Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 13 additions & 2 deletions model/dit.py
Original file line number Diff line number Diff line change
Expand Up @@ -127,7 +127,16 @@ def __init__(
self.dim = dim
self.depth = depth

llama_config = LlamaConfig(hidden_size=dim, intermediate_size=dim * ff_mult, hidden_act='silu', max_position_embeddings=self.max_frames)
# Must set num_attention_heads to match DiT heads for correct head_dim in rotary embeddings
# head_dim = hidden_size // num_attention_heads, so num_attention_heads = hidden_size // dim_head
num_attention_heads = dim // dim_head
llama_config = LlamaConfig(
hidden_size=dim,
intermediate_size=dim * ff_mult,
hidden_act='silu',
max_position_embeddings=self.max_frames,
num_attention_heads=num_attention_heads, # Fix for transformers 4.49+
)
llama_config._attn_implementation = 'sdpa'
self.transformer_blocks = nn.ModuleList(
[LlamaDecoderLayer(llama_config, layer_idx=i) for i in range(depth)]
Expand Down Expand Up @@ -211,7 +220,9 @@ def forward(
)

for i, block in enumerate(self.transformer_blocks):
x, *_ = block(x, attention_mask=attention_mask, position_embeddings=rotary_embed)
# Note: In transformers 5.0+, LlamaDecoderLayer returns tensor, not tuple
# Using `x, *_ = block(...)` would unpack the tensor's first dimension
x = block(x, attention_mask=attention_mask, position_embeddings=rotary_embed)
if i < self.depth // 2:
x = x + self.text_fusion_linears[i](text_embed)

Expand Down