Skip to content

Conversation

@akberovic
Copy link

…stddev metrics

  • import torch.nn.functional as F # For cosine similarity
  •    # Compute and log cosine similarity between positive and negative pair representations.
    
  •    with torch.no_grad():
    
  •        # Positive cosine similarities.
    
  •        cos_sim = F.cosine_similarity(z_i, z_j, dim=-1)
    
  •        avg_cos_sim = cos_sim.mean().item()
    
  •        writer.add_scalar("Cosine Similarity/avg_positive", avg_cos_sim, args.global_step)
    
  •        writer.add_histogram("Cosine Similarity/hist_positive", cos_sim, args.global_step)
    
  •        # Compute negative similarities.
    
  •        norm_z_i = F.normalize(z_i, dim=1)
    
  •        norm_z_j = F.normalize(z_j, dim=1)
    
  •        cosine_matrix = torch.mm(norm_z_i, norm_z_j.t())
    
  •        mask = torch.eye(cosine_matrix.size(0), dtype=torch.bool, device=cosine_matrix.device)
    
  •        negative_sim = cosine_matrix[~mask].view(cosine_matrix.size(0), -1)
    
  •        avg_cos_sim_neg = negative_sim.mean().item()
    
  •        writer.add_scalar("Cosine Similarity/avg_negative", avg_cos_sim_neg, args.global_step)
    
  •        writer.add_histogram("Cosine Similarity/hist_negative", negative_sim, args.global_step)
    
  •        # Log embedding standard deviation as a collapse indicator.
    
  •        std_z_i = norm_z_i.std(dim=0).mean().item()
    
  •        writer.add_scalar("Embeddings/std_dev", std_z_i, args.global_step)
    

…stddev metrics

+ import torch.nn.functional as F  # For cosine similarity
+        # Compute and log cosine similarity between positive and negative pair representations.
+        with torch.no_grad():
+            # Positive cosine similarities.
+            cos_sim = F.cosine_similarity(z_i, z_j, dim=-1)
+            avg_cos_sim = cos_sim.mean().item()
+            writer.add_scalar("Cosine Similarity/avg_positive", avg_cos_sim, args.global_step)
+            writer.add_histogram("Cosine Similarity/hist_positive", cos_sim, args.global_step)
+
+            # Compute negative similarities.
+            norm_z_i = F.normalize(z_i, dim=1)
+            norm_z_j = F.normalize(z_j, dim=1)
+            cosine_matrix = torch.mm(norm_z_i, norm_z_j.t())
+            mask = torch.eye(cosine_matrix.size(0), dtype=torch.bool, device=cosine_matrix.device)
+            negative_sim = cosine_matrix[~mask].view(cosine_matrix.size(0), -1)
+            avg_cos_sim_neg = negative_sim.mean().item()
+            writer.add_scalar("Cosine Similarity/avg_negative", avg_cos_sim_neg, args.global_step)
+            writer.add_histogram("Cosine Similarity/hist_negative", negative_sim, args.global_step)
+
+            # Log embedding standard deviation as a collapse indicator.
+            std_z_i = norm_z_i.std(dim=0).mean().item()
+            writer.add_scalar("Embeddings/std_dev", std_z_i, args.global_step)
…dogs-vs-cats

+        # Compute and log cosine similarity between positive and negative pair representations.
+        with torch.no_grad():
+            # Positive cosine similarities.
+            cos_sim = F.cosine_similarity(z_i, z_j, dim=-1)
+            avg_cos_sim = cos_sim.mean().item()
+            writer.add_scalar("Cosine Similarity/avg_positive", avg_cos_sim, args.global_step)
+            writer.add_histogram("Cosine Similarity/hist_positive", cos_sim, args.global_step)
+
+            # Compute negative similarities.
+            norm_z_i = F.normalize(z_i, dim=1)
+            norm_z_j = F.normalize(z_j, dim=1)
+            cosine_matrix = torch.mm(norm_z_i, norm_z_j.t())
+            mask = torch.eye(cosine_matrix.size(0), dtype=torch.bool, device=cosine_matrix.device)
+            negative_sim = cosine_matrix[~mask].view(cosine_matrix.size(0), -1)
+            avg_cos_sim_neg = negative_sim.mean().item()
+            writer.add_scalar("Cosine Similarity/avg_negative", avg_cos_sim_neg, args.global_step)
+            writer.add_histogram("Cosine Similarity/hist_negative", negative_sim, args.global_step)
+
+            # Log embedding standard deviation as a collapse indicator.
+            std_z_i = norm_z_i.std(dim=0).mean().item()
+            writer.add_scalar("Embeddings/std_dev", std_z_i, args.global_step)
…epoch

    if args.nr == 0:
+       # Log embeddings for a small subset of images.
+       model.eval()
+       try:
+           sample_batch = next(iter(train_loader))
+           sample_images, sample_labels = sample_batch[0][0], sample_batch[1]
+           sample_images = sample_images.cuda(non_blocking=True)
+
+           with torch.no_grad():
+               embeddings = model.encoder(sample_images)
+           cifar10_classes = ['airplane','automobile','bird','cat','deer','dog','frog','horse','ship','truck']
+           metadata = [cifar10_classes[label] for label in sample_labels]
+           writer.add_embedding(embeddings, metadata=metadata,
+                                label_img=sample_images, global_step=epoch, tag="embeddings")
+       except Exception as e:
+           print(f"Error during embedding logging: {e}")
+       model.train()
+
+       # Log gradient histograms for all parameters.
+       for name, param in model.named_parameters():
+           if param.grad is not None:
+               writer.add_histogram(f'{name}.grad', param.grad, epoch)
+
    # End training: save final model checkpoint.
    save_model(args, model, optimizer)
+
+   if writer:
+       writer.close()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant