Skip to content

TheochemUI/pypotlib

Repository files navigation

pypotlib Contributor Covenant Builds Wheels

Python bindings and ASE adapters for potlib.

Details

The library consists of thin wrappers to potlib under cpot and a PyPotLibCalc class which is an ase calculator under ase_adapters.

Installation

This is on PyPI, with wheels, so usage is simply:

pip install pypotlib

Users are advised to not try to build from source, since the underlying potlib code includes fortran and cpp dependencies which can be slightly tricky to work with.

Local Development

The easiest way is to use the pixi environment.

pixi s
pdm install
# For tests
pixi s -e with-ase
pytest tests/test_cache.py

Production

As such, due to the compiled extensions and what not, cibuildwheel is used to generate macos and linux wheels. Locally this may be emulated (on linux) by:

cibuildwheel --output-dir wheelhouse --platform linux

Usage examples

The simplest usage is just:

import pypotlib as ppl
import numpy as np
ljpot = ppl.cpot.LJPot()
pos = np.array([1, 2, 3, 1.2, 2.3, 3.6]).reshape(-1, 3)
atm_types = [0, 0]
cell_dim = np.eye(3)*50
print(ljpot(pos, atm_types, cell_dim))

For using the ASE calculator we need an instantiated class.

from ase import Atoms
from pypotlib import cpot
from pypotlib.ase_adapters import PyPotLibCalc
atoms = Atoms(symbols=['Cu', 'H'], positions=[[0, 0, 0], [0.5, 0.5, 0.5]])
calc = PyPotLibCalc(cpot.CuH2Pot())
atoms.set_calculator(calc)
print(atoms.get_potential_energy())
print(atoms.get_forces())

To run an NEB with this, consider the following toy example:

from ase import Atoms
from ase.neb import NEB
from ase.optimize import BFGS

from pypotlib import cpot
from pypotlib.ase_adapters import PyPotLibCalc

atoms_initial = Atoms(symbols=['H', 'H'], positions=[(0, 0, 0), (0, 0, 1)])
atoms_final = Atoms(symbols=['H', 'H'], positions=[(0, 0, 2), (0, 0, 3)])

images = [atoms_initial]
images += [atoms_initial.copy() for idx in range(3)]
images += [atoms_final]

for image in images:
    image.calc = PyPotLibCalc(cpot.LJPot())

neb = NEB(images)
neb.interpolate(method = 'idpp')
optimizer = BFGS(neb)
optimizer.run(fmax=0.04)

Caching runs

pypotlib supports persistent caching via RocksDB. This allows energy and force evaluations to be stored and retrieved, significantly speeding up repeated calculations on identical configurations.

import pypotlib.cpot as cpot
import numpy as np

# 1. Initialize the cache with a directory path
# This will create a RocksDB database at the specified location.
cache = cpot.PotentialCache("/tmp/my_pot_cache", create_if_missing=True)

# 2. Create the potential and link the cache
lj = cpot.LJPot()
lj.set_cache(cache)

# 3. Use as normal
pos = np.array([[0.0, 0.0, 0.0], [3.0, 0.0, 0.0]])
types = [1, 1]
box = np.eye(3) * 10.0

# First call: Computes and stores result in DB
e1, f1 = lj(pos, types, box)

# Second call (same inputs): Retrieves result from DB (Instant)
e2, f2 = lj(pos, types, box)

ASE Caching

The ASE calculator provides more sophisticated caching, with the internal checks for equivalent structures further reducing calls to the underlying compiled code.

from ase import Atoms
from pypotlib import cpot
from pypotlib.ase_adapters import PyPotLibCalc

# Setup Potential with Cache
cache = cpot.PotentialCache("ase_cache_db")
pot = cpot.CuH2Pot()
pot.set_cache(cache)

# Create Calculator
atoms = Atoms(symbols=["Cu", "H"], positions=[[0, 0, 0], [0.5, 0.5, 0.5]])
calc = PyPotLibCalc(pot)
atoms.set_calculator(calc)

print(atoms.get_potential_energy())
print(atoms.get_forces())

NEB Example with Benchmarking

To really see the power of the cache, we can run an NEB optimization twice. The first run performs the calculations and populates the RocksDB database. The second run, performing the exact same optimization, hits the cache for every step, reducing the computational cost to near zero.

import time
import shutil
from ase import Atoms
from ase.mep import NEB
from ase.optimize import BFGS
from pypotlib import cpot
from pypotlib.ase_adapters import PyPotLibCalc

# Setup a persistent cache
cache_path = "/tmp/neb_demo_cache"
# Clear previous cache to ensure a "cold" start for demonstration
shutil.rmtree(cache_path, ignore_errors=True)
cache = cpot.PotentialCache(cache_path, create_if_missing=True)


def setup_neb_images():
    """Helper to create fresh images for the NEB."""
    atoms_initial = Atoms(symbols=["H", "H"], positions=[(0, 0, 0), (0, 0, 1)])
    atoms_final = Atoms(symbols=["H", "H"], positions=[(0, 0, 2), (0, 0, 3)])

    images = [atoms_initial]
    images += [atoms_initial.copy() for _ in range(3)]
    images += [atoms_final]

    # Attach calculators with the SHARED cache
    for image in images:
        pot = cpot.LJPot()
        pot.set_cache(cache)  # All images share the same DB
        image.calc = PyPotLibCalc(pot)

    return images


# --- Run 1: Cold Cache (Calculates & Writes) ---
print("Starting Run 1 (Cold Cache)...")
images_1 = setup_neb_images()
neb_1 = NEB(images_1)
neb_1.interpolate(method="idpp")
opt_1 = BFGS(neb_1)

start_1 = time.time()
opt_1.run(fmax=0.04)
duration_1 = time.time() - start_1
print(f"Run 1 finished in {duration_1:.4f} seconds.")

# --- Run 2: Warm Cache (Reads only) ---
print("\nStarting Run 2 (Warm Cache)...")
images_2 = setup_neb_images()  # Re-create identical initial state
neb_2 = NEB(images_2)
neb_2.interpolate(method="idpp")
opt_2 = BFGS(neb_2)

start_2 = time.time()
opt_2.run(fmax=0.04)
duration_2 = time.time() - start_2
print(f"Run 2 finished in {duration_2:.4f} seconds.")

# --- Results ---
speedup = duration_1 / duration_2 if duration_2 > 0 else 0
print(f"\nSpeedup factor: {speedup:.1f}x")

Contributions

All contributions are welcome, this includes code and documentation contributions but also questions or other clarifications. Note that we expect all contributors to follow our Code of Conduct.

License

MIT.

About

Python bindings and ASE adapters for potlib

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published