiKdKcnKc088E4Ymnn54Hq1bNCYsNNH6882DmM86ID9m6EMSQF1RYMN672Lv37bvvvmOvxcfu0nruljvS+3nH92Ah+nvvvQeffPIJxMTEsEgSip+ZM2eCQmG/mrr77rtZZGvq1KmwcuVKePnll+HVV1+F+npe4+IOjHphGtHxRhC+OPtsA7tvaEiFmppE9nj2bHKWJiKPSZPsBrUAXXDlleNCuDYEMcRrqDDac9VVV3l9DXbYHTx40KXzDqmtrXWJQAlEvRNGo9LT023La2pqnN6DKUHs9MVe5XcAAA8PSURBVKurqwOlUglxcXHsvaNGjfK4ThjZQk6cOMHSgAQRLGbM4PuTyZQNJhNPKy9c6H4fJ4hwZtYse9HUvHm7ICZmYUjXhyCGtKBKSkpiN19g8TlGjnbv3g2nn346W5afn8+WLVjACx57g4IIhdHGjRthxowZbBnWPW3dupXVQ7lbFwSL0VF0XXLJJR7XB4vYEUehRhDBYPp0x9S2GjSaE5CXRwXpROQxe3Y6nHPOFlCpAL74gsQUMfSJiC6/iRMnwpIlS+Dmm2+Gv//972zZL37xC1i6dKlTh9+ECRNYMTj6SmFa76677oInnngCcnNz2Q0fR0VFMQsGAXb14edj+g+L37FeClN84nNxGXYXLlq0iKUE0X4Bn0fBNXLkyBBsDWIog91RMlktSFIy+/mii8pBqeSz2Qgi0ti0iYQUMXyICEGFrF27Fu644w5b1x4KGvSXcgQtFDBqJbjvvvugs7OTFZCjMSh2CW7YsIFZIDi+BwvIGxoaWHoRbRZQMDnWQq1fvx7+8Ic/sK7A7OxsJuzwswliIIiJqYTWVi6orr8+dPPYCIIgCP+RSVilTQw46EMlit6pQJ3wxptvFsAvf6mGBQvKYPNmusInCIKIhPM3Caow+w8hCIIgCCLyzt8R4UNFEARBEAQRzpCgIgiCIAiCCBASVARBEARBEAFCgoogCIIgCCJASFARBEEQBEEECAkqgiAIgiCIACFBRRAEQRAEESAkqAiCIAiCIAKEBBVBEARBEESAkKAiCIIgCIIIEBJUBEEQBEEQAUKCiiAIgiAIIkBIUBEEQRAEQQQICSqCIAiCIIgAUQb6AYR/SJLE7ltaWmiTEQRBEESEIM7b4jzuCRJUg0Rrayu7z8rKGqxfSRAEQRBEEM/jBoPB4/MyyZfkIoKCxWKBiooK0Ov1IJPJgqqcUaSVlpZCbGxs0D6XoG0dKmifpu08lKD9OfK3NcokFFMZGRkgl3uulKII1SCB/wmZmZkD9vm485CgGhxoW9N2HkrQ/kzbeagROwDnQ2+RKQEVpRMEQRAEQQQICSqCIAiCIIgAIUEV4Wg0Gli1ahW7J2hbDwVon6btPJSg/Xn4bGsqSicIgiAIgggQilARBEEQBEEECAkqgiAIgiCIACFBRRAEQRAEESAkqAiCIAiCIAKEBFWE8+KLL8KoUaNAq9XCrFmzYPv27aFepYjhySefhDlz5jD3+pSUFFi+fDkcPXrUxSH3kUceYQ65Op0OFi5cCD/++KPTa7q7u+HXv/41JCUlQXR0NFxyySVQVlY2yH9NZG13nBZw11132ZbRdg4e5eXlcO2110JiYiJERUXB9OnTYe/evbStg4jJZILf/e537NiLx4XRo0fDo48+yiZiCGif7jvbtm2DZcuWseMtHiP++9//Oj0frG3a2NgI1113HTPrxBs+bmpqgoDB0TNEZLJu3TpJpVJJr7zyilRQUCDdeeedUnR0tFRcXBzqVYsILrjgAun111+XDh06JB04cEC6+OKLpZEjR0ptbW2216xZs0bS6/XS+++/L/3www/SlVdeKaWnp0stLS2219xyyy3SiBEjpI0bN0r79u2TFi1aJE2bNk0ymUwh+svCl927d0s5OTnS1KlT2f4qoO0cHBoaGqTs7GzphhtukPLz86XCwkLpq6++kk6cOEHbOog8/vjjUmJiovTpp5+ybfzee+9JMTEx0vPPP0/bOQA+++wz6eGHH2bHW5QnH374odPzwTpOLFmyRJo8ebK0Y8cOdsPHS5culQKFBFUEc/rpp7Odx5EJEyZIDzzwQMjWKZKpqalhX+KtW7eyny0Wi5SWlsa+xIKuri7JYDBIL7/8Mvu5qamJiVoUt4Ly8nJJLpdLX3zxRQj+ivCltbVVys3NZQe6vLw8m6Ci7Rw87r//funMM8/0+Dxt6+CAF18///nPnZb99Kc/la699lrazkGit6AK1r6LwQf87F27dtles3PnTrbsyJEjAa0zpfwiFKPRyML4ixcvdlqOP+/YsSNk6xXJNDc3s/uEhAR2X1hYCFVVVU7bGA3j8vLybNsY/w96enqcXoPh6MmTJ9P/Qy9uu+02uPjii+G8885zWk7bOXh8/PHHMHv2bLj88stZGnvGjBnwyiuv0LYOMmeeeSZs2rQJjh07xn7+/vvv4ZtvvoGLLrqI/Uz7dPAJ1jbduXMnS/PNnTvX9pp58+axZYGeO2k4coRSV1cHZrMZUlNTnZbjz7jTEX0DL4juuecedqDELx8itqO7bVxcXGx7jVqthvj4ePp/8MK6detg3759sGfPHpfnaDsHj1OnTsFLL73E9uWHHnoIdu/eDXfccQc78fzsZz+jbR0k7r//fnYBNmHCBFAoFOxYvHr1arj66qvZ87RPB59gbVO8x4uN3uCyQM+dJKgiHCzc6y0Mei8jfHP77bfDwYMH2VVmMLYx/T/YKS0thTvvvBM2bNjAmic8Qds5cLAoGiNUTzzxBPsZI1RYtIsiCwUVbevgsH79enjrrbfg7bffhtNOOw0OHDjAmiwwGnL99dfTdh5AgnGccPf6YByzKeUXoWAHA14Z9VbUNTU1Lgqe8A52hGCq5Ouvv4bMzEzb8rS0NHbvbRvjazD9il0j9P/gHgzD4zbDLlSlUsluW7duhRdeeIE9FtuStnPgpKenw6RJk5yWTZw4EUpKSmifDiL33nsvPPDAA3DVVVfBlClTWJfY3XffzTpYETp2BJ9gbVN8TXV1tcvn19bWBnzuJEEVoWBYE09QGzdudFqOPy9YsCBk6xVJ4BUJRqY++OAD2Lx5M2uBdgR/xi+f4zbGLyuKAbGN8f9ApVI5vaayshIOHTpE/w9Wzj33XPjhhx/YVby4YRRlxYoV7DG2nNN2Dg5nnHGGi/UH1vlkZ2fTPh1EOjo6QC53Pn3iBa6wTaBjR/AJ1jadP38+S9diOlyQn5/PlgV87gyopJ0IC9uEV199lXUu3HXXXcw2oaioiP5n/OBXv/oV6xDZsmWLVFlZabt1dHTYXoMdJfiaDz74gLXpXn311W7bdDMzM1l7OrbpnnPOOWSb4APHLj/azsG1pVAqldLq1aul48ePS2vXrpWioqKkt956i7Z1ELn++utZa76wTcDjQ1JSknTffffRdg6wE3j//v3shvLkueeeY4+FFVCwjsdom4DWLdjdh7cpU6aQbQIhSX/729+Y74xarZZmzpxpa/knfINfWHc39KZybNVdtWoVa9fVaDTS2Wefzb7IjnR2dkq33367lJCQIOl0OvbFLCkpof+CPggq2s7B45NPPmG+Ori/oo3KP/7xD6fnaVsHDp7Acf9F3zqtViuNHj2a+Sd1d3fTdg6Ar7/+2u0xGQVsMPfd+vp6acWKFczTCm/4uLGxUQoUGf4TWIyLIAiCIAhieEM1VARBEARBEAFCgoogCIIgCCJASFARBEEQBEEECAkqgiAIgiCIACFBRRAEQRAEESAkqAiCIAiCIAKEBBVBEARBEESAkKAiCIIgCIIIEBJUBEEMeR555BGYPn16qFeDIIghDAkqgiAiGplM5vV2ww03wG9/+1vYtGkThBNFRUVs/XBANEEQkY8y1CtAEAQRCDhNXrB+/Xr4/e9/D0ePHrUt0+l0EBMTw24EQRADBUWoCIKIaNLS0mw3g8HAoj69l/VO+WHUavny5fDEE09AamoqxMXFwR/+8AcwmUxw7733QkJCAmRmZsJrr73m9LvKy8vhyiuvhPj4eEhMTISf/OQnLNLkicbGRlixYgUkJyczYZebmwuvv/46e27UqFHsfsaMGWydFy5caHsfvmbixImg1WphwoQJ8OKLL7pEttatWwcLFixgrznttNNgy5YtQd2uBEH0DRJUBEEMSzZv3gwVFRWwbds2eO6555joWrp0KRNL+fn5cMstt7BbaWkpe31HRwcsWrSIRbrwPd988w17vGTJEjAajW5/x//93/9BQUEBfP7553D48GF46aWXICkpiT23e/dudv/VV1+xKNsHH3zAfn7llVfg4YcfhtWrV7P3oOjDz3nzzTedPhuF329+8xvYv38/E1aXXHIJ1NfXD/BWIwjCIxJBEMQQ4fXXX5cMBoPL8lWrVknTpk2z/Xz99ddL2dnZktlsti0bP368dNZZZ9l+NplMUnR0tPTOO++wn1999VX2GovFYntNd3e3pNPppC+//NLt+ixbtky68cYb3T5XWFgo4SF4//79TsuzsrKkt99+22nZY489Js2fP9/pfWvWrLE939PTI2VmZkpPPfWUl61DEMRAQjVUBEEMSzBNJpfbg/SY+ps8ebLtZ4VCwdJ6NTU17Oe9e/fCiRMnQK/XO31OV1cXnDx50u3v+NWvfgWXXXYZ7Nu3DxYvXszSjBhN8kRtbS2LiN10001w880325ZjKhJTl47Mnz/f9lipVMLs2bNZRIsgiNBAgoogiGGJSqVy+hnrktwts1gs7DHez5o1C9auXevyWVgj5Y4LL7wQiouL4X//+x9L7Z177rlw2223wTPPPOP29eJ3Ydpv7ty5Ts+hwPMFri9BEKGBaqgIgiD8YObMmXD8+HFISUmBsWPHOt16R496iy0sgn/rrbfg+eefh3/84x9suVqtZvdms9kpSjZixAg4deqUy+8QReyCXbt2OUWwMIKGBewEQYQGilARBEH4AXbr/fGPf2SdfY8++ijrAiwpKWHF5Fggjj/3Bi0cMKqF6cXu7m749NNPWfcegsIMO/+++OIL9l7s1hMdiXfccQfExsayCBe+77vvvmMdg/fcc4/ts//2t7+xrkH8vD/96U/s+Z///Of0f0kQIYIiVARBEH4QFRXFuvtGjhwJP/3pT5mQQQHT2dnJxI87MAr14IMPwtSpU+Hss89maTu0OxB1Ty+88AL8/e9/h4yMDCbUkJUrV8I///lPeOONN2DKlCmQl5fHHveOUK1ZswaeeuopmDZtGmzfvh0++ugjWwchQRCDjwwr00PwewmCIIh+gD5UKK7QLoHG6RBE+EARKoIgCIIgiAAhQUUQBEEQBBEglPIjCIIgCIIIEIpQEQRBEARBBAgJKoIgCIIgiAAhQUUQBEEQBBEgJKgIgiAIgiAChAQVQRAEQRBEgJCgIgiCIAiCCBASVARBEARBEAFCgoogCIIgCAIC4/8DvmlkvqyXGS0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot((strained_dict['pressure_GPa'][:] - relaxed_dict['pressure_GPa'][:])[:,0,0], color='black')\n", + "plt.plot(range(20, len((strained_dict['pressure_GPa'][20:] - relaxed_dict['pressure_GPa'][20:])[:,0,0]) + 20), (strained_dict['pressure_GPa'][20:] - relaxed_dict['pressure_GPa'][20:])[:,0,0], color='blue')\n", + "plt.axhline(-mean_stress_diff_plain[0,0], color='red')\n", + "plt.plot(range((w//2), len(dP_w[(w//2):-(w//2)]) + (w//2)), dP_w[(w//2):-(w//2)], color='green')\n", + "plt.plot(range((w2//2), len(dP_w2[(w2//2):-(w2//2)]) + (w2//2)), dP_w2[(w2//2):-(w2//2)], color='orange')\n", + "plt.xlabel('Time step')\n", + "plt.ylabel('Stress difference (GPa)')\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "37e06f20", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(np.float64(-0.08786792810225955), np.float64(-0.078152546990977))" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "min(dP_w2[(w2//2):-(w2//2)]), max(dP_w2[(w2//2):-(w2//2)])" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "id": "e93efb3f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "np.float64(0.009715381111282548)" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "-min(dP_w2[(w2//2):-(w2//2)])+ max(dP_w2[(w2//2):-(w2//2)])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "db7d3d51", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 8.11226935e-02, -1.15939307e-03, -5.60777896e-04],\n", + " [-1.15939307e-03, 5.86813723e-02, -4.83067579e-05],\n", + " [-5.60777896e-04, -4.83067579e-05, 5.88143148e-02]])" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mean_stress_diff_moving_average" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b417880f", + "metadata": {}, + "outputs": [], + "source": [ + "plt.plot((dP)[:,0,0])\n", + "plt.axhline(-stress_diff_moving_average, color='red')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "872bdce0", + "metadata": {}, + "outputs": [], + "source": [ + "tensor_dict = {}\n", + "for constant_str, deformation_gradient in deformation_gradient_dict.items():\n", + " diff, relaxed_dict, strained_dict = get_stress_tensor_at_finite_temperature(\n", + " structure=equilibriated_structure, \n", + " potential_dataframe=potential_df,\n", + " deformation_gradient=deformation_gradient,\n", + " temperature=500,\n", + " run=run,\n", + " thermo=thermo,\n", + " seed=seed,\n", + " thermostat=thermostat\n", + " )\n", + " \n", + " tensor_dict[constant_str] = diff\n", + " tensor_dict[f'relaxed_dict_{constant_str}'] = relaxed_dict\n", + " tensor_dict[f'strained_dict_{constant_str}'] = strained_dict\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4a185775", + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "elastic_constants_list = get_elastic_constants_from_stress_tensor(\n", + " tensor_dict=tensor_dict, \n", + " strain=strain\n", + ")\n", + "\n", + "return {\"elastic_constants\": elastic_constants_list, \"tensor_dict\": tensor_dict}" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "pyiron-latest", + "language": "python", + "name": "pyiron-latest" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/hackathon/elastic_constants/MD/thermal_expansion_data.txt b/hackathon/elastic_constants/MD/thermal_expansion_data.txt new file mode 100644 index 0000000..4629e82 --- /dev/null +++ b/hackathon/elastic_constants/MD/thermal_expansion_data.txt @@ -0,0 +1,21 @@ +0.7220216606498298, 0.000032573289902280284 +50.5415162454874, 0.0007882736156351808 +100.36101083032491, 0.0015439739413680813 +151.26353790613723, 0.002325732899022801 +200, 0.003107491856677528 +250.90252707581232, 0.0038892508143322495 +300.72202166064983, 0.00472312703583062 +350.5415162454874, 0.005530944625407168 +400.36101083032486, 0.006364820846905539 +450.18050541516243, 0.007224755700325734 +500, 0.008110749185667754 +549.8194945848375, 0.00897068403908795 +599.6389891696751, 0.00985667752442997 +650.5415162454873, 0.010794788273615637 +700.361010830325, 0.011732899022801304 +750.1805054151624, 0.012697068403908796 +800, 0.013661237785016288 +849.8194945848376, 0.014677524429967427 +899.638989169675, 0.015719869706840393 +949.4584837545125, 0.01676221498371336 +999.2779783393502, 0.017960912052117264